Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  KVM guest address space mapping code
   4 *
   5 *    Copyright IBM Corp. 2007, 2020
   6 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
   7 *		 David Hildenbrand <david@redhat.com>
   8 *		 Janosch Frank <frankja@linux.vnet.ibm.com>
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/pagewalk.h>
  13#include <linux/swap.h>
  14#include <linux/smp.h>
  15#include <linux/spinlock.h>
  16#include <linux/slab.h>
  17#include <linux/swapops.h>
  18#include <linux/ksm.h>
  19#include <linux/mman.h>
  20#include <linux/pgtable.h>
  21#include <asm/page-states.h>
  22#include <asm/pgalloc.h>
  23#include <asm/gmap.h>
  24#include <asm/page.h>
  25#include <asm/tlb.h>
  26
  27#define GMAP_SHADOW_FAKE_TABLE 1ULL
  28
  29static struct page *gmap_alloc_crst(void)
  30{
  31	struct page *page;
  32
  33	page = alloc_pages(GFP_KERNEL_ACCOUNT, CRST_ALLOC_ORDER);
  34	if (!page)
  35		return NULL;
  36	__arch_set_page_dat(page_to_virt(page), 1UL << CRST_ALLOC_ORDER);
  37	return page;
  38}
  39
  40/**
  41 * gmap_alloc - allocate and initialize a guest address space
  42 * @limit: maximum address of the gmap address space
  43 *
  44 * Returns a guest address space structure.
  45 */
  46static struct gmap *gmap_alloc(unsigned long limit)
  47{
  48	struct gmap *gmap;
  49	struct page *page;
  50	unsigned long *table;
  51	unsigned long etype, atype;
  52
  53	if (limit < _REGION3_SIZE) {
  54		limit = _REGION3_SIZE - 1;
  55		atype = _ASCE_TYPE_SEGMENT;
  56		etype = _SEGMENT_ENTRY_EMPTY;
  57	} else if (limit < _REGION2_SIZE) {
  58		limit = _REGION2_SIZE - 1;
  59		atype = _ASCE_TYPE_REGION3;
  60		etype = _REGION3_ENTRY_EMPTY;
  61	} else if (limit < _REGION1_SIZE) {
  62		limit = _REGION1_SIZE - 1;
  63		atype = _ASCE_TYPE_REGION2;
  64		etype = _REGION2_ENTRY_EMPTY;
  65	} else {
  66		limit = -1UL;
  67		atype = _ASCE_TYPE_REGION1;
  68		etype = _REGION1_ENTRY_EMPTY;
  69	}
  70	gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL_ACCOUNT);
  71	if (!gmap)
  72		goto out;
  73	INIT_LIST_HEAD(&gmap->crst_list);
  74	INIT_LIST_HEAD(&gmap->children);
  75	INIT_LIST_HEAD(&gmap->pt_list);
  76	INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL_ACCOUNT);
  77	INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC | __GFP_ACCOUNT);
  78	INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC | __GFP_ACCOUNT);
  79	spin_lock_init(&gmap->guest_table_lock);
  80	spin_lock_init(&gmap->shadow_lock);
  81	refcount_set(&gmap->ref_count, 1);
  82	page = gmap_alloc_crst();
  83	if (!page)
  84		goto out_free;
  85	page->index = 0;
  86	list_add(&page->lru, &gmap->crst_list);
  87	table = page_to_virt(page);
  88	crst_table_init(table, etype);
  89	gmap->table = table;
  90	gmap->asce = atype | _ASCE_TABLE_LENGTH |
  91		_ASCE_USER_BITS | __pa(table);
  92	gmap->asce_end = limit;
  93	return gmap;
  94
  95out_free:
  96	kfree(gmap);
  97out:
  98	return NULL;
  99}
 100
 101/**
 102 * gmap_create - create a guest address space
 103 * @mm: pointer to the parent mm_struct
 104 * @limit: maximum size of the gmap address space
 105 *
 106 * Returns a guest address space structure.
 107 */
 108struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
 109{
 110	struct gmap *gmap;
 111	unsigned long gmap_asce;
 112
 113	gmap = gmap_alloc(limit);
 114	if (!gmap)
 115		return NULL;
 116	gmap->mm = mm;
 117	spin_lock(&mm->context.lock);
 118	list_add_rcu(&gmap->list, &mm->context.gmap_list);
 119	if (list_is_singular(&mm->context.gmap_list))
 120		gmap_asce = gmap->asce;
 121	else
 122		gmap_asce = -1UL;
 123	WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
 124	spin_unlock(&mm->context.lock);
 125	return gmap;
 126}
 127EXPORT_SYMBOL_GPL(gmap_create);
 128
 129static void gmap_flush_tlb(struct gmap *gmap)
 130{
 131	if (MACHINE_HAS_IDTE)
 132		__tlb_flush_idte(gmap->asce);
 133	else
 134		__tlb_flush_global();
 135}
 136
 137static void gmap_radix_tree_free(struct radix_tree_root *root)
 138{
 139	struct radix_tree_iter iter;
 140	unsigned long indices[16];
 141	unsigned long index;
 142	void __rcu **slot;
 143	int i, nr;
 144
 145	/* A radix tree is freed by deleting all of its entries */
 146	index = 0;
 147	do {
 148		nr = 0;
 149		radix_tree_for_each_slot(slot, root, &iter, index) {
 150			indices[nr] = iter.index;
 151			if (++nr == 16)
 152				break;
 153		}
 154		for (i = 0; i < nr; i++) {
 155			index = indices[i];
 156			radix_tree_delete(root, index);
 157		}
 158	} while (nr > 0);
 159}
 160
 161static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
 162{
 163	struct gmap_rmap *rmap, *rnext, *head;
 164	struct radix_tree_iter iter;
 165	unsigned long indices[16];
 166	unsigned long index;
 167	void __rcu **slot;
 168	int i, nr;
 169
 170	/* A radix tree is freed by deleting all of its entries */
 171	index = 0;
 172	do {
 173		nr = 0;
 174		radix_tree_for_each_slot(slot, root, &iter, index) {
 175			indices[nr] = iter.index;
 176			if (++nr == 16)
 177				break;
 178		}
 179		for (i = 0; i < nr; i++) {
 180			index = indices[i];
 181			head = radix_tree_delete(root, index);
 182			gmap_for_each_rmap_safe(rmap, rnext, head)
 183				kfree(rmap);
 184		}
 185	} while (nr > 0);
 186}
 187
 188/**
 189 * gmap_free - free a guest address space
 190 * @gmap: pointer to the guest address space structure
 191 *
 192 * No locks required. There are no references to this gmap anymore.
 193 */
 194static void gmap_free(struct gmap *gmap)
 195{
 196	struct page *page, *next;
 197
 198	/* Flush tlb of all gmaps (if not already done for shadows) */
 199	if (!(gmap_is_shadow(gmap) && gmap->removed))
 200		gmap_flush_tlb(gmap);
 201	/* Free all segment & region tables. */
 202	list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
 203		__free_pages(page, CRST_ALLOC_ORDER);
 204	gmap_radix_tree_free(&gmap->guest_to_host);
 205	gmap_radix_tree_free(&gmap->host_to_guest);
 206
 207	/* Free additional data for a shadow gmap */
 208	if (gmap_is_shadow(gmap)) {
 209		/* Free all page tables. */
 210		list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
 211			page_table_free_pgste(page);
 212		gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
 213		/* Release reference to the parent */
 214		gmap_put(gmap->parent);
 215	}
 216
 217	kfree(gmap);
 218}
 219
 220/**
 221 * gmap_get - increase reference counter for guest address space
 222 * @gmap: pointer to the guest address space structure
 223 *
 224 * Returns the gmap pointer
 225 */
 226struct gmap *gmap_get(struct gmap *gmap)
 227{
 228	refcount_inc(&gmap->ref_count);
 229	return gmap;
 230}
 231EXPORT_SYMBOL_GPL(gmap_get);
 232
 233/**
 234 * gmap_put - decrease reference counter for guest address space
 235 * @gmap: pointer to the guest address space structure
 236 *
 237 * If the reference counter reaches zero the guest address space is freed.
 238 */
 239void gmap_put(struct gmap *gmap)
 240{
 241	if (refcount_dec_and_test(&gmap->ref_count))
 242		gmap_free(gmap);
 243}
 244EXPORT_SYMBOL_GPL(gmap_put);
 245
 246/**
 247 * gmap_remove - remove a guest address space but do not free it yet
 248 * @gmap: pointer to the guest address space structure
 249 */
 250void gmap_remove(struct gmap *gmap)
 251{
 252	struct gmap *sg, *next;
 253	unsigned long gmap_asce;
 254
 255	/* Remove all shadow gmaps linked to this gmap */
 256	if (!list_empty(&gmap->children)) {
 257		spin_lock(&gmap->shadow_lock);
 258		list_for_each_entry_safe(sg, next, &gmap->children, list) {
 259			list_del(&sg->list);
 260			gmap_put(sg);
 261		}
 262		spin_unlock(&gmap->shadow_lock);
 263	}
 264	/* Remove gmap from the pre-mm list */
 265	spin_lock(&gmap->mm->context.lock);
 266	list_del_rcu(&gmap->list);
 267	if (list_empty(&gmap->mm->context.gmap_list))
 268		gmap_asce = 0;
 269	else if (list_is_singular(&gmap->mm->context.gmap_list))
 270		gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
 271					     struct gmap, list)->asce;
 272	else
 273		gmap_asce = -1UL;
 274	WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
 275	spin_unlock(&gmap->mm->context.lock);
 276	synchronize_rcu();
 277	/* Put reference */
 278	gmap_put(gmap);
 279}
 280EXPORT_SYMBOL_GPL(gmap_remove);
 281
 282/**
 283 * gmap_enable - switch primary space to the guest address space
 284 * @gmap: pointer to the guest address space structure
 285 */
 286void gmap_enable(struct gmap *gmap)
 287{
 288	S390_lowcore.gmap = (unsigned long) gmap;
 289}
 290EXPORT_SYMBOL_GPL(gmap_enable);
 291
 292/**
 293 * gmap_disable - switch back to the standard primary address space
 294 * @gmap: pointer to the guest address space structure
 295 */
 296void gmap_disable(struct gmap *gmap)
 297{
 298	S390_lowcore.gmap = 0UL;
 299}
 300EXPORT_SYMBOL_GPL(gmap_disable);
 301
 302/**
 303 * gmap_get_enabled - get a pointer to the currently enabled gmap
 304 *
 305 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
 306 */
 307struct gmap *gmap_get_enabled(void)
 308{
 309	return (struct gmap *) S390_lowcore.gmap;
 310}
 311EXPORT_SYMBOL_GPL(gmap_get_enabled);
 312
 313/*
 314 * gmap_alloc_table is assumed to be called with mmap_lock held
 315 */
 316static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
 317			    unsigned long init, unsigned long gaddr)
 318{
 319	struct page *page;
 320	unsigned long *new;
 321
 322	/* since we dont free the gmap table until gmap_free we can unlock */
 323	page = gmap_alloc_crst();
 324	if (!page)
 325		return -ENOMEM;
 326	new = page_to_virt(page);
 327	crst_table_init(new, init);
 328	spin_lock(&gmap->guest_table_lock);
 329	if (*table & _REGION_ENTRY_INVALID) {
 330		list_add(&page->lru, &gmap->crst_list);
 331		*table = __pa(new) | _REGION_ENTRY_LENGTH |
 332			(*table & _REGION_ENTRY_TYPE_MASK);
 333		page->index = gaddr;
 334		page = NULL;
 335	}
 336	spin_unlock(&gmap->guest_table_lock);
 337	if (page)
 338		__free_pages(page, CRST_ALLOC_ORDER);
 339	return 0;
 340}
 341
 342/**
 343 * __gmap_segment_gaddr - find virtual address from segment pointer
 344 * @entry: pointer to a segment table entry in the guest address space
 345 *
 346 * Returns the virtual address in the guest address space for the segment
 347 */
 348static unsigned long __gmap_segment_gaddr(unsigned long *entry)
 349{
 350	struct page *page;
 351	unsigned long offset;
 352
 353	offset = (unsigned long) entry / sizeof(unsigned long);
 354	offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
 355	page = pmd_pgtable_page((pmd_t *) entry);
 356	return page->index + offset;
 357}
 358
 359/**
 360 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
 361 * @gmap: pointer to the guest address space structure
 362 * @vmaddr: address in the host process address space
 363 *
 364 * Returns 1 if a TLB flush is required
 365 */
 366static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
 367{
 368	unsigned long *entry;
 369	int flush = 0;
 370
 371	BUG_ON(gmap_is_shadow(gmap));
 372	spin_lock(&gmap->guest_table_lock);
 373	entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
 374	if (entry) {
 375		flush = (*entry != _SEGMENT_ENTRY_EMPTY);
 376		*entry = _SEGMENT_ENTRY_EMPTY;
 377	}
 378	spin_unlock(&gmap->guest_table_lock);
 379	return flush;
 380}
 381
 382/**
 383 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
 384 * @gmap: pointer to the guest address space structure
 385 * @gaddr: address in the guest address space
 386 *
 387 * Returns 1 if a TLB flush is required
 388 */
 389static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
 390{
 391	unsigned long vmaddr;
 392
 393	vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
 394						   gaddr >> PMD_SHIFT);
 395	return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
 396}
 397
 398/**
 399 * gmap_unmap_segment - unmap segment from the guest address space
 400 * @gmap: pointer to the guest address space structure
 401 * @to: address in the guest address space
 402 * @len: length of the memory area to unmap
 403 *
 404 * Returns 0 if the unmap succeeded, -EINVAL if not.
