Linux Audio

Check our new training course

Loading...
v6.8
  1/*
  2 * AMD64 class Memory Controller kernel module
  3 *
  4 * Copyright (c) 2009 SoftwareBitMaker.
  5 * Copyright (c) 2009-15 Advanced Micro Devices, Inc.
  6 *
  7 * This file may be distributed under the terms of the
  8 * GNU General Public License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/ctype.h>
 13#include <linux/init.h>
 14#include <linux/pci.h>
 15#include <linux/pci_ids.h>
 16#include <linux/slab.h>
 17#include <linux/mmzone.h>
 18#include <linux/edac.h>
 19#include <linux/bitfield.h>
 20#include <asm/cpu_device_id.h>
 21#include <asm/msr.h>
 22#include "edac_module.h"
 23#include "mce_amd.h"
 24
 
 
 
 25#define amd64_info(fmt, arg...) \
 26	edac_printk(KERN_INFO, "amd64", fmt, ##arg)
 27
 
 
 
 28#define amd64_warn(fmt, arg...) \
 29	edac_printk(KERN_WARNING, "amd64", "Warning: " fmt, ##arg)
 30
 31#define amd64_err(fmt, arg...) \
 32	edac_printk(KERN_ERR, "amd64", "Error: " fmt, ##arg)
 33
 34#define amd64_mc_warn(mci, fmt, arg...) \
 35	edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)
 36
 37#define amd64_mc_err(mci, fmt, arg...) \
 38	edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)
 39
 40/*
 41 * Throughout the comments in this code, the following terms are used:
 42 *
 43 *	SysAddr, DramAddr, and InputAddr
 44 *
 45 *  These terms come directly from the amd64 documentation
 46 * (AMD publication #26094).  They are defined as follows:
 47 *
 48 *     SysAddr:
 49 *         This is a physical address generated by a CPU core or a device
 50 *         doing DMA.  If generated by a CPU core, a SysAddr is the result of
 51 *         a virtual to physical address translation by the CPU core's address
 52 *         translation mechanism (MMU).
 53 *
 54 *     DramAddr:
 55 *         A DramAddr is derived from a SysAddr by subtracting an offset that
 56 *         depends on which node the SysAddr maps to and whether the SysAddr
 57 *         is within a range affected by memory hoisting.  The DRAM Base
 58 *         (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
 59 *         determine which node a SysAddr maps to.
 60 *
 61 *         If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
 62 *         is within the range of addresses specified by this register, then
 63 *         a value x from the DHAR is subtracted from the SysAddr to produce a
 64 *         DramAddr.  Here, x represents the base address for the node that
 65 *         the SysAddr maps to plus an offset due to memory hoisting.  See
 66 *         section 3.4.8 and the comments in amd64_get_dram_hole_info() and
 67 *         sys_addr_to_dram_addr() below for more information.
 68 *
 69 *         If the SysAddr is not affected by the DHAR then a value y is
 70 *         subtracted from the SysAddr to produce a DramAddr.  Here, y is the
 71 *         base address for the node that the SysAddr maps to.  See section
 72 *         3.4.4 and the comments in sys_addr_to_dram_addr() below for more
 73 *         information.
 74 *
 75 *     InputAddr:
 76 *         A DramAddr is translated to an InputAddr before being passed to the
 77 *         memory controller for the node that the DramAddr is associated
 78 *         with.  The memory controller then maps the InputAddr to a csrow.
 79 *         If node interleaving is not in use, then the InputAddr has the same
 80 *         value as the DramAddr.  Otherwise, the InputAddr is produced by
 81 *         discarding the bits used for node interleaving from the DramAddr.
 82 *         See section 3.4.4 for more information.
 83 *
 84 *         The memory controller for a given node uses its DRAM CS Base and
 85 *         DRAM CS Mask registers to map an InputAddr to a csrow.  See
 86 *         sections 3.5.4 and 3.5.5 for more information.
 87 */
 88
 
 89#define EDAC_MOD_STR			"amd64_edac"
 90
 91/* Extended Model from CPUID, for CPU Revision numbers */
 92#define K8_REV_D			1
 93#define K8_REV_E			2
 94#define K8_REV_F			4
 95
 96/* Hardware limit on ChipSelect rows per MC and processors per system */
 97#define NUM_CHIPSELECTS			8
 98#define DRAM_RANGES			8
 99#define NUM_CONTROLLERS			12
100
101#define ON true
102#define OFF false
103
104/*
 
 
 
 
 
 
 
