Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* Key garbage collector
  3 *
  4 * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
  5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
  6 */
  7
  8#include <linux/slab.h>
  9#include <linux/security.h>
 10#include <keys/keyring-type.h>
 11#include "internal.h"
 12
 13/*
 14 * Delay between key revocation/expiry in seconds
 15 */
 16unsigned key_gc_delay = 5 * 60;
 17
 18/*
 19 * Reaper for unused keys.
 20 */
 21static void key_garbage_collector(struct work_struct *work);
 22DECLARE_WORK(key_gc_work, key_garbage_collector);
 23
 24/*
 25 * Reaper for links from keyrings to dead keys.
 26 */
 27static void key_gc_timer_func(struct timer_list *);
 28static DEFINE_TIMER(key_gc_timer, key_gc_timer_func);
 29
 30static time64_t key_gc_next_run = TIME64_MAX;
 31static struct key_type *key_gc_dead_keytype;
 32
 33static unsigned long key_gc_flags;
 34#define KEY_GC_KEY_EXPIRED	0	/* A key expired and needs unlinking */
 35#define KEY_GC_REAP_KEYTYPE	1	/* A keytype is being unregistered */
 36#define KEY_GC_REAPING_KEYTYPE	2	/* Cleared when keytype reaped */
 37
 38
 39/*
 40 * Any key whose type gets unregistered will be re-typed to this if it can't be
 41 * immediately unlinked.
 42 */
 43struct key_type key_type_dead = {
 44	.name = ".dead",
 45};
 
 
 
 
 
 
 46
 47/*
 48 * Schedule a garbage collection run.
 49 * - time precision isn't particularly important
 50 */
 51void key_schedule_gc(time64_t gc_at)
 52{
 53	unsigned long expires;
 54	time64_t now = ktime_get_real_seconds();
 55
 56	kenter("%lld", gc_at - now);
 57
 58	if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
 59		kdebug("IMMEDIATE");
 60		schedule_work(&key_gc_work);
 61	} else if (gc_at < key_gc_next_run) {
 62		kdebug("DEFERRED");
 63		key_gc_next_run = gc_at;
 64		expires = jiffies + (gc_at - now) * HZ;
 65		mod_timer(&key_gc_timer, expires);
 66	}
 67}
 68
 69/*
 70 * Set the expiration time on a key.
 71 */
 72void key_set_expiry(struct key *key, time64_t expiry)
 73{
 74	key->expiry = expiry;
 75	if (expiry != TIME64_MAX) {
 76		if (!(key->type->flags & KEY_TYPE_INSTANT_REAP))
 77			expiry += key_gc_delay;
 78		key_schedule_gc(expiry);
 79	}
 80}
 81
 82/*
 83 * Schedule a dead links collection run.
 84 */
 85void key_schedule_gc_links(void)
 86{
 87	set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
 88	schedule_work(&key_gc_work);
 89}
 90
 91/*
 92 * Some key's cleanup time was met after it expired, so we need to get the
 93 * reaper to go through a cycle finding expired keys.
 94 */
 95static void key_gc_timer_func(struct timer_list *unused)
 96{
 97	kenter("");
 98	key_gc_next_run = TIME64_MAX;
 99	key_schedule_gc_links();
100}
101
102/*
103 * Reap keys of dead type.
104 *
105 * We use three flags to make sure we see three complete cycles of the garbage
106 * collector: the first to mark keys of that type as being dead, the second to
107 * collect dead links and the third to clean up the dead keys.  We have to be
108 * careful as there may already be a cycle in progress.
109 *
110 * The caller must be holding key_types_sem.
111 */
112void key_gc_keytype(struct key_type *ktype)
 