 405 */
 406int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
 407{
 408	unsigned long off;
 409	int flush;
 410
 411	BUG_ON(gmap_is_shadow(gmap));
 412	if ((to | len) & (PMD_SIZE - 1))
 413		return -EINVAL;
 414	if (len == 0 || to + len < to)
 415		return -EINVAL;
 416
 417	flush = 0;
 418	mmap_write_lock(gmap->mm);
 419	for (off = 0; off < len; off += PMD_SIZE)
 420		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
 421	mmap_write_unlock(gmap->mm);
 422	if (flush)
 423		gmap_flush_tlb(gmap);
 424	return 0;
 425}
 426EXPORT_SYMBOL_GPL(gmap_unmap_segment);
 427
 428/**
 429 * gmap_map_segment - map a segment to the guest address space
 430 * @gmap: pointer to the guest address space structure
 431 * @from: source address in the parent address space
 432 * @to: target address in the guest address space
 433 * @len: length of the memory area to map
 434 *
 435 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
 436 */
 437int gmap_map_segment(struct gmap *gmap, unsigned long from,
 438		     unsigned long to, unsigned long len)
 439{
 440	unsigned long off;
 441	int flush;
 442
 443	BUG_ON(gmap_is_shadow(gmap));
 444	if ((from | to | len) & (PMD_SIZE - 1))
 445		return -EINVAL;
 446	if (len == 0 || from + len < from || to + len < to ||
 447	    from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
 448		return -EINVAL;
 449
 450	flush = 0;
 451	mmap_write_lock(gmap->mm);
 452	for (off = 0; off < len; off += PMD_SIZE) {
 453		/* Remove old translation */
 454		flush |= __gmap_unmap_by_gaddr(gmap, to + off);
 455		/* Store new translation */
 456		if (radix_tree_insert(&gmap->guest_to_host,
 457				      (to + off) >> PMD_SHIFT,
 458				      (void *) from + off))
 459			break;
 460	}
 461	mmap_write_unlock(gmap->mm);
 462	if (flush)
 463		gmap_flush_tlb(gmap);
 464	if (off >= len)
 465		return 0;
 466	gmap_unmap_segment(gmap, to, len);
 467	return -ENOMEM;
 468}
 469EXPORT_SYMBOL_GPL(gmap_map_segment);
 470
 471/**
 472 * __gmap_translate - translate a guest address to a user space address
 473 * @gmap: pointer to guest mapping meta data structure
 474 * @gaddr: guest address
 475 *
 476 * Returns user space address which corresponds to the guest address or
 477 * -EFAULT if no such mapping exists.
 478 * This function does not establish potentially missing page table entries.
 479 * The mmap_lock of the mm that belongs to the address space must be held
 480 * when this function gets called.
 481 *
 482 * Note: Can also be called for shadow gmaps.
 483 */
 484unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
 485{
 486	unsigned long vmaddr;
 487
 488	vmaddr = (unsigned long)
 489		radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
 490	/* Note: guest_to_host is empty for a shadow gmap */
 491	return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
 492}
 493EXPORT_SYMBOL_GPL(__gmap_translate);
 494
 495/**
 496 * gmap_translate - translate a guest address to a user space address
 497 * @gmap: pointer to guest mapping meta data structure
 498 * @gaddr: guest address
 499 *
 500 * Returns user space address which corresponds to the guest address or
 501 * -EFAULT if no such mapping exists.
 502 * This function does not establish potentially missing page table entries.
 503 */
 504unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
 505{
 506	unsigned long rc;
 507
 508	mmap_read_lock(gmap->mm);
 509	rc = __gmap_translate(gmap, gaddr);
 510	mmap_read_unlock(gmap->mm);
 511	return rc;
 512}
 513EXPORT_SYMBOL_GPL(gmap_translate);
 514
 515/**
 516 * gmap_unlink - disconnect a page table from the gmap shadow tables
 517 * @mm: pointer to the parent mm_struct
 518 * @table: pointer to the host page table
 519 * @vmaddr: vm address associated with the host page table
 520 */
 521void gmap_unlink(struct mm_struct *mm, unsigned long *table,
 522		 unsigned long vmaddr)
 523{
 524	struct gmap *gmap;
 525	int flush;
 526
 527	rcu_read_lock();
 528	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
 529		flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
 530		if (flush)
 531			gmap_flush_tlb(gmap);
 532	}
 533	rcu_read_unlock();
 534}
 535
 536static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
 537			   unsigned long gaddr);
 538
 539/**
 540 * __gmap_link - set up shadow page tables to connect a host to a guest address
 541 * @gmap: pointer to guest mapping meta data structure
 542 * @gaddr: guest address
 543 * @vmaddr: vm address
 544 *
 545 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 546 * if the vm address is already mapped to a different guest segment.
 547 * The mmap_lock of the mm that belongs to the address space must be held
 548 * when this function gets called.
 549 */
 550int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
 551{
 552	struct mm_struct *mm;
 553	unsigned long *table;
 554	spinlock_t *ptl;
 555	pgd_t *pgd;
 556	p4d_t *p4d;
 557	pud_t *pud;
 558	pmd_t *pmd;
 559	u64 unprot;
 560	int rc;
 561
 562	BUG_ON(gmap_is_shadow(gmap));
 563	/* Create higher level tables in the gmap page table */
 564	table = gmap->table;
 565	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
 566		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
 567		if ((*table & _REGION_ENTRY_INVALID) &&
 568		    gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
 569				     gaddr & _REGION1_MASK))
 570			return -ENOMEM;
 571		table = __va(*table & _REGION_ENTRY_ORIGIN);
 572	}
 573	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
 574		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
 575		if ((*table & _REGION_ENTRY_INVALID) &&
 576		    gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
 577				     gaddr & _REGION2_MASK))
 578			return -ENOMEM;
 579		table = __va(*table & _REGION_ENTRY_ORIGIN);
 580	}
 581	if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
 582		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
 583		if ((*table & _REGION_ENTRY_INVALID) &&
 584		    gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
 585				     gaddr & _REGION3_MASK))
 586			return -ENOMEM;
 587		table = __va(*table & _REGION_ENTRY_ORIGIN);
 588	}
 589	table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
 590	/* Walk the parent mm page table */
 591	mm = gmap->mm;
 592	pgd = pgd_offset(mm, vmaddr);
 593	VM_BUG_ON(pgd_none(*pgd));
 594	p4d = p4d_offset(pgd, vmaddr);
 595	VM_BUG_ON(p4d_none(*p4d));
 596	pud = pud_offset(p4d, vmaddr);
 597	VM_BUG_ON(pud_none(*pud));
 598	/* large puds cannot yet be handled */
 599	if (pud_large(*pud))
 600		return -EFAULT;
 601	pmd = pmd_offset(pud, vmaddr);
 602	VM_BUG_ON(pmd_none(*pmd));
 603	/* Are we allowed to use huge pages? */
 604	if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
 605		return -EFAULT;
 606	/* Link gmap segment table entry location to page table. */
 607	rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
 608	if (rc)
 609		return rc;
 610	ptl = pmd_lock(mm, pmd);
 611	spin_lock(&gmap->guest_table_lock);
 612	if (*table == _SEGMENT_ENTRY_EMPTY) {
 613		rc = radix_tree_insert(&gmap->host_to_guest,
 614				       vmaddr >> PMD_SHIFT, table);
 615		if (!rc) {
 616			if (pmd_large(*pmd)) {
 617				*table = (pmd_val(*pmd) &
 618					  _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
 619					| _SEGMENT_ENTRY_GMAP_UC;
 620			} else
 621				*table = pmd_val(*pmd) &
 622					_SEGMENT_ENTRY_HARDWARE_BITS;
 623		}
 624	} else if (*table & _SEGMENT_ENTRY_PROTECT &&
 625		   !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
 626		unprot = (u64)*table;
 627		unprot &= ~_SEGMENT_ENTRY_PROTECT;
 628		unprot |= _SEGMENT_ENTRY_GMAP_UC;
 629		gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
 630	}
 631	spin_unlock(&gmap->guest_table_lock);
 632	spin_unlock(ptl);
 633	radix_tree_preload_end();
 634	return rc;
 635}
 636
 637/**
 638 * gmap_fault - resolve a fault on a guest address
 639 * @gmap: pointer to guest mapping meta data structure
 640 * @gaddr: guest address
 641 * @fault_flags: flags to pass down to handle_mm_fault()
 642 *
 643 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
 644 * if the vm address is already mapped to a different guest segment.
 645 */
 646int gmap_fault(struct gmap *gmap, unsigned long gaddr,
 647	       unsigned int fault_flags)
 648{
 649	unsigned long vmaddr;
 650	int rc;
 651	bool unlocked;
 652
 653	mmap_read_lock(gmap->mm);
 654
 655retry:
 656	unlocked = false;
 657	vmaddr = __gmap_translate(gmap, gaddr);
 658	if (IS_ERR_VALUE(vmaddr)) {
 659		rc = vmaddr;
 660		goto out_up;
 661	}
 662	if (fixup_user_fault(gmap->mm, vmaddr, fault_flags,
 663			     &unlocked)) {
 664		rc = -EFAULT;
 665		goto out_up;
 666	}
 667	/*
 668	 * In the case that fixup_user_fault unlocked the mmap_lock during
 669	 * faultin redo __gmap_translate to not race with a map/unmap_segment.
 670	 */
 671	if (unlocked)
 672		goto retry;
 673
 674	rc = __gmap_link(gmap, gaddr, vmaddr);
 675out_up:
 676	mmap_read_unlock(gmap->mm);
 677	return rc;
 678}
 679EXPORT_SYMBOL_GPL(gmap_fault);
 680
 681/*
 682 * this function is assumed to be called with mmap_lock held
 683 */
 684void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
 685{
 686	struct vm_area_struct *vma;
 687	unsigned long vmaddr;
 688	spinlock_t *ptl;
 689	pte_t *ptep;
 690
 691	/* Find the vm address for the guest address */
 692	vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
 693						   gaddr >> PMD_SHIFT);
 694	if (vmaddr) {
 695		vmaddr |= gaddr & ~PMD_MASK;
 696
 697		vma = vma_lookup(gmap->mm, vmaddr);
 698		if (!vma || is_vm_hugetlb_page(vma))
 699			return;
 700
 701		/* Get pointer to the page table entry */
 702		ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
 703		if (likely(ptep)) {
 704			ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
 705			pte_unmap_unlock(ptep, ptl);
 706		}
 707	}
 708}
 709EXPORT_SYMBOL_GPL(__gmap_zap);
 710
 711void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
 712{
 713	unsigned long gaddr, vmaddr, size;
 714	struct vm_area_struct *vma;
 715
 716	mmap_read_lock(gmap->mm);
 717	for (gaddr = from; gaddr < to;
 718	     gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
 719		/* Find the vm address for the guest address */
 720		vmaddr = (unsigned long)
 721			radix_tree_lookup(&gmap->guest_to_host,
 722					  gaddr >> PMD_SHIFT);
 723		if (!vmaddr)
 724			continue;
 725		vmaddr |= gaddr & ~PMD_MASK;
 726		/* Find vma in the parent mm */
 727		vma = find_vma(gmap->mm, vmaddr);
 728		if (!vma)
 729			continue;
 730		/*
 731		 * We do not discard pages that are backed by
 732		 * hugetlbfs, so we don't have to refault them.
