Linux Audio

Check our new training course

Loading...
v6.8
    1// SPDX-License-Identifier: GPL-2.0-or-later
    2/*
    3 *      NET3    Protocol independent device support routines.
 
 
 
 
 
    4 *
    5 *	Derived from the non IP parts of dev.c 1.0.19
    6 *              Authors:	Ross Biro
    7 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
    8 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
    9 *
   10 *	Additional Authors:
   11 *		Florian la Roche <rzsfl@rz.uni-sb.de>
   12 *		Alan Cox <gw4pts@gw4pts.ampr.org>
   13 *		David Hinds <dahinds@users.sourceforge.net>
   14 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
   15 *		Adam Sulmicki <adam@cfar.umd.edu>
   16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
   17 *
   18 *	Changes:
   19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
   20 *                                      to 2 if register_netdev gets called
   21 *                                      before net_dev_init & also removed a
   22 *                                      few lines of code in the process.
   23 *		Alan Cox	:	device private ioctl copies fields back.
   24 *		Alan Cox	:	Transmit queue code does relevant
   25 *					stunts to keep the queue safe.
   26 *		Alan Cox	:	Fixed double lock.
   27 *		Alan Cox	:	Fixed promisc NULL pointer trap
   28 *		????????	:	Support the full private ioctl range
   29 *		Alan Cox	:	Moved ioctl permission check into
   30 *					drivers
   31 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
   32 *		Alan Cox	:	100 backlog just doesn't cut it when
   33 *					you start doing multicast video 8)
   34 *		Alan Cox	:	Rewrote net_bh and list manager.
   35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
   36 *		Alan Cox	:	Took out transmit every packet pass
   37 *					Saved a few bytes in the ioctl handler
   38 *		Alan Cox	:	Network driver sets packet type before
   39 *					calling netif_rx. Saves a function
   40 *					call a packet.
   41 *		Alan Cox	:	Hashed net_bh()
   42 *		Richard Kooijman:	Timestamp fixes.
   43 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
   44 *		Alan Cox	:	Device lock protection.
   45 *              Alan Cox        :       Fixed nasty side effect of device close
   46 *					changes.
   47 *		Rudi Cilibrasi	:	Pass the right thing to
   48 *					set_mac_address()
   49 *		Dave Miller	:	32bit quantity for the device lock to
   50 *					make it work out on a Sparc.
   51 *		Bjorn Ekwall	:	Added KERNELD hack.
   52 *		Alan Cox	:	Cleaned up the backlog initialise.
   53 *		Craig Metz	:	SIOCGIFCONF fix if space for under
   54 *					1 device.
   55 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
   56 *					is no device open function.
   57 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
   58 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
   59 *		Cyrus Durgin	:	Cleaned for KMOD
   60 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
   61 *					A network device unload needs to purge
   62 *					the backlog queue.
   63 *	Paul Rusty Russell	:	SIOCSIFNAME
   64 *              Pekka Riikonen  :	Netdev boot-time settings code
   65 *              Andrew Morton   :       Make unregister_netdevice wait
   66 *                                      indefinitely on dev->refcnt
   67 *              J Hadi Salim    :       - Backlog queue sampling
   68 *				        - netif_rx() feedback
   69 */
   70
   71#include <linux/uaccess.h>
   72#include <linux/bitmap.h>
 
   73#include <linux/capability.h>
   74#include <linux/cpu.h>
   75#include <linux/types.h>
   76#include <linux/kernel.h>
   77#include <linux/hash.h>
   78#include <linux/slab.h>
   79#include <linux/sched.h>
   80#include <linux/sched/mm.h>
   81#include <linux/mutex.h>
   82#include <linux/rwsem.h>
   83#include <linux/string.h>
   84#include <linux/mm.h>
   85#include <linux/socket.h>
   86#include <linux/sockios.h>
   87#include <linux/errno.h>
   88#include <linux/interrupt.h>
   89#include <linux/if_ether.h>
   90#include <linux/netdevice.h>
   91#include <linux/etherdevice.h>
   92#include <linux/ethtool.h>
 
   93#include <linux/skbuff.h>
   94#include <linux/kthread.h>
   95#include <linux/bpf.h>
   96#include <linux/bpf_trace.h>
   97#include <net/net_namespace.h>
   98#include <net/sock.h>
   99#include <net/busy_poll.h>
  100#include <linux/rtnetlink.h>
 
 
  101#include <linux/stat.h>
  102#include <net/dsa.h>
  103#include <net/dst.h>
  104#include <net/dst_metadata.h>
  105#include <net/gro.h>
  106#include <net/pkt_sched.h>
  107#include <net/pkt_cls.h>
  108#include <net/checksum.h>
  109#include <net/xfrm.h>
  110#include <net/tcx.h>
  111#include <linux/highmem.h>
  112#include <linux/init.h>
 
  113#include <linux/module.h>
  114#include <linux/netpoll.h>
  115#include <linux/rcupdate.h>
  116#include <linux/delay.h>
 
  117#include <net/iw_handler.h>
  118#include <asm/current.h>
  119#include <linux/audit.h>
  120#include <linux/dmaengine.h>
  121#include <linux/err.h>
  122#include <linux/ctype.h>
  123#include <linux/if_arp.h>
  124#include <linux/if_vlan.h>
  125#include <linux/ip.h>
  126#include <net/ip.h>
  127#include <net/mpls.h>
  128#include <linux/ipv6.h>
  129#include <linux/in.h>
  130#include <linux/jhash.h>
  131#include <linux/random.h>
  132#include <trace/events/napi.h>
  133#include <trace/events/net.h>
  134#include <trace/events/skb.h>
  135#include <trace/events/qdisc.h>
  136#include <trace/events/xdp.h>
  137#include <linux/inetdevice.h>
  138#include <linux/cpu_rmap.h>
  139#include <linux/static_key.h>
  140#include <linux/hashtable.h>
  141#include <linux/vmalloc.h>
  142#include <linux/if_macvlan.h>
  143#include <linux/errqueue.h>
  144#include <linux/hrtimer.h>
  145#include <linux/netfilter_netdev.h>
  146#include <linux/crash_dump.h>
  147#include <linux/sctp.h>
  148#include <net/udp_tunnel.h>
  149#include <linux/net_namespace.h>
  150#include <linux/indirect_call_wrapper.h>
  151#include <net/devlink.h>
  152#include <linux/pm_runtime.h>
  153#include <linux/prandom.h>
  154#include <linux/once_lite.h>
  155#include <net/netdev_rx_queue.h>
  156
  157#include "dev.h"
  158#include "net-sysfs.h"
  159
  160static DEFINE_SPINLOCK(ptype_lock);
  161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
  162struct list_head ptype_all __read_mostly;	/* Taps */
  163
  164static int netif_rx_internal(struct sk_buff *skb);
  165static int call_netdevice_notifiers_extack(unsigned long val,
  166					   struct net_device *dev,
  167					   struct netlink_ext_ack *extack);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  168
  169/*
  170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
  171 * semaphore.
  172 *
  173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
  174 *
  175 * Writers must hold the rtnl semaphore while they loop through the
  176 * dev_base_head list, and hold dev_base_lock for writing when they do the
  177 * actual updates.  This allows pure readers to access the list even
  178 * while a writer is preparing to update it.
  179 *
  180 * To put it another way, dev_base_lock is held for writing only to
  181 * protect against pure readers; the rtnl semaphore provides the
  182 * protection against other writers.
  183 *
  184 * See, for example usages, register_netdevice() and
  185 * unregister_netdevice(), which must be called with the rtnl
  186 * semaphore held.
  187 */
  188DEFINE_RWLOCK(dev_base_lock);
  189EXPORT_SYMBOL(dev_base_lock);
  190
  191static DEFINE_MUTEX(ifalias_mutex);
  192
  193/* protects napi_hash addition/deletion and napi_gen_id */
  194static DEFINE_SPINLOCK(napi_hash_lock);
  195
  196static unsigned int napi_gen_id = NR_CPUS;
  197static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
  198
  199static DECLARE_RWSEM(devnet_rename_sem);
  200
  201static inline void dev_base_seq_inc(struct net *net)
  202{
  203	while (++net->dev_base_seq == 0)
  204		;
  205}
  206
  207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
  208{
  209	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
  210
  211	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
  212}
  213
  214static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
  215{
  216	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
  217}
  218
  219static inline void rps_lock_irqsave(struct softnet_data *sd,
  220				    unsigned long *flags)
  221{
  222	if (IS_ENABLED(CONFIG_RPS))
  223		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
  224	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  225		local_irq_save(*flags);
  226}
  227
  228static inline void rps_lock_irq_disable(struct softnet_data *sd)
  229{
  230	if (IS_ENABLED(CONFIG_RPS))
  231		spin_lock_irq(&sd->input_pkt_queue.lock);
  232	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  233		local_irq_disable();
  234}
  235
  236static inline void rps_unlock_irq_restore(struct softnet_data *sd,
  237					  unsigned long *flags)
  238{
  239	if (IS_ENABLED(CONFIG_RPS))
  240		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
  241	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  242		local_irq_restore(*flags);
  243}
  244
  245static inline void rps_unlock_irq_enable(struct softnet_data *sd)
  246{
  247	if (IS_ENABLED(CONFIG_RPS))
  248		spin_unlock_irq(&sd->input_pkt_queue.lock);
  249	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  250		local_irq_enable();
  251}
  252
  253static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
  254						       const char *name)
  255{
  256	struct netdev_name_node *name_node;
  257
  258	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
  259	if (!name_node)
  260		return NULL;
  261	INIT_HLIST_NODE(&name_node->hlist);
  262	name_node->dev = dev;
  263	name_node->name = name;
  264	return name_node;
  265}
  266
  267static struct netdev_name_node *
  268netdev_name_node_head_alloc(struct net_device *dev)
  269{
  270	struct netdev_name_node *name_node;
  271
  272	name_node = netdev_name_node_alloc(dev, dev->name);
  273	if (!name_node)
  274		return NULL;
  275	INIT_LIST_HEAD(&name_node->list);
  276	return name_node;
  277}
  278
  279static void netdev_name_node_free(struct netdev_name_node *name_node)
  280{
  281	kfree(name_node);
  282}
  283
  284static void netdev_name_node_add(struct net *net,
  285				 struct netdev_name_node *name_node)
  286{
  287	hlist_add_head_rcu(&name_node->hlist,
  288			   dev_name_hash(net, name_node->name));
  289}
  290
  291static void netdev_name_node_del(struct netdev_name_node *name_node)
  292{
  293	hlist_del_rcu(&name_node->hlist);
  294}
  295
  296static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
  297							const char *name)
  298{
  299	struct hlist_head *head = dev_name_hash(net, name);
  300	struct netdev_name_node *name_node;
  301
  302	hlist_for_each_entry(name_node, head, hlist)
  303		if (!strcmp(name_node->name, name))
  304			return name_node;
  305	return NULL;
  306}
  307
  308static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
  309							    const char *name)
  310{
  311	struct hlist_head *head = dev_name_hash(net, name);
  312	struct netdev_name_node *name_node;
  313
  314	hlist_for_each_entry_rcu(name_node, head, hlist)
  315		if (!strcmp(name_node->name, name))
  316			return name_node;
  317	return NULL;
  318}
  319
  320bool netdev_name_in_use(struct net *net, const char *name)
  321{
  322	return netdev_name_node_lookup(net, name);
  323}
  324EXPORT_SYMBOL(netdev_name_in_use);
  325
  326int netdev_name_node_alt_create(struct net_device *dev, const char *name)
  327{
  328	struct netdev_name_node *name_node;
  329	struct net *net = dev_net(dev);
  330
  331	name_node = netdev_name_node_lookup(net, name);
  332	if (name_node)
  333		return -EEXIST;
  334	name_node = netdev_name_node_alloc(dev, name);
  335	if (!name_node)
  336		return -ENOMEM;
  337	netdev_name_node_add(net, name_node);
  338	/* The node that holds dev->name acts as a head of per-device list. */
  339	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
  340
  341	return 0;
  342}
  343
  344static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
  345{
  346	list_del(&name_node->list);
  347	kfree(name_node->name);
  348	netdev_name_node_free(name_node);
  349}
  350
  351int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
  352{
  353	struct netdev_name_node *name_node;
  354	struct net *net = dev_net(dev);
  355
  356	name_node = netdev_name_node_lookup(net, name);
  357	if (!name_node)
  358		return -ENOENT;
  359	/* lookup might have found our primary name or a name belonging
  360	 * to another device.
  361	 */
  362	if (name_node == dev->name_node || name_node->dev != dev)
  363		return -EINVAL;
  364
  365	netdev_name_node_del(name_node);
  366	synchronize_rcu();
  367	__netdev_name_node_alt_destroy(name_node);
  368
  369	return 0;
  370}
  371
  372static void netdev_name_node_alt_flush(struct net_device *dev)
  373{
  374	struct netdev_name_node *name_node, *tmp;
  375
  376	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
  377		__netdev_name_node_alt_destroy(name_node);
  378}
  379
  380/* Device list insertion */
  381static void list_netdevice(struct net_device *dev)
  382{
  383	struct netdev_name_node *name_node;
  384	struct net *net = dev_net(dev);
  385
  386	ASSERT_RTNL();
  387
  388	write_lock(&dev_base_lock);
  389	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
  390	netdev_name_node_add(net, dev->name_node);
  391	hlist_add_head_rcu(&dev->index_hlist,
  392			   dev_index_hash(net, dev->ifindex));
  393	write_unlock(&dev_base_lock);
  394
  395	netdev_for_each_altname(dev, name_node)
  396		netdev_name_node_add(net, name_node);
  397
  398	/* We reserved the ifindex, this can't fail */
  399	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
  400
  401	dev_base_seq_inc(net);
 
