Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * Support for Marvell's crypto engine which can be found on some Orion5X
   3 * boards.
   4 *
   5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
   6 * License: GPLv2
   7 *
   8 */
   9#include <crypto/aes.h>
  10#include <crypto/algapi.h>
  11#include <linux/crypto.h>
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
  14#include <linux/kthread.h>
  15#include <linux/platform_device.h>
  16#include <linux/scatterlist.h>
  17#include <linux/slab.h>
  18#include <crypto/internal/hash.h>
  19#include <crypto/sha.h>
  20
  21#include "mv_cesa.h"
  22
  23#define MV_CESA	"MV-CESA:"
  24#define MAX_HW_HASH_SIZE	0xFFFF
  25
  26/*
  27 * STM:
  28 *   /---------------------------------------\
  29 *   |					     | request complete
  30 *  \./					     |
  31 * IDLE -> new request -> BUSY -> done -> DEQUEUE
  32 *                         /°\               |
  33 *			    |		     | more scatter entries
  34 *			    \________________/
  35 */
  36enum engine_status {
  37	ENGINE_IDLE,
  38	ENGINE_BUSY,
  39	ENGINE_W_DEQUEUE,
  40};
  41
  42/**
  43 * struct req_progress - used for every crypt request
  44 * @src_sg_it:		sg iterator for src
  45 * @dst_sg_it:		sg iterator for dst
  46 * @sg_src_left:	bytes left in src to process (scatter list)
  47 * @src_start:		offset to add to src start position (scatter list)
  48 * @crypt_len:		length of current hw crypt/hash process
  49 * @hw_nbytes:		total bytes to process in hw for this request
  50 * @copy_back:		whether to copy data back (crypt) or not (hash)
  51 * @sg_dst_left:	bytes left dst to process in this scatter list
  52 * @dst_start:		offset to add to dst start position (scatter list)
  53 * @hw_processed_bytes:	number of bytes processed by hw (request).
  54 *
  55 * sg helper are used to iterate over the scatterlist. Since the size of the
  56 * SRAM may be less than the scatter size, this struct struct is used to keep
  57 * track of progress within current scatterlist.
  58 */
  59struct req_progress {
  60	struct sg_mapping_iter src_sg_it;
  61	struct sg_mapping_iter dst_sg_it;
  62	void (*complete) (void);
  63	void (*process) (int is_first);
  64
  65	/* src mostly */
  66	int sg_src_left;
  67	int src_start;
  68	int crypt_len;
  69	int hw_nbytes;
  70	/* dst mostly */
  71	int copy_back;
  72	int sg_dst_left;
  73	int dst_start;
  74	int hw_processed_bytes;
  75};
  76
  77struct crypto_priv {
  78	void __iomem *reg;
  79	void __iomem *sram;
  80	int irq;
  81	struct task_struct *queue_th;
  82
  83	/* the lock protects queue and eng_st */
  84	spinlock_t lock;
  85	struct crypto_queue queue;
  86	enum engine_status eng_st;
  87	struct crypto_async_request *cur_req;
  88	struct req_progress p;
  89	int max_req_size;
  90	int sram_size;
  91	int has_sha1;
  92	int has_hmac_sha1;
  93};
  94
  95static struct crypto_priv *cpg;
  96
  97struct mv_ctx {
  98	u8 aes_enc_key[AES_KEY_LEN];
  99	u32 aes_dec_key[8];
 100	int key_len;
 101	u32 need_calc_aes_dkey;
 102};
 103
 104enum crypto_op {
 105	COP_AES_ECB,
 106	COP_AES_CBC,
 107};
 108
 109struct mv_req_ctx {
 110	enum crypto_op op;
 111	int decrypt;
 112};
 113
 114enum hash_op {
 115	COP_SHA1,
 116	COP_HMAC_SHA1
 117};
 118
 119struct mv_tfm_hash_ctx {
 120	struct crypto_shash *fallback;
 121	struct crypto_shash *base_hash;
 122	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
 123	int count_add;
 124	enum hash_op op;
 125};
 126
 127struct mv_req_hash_ctx {
 128	u64 count;
 129	u32 state[SHA1_DIGEST_SIZE / 4];
 130	u8 buffer[SHA1_BLOCK_SIZE];
 131	int first_hash;		/* marks that we don't have previous state */
 132	int last_chunk;		/* marks that this is the 'final' request */
 133	int extra_bytes;	/* unprocessed bytes in buffer */
 134	enum hash_op op;
 135	int count_add;
 136};
 137
 138static void compute_aes_dec_key(struct mv_ctx *ctx)
 139{
 140	struct crypto_aes_ctx gen_aes_key;
 141	int key_pos;
 142
 143	if (!ctx->need_calc_aes_dkey)
 144		return;
 145