 733		 */
 734		if (is_vm_hugetlb_page(vma))
 735			continue;
 736		size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
 737		zap_page_range_single(vma, vmaddr, size, NULL);
 738	}
 739	mmap_read_unlock(gmap->mm);
 740}
 741EXPORT_SYMBOL_GPL(gmap_discard);
 742
 743static LIST_HEAD(gmap_notifier_list);
 744static DEFINE_SPINLOCK(gmap_notifier_lock);
 745
 746/**
 747 * gmap_register_pte_notifier - register a pte invalidation callback
 748 * @nb: pointer to the gmap notifier block
 749 */
 750void gmap_register_pte_notifier(struct gmap_notifier *nb)
 751{
 752	spin_lock(&gmap_notifier_lock);
 753	list_add_rcu(&nb->list, &gmap_notifier_list);
 754	spin_unlock(&gmap_notifier_lock);
 755}
 756EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
 757
 758/**
 759 * gmap_unregister_pte_notifier - remove a pte invalidation callback
 760 * @nb: pointer to the gmap notifier block
 761 */
 762void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
 763{
 764	spin_lock(&gmap_notifier_lock);
 765	list_del_rcu(&nb->list);
 766	spin_unlock(&gmap_notifier_lock);
 767	synchronize_rcu();
 768}
 769EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
 770
 771/**
 772 * gmap_call_notifier - call all registered invalidation callbacks
 773 * @gmap: pointer to guest mapping meta data structure
 774 * @start: start virtual address in the guest address space
 775 * @end: end virtual address in the guest address space
 776 */
 777static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
 778			       unsigned long end)
 779{
 780	struct gmap_notifier *nb;
 781
 782	list_for_each_entry(nb, &gmap_notifier_list, list)
 783		nb->notifier_call(gmap, start, end);
 784}
 785
 786/**
 787 * gmap_table_walk - walk the gmap page tables
 788 * @gmap: pointer to guest mapping meta data structure
 789 * @gaddr: virtual address in the guest address space
 790 * @level: page table level to stop at
 791 *
 792 * Returns a table entry pointer for the given guest address and @level
 793 * @level=0 : returns a pointer to a page table table entry (or NULL)
 794 * @level=1 : returns a pointer to a segment table entry (or NULL)
 795 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
 796 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
 797 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
 798 *
 799 * Returns NULL if the gmap page tables could not be walked to the
 800 * requested level.
 801 *
 802 * Note: Can also be called for shadow gmaps.
 803 */
 804static inline unsigned long *gmap_table_walk(struct gmap *gmap,
 805					     unsigned long gaddr, int level)
 806{
 807	const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
 808	unsigned long *table = gmap->table;
 809
 810	if (gmap_is_shadow(gmap) && gmap->removed)
 811		return NULL;
 812
 813	if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
 814		return NULL;
 815
 816	if (asce_type != _ASCE_TYPE_REGION1 &&
 817	    gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
 818		return NULL;
 819
 820	switch (asce_type) {
 821	case _ASCE_TYPE_REGION1:
 822		table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
 823		if (level == 4)
 824			break;
 825		if (*table & _REGION_ENTRY_INVALID)
 826			return NULL;
 827		table = __va(*table & _REGION_ENTRY_ORIGIN);
 828		fallthrough;
 829	case _ASCE_TYPE_REGION2:
 830		table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
 831		if (level == 3)
 832			break;
 833		if (*table & _REGION_ENTRY_INVALID)
 834			return NULL;
 835		table = __va(*table & _REGION_ENTRY_ORIGIN);
 836		fallthrough;
 837	case _ASCE_TYPE_REGION3:
 838		table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
 839		if (level == 2)
 840			break;
 841		if (*table & _REGION_ENTRY_INVALID)
 842			return NULL;
 843		table = __va(*table & _REGION_ENTRY_ORIGIN);
 844		fallthrough;
 845	case _ASCE_TYPE_SEGMENT:
 846		table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
 847		if (level == 1)
 848			break;
 849		if (*table & _REGION_ENTRY_INVALID)
 850			return NULL;
 851		table = __va(*table & _SEGMENT_ENTRY_ORIGIN);
 852		table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
 853	}
 854	return table;
 855}
 856
 857/**
 858 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
 859 *		      and return the pte pointer
 860 * @gmap: pointer to guest mapping meta data structure
 861 * @gaddr: virtual address in the guest address space
 862 * @ptl: pointer to the spinlock pointer
 863 *
 864 * Returns a pointer to the locked pte for a guest address, or NULL
 865 */
 866static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
 867			       spinlock_t **ptl)
 868{
 869	unsigned long *table;
 870
 871	BUG_ON(gmap_is_shadow(gmap));
 872	/* Walk the gmap page table, lock and get pte pointer */
 873	table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
 874	if (!table || *table & _SEGMENT_ENTRY_INVALID)
 875		return NULL;
 876	return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
 877}
 878
 879/**
 880 * gmap_pte_op_fixup - force a page in and connect the gmap page table
 881 * @gmap: pointer to guest mapping meta data structure
 882 * @gaddr: virtual address in the guest address space
 883 * @vmaddr: address in the host process address space
 884 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
 885 *
 886 * Returns 0 if the caller can retry __gmap_translate (might fail again),
 887 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
 888 * up or connecting the gmap page table.
 889 */
 890static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
 891			     unsigned long vmaddr, int prot)
 892{
 893	struct mm_struct *mm = gmap->mm;
 894	unsigned int fault_flags;
 895	bool unlocked = false;
 896
 897	BUG_ON(gmap_is_shadow(gmap));
 898	fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
 899	if (fixup_user_fault(mm, vmaddr, fault_flags, &unlocked))
 900		return -EFAULT;
 901	if (unlocked)
 902		/* lost mmap_lock, caller has to retry __gmap_translate */
 903		return 0;
 904	/* Connect the page tables */
 905	return __gmap_link(gmap, gaddr, vmaddr);
 906}
 907
 908/**
 909 * gmap_pte_op_end - release the page table lock
 910 * @ptep: pointer to the locked pte
 911 * @ptl: pointer to the page table spinlock
 912 */
 913static void gmap_pte_op_end(pte_t *ptep, spinlock_t *ptl)
 914{
 915	pte_unmap_unlock(ptep, ptl);
 916}
 917
 918/**
 919 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
 920 *		      and return the pmd pointer
 921 * @gmap: pointer to guest mapping meta data structure
 922 * @gaddr: virtual address in the guest address space
 923 *
 924 * Returns a pointer to the pmd for a guest address, or NULL
 925 */
 926static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
 927{
 928	pmd_t *pmdp;
 929
 930	BUG_ON(gmap_is_shadow(gmap));
 931	pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
 932	if (!pmdp)
 933		return NULL;
 934
 935	/* without huge pages, there is no need to take the table lock */
 936	if (!gmap->mm->context.allow_gmap_hpage_1m)
 937		return pmd_none(*pmdp) ? NULL : pmdp;
 938
 939	spin_lock(&gmap->guest_table_lock);
 940	if (pmd_none(*pmdp)) {
 941		spin_unlock(&gmap->guest_table_lock);
 942		return NULL;
 943	}
 944
 945	/* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
 946	if (!pmd_large(*pmdp))
 947		spin_unlock(&gmap->guest_table_lock);
 948	return pmdp;
 949}
 950
 951/**
 952 * gmap_pmd_op_end - release the guest_table_lock if needed
 953 * @gmap: pointer to the guest mapping meta data structure
 954 * @pmdp: pointer to the pmd
 955 */
 956static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
 957{
 958	if (pmd_large(*pmdp))
 959		spin_unlock(&gmap->guest_table_lock);
 960}
 961
 962/*
 963 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
 964 * @pmdp: pointer to the pmd to be protected
 965 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
 966 * @bits: notification bits to set
 967 *
 968 * Returns:
 969 * 0 if successfully protected
 970 * -EAGAIN if a fixup is needed
 971 * -EINVAL if unsupported notifier bits have been specified
 972 *
 973 * Expected to be called with sg->mm->mmap_lock in read and
 974 * guest_table_lock held.
 975 */
 976static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
 977			    pmd_t *pmdp, int prot, unsigned long bits)
 978{
 979	int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
 980	int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
 981	pmd_t new = *pmdp;
 982
 983	/* Fixup needed */
 984	if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
 985		return -EAGAIN;
 986
 987	if (prot == PROT_NONE && !pmd_i) {
 988		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
 989		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
 990	}
 991
 992	if (prot == PROT_READ && !pmd_p) {
 993		new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_INVALID));
 994		new = set_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_PROTECT));
 995		gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
 996	}
 997
 998	if (bits & GMAP_NOTIFY_MPROT)
 999		set_pmd(pmdp, set_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
1000
1001	/* Shadow GMAP protection needs split PMDs */
1002	if (bits & GMAP_NOTIFY_SHADOW)
1003		return -EINVAL;
1004
1005	return 0;
1006}
1007
1008/*
1009 * gmap_protect_pte - remove access rights to memory and set pgste bits
1010 * @gmap: pointer to guest mapping meta data structure
1011 * @gaddr: virtual address in the guest address space
1012 * @pmdp: pointer to the pmd associated with the pte
1013 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1014 * @bits: notification bits to set
1015 *
1016 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1017 * -EAGAIN if a fixup is needed.
1018 *
1019 * Expected to be called with sg->mm->mmap_lock in read
1020 */
1021static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1022			    pmd_t *pmdp, int prot, unsigned long bits)
1023{
1024	int rc;
1025	pte_t *ptep;
1026	spinlock_t *ptl;
1027	unsigned long pbits = 0;
1028
1029	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1030		return -EAGAIN;
1031
1032	ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1033	if (!ptep)
1034		return -ENOMEM;
1035
1036	pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1037	pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1038	/* Protect and unlock. */
1039	rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1040	gmap_pte_op_end(ptep, ptl);
1041	return rc;
1042}
1043
1044/*
1045 * gmap_protect_range - remove access rights to memory and set pgste bits
1046 * @gmap: pointer to guest mapping meta data structure
1047 * @gaddr: virtual address in the guest address space
1048 * @len: size of area
1049 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1050 * @bits: pgste notification bits to set
1051 *
1052 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1053 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1054 *
1055 * Called with sg->mm->mmap_lock in read.
1056 */
1057static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1058			      unsigned long len, int prot, unsigned long bits)
1059{
1060	unsigned long vmaddr, dist;
1061	pmd_t *pmdp;
1062	int rc;
1063
1064	BUG_ON(gmap_is_shadow(gmap));
1065	while (len) {
1066		rc = -EAGAIN;
1067		pmdp = gmap_pmd_op_walk(gmap, gaddr);
1068		if (pmdp) {
1069			if (!pmd_large(*pmdp)) {
1070				rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1071						      bits);
1072				if (!rc) {
1073					len -= PAGE_SIZE;
1074					gaddr += PAGE_SIZE;
1075				}
1076			} else {
1077				rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1078						      bits);
1079				if (!rc) {
1080					dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1081					len = len < dist ? 0 : len - dist;
1082					gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1083				}
1084			}
1085			gmap_pmd_op_end(gmap, pmdp);
1086		}
1087		if (rc) {
1088			if (rc == -EINVAL)
1089				return rc;
1090
1091			/* -EAGAIN, fixup of userspace mm and gmap */
1092			vmaddr = __gmap_translate(gmap, gaddr);
1093			if (IS_ERR_VALUE(vmaddr))
1094				return vmaddr;
1095			rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1096			if (rc)
1097				return rc;
1098		}
1099	}
1100	return 0;
1101}
1102
1103/**
1104 * gmap_mprotect_notify - change access rights for a range of ptes and
1105 *                        call the notifier if any pte changes again
1106 * @gmap: pointer to guest mapping meta data structure
1107 * @gaddr: virtual address in the guest address space
1108 * @len: size of area
1109 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1110 *
1111 * Returns 0 if for each page in the given range a gmap mapping exists,
1112 * the new access rights could be set and the notifier could be armed.
