Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
4 * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com>
5 */
6
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <linux/jiffies.h>
11#include <linux/i2c.h>
12#include <linux/hwmon.h>
13#include <linux/hwmon-sysfs.h>
14#include <linux/err.h>
15#include <linux/mutex.h>
16
17/* Addresses to scan */
18static const unsigned short normal_i2c[] = {
19 0x2c, 0x2d, 0x2e, I2C_CLIENT_END
20};
21
22enum asc7621_type {
23 asc7621,
24 asc7621a
25};
26
27#define INTERVAL_HIGH (HZ + HZ / 2)
28#define INTERVAL_LOW (1 * 60 * HZ)
29#define PRI_NONE 0
30#define PRI_LOW 1
31#define PRI_HIGH 2
32#define FIRST_CHIP asc7621
33#define LAST_CHIP asc7621a
34
35struct asc7621_chip {
36 char *name;
37 enum asc7621_type chip_type;
38 u8 company_reg;
39 u8 company_id;
40 u8 verstep_reg;
41 u8 verstep_id;
42 const unsigned short *addresses;
43};
44
45static struct asc7621_chip asc7621_chips[] = {
46 {
47 .name = "asc7621",
48 .chip_type = asc7621,
49 .company_reg = 0x3e,
50 .company_id = 0x61,
51 .verstep_reg = 0x3f,
52 .verstep_id = 0x6c,
53 .addresses = normal_i2c,
54 },
55 {
56 .name = "asc7621a",
57 .chip_type = asc7621a,
58 .company_reg = 0x3e,
59 .company_id = 0x61,
60 .verstep_reg = 0x3f,
61 .verstep_id = 0x6d,
62 .addresses = normal_i2c,
63 },
64};
65
66/*
67 * Defines the highest register to be used, not the count.
68 * The actual count will probably be smaller because of gaps
69 * in the implementation (unused register locations).
70 * This define will safely set the array size of both the parameter
71 * and data arrays.
72 * This comes from the data sheet register description table.
73 */
74#define LAST_REGISTER 0xff
75
76struct asc7621_data {
77 struct i2c_client client;
78 struct device *class_dev;
79 struct mutex update_lock;
80 bool valid; /* true if following fields are valid */
81 unsigned long last_high_reading; /* In jiffies */
82 unsigned long last_low_reading; /* In jiffies */
83 /*
84 * Registers we care about occupy the corresponding index
85 * in the array. Registers we don't care about are left
86 * at 0.
87 */
88 u8 reg[LAST_REGISTER + 1];
89};
90
91/*
92 * Macro to get the parent asc7621_param structure
93 * from a sensor_device_attribute passed into the
94 * show/store functions.
95 */
96#define to_asc7621_param(_sda) \
97 container_of(_sda, struct asc7621_param, sda)
98
99/*
100 * Each parameter to be retrieved needs an asc7621_param structure
101 * allocated. It contains the sensor_device_attribute structure
102 * and the control info needed to retrieve the value from the register map.
103 */
104struct asc7621_param {
105 struct sensor_device_attribute sda;
106 u8 priority;
107 u8 msb[3];
108 u8 lsb[3];
109 u8 mask[3];
110 u8 shift[3];
111};
112
113/*
114 * This is the map that ultimately indicates whether we'll be
115 * retrieving a register value or not, and at what frequency.
116 */
117static u8 asc7621_register_priorities[255];
118
119static struct asc7621_data *asc7621_update_device(struct device *dev);
120
121static inline u8 read_byte(struct i2c_client *client, u8 reg)
122{
123 int res = i2c_smbus_read_byte_data(client, reg);
124 if (res < 0) {
125 dev_err(&client->dev,
126 "Unable to read from register 0x%02x.\n", reg);
127 return 0;
128 }
129 return res & 0xff;
130}
131
132static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
133{
134 int res = i2c_smbus_write_byte_data(client, reg, data);
135 if (res < 0) {
136 dev_err(&client->dev,
137 "Unable to write value 0x%02x to register 0x%02x.\n",
138 data, reg);
139 }
140 return res;
141}
142
143/*
144 * Data Handlers
145 * Each function handles the formatting, storage
146 * and retrieval of like parameters.
147 */
148
149#define SETUP_SHOW_DATA_PARAM(d, a) \
150 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
151 struct asc7621_data *data = asc7621_update_device(d); \
152 struct asc7621_param *param = to_asc7621_param(sda)
153
154#define SETUP_STORE_DATA_PARAM(d, a) \
155 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
156 struct i2c_client *client = to_i2c_client(d); \
157 struct asc7621_data *data = i2c_get_clientdata(client); \
158 struct asc7621_param *param = to_asc7621_param(sda)
159
160/*
161 * u8 is just what it sounds like...an unsigned byte with no
162 * special formatting.
163 */
164static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
165 char *buf)
166{
167 SETUP_SHOW_DATA_PARAM(dev, attr);
168
169 return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
170}
171
172static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
173 const char *buf, size_t count)
174{
175 SETUP_STORE_DATA_PARAM(dev, attr);
176 long reqval;
177
178 if (kstrtol(buf, 10, &reqval))
179 return -EINVAL;
180
181 reqval = clamp_val(reqval, 0, 255);
182
183 mutex_lock(&data->update_lock);
184 data->reg[param->msb[0]] = reqval;
185 write_byte(client, param->msb[0], reqval);
186 mutex_unlock(&data->update_lock);
187 return count;
188}
189
190/*
191 * Many of the config values occupy only a few bits of a register.
192 */
193static ssize_t show_bitmask(struct device *dev,
194 struct device_attribute *attr, char *buf)
195{
196 SETUP_SHOW_DATA_PARAM(dev, attr);
197
198 return sprintf(buf, "%u\n",
199 (data->reg[param->msb[0]] >> param->
200 shift[0]) & param->mask[0]);
201}
202
203static ssize_t store_bitmask(struct device *dev,
204 struct device_attribute *attr,
205 const char *buf, size_t count)
206{
207 SETUP_STORE_DATA_PARAM(dev, attr);
208 long reqval;
209 u8 currval;
210
211 if (kstrtol(buf, 10, &reqval))
212 return -EINVAL;
213
214 reqval = clamp_val(reqval, 0, param->mask[0]);
215
216 reqval = (reqval & param->mask[0]) << param->shift[0];
217
218 mutex_lock(&data->update_lock);
219 currval = read_byte(client, param->msb[0]);
220 reqval |= (currval & ~(param->mask[0] << param->shift[0]));
221 data->reg[param->msb[0]] = reqval;
222 write_byte(client, param->msb[0], reqval);
223 mutex_unlock(&data->update_lock);
224 return count;
225}
226
227/*
228 * 16 bit fan rpm values
229 * reported by the device as the number of 11.111us periods (90khz)
230 * between full fan rotations. Therefore...
231 * RPM = (90000 * 60) / register value
232 */
233static ssize_t show_fan16(struct device *dev,
234 struct device_attribute *attr, char *buf)
235{
236 SETUP_SHOW_DATA_PARAM(dev, attr);
237 u16 regval;
238
239 mutex_lock(&data->update_lock);
240 regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
241 mutex_unlock(&data->update_lock);
242
243 return sprintf(buf, "%u\n",
244 (regval == 0 ? -1 : (regval) ==
245 0xffff ? 0 : 5400000 / regval));
246}
247
248static ssize_t store_fan16(struct device *dev,
249 struct device_attribute *attr, const char *buf,
250 size_t count)
251{
252 SETUP_STORE_DATA_PARAM(dev, attr);
253 long reqval;
254
255 if (kstrtol(buf, 10, &reqval))
256 return -EINVAL;
257
258 /*
259 * If a minimum RPM of zero is requested, then we set the register to
260 * 0xffff. This value allows the fan to be stopped completely without
261 * generating an alarm.
262 */
263 reqval =
264 (reqval <= 0 ? 0xffff : clamp_val(5400000 / reqval, 0, 0xfffe));
265
266 mutex_lock(&data->update_lock);
267 data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
268 data->reg[param->lsb[0]] = reqval & 0xff;
269 write_byte(client, param->msb[0], data->reg[param->msb[0]]);
270 write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
271 mutex_unlock(&data->update_lock);
272
273 return count;
274}
275
276/*
277 * Voltages are scaled in the device so that the nominal voltage
278 * is 3/4ths of the 0-255 range (i.e. 192).
279 * If all voltages are 'normal' then all voltage registers will
280 * read 0xC0.
281 *
282 * The data sheet provides us with the 3/4 scale value for each voltage
283 * which is stored in in_scaling. The sda->index parameter value provides
284 * the index into in_scaling.
285 *
286 * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
287 * respectively. That doesn't mean that's what the motherboard provides. :)
288 */
289
290static const int asc7621_in_scaling[] = {
291 2500, 2250, 3300, 5000, 12000
292};
293
294static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
295 char *buf)
296{
297 SETUP_SHOW_DATA_PARAM(dev, attr);
298 u16 regval;
299 u8 nr = sda->index;
300
301 mutex_lock(&data->update_lock);
302 regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]);
303 mutex_unlock(&data->update_lock);
304
305 /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */
306 regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2);
307
308 return sprintf(buf, "%u\n", regval);
309}
310
311/* 8 bit voltage values (the mins and maxs) */
312static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
313 char *buf)
314{
315 SETUP_SHOW_DATA_PARAM(dev, attr);
316 u8 nr = sda->index;
317
318 return sprintf(buf, "%u\n",
319 ((data->reg[param->msb[0]] *
320 asc7621_in_scaling[nr]) / 0xc0));
321}
322
323static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
324 const char *buf, size_t count)
325{
326 SETUP_STORE_DATA_PARAM(dev, attr);
327 long reqval;
328 u8 nr = sda->index;
329
330 if (kstrtol(buf, 10, &reqval))
331 return -EINVAL;
332
333 reqval = clamp_val(reqval, 0, 0xffff);
334
335 reqval = reqval * 0xc0 / asc7621_in_scaling[nr];
336
337 reqval = clamp_val(reqval, 0, 0xff);
338
339 mutex_lock(&data->update_lock);
340 data->reg[param->msb[0]] = reqval;
341 write_byte(client, param->msb[0], reqval);
342 mutex_unlock(&data->update_lock);
343
344 return count;
345}
346
347static ssize_t show_temp8(struct device *dev,
348 struct device_attribute *attr, char *buf)
349{
350 SETUP_SHOW_DATA_PARAM(dev, attr);
351
352 return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
353}
354
355static ssize_t store_temp8(struct device *dev,
356 struct device_attribute *attr, const char *buf,
357 size_t count)
358{
359 SETUP_STORE_DATA_PARAM(dev, attr);
360 long reqval;
361 s8 temp;
362
363 if (kstrtol(buf, 10, &reqval))
364 return -EINVAL;
365
366 reqval = clamp_val(reqval, -127000, 127000);
367
368 temp = reqval / 1000;
369
370 mutex_lock(&data->update_lock);
371 data->reg[param->msb[0]] = temp;
372 write_byte(client, param->msb[0], temp);
373 mutex_unlock(&data->update_lock);
374 return count;
375}
376
377/*
378 * Temperatures that occupy 2 bytes always have the whole
379 * number of degrees in the MSB with some part of the LSB
380 * indicating fractional degrees.