 146	crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
 147
 148	key_pos = ctx->key_len + 24;
 149	memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
 150	switch (ctx->key_len) {
 151	case AES_KEYSIZE_256:
 152		key_pos -= 2;
 153		/* fall */
 154	case AES_KEYSIZE_192:
 155		key_pos -= 2;
 156		memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
 157				4 * 4);
 158		break;
 159	}
 160	ctx->need_calc_aes_dkey = 0;
 161}
 162
 163static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
 164		unsigned int len)
 165{
 166	struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
 167	struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
 168
 169	switch (len) {
 170	case AES_KEYSIZE_128:
 171	case AES_KEYSIZE_192:
 172	case AES_KEYSIZE_256:
 173		break;
 174	default:
 175		crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
 176		return -EINVAL;
 177	}
 178	ctx->key_len = len;
 179	ctx->need_calc_aes_dkey = 1;
 180
 181	memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
 182	return 0;
 183}
 184
 185static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
 186{
 187	int ret;
 188	void *sbuf;
 189	int copy_len;
 190
 191	while (len) {
 192		if (!p->sg_src_left) {
 193			ret = sg_miter_next(&p->src_sg_it);
 194			BUG_ON(!ret);
 195			p->sg_src_left = p->src_sg_it.length;
 196			p->src_start = 0;
 197		}
 198
 199		sbuf = p->src_sg_it.addr + p->src_start;
 200
 201		copy_len = min(p->sg_src_left, len);
 202		memcpy(dbuf, sbuf, copy_len);
 203
 204		p->src_start += copy_len;
 205		p->sg_src_left -= copy_len;
 206
 207		len -= copy_len;
 208		dbuf += copy_len;
 209	}
 210}
 211
 212static void setup_data_in(void)
 213{
 214	struct req_progress *p = &cpg->p;
 215	int data_in_sram =
 216	    min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
 217	copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
 218			data_in_sram - p->crypt_len);
 219	p->crypt_len = data_in_sram;
 220}
 221
 222static void mv_process_current_q(int first_block)
 223{
 224	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 225	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 226	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 227	struct sec_accel_config op;
 228
 229	switch (req_ctx->op) {
 230	case COP_AES_ECB:
 231		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
 232		break;
 233	case COP_AES_CBC:
 234	default:
 235		op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
 236		op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
 237			ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
 238		if (first_block)
 239			memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
 240		break;
 241	}
 242	if (req_ctx->decrypt) {
 243		op.config |= CFG_DIR_DEC;
 244		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
 245				AES_KEY_LEN);
 246	} else {
 247		op.config |= CFG_DIR_ENC;
 248		memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
 249				AES_KEY_LEN);
 250	}
 251
 252	switch (ctx->key_len) {
 253	case AES_KEYSIZE_128:
 254		op.config |= CFG_AES_LEN_128;
 255		break;
 256	case AES_KEYSIZE_192:
 257		op.config |= CFG_AES_LEN_192;
 258		break;
 259	case AES_KEYSIZE_256:
 260		op.config |= CFG_AES_LEN_256;
 261		break;
 262	}
 263	op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
 264		ENC_P_DST(SRAM_DATA_OUT_START);
 265	op.enc_key_p = SRAM_DATA_KEY_P;
 266
 267	setup_data_in();
 268	op.enc_len = cpg->p.crypt_len;
 269	memcpy(cpg->sram + SRAM_CONFIG, &op,
 270			sizeof(struct sec_accel_config));
 271
 272	/* GO */
 273	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 274
 275	/*
 276	 * XXX: add timer if the interrupt does not occur for some mystery
 277	 * reason
 278	 */
 279}
 280
 281static void mv_crypto_algo_completion(void)
 282{
 283	struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
 284	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 285
 286	sg_miter_stop(&cpg->p.src_sg_it);
 287	sg_miter_stop(&cpg->p.dst_sg_it);
 288
 289	if (req_ctx->op != COP_AES_CBC)
 290		return ;
 291