1113 * If the gmap mapping is missing for one or more pages -EFAULT is
1114 * returned. If no memory could be allocated -ENOMEM is returned.
1115 * This function establishes missing page table entries.
1116 */
1117int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1118			 unsigned long len, int prot)
1119{
1120	int rc;
1121
1122	if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1123		return -EINVAL;
1124	if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1125		return -EINVAL;
1126	mmap_read_lock(gmap->mm);
1127	rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1128	mmap_read_unlock(gmap->mm);
1129	return rc;
1130}
1131EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1132
1133/**
1134 * gmap_read_table - get an unsigned long value from a guest page table using
1135 *                   absolute addressing, without marking the page referenced.
1136 * @gmap: pointer to guest mapping meta data structure
1137 * @gaddr: virtual address in the guest address space
1138 * @val: pointer to the unsigned long value to return
1139 *
1140 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1141 * if reading using the virtual address failed. -EINVAL if called on a gmap
1142 * shadow.
1143 *
1144 * Called with gmap->mm->mmap_lock in read.
1145 */
1146int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1147{
1148	unsigned long address, vmaddr;
1149	spinlock_t *ptl;
1150	pte_t *ptep, pte;
1151	int rc;
1152
1153	if (gmap_is_shadow(gmap))
1154		return -EINVAL;
1155
1156	while (1) {
1157		rc = -EAGAIN;
1158		ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1159		if (ptep) {
1160			pte = *ptep;
1161			if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1162				address = pte_val(pte) & PAGE_MASK;
1163				address += gaddr & ~PAGE_MASK;
1164				*val = *(unsigned long *)__va(address);
1165				set_pte(ptep, set_pte_bit(*ptep, __pgprot(_PAGE_YOUNG)));
1166				/* Do *NOT* clear the _PAGE_INVALID bit! */
1167				rc = 0;
1168			}
1169			gmap_pte_op_end(ptep, ptl);
1170		}
1171		if (!rc)
1172			break;
1173		vmaddr = __gmap_translate(gmap, gaddr);
1174		if (IS_ERR_VALUE(vmaddr)) {
1175			rc = vmaddr;
1176			break;
1177		}
1178		rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1179		if (rc)
1180			break;
1181	}
1182	return rc;
1183}
1184EXPORT_SYMBOL_GPL(gmap_read_table);
1185
1186/**
1187 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1188 * @sg: pointer to the shadow guest address space structure
1189 * @vmaddr: vm address associated with the rmap
1190 * @rmap: pointer to the rmap structure
1191 *
1192 * Called with the sg->guest_table_lock
1193 */
1194static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1195				    struct gmap_rmap *rmap)
1196{
1197	struct gmap_rmap *temp;
1198	void __rcu **slot;
1199
1200	BUG_ON(!gmap_is_shadow(sg));
1201	slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1202	if (slot) {
1203		rmap->next = radix_tree_deref_slot_protected(slot,
1204							&sg->guest_table_lock);
1205		for (temp = rmap->next; temp; temp = temp->next) {
1206			if (temp->raddr == rmap->raddr) {
1207				kfree(rmap);
1208				return;
1209			}
1210		}
1211		radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1212	} else {
1213		rmap->next = NULL;
1214		radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1215				  rmap);
1216	}
1217}
1218
1219/**
1220 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1221 * @sg: pointer to the shadow guest address space structure
1222 * @raddr: rmap address in the shadow gmap
1223 * @paddr: address in the parent guest address space
1224 * @len: length of the memory area to protect
1225 *
1226 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1227 * if out of memory and -EFAULT if paddr is invalid.
1228 */
1229static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1230			     unsigned long paddr, unsigned long len)
1231{
1232	struct gmap *parent;
1233	struct gmap_rmap *rmap;
1234	unsigned long vmaddr;
1235	spinlock_t *ptl;
1236	pte_t *ptep;
1237	int rc;
1238
1239	BUG_ON(!gmap_is_shadow(sg));
1240	parent = sg->parent;
1241	while (len) {
1242		vmaddr = __gmap_translate(parent, paddr);
1243		if (IS_ERR_VALUE(vmaddr))
1244			return vmaddr;
1245		rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
1246		if (!rmap)
1247			return -ENOMEM;
1248		rmap->raddr = raddr;
1249		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
1250		if (rc) {
1251			kfree(rmap);
1252			return rc;
1253		}
1254		rc = -EAGAIN;
1255		ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1256		if (ptep) {
1257			spin_lock(&sg->guest_table_lock);
1258			rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1259					     PGSTE_VSIE_BIT);
1260			if (!rc)
1261				gmap_insert_rmap(sg, vmaddr, rmap);
1262			spin_unlock(&sg->guest_table_lock);
1263			gmap_pte_op_end(ptep, ptl);
1264		}
1265		radix_tree_preload_end();
1266		if (rc) {
1267			kfree(rmap);
1268			rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1269			if (rc)
1270				return rc;
1271			continue;
1272		}
1273		paddr += PAGE_SIZE;
1274		len -= PAGE_SIZE;
1275	}
1276	return 0;
1277}
1278
1279#define _SHADOW_RMAP_MASK	0x7
1280#define _SHADOW_RMAP_REGION1	0x5
1281#define _SHADOW_RMAP_REGION2	0x4
1282#define _SHADOW_RMAP_REGION3	0x3
1283#define _SHADOW_RMAP_SEGMENT	0x2
1284#define _SHADOW_RMAP_PGTABLE	0x1
1285
1286/**
1287 * gmap_idte_one - invalidate a single region or segment table entry
1288 * @asce: region or segment table *origin* + table-type bits
1289 * @vaddr: virtual address to identify the table entry to flush
1290 *
1291 * The invalid bit of a single region or segment table entry is set
1292 * and the associated TLB entries depending on the entry are flushed.
1293 * The table-type of the @asce identifies the portion of the @vaddr
1294 * that is used as the invalidation index.
1295 */
1296static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1297{
1298	asm volatile(
1299		"	idte	%0,0,%1"
1300		: : "a" (asce), "a" (vaddr) : "cc", "memory");
1301}
1302
1303/**
1304 * gmap_unshadow_page - remove a page from a shadow page table
1305 * @sg: pointer to the shadow guest address space structure
1306 * @raddr: rmap address in the shadow guest address space
1307 *
1308 * Called with the sg->guest_table_lock
1309 */
1310static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1311{
1312	unsigned long *table;
1313
1314	BUG_ON(!gmap_is_shadow(sg));
1315	table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1316	if (!table || *table & _PAGE_INVALID)
1317		return;
1318	gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1319	ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1320}
1321
1322/**
1323 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1324 * @sg: pointer to the shadow guest address space structure
1325 * @raddr: rmap address in the shadow guest address space
1326 * @pgt: pointer to the start of a shadow page table
1327 *
1328 * Called with the sg->guest_table_lock
1329 */
1330static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1331				unsigned long *pgt)
1332{
1333	int i;
1334
1335	BUG_ON(!gmap_is_shadow(sg));
1336	for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1337		pgt[i] = _PAGE_INVALID;
1338}
1339
1340/**
1341 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1342 * @sg: pointer to the shadow guest address space structure
1343 * @raddr: address in the shadow guest address space
1344 *
1345 * Called with the sg->guest_table_lock
1346 */
1347static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1348{
1349	unsigned long *ste;
1350	phys_addr_t sto, pgt;
1351	struct page *page;
1352
1353	BUG_ON(!gmap_is_shadow(sg));
1354	ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1355	if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1356		return;
1357	gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1358	sto = __pa(ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1359	gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1360	pgt = *ste & _SEGMENT_ENTRY_ORIGIN;
1361	*ste = _SEGMENT_ENTRY_EMPTY;
1362	__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1363	/* Free page table */
1364	page = phys_to_page(pgt);
1365	list_del(&page->lru);
1366	page_table_free_pgste(page);
1367}
1368
1369/**
1370 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1371 * @sg: pointer to the shadow guest address space structure
1372 * @raddr: rmap address in the shadow guest address space
1373 * @sgt: pointer to the start of a shadow segment table
1374 *
1375 * Called with the sg->guest_table_lock
1376 */
1377static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1378				unsigned long *sgt)
1379{
1380	struct page *page;
1381	phys_addr_t pgt;
1382	int i;
1383
1384	BUG_ON(!gmap_is_shadow(sg));
1385	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1386		if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1387			continue;
1388		pgt = sgt[i] & _REGION_ENTRY_ORIGIN;
1389		sgt[i] = _SEGMENT_ENTRY_EMPTY;
1390		__gmap_unshadow_pgt(sg, raddr, __va(pgt));
1391		/* Free page table */
1392		page = phys_to_page(pgt);
1393		list_del(&page->lru);
1394		page_table_free_pgste(page);
1395	}
1396}
1397
1398/**
1399 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1400 * @sg: pointer to the shadow guest address space structure
1401 * @raddr: rmap address in the shadow guest address space
1402 *
1403 * Called with the shadow->guest_table_lock
1404 */
1405static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1406{
1407	unsigned long r3o, *r3e;
1408	phys_addr_t sgt;
1409	struct page *page;
1410
1411	BUG_ON(!gmap_is_shadow(sg));
1412	r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1413	if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1414		return;
1415	gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1416	r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1417	gmap_idte_one(__pa(r3o) | _ASCE_TYPE_REGION3, raddr);
1418	sgt = *r3e & _REGION_ENTRY_ORIGIN;
1419	*r3e = _REGION3_ENTRY_EMPTY;
1420	__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1421	/* Free segment table */
1422	page = phys_to_page(sgt);
1423	list_del(&page->lru);
1424	__free_pages(page, CRST_ALLOC_ORDER);
1425}
1426
1427/**
1428 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1429 * @sg: pointer to the shadow guest address space structure
1430 * @raddr: address in the shadow guest address space
1431 * @r3t: pointer to the start of a shadow region-3 table
1432 *
1433 * Called with the sg->guest_table_lock
1434 */
1435static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1436				unsigned long *r3t)
1437{
1438	struct page *page;
1439	phys_addr_t sgt;
1440	int i;
1441
1442	BUG_ON(!gmap_is_shadow(sg));
1443	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1444		if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1445			continue;
1446		sgt = r3t[i] & _REGION_ENTRY_ORIGIN;
1447		r3t[i] = _REGION3_ENTRY_EMPTY;
1448		__gmap_unshadow_sgt(sg, raddr, __va(sgt));
1449		/* Free segment table */
1450		page = phys_to_page(sgt);
1451		list_del(&page->lru);
1452		__free_pages(page, CRST_ALLOC_ORDER);
1453	}
1454}
1455
1456/**
1457 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1458 * @sg: pointer to the shadow guest address space structure
1459 * @raddr: rmap address in the shadow guest address space
1460 *
1461 * Called with the sg->guest_table_lock
1462 */
1463static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1464{
1465	unsigned long r2o, *r2e;
1466	phys_addr_t r3t;
1467	struct page *page;
1468
1469	BUG_ON(!gmap_is_shadow(sg));
1470	r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1471	if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1472		return;
1473	gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1474	r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1475	gmap_idte_one(__pa(r2o) | _ASCE_TYPE_REGION2, raddr);
1476	r3t = *r2e & _REGION_ENTRY_ORIGIN;
1477	*r2e = _REGION2_ENTRY_EMPTY;
1478	__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1479	/* Free region 3 table */
1480	page = phys_to_page(r3t);
1481	list_del(&page->lru);
1482	__free_pages(page, CRST_ALLOC_ORDER);
1483}
1484
1485/**
1486 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1487 * @sg: pointer to the shadow guest address space structure
1488 * @raddr: rmap address in the shadow guest address space
1489 * @r2t: pointer to the start of a shadow region-2 table