381 */
382
383/* mmmmmmmm.llxxxxxx */
384static ssize_t show_temp10(struct device *dev,
385 struct device_attribute *attr, char *buf)
386{
387 SETUP_SHOW_DATA_PARAM(dev, attr);
388 u8 msb, lsb;
389 int temp;
390
391 mutex_lock(&data->update_lock);
392 msb = data->reg[param->msb[0]];
393 lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
394 temp = (((s8) msb) * 1000) + (lsb * 250);
395 mutex_unlock(&data->update_lock);
396
397 return sprintf(buf, "%d\n", temp);
398}
399
400/* mmmmmm.ll */
401static ssize_t show_temp62(struct device *dev,
402 struct device_attribute *attr, char *buf)
403{
404 SETUP_SHOW_DATA_PARAM(dev, attr);
405 u8 regval = data->reg[param->msb[0]];
406 int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
407
408 return sprintf(buf, "%d\n", temp);
409}
410
411static ssize_t store_temp62(struct device *dev,
412 struct device_attribute *attr, const char *buf,
413 size_t count)
414{
415 SETUP_STORE_DATA_PARAM(dev, attr);
416 long reqval, i, f;
417 s8 temp;
418
419 if (kstrtol(buf, 10, &reqval))
420 return -EINVAL;
421
422 reqval = clamp_val(reqval, -32000, 31750);
423 i = reqval / 1000;
424 f = reqval - (i * 1000);
425 temp = i << 2;
426 temp |= f / 250;
427
428 mutex_lock(&data->update_lock);
429 data->reg[param->msb[0]] = temp;
430 write_byte(client, param->msb[0], temp);
431 mutex_unlock(&data->update_lock);
432 return count;
433}
434
435/*
436 * The aSC7621 doesn't provide an "auto_point2". Instead, you
437 * specify the auto_point1 and a range. To keep with the sysfs
438 * hwmon specs, we synthesize the auto_point_2 from them.
439 */
440
441static const u32 asc7621_range_map[] = {
442 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
443 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
444};
445
446static ssize_t show_ap2_temp(struct device *dev,
447 struct device_attribute *attr, char *buf)
448{
449 SETUP_SHOW_DATA_PARAM(dev, attr);
450 long auto_point1;
451 u8 regval;
452 int temp;
453
454 mutex_lock(&data->update_lock);
455 auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
456 regval =
457 ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
458 temp = auto_point1 + asc7621_range_map[clamp_val(regval, 0, 15)];
459 mutex_unlock(&data->update_lock);
460
461 return sprintf(buf, "%d\n", temp);
462
463}
464
465static ssize_t store_ap2_temp(struct device *dev,
466 struct device_attribute *attr,
467 const char *buf, size_t count)
468{
469 SETUP_STORE_DATA_PARAM(dev, attr);
470 long reqval, auto_point1;
471 int i;
472 u8 currval, newval = 0;
473
474 if (kstrtol(buf, 10, &reqval))
475 return -EINVAL;
476
477 mutex_lock(&data->update_lock);
478 auto_point1 = data->reg[param->msb[1]] * 1000;
479 reqval = clamp_val(reqval, auto_point1 + 2000, auto_point1 + 80000);
480
481 for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
482 if (reqval >= auto_point1 + asc7621_range_map[i]) {
483 newval = i;
484 break;
485 }
486 }
487
488 newval = (newval & param->mask[0]) << param->shift[0];
489 currval = read_byte(client, param->msb[0]);
490 newval |= (currval & ~(param->mask[0] << param->shift[0]));
491 data->reg[param->msb[0]] = newval;
492 write_byte(client, param->msb[0], newval);
493 mutex_unlock(&data->update_lock);
494 return count;
495}
496
497static ssize_t show_pwm_ac(struct device *dev,
498 struct device_attribute *attr, char *buf)
499{
500 SETUP_SHOW_DATA_PARAM(dev, attr);
501 u8 config, altbit, regval;
502 static const u8 map[] = {
503 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
504 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
505 };
506
507 mutex_lock(&data->update_lock);
508 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
509 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
510 regval = config | (altbit << 3);
511 mutex_unlock(&data->update_lock);
512
513 return sprintf(buf, "%u\n", map[clamp_val(regval, 0, 15)]);
514}
515
516static ssize_t store_pwm_ac(struct device *dev,
517 struct device_attribute *attr,
518 const char *buf, size_t count)
519{
520 SETUP_STORE_DATA_PARAM(dev, attr);
521 unsigned long reqval;
522 u8 currval, config, altbit, newval;
523 static const u16 map[] = {
524 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
525 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
526 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
527 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
528 };
529
530 if (kstrtoul(buf, 10, &reqval))
531 return -EINVAL;
532
533 if (reqval > 31)
534 return -EINVAL;
535
536 reqval = map[reqval];
537 if (reqval == 0xff)
538 return -EINVAL;
539
540 config = reqval & 0x07;
541 altbit = (reqval >> 3) & 0x01;
542
543 config = (config & param->mask[0]) << param->shift[0];
544 altbit = (altbit & param->mask[1]) << param->shift[1];
545
546 mutex_lock(&data->update_lock);
547 currval = read_byte(client, param->msb[0]);
548 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
549 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
550 data->reg[param->msb[0]] = newval;
551 write_byte(client, param->msb[0], newval);
552 mutex_unlock(&data->update_lock);
553 return count;
554}
555
556static ssize_t show_pwm_enable(struct device *dev,
557 struct device_attribute *attr, char *buf)
558{
559 SETUP_SHOW_DATA_PARAM(dev, attr);
560 u8 config, altbit, minoff, val, newval;
561
562 mutex_lock(&data->update_lock);
563 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
564 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
565 minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
566 mutex_unlock(&data->update_lock);
567
568 val = config | (altbit << 3);
569
570 if (val == 3 || val >= 10)
571 newval = 255;
572 else if (val == 4)
573 newval = 0;
574 else if (val == 7)
575 newval = 1;
576 else if (minoff == 1)
577 newval = 2;
578 else
579 newval = 3;
580
581 return sprintf(buf, "%u\n", newval);
582}
583
584static ssize_t store_pwm_enable(struct device *dev,
585 struct device_attribute *attr,
586 const char *buf, size_t count)
587{
588 SETUP_STORE_DATA_PARAM(dev, attr);
589 long reqval;
590 u8 currval, config, altbit, newval, minoff = 255;
591
592 if (kstrtol(buf, 10, &reqval))
593 return -EINVAL;
594
595 switch (reqval) {
596 case 0:
597 newval = 0x04;
598 break;
599 case 1:
600 newval = 0x07;
601 break;
602 case 2:
603 newval = 0x00;
604 minoff = 1;
605 break;
606 case 3:
607 newval = 0x00;
608 minoff = 0;
609 break;
610 case 255:
611 newval = 0x03;
612 break;
613 default:
614 return -EINVAL;
615 }
616
617 config = newval & 0x07;
618 altbit = (newval >> 3) & 0x01;
619
620 mutex_lock(&data->update_lock);
621 config = (config & param->mask[0]) << param->shift[0];
622 altbit = (altbit & param->mask[1]) << param->shift[1];
623 currval = read_byte(client, param->msb[0]);
624 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
625 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
626 data->reg[param->msb[0]] = newval;
627 write_byte(client, param->msb[0], newval);
628 if (minoff < 255) {
629 minoff = (minoff & param->mask[2]) << param->shift[2];
630 currval = read_byte(client, param->msb[2]);
631 newval =
632 minoff | (currval & ~(param->mask[2] << param->shift[2]));
633 data->reg[param->msb[2]] = newval;
634 write_byte(client, param->msb[2], newval);
635 }
636 mutex_unlock(&data->update_lock);
637 return count;
638}
639
640static const u32 asc7621_pwm_freq_map[] = {
641 10, 15, 23, 30, 38, 47, 62, 94,
642 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
643};
644
645static ssize_t show_pwm_freq(struct device *dev,
646 struct device_attribute *attr, char *buf)
647{
648 SETUP_SHOW_DATA_PARAM(dev, attr);
649 u8 regval =
650 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
651
652 regval = clamp_val(regval, 0, 15);
653
654 return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
655}
656
657static ssize_t store_pwm_freq(struct device *dev,
658 struct device_attribute *attr,
659 const char *buf, size_t count)
660{
661 SETUP_STORE_DATA_PARAM(dev, attr);
662 unsigned long reqval;
663 u8 currval, newval = 255;
664 int i;
665
666 if (kstrtoul(buf, 10, &reqval))
667 return -EINVAL;
668
669 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
670 if (reqval == asc7621_pwm_freq_map[i]) {
671 newval = i;
672 break;
673 }
674 }
675 if (newval == 255)
676 return -EINVAL;
677
678 newval = (newval & param->mask[0]) << param->shift[0];
679
680 mutex_lock(&data->update_lock);
681 currval = read_byte(client, param->msb[0]);
682 newval |= (currval & ~(param->mask[0] << param->shift[0]));
683 data->reg[param->msb[0]] = newval;
684 write_byte(client, param->msb[0], newval);
685 mutex_unlock(&data->update_lock);
686 return count;
687}
688
689static const u32 asc7621_pwm_auto_spinup_map[] = {
690 0, 100, 250, 400, 700, 1000, 2000, 4000
691};
692
693static ssize_t show_pwm_ast(struct device *dev,
694 struct device_attribute *attr, char *buf)
695{
696 SETUP_SHOW_DATA_PARAM(dev, attr);
697 u8 regval =
698 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
699
700 regval = clamp_val(regval, 0, 7);
701
702 return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
703
704}
705
706static ssize_t store_pwm_ast(struct device *dev,
707 struct device_attribute *attr,
708 const char *buf, size_t count)
709{
710 SETUP_STORE_DATA_PARAM(dev, attr);
711 long reqval;
712 u8 currval, newval = 255;
713 u32 i;
714
715 if (kstrtol(buf, 10, &reqval))
716 return -EINVAL;
717
718 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
719 if (reqval == asc7621_pwm_auto_spinup_map[i]) {
720 newval = i;
721 break;
722 }
723 }
724 if (newval == 255)
725 return -EINVAL;
726
727 newval = (newval & param->mask[0]) << param->shift[0];
728
729 mutex_lock(&data->update_lock);
730 currval = read_byte(client, param->msb[0]);
731 newval |= (currval & ~(param->mask[0] << param->shift[0]));
732 data->reg[param->msb[0]] = newval;
733 write_byte(client, param->msb[0], newval);
734 mutex_unlock(&data->update_lock);
735 return count;
736}
737
738static const u32 asc7621_temp_smoothing_time_map[] = {
739 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
740};
741
742static ssize_t show_temp_st(struct device *dev,
743 struct device_attribute *attr, char *buf)
744{
745 SETUP_SHOW_DATA_PARAM(dev, attr);
746 u8 regval =
747 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
748 regval = clamp_val(regval, 0, 7);
749
750 return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
751}
752
753static ssize_t store_temp_st(struct device *dev,
754 struct device_attribute *attr,
755 const char *buf, size_t count)
756{
757 SETUP_STORE_DATA_PARAM(dev, attr);
758 long reqval;
759 u8 currval, newval = 255;
760 u32 i;
761
762 if (kstrtol(buf, 10, &reqval))
763 return -EINVAL;
764
765 for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
766 if (reqval == asc7621_temp_smoothing_time_map[i]) {
767 newval = i;
768 break;
769 }
770 }
771
772 if (newval == 255)
773 return -EINVAL;
774
775 newval = (newval & param->mask[0]) << param->shift[0];
776
777 mutex_lock(&data->update_lock);
778 currval = read_byte(client, param->msb[0]);
779 newval |= (currval & ~(param->mask[0] << param->shift[0]));
780 data->reg[param->msb[0]] = newval;
781 write_byte(client, param->msb[0], newval);
782 mutex_unlock(&data->update_lock);
783 return count;
784}
785
786/*
787 * End of data handlers
788 *
789 * These defines do nothing more than make the table easier
790 * to read when wrapped at column 80.