 
  402}
  403
  404/* Device list removal
  405 * caller must respect a RCU grace period before freeing/reusing dev
  406 */
  407static void unlist_netdevice(struct net_device *dev, bool lock)
  408{
  409	struct netdev_name_node *name_node;
  410	struct net *net = dev_net(dev);
  411
  412	ASSERT_RTNL();
  413
  414	xa_erase(&net->dev_by_index, dev->ifindex);
  415
  416	netdev_for_each_altname(dev, name_node)
  417		netdev_name_node_del(name_node);
  418
  419	/* Unlink dev from the device chain */
  420	if (lock)
  421		write_lock(&dev_base_lock);
  422	list_del_rcu(&dev->dev_list);
  423	netdev_name_node_del(dev->name_node);
  424	hlist_del_rcu(&dev->index_hlist);
  425	if (lock)
  426		write_unlock(&dev_base_lock);
  427
  428	dev_base_seq_inc(dev_net(dev));
  429}
  430
  431/*
  432 *	Our notifier list
  433 */
  434
  435static RAW_NOTIFIER_HEAD(netdev_chain);
  436
  437/*
  438 *	Device drivers call our routines to queue packets here. We empty the
  439 *	queue in the local softnet handler.
  440 */
  441
  442DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
  443EXPORT_PER_CPU_SYMBOL(softnet_data);
  444
  445#ifdef CONFIG_LOCKDEP
  446/*
  447 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
  448 * according to dev->type
  449 */
  450static const unsigned short netdev_lock_type[] = {
  451	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
  452	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
  453	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
  454	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
  455	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
  456	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
  457	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
  458	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
  459	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
  460	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
  461	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
  462	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
  463	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
  464	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
  465	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
  466
  467static const char *const netdev_lock_name[] = {
  468	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
  469	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
  470	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
  471	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
  472	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
  473	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
  474	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
  475	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
  476	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
  477	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
  478	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
  479	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
  480	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
  481	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
  482	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 
 
  483
  484static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
  485static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
  486
  487static inline unsigned short netdev_lock_pos(unsigned short dev_type)
  488{
  489	int i;
  490
  491	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
  492		if (netdev_lock_type[i] == dev_type)
  493			return i;
  494	/* the last key is used by default */
  495	return ARRAY_SIZE(netdev_lock_type) - 1;
  496}
  497
  498static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
  499						 unsigned short dev_type)
  500{
  501	int i;
  502
  503	i = netdev_lock_pos(dev_type);
  504	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
  505				   netdev_lock_name[i]);
  506}
  507
  508static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
  509{
  510	int i;
  511
  512	i = netdev_lock_pos(dev->type);
  513	lockdep_set_class_and_name(&dev->addr_list_lock,
  514				   &netdev_addr_lock_key[i],
  515				   netdev_lock_name[i]);
  516}
  517#else
  518static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
  519						 unsigned short dev_type)
  520{
  521}
  522
  523static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
  524{
  525}
  526#endif
  527
  528/*******************************************************************************
  529 *
  530 *		Protocol management and registration routines
  531 *
  532 *******************************************************************************/
  533
 
 
 
  534
  535/*
  536 *	Add a protocol ID to the list. Now that the input handler is
  537 *	smarter we can dispense with all the messy stuff that used to be
  538 *	here.
  539 *
  540 *	BEWARE!!! Protocol handlers, mangling input packets,
  541 *	MUST BE last in hash buckets and checking protocol handlers
  542 *	MUST start from promiscuous ptype_all chain in net_bh.
  543 *	It is true now, do not change it.
  544 *	Explanation follows: if protocol handler, mangling packet, will
  545 *	be the first on list, it is not able to sense, that packet
  546 *	is cloned and should be copied-on-write, so that it will
  547 *	change it and subsequent readers will get broken packet.
  548 *							--ANK (980803)
  549 */
  550
  551static inline struct list_head *ptype_head(const struct packet_type *pt)
  552{
  553	if (pt->type == htons(ETH_P_ALL))
  554		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
  555	else
  556		return pt->dev ? &pt->dev->ptype_specific :
  557				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
  558}
  559
  560/**
  561 *	dev_add_pack - add packet handler
  562 *	@pt: packet type declaration
  563 *
  564 *	Add a protocol handler to the networking stack. The passed &packet_type
  565 *	is linked into kernel lists and may not be freed until it has been
  566 *	removed from the kernel lists.
  567 *
  568 *	This call does not sleep therefore it can not
  569 *	guarantee all CPU's that are in middle of receiving packets
  570 *	will see the new packet type (until the next received packet).
  571 */
  572
  573void dev_add_pack(struct packet_type *pt)
  574{
  575	struct list_head *head = ptype_head(pt);
  576
  577	spin_lock(&ptype_lock);
  578	list_add_rcu(&pt->list, head);
  579	spin_unlock(&ptype_lock);
  580}
  581EXPORT_SYMBOL(dev_add_pack);
  582
  583/**
  584 *	__dev_remove_pack	 - remove packet handler
  585 *	@pt: packet type declaration
  586 *
  587 *	Remove a protocol handler that was previously added to the kernel
  588 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
  589 *	from the kernel lists and can be freed or reused once this function
  590 *	returns.
  591 *
  592 *      The packet type might still be in use by receivers
  593 *	and must not be freed until after all the CPU's have gone
  594 *	through a quiescent state.
  595 */
  596void __dev_remove_pack(struct packet_type *pt)
  597{
  598	struct list_head *head = ptype_head(pt);
  599	struct packet_type *pt1;
  600
  601	spin_lock(&ptype_lock);
  602
  603	list_for_each_entry(pt1, head, list) {
  604		if (pt == pt1) {
  605			list_del_rcu(&pt->list);
  606			goto out;
  607		}
  608	}
  609
  610	pr_warn("dev_remove_pack: %p not found\n", pt);
  611out:
  612	spin_unlock(&ptype_lock);
  613}
  614EXPORT_SYMBOL(__dev_remove_pack);
  615
  616/**
  617 *	dev_remove_pack	 - remove packet handler
  618 *	@pt: packet type declaration
  619 *
  620 *	Remove a protocol handler that was previously added to the kernel
  621 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
  622 *	from the kernel lists and can be freed or reused once this function
  623 *	returns.
  624 *
  625 *	This call sleeps to guarantee that no CPU is looking at the packet
  626 *	type after return.
  627 */
  628void dev_remove_pack(struct packet_type *pt)
  629{
  630	__dev_remove_pack(pt);
  631
  632	synchronize_net();
  633}
  634EXPORT_SYMBOL(dev_remove_pack);
  635
 
  636
  637/*******************************************************************************
  638 *
  639 *			    Device Interface Subroutines
  640 *
  641 *******************************************************************************/
 
  642
  643/**
  644 *	dev_get_iflink	- get 'iflink' value of a interface
  645 *	@dev: targeted interface
 
  646 *
  647 *	Indicates the ifindex the interface is linked to.
  648 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
 
  649 */
  650
  651int dev_get_iflink(const struct net_device *dev)
  652{
  653	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
  654		return dev->netdev_ops->ndo_get_iflink(dev);
 
 
 
 
 
 
 
 
 
 
  655
  656	return dev->ifindex;
  657}
  658EXPORT_SYMBOL(dev_get_iflink);
  659
  660/**
  661 *	dev_fill_metadata_dst - Retrieve tunnel egress information.
  662 *	@dev: targeted interface
  663 *	@skb: The packet.
  664 *
  665 *	For better visibility of tunnel traffic OVS needs to retrieve
  666 *	egress tunnel information for a packet. Following API allows
  667 *	user to get this info.
 
  668 */
  669int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
  670{
  671	struct ip_tunnel_info *info;
  672
  673	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
  674		return -EINVAL;
  675
  676	info = skb_tunnel_info_unclone(skb);
  677	if (!info)
  678		return -ENOMEM;
  679	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
  680		return -EINVAL;
  681
  682	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 
 
 
 
 
 
 
 
 
 
  683}
  684EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
  685
  686static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
 
 
 
 
 
 
 
 
 
 
 
  687{
  688	int k = stack->num_paths++;
 
 
  689
  690	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
  691		return NULL;
  692
  693	return &stack->path[k];
 
 
 
 
 
 
 
 
 
 
  694}
  695
  696int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
  697			  struct net_device_path_stack *stack)
 
 
  698{
  699	const struct net_device *last_dev;
  700	struct net_device_path_ctx ctx = {
  701		.dev	= dev,
  702	};
  703	struct net_device_path *path;
  704	int ret = 0;
  705
  706	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
  707	stack->num_paths = 0;
  708	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
  709		last_dev = ctx.dev;
  710		path = dev_fwd_path(stack);
  711		if (!path)
  712			return -1;
  713
  714		memset(path, 0, sizeof(struct net_device_path));
  715		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
  716		if (ret < 0)
  717			return -1;
 
 
 
 
 
 
  718
  719		if (WARN_ON_ONCE(last_dev == ctx.dev))
  720			return -1;
  721	}
  722
  723	if (!ctx.dev)
  724		return ret;
  725
  726	path = dev_fwd_path(stack);
  727	if (!path)
  728		return -1;
  729	path->type = DEV_PATH_ETHERNET;
  730	path->dev = ctx.dev;
  731
  732	return ret;
  733}
  734EXPORT_SYMBOL_GPL(dev_fill_forward_path);
  735
  736/**
  737 *	__dev_get_by_name	- find a device by its name
  738 *	@net: the applicable net namespace
  739 *	@name: name to find
  740 *
  741 *	Find an interface by name. Must be called under RTNL semaphore
  742 *	or @dev_base_lock. If the name is found a pointer to the device
  743 *	is returned. If the name is not found then %NULL is returned. The
  744 *	reference counters are not incremented so the caller must be
  745 *	careful with locks.
  746 */
  747
  748struct net_device *__dev_get_by_name(struct net *net, const char *name)
  749{
  750	struct netdev_name_node *node_name;
 
 
 
 
 
 
  751
  752	node_name = netdev_name_node_lookup(net, name);
  753	return node_name ? node_name->dev : NULL;
  754}
  755EXPORT_SYMBOL(__dev_get_by_name);
  756
  757/**
  758 * dev_get_by_name_rcu	- find a device by its name
  759 * @net: the applicable net namespace
  760 * @name: name to find
  761 *
  762 * Find an interface by name.
  763 * If the name is found a pointer to the device is returned.
  764 * If the name is not found then %NULL is returned.
  765 * The reference counters are not incremented so the caller must be
  766 * careful with locks. The caller must hold RCU lock.
  767 */
  768
  769struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
  770{
  771	struct netdev_name_node *node_name;
  772
  773	node_name = netdev_name_node_lookup_rcu(net, name);
  774	return node_name ? node_name->dev : NULL;
  775}
  776EXPORT_SYMBOL(dev_get_by_name_rcu);
  777
  778/* Deprecated for new users, call netdev_get_by_name() instead */
  779struct net_device *dev_get_by_name(struct net *net, const char *name)
  780{
  781	struct net_device *dev;
 