 
105 * PCI-defined configuration space registers
106 */
107#define PCI_DEVICE_ID_AMD_15H_NB_F1	0x1601
108#define PCI_DEVICE_ID_AMD_15H_NB_F2	0x1602
109#define PCI_DEVICE_ID_AMD_15H_M30H_NB_F1 0x141b
110#define PCI_DEVICE_ID_AMD_15H_M30H_NB_F2 0x141c
111#define PCI_DEVICE_ID_AMD_15H_M60H_NB_F1 0x1571
112#define PCI_DEVICE_ID_AMD_15H_M60H_NB_F2 0x1572
113#define PCI_DEVICE_ID_AMD_16H_NB_F1	0x1531
114#define PCI_DEVICE_ID_AMD_16H_NB_F2	0x1532
115#define PCI_DEVICE_ID_AMD_16H_M30H_NB_F1 0x1581
116#define PCI_DEVICE_ID_AMD_16H_M30H_NB_F2 0x1582
117
118/*
119 * Function 1 - Address Map
120 */
121#define DRAM_BASE_LO			0x40
122#define DRAM_LIMIT_LO			0x44
123
124/*
125 * F15 M30h D18F1x2[1C:00]
126 */
127#define DRAM_CONT_BASE			0x200
128#define DRAM_CONT_LIMIT			0x204
129
130/*
131 * F15 M30h D18F1x2[4C:40]
132 */
133#define DRAM_CONT_HIGH_OFF		0x240
134
135#define dram_rw(pvt, i)			((u8)(pvt->ranges[i].base.lo & 0x3))
136#define dram_intlv_sel(pvt, i)		((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7))
137#define dram_dst_node(pvt, i)		((u8)(pvt->ranges[i].lim.lo & 0x7))
138
139#define DHAR				0xf0
 
140#define dhar_mem_hoist_valid(pvt)	((pvt)->dhar & BIT(1))
141#define dhar_base(pvt)			((pvt)->dhar & 0xff000000)
142#define k8_dhar_offset(pvt)		(((pvt)->dhar & 0x0000ff00) << 16)
143
144					/* NOTE: Extra mask bit vs K8 */
145#define f10_dhar_offset(pvt)		(((pvt)->dhar & 0x0000ff80) << 16)
146
147#define DCT_CFG_SEL			0x10C
148
149#define DRAM_LOCAL_NODE_BASE		0x120
150#define DRAM_LOCAL_NODE_LIM		0x124
151
152#define DRAM_BASE_HI			0x140
153#define DRAM_LIMIT_HI			0x144
154
155
156/*
157 * Function 2 - DRAM controller
158 */
159#define DCSB0				0x40
160#define DCSB1				0x140
161#define DCSB_CS_ENABLE			BIT(0)
162
163#define DCSM0				0x60
164#define DCSM1				0x160
165
166#define csrow_enabled(i, dct, pvt)	((pvt)->csels[(dct)].csbases[(i)]     & DCSB_CS_ENABLE)
167#define csrow_sec_enabled(i, dct, pvt)	((pvt)->csels[(dct)].csbases_sec[(i)] & DCSB_CS_ENABLE)
168
169#define DRAM_CONTROL			0x78
170
171#define DBAM0				0x80
172#define DBAM1				0x180
173
174/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
175#define DBAM_DIMM(i, reg)		((((reg) >> (4*(i)))) & 0xF)
176
177#define DBAM_MAX_VALUE			11
178
179#define DCLR0				0x90
180#define DCLR1				0x190
181#define REVE_WIDTH_128			BIT(16)
182#define WIDTH_128			BIT(11)
183
184#define DCHR0				0x94
185#define DCHR1				0x194
186#define DDR3_MODE			BIT(8)
187
188#define DCT_SEL_LO			0x110
 