791 */
792
793/*
794 * Creates a variable length array inititalizer.
795 * VAA(1,3,5,7) would produce {1,3,5,7}
796 */
797#define VAA(args...) {args}
798
799#define PREAD(name, n, pri, rm, rl, m, s, r) \
800 {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
801 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
802 .shift[0] = s,}
803
804#define PWRITE(name, n, pri, rm, rl, m, s, r) \
805 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
806 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
807 .shift[0] = s,}
808
809/*
810 * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
811 * were created using the VAA macro.
812 */
813#define PWRITEM(name, n, pri, rm, rl, m, s, r) \
814 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
815 .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
816
817static struct asc7621_param asc7621_params[] = {
818 PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
819 PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
820 PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
821 PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
822 PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
823
824 PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
825 PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
826 PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
827 PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
828 PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
829
830 PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
831 PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
832 PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
833 PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
834 PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
835
836 PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask),
837 PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask),
838 PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask),
839 PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask),
840 PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask),
841
842 PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
843 PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
844 PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
845 PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
846
847 PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
848 PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
849 PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
850 PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
851
852 PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask),
853 PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask),
854 PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask),
855 PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask),
856
857 PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
858 PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
859 PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
860 PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
861 PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
862 PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
863 PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
864 PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
865
866 PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
867 PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
868 PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
869 PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
870
871 PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
872 PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
873 PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
874 PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
875
876 PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask),
877 PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask),
878 PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask),
879 PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask),
880
881 PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
882 PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
883 PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
884 PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
885
886 PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
887 PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
888 PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask),
889 PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
890
891 PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
892 PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
893 PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
894 PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
895
896 PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
897 bitmask),
898 PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
899 bitmask),
900 PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
901 bitmask),
902 PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
903 bitmask),
904
905 PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
906 bitmask),
907 PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
908 bitmask),
909 PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
910 bitmask),
911 PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
912 bitmask),
913
914 PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
915 PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
916 PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
917 PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
918
919 PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
920 VAA(0x0f), VAA(4), ap2_temp),
921 PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
922 VAA(0x0f), VAA(4), ap2_temp),
923 PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
924 VAA(0x0f), VAA(4), ap2_temp),
925 PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
926 VAA(0x0f), VAA(4), ap2_temp),
927
928 PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
929 PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
930 PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
931 PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
932
933 PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
934 PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
935 PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
936 PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
937
938 PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
939 PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
940
941 PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
942 PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
943 PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
944
945 PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
946 PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
947 PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
948
949 PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
950 VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
951 PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
952 VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
953 PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
954 VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
955
956 PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
957 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
958 PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
959 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
960 PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
961 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
962
963 PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
964 PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
965 PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
966
967 PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
968 PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
969 PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
970
971 PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
972 PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
973 PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
974
975 PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
976 PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
977 PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
978
979 PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
980 PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
981 PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
982
983 PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
984 PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
985 PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
986 PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
987 PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
988 PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
989
990};
991
992static struct asc7621_data *asc7621_update_device(struct device *dev)
993{
994 struct i2c_client *client = to_i2c_client(dev);
995 struct asc7621_data *data = i2c_get_clientdata(client);
996 int i;
997
998/*
999 * The asc7621 chips guarantee consistent reads of multi-byte values
1000 * regardless of the order of the reads. No special logic is needed
1001 * so we can just read the registers in whatever order they appear
1002 * in the asc7621_params array.
1003 */
1004
1005 mutex_lock(&data->update_lock);
1006
1007 /* Read all the high priority registers */
1008
1009 if (!data->valid ||
1010 time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
1011
1012 for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
1013 if (asc7621_register_priorities[i] == PRI_HIGH) {
1014 data->reg[i] =
1015 i2c_smbus_read_byte_data(client, i) & 0xff;
1016 }
1017 }
1018 data->last_high_reading = jiffies;
1019 } /* last_reading */
1020
1021 /* Read all the low priority registers. */
1022
1023 if (!data->valid ||
1024 time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
1025
1026 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1027 if (asc7621_register_priorities[i] == PRI_LOW) {
1028 data->reg[i] =
1029 i2c_smbus_read_byte_data(client, i) & 0xff;
1030 }
1031 }
1032 data->last_low_reading = jiffies;
1033 } /* last_reading */
1034
1035 data->valid = true;
1036
1037 mutex_unlock(&data->update_lock);
1038
1039 return data;
1040}
1041
1042/*
1043 * Standard detection and initialization below
1044 *
1045 * Helper function that checks if an address is valid
1046 * for a particular chip.
1047 */
1048
1049static inline int valid_address_for_chip(int chip_type, int address)
1050{
1051 int i;
1052
1053 for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
1054 i++) {
1055 if (asc7621_chips[chip_type].addresses[i] == address)
1056 return 1;
1057 }
1058 return 0;
1059}
1060
1061static void asc7621_init_client(struct i2c_client *client)
1062{
1063 int value;
1064
1065 /* Warn if part was not "READY" */
1066
1067 value = read_byte(client, 0x40);
1068
1069 if (value & 0x02) {
1070 dev_err(&client->dev,
1071 "Client (%d,0x%02x) config is locked.\n",
1072 i2c_adapter_id(client->adapter), client->addr);
1073 }
1074 if (!(value & 0x04)) {
1075 dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
1076 i2c_adapter_id(client->adapter), client->addr);
1077 }
1078
1079/*
1080 * Start monitoring
1081 *
1082 * Try to clear LOCK, Set START, save everything else
1083 */
1084 value = (value & ~0x02) | 0x01;
1085 write_byte(client, 0x40, value & 0xff);
1086
1087}
1088
1089static int
1090asc7621_probe(struct i2c_client *client)
1091{
1092 struct asc7621_data *data;
1093 int i, err;
1094
1095 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1096 return -EIO;
1097
1098 data = devm_kzalloc(&client->dev, sizeof(struct asc7621_data),
1099 GFP_KERNEL);
1100 if (data == NULL)
1101 return -ENOMEM;
1102
1103 i2c_set_clientdata(client, data);
1104 mutex_init(&data->update_lock);
1105
1106 /* Initialize the asc7621 chip */
1107 asc7621_init_client(client);
1108
1109 /* Create the sysfs entries */
1110 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1111 err =
1112 device_create_file(&client->dev,
1113 &(asc7621_params[i].sda.dev_attr));
1114 if (err)
1115 goto exit_remove;
1116 }
1117
1118 data->class_dev = hwmon_device_register(&client->dev);
1119 if (IS_ERR(data->class_dev)) {
1120 err = PTR_ERR(data->class_dev);
1121 goto exit_remove;
1122 }
1123
1124 return 0;
1125
1126exit_remove:
1127 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1128 device_remove_file(&client->dev,
1129 &(asc7621_params[i].sda.dev_attr));
1130 }
1131
1132 return err;
1133}
1134
1135static int asc7621_detect(struct i2c_client *client,
1136 struct i2c_board_info *info)
1137{
1138 struct i2c_adapter *adapter = client->adapter;
1139 int company, verstep, chip_index;
1140
1141 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1142 return -ENODEV;
1143
1144 for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
1145
1146 if (!valid_address_for_chip(chip_index, client->addr))
1147 continue;
1148
1149 company = read_byte(client,
1150 asc7621_chips[chip_index].company_reg);
1151 verstep = read_byte(client,
1152 asc7621_chips[chip_index].verstep_reg);
1153
1154 if (company == asc7621_chips[chip_index].company_id &&
1155 verstep == asc7621_chips[chip_index].verstep_id) {
1156 strscpy(info->type, asc7621_chips[chip_index].name,
1157 I2C_NAME_SIZE);
1158
1159 dev_info(&adapter->dev, "Matched %s at 0x%02x\n",
1160 asc7621_chips[chip_index].name, client->addr);
1161 return 0;
1162 }
1163 }
1164
1165 return -ENODEV;
1166}
1167
1168static void asc7621_remove(struct i2c_client *client)
1169{
1170 struct asc7621_data *data = i2c_get_clientdata(client);
1171 int i;
1172
1173 hwmon_device_unregister(data->class_dev);
1174
1175 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1176 device_remove_file(&client->dev,
1177 &(asc7621_params[i].sda.dev_attr));
1178 }
1179}
1180
1181static const struct i2c_device_id asc7621_id[] = {
1182 {"asc7621", asc7621},
1183 {"asc7621a", asc7621a},
1184 {},
1185};
1186
1187MODULE_DEVICE_TABLE(i2c, asc7621_id);
1188
1189static struct i2c_driver asc7621_driver = {
1190 .class = I2C_CLASS_HWMON,
1191 .driver = {
1192 .name = "asc7621",
1193 },
1194 .probe = asc7621_probe,
1195 .remove = asc7621_remove,
1196 .id_table = asc7621_id,
1197 .detect = asc7621_detect,
1198 .address_list = normal_i2c,
1199};
1200
1201static int __init sm_asc7621_init(void)
1202{
1203 int i, j;
1204/*
1205 * Collect all the registers needed into a single array.