  782
  783	rcu_read_lock();
  784	dev = dev_get_by_name_rcu(net, name);
  785	dev_hold(dev);
  786	rcu_read_unlock();
  787	return dev;
  788}
  789EXPORT_SYMBOL(dev_get_by_name);
  790
  791/**
  792 *	netdev_get_by_name() - find a device by its name
  793 *	@net: the applicable net namespace
  794 *	@name: name to find
  795 *	@tracker: tracking object for the acquired reference
  796 *	@gfp: allocation flags for the tracker
  797 *
  798 *	Find an interface by name. This can be called from any
  799 *	context and does its own locking. The returned handle has
  800 *	the usage count incremented and the caller must use netdev_put() to
  801 *	release it when it is no longer needed. %NULL is returned if no
  802 *	matching device is found.
  803 */
  804struct net_device *netdev_get_by_name(struct net *net, const char *name,
  805				      netdevice_tracker *tracker, gfp_t gfp)
  806{
  807	struct net_device *dev;
  808
  809	dev = dev_get_by_name(net, name);
 
  810	if (dev)
  811		netdev_tracker_alloc(dev, tracker, gfp);
 
  812	return dev;
  813}
  814EXPORT_SYMBOL(netdev_get_by_name);
  815
  816/**
  817 *	__dev_get_by_index - find a device by its ifindex
  818 *	@net: the applicable net namespace
  819 *	@ifindex: index of device
  820 *
  821 *	Search for an interface by index. Returns %NULL if the device
  822 *	is not found or a pointer to the device. The device has not
  823 *	had its reference counter increased so the caller must be careful
  824 *	about locking. The caller must hold either the RTNL semaphore
  825 *	or @dev_base_lock.
  826 */
  827
  828struct net_device *__dev_get_by_index(struct net *net, int ifindex)
  829{
 
  830	struct net_device *dev;
  831	struct hlist_head *head = dev_index_hash(net, ifindex);
  832
  833	hlist_for_each_entry(dev, head, index_hlist)
  834		if (dev->ifindex == ifindex)
  835			return dev;
  836
  837	return NULL;
  838}
  839EXPORT_SYMBOL(__dev_get_by_index);
  840
  841/**
  842 *	dev_get_by_index_rcu - find a device by its ifindex
  843 *	@net: the applicable net namespace
  844 *	@ifindex: index of device
  845 *
  846 *	Search for an interface by index. Returns %NULL if the device
  847 *	is not found or a pointer to the device. The device has not
  848 *	had its reference counter increased so the caller must be careful
  849 *	about locking. The caller must hold RCU lock.
  850 */
  851
  852struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
  853{
 
  854	struct net_device *dev;
  855	struct hlist_head *head = dev_index_hash(net, ifindex);
  856
  857	hlist_for_each_entry_rcu(dev, head, index_hlist)
  858		if (dev->ifindex == ifindex)
  859			return dev;
  860
  861	return NULL;
  862}
  863EXPORT_SYMBOL(dev_get_by_index_rcu);
  864
  865/* Deprecated for new users, call netdev_get_by_index() instead */
  866struct net_device *dev_get_by_index(struct net *net, int ifindex)
  867{
  868	struct net_device *dev;
  869
  870	rcu_read_lock();
  871	dev = dev_get_by_index_rcu(net, ifindex);
  872	dev_hold(dev);
  873	rcu_read_unlock();
  874	return dev;
  875}
  876EXPORT_SYMBOL(dev_get_by_index);
  877
  878/**
  879 *	netdev_get_by_index() - find a device by its ifindex
  880 *	@net: the applicable net namespace
  881 *	@ifindex: index of device
  882 *	@tracker: tracking object for the acquired reference
  883 *	@gfp: allocation flags for the tracker
  884 *
  885 *	Search for an interface by index. Returns NULL if the device
  886 *	is not found or a pointer to the device. The device returned has
  887 *	had a reference added and the pointer is safe until the user calls
  888 *	netdev_put() to indicate they have finished with it.
  889 */
  890struct net_device *netdev_get_by_index(struct net *net, int ifindex,
  891				       netdevice_tracker *tracker, gfp_t gfp)
  892{
  893	struct net_device *dev;
  894
  895	dev = dev_get_by_index(net, ifindex);
  896	if (dev)
  897		netdev_tracker_alloc(dev, tracker, gfp);
  898	return dev;
  899}
  900EXPORT_SYMBOL(netdev_get_by_index);
  901
  902/**
  903 *	dev_get_by_napi_id - find a device by napi_id
  904 *	@napi_id: ID of the NAPI struct
  905 *
  906 *	Search for an interface by NAPI ID. Returns %NULL if the device
  907 *	is not found or a pointer to the device. The device has not had
  908 *	its reference counter increased so the caller must be careful
  909 *	about locking. The caller must hold RCU lock.
  910 */
  911
  912struct net_device *dev_get_by_napi_id(unsigned int napi_id)
  913{
  914	struct napi_struct *napi;
  915
  916	WARN_ON_ONCE(!rcu_read_lock_held());
  917
  918	if (napi_id < MIN_NAPI_ID)
  919		return NULL;
  920
  921	napi = napi_by_id(napi_id);
  922
  923	return napi ? napi->dev : NULL;
  924}
  925EXPORT_SYMBOL(dev_get_by_napi_id);
  926
  927/**
  928 *	netdev_get_name - get a netdevice name, knowing its ifindex.
  929 *	@net: network namespace
  930 *	@name: a pointer to the buffer where the name will be stored.
  931 *	@ifindex: the ifindex of the interface to get the name from.
  932 */
  933int netdev_get_name(struct net *net, char *name, int ifindex)
  934{
  935	struct net_device *dev;
  936	int ret;
  937
  938	down_read(&devnet_rename_sem);
  939	rcu_read_lock();
  940
  941	dev = dev_get_by_index_rcu(net, ifindex);
  942	if (!dev) {
  943		ret = -ENODEV;
  944		goto out;
  945	}
  946
  947	strcpy(name, dev->name);
  948
  949	ret = 0;
  950out:
  951	rcu_read_unlock();
  952	up_read(&devnet_rename_sem);
  953	return ret;
  954}
 
  955
  956/**
  957 *	dev_getbyhwaddr_rcu - find a device by its hardware address
  958 *	@net: the applicable net namespace
  959 *	@type: media type of device
  960 *	@ha: hardware address
  961 *
  962 *	Search for an interface by MAC address. Returns NULL if the device
  963 *	is not found or a pointer to the device.
  964 *	The caller must hold RCU or RTNL.
  965 *	The returned device has not had its ref count increased
  966 *	and the caller must therefore be careful about locking
  967 *
  968 */
  969
  970struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
  971				       const char *ha)
  972{
  973	struct net_device *dev;
  974
  975	for_each_netdev_rcu(net, dev)
  976		if (dev->type == type &&
  977		    !memcmp(dev->dev_addr, ha, dev->addr_len))
  978			return dev;
  979
  980	return NULL;
  981}
  982EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
  983
 
 
 
 
 
 
 
 
 
 
 
 
 
  984struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
  985{
  986	struct net_device *dev, *ret = NULL;
  987
  988	rcu_read_lock();
  989	for_each_netdev_rcu(net, dev)
  990		if (dev->type == type) {
  991			dev_hold(dev);
  992			ret = dev;
  993			break;
  994		}
  995	rcu_read_unlock();
  996	return ret;
  997}
  998EXPORT_SYMBOL(dev_getfirstbyhwtype);
  999
 1000/**
 1001 *	__dev_get_by_flags - find any device with given flags
 1002 *	@net: the applicable net namespace
 1003 *	@if_flags: IFF_* values
 1004 *	@mask: bitmask of bits in if_flags to check
 1005 *
 1006 *	Search for any interface with the given flags. Returns NULL if a device
 1007 *	is not found or a pointer to the device. Must be called inside
 1008 *	rtnl_lock(), and result refcount is unchanged.
 1009 */
 1010
 1011struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 1012				      unsigned short mask)
 1013{
 1014	struct net_device *dev, *ret;
 1015
 1016	ASSERT_RTNL();
 1017
 1018	ret = NULL;
 1019	for_each_netdev(net, dev) {
 1020		if (((dev->flags ^ if_flags) & mask) == 0) {
 1021			ret = dev;
 1022			break;
 1023		}
 1024	}
 1025	return ret;
 1026}
 1027EXPORT_SYMBOL(__dev_get_by_flags);
 1028
 1029/**
 1030 *	dev_valid_name - check if name is okay for network device
 1031 *	@name: name string
 1032 *
 1033 *	Network device names need to be valid file names to
 1034 *	allow sysfs to work.  We also disallow any kind of
 1035 *	whitespace.
 1036 */
 1037bool dev_valid_name(const char *name)
 1038{
 1039	if (*name == '\0')
 1040		return false;
 1041	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
 1042		return false;
 1043	if (!strcmp(name, ".") || !strcmp(name, ".."))
 1044		return false;
 1045
 1046	while (*name) {
 1047		if (*name == '/' || *name == ':' || isspace(*name))
 1048			return false;
 1049		name++;
 1050	}
 1051	return true;
 1052}
 1053EXPORT_SYMBOL(dev_valid_name);
 1054
 1055/**
 1056 *	__dev_alloc_name - allocate a name for a device
 1057 *	@net: network namespace to allocate the device name in
 1058 *	@name: name format string
 1059 *	@res: result name string
 1060 *
 1061 *	Passed a format string - eg "lt%d" it will try and find a suitable
 1062 *	id. It scans list of devices to build up a free map, then chooses
 1063 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 1064 *	while allocating the name and adding the device in order to avoid
 1065 *	duplicates.
 1066 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 1067 *	Returns the number of the unit assigned or a negative errno code.
 1068 */
 1069
 1070static int __dev_alloc_name(struct net *net, const char *name, char *res)
 1071{
 1072	int i = 0;
 1073	const char *p;
 1074	const int max_netdevices = 8*PAGE_SIZE;
 1075	unsigned long *inuse;
 1076	struct net_device *d;
 1077	char buf[IFNAMSIZ];
 1078
 1079	/* Verify the string as this thing may have come from the user.
 1080	 * There must be one "%d" and no other "%" characters.
 1081	 */
 1082	p = strchr(name, '%');
 1083	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
 1084		return -EINVAL;
 1085
 1086	/* Use one page as a bit array of possible slots */
 1087	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
 1088	if (!inuse)
 1089		return -ENOMEM;
 
 
 
 
 
 1090
 1091	for_each_netdev(net, d) {
 1092		struct netdev_name_node *name_node;
 
 
 1093
 1094		netdev_for_each_altname(d, name_node) {
 1095			if (!sscanf(name_node->name, name, &i))
 1096				continue;
 1097			if (i < 0 || i >= max_netdevices)
 1098				continue;
 1099
 1100			/* avoid cases where sscanf is not exact inverse of printf */
 1101			snprintf(buf, IFNAMSIZ, name, i);
 1102			if (!strncmp(buf, name_node->name, IFNAMSIZ))
 1103				__set_bit(i, inuse);
 1104		}
 1105		if (!sscanf(d->name, name, &i))
 1106			continue;
 1107		if (i < 0 || i >= max_netdevices)
 1108			continue;
 1109
 1110		/* avoid cases where sscanf is not exact inverse of printf */
 1111		snprintf(buf, IFNAMSIZ, name, i);
 1112		if (!strncmp(buf, d->name, IFNAMSIZ))
 1113			__set_bit(i, inuse);
 1114	}
 1115
 1116	i = find_first_zero_bit(inuse, max_netdevices);
 1117	bitmap_free(inuse);
 1118	if (i == max_netdevices)
 1119		return -ENFILE;
 1120
 1121	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
 1122	strscpy(buf, name, IFNAMSIZ);
 1123	snprintf(res, IFNAMSIZ, buf, i);
 1124	return i;
 1125}
 1126
 1127/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
 1128static int dev_prep_valid_name(struct net *net, struct net_device *dev,
 1129			       const char *want_name, char *out_name,
 1130			       int dup_errno)
 1131{
 1132	if (!dev_valid_name(want_name))
 1133		return -EINVAL;
 1134
 1135	if (strchr(want_name, '%'))
 1136		return __dev_alloc_name(net, want_name, out_name);
 1137
 1138	if (netdev_name_in_use(net, want_name))
 1139		return -dup_errno;
 1140	if (out_name != want_name)
 1141		strscpy(out_name, want_name, IFNAMSIZ);
 1142	return 0;
 1143}
 1144
 1145/**
 1146 *	dev_alloc_name - allocate a name for a device
 1147 *	@dev: device
 1148 *	@name: name format string
 1149 *
 1150 *	Passed a format string - eg "lt%d" it will try and find a suitable
 1151 *	id. It scans list of devices to build up a free map, then chooses
 1152 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 1153 *	while allocating the name and adding the device in order to avoid
 1154 *	duplicates.
 1155 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 1156 *	Returns the number of the unit assigned or a negative errno code.
 1157 */
 1158
 1159int dev_alloc_name(struct net_device *dev, const char *name)
 1160{
 1161	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
 