 
189#define dct_high_range_enabled(pvt)	((pvt)->dct_sel_lo & BIT(0))
190#define dct_interleave_enabled(pvt)	((pvt)->dct_sel_lo & BIT(2))
191
192#define dct_ganging_enabled(pvt)	((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))
193
194#define dct_data_intlv_enabled(pvt)	((pvt)->dct_sel_lo & BIT(5))
195#define dct_memory_cleared(pvt)		((pvt)->dct_sel_lo & BIT(10))
196
197#define SWAP_INTLV_REG			0x10c
198
199#define DCT_SEL_HI			0x114
200
201#define F15H_M60H_SCRCTRL		0x1C8
202
203/*
204 * Function 3 - Misc Control
205 */
206#define NBCTL				0x40
207
208#define NBCFG				0x44
209#define NBCFG_CHIPKILL			BIT(23)
210#define NBCFG_ECC_ENABLE		BIT(22)
211
212/* F3x48: NBSL */
213#define F10_NBSL_EXT_ERR_ECC		0x8
214#define NBSL_PP_OBS			0x2
215
216#define SCRCTRL				0x58
217
218#define F10_ONLINE_SPARE		0xB0
219#define online_spare_swap_done(pvt, c)	(((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
220#define online_spare_bad_dramcs(pvt, c)	(((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)
221
222#define F10_NB_ARRAY_ADDR		0xB8
223#define F10_NB_ARRAY_DRAM		BIT(31)
224
225/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline  */
226#define SET_NB_ARRAY_ADDR(section)	(((section) & 0x3) << 1)
227
228#define F10_NB_ARRAY_DATA		0xBC
229#define F10_NB_ARR_ECC_WR_REQ		BIT(17)
230#define SET_NB_DRAM_INJECTION_WRITE(inj)  \
231					(BIT(((inj.word) & 0xF) + 20) | \
232					F10_NB_ARR_ECC_WR_REQ | inj.bit_map)
233#define SET_NB_DRAM_INJECTION_READ(inj)  \
234					(BIT(((inj.word) & 0xF) + 20) | \
235					BIT(16) |  inj.bit_map)
236
237
238#define NBCAP				0xE8
239#define NBCAP_CHIPKILL			BIT(4)
240#define NBCAP_SECDED			BIT(3)
241#define NBCAP_DCT_DUAL			BIT(0)
242
243#define EXT_NB_MCA_CFG			0x180
244
245/* MSRs */
246#define MSR_MCGCTL_NBE			BIT(4)
247
248/* F17h */
249
250/* F0: */
251#define DF_DHAR				0x104
252
253/* UMC CH register offsets */
254#define UMCCH_BASE_ADDR			0x0
255#define UMCCH_BASE_ADDR_SEC		0x10
256#define UMCCH_ADDR_MASK			0x20
257#define UMCCH_ADDR_MASK_SEC		0x28
258#define UMCCH_ADDR_MASK_SEC_DDR5	0x30
259#define UMCCH_ADDR_CFG			0x30
260#define UMCCH_ADDR_CFG_DDR5		0x40
261#define UMCCH_DIMM_CFG			0x80
262#define UMCCH_DIMM_CFG_DDR5		0x90
263#define UMCCH_UMC_CFG			0x100
264#define UMCCH_SDP_CTRL			0x104
265#define UMCCH_ECC_CTRL			0x14C
266#define UMCCH_ECC_BAD_SYMBOL		0xD90
267#define UMCCH_UMC_CAP			0xDF0
268#define UMCCH_UMC_CAP_HI		0xDF4
269
270/* UMC CH bitfields */
271#define UMC_ECC_CHIPKILL_CAP		BIT(31)
272#define UMC_ECC_ENABLED			BIT(30)
273
274#define UMC_SDP_INIT			BIT(31)
 
 
 
 
 
275
276/* Error injection control structure */
277struct error_injection {
278	u32	 section;
279	u32	 word;
280	u32	 bit_map;
281};
282
283/* low and high part of PCI config space regs */
284struct reg_pair {
285	u32 lo, hi;
286};
287
288/*
289 * See F1x[1, 0][7C:40] DRAM Base/Limit Registers
290 */
291struct dram_range {
292	struct reg_pair base;
293	struct reg_pair lim;
294};
295
296/* A DCT chip selects collection */
297struct chip_select {
298	u32 csbases[NUM_CHIPSELECTS];
299	u32 csbases_sec[NUM_CHIPSELECTS];
300	u8 b_cnt;
301
302	u32 csmasks[NUM_CHIPSELECTS];
303	u32 csmasks_sec[NUM_CHIPSELECTS];
304	u8 m_cnt;
305};
306
307struct amd64_umc {
308	u32 dimm_cfg;		/* DIMM Configuration reg */
309	u32 umc_cfg;		/* Configuration reg */
310	u32 sdp_ctrl;		/* SDP Control reg */
311	u32 ecc_ctrl;		/* DRAM ECC Control reg */
312	u32 umc_cap_hi;		/* Capabilities High reg */
313
314	/* cache the dram_type */
315	enum mem_type dram_type;
316};
317
318struct amd64_family_flags {
319	/*
320	 * Indicates that the system supports the new register offsets, etc.
321	 * first introduced with Family 19h Model 10h.
322	 */
323	__u64 zn_regs_v2	: 1,
324
325	      __reserved	: 63;
326};
327
328struct amd64_pvt {
329	struct low_ops *ops;
330
331	/* pci_device handles which we utilize */
332	struct pci_dev *F1, *F2, *F3;
333
334	u16 mc_node_id;		/* MC index of this MC node */
335	u8 fam;			/* CPU family */
336	u8 model;		/* ... model */
337	u8 stepping;		/* ... stepping */
338
339	int ext_model;		/* extended model value of this node */
 