1206 * This way, if a register isn't actually used for anything,
1207 * we don't retrieve it.
1208 */
1209
1210 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1211 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
1212 asc7621_register_priorities[asc7621_params[i].msb[j]] =
1213 asc7621_params[i].priority;
1214 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
1215 asc7621_register_priorities[asc7621_params[i].lsb[j]] =
1216 asc7621_params[i].priority;
1217 }
1218 return i2c_add_driver(&asc7621_driver);
1219}
1220
1221static void __exit sm_asc7621_exit(void)
1222{
1223 i2c_del_driver(&asc7621_driver);
1224}
1225
1226MODULE_LICENSE("GPL");
1227MODULE_AUTHOR("George Joseph");
1228MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
1229
1230module_init(sm_asc7621_init);
1231module_exit(sm_asc7621_exit);
1/*
2 * asc7621.c - Part of lm_sensors, Linux kernel modules for hardware monitoring
3 * Copyright (c) 2007, 2010 George Joseph <george.joseph@fairview5.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 */
19
20#include <linux/module.h>
21#include <linux/init.h>
22#include <linux/slab.h>
23#include <linux/jiffies.h>
24#include <linux/i2c.h>
25#include <linux/hwmon.h>
26#include <linux/hwmon-sysfs.h>
27#include <linux/err.h>
28#include <linux/mutex.h>
29
30/* Addresses to scan */
31static const unsigned short normal_i2c[] = {
32 0x2c, 0x2d, 0x2e, I2C_CLIENT_END
33};
34
35enum asc7621_type {
36 asc7621,
37 asc7621a
38};
39
40#define INTERVAL_HIGH (HZ + HZ / 2)
41#define INTERVAL_LOW (1 * 60 * HZ)
42#define PRI_NONE 0
43#define PRI_LOW 1
44#define PRI_HIGH 2
45#define FIRST_CHIP asc7621
46#define LAST_CHIP asc7621a
47
48struct asc7621_chip {
49 char *name;
50 enum asc7621_type chip_type;
51 u8 company_reg;
52 u8 company_id;
53 u8 verstep_reg;
54 u8 verstep_id;
55 const unsigned short *addresses;
56};
57
58static struct asc7621_chip asc7621_chips[] = {
59 {
60 .name = "asc7621",
61 .chip_type = asc7621,
62 .company_reg = 0x3e,
63 .company_id = 0x61,
64 .verstep_reg = 0x3f,
65 .verstep_id = 0x6c,
66 .addresses = normal_i2c,
67 },
68 {
69 .name = "asc7621a",
70 .chip_type = asc7621a,
71 .company_reg = 0x3e,
72 .company_id = 0x61,
73 .verstep_reg = 0x3f,
74 .verstep_id = 0x6d,
75 .addresses = normal_i2c,
76 },
77};
78
79/*
80 * Defines the highest register to be used, not the count.
81 * The actual count will probably be smaller because of gaps
82 * in the implementation (unused register locations).
83 * This define will safely set the array size of both the parameter
84 * and data arrays.
85 * This comes from the data sheet register description table.
86 */
87#define LAST_REGISTER 0xff
88
89struct asc7621_data {
90 struct i2c_client client;
91 struct device *class_dev;
92 struct mutex update_lock;
93 int valid; /* !=0 if following fields are valid */
94 unsigned long last_high_reading; /* In jiffies */
95 unsigned long last_low_reading; /* In jiffies */
96 /*
97 * Registers we care about occupy the corresponding index
98 * in the array. Registers we don't care about are left
99 * at 0.
100 */
101 u8 reg[LAST_REGISTER + 1];
102};
103
104/*
105 * Macro to get the parent asc7621_param structure
106 * from a sensor_device_attribute passed into the
107 * show/store functions.
108 */
109#define to_asc7621_param(_sda) \
110 container_of(_sda, struct asc7621_param, sda)
111
112/*
113 * Each parameter to be retrieved needs an asc7621_param structure
114 * allocated. It contains the sensor_device_attribute structure
115 * and the control info needed to retrieve the value from the register map.
116 */
117struct asc7621_param {
118 struct sensor_device_attribute sda;
119 u8 priority;
120 u8 msb[3];
121 u8 lsb[3];
122 u8 mask[3];
123 u8 shift[3];
124};
125
126/*
127 * This is the map that ultimately indicates whether we'll be
128 * retrieving a register value or not, and at what frequency.
129 */
130static u8 asc7621_register_priorities[255];
131
132static struct asc7621_data *asc7621_update_device(struct device *dev);
133
134static inline u8 read_byte(struct i2c_client *client, u8 reg)
135{
136 int res = i2c_smbus_read_byte_data(client, reg);
137 if (res < 0) {
138 dev_err(&client->dev,
139 "Unable to read from register 0x%02x.\n", reg);
140 return 0;
141 };
142 return res & 0xff;
143}
144
145static inline int write_byte(struct i2c_client *client, u8 reg, u8 data)
146{
147 int res = i2c_smbus_write_byte_data(client, reg, data);
148 if (res < 0) {
149 dev_err(&client->dev,
150 "Unable to write value 0x%02x to register 0x%02x.\n",
151 data, reg);
152 };
153 return res;
154}
155
156/*
157 * Data Handlers
158 * Each function handles the formatting, storage
159 * and retrieval of like parameters.
160 */
161
162#define SETUP_SHOW_data_param(d, a) \
163 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
164 struct asc7621_data *data = asc7621_update_device(d); \
165 struct asc7621_param *param = to_asc7621_param(sda)
166
167#define SETUP_STORE_data_param(d, a) \
168 struct sensor_device_attribute *sda = to_sensor_dev_attr(a); \
169 struct i2c_client *client = to_i2c_client(d); \
170 struct asc7621_data *data = i2c_get_clientdata(client); \
171 struct asc7621_param *param = to_asc7621_param(sda)
172
173/*
174 * u8 is just what it sounds like...an unsigned byte with no
175 * special formatting.
176 */
177static ssize_t show_u8(struct device *dev, struct device_attribute *attr,
178 char *buf)
179{
180 SETUP_SHOW_data_param(dev, attr);
181
182 return sprintf(buf, "%u\n", data->reg[param->msb[0]]);
183}
184
185static ssize_t store_u8(struct device *dev, struct device_attribute *attr,
186 const char *buf, size_t count)
187{
188 SETUP_STORE_data_param(dev, attr);
189 long reqval;
190
191 if (strict_strtol(buf, 10, &reqval))
192 return -EINVAL;
193
194 reqval = SENSORS_LIMIT(reqval, 0, 255);
195
196 mutex_lock(&data->update_lock);
197 data->reg[param->msb[0]] = reqval;
198 write_byte(client, param->msb[0], reqval);
199 mutex_unlock(&data->update_lock);
200 return count;
201}
202
203/*
204 * Many of the config values occupy only a few bits of a register.
205 */
206static ssize_t show_bitmask(struct device *dev,
207 struct device_attribute *attr, char *buf)
208{
209 SETUP_SHOW_data_param(dev, attr);
210
211 return sprintf(buf, "%u\n",
212 (data->reg[param->msb[0]] >> param->
213 shift[0]) & param->mask[0]);
214}
215
216static ssize_t store_bitmask(struct device *dev,
217 struct device_attribute *attr,
218 const char *buf, size_t count)
219{
220 SETUP_STORE_data_param(dev, attr);
221 long reqval;
222 u8 currval;
223
224 if (strict_strtol(buf, 10, &reqval))
225 return -EINVAL;
226
227 reqval = SENSORS_LIMIT(reqval, 0, param->mask[0]);
228
229 reqval = (reqval & param->mask[0]) << param->shift[0];
230
231 mutex_lock(&data->update_lock);
232 currval = read_byte(client, param->msb[0]);
233 reqval |= (currval & ~(param->mask[0] << param->shift[0]));
234 data->reg[param->msb[0]] = reqval;
235 write_byte(client, param->msb[0], reqval);
236 mutex_unlock(&data->update_lock);
237 return count;
238}
239
240/*
241 * 16 bit fan rpm values
242 * reported by the device as the number of 11.111us periods (90khz)
243 * between full fan rotations. Therefore...
244 * RPM = (90000 * 60) / register value
245 */
246static ssize_t show_fan16(struct device *dev,
247 struct device_attribute *attr, char *buf)
248{
249 SETUP_SHOW_data_param(dev, attr);
250 u16 regval;
251
252 mutex_lock(&data->update_lock);
253 regval = (data->reg[param->msb[0]] << 8) | data->reg[param->lsb[0]];
254 mutex_unlock(&data->update_lock);
255
256 return sprintf(buf, "%u\n",
257 (regval == 0 ? -1 : (regval) ==
258 0xffff ? 0 : 5400000 / regval));
259}
260
261static ssize_t store_fan16(struct device *dev,
262 struct device_attribute *attr, const char *buf,
263 size_t count)
264{
265 SETUP_STORE_data_param(dev, attr);
266 long reqval;
267
268 if (strict_strtol(buf, 10, &reqval))
269 return -EINVAL;
270
271 /* If a minimum RPM of zero is requested, then we set the register to
272 0xffff. This value allows the fan to be stopped completely without
273 generating an alarm. */
274 reqval =
275 (reqval <= 0 ? 0xffff : SENSORS_LIMIT(5400000 / reqval, 0, 0xfffe));
276
277 mutex_lock(&data->update_lock);
278 data->reg[param->msb[0]] = (reqval >> 8) & 0xff;
279 data->reg[param->lsb[0]] = reqval & 0xff;
280 write_byte(client, param->msb[0], data->reg[param->msb[0]]);
281 write_byte(client, param->lsb[0], data->reg[param->lsb[0]]);
282 mutex_unlock(&data->update_lock);
283
284 return count;
285}
286
287/*
288 * Voltages are scaled in the device so that the nominal voltage
289 * is 3/4ths of the 0-255 range (i.e. 192).