1490 *
1491 * Called with the sg->guest_table_lock
1492 */
1493static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1494				unsigned long *r2t)
1495{
1496	phys_addr_t r3t;
1497	struct page *page;
1498	int i;
1499
1500	BUG_ON(!gmap_is_shadow(sg));
1501	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1502		if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1503			continue;
1504		r3t = r2t[i] & _REGION_ENTRY_ORIGIN;
1505		r2t[i] = _REGION2_ENTRY_EMPTY;
1506		__gmap_unshadow_r3t(sg, raddr, __va(r3t));
1507		/* Free region 3 table */
1508		page = phys_to_page(r3t);
1509		list_del(&page->lru);
1510		__free_pages(page, CRST_ALLOC_ORDER);
1511	}
1512}
1513
1514/**
1515 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1516 * @sg: pointer to the shadow guest address space structure
1517 * @raddr: rmap address in the shadow guest address space
1518 *
1519 * Called with the sg->guest_table_lock
1520 */
1521static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1522{
1523	unsigned long r1o, *r1e;
1524	struct page *page;
1525	phys_addr_t r2t;
1526
1527	BUG_ON(!gmap_is_shadow(sg));
1528	r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1529	if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1530		return;
1531	gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1532	r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1533	gmap_idte_one(__pa(r1o) | _ASCE_TYPE_REGION1, raddr);
1534	r2t = *r1e & _REGION_ENTRY_ORIGIN;
1535	*r1e = _REGION1_ENTRY_EMPTY;
1536	__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1537	/* Free region 2 table */
1538	page = phys_to_page(r2t);
1539	list_del(&page->lru);
1540	__free_pages(page, CRST_ALLOC_ORDER);
1541}
1542
1543/**
1544 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1545 * @sg: pointer to the shadow guest address space structure
1546 * @raddr: rmap address in the shadow guest address space
1547 * @r1t: pointer to the start of a shadow region-1 table
1548 *
1549 * Called with the shadow->guest_table_lock
1550 */
1551static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1552				unsigned long *r1t)
1553{
1554	unsigned long asce;
1555	struct page *page;
1556	phys_addr_t r2t;
1557	int i;
1558
1559	BUG_ON(!gmap_is_shadow(sg));
1560	asce = __pa(r1t) | _ASCE_TYPE_REGION1;
1561	for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1562		if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1563			continue;
1564		r2t = r1t[i] & _REGION_ENTRY_ORIGIN;
1565		__gmap_unshadow_r2t(sg, raddr, __va(r2t));
1566		/* Clear entry and flush translation r1t -> r2t */
1567		gmap_idte_one(asce, raddr);
1568		r1t[i] = _REGION1_ENTRY_EMPTY;
1569		/* Free region 2 table */
1570		page = phys_to_page(r2t);
1571		list_del(&page->lru);
1572		__free_pages(page, CRST_ALLOC_ORDER);
1573	}
1574}
1575
1576/**
1577 * gmap_unshadow - remove a shadow page table completely
1578 * @sg: pointer to the shadow guest address space structure
1579 *
1580 * Called with sg->guest_table_lock
1581 */
1582static void gmap_unshadow(struct gmap *sg)
1583{
1584	unsigned long *table;
1585
1586	BUG_ON(!gmap_is_shadow(sg));
1587	if (sg->removed)
1588		return;
1589	sg->removed = 1;
1590	gmap_call_notifier(sg, 0, -1UL);
1591	gmap_flush_tlb(sg);
1592	table = __va(sg->asce & _ASCE_ORIGIN);
1593	switch (sg->asce & _ASCE_TYPE_MASK) {
1594	case _ASCE_TYPE_REGION1:
1595		__gmap_unshadow_r1t(sg, 0, table);
1596		break;
1597	case _ASCE_TYPE_REGION2:
1598		__gmap_unshadow_r2t(sg, 0, table);
1599		break;
1600	case _ASCE_TYPE_REGION3:
1601		__gmap_unshadow_r3t(sg, 0, table);
1602		break;
1603	case _ASCE_TYPE_SEGMENT:
1604		__gmap_unshadow_sgt(sg, 0, table);
1605		break;
1606	}
1607}
1608
1609/**
1610 * gmap_find_shadow - find a specific asce in the list of shadow tables
1611 * @parent: pointer to the parent gmap
1612 * @asce: ASCE for which the shadow table is created
1613 * @edat_level: edat level to be used for the shadow translation
1614 *
1615 * Returns the pointer to a gmap if a shadow table with the given asce is
1616 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1617 * otherwise NULL
1618 */
1619static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1620				     int edat_level)
1621{
1622	struct gmap *sg;
1623
1624	list_for_each_entry(sg, &parent->children, list) {
1625		if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1626		    sg->removed)
1627			continue;
1628		if (!sg->initialized)
1629			return ERR_PTR(-EAGAIN);
1630		refcount_inc(&sg->ref_count);
1631		return sg;
1632	}
1633	return NULL;
1634}
1635
1636/**
1637 * gmap_shadow_valid - check if a shadow guest address space matches the
1638 *                     given properties and is still valid
1639 * @sg: pointer to the shadow guest address space structure
1640 * @asce: ASCE for which the shadow table is requested
1641 * @edat_level: edat level to be used for the shadow translation
1642 *
1643 * Returns 1 if the gmap shadow is still valid and matches the given
1644 * properties, the caller can continue using it. Returns 0 otherwise, the
1645 * caller has to request a new shadow gmap in this case.
1646 *
1647 */
1648int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1649{
1650	if (sg->removed)
1651		return 0;
1652	return sg->orig_asce == asce && sg->edat_level == edat_level;
1653}
1654EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1655
1656/**
1657 * gmap_shadow - create/find a shadow guest address space
1658 * @parent: pointer to the parent gmap
1659 * @asce: ASCE for which the shadow table is created
1660 * @edat_level: edat level to be used for the shadow translation
1661 *
1662 * The pages of the top level page table referred by the asce parameter
1663 * will be set to read-only and marked in the PGSTEs of the kvm process.
1664 * The shadow table will be removed automatically on any change to the
1665 * PTE mapping for the source table.
1666 *
1667 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1668 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1669 * parent gmap table could not be protected.
1670 */
1671struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1672			 int edat_level)
1673{
1674	struct gmap *sg, *new;
1675	unsigned long limit;
1676	int rc;
1677
1678	BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1679	BUG_ON(gmap_is_shadow(parent));
1680	spin_lock(&parent->shadow_lock);
1681	sg = gmap_find_shadow(parent, asce, edat_level);
1682	spin_unlock(&parent->shadow_lock);
1683	if (sg)
1684		return sg;
1685	/* Create a new shadow gmap */
1686	limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1687	if (asce & _ASCE_REAL_SPACE)
1688		limit = -1UL;
1689	new = gmap_alloc(limit);
1690	if (!new)
1691		return ERR_PTR(-ENOMEM);
1692	new->mm = parent->mm;
1693	new->parent = gmap_get(parent);
1694	new->private = parent->private;
1695	new->orig_asce = asce;
1696	new->edat_level = edat_level;
1697	new->initialized = false;
1698	spin_lock(&parent->shadow_lock);
1699	/* Recheck if another CPU created the same shadow */
1700	sg = gmap_find_shadow(parent, asce, edat_level);
1701	if (sg) {
1702		spin_unlock(&parent->shadow_lock);
1703		gmap_free(new);
1704		return sg;
1705	}
1706	if (asce & _ASCE_REAL_SPACE) {
1707		/* only allow one real-space gmap shadow */
1708		list_for_each_entry(sg, &parent->children, list) {
1709			if (sg->orig_asce & _ASCE_REAL_SPACE) {
1710				spin_lock(&sg->guest_table_lock);
1711				gmap_unshadow(sg);
1712				spin_unlock(&sg->guest_table_lock);
1713				list_del(&sg->list);
1714				gmap_put(sg);
1715				break;
1716			}
1717		}
1718	}
1719	refcount_set(&new->ref_count, 2);
1720	list_add(&new->list, &parent->children);
1721	if (asce & _ASCE_REAL_SPACE) {
1722		/* nothing to protect, return right away */
1723		new->initialized = true;
1724		spin_unlock(&parent->shadow_lock);
1725		return new;
1726	}
1727	spin_unlock(&parent->shadow_lock);
1728	/* protect after insertion, so it will get properly invalidated */
1729	mmap_read_lock(parent->mm);
1730	rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1731				((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1732				PROT_READ, GMAP_NOTIFY_SHADOW);
1733	mmap_read_unlock(parent->mm);
1734	spin_lock(&parent->shadow_lock);
1735	new->initialized = true;
1736	if (rc) {
1737		list_del(&new->list);
1738		gmap_free(new);
1739		new = ERR_PTR(rc);
1740	}
1741	spin_unlock(&parent->shadow_lock);
1742	return new;
1743}
1744EXPORT_SYMBOL_GPL(gmap_shadow);
1745
1746/**
1747 * gmap_shadow_r2t - create an empty shadow region 2 table
1748 * @sg: pointer to the shadow guest address space structure
1749 * @saddr: faulting address in the shadow gmap
1750 * @r2t: parent gmap address of the region 2 table to get shadowed
1751 * @fake: r2t references contiguous guest memory block, not a r2t
1752 *
1753 * The r2t parameter specifies the address of the source table. The
1754 * four pages of the source table are made read-only in the parent gmap
1755 * address space. A write to the source table area @r2t will automatically
1756 * remove the shadow r2 table and all of its descendants.
1757 *
1758 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1759 * shadow table structure is incomplete, -ENOMEM if out of memory and
1760 * -EFAULT if an address in the parent gmap could not be resolved.
1761 *
1762 * Called with sg->mm->mmap_lock in read.
1763 */
1764int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1765		    int fake)
1766{
1767	unsigned long raddr, origin, offset, len;
1768	unsigned long *table;
1769	phys_addr_t s_r2t;
1770	struct page *page;
1771	int rc;
1772
1773	BUG_ON(!gmap_is_shadow(sg));
1774	/* Allocate a shadow region second table */
1775	page = gmap_alloc_crst();
1776	if (!page)
1777		return -ENOMEM;
1778	page->index = r2t & _REGION_ENTRY_ORIGIN;
1779	if (fake)
1780		page->index |= GMAP_SHADOW_FAKE_TABLE;
1781	s_r2t = page_to_phys(page);
1782	/* Install shadow region second table */
1783	spin_lock(&sg->guest_table_lock);
1784	table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1785	if (!table) {
1786		rc = -EAGAIN;		/* Race with unshadow */
1787		goto out_free;
1788	}
1789	if (!(*table & _REGION_ENTRY_INVALID)) {
1790		rc = 0;			/* Already established */
1791		goto out_free;
1792	} else if (*table & _REGION_ENTRY_ORIGIN) {
1793		rc = -EAGAIN;		/* Race with shadow */
1794		goto out_free;
1795	}
1796	crst_table_init(__va(s_r2t), _REGION2_ENTRY_EMPTY);
1797	/* mark as invalid as long as the parent table is not protected */
1798	*table = s_r2t | _REGION_ENTRY_LENGTH |
1799		 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1800	if (sg->edat_level >= 1)
1801		*table |= (r2t & _REGION_ENTRY_PROTECT);
1802	list_add(&page->lru, &sg->crst_list);
1803	if (fake) {
1804		/* nothing to protect for fake tables */
1805		*table &= ~_REGION_ENTRY_INVALID;
1806		spin_unlock(&sg->guest_table_lock);
1807		return 0;
1808	}
1809	spin_unlock(&sg->guest_table_lock);
1810	/* Make r2t read-only in parent gmap page table */
1811	raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1812	origin = r2t & _REGION_ENTRY_ORIGIN;
1813	offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1814	len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1815	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1816	spin_lock(&sg->guest_table_lock);
1817	if (!rc) {
1818		table = gmap_table_walk(sg, saddr, 4);
1819		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r2t)
1820			rc = -EAGAIN;		/* Race with unshadow */
1821		else
1822			*table &= ~_REGION_ENTRY_INVALID;
1823	} else {
1824		gmap_unshadow_r2t(sg, raddr);
1825	}
1826	spin_unlock(&sg->guest_table_lock);
1827	return rc;
1828out_free:
1829	spin_unlock(&sg->guest_table_lock);
1830	__free_pages(page, CRST_ALLOC_ORDER);
1831	return rc;
1832}
1833EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1834
1835/**
1836 * gmap_shadow_r3t - create a shadow region 3 table
1837 * @sg: pointer to the shadow guest address space structure
1838 * @saddr: faulting address in the shadow gmap
1839 * @r3t: parent gmap address of the region 3 table to get shadowed
1840 * @fake: r3t references contiguous guest memory block, not a r3t
1841 *
1842 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1843 * shadow table structure is incomplete, -ENOMEM if out of memory and
1844 * -EFAULT if an address in the parent gmap could not be resolved.