113{
114	kenter("%s", ktype->name);
115
116	key_gc_dead_keytype = ktype;
117	set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
118	smp_mb();
119	set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
120
121	kdebug("schedule");
122	schedule_work(&key_gc_work);
123
124	kdebug("sleep");
125	wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE,
126		    TASK_UNINTERRUPTIBLE);
127
128	key_gc_dead_keytype = NULL;
129	kleave("");
130}
131
132/*
133 * Garbage collect a list of unreferenced, detached keys
134 */
135static noinline void key_gc_unused_keys(struct list_head *keys)
136{
137	while (!list_empty(keys)) {
138		struct key *key =
139			list_entry(keys->next, struct key, graveyard_link);
140		short state = key->state;
141
142		list_del(&key->graveyard_link);
143
144		kdebug("- %u", key->serial);
145		key_check(key);
146
147#ifdef CONFIG_KEY_NOTIFICATIONS
148		remove_watch_list(key->watchers, key->serial);
149		key->watchers = NULL;
150#endif
151
152		/* Throw away the key data if the key is instantiated */
153		if (state == KEY_IS_POSITIVE && key->type->destroy)
154			key->type->destroy(key);
155
156		security_key_free(key);
157
158		/* deal with the user's key tracking and quota */
159		if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
160			spin_lock(&key->user->lock);
161			key->user->qnkeys--;
162			key->user->qnbytes -= key->quotalen;
163			spin_unlock(&key->user->lock);
164		}
165
166		atomic_dec(&key->user->nkeys);
167		if (state != KEY_IS_UNINSTANTIATED)
168			atomic_dec(&key->user->nikeys);
169
170		key_user_put(key->user);
171		key_put_tag(key->domain_tag);
172		kfree(key->description);
173
174		memzero_explicit(key, sizeof(*key));
175		kmem_cache_free(key_jar, key);
176	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
177}
178
179/*
180 * Garbage collector for unused keys.
181 *
182 * This is done in process context so that we don't have to disable interrupts
183 * all over the place.  key_put() schedules this rather than trying to do the
184 * cleanup itself, which means key_put() doesn't have to sleep.
185 */
186static void key_garbage_collector(struct work_struct *work)
187{
188	static LIST_HEAD(graveyard);
189	static u8 gc_state;		/* Internal persistent state */
190#define KEY_GC_REAP_AGAIN	0x01	/* - Need another cycle */
191#define KEY_GC_REAPING_LINKS	0x02	/* - We need to reap links */
192#define KEY_GC_REAPING_DEAD_1	0x10	/* - We need to mark dead keys */
193#define KEY_GC_REAPING_DEAD_2	0x20	/* - We need to reap dead key links */
194#define KEY_GC_REAPING_DEAD_3	0x40	/* - We need to reap dead keys */
195#define KEY_GC_FOUND_DEAD_KEY	0x80	/* - We found at least one dead key */
 
 
 
 
 
 
 
 
 
 
 
196
197	struct rb_node *cursor;
198	struct key *key;
199	time64_t new_timer, limit, expiry;
200
201	kenter("[%lx,%x]", key_gc_flags, gc_state);
202
203	limit = ktime_get_real_seconds();
204
205	/* Work out what we're going to be doing in this pass */
206	gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
207	gc_state <<= 1;
208	if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
209		gc_state |= KEY_GC_REAPING_LINKS;
210
211	if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
212		gc_state |= KEY_GC_REAPING_DEAD_1;
213	kdebug("new pass %x", gc_state);
214
215	new_timer = TIME64_MAX;
216
217	/* As only this function is permitted to remove things from the key
218	 * serial tree, if cursor is non-NULL then it will always point to a
219	 * valid node in the tree - even if lock got dropped.
220	 */
221	spin_lock(&key_serial_lock);
222	cursor = rb_first(&key_serial_tree);
223
224continue_scanning:
225	while (cursor) {
226		key = rb_entry(cursor, struct key, serial_node);
227		cursor = rb_next(cursor);
228
229		if (refcount_read(&key->usage) == 0)
230			goto found_unreferenced_key;
231
232		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
233			if (key->type == key_gc_dead_keytype) {
234				gc_state |= KEY_GC_FOUND_DEAD_KEY;
235				set_bit(KEY_FLAG_DEAD, &key->flags);
236				key->perm = 0;
237				goto skip_dead_key;
238			} else if (key->type == &key_type_keyring &&
239				   key->restrict_link) {
240				goto found_restricted_keyring;
241			}
 