290 * If all voltages are 'normal' then all voltage registers will
291 * read 0xC0.
292 *
293 * The data sheet provides us with the 3/4 scale value for each voltage
294 * which is stored in in_scaling. The sda->index parameter value provides
295 * the index into in_scaling.
296 *
297 * NOTE: The chip expects the first 2 inputs be 2.5 and 2.25 volts
298 * respectively. That doesn't mean that's what the motherboard provides. :)
299 */
300
301static int asc7621_in_scaling[] = {
302 2500, 2250, 3300, 5000, 12000
303};
304
305static ssize_t show_in10(struct device *dev, struct device_attribute *attr,
306 char *buf)
307{
308 SETUP_SHOW_data_param(dev, attr);
309 u16 regval;
310 u8 nr = sda->index;
311
312 mutex_lock(&data->update_lock);
313 regval = (data->reg[param->msb[0]] << 8) | (data->reg[param->lsb[0]]);
314 mutex_unlock(&data->update_lock);
315
316 /* The LSB value is a 2-bit scaling of the MSB's LSbit value. */
317 regval = (regval >> 6) * asc7621_in_scaling[nr] / (0xc0 << 2);
318
319 return sprintf(buf, "%u\n", regval);
320}
321
322/* 8 bit voltage values (the mins and maxs) */
323static ssize_t show_in8(struct device *dev, struct device_attribute *attr,
324 char *buf)
325{
326 SETUP_SHOW_data_param(dev, attr);
327 u8 nr = sda->index;
328
329 return sprintf(buf, "%u\n",
330 ((data->reg[param->msb[0]] *
331 asc7621_in_scaling[nr]) / 0xc0));
332}
333
334static ssize_t store_in8(struct device *dev, struct device_attribute *attr,
335 const char *buf, size_t count)
336{
337 SETUP_STORE_data_param(dev, attr);
338 long reqval;
339 u8 nr = sda->index;
340
341 if (strict_strtol(buf, 10, &reqval))
342 return -EINVAL;
343
344 reqval = SENSORS_LIMIT(reqval, 0, 0xffff);
345
346 reqval = reqval * 0xc0 / asc7621_in_scaling[nr];
347
348 reqval = SENSORS_LIMIT(reqval, 0, 0xff);
349
350 mutex_lock(&data->update_lock);
351 data->reg[param->msb[0]] = reqval;
352 write_byte(client, param->msb[0], reqval);
353 mutex_unlock(&data->update_lock);
354
355 return count;
356}
357
358static ssize_t show_temp8(struct device *dev,
359 struct device_attribute *attr, char *buf)
360{
361 SETUP_SHOW_data_param(dev, attr);
362
363 return sprintf(buf, "%d\n", ((s8) data->reg[param->msb[0]]) * 1000);
364}
365
366static ssize_t store_temp8(struct device *dev,
367 struct device_attribute *attr, const char *buf,
368 size_t count)
369{
370 SETUP_STORE_data_param(dev, attr);
371 long reqval;
372 s8 temp;
373
374 if (strict_strtol(buf, 10, &reqval))
375 return -EINVAL;
376
377 reqval = SENSORS_LIMIT(reqval, -127000, 127000);
378
379 temp = reqval / 1000;
380
381 mutex_lock(&data->update_lock);
382 data->reg[param->msb[0]] = temp;
383 write_byte(client, param->msb[0], temp);
384 mutex_unlock(&data->update_lock);
385 return count;
386}
387
388/*
389 * Temperatures that occupy 2 bytes always have the whole
390 * number of degrees in the MSB with some part of the LSB
391 * indicating fractional degrees.
392 */
393
394/* mmmmmmmm.llxxxxxx */
395static ssize_t show_temp10(struct device *dev,
396 struct device_attribute *attr, char *buf)
397{
398 SETUP_SHOW_data_param(dev, attr);
399 u8 msb, lsb;
400 int temp;
401
402 mutex_lock(&data->update_lock);
403 msb = data->reg[param->msb[0]];
404 lsb = (data->reg[param->lsb[0]] >> 6) & 0x03;
405 temp = (((s8) msb) * 1000) + (lsb * 250);
406 mutex_unlock(&data->update_lock);
407
408 return sprintf(buf, "%d\n", temp);
409}
410
411/* mmmmmm.ll */
412static ssize_t show_temp62(struct device *dev,
413 struct device_attribute *attr, char *buf)
414{
415 SETUP_SHOW_data_param(dev, attr);
416 u8 regval = data->reg[param->msb[0]];
417 int temp = ((s8) (regval & 0xfc) * 1000) + ((regval & 0x03) * 250);
418
419 return sprintf(buf, "%d\n", temp);
420}
421
422static ssize_t store_temp62(struct device *dev,
423 struct device_attribute *attr, const char *buf,
424 size_t count)
425{
426 SETUP_STORE_data_param(dev, attr);
427 long reqval, i, f;
428 s8 temp;
429
430 if (strict_strtol(buf, 10, &reqval))
431 return -EINVAL;
432
433 reqval = SENSORS_LIMIT(reqval, -32000, 31750);
434 i = reqval / 1000;
435 f = reqval - (i * 1000);
436 temp = i << 2;
437 temp |= f / 250;
438
439 mutex_lock(&data->update_lock);
440 data->reg[param->msb[0]] = temp;
441 write_byte(client, param->msb[0], temp);
442 mutex_unlock(&data->update_lock);
443 return count;
444}
445
446/*
447 * The aSC7621 doesn't provide an "auto_point2". Instead, you
448 * specify the auto_point1 and a range. To keep with the sysfs
449 * hwmon specs, we synthesize the auto_point_2 from them.
450 */
451
452static u32 asc7621_range_map[] = {
453 2000, 2500, 3330, 4000, 5000, 6670, 8000, 10000,
454 13330, 16000, 20000, 26670, 32000, 40000, 53330, 80000,
455};
456
457static ssize_t show_ap2_temp(struct device *dev,
458 struct device_attribute *attr, char *buf)
459{
460 SETUP_SHOW_data_param(dev, attr);
461 long auto_point1;
462 u8 regval;
463 int temp;
464
465 mutex_lock(&data->update_lock);
466 auto_point1 = ((s8) data->reg[param->msb[1]]) * 1000;
467 regval =
468 ((data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0]);
469 temp = auto_point1 + asc7621_range_map[SENSORS_LIMIT(regval, 0, 15)];
470 mutex_unlock(&data->update_lock);
471
472 return sprintf(buf, "%d\n", temp);
473
474}
475
476static ssize_t store_ap2_temp(struct device *dev,
477 struct device_attribute *attr,
478 const char *buf, size_t count)
479{
480 SETUP_STORE_data_param(dev, attr);
481 long reqval, auto_point1;
482 int i;
483 u8 currval, newval = 0;
484
485 if (strict_strtol(buf, 10, &reqval))
486 return -EINVAL;
487
488 mutex_lock(&data->update_lock);
489 auto_point1 = data->reg[param->msb[1]] * 1000;
490 reqval = SENSORS_LIMIT(reqval, auto_point1 + 2000, auto_point1 + 80000);
491
492 for (i = ARRAY_SIZE(asc7621_range_map) - 1; i >= 0; i--) {
493 if (reqval >= auto_point1 + asc7621_range_map[i]) {
494 newval = i;
495 break;
496 }
497 }
498
499 newval = (newval & param->mask[0]) << param->shift[0];
500 currval = read_byte(client, param->msb[0]);
501 newval |= (currval & ~(param->mask[0] << param->shift[0]));
502 data->reg[param->msb[0]] = newval;
503 write_byte(client, param->msb[0], newval);
504 mutex_unlock(&data->update_lock);
505 return count;
506}
507
508static ssize_t show_pwm_ac(struct device *dev,
509 struct device_attribute *attr, char *buf)
510{
511 SETUP_SHOW_data_param(dev, attr);
512 u8 config, altbit, regval;
513 u8 map[] = {
514 0x01, 0x02, 0x04, 0x1f, 0x00, 0x06, 0x07, 0x10,
515 0x08, 0x0f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f, 0x1f
516 };
517
518 mutex_lock(&data->update_lock);
519 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
520 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
521 regval = config | (altbit << 3);
522 mutex_unlock(&data->update_lock);
523
524 return sprintf(buf, "%u\n", map[SENSORS_LIMIT(regval, 0, 15)]);
525}
526
527static ssize_t store_pwm_ac(struct device *dev,
528 struct device_attribute *attr,
529 const char *buf, size_t count)
530{
531 SETUP_STORE_data_param(dev, attr);
532 unsigned long reqval;
533 u8 currval, config, altbit, newval;
534 u16 map[] = {
535 0x04, 0x00, 0x01, 0xff, 0x02, 0xff, 0x05, 0x06,
536 0x08, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x0f,
537 0x07, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
538 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x03,
539 };
540
541 if (strict_strtoul(buf, 10, &reqval))
542 return -EINVAL;
543
544 if (reqval > 31)
545 return -EINVAL;
546
547 reqval = map[reqval];
548 if (reqval == 0xff)
549 return -EINVAL;
550
551 config = reqval & 0x07;
552 altbit = (reqval >> 3) & 0x01;
553