 292	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
 293}
 294
 295static void mv_process_hash_current(int first_block)
 296{
 297	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 298	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 299	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 300	struct req_progress *p = &cpg->p;
 301	struct sec_accel_config op = { 0 };
 302	int is_last;
 303
 304	switch (req_ctx->op) {
 305	case COP_SHA1:
 306	default:
 307		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
 308		break;
 309	case COP_HMAC_SHA1:
 310		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
 311		memcpy(cpg->sram + SRAM_HMAC_IV_IN,
 312				tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
 313		break;
 314	}
 315
 316	op.mac_src_p =
 317		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
 318		req_ctx->
 319		count);
 320
 321	setup_data_in();
 322
 323	op.mac_digest =
 324		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
 325	op.mac_iv =
 326		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
 327		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
 328
 329	is_last = req_ctx->last_chunk
 330		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
 331		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
 332	if (req_ctx->first_hash) {
 333		if (is_last)
 334			op.config |= CFG_NOT_FRAG;
 335		else
 336			op.config |= CFG_FIRST_FRAG;
 337
 338		req_ctx->first_hash = 0;
 339	} else {
 340		if (is_last)
 341			op.config |= CFG_LAST_FRAG;
 342		else
 343			op.config |= CFG_MID_FRAG;
 344
 345		writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
 346		writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
 347		writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
 348		writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
 349		writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
 350	}
 351
 352	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
 353
 354	/* GO */
 355	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
 356
 357	/*
 358	* XXX: add timer if the interrupt does not occur for some mystery
 359	* reason
 360	*/
 361}
 362
 363static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
 364					  struct shash_desc *desc)
 365{
 366	int i;
 367	struct sha1_state shash_state;
 368
 369	shash_state.count = ctx->count + ctx->count_add;
 370	for (i = 0; i < 5; i++)
 371		shash_state.state[i] = ctx->state[i];
 372	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
 373	return crypto_shash_import(desc, &shash_state);
 374}
 375
 376static int mv_hash_final_fallback(struct ahash_request *req)
 377{
 378	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 379	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
 380	struct {
 381		struct shash_desc shash;
 382		char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
 383	} desc;
 384	int rc;
 385
 386	desc.shash.tfm = tfm_ctx->fallback;
 387	desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 388	if (unlikely(req_ctx->first_hash)) {
 389		crypto_shash_init(&desc.shash);
 390		crypto_shash_update(&desc.shash, req_ctx->buffer,
 391				    req_ctx->extra_bytes);
 392	} else {
 393		/* only SHA1 for now....
 394		 */
 395		rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
 396		if (rc)
 397			goto out;
 398	}
 399	rc = crypto_shash_final(&desc.shash, req->result);
 400out:
 401	return rc;
 402}
 403
 404static void mv_hash_algo_completion(void)
 405{
 406	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
 407	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 408
 409	if (ctx->extra_bytes)
 410		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
 411	sg_miter_stop(&cpg->p.src_sg_it);
 412
 413	if (likely(ctx->last_chunk)) {
 414		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
 415			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
 416			       crypto_ahash_digestsize(crypto_ahash_reqtfm
 417						       (req)));
 418		} else
 419			mv_hash_final_fallback(req);
 420	} else {