 
 
 
 
 
 
 
 
 1162}
 1163EXPORT_SYMBOL(dev_alloc_name);
 1164
 1165static int dev_get_valid_name(struct net *net, struct net_device *dev,
 1166			      const char *name)
 1167{
 1168	int ret;
 
 
 
 
 
 
 1169
 1170	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
 1171	return ret < 0 ? ret : 0;
 
 
 
 
 
 
 1172}
 1173
 1174/**
 1175 *	dev_change_name - change name of a device
 1176 *	@dev: device
 1177 *	@newname: name (or format string) must be at least IFNAMSIZ
 1178 *
 1179 *	Change name of a device, can pass format strings "eth%d".
 1180 *	for wildcarding.
 1181 */
 1182int dev_change_name(struct net_device *dev, const char *newname)
 1183{
 1184	unsigned char old_assign_type;
 1185	char oldname[IFNAMSIZ];
 1186	int err = 0;
 1187	int ret;
 1188	struct net *net;
 1189
 1190	ASSERT_RTNL();
 1191	BUG_ON(!dev_net(dev));
 1192
 1193	net = dev_net(dev);
 
 
 1194
 1195	down_write(&devnet_rename_sem);
 1196
 1197	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
 1198		up_write(&devnet_rename_sem);
 1199		return 0;
 1200	}
 1201
 1202	memcpy(oldname, dev->name, IFNAMSIZ);
 1203
 1204	err = dev_get_valid_name(net, dev, newname);
 1205	if (err < 0) {
 1206		up_write(&devnet_rename_sem);
 1207		return err;
 1208	}
 1209
 1210	if (oldname[0] && !strchr(oldname, '%'))
 1211		netdev_info(dev, "renamed from %s%s\n", oldname,
 1212			    dev->flags & IFF_UP ? " (while UP)" : "");
 1213
 1214	old_assign_type = dev->name_assign_type;
 1215	dev->name_assign_type = NET_NAME_RENAMED;
 1216
 1217rollback:
 1218	ret = device_rename(&dev->dev, dev->name);
 1219	if (ret) {
 1220		memcpy(dev->name, oldname, IFNAMSIZ);
 1221		dev->name_assign_type = old_assign_type;
 1222		up_write(&devnet_rename_sem);
 1223		return ret;
 1224	}
 1225
 1226	up_write(&devnet_rename_sem);
 1227
 1228	netdev_adjacent_rename_links(dev, oldname);
 1229
 1230	write_lock(&dev_base_lock);
 1231	netdev_name_node_del(dev->name_node);
 1232	write_unlock(&dev_base_lock);
 1233
 1234	synchronize_rcu();
 1235
 1236	write_lock(&dev_base_lock);
 1237	netdev_name_node_add(net, dev->name_node);
 1238	write_unlock(&dev_base_lock);
 1239
 1240	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
 1241	ret = notifier_to_errno(ret);
 1242
 1243	if (ret) {
 1244		/* err >= 0 after dev_alloc_name() or stores the first errno */
 1245		if (err >= 0) {
 1246			err = ret;
 1247			down_write(&devnet_rename_sem);
 1248			memcpy(dev->name, oldname, IFNAMSIZ);
 1249			memcpy(oldname, newname, IFNAMSIZ);
 1250			dev->name_assign_type = old_assign_type;
 1251			old_assign_type = NET_NAME_RENAMED;
 1252			goto rollback;
 1253		} else {
 1254			netdev_err(dev, "name change rollback failed: %d\n",
 1255				   ret);
 
 1256		}
 1257	}
 1258
 1259	return err;
 1260}
 1261
 1262/**
 1263 *	dev_set_alias - change ifalias of a device
 1264 *	@dev: device
 1265 *	@alias: name up to IFALIASZ
 1266 *	@len: limit of bytes to copy from info
 1267 *
 1268 *	Set ifalias for a device,
 1269 */
 1270int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
 1271{
 1272	struct dev_ifalias *new_alias = NULL;
 1273
 1274	if (len >= IFALIASZ)
 1275		return -EINVAL;
 1276
 1277	if (len) {
 1278		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
 1279		if (!new_alias)
 1280			return -ENOMEM;
 1281
 1282		memcpy(new_alias->ifalias, alias, len);
 1283		new_alias->ifalias[len] = 0;
 1284	}
 1285
 1286	mutex_lock(&ifalias_mutex);
 1287	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
 1288					mutex_is_locked(&ifalias_mutex));
 1289	mutex_unlock(&ifalias_mutex);
 1290
 1291	if (new_alias)
 1292		kfree_rcu(new_alias, rcuhead);
 1293
 
 1294	return len;
 1295}
 1296EXPORT_SYMBOL(dev_set_alias);
 1297
 1298/**
 1299 *	dev_get_alias - get ifalias of a device
 1300 *	@dev: device
 1301 *	@name: buffer to store name of ifalias
 1302 *	@len: size of buffer
 1303 *
 1304 *	get ifalias for a device.  Caller must make sure dev cannot go
 1305 *	away,  e.g. rcu read lock or own a reference count to device.
 1306 */
 1307int dev_get_alias(const struct net_device *dev, char *name, size_t len)
 1308{
 1309	const struct dev_ifalias *alias;
 1310	int ret = 0;
 1311
 1312	rcu_read_lock();
 1313	alias = rcu_dereference(dev->ifalias);
 1314	if (alias)
 1315		ret = snprintf(name, len, "%s", alias->ifalias);
 1316	rcu_read_unlock();
 1317
 1318	return ret;
 1319}
 1320
 1321/**
 1322 *	netdev_features_change - device changes features
 1323 *	@dev: device to cause notification
 1324 *
 1325 *	Called to indicate a device has changed features.
 1326 */
 1327void netdev_features_change(struct net_device *dev)
 1328{
 1329	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
 1330}
 1331EXPORT_SYMBOL(netdev_features_change);
 1332
 1333/**
 1334 *	netdev_state_change - device changes state
 1335 *	@dev: device to cause notification
 1336 *
 1337 *	Called to indicate a device has changed state. This function calls
 1338 *	the notifier chains for netdev_chain and sends a NEWLINK message
 1339 *	to the routing socket.
 1340 */
 1341void netdev_state_change(struct net_device *dev)
 1342{
 1343	if (dev->flags & IFF_UP) {
 1344		struct netdev_notifier_change_info change_info = {
 1345			.info.dev = dev,
 1346		};
 1347
 1348		call_netdevice_notifiers_info(NETDEV_CHANGE,
 1349					      &change_info.info);
 1350		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
 1351	}
 1352}
 1353EXPORT_SYMBOL(netdev_state_change);
 1354
 1355/**
 1356 * __netdev_notify_peers - notify network peers about existence of @dev,
 1357 * to be called when rtnl lock is already held.
 1358 * @dev: network device
 1359 *
 1360 * Generate traffic such that interested network peers are aware of
 1361 * @dev, such as by generating a gratuitous ARP. This may be used when
 1362 * a device wants to inform the rest of the network about some sort of
 1363 * reconfiguration such as a failover event or virtual machine
 1364 * migration.
 1365 */
 1366void __netdev_notify_peers(struct net_device *dev)
 1367{
 1368	ASSERT_RTNL();
 1369	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
 1370	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
 1371}
 1372EXPORT_SYMBOL(__netdev_notify_peers);
 1373
 1374/**
 1375 * netdev_notify_peers - notify network peers about existence of @dev
 1376 * @dev: network device
 
 1377 *
 1378 * Generate traffic such that interested network peers are aware of
 1379 * @dev, such as by generating a gratuitous ARP. This may be used when
 1380 * a device wants to inform the rest of the network about some sort of
 1381 * reconfiguration such as a failover event or virtual machine
 1382 * migration.
 1383 */
 1384void netdev_notify_peers(struct net_device *dev)
 1385{
 1386	rtnl_lock();
 1387	__netdev_notify_peers(dev);
 1388	rtnl_unlock();
 1389}
 1390EXPORT_SYMBOL(netdev_notify_peers);
 1391
 1392static int napi_threaded_poll(void *data);
 1393
 1394static int napi_kthread_create(struct napi_struct *n)
 1395{
 1396	int err = 0;
 
 1397
 1398	/* Create and wake up the kthread once to put it in
 1399	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
 1400	 * warning and work with loadavg.
 1401	 */
 1402	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
 1403				n->dev->name, n->napi_id);
 1404	if (IS_ERR(n->thread)) {
 1405		err = PTR_ERR(n->thread);
 1406		pr_err("kthread_run failed with err %d\n", err);
 1407		n->thread = NULL;
 1408	}
 1409
 1410	return err;
 
 
 
 
 
 
 
 
 1411}
 
 1412
 1413static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
 1414{
 1415	const struct net_device_ops *ops = dev->netdev_ops;
 1416	int ret;
 1417
 1418	ASSERT_RTNL();
 1419	dev_addr_check(dev);
 1420
 1421	if (!netif_device_present(dev)) {
 1422		/* may be detached because parent is runtime-suspended */
 1423		if (dev->dev.parent)
 1424			pm_runtime_resume(dev->dev.parent);
 1425		if (!netif_device_present(dev))
 1426			return -ENODEV;
 1427	}
 1428
 1429	/* Block netpoll from trying to do any rx path servicing.
 1430	 * If we don't do this there is a chance ndo_poll_controller
 1431	 * or ndo_poll may be running while we open the device
 1432	 */
 1433	netpoll_poll_disable(dev);
 1434
 1435	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
 1436	ret = notifier_to_errno(ret);
 1437	if (ret)
 1438		return ret;
 1439
 1440	set_bit(__LINK_STATE_START, &dev->state);
 1441
 1442	if (ops->ndo_validate_addr)
 1443		ret = ops->ndo_validate_addr(dev);
 1444
 1445	if (!ret && ops->ndo_open)
 1446		ret = ops->ndo_open(dev);
 1447
 1448	netpoll_poll_enable(dev);
 1449
 1450	if (ret)
 1451		clear_bit(__LINK_STATE_START, &dev->state);
 1452	else {
 1453		dev->flags |= IFF_UP;
 