554 config = (config & param->mask[0]) << param->shift[0];
555 altbit = (altbit & param->mask[1]) << param->shift[1];
556
557 mutex_lock(&data->update_lock);
558 currval = read_byte(client, param->msb[0]);
559 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
560 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
561 data->reg[param->msb[0]] = newval;
562 write_byte(client, param->msb[0], newval);
563 mutex_unlock(&data->update_lock);
564 return count;
565}
566
567static ssize_t show_pwm_enable(struct device *dev,
568 struct device_attribute *attr, char *buf)
569{
570 SETUP_SHOW_data_param(dev, attr);
571 u8 config, altbit, minoff, val, newval;
572
573 mutex_lock(&data->update_lock);
574 config = (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
575 altbit = (data->reg[param->msb[1]] >> param->shift[1]) & param->mask[1];
576 minoff = (data->reg[param->msb[2]] >> param->shift[2]) & param->mask[2];
577 mutex_unlock(&data->update_lock);
578
579 val = config | (altbit << 3);
580 newval = 0;
581
582 if (val == 3 || val >= 10)
583 newval = 255;
584 else if (val == 4)
585 newval = 0;
586 else if (val == 7)
587 newval = 1;
588 else if (minoff == 1)
589 newval = 2;
590 else
591 newval = 3;
592
593 return sprintf(buf, "%u\n", newval);
594}
595
596static ssize_t store_pwm_enable(struct device *dev,
597 struct device_attribute *attr,
598 const char *buf, size_t count)
599{
600 SETUP_STORE_data_param(dev, attr);
601 long reqval;
602 u8 currval, config, altbit, newval, minoff = 255;
603
604 if (strict_strtol(buf, 10, &reqval))
605 return -EINVAL;
606
607 switch (reqval) {
608 case 0:
609 newval = 0x04;
610 break;
611 case 1:
612 newval = 0x07;
613 break;
614 case 2:
615 newval = 0x00;
616 minoff = 1;
617 break;
618 case 3:
619 newval = 0x00;
620 minoff = 0;
621 break;
622 case 255:
623 newval = 0x03;
624 break;
625 default:
626 return -EINVAL;
627 }
628
629 config = newval & 0x07;
630 altbit = (newval >> 3) & 0x01;
631
632 mutex_lock(&data->update_lock);
633 config = (config & param->mask[0]) << param->shift[0];
634 altbit = (altbit & param->mask[1]) << param->shift[1];
635 currval = read_byte(client, param->msb[0]);
636 newval = config | (currval & ~(param->mask[0] << param->shift[0]));
637 newval = altbit | (newval & ~(param->mask[1] << param->shift[1]));
638 data->reg[param->msb[0]] = newval;
639 write_byte(client, param->msb[0], newval);
640 if (minoff < 255) {
641 minoff = (minoff & param->mask[2]) << param->shift[2];
642 currval = read_byte(client, param->msb[2]);
643 newval =
644 minoff | (currval & ~(param->mask[2] << param->shift[2]));
645 data->reg[param->msb[2]] = newval;
646 write_byte(client, param->msb[2], newval);
647 }
648 mutex_unlock(&data->update_lock);
649 return count;
650}
651
652static u32 asc7621_pwm_freq_map[] = {
653 10, 15, 23, 30, 38, 47, 62, 94,
654 23000, 24000, 25000, 26000, 27000, 28000, 29000, 30000
655};
656
657static ssize_t show_pwm_freq(struct device *dev,
658 struct device_attribute *attr, char *buf)
659{
660 SETUP_SHOW_data_param(dev, attr);
661 u8 regval =
662 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
663
664 regval = SENSORS_LIMIT(regval, 0, 15);
665
666 return sprintf(buf, "%u\n", asc7621_pwm_freq_map[regval]);
667}
668
669static ssize_t store_pwm_freq(struct device *dev,
670 struct device_attribute *attr,
671 const char *buf, size_t count)
672{
673 SETUP_STORE_data_param(dev, attr);
674 unsigned long reqval;
675 u8 currval, newval = 255;
676 int i;
677
678 if (strict_strtoul(buf, 10, &reqval))
679 return -EINVAL;
680
681 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_freq_map); i++) {
682 if (reqval == asc7621_pwm_freq_map[i]) {
683 newval = i;
684 break;
685 }
686 }
687 if (newval == 255)
688 return -EINVAL;
689
690 newval = (newval & param->mask[0]) << param->shift[0];
691
692 mutex_lock(&data->update_lock);
693 currval = read_byte(client, param->msb[0]);
694 newval |= (currval & ~(param->mask[0] << param->shift[0]));
695 data->reg[param->msb[0]] = newval;
696 write_byte(client, param->msb[0], newval);
697 mutex_unlock(&data->update_lock);
698 return count;
699}
700
701static u32 asc7621_pwm_auto_spinup_map[] = {
702 0, 100, 250, 400, 700, 1000, 2000, 4000
703};
704
705static ssize_t show_pwm_ast(struct device *dev,
706 struct device_attribute *attr, char *buf)
707{
708 SETUP_SHOW_data_param(dev, attr);
709 u8 regval =
710 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
711
712 regval = SENSORS_LIMIT(regval, 0, 7);
713
714 return sprintf(buf, "%u\n", asc7621_pwm_auto_spinup_map[regval]);
715
716}
717
718static ssize_t store_pwm_ast(struct device *dev,
719 struct device_attribute *attr,
720 const char *buf, size_t count)
721{
722 SETUP_STORE_data_param(dev, attr);
723 long reqval;
724 u8 currval, newval = 255;
725 u32 i;
726
727 if (strict_strtol(buf, 10, &reqval))
728 return -EINVAL;
729
730 for (i = 0; i < ARRAY_SIZE(asc7621_pwm_auto_spinup_map); i++) {
731 if (reqval == asc7621_pwm_auto_spinup_map[i]) {
732 newval = i;
733 break;
734 }
735 }
736 if (newval == 255)
737 return -EINVAL;
738
739 newval = (newval & param->mask[0]) << param->shift[0];
740
741 mutex_lock(&data->update_lock);
742 currval = read_byte(client, param->msb[0]);
743 newval |= (currval & ~(param->mask[0] << param->shift[0]));
744 data->reg[param->msb[0]] = newval;
745 write_byte(client, param->msb[0], newval);
746 mutex_unlock(&data->update_lock);
747 return count;
748}
749
750static u32 asc7621_temp_smoothing_time_map[] = {
751 35000, 17600, 11800, 7000, 4400, 3000, 1600, 800
752};
753
754static ssize_t show_temp_st(struct device *dev,
755 struct device_attribute *attr, char *buf)
756{
757 SETUP_SHOW_data_param(dev, attr);
758 u8 regval =
759 (data->reg[param->msb[0]] >> param->shift[0]) & param->mask[0];
760 regval = SENSORS_LIMIT(regval, 0, 7);
761
762 return sprintf(buf, "%u\n", asc7621_temp_smoothing_time_map[regval]);
763}
764
765static ssize_t store_temp_st(struct device *dev,
766 struct device_attribute *attr,
767 const char *buf, size_t count)
768{
769 SETUP_STORE_data_param(dev, attr);
770 long reqval;
771 u8 currval, newval = 255;
772 u32 i;
773
774 if (strict_strtol(buf, 10, &reqval))
775 return -EINVAL;
776
777 for (i = 0; i < ARRAY_SIZE(asc7621_temp_smoothing_time_map); i++) {
778 if (reqval == asc7621_temp_smoothing_time_map[i]) {
779 newval = i;
780 break;
781 }
782 }
783
784 if (newval == 255)
785 return -EINVAL;
786
787 newval = (newval & param->mask[0]) << param->shift[0];
788
789 mutex_lock(&data->update_lock);
790 currval = read_byte(client, param->msb[0]);
791 newval |= (currval & ~(param->mask[0] << param->shift[0]));
792 data->reg[param->msb[0]] = newval;
793 write_byte(client, param->msb[0], newval);
794 mutex_unlock(&data->update_lock);
795 return count;
796}
797
798/*
799 * End of data handlers
800 *
801 * These defines do nothing more than make the table easier
802 * to read when wrapped at column 80.
803 */
804
805/*
806 * Creates a variable length array inititalizer.
807 * VAA(1,3,5,7) would produce {1,3,5,7}
808 */
809#define VAA(args...) {args}
810
811#define PREAD(name, n, pri, rm, rl, m, s, r) \
812 {.sda = SENSOR_ATTR(name, S_IRUGO, show_##r, NULL, n), \
813 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
814 .shift[0] = s,}
815
816#define PWRITE(name, n, pri, rm, rl, m, s, r) \
817 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
818 .priority = pri, .msb[0] = rm, .lsb[0] = rl, .mask[0] = m, \
819 .shift[0] = s,}
820
821/*
822 * PWRITEM assumes that the initializers for the .msb, .lsb, .mask and .shift
823 * were created using the VAA macro.