 421		ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
 422		ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
 423		ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
 424		ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
 425		ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
 426	}
 427}
 428
 429static void dequeue_complete_req(void)
 430{
 431	struct crypto_async_request *req = cpg->cur_req;
 432	void *buf;
 433	int ret;
 434	cpg->p.hw_processed_bytes += cpg->p.crypt_len;
 435	if (cpg->p.copy_back) {
 436		int need_copy_len = cpg->p.crypt_len;
 437		int sram_offset = 0;
 438		do {
 439			int dst_copy;
 440
 441			if (!cpg->p.sg_dst_left) {
 442				ret = sg_miter_next(&cpg->p.dst_sg_it);
 443				BUG_ON(!ret);
 444				cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
 445				cpg->p.dst_start = 0;
 446			}
 447
 448			buf = cpg->p.dst_sg_it.addr;
 449			buf += cpg->p.dst_start;
 450
 451			dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
 452
 453			memcpy(buf,
 454			       cpg->sram + SRAM_DATA_OUT_START + sram_offset,
 455			       dst_copy);
 456			sram_offset += dst_copy;
 457			cpg->p.sg_dst_left -= dst_copy;
 458			need_copy_len -= dst_copy;
 459			cpg->p.dst_start += dst_copy;
 460		} while (need_copy_len > 0);
 461	}
 462
 463	cpg->p.crypt_len = 0;
 464
 465	BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
 466	if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
 467		/* process next scatter list entry */
 468		cpg->eng_st = ENGINE_BUSY;
 469		cpg->p.process(0);
 470	} else {
 471		cpg->p.complete();
 472		cpg->eng_st = ENGINE_IDLE;
 473		local_bh_disable();
 474		req->complete(req, 0);
 475		local_bh_enable();
 476	}
 477}
 478
 479static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
 480{
 481	int i = 0;
 482	size_t cur_len;
 483
 484	while (sl) {
 485		cur_len = sl[i].length;
 486		++i;
 487		if (total_bytes > cur_len)
 488			total_bytes -= cur_len;
 489		else
 490			break;
 491	}
 492
 493	return i;
 494}
 495
 496static void mv_start_new_crypt_req(struct ablkcipher_request *req)
 497{
 498	struct req_progress *p = &cpg->p;
 499	int num_sgs;
 500
 501	cpg->cur_req = &req->base;
 502	memset(p, 0, sizeof(struct req_progress));
 503	p->hw_nbytes = req->nbytes;
 504	p->complete = mv_crypto_algo_completion;
 505	p->process = mv_process_current_q;
 506	p->copy_back = 1;
 507
 508	num_sgs = count_sgs(req->src, req->nbytes);
 509	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 510
 511	num_sgs = count_sgs(req->dst, req->nbytes);
 512	sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
 513
 514	mv_process_current_q(1);
 515}
 516
 517static void mv_start_new_hash_req(struct ahash_request *req)
 518{
 519	struct req_progress *p = &cpg->p;
 520	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 521	int num_sgs, hw_bytes, old_extra_bytes, rc;
 522	cpg->cur_req = &req->base;
 523	memset(p, 0, sizeof(struct req_progress));
 524	hw_bytes = req->nbytes + ctx->extra_bytes;
 525	old_extra_bytes = ctx->extra_bytes;
 526
 527	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
 528	if (ctx->extra_bytes != 0
 529	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
 530		hw_bytes -= ctx->extra_bytes;
 531	else
 532		ctx->extra_bytes = 0;
 533
 534	num_sgs = count_sgs(req->src, req->nbytes);
 535	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
 536
 537	if (hw_bytes) {
 538		p->hw_nbytes = hw_bytes;
 539		p->complete = mv_hash_algo_completion;
 540		p->process = mv_process_hash_current;
 541
 542		if (unlikely(old_extra_bytes)) {
 543			memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
 544			       old_extra_bytes);
 545			p->crypt_len = old_extra_bytes;
 546		}
 547
 548		mv_process_hash_current(1);
 549	} else {
 550		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
 551				ctx->extra_bytes - old_extra_bytes);
 552		sg_miter_stop(&p->src_sg_it);
 553		if (ctx->last_chunk)
 554			rc = mv_hash_final_fallback(req);
 555		else
 556			rc = 0;
 557		cpg->eng_st = ENGINE_IDLE;
 558		local_bh_disable();