1845 *
1846 * Called with sg->mm->mmap_lock in read.
1847 */
1848int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1849		    int fake)
1850{
1851	unsigned long raddr, origin, offset, len;
1852	unsigned long *table;
1853	phys_addr_t s_r3t;
1854	struct page *page;
1855	int rc;
1856
1857	BUG_ON(!gmap_is_shadow(sg));
1858	/* Allocate a shadow region second table */
1859	page = gmap_alloc_crst();
1860	if (!page)
1861		return -ENOMEM;
1862	page->index = r3t & _REGION_ENTRY_ORIGIN;
1863	if (fake)
1864		page->index |= GMAP_SHADOW_FAKE_TABLE;
1865	s_r3t = page_to_phys(page);
1866	/* Install shadow region second table */
1867	spin_lock(&sg->guest_table_lock);
1868	table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1869	if (!table) {
1870		rc = -EAGAIN;		/* Race with unshadow */
1871		goto out_free;
1872	}
1873	if (!(*table & _REGION_ENTRY_INVALID)) {
1874		rc = 0;			/* Already established */
1875		goto out_free;
1876	} else if (*table & _REGION_ENTRY_ORIGIN) {
1877		rc = -EAGAIN;		/* Race with shadow */
1878		goto out_free;
1879	}
1880	crst_table_init(__va(s_r3t), _REGION3_ENTRY_EMPTY);
1881	/* mark as invalid as long as the parent table is not protected */
1882	*table = s_r3t | _REGION_ENTRY_LENGTH |
1883		 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1884	if (sg->edat_level >= 1)
1885		*table |= (r3t & _REGION_ENTRY_PROTECT);
1886	list_add(&page->lru, &sg->crst_list);
1887	if (fake) {
1888		/* nothing to protect for fake tables */
1889		*table &= ~_REGION_ENTRY_INVALID;
1890		spin_unlock(&sg->guest_table_lock);
1891		return 0;
1892	}
1893	spin_unlock(&sg->guest_table_lock);
1894	/* Make r3t read-only in parent gmap page table */
1895	raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1896	origin = r3t & _REGION_ENTRY_ORIGIN;
1897	offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1898	len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1899	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1900	spin_lock(&sg->guest_table_lock);
1901	if (!rc) {
1902		table = gmap_table_walk(sg, saddr, 3);
1903		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_r3t)
1904			rc = -EAGAIN;		/* Race with unshadow */
1905		else
1906			*table &= ~_REGION_ENTRY_INVALID;
1907	} else {
1908		gmap_unshadow_r3t(sg, raddr);
1909	}
1910	spin_unlock(&sg->guest_table_lock);
1911	return rc;
1912out_free:
1913	spin_unlock(&sg->guest_table_lock);
1914	__free_pages(page, CRST_ALLOC_ORDER);
1915	return rc;
1916}
1917EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1918
1919/**
1920 * gmap_shadow_sgt - create a shadow segment table
1921 * @sg: pointer to the shadow guest address space structure
1922 * @saddr: faulting address in the shadow gmap
1923 * @sgt: parent gmap address of the segment table to get shadowed
1924 * @fake: sgt references contiguous guest memory block, not a sgt
1925 *
1926 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1927 * shadow table structure is incomplete, -ENOMEM if out of memory and
1928 * -EFAULT if an address in the parent gmap could not be resolved.
1929 *
1930 * Called with sg->mm->mmap_lock in read.
1931 */
1932int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1933		    int fake)
1934{
1935	unsigned long raddr, origin, offset, len;
1936	unsigned long *table;
1937	phys_addr_t s_sgt;
1938	struct page *page;
1939	int rc;
1940
1941	BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1942	/* Allocate a shadow segment table */
1943	page = gmap_alloc_crst();
1944	if (!page)
1945		return -ENOMEM;
1946	page->index = sgt & _REGION_ENTRY_ORIGIN;
1947	if (fake)
1948		page->index |= GMAP_SHADOW_FAKE_TABLE;
1949	s_sgt = page_to_phys(page);
1950	/* Install shadow region second table */
1951	spin_lock(&sg->guest_table_lock);
1952	table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1953	if (!table) {
1954		rc = -EAGAIN;		/* Race with unshadow */
1955		goto out_free;
1956	}
1957	if (!(*table & _REGION_ENTRY_INVALID)) {
1958		rc = 0;			/* Already established */
1959		goto out_free;
1960	} else if (*table & _REGION_ENTRY_ORIGIN) {
1961		rc = -EAGAIN;		/* Race with shadow */
1962		goto out_free;
1963	}
1964	crst_table_init(__va(s_sgt), _SEGMENT_ENTRY_EMPTY);
1965	/* mark as invalid as long as the parent table is not protected */
1966	*table = s_sgt | _REGION_ENTRY_LENGTH |
1967		 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1968	if (sg->edat_level >= 1)
1969		*table |= sgt & _REGION_ENTRY_PROTECT;
1970	list_add(&page->lru, &sg->crst_list);
1971	if (fake) {
1972		/* nothing to protect for fake tables */
1973		*table &= ~_REGION_ENTRY_INVALID;
1974		spin_unlock(&sg->guest_table_lock);
1975		return 0;
1976	}
1977	spin_unlock(&sg->guest_table_lock);
1978	/* Make sgt read-only in parent gmap page table */
1979	raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1980	origin = sgt & _REGION_ENTRY_ORIGIN;
1981	offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1982	len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1983	rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1984	spin_lock(&sg->guest_table_lock);
1985	if (!rc) {
1986		table = gmap_table_walk(sg, saddr, 2);
1987		if (!table || (*table & _REGION_ENTRY_ORIGIN) != s_sgt)
1988			rc = -EAGAIN;		/* Race with unshadow */
1989		else
1990			*table &= ~_REGION_ENTRY_INVALID;
1991	} else {
1992		gmap_unshadow_sgt(sg, raddr);
1993	}
1994	spin_unlock(&sg->guest_table_lock);
1995	return rc;
1996out_free:
1997	spin_unlock(&sg->guest_table_lock);
1998	__free_pages(page, CRST_ALLOC_ORDER);
1999	return rc;
2000}
2001EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
2002
2003/**
2004 * gmap_shadow_pgt_lookup - find a shadow page table
2005 * @sg: pointer to the shadow guest address space structure
2006 * @saddr: the address in the shadow aguest address space
2007 * @pgt: parent gmap address of the page table to get shadowed
2008 * @dat_protection: if the pgtable is marked as protected by dat
2009 * @fake: pgt references contiguous guest memory block, not a pgtable
2010 *
2011 * Returns 0 if the shadow page table was found and -EAGAIN if the page
2012 * table was not found.
2013 *
2014 * Called with sg->mm->mmap_lock in read.
2015 */
2016int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
2017			   unsigned long *pgt, int *dat_protection,
2018			   int *fake)
2019{
2020	unsigned long *table;
2021	struct page *page;
2022	int rc;
2023
2024	BUG_ON(!gmap_is_shadow(sg));
2025	spin_lock(&sg->guest_table_lock);
2026	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2027	if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
2028		/* Shadow page tables are full pages (pte+pgste) */
2029		page = pfn_to_page(*table >> PAGE_SHIFT);
2030		*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2031		*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2032		*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2033		rc = 0;
2034	} else  {
2035		rc = -EAGAIN;
2036	}
2037	spin_unlock(&sg->guest_table_lock);
2038	return rc;
2039
2040}
2041EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2042
2043/**
2044 * gmap_shadow_pgt - instantiate a shadow page table
2045 * @sg: pointer to the shadow guest address space structure
2046 * @saddr: faulting address in the shadow gmap
2047 * @pgt: parent gmap address of the page table to get shadowed
2048 * @fake: pgt references contiguous guest memory block, not a pgtable
2049 *
2050 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2051 * shadow table structure is incomplete, -ENOMEM if out of memory,
2052 * -EFAULT if an address in the parent gmap could not be resolved and
2053 *
2054 * Called with gmap->mm->mmap_lock in read
2055 */
2056int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2057		    int fake)
2058{
2059	unsigned long raddr, origin;
2060	unsigned long *table;
2061	struct page *page;
2062	phys_addr_t s_pgt;
2063	int rc;
2064
2065	BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2066	/* Allocate a shadow page table */
2067	page = page_table_alloc_pgste(sg->mm);
2068	if (!page)
2069		return -ENOMEM;
2070	page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2071	if (fake)
2072		page->index |= GMAP_SHADOW_FAKE_TABLE;
2073	s_pgt = page_to_phys(page);
2074	/* Install shadow page table */
2075	spin_lock(&sg->guest_table_lock);
2076	table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2077	if (!table) {
2078		rc = -EAGAIN;		/* Race with unshadow */
2079		goto out_free;
2080	}
2081	if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2082		rc = 0;			/* Already established */
2083		goto out_free;
2084	} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2085		rc = -EAGAIN;		/* Race with shadow */
2086		goto out_free;
2087	}
2088	/* mark as invalid as long as the parent table is not protected */
2089	*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2090		 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2091	list_add(&page->lru, &sg->pt_list);
2092	if (fake) {
2093		/* nothing to protect for fake tables */
2094		*table &= ~_SEGMENT_ENTRY_INVALID;
2095		spin_unlock(&sg->guest_table_lock);
2096		return 0;
2097	}
2098	spin_unlock(&sg->guest_table_lock);
2099	/* Make pgt read-only in parent gmap page table (not the pgste) */
2100	raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2101	origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2102	rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2103	spin_lock(&sg->guest_table_lock);
2104	if (!rc) {
2105		table = gmap_table_walk(sg, saddr, 1);
2106		if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) != s_pgt)
2107			rc = -EAGAIN;		/* Race with unshadow */
2108		else
2109			*table &= ~_SEGMENT_ENTRY_INVALID;
2110	} else {
2111		gmap_unshadow_pgt(sg, raddr);
2112	}
2113	spin_unlock(&sg->guest_table_lock);
2114	return rc;
2115out_free:
2116	spin_unlock(&sg->guest_table_lock);
2117	page_table_free_pgste(page);
2118	return rc;
2119
2120}
2121EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2122
2123/**
2124 * gmap_shadow_page - create a shadow page mapping
2125 * @sg: pointer to the shadow guest address space structure
2126 * @saddr: faulting address in the shadow gmap
2127 * @pte: pte in parent gmap address space to get shadowed
2128 *
2129 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2130 * shadow table structure is incomplete, -ENOMEM if out of memory and
2131 * -EFAULT if an address in the parent gmap could not be resolved.
2132 *
2133 * Called with sg->mm->mmap_lock in read.
2134 */
2135int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2136{
2137	struct gmap *parent;
2138	struct gmap_rmap *rmap;
2139	unsigned long vmaddr, paddr;
2140	spinlock_t *ptl;
2141	pte_t *sptep, *tptep;
2142	int prot;
2143	int rc;
2144
2145	BUG_ON(!gmap_is_shadow(sg));
2146	parent = sg->parent;
2147	prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2148
2149	rmap = kzalloc(sizeof(*rmap), GFP_KERNEL_ACCOUNT);
2150	if (!rmap)
2151		return -ENOMEM;
2152	rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2153
2154	while (1) {
2155		paddr = pte_val(pte) & PAGE_MASK;
2156		vmaddr = __gmap_translate(parent, paddr);
2157		if (IS_ERR_VALUE(vmaddr)) {
2158			rc = vmaddr;
2159			break;
2160		}
2161		rc = radix_tree_preload(GFP_KERNEL_ACCOUNT);
2162		if (rc)
2163			break;
2164		rc = -EAGAIN;
2165		sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2166		if (sptep) {
2167			spin_lock(&sg->guest_table_lock);
2168			/* Get page table pointer */
2169			tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2170			if (!tptep) {
2171				spin_unlock(&sg->guest_table_lock);
2172				gmap_pte_op_end(sptep, ptl);
2173				radix_tree_preload_end();
2174				break;
2175			}
2176			rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2177			if (rc > 0) {
2178				/* Success and a new mapping */
2179				gmap_insert_rmap(sg, vmaddr, rmap);
2180				rmap = NULL;
2181				rc = 0;
2182			}
2183			gmap_pte_op_end(sptep, ptl);
2184			spin_unlock(&sg->guest_table_lock);
2185		}
2186		radix_tree_preload_end();
2187		if (!rc)
2188			break;
2189		rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2190		if (rc)
2191			break;
2192	}
2193	kfree(rmap);
2194	return rc;
2195}
2196EXPORT_SYMBOL_GPL(gmap_shadow_page);
2197
2198/*
2199 * gmap_shadow_notify - handle notifications for shadow gmap
2200 *
2201 * Called with sg->parent->shadow_lock.