824 */
825#define PWRITEM(name, n, pri, rm, rl, m, s, r) \
826 {.sda = SENSOR_ATTR(name, S_IRUGO | S_IWUSR, show_##r, store_##r, n), \
827 .priority = pri, .msb = rm, .lsb = rl, .mask = m, .shift = s,}
828
829static struct asc7621_param asc7621_params[] = {
830 PREAD(in0_input, 0, PRI_HIGH, 0x20, 0x13, 0, 0, in10),
831 PREAD(in1_input, 1, PRI_HIGH, 0x21, 0x18, 0, 0, in10),
832 PREAD(in2_input, 2, PRI_HIGH, 0x22, 0x11, 0, 0, in10),
833 PREAD(in3_input, 3, PRI_HIGH, 0x23, 0x12, 0, 0, in10),
834 PREAD(in4_input, 4, PRI_HIGH, 0x24, 0x14, 0, 0, in10),
835
836 PWRITE(in0_min, 0, PRI_LOW, 0x44, 0, 0, 0, in8),
837 PWRITE(in1_min, 1, PRI_LOW, 0x46, 0, 0, 0, in8),
838 PWRITE(in2_min, 2, PRI_LOW, 0x48, 0, 0, 0, in8),
839 PWRITE(in3_min, 3, PRI_LOW, 0x4a, 0, 0, 0, in8),
840 PWRITE(in4_min, 4, PRI_LOW, 0x4c, 0, 0, 0, in8),
841
842 PWRITE(in0_max, 0, PRI_LOW, 0x45, 0, 0, 0, in8),
843 PWRITE(in1_max, 1, PRI_LOW, 0x47, 0, 0, 0, in8),
844 PWRITE(in2_max, 2, PRI_LOW, 0x49, 0, 0, 0, in8),
845 PWRITE(in3_max, 3, PRI_LOW, 0x4b, 0, 0, 0, in8),
846 PWRITE(in4_max, 4, PRI_LOW, 0x4d, 0, 0, 0, in8),
847
848 PREAD(in0_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 0, bitmask),
849 PREAD(in1_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 1, bitmask),
850 PREAD(in2_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 2, bitmask),
851 PREAD(in3_alarm, 3, PRI_HIGH, 0x41, 0, 0x01, 3, bitmask),
852 PREAD(in4_alarm, 4, PRI_HIGH, 0x42, 0, 0x01, 0, bitmask),
853
854 PREAD(fan1_input, 0, PRI_HIGH, 0x29, 0x28, 0, 0, fan16),
855 PREAD(fan2_input, 1, PRI_HIGH, 0x2b, 0x2a, 0, 0, fan16),
856 PREAD(fan3_input, 2, PRI_HIGH, 0x2d, 0x2c, 0, 0, fan16),
857 PREAD(fan4_input, 3, PRI_HIGH, 0x2f, 0x2e, 0, 0, fan16),
858
859 PWRITE(fan1_min, 0, PRI_LOW, 0x55, 0x54, 0, 0, fan16),
860 PWRITE(fan2_min, 1, PRI_LOW, 0x57, 0x56, 0, 0, fan16),
861 PWRITE(fan3_min, 2, PRI_LOW, 0x59, 0x58, 0, 0, fan16),
862 PWRITE(fan4_min, 3, PRI_LOW, 0x5b, 0x5a, 0, 0, fan16),
863
864 PREAD(fan1_alarm, 0, PRI_HIGH, 0x42, 0, 0x01, 2, bitmask),
865 PREAD(fan2_alarm, 1, PRI_HIGH, 0x42, 0, 0x01, 3, bitmask),
866 PREAD(fan3_alarm, 2, PRI_HIGH, 0x42, 0, 0x01, 4, bitmask),
867 PREAD(fan4_alarm, 3, PRI_HIGH, 0x42, 0, 0x01, 5, bitmask),
868
869 PREAD(temp1_input, 0, PRI_HIGH, 0x25, 0x10, 0, 0, temp10),
870 PREAD(temp2_input, 1, PRI_HIGH, 0x26, 0x15, 0, 0, temp10),
871 PREAD(temp3_input, 2, PRI_HIGH, 0x27, 0x16, 0, 0, temp10),
872 PREAD(temp4_input, 3, PRI_HIGH, 0x33, 0x17, 0, 0, temp10),
873 PREAD(temp5_input, 4, PRI_HIGH, 0xf7, 0xf6, 0, 0, temp10),
874 PREAD(temp6_input, 5, PRI_HIGH, 0xf9, 0xf8, 0, 0, temp10),
875 PREAD(temp7_input, 6, PRI_HIGH, 0xfb, 0xfa, 0, 0, temp10),
876 PREAD(temp8_input, 7, PRI_HIGH, 0xfd, 0xfc, 0, 0, temp10),
877
878 PWRITE(temp1_min, 0, PRI_LOW, 0x4e, 0, 0, 0, temp8),
879 PWRITE(temp2_min, 1, PRI_LOW, 0x50, 0, 0, 0, temp8),
880 PWRITE(temp3_min, 2, PRI_LOW, 0x52, 0, 0, 0, temp8),
881 PWRITE(temp4_min, 3, PRI_LOW, 0x34, 0, 0, 0, temp8),
882
883 PWRITE(temp1_max, 0, PRI_LOW, 0x4f, 0, 0, 0, temp8),
884 PWRITE(temp2_max, 1, PRI_LOW, 0x51, 0, 0, 0, temp8),
885 PWRITE(temp3_max, 2, PRI_LOW, 0x53, 0, 0, 0, temp8),
886 PWRITE(temp4_max, 3, PRI_LOW, 0x35, 0, 0, 0, temp8),
887
888 PREAD(temp1_alarm, 0, PRI_HIGH, 0x41, 0, 0x01, 4, bitmask),
889 PREAD(temp2_alarm, 1, PRI_HIGH, 0x41, 0, 0x01, 5, bitmask),
890 PREAD(temp3_alarm, 2, PRI_HIGH, 0x41, 0, 0x01, 6, bitmask),
891 PREAD(temp4_alarm, 3, PRI_HIGH, 0x43, 0, 0x01, 0, bitmask),
892
893 PWRITE(temp1_source, 0, PRI_LOW, 0x02, 0, 0x07, 4, bitmask),
894 PWRITE(temp2_source, 1, PRI_LOW, 0x02, 0, 0x07, 0, bitmask),
895 PWRITE(temp3_source, 2, PRI_LOW, 0x03, 0, 0x07, 4, bitmask),
896 PWRITE(temp4_source, 3, PRI_LOW, 0x03, 0, 0x07, 0, bitmask),
897
898 PWRITE(temp1_smoothing_enable, 0, PRI_LOW, 0x62, 0, 0x01, 3, bitmask),
899 PWRITE(temp2_smoothing_enable, 1, PRI_LOW, 0x63, 0, 0x01, 7, bitmask),
900 PWRITE(temp3_smoothing_enable, 2, PRI_LOW, 0x63, 0, 0x01, 3, bitmask),
901 PWRITE(temp4_smoothing_enable, 3, PRI_LOW, 0x3c, 0, 0x01, 3, bitmask),
902
903 PWRITE(temp1_smoothing_time, 0, PRI_LOW, 0x62, 0, 0x07, 0, temp_st),
904 PWRITE(temp2_smoothing_time, 1, PRI_LOW, 0x63, 0, 0x07, 4, temp_st),
905 PWRITE(temp3_smoothing_time, 2, PRI_LOW, 0x63, 0, 0x07, 0, temp_st),
906 PWRITE(temp4_smoothing_time, 3, PRI_LOW, 0x3c, 0, 0x07, 0, temp_st),
907
908 PWRITE(temp1_auto_point1_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
909 bitmask),
910 PWRITE(temp2_auto_point1_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
911 bitmask),
912 PWRITE(temp3_auto_point1_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
913 bitmask),
914 PWRITE(temp4_auto_point1_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
915 bitmask),
916
917 PREAD(temp1_auto_point2_temp_hyst, 0, PRI_LOW, 0x6d, 0, 0x0f, 4,
918 bitmask),
919 PREAD(temp2_auto_point2_temp_hyst, 1, PRI_LOW, 0x6d, 0, 0x0f, 0,
920 bitmask),
921 PREAD(temp3_auto_point2_temp_hyst, 2, PRI_LOW, 0x6e, 0, 0x0f, 4,
922 bitmask),
923 PREAD(temp4_auto_point2_temp_hyst, 3, PRI_LOW, 0x6e, 0, 0x0f, 0,
924 bitmask),
925
926 PWRITE(temp1_auto_point1_temp, 0, PRI_LOW, 0x67, 0, 0, 0, temp8),
927 PWRITE(temp2_auto_point1_temp, 1, PRI_LOW, 0x68, 0, 0, 0, temp8),
928 PWRITE(temp3_auto_point1_temp, 2, PRI_LOW, 0x69, 0, 0, 0, temp8),
929 PWRITE(temp4_auto_point1_temp, 3, PRI_LOW, 0x3b, 0, 0, 0, temp8),
930
931 PWRITEM(temp1_auto_point2_temp, 0, PRI_LOW, VAA(0x5f, 0x67), VAA(0),
932 VAA(0x0f), VAA(4), ap2_temp),
933 PWRITEM(temp2_auto_point2_temp, 1, PRI_LOW, VAA(0x60, 0x68), VAA(0),
934 VAA(0x0f), VAA(4), ap2_temp),
935 PWRITEM(temp3_auto_point2_temp, 2, PRI_LOW, VAA(0x61, 0x69), VAA(0),
936 VAA(0x0f), VAA(4), ap2_temp),
937 PWRITEM(temp4_auto_point2_temp, 3, PRI_LOW, VAA(0x3c, 0x3b), VAA(0),
938 VAA(0x0f), VAA(4), ap2_temp),
939
940 PWRITE(temp1_crit, 0, PRI_LOW, 0x6a, 0, 0, 0, temp8),
941 PWRITE(temp2_crit, 1, PRI_LOW, 0x6b, 0, 0, 0, temp8),
942 PWRITE(temp3_crit, 2, PRI_LOW, 0x6c, 0, 0, 0, temp8),
943 PWRITE(temp4_crit, 3, PRI_LOW, 0x3d, 0, 0, 0, temp8),
944
945 PWRITE(temp5_enable, 4, PRI_LOW, 0x0e, 0, 0x01, 0, bitmask),
946 PWRITE(temp6_enable, 5, PRI_LOW, 0x0e, 0, 0x01, 1, bitmask),
947 PWRITE(temp7_enable, 6, PRI_LOW, 0x0e, 0, 0x01, 2, bitmask),
948 PWRITE(temp8_enable, 7, PRI_LOW, 0x0e, 0, 0x01, 3, bitmask),
949
950 PWRITE(remote1_offset, 0, PRI_LOW, 0x1c, 0, 0, 0, temp62),
951 PWRITE(remote2_offset, 1, PRI_LOW, 0x1d, 0, 0, 0, temp62),
952
953 PWRITE(pwm1, 0, PRI_HIGH, 0x30, 0, 0, 0, u8),
954 PWRITE(pwm2, 1, PRI_HIGH, 0x31, 0, 0, 0, u8),
955 PWRITE(pwm3, 2, PRI_HIGH, 0x32, 0, 0, 0, u8),
956
957 PWRITE(pwm1_invert, 0, PRI_LOW, 0x5c, 0, 0x01, 4, bitmask),
958 PWRITE(pwm2_invert, 1, PRI_LOW, 0x5d, 0, 0x01, 4, bitmask),
959 PWRITE(pwm3_invert, 2, PRI_LOW, 0x5e, 0, 0x01, 4, bitmask),
960
961 PWRITEM(pwm1_enable, 0, PRI_LOW, VAA(0x5c, 0x5c, 0x62), VAA(0, 0, 0),
962 VAA(0x07, 0x01, 0x01), VAA(5, 3, 5), pwm_enable),
963 PWRITEM(pwm2_enable, 1, PRI_LOW, VAA(0x5d, 0x5d, 0x62), VAA(0, 0, 0),
964 VAA(0x07, 0x01, 0x01), VAA(5, 3, 6), pwm_enable),
965 PWRITEM(pwm3_enable, 2, PRI_LOW, VAA(0x5e, 0x5e, 0x62), VAA(0, 0, 0),
966 VAA(0x07, 0x01, 0x01), VAA(5, 3, 7), pwm_enable),
967
968 PWRITEM(pwm1_auto_channels, 0, PRI_LOW, VAA(0x5c, 0x5c), VAA(0, 0),
969 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
970 PWRITEM(pwm2_auto_channels, 1, PRI_LOW, VAA(0x5d, 0x5d), VAA(0, 0),
971 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
972 PWRITEM(pwm3_auto_channels, 2, PRI_LOW, VAA(0x5e, 0x5e), VAA(0, 0),
973 VAA(0x07, 0x01), VAA(5, 3), pwm_ac),
974
975 PWRITE(pwm1_auto_point1_pwm, 0, PRI_LOW, 0x64, 0, 0, 0, u8),
976 PWRITE(pwm2_auto_point1_pwm, 1, PRI_LOW, 0x65, 0, 0, 0, u8),
977 PWRITE(pwm3_auto_point1_pwm, 2, PRI_LOW, 0x66, 0, 0, 0, u8),
978
979 PWRITE(pwm1_auto_point2_pwm, 0, PRI_LOW, 0x38, 0, 0, 0, u8),