 559		req->base.complete(&req->base, rc);
 560		local_bh_enable();
 561	}
 562}
 563
 564static int queue_manag(void *data)
 565{
 566	cpg->eng_st = ENGINE_IDLE;
 567	do {
 568		struct crypto_async_request *async_req = NULL;
 569		struct crypto_async_request *backlog;
 570
 571		__set_current_state(TASK_INTERRUPTIBLE);
 572
 573		if (cpg->eng_st == ENGINE_W_DEQUEUE)
 574			dequeue_complete_req();
 575
 576		spin_lock_irq(&cpg->lock);
 577		if (cpg->eng_st == ENGINE_IDLE) {
 578			backlog = crypto_get_backlog(&cpg->queue);
 579			async_req = crypto_dequeue_request(&cpg->queue);
 580			if (async_req) {
 581				BUG_ON(cpg->eng_st != ENGINE_IDLE);
 582				cpg->eng_st = ENGINE_BUSY;
 583			}
 584		}
 585		spin_unlock_irq(&cpg->lock);
 586
 587		if (backlog) {
 588			backlog->complete(backlog, -EINPROGRESS);
 589			backlog = NULL;
 590		}
 591
 592		if (async_req) {
 593			if (async_req->tfm->__crt_alg->cra_type !=
 594			    &crypto_ahash_type) {
 595				struct ablkcipher_request *req =
 596				    ablkcipher_request_cast(async_req);
 597				mv_start_new_crypt_req(req);
 598			} else {
 599				struct ahash_request *req =
 600				    ahash_request_cast(async_req);
 601				mv_start_new_hash_req(req);
 602			}
 603			async_req = NULL;
 604		}
 605
 606		schedule();
 607
 608	} while (!kthread_should_stop());
 609	return 0;
 610}
 611
 612static int mv_handle_req(struct crypto_async_request *req)
 613{
 614	unsigned long flags;
 615	int ret;
 616
 617	spin_lock_irqsave(&cpg->lock, flags);
 618	ret = crypto_enqueue_request(&cpg->queue, req);
 619	spin_unlock_irqrestore(&cpg->lock, flags);
 620	wake_up_process(cpg->queue_th);
 621	return ret;
 622}
 623
 624static int mv_enc_aes_ecb(struct ablkcipher_request *req)
 625{
 626	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 627
 628	req_ctx->op = COP_AES_ECB;
 629	req_ctx->decrypt = 0;
 630
 631	return mv_handle_req(&req->base);
 632}
 633
 634static int mv_dec_aes_ecb(struct ablkcipher_request *req)
 635{
 636	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 637	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 638
 639	req_ctx->op = COP_AES_ECB;
 640	req_ctx->decrypt = 1;
 641
 642	compute_aes_dec_key(ctx);
 643	return mv_handle_req(&req->base);
 644}
 645
 646static int mv_enc_aes_cbc(struct ablkcipher_request *req)
 647{
 648	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 649
 650	req_ctx->op = COP_AES_CBC;
 651	req_ctx->decrypt = 0;
 652
 653	return mv_handle_req(&req->base);
 654}
 655
 656static int mv_dec_aes_cbc(struct ablkcipher_request *req)
 657{
 658	struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
 659	struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
 660
 661	req_ctx->op = COP_AES_CBC;
 662	req_ctx->decrypt = 1;
 663
 664	compute_aes_dec_key(ctx);
 665	return mv_handle_req(&req->base);
 666}
 667
 668static int mv_cra_init(struct crypto_tfm *tfm)
 669{
 670	tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
 671	return 0;
 672}
 673
 674static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
 675				 int is_last, unsigned int req_len,
 676				 int count_add)
 677{
 678	memset(ctx, 0, sizeof(*ctx));
 679	ctx->op = op;
 680	ctx->count = req_len;
 681	ctx->first_hash = 1;
 682	ctx->last_chunk = is_last;
 683	ctx->count_add = count_add;
 684}
 685
 686static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
 687				   unsigned req_len)
 688{
 689	ctx->last_chunk = is_last;
 690	ctx->count += req_len;
 691}
 692
 693static int mv_hash_init(struct ahash_request *req)
 694{
 695	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 696	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
 697			     tfm_ctx->count_add);
 698	return 0;
 699}
 700
 701static int mv_hash_update(struct ahash_request *req)
 702{
 703	if (!req->nbytes)
 704		return 0;
 705
 706	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
 707	return mv_handle_req(&req->base);
 708}
 709
 710static int mv_hash_final(struct ahash_request *req)
 711{
 712	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