340
341	/* Raw registers */
342	u32 dclr0;		/* DRAM Configuration Low DCT0 reg */
343	u32 dclr1;		/* DRAM Configuration Low DCT1 reg */
344	u32 dchr0;		/* DRAM Configuration High DCT0 reg */
345	u32 dchr1;		/* DRAM Configuration High DCT1 reg */
346	u32 nbcap;		/* North Bridge Capabilities */
347	u32 nbcfg;		/* F10 North Bridge Configuration */
348	u32 ext_nbcfg;		/* Extended F10 North Bridge Configuration */
349	u32 dhar;		/* DRAM Hoist reg */
350	u32 dbam0;		/* DRAM Base Address Mapping reg for DCT0 */
351	u32 dbam1;		/* DRAM Base Address Mapping reg for DCT1 */
352
353	/* one for each DCT/UMC */
354	struct chip_select csels[NUM_CONTROLLERS];
355
356	/* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
357	struct dram_range ranges[DRAM_RANGES];
358
359	u64 top_mem;		/* top of memory below 4GB */
360	u64 top_mem2;		/* top of memory above 4GB */
361
362	u32 dct_sel_lo;		/* DRAM Controller Select Low */
363	u32 dct_sel_hi;		/* DRAM Controller Select High */
364	u32 online_spare;	/* On-Line spare Reg */
365	u32 gpu_umc_base;	/* Base address used for channel selection on GPUs */
366
367	/* x4, x8, or x16 syndromes in use */
368	u8 ecc_sym_sz;
369
370	const char *ctl_name;
371	u16 f1_id, f2_id;
372	/* Maximum number of memory controllers per die/node. */
373	u8 max_mcs;
374
375	struct amd64_family_flags flags;
376	/* place to store error injection parameters prior to issue */
377	struct error_injection injection;
378
379	/*
380	 * cache the dram_type
381	 *
382	 * NOTE: Don't use this for Family 17h and later.
383	 *	 Use dram_type in struct amd64_umc instead.
384	 */
385	enum mem_type dram_type;
386
387	struct amd64_umc *umc;	/* UMC registers */
388};
389
390enum err_codes {
391	DECODE_OK	=  0,
392	ERR_NODE	= -1,
393	ERR_CSROW	= -2,
394	ERR_CHANNEL	= -3,
395	ERR_SYND	= -4,
396	ERR_NORM_ADDR	= -5,
397};
398
399struct err_info {
400	int err_code;
401	struct mem_ctl_info *src_mci;
402	int csrow;
403	int channel;
404	u16 syndrome;
405	u32 page;
406	u32 offset;
407};
408
409static inline u32 get_umc_base(u8 channel)
410{
411	/* chY: 0xY50000 */
412	return 0x50000 + (channel << 20);
413}
414
415static inline u64 get_dram_base(struct amd64_pvt *pvt, u8 i)
416{
417	u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;
418
419	if (boot_cpu_data.x86 == 0xf)
420		return addr;
421
422	return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
423}
424
425static inline u64 get_dram_limit(struct amd64_pvt *pvt, u8 i)
426{
427	u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;
428
429	if (boot_cpu_data.x86 == 0xf)
430		return lim;
431
432	return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
433}
434
435static inline u16 extract_syndrome(u64 status)
436{
437	return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
438}
439
440static inline u8 dct_sel_interleave_addr(struct amd64_pvt *pvt)
441{
442	if (pvt->fam == 0x15 && pvt->model >= 0x30)
443		return (((pvt->dct_sel_hi >> 9) & 0x1) << 2) |
444			((pvt->dct_sel_lo >> 6) & 0x3);
445
446	return	((pvt)->dct_sel_lo >> 6) & 0x3;
447}
448/*
449 * per-node ECC settings descriptor
450 */
451struct ecc_settings {
452	u32 old_nbctl;
453	bool nbctl_valid;
454
455	struct flags {
456		unsigned long nb_mce_enable:1;
457		unsigned long nb_ecc_prev:1;
458	} flags;
459};
460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461/*
462 * Each of the PCI Device IDs types have their own set of hardware accessor
463 * functions and per device encoding/decoding logic.
464 */
465struct low_ops {
466	void (*map_sysaddr_to_csrow)(struct mem_ctl_info *mci, u64 sys_addr,
467				     struct err_info *err);
468	int  (*dbam_to_cs)(struct amd64_pvt *pvt, u8 dct,
469			   unsigned int cs_mode, int cs_mask_nr);
470	int (*hw_info_get)(struct amd64_pvt *pvt);
471	bool (*ecc_enabled)(struct amd64_pvt *pvt);
472	void (*setup_mci_misc_attrs)(struct mem_ctl_info *mci);
473	void (*dump_misc_regs)(struct amd64_pvt *pvt);
474	void (*get_err_info)(struct mce *m, struct err_info *err);
 
 
 