 1454		dev_set_rx_mode(dev);
 1455		dev_activate(dev);
 1456		add_device_randomness(dev->dev_addr, dev->addr_len);
 1457	}
 1458
 1459	return ret;
 1460}
 1461
 1462/**
 1463 *	dev_open	- prepare an interface for use.
 1464 *	@dev: device to open
 1465 *	@extack: netlink extended ack
 1466 *
 1467 *	Takes a device from down to up state. The device's private open
 1468 *	function is invoked and then the multicast lists are loaded. Finally
 1469 *	the device is moved into the up state and a %NETDEV_UP message is
 1470 *	sent to the netdev notifier chain.
 1471 *
 1472 *	Calling this function on an active interface is a nop. On a failure
 1473 *	a negative errno code is returned.
 1474 */
 1475int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
 1476{
 1477	int ret;
 1478
 1479	if (dev->flags & IFF_UP)
 1480		return 0;
 1481
 1482	ret = __dev_open(dev, extack);
 1483	if (ret < 0)
 1484		return ret;
 1485
 1486	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
 1487	call_netdevice_notifiers(NETDEV_UP, dev);
 1488
 1489	return ret;
 1490}
 1491EXPORT_SYMBOL(dev_open);
 1492
 1493static void __dev_close_many(struct list_head *head)
 1494{
 1495	struct net_device *dev;
 1496
 1497	ASSERT_RTNL();
 1498	might_sleep();
 1499
 1500	list_for_each_entry(dev, head, close_list) {
 1501		/* Temporarily disable netpoll until the interface is down */
 1502		netpoll_poll_disable(dev);
 1503
 1504		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
 1505
 1506		clear_bit(__LINK_STATE_START, &dev->state);
 1507
 1508		/* Synchronize to scheduled poll. We cannot touch poll list, it
 1509		 * can be even on different cpu. So just clear netif_running().
 1510		 *
 1511		 * dev->stop() will invoke napi_disable() on all of it's
 1512		 * napi_struct instances on this device.
 1513		 */
 1514		smp_mb__after_atomic(); /* Commit netif_running(). */
 1515	}
 1516
 1517	dev_deactivate_many(head);
 1518
 1519	list_for_each_entry(dev, head, close_list) {
 1520		const struct net_device_ops *ops = dev->netdev_ops;
 1521
 1522		/*
 1523		 *	Call the device specific close. This cannot fail.
 1524		 *	Only if device is UP
 1525		 *
 1526		 *	We allow it to be called even after a DETACH hot-plug
 1527		 *	event.
 1528		 */
 1529		if (ops->ndo_stop)
 1530			ops->ndo_stop(dev);
 1531
 1532		dev->flags &= ~IFF_UP;
 1533		netpoll_poll_enable(dev);
 1534	}
 
 
 1535}
 1536
 1537static void __dev_close(struct net_device *dev)
 1538{
 
 1539	LIST_HEAD(single);
 1540
 1541	list_add(&dev->close_list, &single);
 1542	__dev_close_many(&single);
 1543	list_del(&single);
 
 1544}
 1545
 1546void dev_close_many(struct list_head *head, bool unlink)
 1547{
 1548	struct net_device *dev, *tmp;
 
 1549
 1550	/* Remove the devices that don't need to be closed */
 1551	list_for_each_entry_safe(dev, tmp, head, close_list)
 1552		if (!(dev->flags & IFF_UP))
 1553			list_del_init(&dev->close_list);
 1554
 1555	__dev_close_many(head);
 1556
 1557	list_for_each_entry_safe(dev, tmp, head, close_list) {
 1558		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
 1559		call_netdevice_notifiers(NETDEV_DOWN, dev);
 1560		if (unlink)
 1561			list_del_init(&dev->close_list);
 1562	}
 
 
 
 
 1563}
 1564EXPORT_SYMBOL(dev_close_many);
 1565
 1566/**
 1567 *	dev_close - shutdown an interface.
 1568 *	@dev: device to shutdown
 1569 *
 1570 *	This function moves an active device into down state. A
 1571 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
 1572 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
 1573 *	chain.
 1574 */
 1575void dev_close(struct net_device *dev)
 1576{
 1577	if (dev->flags & IFF_UP) {
 1578		LIST_HEAD(single);
 1579
 1580		list_add(&dev->close_list, &single);
 1581		dev_close_many(&single, true);
 1582		list_del(&single);
 1583	}
 
 1584}
 1585EXPORT_SYMBOL(dev_close);
 1586
 1587
 1588/**
 1589 *	dev_disable_lro - disable Large Receive Offload on a device
 1590 *	@dev: device
 1591 *
 1592 *	Disable Large Receive Offload (LRO) on a net device.  Must be
 1593 *	called under RTNL.  This is needed if received packets may be
 1594 *	forwarded to another interface.
 1595 */
 1596void dev_disable_lro(struct net_device *dev)
 1597{
 1598	struct net_device *lower_dev;
 1599	struct list_head *iter;
 1600
 1601	dev->wanted_features &= ~NETIF_F_LRO;
 1602	netdev_update_features(dev);
 
 
 
 
 1603
 
 
 
 
 
 
 
 
 
 1604	if (unlikely(dev->features & NETIF_F_LRO))
 1605		netdev_WARN(dev, "failed to disable LRO!\n");
 1606
 1607	netdev_for_each_lower_dev(dev, lower_dev, iter)
 1608		dev_disable_lro(lower_dev);
 1609}
 1610EXPORT_SYMBOL(dev_disable_lro);
 1611
 1612/**
 1613 *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
 1614 *	@dev: device
 1615 *
 1616 *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
 1617 *	called under RTNL.  This is needed if Generic XDP is installed on
 1618 *	the device.
 1619 */
 1620static void dev_disable_gro_hw(struct net_device *dev)
 1621{
 1622	dev->wanted_features &= ~NETIF_F_GRO_HW;
 1623	netdev_update_features(dev);
 1624
 1625	if (unlikely(dev->features & NETIF_F_GRO_HW))
 1626		netdev_WARN(dev, "failed to disable GRO_HW!\n");
 1627}
 1628
 1629const char *netdev_cmd_to_name(enum netdev_cmd cmd)
 1630{
 1631#define N(val) 						\
 1632	case NETDEV_##val:				\
 1633		return "NETDEV_" __stringify(val);
 1634	switch (cmd) {
 1635	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
 1636	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
 1637	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
 1638	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
 1639	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
 1640	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
 1641	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
 1642	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
 1643	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
 1644	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
 1645	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
 1646	N(XDP_FEAT_CHANGE)
 1647	}
 1648#undef N
 1649	return "UNKNOWN_NETDEV_EVENT";
 1650}
 1651EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
 1652
 1653static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
 1654				   struct net_device *dev)
 1655{
 1656	struct netdev_notifier_info info = {
 1657		.dev = dev,
 1658	};
 1659
 1660	return nb->notifier_call(nb, val, &info);
 1661}
 1662
 1663static int call_netdevice_register_notifiers(struct notifier_block *nb,
 1664					     struct net_device *dev)
 1665{
 1666	int err;
 1667
 1668	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
 1669	err = notifier_to_errno(err);
 1670	if (err)
 1671		return err;
 1672
 1673	if (!(dev->flags & IFF_UP))
 1674		return 0;
 1675
 1676	call_netdevice_notifier(nb, NETDEV_UP, dev);
 1677	return 0;
 1678}
 1679
 1680static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
 1681						struct net_device *dev)
 1682{
 1683	if (dev->flags & IFF_UP) {
 1684		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
 1685					dev);
 1686		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
 1687	}
 1688	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
 1689}
 1690
 1691static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
 1692						 struct net *net)
 1693{
 1694	struct net_device *dev;
 1695	int err;
 1696
 1697	for_each_netdev(net, dev) {
 1698		err = call_netdevice_register_notifiers(nb, dev);
 1699		if (err)
 1700			goto rollback;
 1701	}
 1702	return 0;
 1703
 1704rollback:
 1705	for_each_netdev_continue_reverse(net, dev)
 1706		call_netdevice_unregister_notifiers(nb, dev);
 1707	return err;
 1708}
 1709
 1710static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
 1711						    struct net *net)
 1712{
 1713	struct net_device *dev;
 1714
 1715	for_each_netdev(net, dev)
 1716		call_netdevice_unregister_notifiers(nb, dev);
 1717}
 1718
 1719static int dev_boot_phase = 1;
 1720
 1721/**
 1722 * register_netdevice_notifier - register a network notifier block
 1723 * @nb: notifier
 1724 *
 1725 * Register a notifier to be called when network device events occur.
 1726 * The notifier passed is linked into the kernel structures and must
 1727 * not be reused until it has been unregistered. A negative errno code
 1728 * is returned on a failure.
 1729 *
 1730 * When registered all registration and up events are replayed
 1731 * to the new notifier to allow device to have a race free
 1732 * view of the network device list.
 1733 */
 1734
 1735int register_netdevice_notifier(struct notifier_block *nb)
 1736{
 
 
 1737	struct net *net;
 1738	int err;
 1739
 1740	/* Close race with setup_net() and cleanup_net() */
 1741	down_write(&pernet_ops_rwsem);
 1742	rtnl_lock();
 1743	err = raw_notifier_chain_register(&netdev_chain, nb);
 1744	if (err)
 1745		goto unlock;
 1746	if (dev_boot_phase)
 1747		goto unlock;
 1748	for_each_net(net) {
 1749		err = call_netdevice_register_net_notifiers(nb, net);
 1750		if (err)
 1751			goto rollback;
 
 
 
 
 
 
 
 
 1752	}
 1753
 1754unlock:
 1755	rtnl_unlock();
 1756	up_write(&pernet_ops_rwsem);
 1757	return err;
 1758
 1759rollback:
 1760	for_each_net_continue_reverse(net)
 1761		call_netdevice_unregister_net_notifiers(nb, net);
 
 
 
 
 
 
 
 
 
 
 