 713
 714	mv_update_hash_req_ctx(ctx, 1, 0);
 715	return mv_handle_req(&req->base);
 716}
 717
 718static int mv_hash_finup(struct ahash_request *req)
 719{
 720	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
 721	return mv_handle_req(&req->base);
 722}
 723
 724static int mv_hash_digest(struct ahash_request *req)
 725{
 726	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
 727	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
 728			     req->nbytes, tfm_ctx->count_add);
 729	return mv_handle_req(&req->base);
 730}
 731
 732static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
 733			     const void *ostate)
 734{
 735	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
 736	int i;
 737	for (i = 0; i < 5; i++) {
 738		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
 739		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
 740	}
 741}
 742
 743static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
 744			  unsigned int keylen)
 745{
 746	int rc;
 747	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 748	int bs, ds, ss;
 749
 750	if (!ctx->base_hash)
 751		return 0;
 752
 753	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
 754	if (rc)
 755		return rc;
 756
 757	/* Can't see a way to extract the ipad/opad from the fallback tfm
 758	   so I'm basically copying code from the hmac module */
 759	bs = crypto_shash_blocksize(ctx->base_hash);
 760	ds = crypto_shash_digestsize(ctx->base_hash);
 761	ss = crypto_shash_statesize(ctx->base_hash);
 762
 763	{
 764		struct {
 765			struct shash_desc shash;
 766			char ctx[crypto_shash_descsize(ctx->base_hash)];
 767		} desc;
 768		unsigned int i;
 769		char ipad[ss];
 770		char opad[ss];
 771
 772		desc.shash.tfm = ctx->base_hash;
 773		desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
 774		    CRYPTO_TFM_REQ_MAY_SLEEP;
 775
 776		if (keylen > bs) {
 777			int err;
 778
 779			err =
 780			    crypto_shash_digest(&desc.shash, key, keylen, ipad);
 781			if (err)
 782				return err;
 783
 784			keylen = ds;
 785		} else
 786			memcpy(ipad, key, keylen);
 787
 788		memset(ipad + keylen, 0, bs - keylen);
 789		memcpy(opad, ipad, bs);
 790
 791		for (i = 0; i < bs; i++) {
 792			ipad[i] ^= 0x36;
 793			opad[i] ^= 0x5c;
 794		}
 795
 796		rc = crypto_shash_init(&desc.shash) ? :
 797		    crypto_shash_update(&desc.shash, ipad, bs) ? :
 798		    crypto_shash_export(&desc.shash, ipad) ? :
 799		    crypto_shash_init(&desc.shash) ? :
 800		    crypto_shash_update(&desc.shash, opad, bs) ? :
 801		    crypto_shash_export(&desc.shash, opad);
 802
 803		if (rc == 0)
 804			mv_hash_init_ivs(ctx, ipad, opad);
 805
 806		return rc;
 807	}
 808}
 809
 810static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
 811			    enum hash_op op, int count_add)
 812{
 813	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
 814	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 815	struct crypto_shash *fallback_tfm = NULL;
 816	struct crypto_shash *base_hash = NULL;
 817	int err = -ENOMEM;
 818
 819	ctx->op = op;
 820	ctx->count_add = count_add;
 821
 822	/* Allocate a fallback and abort if it failed. */
 823	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
 824					  CRYPTO_ALG_NEED_FALLBACK);
 825	if (IS_ERR(fallback_tfm)) {
 826		printk(KERN_WARNING MV_CESA
 827		       "Fallback driver '%s' could not be loaded!\n",
 828		       fallback_driver_name);
 829		err = PTR_ERR(fallback_tfm);
 830		goto out;
 831	}
 832	ctx->fallback = fallback_tfm;
 833
 834	if (base_hash_name) {
 835		/* Allocate a hash to compute the ipad/opad of hmac. */
 836		base_hash = crypto_alloc_shash(base_hash_name, 0,
 837					       CRYPTO_ALG_NEED_FALLBACK);
 838		if (IS_ERR(base_hash)) {
 839			printk(KERN_WARNING MV_CESA
 840			       "Base driver '%s' could not be loaded!\n",
 841			       base_hash_name);
 842			err = PTR_ERR(base_hash);
 843			goto err_bad_base;
 844		}
 845	}
 846	ctx->base_hash = base_hash;
 847
 848	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 849				 sizeof(struct mv_req_hash_ctx) +