 
 
 
 
 
 
 
 
 
 
 
242		}
 
243
244		expiry = key->expiry;
245		if (expiry != TIME64_MAX) {
246			if (!(key->type->flags & KEY_TYPE_INSTANT_REAP))
247				expiry += key_gc_delay;
248			if (expiry > limit && expiry < new_timer) {
249				kdebug("will expire %x in %lld",
250				       key_serial(key), key->expiry - limit);
251				new_timer = key->expiry;
252			}
253		}
254
255		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
256			if (key->type == key_gc_dead_keytype)
257				gc_state |= KEY_GC_FOUND_DEAD_KEY;
258
259		if ((gc_state & KEY_GC_REAPING_LINKS) ||
260		    unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
261			if (key->type == &key_type_keyring)
262				goto found_keyring;
263		}
264
265		if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
266			if (key->type == key_gc_dead_keytype)
267				goto destroy_dead_key;
268
269	skip_dead_key:
270		if (spin_is_contended(&key_serial_lock) || need_resched())
271			goto contended;
272	}
 
 
 
 
 
 
 
 
 
 
 
 
273
274contended:
 
 
275	spin_unlock(&key_serial_lock);
276
277maybe_resched:
278	if (cursor) {
279		cond_resched();
280		spin_lock(&key_serial_lock);
281		goto continue_scanning;
282	}
283
284	/* We've completed the pass.  Set the timer if we need to and queue a
285	 * new cycle if necessary.  We keep executing cycles until we find one
286	 * where we didn't reap any keys.
287	 */
288	kdebug("pass complete");
289
290	if (new_timer != TIME64_MAX) {
291		new_timer += key_gc_delay;
292		key_schedule_gc(new_timer);
293	}
294
295	if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2) ||
296	    !list_empty(&graveyard)) {
297		/* Make sure that all pending keyring payload destructions are
298		 * fulfilled and that people aren't now looking at dead or
299		 * dying keys that they don't have a reference upon or a link
300		 * to.
301		 */
302		kdebug("gc sync");
303		synchronize_rcu();
304	}
305
306	if (!list_empty(&graveyard)) {
307		kdebug("gc keys");
308		key_gc_unused_keys(&graveyard);
309	}
310
311	if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
312				 KEY_GC_REAPING_DEAD_2))) {
313		if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
314			/* No remaining dead keys: short circuit the remaining
315			 * keytype reap cycles.
316			 */
317			kdebug("dead short");
318			gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
319			gc_state |= KEY_GC_REAPING_DEAD_3;
320		} else {
321			gc_state |= KEY_GC_REAP_AGAIN;
322		}
323	}
324
325	if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
326		kdebug("dead wake");
327		smp_mb();
328		clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
329		wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
330	}
331
332	if (gc_state & KEY_GC_REAP_AGAIN)
333		schedule_work(&key_gc_work);
334	kleave(" [end %x]", gc_state);
335	return;
336
337	/* We found an unreferenced key - once we've removed it from the tree,
338	 * we can safely drop the lock.
339	 */
340found_unreferenced_key:
341	kdebug("unrefd key %d", key->serial);
342	rb_erase(&key->serial_node, &key_serial_tree);
343	spin_unlock(&key_serial_lock);
344
345	list_add_tail(&key->graveyard_link, &graveyard);
346	gc_state |= KEY_GC_REAP_AGAIN;
347	goto maybe_resched;
348
349	/* We found a restricted keyring and need to update the restriction if
350	 * it is associated with the dead key type.
351	 */
352found_restricted_keyring:
353	spin_unlock(&key_serial_lock);
354	keyring_restriction_gc(key, key_gc_dead_keytype);
355	goto maybe_resched;
356
357	/* We found a keyring and we need to check the payload for links to
358	 * dead or expired keys.  We don't flag another reap immediately as we
359	 * have to wait for the old payload to be destroyed by RCU before we
360	 * can reap the keys to which it refers.
361	 */
362found_keyring:
363	spin_unlock(&key_serial_lock);
364	keyring_gc(key, limit);
365	goto maybe_resched;
366
367	/* We found a dead key that is still referenced.  Reset its type and
368	 * destroy its payload with its semaphore held.
369	 */
370destroy_dead_key:
371	spin_unlock(&key_serial_lock);
372	kdebug("destroy key %d", key->serial);
373	down_write(&key->sem);
374	key->type = &key_type_dead;
375	if (key_gc_dead_keytype->destroy)
376		key_gc_dead_keytype->destroy(key);
377	memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
378	up_write(&key->sem);
379	goto maybe_resched;
380}
v3.1
 