475};
476
477int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
478			       u32 *val, const char *func);
479int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
480				u32 val, const char *func);
481
482#define amd64_read_pci_cfg(pdev, offset, val)	\
483	__amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
484
485#define amd64_write_pci_cfg(pdev, offset, val)	\
486	__amd64_write_pci_cfg_dword(pdev, offset, val, __func__)
487
488#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
489
490/* Injection helpers */
491static inline void disable_caches(void *dummy)
492{
493	write_cr0(read_cr0() | X86_CR0_CD);
494	wbinvd();
495}
496
497static inline void enable_caches(void *dummy)
498{
499	write_cr0(read_cr0() & ~X86_CR0_CD);
500}
501
502static inline u8 dram_intlv_en(struct amd64_pvt *pvt, unsigned int i)
503{
504	if (pvt->fam == 0x15 && pvt->model >= 0x30) {
505		u32 tmp;
506		amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &tmp);
507		return (u8) tmp & 0xF;
508	}
509	return (u8) (pvt->ranges[i].base.lo >> 8) & 0x7;
510}
511
512static inline u8 dhar_valid(struct amd64_pvt *pvt)
513{
514	if (pvt->fam == 0x15 && pvt->model >= 0x30) {
515		u32 tmp;
516		amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp);
517		return (tmp >> 1) & BIT(0);
518	}
519	return (pvt)->dhar & BIT(0);
520}
521
522static inline u32 dct_sel_baseaddr(struct amd64_pvt *pvt)
523{
524	if (pvt->fam == 0x15 && pvt->model >= 0x30) {
525		u32 tmp;
526		amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &tmp);
527		return (tmp >> 11) & 0x1FFF;
528	}
529	return (pvt)->dct_sel_lo & 0xFFFFF800;
530}
v3.1
  1/*
  2 * AMD64 class Memory Controller kernel module
  3 *
  4 * Copyright (c) 2009 SoftwareBitMaker.
  5 * Copyright (c) 2009 Advanced Micro Devices, Inc.
  6 *
  7 * This file may be distributed under the terms of the
  8 * GNU General Public License.
  9 *
 10 *	Originally Written by Thayne Harbaugh
 11 *
 12 *      Changes by Douglas "norsk" Thompson  <dougthompson@xmission.com>:
 13 *		- K8 CPU Revision D and greater support
 14 *
 15 *      Changes by Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>:
 16 *		- Module largely rewritten, with new (and hopefully correct)
 17 *		code for dealing with node and chip select interleaving,
 18 *		various code cleanup, and bug fixes
 19 *		- Added support for memory hoisting using DRAM hole address
 20 *		register
 21 *
 22 *	Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
 23 *		-K8 Rev (1207) revision support added, required Revision
 24 *		specific mini-driver code to support Rev F as well as
 25 *		prior revisions
 26 *
 27 *	Changes by Douglas "norsk" Thompson <dougthompson@xmission.com>:
 28 *		-Family 10h revision support added. New PCI Device IDs,
 29 *		indicating new changes. Actual registers modified
 30 *		were slight, less than the Rev E to Rev F transition
 31 *		but changing the PCI Device ID was the proper thing to
 32 *		do, as it provides for almost automactic family
 33 *		detection. The mods to Rev F required more family
 34 *		information detection.
 35 *
 36 *	Changes/Fixes by Borislav Petkov <borislav.petkov@amd.com>:
 37 *		- misc fixes and code cleanups
 38 *
 39 * This module is based on the following documents
 40 * (available from http://www.amd.com/):
 41 *
 42 *	Title:	BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
 43 *		Opteron Processors
 44 *	AMD publication #: 26094
 45 *`	Revision: 3.26
 46 *
 47 *	Title:	BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
 48 *		Processors
 49 *	AMD publication #: 32559
 50 *	Revision: 3.00
 51 *	Issue Date: May 2006
 52 *
 53 *	Title:	BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
 54 *		Processors
 55 *	AMD publication #: 31116
 56 *	Revision: 3.00
 57 *	Issue Date: September 07, 2007
 58 *
 59 * Sections in the first 2 documents are no longer in sync with each other.
 60 * The Family 10h BKDG was totally re-written from scratch with a new
 61 * presentation model.
 62 * Therefore, comments that refer to a Document section might be off.
 63 */
 64
 65#include <linux/module.h>
 66#include <linux/ctype.h>
 67#include <linux/init.h>
 68#include <linux/pci.h>
 69#include <linux/pci_ids.h>
 70#include <linux/slab.h>
 71#include <linux/mmzone.h>
 72#include <linux/edac.h>
 