 850				 crypto_shash_descsize(ctx->fallback));
 851	return 0;
 852err_bad_base:
 853	crypto_free_shash(fallback_tfm);
 854out:
 855	return err;
 856}
 857
 858static void mv_cra_hash_exit(struct crypto_tfm *tfm)
 859{
 860	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
 861
 862	crypto_free_shash(ctx->fallback);
 863	if (ctx->base_hash)
 864		crypto_free_shash(ctx->base_hash);
 865}
 866
 867static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
 868{
 869	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
 870}
 871
 872static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
 873{
 874	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
 875}
 876
 877irqreturn_t crypto_int(int irq, void *priv)
 878{
 879	u32 val;
 880
 881	val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
 882	if (!(val & SEC_INT_ACCEL0_DONE))
 883		return IRQ_NONE;
 884
 885	val &= ~SEC_INT_ACCEL0_DONE;
 886	writel(val, cpg->reg + FPGA_INT_STATUS);
 887	writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
 888	BUG_ON(cpg->eng_st != ENGINE_BUSY);
 889	cpg->eng_st = ENGINE_W_DEQUEUE;
 890	wake_up_process(cpg->queue_th);
 891	return IRQ_HANDLED;
 892}
 893
 894struct crypto_alg mv_aes_alg_ecb = {
 895	.cra_name		= "ecb(aes)",
 896	.cra_driver_name	= "mv-ecb-aes",
 897	.cra_priority	= 300,
 898	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
 899	.cra_blocksize	= 16,
 900	.cra_ctxsize	= sizeof(struct mv_ctx),
 901	.cra_alignmask	= 0,
 902	.cra_type	= &crypto_ablkcipher_type,
 903	.cra_module	= THIS_MODULE,
 904	.cra_init	= mv_cra_init,
 905	.cra_u		= {
 906		.ablkcipher = {
 907			.min_keysize	=	AES_MIN_KEY_SIZE,
 908			.max_keysize	=	AES_MAX_KEY_SIZE,
 909			.setkey		=	mv_setkey_aes,
 910			.encrypt	=	mv_enc_aes_ecb,
 911			.decrypt	=	mv_dec_aes_ecb,
 912		},
 913	},
 914};
 915
 916struct crypto_alg mv_aes_alg_cbc = {
 917	.cra_name		= "cbc(aes)",
 918	.cra_driver_name	= "mv-cbc-aes",
 919	.cra_priority	= 300,
 920	.cra_flags	= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
 921	.cra_blocksize	= AES_BLOCK_SIZE,
 922	.cra_ctxsize	= sizeof(struct mv_ctx),
 923	.cra_alignmask	= 0,
 924	.cra_type	= &crypto_ablkcipher_type,
 925	.cra_module	= THIS_MODULE,
 926	.cra_init	= mv_cra_init,
 927	.cra_u		= {
 928		.ablkcipher = {
 929			.ivsize		=	AES_BLOCK_SIZE,
 930			.min_keysize	=	AES_MIN_KEY_SIZE,
 931			.max_keysize	=	AES_MAX_KEY_SIZE,
 932			.setkey		=	mv_setkey_aes,
 933			.encrypt	=	mv_enc_aes_cbc,
 934			.decrypt	=	mv_dec_aes_cbc,
 935		},
 936	},
 937};
 938
 939struct ahash_alg mv_sha1_alg = {
 940	.init = mv_hash_init,
 941	.update = mv_hash_update,
 942	.final = mv_hash_final,
 943	.finup = mv_hash_finup,
 944	.digest = mv_hash_digest,
 945	.halg = {
 946		 .digestsize = SHA1_DIGEST_SIZE,
 947		 .base = {
 948			  .cra_name = "sha1",
 949			  .cra_driver_name = "mv-sha1",
 950			  .cra_priority = 300,
 951			  .cra_flags =
 952			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
 953			  .cra_blocksize = SHA1_BLOCK_SIZE,
 954			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 955			  .cra_init = mv_cra_hash_sha1_init,
 956			  .cra_exit = mv_cra_hash_exit,
 957			  .cra_module = THIS_MODULE,
 958			  }
 959		 }
 960};
 961
 962struct ahash_alg mv_hmac_sha1_alg = {
 963	.init = mv_hash_init,
 964	.update = mv_hash_update,
 965	.final = mv_hash_final,
 966	.finup = mv_hash_finup,
 967	.digest = mv_hash_digest,
 968	.setkey = mv_hash_setkey,
 969	.halg = {
 970		 .digestsize = SHA1_DIGEST_SIZE,
 971		 .base = {
 972			  .cra_name = "hmac(sha1)",
 973			  .cra_driver_name = "mv-hmac-sha1",
 974			  .cra_priority = 300,
 975			  .cra_flags =
 976			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
 977			  .cra_blocksize = SHA1_BLOCK_SIZE,
 978			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
 979			  .cra_init = mv_cra_hash_hmac_sha1_init,
 980			  .cra_exit = mv_cra_hash_exit,
 981			  .cra_module = THIS_MODULE,
 982			  }
 983		 }
 984};
 985
 986static int mv_probe(struct platform_device *pdev)