  1/* Key garbage collector
  2 *
  3 * Copyright (C) 2009 Red Hat, Inc. All Rights Reserved.
  4 * Written by David Howells (dhowells@redhat.com)
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public Licence
  8 * as published by the Free Software Foundation; either version
  9 * 2 of the Licence, or (at your option) any later version.
 10 */
 11
 12#include <linux/module.h>
 
 13#include <keys/keyring-type.h>
 14#include "internal.h"
 15
 16/*
 17 * Delay between key revocation/expiry in seconds
 18 */
 19unsigned key_gc_delay = 5 * 60;
 20
 21/*
 22 * Reaper
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 23 */
 24static void key_gc_timer_func(unsigned long);
 25static void key_garbage_collector(struct work_struct *);
 26static DEFINE_TIMER(key_gc_timer, key_gc_timer_func, 0, 0);
 27static DECLARE_WORK(key_gc_work, key_garbage_collector);
 28static key_serial_t key_gc_cursor; /* the last key the gc considered */
 29static bool key_gc_again;
 30static unsigned long key_gc_executing;
 31static time_t key_gc_next_run = LONG_MAX;
 32static time_t key_gc_new_timer;
 33
 34/*
 35 * Schedule a garbage collection run.
 36 * - time precision isn't particularly important
 37 */
 38void key_schedule_gc(time_t gc_at)
 39{
 40	unsigned long expires;
 41	time_t now = current_kernel_time().tv_sec;
 42
 43	kenter("%ld", gc_at - now);
 44
 45	if (gc_at <= now) {
 
 46		schedule_work(&key_gc_work);
 47	} else if (gc_at < key_gc_next_run) {
 
 
 48		expires = jiffies + (gc_at - now) * HZ;
 49		mod_timer(&key_gc_timer, expires);
 50	}
 51}
 52
 53/*
 54 * The garbage collector timer kicked off
 55 */
 56static void key_gc_timer_func(unsigned long data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 57{
 58	kenter("");
 59	key_gc_next_run = LONG_MAX;
 60	schedule_work(&key_gc_work);
 61}
 62
 63/*
 64 * Garbage collect pointers from a keyring.
 65 *
 66 * Return true if we altered the keyring.
 
 
 
 
 
 67 */
 68static bool key_gc_keyring(struct key *keyring, time_t limit)
 69	__releases(key_serial_lock)
 70{
 71	struct keyring_list *klist;
 72	struct key *key;
 73	int loop;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 74
 75	kenter("%x", key_serial(keyring));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76
 77	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 78		goto dont_gc;
 
 
 
 
 
 79
 80	/* scan the keyring looking for dead keys */
 81	rcu_read_lock();
 82	klist = rcu_dereference(keyring->payload.subscriptions);
 83	if (!klist)
 84		goto unlock_dont_gc;
 85
 86	for (loop = klist->nkeys - 1; loop >= 0; loop--) {
 87		key = klist->keys[loop];
 88		if (test_bit(KEY_FLAG_DEAD, &key->flags) ||
 89		    (key->expiry > 0 && key->expiry <= limit))
 90			goto do_gc;
 91	}
 92
 93unlock_dont_gc:
 94	rcu_read_unlock();
 95dont_gc:
 96	kleave(" = false");
 97	return false;
 98
 99do_gc:
100	rcu_read_unlock();
101	key_gc_cursor = keyring->serial;
102	key_get(keyring);
103	spin_unlock(&key_serial_lock);
104	keyring_gc(keyring, limit);
105	key_put(keyring);
106	kleave(" = true");
107	return true;
108}
109
110/*
111 * Garbage collector for keys.  This involves scanning the keyrings for dead,
112 * expired and revoked keys that have overstayed their welcome
 