 
 73#include <asm/msr.h>
 74#include "edac_core.h"
 75#include "mce_amd.h"
 76
 77#define amd64_debug(fmt, arg...) \
 78	edac_printk(KERN_DEBUG, "amd64", fmt, ##arg)
 79
 80#define amd64_info(fmt, arg...) \
 81	edac_printk(KERN_INFO, "amd64", fmt, ##arg)
 82
 83#define amd64_notice(fmt, arg...) \
 84	edac_printk(KERN_NOTICE, "amd64", fmt, ##arg)
 85
 86#define amd64_warn(fmt, arg...) \
 87	edac_printk(KERN_WARNING, "amd64", fmt, ##arg)
 88
 89#define amd64_err(fmt, arg...) \
 90	edac_printk(KERN_ERR, "amd64", fmt, ##arg)
 91
 92#define amd64_mc_warn(mci, fmt, arg...) \
 93	edac_mc_chipset_printk(mci, KERN_WARNING, "amd64", fmt, ##arg)
 94
 95#define amd64_mc_err(mci, fmt, arg...) \
 96	edac_mc_chipset_printk(mci, KERN_ERR, "amd64", fmt, ##arg)
 97
 98/*
 99 * Throughout the comments in this code, the following terms are used:
100 *
101 *	SysAddr, DramAddr, and InputAddr
102 *
103 *  These terms come directly from the amd64 documentation
104 * (AMD publication #26094).  They are defined as follows:
105 *
106 *     SysAddr:
107 *         This is a physical address generated by a CPU core or a device
108 *         doing DMA.  If generated by a CPU core, a SysAddr is the result of
109 *         a virtual to physical address translation by the CPU core's address
110 *         translation mechanism (MMU).
111 *
112 *     DramAddr:
113 *         A DramAddr is derived from a SysAddr by subtracting an offset that
114 *         depends on which node the SysAddr maps to and whether the SysAddr
115 *         is within a range affected by memory hoisting.  The DRAM Base
116 *         (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers
117 *         determine which node a SysAddr maps to.
118 *
119 *         If the DRAM Hole Address Register (DHAR) is enabled and the SysAddr
120 *         is within the range of addresses specified by this register, then
121 *         a value x from the DHAR is subtracted from the SysAddr to produce a
122 *         DramAddr.  Here, x represents the base address for the node that
123 *         the SysAddr maps to plus an offset due to memory hoisting.  See
124 *         section 3.4.8 and the comments in amd64_get_dram_hole_info() and
125 *         sys_addr_to_dram_addr() below for more information.
126 *
127 *         If the SysAddr is not affected by the DHAR then a value y is
128 *         subtracted from the SysAddr to produce a DramAddr.  Here, y is the
129 *         base address for the node that the SysAddr maps to.  See section
130 *         3.4.4 and the comments in sys_addr_to_dram_addr() below for more
131 *         information.
132 *
133 *     InputAddr:
134 *         A DramAddr is translated to an InputAddr before being passed to the
135 *         memory controller for the node that the DramAddr is associated
136 *         with.  The memory controller then maps the InputAddr to a csrow.
137 *         If node interleaving is not in use, then the InputAddr has the same
138 *         value as the DramAddr.  Otherwise, the InputAddr is produced by
139 *         discarding the bits used for node interleaving from the DramAddr.
140 *         See section 3.4.4 for more information.
141 *
142 *         The memory controller for a given node uses its DRAM CS Base and
143 *         DRAM CS Mask registers to map an InputAddr to a csrow.  See
144 *         sections 3.5.4 and 3.5.5 for more information.
145 */
146
147#define EDAC_AMD64_VERSION		"3.4.0"
148#define EDAC_MOD_STR			"amd64_edac"
149
150/* Extended Model from CPUID, for CPU Revision numbers */
151#define K8_REV_D			1
152#define K8_REV_E			2
153#define K8_REV_F			4
154
155/* Hardware limit on ChipSelect rows per MC and processors per system */
156#define NUM_CHIPSELECTS			8
157#define DRAM_RANGES			8
 
158
159#define ON true
160#define OFF false
161
162/*
163 * Create a contiguous bitmask starting at bit position @lo and ending at
164 * position @hi. For example
165 *
166 * GENMASK(21, 39) gives us the 64bit vector 0x000000ffffe00000.
167 */
168#define GENMASK(lo, hi)			(((1ULL << ((hi) - (lo) + 1)) - 1) << (lo))
169
170/*
171 * PCI-defined configuration space registers
172 */
173#define PCI_DEVICE_ID_AMD_15H_NB_F1	0x1601
174#define PCI_DEVICE_ID_AMD_15H_NB_F2	0x1602
175
 
 
 
 
 
 
 
176
177/*
178 * Function 1 - Address Map
179 */
180#define DRAM_BASE_LO			0x40
181#define DRAM_LIMIT_LO			0x44
182
183#define dram_intlv_en(pvt, i)		((u8)((pvt->ranges[i].base.lo >> 8) & 0x7))
 
 
 
 
 
 
 
 
 
 
184#define dram_rw(pvt, i)			((u8)(pvt->ranges[i].base.lo & 0x3))
185#define dram_intlv_sel(pvt, i)		((u8)((pvt->ranges[i].lim.lo >> 8) & 0x7))
186#define dram_dst_node(pvt, i)		((u8)(pvt->ranges[i].lim.lo & 0x7))
187
188#define DHAR				0xf0
189#define dhar_valid(pvt)			((pvt)->dhar & BIT(0))
190#define dhar_mem_hoist_valid(pvt)	((pvt)->dhar & BIT(1))
191#define dhar_base(pvt)			((pvt)->dhar & 0xff000000)
192#define k8_dhar_offset(pvt)		(((pvt)->dhar & 0x0000ff00) << 16)
193
194					/* NOTE: Extra mask bit vs K8 */
195#define f10_dhar_offset(pvt)		(((pvt)->dhar & 0x0000ff80) << 16)
196
197#define DCT_CFG_SEL			0x10C
198
199#define DRAM_LOCAL_NODE_BASE		0x120
200#define DRAM_LOCAL_NODE_LIM		0x124
201
202#define DRAM_BASE_HI			0x140
203#define DRAM_LIMIT_HI			0x144
204
205
206/*
207 * Function 2 - DRAM controller
208 */
209#define DCSB0				0x40
210#define DCSB1				0x140
211#define DCSB_CS_ENABLE			BIT(0)
212
213#define DCSM0				0x60
214#define DCSM1				0x160
215
216#define csrow_enabled(i, dct, pvt)	((pvt)->csels[(dct)].csbases[(i)] & DCSB_CS_ENABLE)
 