 987{
 988	struct crypto_priv *cp;
 989	struct resource *res;
 990	int irq;
 991	int ret;
 992
 993	if (cpg) {
 994		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
 995		return -EEXIST;
 996	}
 997
 998	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
 999	if (!res)
1000		return -ENXIO;
1001
1002	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1003	if (!cp)
1004		return -ENOMEM;
1005
1006	spin_lock_init(&cp->lock);
1007	crypto_init_queue(&cp->queue, 50);
1008	cp->reg = ioremap(res->start, resource_size(res));
1009	if (!cp->reg) {
1010		ret = -ENOMEM;
1011		goto err;
1012	}
1013
1014	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1015	if (!res) {
1016		ret = -ENXIO;
1017		goto err_unmap_reg;
1018	}
1019	cp->sram_size = resource_size(res);
1020	cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1021	cp->sram = ioremap(res->start, cp->sram_size);
1022	if (!cp->sram) {
1023		ret = -ENOMEM;
1024		goto err_unmap_reg;
1025	}
1026
1027	irq = platform_get_irq(pdev, 0);
1028	if (irq < 0 || irq == NO_IRQ) {
1029		ret = irq;
1030		goto err_unmap_sram;
1031	}
1032	cp->irq = irq;
1033
1034	platform_set_drvdata(pdev, cp);
1035	cpg = cp;
1036
1037	cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1038	if (IS_ERR(cp->queue_th)) {
1039		ret = PTR_ERR(cp->queue_th);
1040		goto err_unmap_sram;
1041	}
1042
1043	ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1044			cp);
1045	if (ret)
1046		goto err_thread;
1047
1048	writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1049	writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1050	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
1051
1052	ret = crypto_register_alg(&mv_aes_alg_ecb);
1053	if (ret) {
1054		printk(KERN_WARNING MV_CESA
1055		       "Could not register aes-ecb driver\n");
1056		goto err_irq;
1057	}
1058
1059	ret = crypto_register_alg(&mv_aes_alg_cbc);
1060	if (ret) {
1061		printk(KERN_WARNING MV_CESA
1062		       "Could not register aes-cbc driver\n");
1063		goto err_unreg_ecb;
1064	}
1065
1066	ret = crypto_register_ahash(&mv_sha1_alg);
1067	if (ret == 0)
1068		cpg->has_sha1 = 1;
1069	else
1070		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1071
1072	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1073	if (ret == 0) {
1074		cpg->has_hmac_sha1 = 1;
1075	} else {
1076		printk(KERN_WARNING MV_CESA
1077		       "Could not register hmac-sha1 driver\n");
1078	}
1079
1080	return 0;
1081err_unreg_ecb:
1082	crypto_unregister_alg(&mv_aes_alg_ecb);
1083err_irq:
1084	free_irq(irq, cp);
1085err_thread:
1086	kthread_stop(cp->queue_th);
1087err_unmap_sram:
1088	iounmap(cp->sram);
1089err_unmap_reg:
1090	iounmap(cp->reg);
1091err:
1092	kfree(cp);
1093	cpg = NULL;
1094	platform_set_drvdata(pdev, NULL);
1095	return ret;
1096}
1097
1098static int mv_remove(struct platform_device *pdev)
1099{
1100	struct crypto_priv *cp = platform_get_drvdata(pdev);
1101
1102	crypto_unregister_alg(&mv_aes_alg_ecb);
1103	crypto_unregister_alg(&mv_aes_alg_cbc);
1104	if (cp->has_sha1)
1105		crypto_unregister_ahash(&mv_sha1_alg);
1106	if (cp->has_hmac_sha1)
1107		crypto_unregister_ahash(&mv_hmac_sha1_alg);
1108	kthread_stop(cp->queue_th);
1109	free_irq(cp->irq, cp);
1110	memset(cp->sram, 0, cp->sram_size);
1111	iounmap(cp->sram);
1112	iounmap(cp->reg);
1113	kfree(cp);
1114	cpg = NULL;
1115	return 0;
1116}
1117
1118static struct platform_driver marvell_crypto = {
1119	.probe		= mv_probe,
1120	.remove		= mv_remove,
1121	.driver		= {
1122		.owner	= THIS_MODULE,
1123		.name	= "mv_crypto",
1124	},
1125};
1126MODULE_ALIAS("platform:mv_crypto");
1127
1128static int __init mv_crypto_init(void)
1129{
1130	return platform_driver_register(&marvell_crypto);
1131}
1132module_init(mv_crypto_init);
1133
1134static void __exit mv_crypto_exit(void)
1135{
1136	platform_driver_unregister(&marvell_crypto);
1137}
1138module_exit(mv_crypto_exit);
1139
1140MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1141MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1142MODULE_LICENSE("GPL");