980 PWRITE(pwm2_auto_point2_pwm, 1, PRI_LOW, 0x39, 0, 0, 0, u8),
981 PWRITE(pwm3_auto_point2_pwm, 2, PRI_LOW, 0x3a, 0, 0, 0, u8),
982
983 PWRITE(pwm1_freq, 0, PRI_LOW, 0x5f, 0, 0x0f, 0, pwm_freq),
984 PWRITE(pwm2_freq, 1, PRI_LOW, 0x60, 0, 0x0f, 0, pwm_freq),
985 PWRITE(pwm3_freq, 2, PRI_LOW, 0x61, 0, 0x0f, 0, pwm_freq),
986
987 PREAD(pwm1_auto_zone_assigned, 0, PRI_LOW, 0, 0, 0x03, 2, bitmask),
988 PREAD(pwm2_auto_zone_assigned, 1, PRI_LOW, 0, 0, 0x03, 4, bitmask),
989 PREAD(pwm3_auto_zone_assigned, 2, PRI_LOW, 0, 0, 0x03, 6, bitmask),
990
991 PWRITE(pwm1_auto_spinup_time, 0, PRI_LOW, 0x5c, 0, 0x07, 0, pwm_ast),
992 PWRITE(pwm2_auto_spinup_time, 1, PRI_LOW, 0x5d, 0, 0x07, 0, pwm_ast),
993 PWRITE(pwm3_auto_spinup_time, 2, PRI_LOW, 0x5e, 0, 0x07, 0, pwm_ast),
994
995 PWRITE(peci_enable, 0, PRI_LOW, 0x40, 0, 0x01, 4, bitmask),
996 PWRITE(peci_avg, 0, PRI_LOW, 0x36, 0, 0x07, 0, bitmask),
997 PWRITE(peci_domain, 0, PRI_LOW, 0x36, 0, 0x01, 3, bitmask),
998 PWRITE(peci_legacy, 0, PRI_LOW, 0x36, 0, 0x01, 4, bitmask),
999 PWRITE(peci_diode, 0, PRI_LOW, 0x0e, 0, 0x07, 4, bitmask),
1000 PWRITE(peci_4domain, 0, PRI_LOW, 0x0e, 0, 0x01, 4, bitmask),
1001
1002};
1003
1004static struct asc7621_data *asc7621_update_device(struct device *dev)
1005{
1006 struct i2c_client *client = to_i2c_client(dev);
1007 struct asc7621_data *data = i2c_get_clientdata(client);
1008 int i;
1009
1010/*
1011 * The asc7621 chips guarantee consistent reads of multi-byte values
1012 * regardless of the order of the reads. No special logic is needed
1013 * so we can just read the registers in whatever order they appear
1014 * in the asc7621_params array.
1015 */
1016
1017 mutex_lock(&data->update_lock);
1018
1019 /* Read all the high priority registers */
1020
1021 if (!data->valid ||
1022 time_after(jiffies, data->last_high_reading + INTERVAL_HIGH)) {
1023
1024 for (i = 0; i < ARRAY_SIZE(asc7621_register_priorities); i++) {
1025 if (asc7621_register_priorities[i] == PRI_HIGH) {
1026 data->reg[i] =
1027 i2c_smbus_read_byte_data(client, i) & 0xff;
1028 }
1029 }
1030 data->last_high_reading = jiffies;
1031 }; /* last_reading */
1032
1033 /* Read all the low priority registers. */
1034
1035 if (!data->valid ||
1036 time_after(jiffies, data->last_low_reading + INTERVAL_LOW)) {
1037
1038 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1039 if (asc7621_register_priorities[i] == PRI_LOW) {
1040 data->reg[i] =
1041 i2c_smbus_read_byte_data(client, i) & 0xff;
1042 }
1043 }
1044 data->last_low_reading = jiffies;
1045 }; /* last_reading */
1046
1047 data->valid = 1;
1048
1049 mutex_unlock(&data->update_lock);
1050
1051 return data;
1052}
1053
1054/*
1055 * Standard detection and initialization below
1056 *
1057 * Helper function that checks if an address is valid
1058 * for a particular chip.
1059 */
1060
1061static inline int valid_address_for_chip(int chip_type, int address)
1062{
1063 int i;
1064
1065 for (i = 0; asc7621_chips[chip_type].addresses[i] != I2C_CLIENT_END;
1066 i++) {
1067 if (asc7621_chips[chip_type].addresses[i] == address)
1068 return 1;
1069 }
1070 return 0;
1071}
1072
1073static void asc7621_init_client(struct i2c_client *client)
1074{
1075 int value;
1076
1077 /* Warn if part was not "READY" */
1078
1079 value = read_byte(client, 0x40);
1080
1081 if (value & 0x02) {
1082 dev_err(&client->dev,
1083 "Client (%d,0x%02x) config is locked.\n",
1084 i2c_adapter_id(client->adapter), client->addr);
1085 };
1086 if (!(value & 0x04)) {
1087 dev_err(&client->dev, "Client (%d,0x%02x) is not ready.\n",
1088 i2c_adapter_id(client->adapter), client->addr);
1089 };
1090
1091/*
1092 * Start monitoring
1093 *
1094 * Try to clear LOCK, Set START, save everything else
1095 */
1096 value = (value & ~0x02) | 0x01;
1097 write_byte(client, 0x40, value & 0xff);
1098
1099}
1100
1101static int
1102asc7621_probe(struct i2c_client *client, const struct i2c_device_id *id)
1103{
1104 struct asc7621_data *data;
1105 int i, err;
1106
1107 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1108 return -EIO;
1109
1110 data = kzalloc(sizeof(struct asc7621_data), GFP_KERNEL);
1111 if (data == NULL)
1112 return -ENOMEM;
1113
1114 i2c_set_clientdata(client, data);
1115 data->valid = 0;
1116 mutex_init(&data->update_lock);
1117
1118 /* Initialize the asc7621 chip */
1119 asc7621_init_client(client);
1120
1121 /* Create the sysfs entries */
1122 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1123 err =
1124 device_create_file(&client->dev,
1125 &(asc7621_params[i].sda.dev_attr));
1126 if (err)
1127 goto exit_remove;
1128 }
1129
1130 data->class_dev = hwmon_device_register(&client->dev);
1131 if (IS_ERR(data->class_dev)) {
1132 err = PTR_ERR(data->class_dev);
1133 goto exit_remove;
1134 }
1135
1136 return 0;
1137
1138exit_remove:
1139 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1140 device_remove_file(&client->dev,
1141 &(asc7621_params[i].sda.dev_attr));
1142 }
1143
1144 kfree(data);
1145 return err;
1146}
1147
1148static int asc7621_detect(struct i2c_client *client,
1149 struct i2c_board_info *info)
1150{
1151 struct i2c_adapter *adapter = client->adapter;
1152 int company, verstep, chip_index;
1153
1154 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1155 return -ENODEV;
1156
1157 for (chip_index = FIRST_CHIP; chip_index <= LAST_CHIP; chip_index++) {
1158
1159 if (!valid_address_for_chip(chip_index, client->addr))
1160 continue;
1161
1162 company = read_byte(client,
1163 asc7621_chips[chip_index].company_reg);
1164 verstep = read_byte(client,
1165 asc7621_chips[chip_index].verstep_reg);
1166
1167 if (company == asc7621_chips[chip_index].company_id &&
1168 verstep == asc7621_chips[chip_index].verstep_id) {
1169 strlcpy(info->type, asc7621_chips[chip_index].name,
1170 I2C_NAME_SIZE);
1171
1172 dev_info(&adapter->dev, "Matched %s at 0x%02x\n",
1173 asc7621_chips[chip_index].name, client->addr);
1174 return 0;
1175 }
1176 }
1177
1178 return -ENODEV;
1179}
1180
1181static int asc7621_remove(struct i2c_client *client)
1182{
1183 struct asc7621_data *data = i2c_get_clientdata(client);
1184 int i;
1185
1186 hwmon_device_unregister(data->class_dev);
1187
1188 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1189 device_remove_file(&client->dev,
1190 &(asc7621_params[i].sda.dev_attr));
1191 }
1192
1193 kfree(data);
1194 return 0;
1195}
1196
1197static const struct i2c_device_id asc7621_id[] = {
1198 {"asc7621", asc7621},
1199 {"asc7621a", asc7621a},
1200 {},
1201};
1202
1203MODULE_DEVICE_TABLE(i2c, asc7621_id);
1204
1205static struct i2c_driver asc7621_driver = {
1206 .class = I2C_CLASS_HWMON,
1207 .driver = {
1208 .name = "asc7621",
1209 },
1210 .probe = asc7621_probe,
1211 .remove = asc7621_remove,
1212 .id_table = asc7621_id,
1213 .detect = asc7621_detect,
1214 .address_list = normal_i2c,
1215};
1216
1217static int __init sm_asc7621_init(void)
1218{
1219 int i, j;
1220/*
1221 * Collect all the registers needed into a single array.
1222 * This way, if a register isn't actually used for anything,
1223 * we don't retrieve it.
1224 */
1225
1226 for (i = 0; i < ARRAY_SIZE(asc7621_params); i++) {
1227 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].msb); j++)
1228 asc7621_register_priorities[asc7621_params[i].msb[j]] =
1229 asc7621_params[i].priority;
1230 for (j = 0; j < ARRAY_SIZE(asc7621_params[i].lsb); j++)
1231 asc7621_register_priorities[asc7621_params[i].lsb[j]] =
1232 asc7621_params[i].priority;
1233 }
1234 return i2c_add_driver(&asc7621_driver);
1235}
1236
1237static void __exit sm_asc7621_exit(void)
1238{
1239 i2c_del_driver(&asc7621_driver);
1240}
1241
1242MODULE_LICENSE("GPL");
1243MODULE_AUTHOR("George Joseph");
1244MODULE_DESCRIPTION("Andigilog aSC7621 and aSC7621a driver");
1245
1246module_init(sm_asc7621_init);
1247module_exit(sm_asc7621_exit);