 
 
217
218#define DBAM0				0x80
219#define DBAM1				0x180
220
221/* Extract the DIMM 'type' on the i'th DIMM from the DBAM reg value passed */
222#define DBAM_DIMM(i, reg)		((((reg) >> (4*i))) & 0xF)
223
224#define DBAM_MAX_VALUE			11
225
226#define DCLR0				0x90
227#define DCLR1				0x190
228#define REVE_WIDTH_128			BIT(16)
229#define WIDTH_128			BIT(11)
230
231#define DCHR0				0x94
232#define DCHR1				0x194
233#define DDR3_MODE			BIT(8)
234
235#define DCT_SEL_LO			0x110
236#define dct_sel_baseaddr(pvt)		((pvt)->dct_sel_lo & 0xFFFFF800)
237#define dct_sel_interleave_addr(pvt)	(((pvt)->dct_sel_lo >> 6) & 0x3)
238#define dct_high_range_enabled(pvt)	((pvt)->dct_sel_lo & BIT(0))
239#define dct_interleave_enabled(pvt)	((pvt)->dct_sel_lo & BIT(2))
240
241#define dct_ganging_enabled(pvt)	((boot_cpu_data.x86 == 0x10) && ((pvt)->dct_sel_lo & BIT(4)))
242
243#define dct_data_intlv_enabled(pvt)	((pvt)->dct_sel_lo & BIT(5))
244#define dct_memory_cleared(pvt)		((pvt)->dct_sel_lo & BIT(10))
245
246#define SWAP_INTLV_REG			0x10c
247
248#define DCT_SEL_HI			0x114
249
 
 
250/*
251 * Function 3 - Misc Control
252 */
253#define NBCTL				0x40
254
255#define NBCFG				0x44
256#define NBCFG_CHIPKILL			BIT(23)
257#define NBCFG_ECC_ENABLE		BIT(22)
258
259/* F3x48: NBSL */
260#define F10_NBSL_EXT_ERR_ECC		0x8
261#define NBSL_PP_OBS			0x2
262
263#define SCRCTRL				0x58
264
265#define F10_ONLINE_SPARE		0xB0
266#define online_spare_swap_done(pvt, c)	(((pvt)->online_spare >> (1 + 2 * (c))) & 0x1)
267#define online_spare_bad_dramcs(pvt, c)	(((pvt)->online_spare >> (4 + 4 * (c))) & 0x7)
268
269#define F10_NB_ARRAY_ADDR		0xB8
270#define F10_NB_ARRAY_DRAM_ECC		BIT(31)
271
272/* Bits [2:1] are used to select 16-byte section within a 64-byte cacheline  */
273#define SET_NB_ARRAY_ADDRESS(section)	(((section) & 0x3) << 1)
274
275#define F10_NB_ARRAY_DATA		0xBC
276#define SET_NB_DRAM_INJECTION_WRITE(word, bits)  \
277					(BIT(((word) & 0xF) + 20) | \
278					BIT(17) | bits)
279#define SET_NB_DRAM_INJECTION_READ(word, bits)  \
280					(BIT(((word) & 0xF) + 20) | \
281					BIT(16) |  bits)
 
 
282
283#define NBCAP				0xE8
284#define NBCAP_CHIPKILL			BIT(4)
285#define NBCAP_SECDED			BIT(3)
286#define NBCAP_DCT_DUAL			BIT(0)
287
288#define EXT_NB_MCA_CFG			0x180
289
290/* MSRs */
291#define MSR_MCGCTL_NBE			BIT(4)
292
293/* AMD sets the first MC device at device ID 0x18. */
294static inline u8 get_node_id(struct pci_dev *pdev)
295{
296	return PCI_SLOT(pdev->devfn) - 0x18;
297}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
299enum amd_families {
300	K8_CPUS = 0,
301	F10_CPUS,
302	F15_CPUS,
303	NUM_FAMILIES,
304};
305
306/* Error injection control structure */
307struct error_injection {
308	u32	section;
309	u32	word;
310	u32	bit_map;
311};
312
313/* low and high part of PCI config space regs */
314struct reg_pair {
315	u32 lo, hi;
316};
317
318/*
319 * See F1x[1, 0][7C:40] DRAM Base/Limit Registers
320 */
321struct dram_range {
322	struct reg_pair base;
323	struct reg_pair lim;
324};
325
326/* A DCT chip selects collection */
327struct chip_select {
328	u32 csbases[NUM_CHIPSELECTS];
 
329	u8 b_cnt;
330
331	u32 csmasks[NUM_CHIPSELECTS];
 
332	u8 m_cnt;
333};
334
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335struct amd64_pvt {
336	struct low_ops *ops;
337
338	/* pci_device handles which we utilize */
339	struct pci_dev *F1, *F2, *F3;
340
341	unsigned mc_node_id;	/* MC index of this MC node */
 