2202 */
2203static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2204			       unsigned long gaddr)
2205{
2206	struct gmap_rmap *rmap, *rnext, *head;
2207	unsigned long start, end, bits, raddr;
2208
2209	BUG_ON(!gmap_is_shadow(sg));
2210
2211	spin_lock(&sg->guest_table_lock);
2212	if (sg->removed) {
2213		spin_unlock(&sg->guest_table_lock);
2214		return;
2215	}
2216	/* Check for top level table */
2217	start = sg->orig_asce & _ASCE_ORIGIN;
2218	end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2219	if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2220	    gaddr < end) {
2221		/* The complete shadow table has to go */
2222		gmap_unshadow(sg);
2223		spin_unlock(&sg->guest_table_lock);
2224		list_del(&sg->list);
2225		gmap_put(sg);
2226		return;
2227	}
2228	/* Remove the page table tree from on specific entry */
2229	head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2230	gmap_for_each_rmap_safe(rmap, rnext, head) {
2231		bits = rmap->raddr & _SHADOW_RMAP_MASK;
2232		raddr = rmap->raddr ^ bits;
2233		switch (bits) {
2234		case _SHADOW_RMAP_REGION1:
2235			gmap_unshadow_r2t(sg, raddr);
2236			break;
2237		case _SHADOW_RMAP_REGION2:
2238			gmap_unshadow_r3t(sg, raddr);
2239			break;
2240		case _SHADOW_RMAP_REGION3:
2241			gmap_unshadow_sgt(sg, raddr);
2242			break;
2243		case _SHADOW_RMAP_SEGMENT:
2244			gmap_unshadow_pgt(sg, raddr);
2245			break;
2246		case _SHADOW_RMAP_PGTABLE:
2247			gmap_unshadow_page(sg, raddr);
2248			break;
2249		}
2250		kfree(rmap);
2251	}
2252	spin_unlock(&sg->guest_table_lock);
2253}
2254
2255/**
2256 * ptep_notify - call all invalidation callbacks for a specific pte.
2257 * @mm: pointer to the process mm_struct
2258 * @vmaddr: virtual address in the process address space
2259 * @pte: pointer to the page table entry
2260 * @bits: bits from the pgste that caused the notify call
2261 *
2262 * This function is assumed to be called with the page table lock held
2263 * for the pte to notify.
2264 */
2265void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2266		 pte_t *pte, unsigned long bits)
2267{
2268	unsigned long offset, gaddr = 0;
2269	unsigned long *table;
2270	struct gmap *gmap, *sg, *next;
2271
2272	offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2273	offset = offset * (PAGE_SIZE / sizeof(pte_t));
2274	rcu_read_lock();
2275	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2276		spin_lock(&gmap->guest_table_lock);
2277		table = radix_tree_lookup(&gmap->host_to_guest,
2278					  vmaddr >> PMD_SHIFT);
2279		if (table)
2280			gaddr = __gmap_segment_gaddr(table) + offset;
2281		spin_unlock(&gmap->guest_table_lock);
2282		if (!table)
2283			continue;
2284
2285		if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2286			spin_lock(&gmap->shadow_lock);
2287			list_for_each_entry_safe(sg, next,
2288						 &gmap->children, list)
2289				gmap_shadow_notify(sg, vmaddr, gaddr);
2290			spin_unlock(&gmap->shadow_lock);
2291		}
2292		if (bits & PGSTE_IN_BIT)
2293			gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2294	}
2295	rcu_read_unlock();
2296}
2297EXPORT_SYMBOL_GPL(ptep_notify);
2298
2299static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2300			     unsigned long gaddr)
2301{
2302	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_IN)));
2303	gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2304}
2305
2306/**
2307 * gmap_pmdp_xchg - exchange a gmap pmd with another
2308 * @gmap: pointer to the guest address space structure
2309 * @pmdp: pointer to the pmd entry
2310 * @new: replacement entry
2311 * @gaddr: the affected guest address
2312 *
2313 * This function is assumed to be called with the guest_table_lock
2314 * held.
2315 */
2316static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2317			   unsigned long gaddr)
2318{
2319	gaddr &= HPAGE_MASK;
2320	pmdp_notify_gmap(gmap, pmdp, gaddr);
2321	new = clear_pmd_bit(new, __pgprot(_SEGMENT_ENTRY_GMAP_IN));
2322	if (MACHINE_HAS_TLB_GUEST)
2323		__pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2324			    IDTE_GLOBAL);
2325	else if (MACHINE_HAS_IDTE)
2326		__pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2327	else
2328		__pmdp_csp(pmdp);
2329	set_pmd(pmdp, new);
2330}
2331
2332static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2333			    int purge)
2334{
2335	pmd_t *pmdp;
2336	struct gmap *gmap;
2337	unsigned long gaddr;
2338
2339	rcu_read_lock();
2340	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2341		spin_lock(&gmap->guest_table_lock);
2342		pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2343						  vmaddr >> PMD_SHIFT);
2344		if (pmdp) {
2345			gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2346			pmdp_notify_gmap(gmap, pmdp, gaddr);
2347			WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2348						   _SEGMENT_ENTRY_GMAP_UC));
2349			if (purge)
2350				__pmdp_csp(pmdp);
2351			set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
2352		}
2353		spin_unlock(&gmap->guest_table_lock);
2354	}
2355	rcu_read_unlock();
2356}
2357
2358/**
2359 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2360 *                        flushing
2361 * @mm: pointer to the process mm_struct
2362 * @vmaddr: virtual address in the process address space
2363 */
2364void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2365{
2366	gmap_pmdp_clear(mm, vmaddr, 0);
2367}
2368EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2369
2370/**
2371 * gmap_pmdp_csp - csp all affected guest pmd entries
2372 * @mm: pointer to the process mm_struct
2373 * @vmaddr: virtual address in the process address space
2374 */
2375void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2376{
2377	gmap_pmdp_clear(mm, vmaddr, 1);
2378}
2379EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2380
2381/**
2382 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2383 * @mm: pointer to the process mm_struct
2384 * @vmaddr: virtual address in the process address space
2385 */
2386void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2387{
2388	unsigned long *entry, gaddr;
2389	struct gmap *gmap;
2390	pmd_t *pmdp;
2391
2392	rcu_read_lock();
2393	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2394		spin_lock(&gmap->guest_table_lock);
2395		entry = radix_tree_delete(&gmap->host_to_guest,
2396					  vmaddr >> PMD_SHIFT);
2397		if (entry) {
2398			pmdp = (pmd_t *)entry;
2399			gaddr = __gmap_segment_gaddr(entry);
2400			pmdp_notify_gmap(gmap, pmdp, gaddr);
2401			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2402					   _SEGMENT_ENTRY_GMAP_UC));
2403			if (MACHINE_HAS_TLB_GUEST)
2404				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2405					    gmap->asce, IDTE_LOCAL);
2406			else if (MACHINE_HAS_IDTE)
2407				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2408			*entry = _SEGMENT_ENTRY_EMPTY;
2409		}
2410		spin_unlock(&gmap->guest_table_lock);
2411	}
2412	rcu_read_unlock();
2413}
2414EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2415
2416/**
2417 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2418 * @mm: pointer to the process mm_struct
2419 * @vmaddr: virtual address in the process address space
2420 */
2421void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2422{
2423	unsigned long *entry, gaddr;
2424	struct gmap *gmap;
2425	pmd_t *pmdp;
2426
2427	rcu_read_lock();
2428	list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2429		spin_lock(&gmap->guest_table_lock);
2430		entry = radix_tree_delete(&gmap->host_to_guest,
2431					  vmaddr >> PMD_SHIFT);
2432		if (entry) {
2433			pmdp = (pmd_t *)entry;
2434			gaddr = __gmap_segment_gaddr(entry);
2435			pmdp_notify_gmap(gmap, pmdp, gaddr);
2436			WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2437					   _SEGMENT_ENTRY_GMAP_UC));
2438			if (MACHINE_HAS_TLB_GUEST)
2439				__pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2440					    gmap->asce, IDTE_GLOBAL);
2441			else if (MACHINE_HAS_IDTE)
2442				__pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2443			else
2444				__pmdp_csp(pmdp);
2445			*entry = _SEGMENT_ENTRY_EMPTY;
2446		}
2447		spin_unlock(&gmap->guest_table_lock);
2448	}
2449	rcu_read_unlock();
2450}
2451EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2452
2453/**
2454 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2455 * @gmap: pointer to guest address space
2456 * @pmdp: pointer to the pmd to be tested
2457 * @gaddr: virtual address in the guest address space
2458 *
2459 * This function is assumed to be called with the guest_table_lock
2460 * held.
2461 */
2462static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2463					  unsigned long gaddr)
2464{
2465	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2466		return false;
2467
2468	/* Already protected memory, which did not change is clean */
2469	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2470	    !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2471		return false;
2472
2473	/* Clear UC indication and reset protection */
2474	set_pmd(pmdp, clear_pmd_bit(*pmdp, __pgprot(_SEGMENT_ENTRY_GMAP_UC)));
2475	gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2476	return true;
2477}
2478
2479/**
2480 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2481 * @gmap: pointer to guest address space
2482 * @bitmap: dirty bitmap for this pmd
2483 * @gaddr: virtual address in the guest address space
2484 * @vmaddr: virtual address in the host address space
2485 *
2486 * This function is assumed to be called with the guest_table_lock
2487 * held.
2488 */
2489void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2490			     unsigned long gaddr, unsigned long vmaddr)
2491{
2492	int i;
2493	pmd_t *pmdp;
2494	pte_t *ptep;
2495	spinlock_t *ptl;
2496
2497	pmdp = gmap_pmd_op_walk(gmap, gaddr);
2498	if (!pmdp)
2499		return;
2500
2501	if (pmd_large(*pmdp)) {
2502		if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2503			bitmap_fill(bitmap, _PAGE_ENTRIES);
2504	} else {
2505		for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2506			ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2507			if (!ptep)
2508				continue;
2509			if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2510				set_bit(i, bitmap);
2511			pte_unmap_unlock(ptep, ptl);
2512		}
2513	}
2514	gmap_pmd_op_end(gmap, pmdp);
2515}
2516EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2517
2518#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2519static int thp_split_walk_pmd_entry(pmd_t *pmd, unsigned long addr,
2520				    unsigned long end, struct mm_walk *walk)
2521{
2522	struct vm_area_struct *vma = walk->vma;
2523
2524	split_huge_pmd(vma, pmd, addr);
2525	return 0;
2526}
2527
2528static const struct mm_walk_ops thp_split_walk_ops = {
2529	.pmd_entry	= thp_split_walk_pmd_entry,
2530	.walk_lock	= PGWALK_WRLOCK_VERIFY,
2531};
2532
2533static inline void thp_split_mm(struct mm_struct *mm)
2534{
2535	struct vm_area_struct *vma;
2536	VMA_ITERATOR(vmi, mm, 0);
2537
2538	for_each_vma(vmi, vma) {
2539		vm_flags_mod(vma, VM_NOHUGEPAGE, VM_HUGEPAGE);
2540		walk_page_vma(vma, &thp_split_walk_ops, NULL);
2541	}
2542	mm->def_flags |= VM_NOHUGEPAGE;
2543}
2544#else
2545static inline void thp_split_mm(struct mm_struct *mm)
2546{
2547}
2548#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2549
2550/*
2551 * Remove all empty zero pages from the mapping for lazy refaulting
2552 * - This must be called after mm->context.has_pgste is set, to avoid
2553 *   future creation of zero pages
2554 * - This must be called after THP was disabled.
2555 *
2556 * mm contracts with s390, that even if mm were to remove a page table,
2557 * racing with the loop below and so causing pte_offset_map_lock() to fail,
2558 * it will never insert a page table containing empty zero pages once
2559 * mm_forbids_zeropage(mm) i.e. mm->context.has_pgste is set.