 
 1762
 1763	raw_notifier_chain_unregister(&netdev_chain, nb);
 1764	goto unlock;
 1765}
 1766EXPORT_SYMBOL(register_netdevice_notifier);
 1767
 1768/**
 1769 * unregister_netdevice_notifier - unregister a network notifier block
 1770 * @nb: notifier
 1771 *
 1772 * Unregister a notifier previously registered by
 1773 * register_netdevice_notifier(). The notifier is unlinked into the
 1774 * kernel structures and may then be reused. A negative errno code
 1775 * is returned on a failure.
 1776 *
 1777 * After unregistering unregister and down device events are synthesized
 1778 * for all devices on the device list to the removed notifier to remove
 1779 * the need for special case cleanup code.
 1780 */
 1781
 1782int unregister_netdevice_notifier(struct notifier_block *nb)
 1783{
 1784	struct net *net;
 1785	int err;
 1786
 1787	/* Close race with setup_net() and cleanup_net() */
 1788	down_write(&pernet_ops_rwsem);
 1789	rtnl_lock();
 1790	err = raw_notifier_chain_unregister(&netdev_chain, nb);
 1791	if (err)
 1792		goto unlock;
 1793
 1794	for_each_net(net)
 1795		call_netdevice_unregister_net_notifiers(nb, net);
 1796
 1797unlock:
 1798	rtnl_unlock();
 1799	up_write(&pernet_ops_rwsem);
 1800	return err;
 1801}
 1802EXPORT_SYMBOL(unregister_netdevice_notifier);
 1803
 1804static int __register_netdevice_notifier_net(struct net *net,
 1805					     struct notifier_block *nb,
 1806					     bool ignore_call_fail)
 1807{
 1808	int err;
 1809
 1810	err = raw_notifier_chain_register(&net->netdev_chain, nb);
 1811	if (err)
 1812		return err;
 1813	if (dev_boot_phase)
 1814		return 0;
 1815
 1816	err = call_netdevice_register_net_notifiers(nb, net);
 1817	if (err && !ignore_call_fail)
 1818		goto chain_unregister;
 1819
 1820	return 0;
 1821
 1822chain_unregister:
 1823	raw_notifier_chain_unregister(&net->netdev_chain, nb);
 1824	return err;
 1825}
 1826
 1827static int __unregister_netdevice_notifier_net(struct net *net,
 1828					       struct notifier_block *nb)
 1829{
 1830	int err;
 1831
 1832	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
 1833	if (err)
 1834		return err;
 1835
 1836	call_netdevice_unregister_net_notifiers(nb, net);
 1837	return 0;
 1838}
 1839
 1840/**
 1841 * register_netdevice_notifier_net - register a per-netns network notifier block
 1842 * @net: network namespace
 1843 * @nb: notifier
 1844 *
 1845 * Register a notifier to be called when network device events occur.
 1846 * The notifier passed is linked into the kernel structures and must
 1847 * not be reused until it has been unregistered. A negative errno code
 1848 * is returned on a failure.
 1849 *
 1850 * When registered all registration and up events are replayed
 1851 * to the new notifier to allow device to have a race free
 1852 * view of the network device list.
 1853 */
 1854
 1855int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
 1856{
 1857	int err;
 1858
 1859	rtnl_lock();
 1860	err = __register_netdevice_notifier_net(net, nb, false);
 1861	rtnl_unlock();
 1862	return err;
 1863}
 1864EXPORT_SYMBOL(register_netdevice_notifier_net);
 1865
 1866/**
 1867 * unregister_netdevice_notifier_net - unregister a per-netns
 1868 *                                     network notifier block
 1869 * @net: network namespace
 1870 * @nb: notifier
 1871 *
 1872 * Unregister a notifier previously registered by
 1873 * register_netdevice_notifier_net(). The notifier is unlinked from the
 1874 * kernel structures and may then be reused. A negative errno code
 1875 * is returned on a failure.
 1876 *
 1877 * After unregistering unregister and down device events are synthesized
 1878 * for all devices on the device list to the removed notifier to remove
 1879 * the need for special case cleanup code.
 1880 */
 1881
 1882int unregister_netdevice_notifier_net(struct net *net,
 1883				      struct notifier_block *nb)
 1884{
 1885	int err;
 1886
 1887	rtnl_lock();
 1888	err = __unregister_netdevice_notifier_net(net, nb);
 1889	rtnl_unlock();
 1890	return err;
 1891}
 1892EXPORT_SYMBOL(unregister_netdevice_notifier_net);
 1893
 1894static void __move_netdevice_notifier_net(struct net *src_net,
 1895					  struct net *dst_net,
 1896					  struct notifier_block *nb)
 1897{
 1898	__unregister_netdevice_notifier_net(src_net, nb);
 1899	__register_netdevice_notifier_net(dst_net, nb, true);
 1900}
 1901
 1902int register_netdevice_notifier_dev_net(struct net_device *dev,
 1903					struct notifier_block *nb,
 1904					struct netdev_net_notifier *nn)
 1905{
 1906	int err;
 1907
 1908	rtnl_lock();
 1909	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
 1910	if (!err) {
 1911		nn->nb = nb;
 1912		list_add(&nn->list, &dev->net_notifier_list);
 1913	}
 1914	rtnl_unlock();
 1915	return err;
 1916}
 1917EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
 1918
 1919int unregister_netdevice_notifier_dev_net(struct net_device *dev,
 1920					  struct notifier_block *nb,
 1921					  struct netdev_net_notifier *nn)
 1922{
 1923	int err;
 1924
 1925	rtnl_lock();
 1926	list_del(&nn->list);
 1927	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
 1928	rtnl_unlock();
 1929	return err;
 1930}
 1931EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
 1932
 1933static void move_netdevice_notifiers_dev_net(struct net_device *dev,
 1934					     struct net *net)
 1935{
 1936	struct netdev_net_notifier *nn;
 1937
 1938	list_for_each_entry(nn, &dev->net_notifier_list, list)
 1939		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
 1940}
 1941
 1942/**
 1943 *	call_netdevice_notifiers_info - call all network notifier blocks
 1944 *	@val: value passed unmodified to notifier function
 1945 *	@info: notifier information data
 1946 *
 1947 *	Call all network notifier blocks.  Parameters and return value
 1948 *	are as for raw_notifier_call_chain().
 1949 */
 1950
 1951int call_netdevice_notifiers_info(unsigned long val,
 1952				  struct netdev_notifier_info *info)
 1953{
 1954	struct net *net = dev_net(info->dev);
 1955	int ret;
 1956
 1957	ASSERT_RTNL();
 1958
 1959	/* Run per-netns notifier block chain first, then run the global one.
 1960	 * Hopefully, one day, the global one is going to be removed after
 1961	 * all notifier block registrators get converted to be per-netns.
 1962	 */
 1963	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
 1964	if (ret & NOTIFY_STOP_MASK)
 1965		return ret;
 1966	return raw_notifier_call_chain(&netdev_chain, val, info);
 1967}
 1968
 1969/**
 1970 *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
 1971 *	                                       for and rollback on error
 1972 *	@val_up: value passed unmodified to notifier function
 1973 *	@val_down: value passed unmodified to the notifier function when
 1974 *	           recovering from an error on @val_up
 1975 *	@info: notifier information data
 1976 *
 1977 *	Call all per-netns network notifier blocks, but not notifier blocks on
 1978 *	the global notifier chain. Parameters and return value are as for
 1979 *	raw_notifier_call_chain_robust().
 1980 */
 1981
 1982static int
 1983call_netdevice_notifiers_info_robust(unsigned long val_up,
 1984				     unsigned long val_down,
 1985				     struct netdev_notifier_info *info)
 1986{
 1987	struct net *net = dev_net(info->dev);
 1988
 1989	ASSERT_RTNL();
 1990
 1991	return raw_notifier_call_chain_robust(&net->netdev_chain,
 1992					      val_up, val_down, info);
 1993}
 1994
 1995static int call_netdevice_notifiers_extack(unsigned long val,
 1996					   struct net_device *dev,
 1997					   struct netlink_ext_ack *extack)
 1998{
 1999	struct netdev_notifier_info info = {
 2000		.dev = dev,
 2001		.extack = extack,
 2002	};
 2003
 2004	return call_netdevice_notifiers_info(val, &info);
 2005}
 2006
 2007/**
 2008 *	call_netdevice_notifiers - call all network notifier blocks
 2009 *      @val: value passed unmodified to notifier function
 2010 *      @dev: net_device pointer passed unmodified to notifier function
 2011 *
 2012 *	Call all network notifier blocks.  Parameters and return value
 2013 *	are as for raw_notifier_call_chain().
 2014 */
 2015
 2016int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
 2017{
 2018	return call_netdevice_notifiers_extack(val, dev, NULL);
 
 2019}
 2020EXPORT_SYMBOL(call_netdevice_notifiers);
 2021
 2022/**
 2023 *	call_netdevice_notifiers_mtu - call all network notifier blocks
 2024 *	@val: value passed unmodified to notifier function
 2025 *	@dev: net_device pointer passed unmodified to notifier function
 2026 *	@arg: additional u32 argument passed to the notifier function
 2027 *
 2028 *	Call all network notifier blocks.  Parameters and return value
 2029 *	are as for raw_notifier_call_chain().
 2030 */
 2031static int call_netdevice_notifiers_mtu(unsigned long val,
 2032					struct net_device *dev, u32 arg)
 2033{
 2034	struct netdev_notifier_info_ext info = {
 2035		.info.dev = dev,
 2036		.ext.mtu = arg,
 2037	};
 2038
 2039	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
 2040
 2041	return call_netdevice_notifiers_info(val, &info.info);
 2042}
 2043
 2044#ifdef CONFIG_NET_INGRESS
 2045static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
 2046
 2047void net_inc_ingress_queue(void)
 2048{
 2049	static_branch_inc(&ingress_needed_key);
 2050}
 2051EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
 2052
 2053void net_dec_ingress_queue(void)
 2054{
 2055	static_branch_dec(&ingress_needed_key);
 2056}
 2057EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
 2058#endif
 2059
 2060#ifdef CONFIG_NET_EGRESS
 2061static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
 2062
 2063void net_inc_egress_queue(void)
 2064{
 2065	static_branch_inc(&egress_needed_key);
 2066}
 2067EXPORT_SYMBOL_GPL(net_inc_egress_queue);
 2068
 2069void net_dec_egress_queue(void)
 2070{
 2071	static_branch_dec(&egress_needed_key);
 2072}
 2073EXPORT_SYMBOL_GPL(net_dec_egress_queue);
 2074#endif
 2075
 2076DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
 2077EXPORT_SYMBOL(netstamp_needed_key);
 2078#ifdef CONFIG_JUMP_LABEL
 2079static atomic_t netstamp_needed_deferred;
 2080static atomic_t netstamp_wanted;
 2081static void netstamp_clear(struct work_struct *work)
 2082{
 2083	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
 2084	int wanted;
 2085
 2086	wanted = atomic_add_return(deferred, &netstamp_wanted);
 2087	if (wanted > 0)
 2088		static_branch_enable(&netstamp_needed_key);
 2089	else
 2090		static_branch_disable(&netstamp_needed_key);
 2091}
 2092static DECLARE_WORK(netstamp_work, netstamp_clear);
 2093#endif
 2094
 2095void net_enable_timestamp(void)
 2096{
 2097#ifdef CONFIG_JUMP_LABEL
 2098	int wanted = atomic_read(&netstamp_wanted);
 2099
 2100	while (wanted > 0) {
 2101		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
 2102			return;
 2103	}
 2104	atomic_inc(&netstamp_needed_deferred);
 2105	schedule_work(&netstamp_work);
 2106#else
 2107	static_branch_inc(&netstamp_needed_key);
 2108#endif
 2109}
 2110EXPORT_SYMBOL(net_enable_timestamp);
 2111
 2112void net_disable_timestamp(void)
 2113{
 2114#ifdef CONFIG_JUMP_LABEL
 2115	int wanted = atomic_read(&netstamp_wanted);
 2116
 2117	while (wanted > 1) {
 2118		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
 2119			return;
 2120	}
 2121	atomic_dec(&netstamp_needed_deferred);
 2122	schedule_work(&netstamp_work);
 2123#else
 2124	static_branch_dec(&netstamp_needed_key);
 2125#endif
 2126}
 2127EXPORT_SYMBOL(net_disable_timestamp);
 2128
 2129static inline void net_timestamp_set(struct sk_buff *skb)
 2130{
 2131	skb->tstamp = 0;
 2132	skb->mono_delivery_time = 0;
 2133	if (static_branch_unlikely(&netstamp_needed_key))
 2134		skb->tstamp = ktime_get_real();
 2135}
 2136
 2137#define net_timestamp_check(COND, SKB)				\
 2138	if (static_branch_unlikely(&netstamp_needed_key)) {	\
 2139		if ((COND) && !(SKB)->tstamp)			\
 2140			(SKB)->tstamp = ktime_get_real();	\
 2141	}							\
 2142
 2143bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
 2144{
 2145	return __is_skb_forwardable(dev, skb, true);
 
 2146}
 2147EXPORT_SYMBOL_GPL(is_skb_forwardable);
 2148
 2149static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
 2150			      bool check_mtu)
 2151{
 2152	int ret = ____dev_forward_skb(dev, skb, check_mtu);
 2153
 2154	if (likely(!ret)) {
 2155		skb->protocol = eth_type_trans(skb, dev);
 2156		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
 2157	}
 2158
 2159	return ret;
 2160}
 
 2161
 2162int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
 2163{
 2164	return __dev_forward_skb2(dev, skb, true);
 
 
 
 
 2165}
 2166EXPORT_SYMBOL_GPL(__dev_forward_skb);
 2167
 2168/**
 2169 * dev_forward_skb - loopback an skb to another netif
 2170 *
 2171 * @dev: destination network device
 2172 * @skb: buffer to forward
 2173 *
 2174 * return values:
 2175 *	NET_RX_SUCCESS	(no congestion)
 2176 *	NET_RX_DROP     (packet was dropped, but freed)
 2177 *
 2178 * dev_forward_skb can be used for injecting an skb from the
 2179 * start_xmit function of one device into the receive queue
 2180 * of another device.
 2181 *
 2182 * The receiving device may be in another namespace, so
 2183 * we have to clear all information in the skb that could
 2184 * impact namespace isolation.
 2185 */
 2186int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
 2187{
 2188	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
 2189}
 2190EXPORT_SYMBOL_GPL(dev_forward_skb);
 
 
 
 
 2191
 2192int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
 2193{
 2194	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
 
 
 
 
 
 
 
 
 