 
 
 
342	int ext_model;		/* extended model value of this node */
343	int channel_count;
344
345	/* Raw registers */
346	u32 dclr0;		/* DRAM Configuration Low DCT0 reg */
347	u32 dclr1;		/* DRAM Configuration Low DCT1 reg */
348	u32 dchr0;		/* DRAM Configuration High DCT0 reg */
349	u32 dchr1;		/* DRAM Configuration High DCT1 reg */
350	u32 nbcap;		/* North Bridge Capabilities */
351	u32 nbcfg;		/* F10 North Bridge Configuration */
352	u32 ext_nbcfg;		/* Extended F10 North Bridge Configuration */
353	u32 dhar;		/* DRAM Hoist reg */
354	u32 dbam0;		/* DRAM Base Address Mapping reg for DCT0 */
355	u32 dbam1;		/* DRAM Base Address Mapping reg for DCT1 */
356
357	/* one for each DCT */
358	struct chip_select csels[2];
359
360	/* DRAM base and limit pairs F1x[78,70,68,60,58,50,48,40] */
361	struct dram_range ranges[DRAM_RANGES];
362
363	u64 top_mem;		/* top of memory below 4GB */
364	u64 top_mem2;		/* top of memory above 4GB */
365
366	u32 dct_sel_lo;		/* DRAM Controller Select Low */
367	u32 dct_sel_hi;		/* DRAM Controller Select High */
368	u32 online_spare;	/* On-Line spare Reg */
 
369
370	/* x4 or x8 syndromes in use */
371	u8 ecc_sym_sz;
372
 
 
 
 
 
 
373	/* place to store error injection parameters prior to issue */
374	struct error_injection injection;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375};
376
377static inline u64 get_dram_base(struct amd64_pvt *pvt, unsigned i)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
378{
379	u64 addr = ((u64)pvt->ranges[i].base.lo & 0xffff0000) << 8;
380
381	if (boot_cpu_data.x86 == 0xf)
382		return addr;
383
384	return (((u64)pvt->ranges[i].base.hi & 0x000000ff) << 40) | addr;
385}
386
387static inline u64 get_dram_limit(struct amd64_pvt *pvt, unsigned i)
388{
389	u64 lim = (((u64)pvt->ranges[i].lim.lo & 0xffff0000) << 8) | 0x00ffffff;
390
391	if (boot_cpu_data.x86 == 0xf)
392		return lim;
393
394	return (((u64)pvt->ranges[i].lim.hi & 0x000000ff) << 40) | lim;
395}
396
397static inline u16 extract_syndrome(u64 status)
398{
399	return ((status >> 47) & 0xff) | ((status >> 16) & 0xff00);
400}
401
 
 
 
 
 
 
 
 
402/*
403 * per-node ECC settings descriptor
404 */
405struct ecc_settings {
406	u32 old_nbctl;
407	bool nbctl_valid;
408
409	struct flags {
410		unsigned long nb_mce_enable:1;
411		unsigned long nb_ecc_prev:1;
412	} flags;
413};
414
415#ifdef CONFIG_EDAC_DEBUG
416#define NUM_DBG_ATTRS 5
417#else
418#define NUM_DBG_ATTRS 0
419#endif
420
421#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
422#define NUM_INJ_ATTRS 5
423#else
424#define NUM_INJ_ATTRS 0
425#endif
426
427extern struct mcidev_sysfs_attribute amd64_dbg_attrs[NUM_DBG_ATTRS],
428				     amd64_inj_attrs[NUM_INJ_ATTRS];
429
430/*
431 * Each of the PCI Device IDs types have their own set of hardware accessor
432 * functions and per device encoding/decoding logic.
433 */
434struct low_ops {
435	int (*early_channel_count)	(struct amd64_pvt *pvt);
436	void (*map_sysaddr_to_csrow)	(struct mem_ctl_info *mci, u64 sys_addr,
437					 u16 syndrome);
438	int (*dbam_to_cs)		(struct amd64_pvt *pvt, u8 dct, unsigned cs_mode);
439	int (*read_dct_pci_cfg)		(struct amd64_pvt *pvt, int offset,
440					 u32 *val, const char *func);
441};
442
443struct amd64_family_type {
444	const char *ctl_name;
445	u16 f1_id, f3_id;
446	struct low_ops ops;
447};
448
 
 
449int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
450				u32 val, const char *func);
451
452#define amd64_read_pci_cfg(pdev, offset, val)	\
453	__amd64_read_pci_cfg_dword(pdev, offset, val, __func__)
454
455#define amd64_write_pci_cfg(pdev, offset, val)	\
456	__amd64_write_pci_cfg_dword(pdev, offset, val, __func__)
457
458#define amd64_read_dct_pci_cfg(pvt, offset, val) \
459	pvt->ops->read_dct_pci_cfg(pvt, offset, val, __func__)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
460
461int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
462			     u64 *hole_offset, u64 *hole_size);