 
 
113 */
114static void key_garbage_collector(struct work_struct *work)
115{
116	struct rb_node *rb;
117	key_serial_t cursor;
118	struct key *key, *xkey;
119	time_t new_timer = LONG_MAX, limit, now;
120
121	now = current_kernel_time().tv_sec;
122	kenter("[%x,%ld]", key_gc_cursor, key_gc_new_timer - now);
123
124	if (test_and_set_bit(0, &key_gc_executing)) {
125		key_schedule_gc(current_kernel_time().tv_sec + 1);
126		kleave(" [busy; deferring]");
127		return;
128	}
129
130	limit = now;
131	if (limit > key_gc_delay)
132		limit -= key_gc_delay;
133	else
134		limit = key_gc_delay;
135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136	spin_lock(&key_serial_lock);
 
137
138	if (unlikely(RB_EMPTY_ROOT(&key_serial_tree))) {
139		spin_unlock(&key_serial_lock);
140		clear_bit(0, &key_gc_executing);
141		return;
142	}
143
144	cursor = key_gc_cursor;
145	if (cursor < 0)
146		cursor = 0;
147	if (cursor > 0)
148		new_timer = key_gc_new_timer;
149	else
150		key_gc_again = false;
151
152	/* find the first key above the cursor */
153	key = NULL;
154	rb = key_serial_tree.rb_node;
155	while (rb) {
156		xkey = rb_entry(rb, struct key, serial_node);
157		if (cursor < xkey->serial) {
158			key = xkey;
159			rb = rb->rb_left;
160		} else if (cursor > xkey->serial) {
161			rb = rb->rb_right;
162		} else {
163			rb = rb_next(rb);
164			if (!rb)
165				goto reached_the_end;
166			key = rb_entry(rb, struct key, serial_node);
167			break;
168		}
169	}
170
171	if (!key)
172		goto reached_the_end;
 
 
 
 
 
 
 
 
173
174	/* trawl through the keys looking for keyrings */
175	for (;;) {
176		if (key->expiry > limit && key->expiry < new_timer) {
177			kdebug("will expire %x in %ld",
178			       key_serial(key), key->expiry - limit);
179			new_timer = key->expiry;
 
 
180		}
181
182		if (key->type == &key_type_keyring &&
183		    key_gc_keyring(key, limit))
184			/* the gc had to release our lock so that the keyring
185			 * could be modified, so we have to get it again */
186			goto gc_released_our_lock;
187
188		rb = rb_next(&key->serial_node);
189		if (!rb)
190			goto reached_the_end;
191		key = rb_entry(rb, struct key, serial_node);
192	}
193
194gc_released_our_lock:
195	kdebug("gc_released_our_lock");
196	key_gc_new_timer = new_timer;
197	key_gc_again = true;
198	clear_bit(0, &key_gc_executing);
199	schedule_work(&key_gc_work);
200	kleave(" [continue]");
201	return;
202
203	/* when we reach the end of the run, we set the timer for the next one */
204reached_the_end:
205	kdebug("reached_the_end");
206	spin_unlock(&key_serial_lock);
207	key_gc_new_timer = new_timer;
208	key_gc_cursor = 0;
209	clear_bit(0, &key_gc_executing);
210
211	if (key_gc_again) {
212		/* there may have been a key that expired whilst we were
213		 * scanning, so if we discarded any links we should do another
214		 * scan */
215		new_timer = now + 1;
216		key_schedule_gc(new_timer);
217	} else if (new_timer < LONG_MAX) {
 
 
 
 
218		new_timer += key_gc_delay;
219		key_schedule_gc(new_timer);
220	}
221	kleave(" [end]");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222}