 
 2195}
 
 2196
 2197static inline int deliver_skb(struct sk_buff *skb,
 2198			      struct packet_type *pt_prev,
 2199			      struct net_device *orig_dev)
 2200{
 2201	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
 2202		return -ENOMEM;
 2203	refcount_inc(&skb->users);
 2204	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 2205}
 2206
 2207static inline void deliver_ptype_list_skb(struct sk_buff *skb,
 2208					  struct packet_type **pt,
 2209					  struct net_device *orig_dev,
 2210					  __be16 type,
 2211					  struct list_head *ptype_list)
 2212{
 2213	struct packet_type *ptype, *pt_prev = *pt;
 2214
 2215	list_for_each_entry_rcu(ptype, ptype_list, list) {
 2216		if (ptype->type != type)
 2217			continue;
 2218		if (pt_prev)
 2219			deliver_skb(skb, pt_prev, orig_dev);
 2220		pt_prev = ptype;
 2221	}
 2222	*pt = pt_prev;
 2223}
 2224
 2225static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
 2226{
 2227	if (!ptype->af_packet_priv || !skb->sk)
 2228		return false;
 2229
 2230	if (ptype->id_match)
 2231		return ptype->id_match(ptype, skb->sk);
 2232	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
 2233		return true;
 2234
 2235	return false;
 2236}
 2237
 2238/**
 2239 * dev_nit_active - return true if any network interface taps are in use
 2240 *
 2241 * @dev: network device to check for the presence of taps
 2242 */
 2243bool dev_nit_active(struct net_device *dev)
 2244{
 2245	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
 2246}
 2247EXPORT_SYMBOL_GPL(dev_nit_active);
 2248
 2249/*
 2250 *	Support routine. Sends outgoing frames to any network
 2251 *	taps currently in use.
 2252 */
 2253
 2254void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
 2255{
 2256	struct packet_type *ptype;
 2257	struct sk_buff *skb2 = NULL;
 2258	struct packet_type *pt_prev = NULL;
 2259	struct list_head *ptype_list = &ptype_all;
 2260
 2261	rcu_read_lock();
 2262again:
 2263	list_for_each_entry_rcu(ptype, ptype_list, list) {
 2264		if (ptype->ignore_outgoing)
 2265			continue;
 2266
 2267		/* Never send packets back to the socket
 2268		 * they originated from - MvS (miquels@drinkel.ow.org)
 2269		 */
 2270		if (skb_loop_sk(ptype, skb))
 2271			continue;
 
 
 
 
 
 
 2272
 2273		if (pt_prev) {
 2274			deliver_skb(skb2, pt_prev, skb->dev);
 2275			pt_prev = ptype;
 2276			continue;
 2277		}
 2278
 2279		/* need to clone skb, done only once */
 2280		skb2 = skb_clone(skb, GFP_ATOMIC);
 2281		if (!skb2)
 2282			goto out_unlock;
 2283
 2284		net_timestamp_set(skb2);
 2285
 2286		/* skb->nh should be correctly
 2287		 * set by sender, so that the second statement is
 2288		 * just protection against buggy protocols.
 2289		 */
 2290		skb_reset_mac_header(skb2);
 2291
 2292		if (skb_network_header(skb2) < skb2->data ||
 2293		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
 2294			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
 2295					     ntohs(skb2->protocol),
 2296					     dev->name);
 2297			skb_reset_network_header(skb2);
 2298		}
 2299
 2300		skb2->transport_header = skb2->network_header;
 2301		skb2->pkt_type = PACKET_OUTGOING;
 2302		pt_prev = ptype;
 2303	}
 
 
 
 
 
 2304
 2305	if (ptype_list == &ptype_all) {
 2306		ptype_list = &dev->ptype_all;
 2307		goto again;
 2308	}
 2309out_unlock:
 2310	if (pt_prev) {
 2311		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
 2312			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
 2313		else
 2314			kfree_skb(skb2);
 2315	}
 
 
 2316	rcu_read_unlock();
 2317}
 2318EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
 2319
 2320/**
 2321 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
 2322 * @dev: Network device
 2323 * @txq: number of queues available
 2324 *
 2325 * If real_num_tx_queues is changed the tc mappings may no longer be
 2326 * valid. To resolve this verify the tc mapping remains valid and if
 2327 * not NULL the mapping. With no priorities mapping to this
 2328 * offset/count pair it will no longer be used. In the worst case TC0
 2329 * is invalid nothing can be done so disable priority mappings. If is
 2330 * expected that drivers will fix this mapping if they can before
 2331 * calling netif_set_real_num_tx_queues.
 2332 */
 2333static void netif_setup_tc(struct net_device *dev, unsigned int txq)
 2334{
 2335	int i;
 2336	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
 2337
 2338	/* If TC0 is invalidated disable TC mapping */
 2339	if (tc->offset + tc->count > txq) {
 2340		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
 
 
 2341		dev->num_tc = 0;
 2342		return;
 2343	}
 2344
 2345	/* Invalidated prio to tc mappings set to TC0 */
 2346	for (i = 1; i < TC_BITMASK + 1; i++) {
 2347		int q = netdev_get_prio_tc_map(dev, i);
 2348
 2349		tc = &dev->tc_to_txq[q];
 2350		if (tc->offset + tc->count > txq) {
 2351			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
 2352				    i, q);
 
 
 