2560 */
2561static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2562			   unsigned long end, struct mm_walk *walk)
2563{
2564	unsigned long addr;
2565
2566	for (addr = start; addr != end; addr += PAGE_SIZE) {
2567		pte_t *ptep;
2568		spinlock_t *ptl;
2569
2570		ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2571		if (!ptep)
2572			break;
2573		if (is_zero_pfn(pte_pfn(*ptep)))
2574			ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2575		pte_unmap_unlock(ptep, ptl);
2576	}
2577	return 0;
2578}
2579
2580static const struct mm_walk_ops zap_zero_walk_ops = {
2581	.pmd_entry	= __zap_zero_pages,
2582	.walk_lock	= PGWALK_WRLOCK,
2583};
2584
2585/*
2586 * switch on pgstes for its userspace process (for kvm)
2587 */
2588int s390_enable_sie(void)
2589{
2590	struct mm_struct *mm = current->mm;
2591
2592	/* Do we have pgstes? if yes, we are done */
2593	if (mm_has_pgste(mm))
2594		return 0;
2595	/* Fail if the page tables are 2K */
2596	if (!mm_alloc_pgste(mm))
2597		return -EINVAL;
2598	mmap_write_lock(mm);
2599	mm->context.has_pgste = 1;
2600	/* split thp mappings and disable thp for future mappings */
2601	thp_split_mm(mm);
2602	walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2603	mmap_write_unlock(mm);
2604	return 0;
2605}
2606EXPORT_SYMBOL_GPL(s390_enable_sie);
2607
2608int gmap_mark_unmergeable(void)
2609{
2610	/*
2611	 * Make sure to disable KSM (if enabled for the whole process or
2612	 * individual VMAs). Note that nothing currently hinders user space
2613	 * from re-enabling it.
2614	 */
2615	return ksm_disable(current->mm);
2616}
2617EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2618
2619/*
2620 * Enable storage key handling from now on and initialize the storage
2621 * keys with the default key.
2622 */
2623static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2624				  unsigned long next, struct mm_walk *walk)
2625{
2626	/* Clear storage key */
2627	ptep_zap_key(walk->mm, addr, pte);
2628	return 0;
2629}
2630
2631/*
2632 * Give a chance to schedule after setting a key to 256 pages.
2633 * We only hold the mm lock, which is a rwsem and the kvm srcu.
2634 * Both can sleep.
2635 */
2636static int __s390_enable_skey_pmd(pmd_t *pmd, unsigned long addr,
2637				  unsigned long next, struct mm_walk *walk)
2638{
2639	cond_resched();
2640	return 0;
2641}
2642
2643static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2644				      unsigned long hmask, unsigned long next,
2645				      struct mm_walk *walk)
2646{
2647	pmd_t *pmd = (pmd_t *)pte;
2648	unsigned long start, end;
2649	struct page *page = pmd_page(*pmd);
2650
2651	/*
2652	 * The write check makes sure we do not set a key on shared
2653	 * memory. This is needed as the walker does not differentiate
2654	 * between actual guest memory and the process executable or
2655	 * shared libraries.
2656	 */
2657	if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2658	    !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2659		return 0;
2660
2661	start = pmd_val(*pmd) & HPAGE_MASK;
2662	end = start + HPAGE_SIZE - 1;
2663	__storage_key_init_range(start, end);
2664	set_bit(PG_arch_1, &page->flags);
2665	cond_resched();
2666	return 0;
2667}
2668
2669static const struct mm_walk_ops enable_skey_walk_ops = {
2670	.hugetlb_entry		= __s390_enable_skey_hugetlb,
2671	.pte_entry		= __s390_enable_skey_pte,
2672	.pmd_entry		= __s390_enable_skey_pmd,
2673	.walk_lock		= PGWALK_WRLOCK,
2674};
2675
2676int s390_enable_skey(void)
2677{
2678	struct mm_struct *mm = current->mm;
2679	int rc = 0;
2680
2681	mmap_write_lock(mm);
2682	if (mm_uses_skeys(mm))
2683		goto out_up;
2684
2685	mm->context.uses_skeys = 1;
2686	rc = gmap_mark_unmergeable();
2687	if (rc) {
2688		mm->context.uses_skeys = 0;
2689		goto out_up;
2690	}
2691	walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2692
2693out_up:
2694	mmap_write_unlock(mm);
2695	return rc;
2696}
2697EXPORT_SYMBOL_GPL(s390_enable_skey);
2698
2699/*
2700 * Reset CMMA state, make all pages stable again.
2701 */
2702static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2703			     unsigned long next, struct mm_walk *walk)
2704{
2705	ptep_zap_unused(walk->mm, addr, pte, 1);
2706	return 0;
2707}
2708
2709static const struct mm_walk_ops reset_cmma_walk_ops = {
2710	.pte_entry		= __s390_reset_cmma,
2711	.walk_lock		= PGWALK_WRLOCK,
2712};
2713
2714void s390_reset_cmma(struct mm_struct *mm)
2715{
2716	mmap_write_lock(mm);
2717	walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2718	mmap_write_unlock(mm);
2719}
2720EXPORT_SYMBOL_GPL(s390_reset_cmma);
2721
2722#define GATHER_GET_PAGES 32
2723
2724struct reset_walk_state {
2725	unsigned long next;
2726	unsigned long count;
2727	unsigned long pfns[GATHER_GET_PAGES];
2728};
2729
2730static int s390_gather_pages(pte_t *ptep, unsigned long addr,
2731			     unsigned long next, struct mm_walk *walk)
2732{
2733	struct reset_walk_state *p = walk->private;
2734	pte_t pte = READ_ONCE(*ptep);
2735
2736	if (pte_present(pte)) {
2737		/* we have a reference from the mapping, take an extra one */
2738		get_page(phys_to_page(pte_val(pte)));
2739		p->pfns[p->count] = phys_to_pfn(pte_val(pte));
2740		p->next = next;
2741		p->count++;
2742	}
2743	return p->count >= GATHER_GET_PAGES;
2744}
2745
2746static const struct mm_walk_ops gather_pages_ops = {
2747	.pte_entry = s390_gather_pages,
2748	.walk_lock = PGWALK_RDLOCK,
2749};
2750
2751/*
2752 * Call the Destroy secure page UVC on each page in the given array of PFNs.
2753 * Each page needs to have an extra reference, which will be released here.
2754 */
2755void s390_uv_destroy_pfns(unsigned long count, unsigned long *pfns)
2756{
2757	unsigned long i;
2758
2759	for (i = 0; i < count; i++) {
2760		/* we always have an extra reference */
2761		uv_destroy_owned_page(pfn_to_phys(pfns[i]));
2762		/* get rid of the extra reference */
2763		put_page(pfn_to_page(pfns[i]));
2764		cond_resched();
2765	}
2766}
2767EXPORT_SYMBOL_GPL(s390_uv_destroy_pfns);
2768
2769/**
2770 * __s390_uv_destroy_range - Call the destroy secure page UVC on each page
2771 * in the given range of the given address space.
2772 * @mm: the mm to operate on
2773 * @start: the start of the range
2774 * @end: the end of the range
2775 * @interruptible: if not 0, stop when a fatal signal is received
2776 *
2777 * Walk the given range of the given address space and call the destroy
2778 * secure page UVC on each page. Optionally exit early if a fatal signal is
2779 * pending.
2780 *
2781 * Return: 0 on success, -EINTR if the function stopped before completing
2782 */
2783int __s390_uv_destroy_range(struct mm_struct *mm, unsigned long start,
2784			    unsigned long end, bool interruptible)
2785{
2786	struct reset_walk_state state = { .next = start };
2787	int r = 1;
2788
2789	while (r > 0) {
2790		state.count = 0;
2791		mmap_read_lock(mm);
2792		r = walk_page_range(mm, state.next, end, &gather_pages_ops, &state);
2793		mmap_read_unlock(mm);
2794		cond_resched();
2795		s390_uv_destroy_pfns(state.count, state.pfns);
2796		if (interruptible && fatal_signal_pending(current))
2797			return -EINTR;
2798	}
2799	return 0;
2800}
2801EXPORT_SYMBOL_GPL(__s390_uv_destroy_range);
2802
2803/**
2804 * s390_unlist_old_asce - Remove the topmost level of page tables from the
2805 * list of page tables of the gmap.
2806 * @gmap: the gmap whose table is to be removed
2807 *
2808 * On s390x, KVM keeps a list of all pages containing the page tables of the
2809 * gmap (the CRST list). This list is used at tear down time to free all
2810 * pages that are now not needed anymore.
2811 *
2812 * This function removes the topmost page of the tree (the one pointed to by
2813 * the ASCE) from the CRST list.
2814 *
2815 * This means that it will not be freed when the VM is torn down, and needs
2816 * to be handled separately by the caller, unless a leak is actually
2817 * intended. Notice that this function will only remove the page from the
2818 * list, the page will still be used as a top level page table (and ASCE).
2819 */
2820void s390_unlist_old_asce(struct gmap *gmap)
2821{
2822	struct page *old;
2823
2824	old = virt_to_page(gmap->table);
2825	spin_lock(&gmap->guest_table_lock);
2826	list_del(&old->lru);
2827	/*
2828	 * Sometimes the topmost page might need to be "removed" multiple
2829	 * times, for example if the VM is rebooted into secure mode several
2830	 * times concurrently, or if s390_replace_asce fails after calling
2831	 * s390_remove_old_asce and is attempted again later. In that case
2832	 * the old asce has been removed from the list, and therefore it
2833	 * will not be freed when the VM terminates, but the ASCE is still
2834	 * in use and still pointed to.
2835	 * A subsequent call to replace_asce will follow the pointer and try
2836	 * to remove the same page from the list again.
2837	 * Therefore it's necessary that the page of the ASCE has valid
2838	 * pointers, so list_del can work (and do nothing) without
2839	 * dereferencing stale or invalid pointers.
2840	 */
2841	INIT_LIST_HEAD(&old->lru);
2842	spin_unlock(&gmap->guest_table_lock);
2843}
2844EXPORT_SYMBOL_GPL(s390_unlist_old_asce);
2845
2846/**
2847 * s390_replace_asce - Try to replace the current ASCE of a gmap with a copy
2848 * @gmap: the gmap whose ASCE needs to be replaced
2849 *
2850 * If the ASCE is a SEGMENT type then this function will return -EINVAL,
2851 * otherwise the pointers in the host_to_guest radix tree will keep pointing
2852 * to the wrong pages, causing use-after-free and memory corruption.
2853 * If the allocation of the new top level page table fails, the ASCE is not
2854 * replaced.
2855 * In any case, the old ASCE is always removed from the gmap CRST list.
2856 * Therefore the caller has to make sure to save a pointer to it
2857 * beforehand, unless a leak is actually intended.
2858 */
2859int s390_replace_asce(struct gmap *gmap)
2860{
2861	unsigned long asce;
2862	struct page *page;
2863	void *table;
2864
2865	s390_unlist_old_asce(gmap);
2866
2867	/* Replacing segment type ASCEs would cause serious issues */
2868	if ((gmap->asce & _ASCE_TYPE_MASK) == _ASCE_TYPE_SEGMENT)
2869		return -EINVAL;
2870
2871	page = gmap_alloc_crst();
2872	if (!page)
2873		return -ENOMEM;
2874	page->index = 0;
2875	table = page_to_virt(page);
2876	memcpy(table, gmap->table, 1UL << (CRST_ALLOC_ORDER + PAGE_SHIFT));
2877
2878	/*
2879	 * The caller has to deal with the old ASCE, but here we make sure
2880	 * the new one is properly added to the CRST list, so that
2881	 * it will be freed when the VM is torn down.
2882	 */
2883	spin_lock(&gmap->guest_table_lock);
2884	list_add(&page->lru, &gmap->crst_list);
2885	spin_unlock(&gmap->guest_table_lock);
2886
2887	/* Set new table origin while preserving existing ASCE control bits */
2888	asce = (gmap->asce & ~_ASCE_ORIGIN) | __pa(table);
2889	WRITE_ONCE(gmap->asce, asce);
2890	WRITE_ONCE(gmap->mm->context.gmap_asce, asce);
2891	WRITE_ONCE(gmap->table, table);
2892
2893	return 0;
2894}
2895EXPORT_SYMBOL_GPL(s390_replace_asce);