 2353			netdev_set_prio_tc_map(dev, i, 0);
 2354		}
 2355	}
 2356}
 2357
 2358int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
 2359{
 2360	if (dev->num_tc) {
 2361		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
 2362		int i;
 2363
 2364		/* walk through the TCs and see if it falls into any of them */
 2365		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
 2366			if ((txq - tc->offset) < tc->count)
 2367				return i;
 2368		}
 2369
 2370		/* didn't find it, just return -1 to indicate no match */
 2371		return -1;
 2372	}
 2373
 2374	return 0;
 2375}
 2376EXPORT_SYMBOL(netdev_txq_to_tc);
 2377
 2378#ifdef CONFIG_XPS
 2379static struct static_key xps_needed __read_mostly;
 2380static struct static_key xps_rxqs_needed __read_mostly;
 2381static DEFINE_MUTEX(xps_map_mutex);
 2382#define xmap_dereference(P)		\
 2383	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
 2384
 2385static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
 2386			     struct xps_dev_maps *old_maps, int tci, u16 index)
 2387{
 2388	struct xps_map *map = NULL;
 2389	int pos;
 2390
 2391	map = xmap_dereference(dev_maps->attr_map[tci]);
 2392	if (!map)
 2393		return false;
 2394
 2395	for (pos = map->len; pos--;) {
 2396		if (map->queues[pos] != index)
 2397			continue;
 2398
 2399		if (map->len > 1) {
 2400			map->queues[pos] = map->queues[--map->len];
 2401			break;
 2402		}
 2403
 2404		if (old_maps)
 2405			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
 2406		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
 2407		kfree_rcu(map, rcu);
 2408		return false;
 2409	}
 2410
 2411	return true;
 2412}
 2413
 2414static bool remove_xps_queue_cpu(struct net_device *dev,
 2415				 struct xps_dev_maps *dev_maps,
 2416				 int cpu, u16 offset, u16 count)
 2417{
 2418	int num_tc = dev_maps->num_tc;
 2419	bool active = false;
 2420	int tci;
 2421
 2422	for (tci = cpu * num_tc; num_tc--; tci++) {
 2423		int i, j;
 2424
 2425		for (i = count, j = offset; i--; j++) {
 2426			if (!remove_xps_queue(dev_maps, NULL, tci, j))
 2427				break;
 2428		}
 2429
 2430		active |= i < 0;
 2431	}
 2432
 2433	return active;
 2434}
 2435
 2436static void reset_xps_maps(struct net_device *dev,
 2437			   struct xps_dev_maps *dev_maps,
 2438			   enum xps_map_type type)
 2439{
 2440	static_key_slow_dec_cpuslocked(&xps_needed);
 2441	if (type == XPS_RXQS)
 2442		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
 2443
 2444	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
 2445
 2446	kfree_rcu(dev_maps, rcu);
 2447}
 2448
 2449static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
 2450			   u16 offset, u16 count)
 2451{
 2452	struct xps_dev_maps *dev_maps;
 2453	bool active = false;
 2454	int i, j;
 2455
 2456	dev_maps = xmap_dereference(dev->xps_maps[type]);
 2457	if (!dev_maps)
 2458		return;
 2459
 2460	for (j = 0; j < dev_maps->nr_ids; j++)
 2461		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
 2462	if (!active)
 2463		reset_xps_maps(dev, dev_maps, type);
 2464
 2465	if (type == XPS_CPUS) {
 2466		for (i = offset + (count - 1); count--; i--)
 2467			netdev_queue_numa_node_write(
 2468				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
 2469	}
 2470}
 2471
 2472static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
 2473				   u16 count)
 2474{
 2475	if (!static_key_false(&xps_needed))
 2476		return;
 2477
 2478	cpus_read_lock();
 2479	mutex_lock(&xps_map_mutex);
 2480
 2481	if (static_key_false(&xps_rxqs_needed))
 2482		clean_xps_maps(dev, XPS_RXQS, offset, count);
 2483
 2484	clean_xps_maps(dev, XPS_CPUS, offset, count);
 2485
 2486	mutex_unlock(&xps_map_mutex);
 2487	cpus_read_unlock();
 2488}
 2489
 2490static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
 2491{
 2492	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
 2493}
 2494
 2495static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
 2496				      u16 index, bool is_rxqs_map)
 2497{
 2498	struct xps_map *new_map;
 2499	int alloc_len = XPS_MIN_MAP_ALLOC;
 2500	int i, pos;
 2501
 2502	for (pos = 0; map && pos < map->len; pos++) {
 2503		if (map->queues[pos] != index)
 2504			continue;
 2505		return map;
 2506	}
 2507
 2508	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
 2509	if (map) {
 2510		if (pos < map->alloc_len)
 2511			return map;
 2512
 2513		alloc_len = map->alloc_len * 2;
 2514	}
 2515
 2516	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
 2517	 *  map
 2518	 */
 2519	if (is_rxqs_map)
 2520		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
 2521	else
 2522		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
 2523				       cpu_to_node(attr_index));
 2524	if (!new_map)
 2525		return NULL;
 2526
 2527	for (i = 0; i < pos; i++)
 2528		new_map->queues[i] = map->queues[i];
 2529	new_map->alloc_len = alloc_len;
 2530	new_map->len = pos;
 2531
 2532	return new_map;
 2533}
 2534
 2535/* Copy xps maps at a given index */
 2536static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
 2537			      struct xps_dev_maps *new_dev_maps, int index,
 2538			      int tc, bool skip_tc)
 2539{
 2540	int i, tci = index * dev_maps->num_tc;
 2541	struct xps_map *map;
 2542
 2543	/* copy maps belonging to foreign traffic classes */
 2544	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
 2545		if (i == tc && skip_tc)
 2546			continue;
 2547
 2548		/* fill in the new device map from the old device map */
 2549		map = xmap_dereference(dev_maps->attr_map[tci]);
 2550		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
 2551	}
 2552}
 2553
 2554/* Must be called under cpus_read_lock */
 2555int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
 2556			  u16 index, enum xps_map_type type)
 2557{
 2558	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
 2559	const unsigned long *online_mask = NULL;
 2560	bool active = false, copy = false;
 2561	int i, j, tci, numa_node_id = -2;
 2562	int maps_sz, num_tc = 1, tc = 0;
 2563	struct xps_map *map, *new_map;
 2564	unsigned int nr_ids;
 2565
 2566	WARN_ON_ONCE(index >= dev->num_tx_queues);
 2567
 2568	if (dev->num_tc) {
 2569		/* Do not allow XPS on subordinate device directly */
 2570		num_tc = dev->num_tc;
 2571		if (num_tc < 0)
 2572			return -EINVAL;
 2573
 2574		/* If queue belongs to subordinate dev use its map */
 2575		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
 2576
 2577		tc = netdev_txq_to_tc(dev, index);
 2578		if (tc < 0)
 2579			return -EINVAL;
 2580	}
 2581
 2582	mutex_lock(&xps_map_mutex);
 2583
 2584	dev_maps = xmap_dereference(dev->xps_maps[type]);
 2585	if (type == XPS_RXQS) {
 2586		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
 2587		nr_ids = dev->num_rx_queues;
 2588	} else {
 2589		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
 2590		if (num_possible_cpus() > 1)
 2591			online_mask = cpumask_bits(cpu_online_mask);
 2592		nr_ids = nr_cpu_ids;
 2593	}
 2594
 2595	if (maps_sz < L1_CACHE_BYTES)
 2596		maps_sz = L1_CACHE_BYTES;
 2597
 2598	/* The old dev_maps could be larger or smaller than the one we're
 2599	 * setting up now, as dev->num_tc or nr_ids could have been updated in
 2600	 * between. We could try to be smart, but let's be safe instead and only
 2601	 * copy foreign traffic classes if the two map sizes match.
 2602	 */
 2603	if (dev_maps &&
 2604	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
 2605		copy = true;
 2606
 2607	/* allocate memory for queue storage */
 2608	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
 2609	     j < nr_ids;) {
 2610		if (!new_dev_maps) {
 2611			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
 2612			if (!new_dev_maps) {
 2613				mutex_unlock(&xps_map_mutex);
 2614				return -ENOMEM;
 2615			}
 2616
 2617			new_dev_maps->nr_ids = nr_ids;
 2618			new_dev_maps->num_tc = num_tc;
 2619		}
 2620
 2621		tci = j * num_tc + tc;
 2622		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
 2623
 2624		map = expand_xps_map(map, j, index, type == XPS_RXQS);
 2625		if (!map)
 2626			goto error;
 2627
 2628		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
 2629	}
 2630
 2631	if (!new_dev_maps)
 2632		goto out_no_new_maps;
 2633
 2634	if (!dev_maps) {
 2635		/* Increment static keys at most once per type */
 2636		static_key_slow_inc_cpuslocked(&xps_needed);
 2637		if (type == XPS_RXQS)
 2638			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
 2639	}
 2640
 2641	for (j = 0; j < nr_ids; j++) {
 2642		bool skip_tc = false;
 2643
 2644		tci = j * num_tc + tc;
 2645		if (netif_attr_test_mask(j, mask, nr_ids) &&
 2646		    netif_attr_test_online(j, online_mask, nr_ids)) {
 2647			/* add tx-queue to CPU/rx-queue maps */
 2648			int pos = 0;
 2649
 2650			skip_tc = true;
 2651
 2652			map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2653			while ((pos < map->len) && (map->queues[pos] != index))
 2654				pos++;
 2655
 2656			if (pos == map->len)
 2657				map->queues[map->len++] = index;
 2658#ifdef CONFIG_NUMA
 2659			if (type == XPS_CPUS) {
 2660				if (numa_node_id == -2)
 2661					numa_node_id = cpu_to_node(j);
 2662				else if (numa_node_id != cpu_to_node(j))
 2663					numa_node_id = -1;
 2664			}
 2665#endif
 2666		}
 2667
 2668		if (copy)
 2669			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
 2670					  skip_tc);
 2671	}
 2672
 2673	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
 2674
 2675	/* Cleanup old maps */
 2676	if (!dev_maps)
 2677		goto out_no_old_maps;
 2678
 2679	for (j = 0; j < dev_maps->nr_ids; j++) {
 2680		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
 2681			map = xmap_dereference(dev_maps->attr_map[tci]);
 2682			if (!map)
 2683				continue;
 2684
 2685			if (copy) {
 2686				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2687				if (map == new_map)
 2688					continue;
 2689			}
 2690
 2691			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
 2692			kfree_rcu(map, rcu);
 2693		}
 2694	}
 2695
 2696	old_dev_maps = dev_maps;
 2697
 2698out_no_old_maps:
 2699	dev_maps = new_dev_maps;
 2700	active = true;
 2701
 2702out_no_new_maps:
 2703	if (type == XPS_CPUS)
 2704		/* update Tx queue numa node */
 2705		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
 2706					     (numa_node_id >= 0) ?
 2707					     numa_node_id : NUMA_NO_NODE);
 2708
 2709	if (!dev_maps)
 2710		goto out_no_maps;
 2711
 2712	/* removes tx-queue from unused CPUs/rx-queues */
 2713	for (j = 0; j < dev_maps->nr_ids; j++) {
 2714		tci = j * dev_maps->num_tc;
 2715
 2716		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
 2717			if (i == tc &&
 2718			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
 2719			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
 2720				continue;
 2721
 2722			active |= remove_xps_queue(dev_maps,
 2723						   copy ? old_dev_maps : NULL,
 2724						   tci, index);
 2725		}
 2726	}
 2727
 2728	if (old_dev_maps)
 2729		kfree_rcu(old_dev_maps, rcu);
 2730
 2731	/* free map if not active */
 2732	if (!active)
 2733		reset_xps_maps(dev, dev_maps, type);
 2734
 2735out_no_maps:
 2736	mutex_unlock(&xps_map_mutex);
 2737
 2738	return 0;
 2739error:
 2740	/* remove any maps that we added */
 2741	for (j = 0; j < nr_ids; j++) {
 2742		for (i = num_tc, tci = j * num_tc; i--; tci++) {
 2743			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2744			map = copy ?
 2745			      xmap_dereference(dev_maps->attr_map[tci]) :
 2746			      NULL;
 2747			if (new_map && new_map != map)
 2748				kfree(new_map);
 2749		}
 2750	}
 2751
 2752	mutex_unlock(&xps_map_mutex);
 2753
 2754	kfree(new_dev_maps);
 2755	return -ENOMEM;
 2756}
 2757EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
 2758
 2759int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
 2760			u16 index)
 2761{
 2762	int ret;
 2763
 2764	cpus_read_lock();
 2765	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
 2766	cpus_read_unlock();
 2767
 2768	return ret;
 2769}
 2770EXPORT_SYMBOL(netif_set_xps_queue);
 2771
 2772#endif
 2773static void netdev_unbind_all_sb_channels(struct net_device *dev)
 2774{
 2775	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
 2776
 2777	/* Unbind any subordinate channels */
 2778	while (txq-- != &dev->_tx[0]) {
 2779		if (txq->sb_dev)
 2780			netdev_unbind_sb_channel(dev, txq->sb_dev);
 2781	}
 2782}
 2783
 2784void netdev_reset_tc(struct net_device *dev)
 2785{
 2786#ifdef CONFIG_XPS
 2787	netif_reset_xps_queues_gt(dev, 0);
 2788#endif
 2789	netdev_unbind_all_sb_channels(dev);
 2790
 2791	/* Reset TC configuration of device */
 2792	dev->num_tc = 0;
 2793	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
 2794	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
 2795}
 2796EXPORT_SYMBOL(netdev_reset_tc);
 2797
 2798int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
 2799{
 2800	if (tc >= dev->num_tc)
 2801		return -EINVAL;
 2802
 2803#ifdef CONFIG_XPS
 2804	netif_reset_xps_queues(dev, offset, count);
 2805#endif
 2806	dev->tc_to_txq[tc].count = count;
 2807	dev->tc_to_txq[tc].offset = offset;
 2808	return 0;
 2809}
 2810EXPORT_SYMBOL(netdev_set_tc_queue);
 2811
 2812int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
 2813{
 2814	if (num_tc > TC_MAX_QUEUE)
 2815		return -EINVAL;
 2816
 2817#ifdef CONFIG_XPS
 2818	netif_reset_xps_queues_gt(dev, 0);
 2819#endif
 2820	netdev_unbind_all_sb_channels(dev);
 2821
 2822	dev->num_tc = num_tc;
 2823	return 0;
 2824}
 2825EXPORT_SYMBOL(netdev_set_num_tc);
 2826
 2827void netdev_unbind_sb_channel(struct net_device *dev,
 2828			      struct net_device *sb_dev)
 2829{
 2830	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
 2831
 2832#ifdef CONFIG_XPS
 2833	netif_reset_xps_queues_gt(sb_dev, 0);
 2834#endif
 2835	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
 2836	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
 2837
 2838	while (txq-- != &dev->_tx[0]) {
 2839		if (txq->sb_dev == sb_dev)
 2840			txq->sb_dev = NULL;
 2841	}
 2842}
 2843EXPORT_SYMBOL(netdev_unbind_sb_channel);
 2844
 2845int netdev_bind_sb_channel_queue(struct net_device *dev,
 2846				 struct net_device *sb_dev,
 2847				 u8 tc, u16 count, u16 offset)
 2848{
 2849	/* Make certain the sb_dev and dev are already configured */
 2850	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
 2851		return -EINVAL;
 2852
 2853	/* We cannot hand out queues we don't have */
 2854	if ((offset + count) > dev->real_num_tx_queues)
 2855		return -EINVAL;
 2856
 2857	/* Record the mapping */
 2858	sb_dev->tc_to_txq[tc].count = count;
 2859	sb_dev->tc_to_txq[tc].offset = offset;
 2860
 2861	/* Provide a way for Tx queue to find the tc_to_txq map or
 2862	 * XPS map for itself.
 2863	 */
 2864	while (count--)
 2865		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
 2866
 2867	return 0;
 2868}
 2869EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
 2870
 2871int netdev_set_sb_channel(struct net_device *dev, u16 channel)
 2872{
 2873	/* Do not use a multiqueue device to represent a subordinate channel */
 2874	if (netif_is_multiqueue(dev))
 2875		return -ENODEV;
 2876
 2877	/* We allow channels 1 - 32767 to be used for subordinate channels.
 2878	 * Channel 0 is meant to be "native" mode and used only to represent
 2879	 * the main root device. We allow writing 0 to reset the device back
 2880	 * to normal mode after being used as a subordinate channel.
 2881	 */
 2882	if (channel > S16_MAX)
 2883		return -EINVAL;
 2884
 2885	dev->num_tc = -channel;
 2886
 2887	return 0;
 2888}
 2889EXPORT_SYMBOL(netdev_set_sb_channel);
 2890
 2891/*
 2892 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
 2893 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
 2894 */
 2895int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
 2896{
 2897	bool disabling;
 2898	int rc;
 2899
 2900	disabling = txq < dev->real_num_tx_queues;
 2901
 2902	if (txq < 1 || txq > dev->num_tx_queues)
 2903		return -EINVAL;
 2904
 2905	if (dev->reg_state == NETREG_REGISTERED ||
 2906	    dev->reg_state == NETREG_UNREGISTERING) {
 2907		ASSERT_RTNL();
 2908
 2909		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
 2910						  txq);
 2911		if (rc)
 2912			return rc;
 2913
 2914		if (dev->num_tc)
 2915			netif_setup_tc(dev, txq);
 2916
 2917		dev_qdisc_change_real_num_tx(dev, txq);
 2918
 2919		dev->real_num_tx_queues = txq;
 2920
 2921		if (disabling) {
 2922			synchronize_net();
 2923			qdisc_reset_all_tx_gt(dev, txq);
 2924#ifdef CONFIG_XPS
 2925			netif_reset_xps_queues_gt(dev, txq);
 2926#endif
 2927		}
 2928	} else {
 2929		dev->real_num_tx_queues = txq;
 2930	}
 2931
 
 2932	return 0;
 2933}
 2934EXPORT_SYMBOL(netif_set_real_num_tx_queues);
 2935
 2936#ifdef CONFIG_SYSFS
 2937/**
 2938 *	netif_set_real_num_rx_queues - set actual number of RX queues used
 2939 *	@dev: Network device
 2940 *	@rxq: Actual number of RX queues
 2941 *
 2942 *	This must be called either with the rtnl_lock held or before
 2943 *	registration of the net device.  Returns 0 on success, or a
 2944 *	negative error code.  If called before registration, it always
 2945 *	succeeds.
 2946 */
 2947int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
 2948{
 2949	int rc;
 2950
 2951	if (rxq < 1 || rxq > dev->num_rx_queues)
 2952		return -EINVAL;
 2953
 2954	if (dev->reg_state == NETREG_REGISTERED) {
 2955		ASSERT_RTNL();
 2956
 2957		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
 2958						  rxq);
 2959		if (rc)
 2960			return rc;
 2961	}
 2962
 2963	dev->real_num_rx_queues = rxq;
 2964	return 0;
 2965}
 2966EXPORT_SYMBOL(netif_set_real_num_rx_queues);
 2967#endif
 2968
 2969/**
 2970 *	netif_set_real_num_queues - set actual number of RX and TX queues used
 2971 *	@dev: Network device
 2972 *	@txq: Actual number of TX queues
 2973 *	@rxq: Actual number of RX queues
 2974 *
 2975 *	Set the real number of both TX and RX queues.
 2976 *	Does nothing if the number of queues is already correct.
 2977 */
 2978int netif_set_real_num_queues(struct net_device *dev,
 2979			      unsigned int txq, unsigned int rxq)
 2980{
 2981	unsigned int old_rxq = dev->real_num_rx_queues;
 2982	int err;
 2983
 2984	if (txq < 1 || txq > dev->num_tx_queues ||
 2985	    rxq < 1 || rxq > dev->num_rx_queues)
 2986		return -EINVAL;
 2987
 2988	/* Start from increases, so the error path only does decreases -
 2989	 * decreases can't fail.
 2990	 */
 2991	if (rxq > dev->real_num_rx_queues) {
 2992		err = netif_set_real_num_rx_queues(dev, rxq);
 2993		if (err)
 2994			return err;
 2995	}
 2996	if (txq > dev->real_num_tx_queues) {
 2997		err = netif_set_real_num_tx_queues(dev, txq);
 2998		if (err)
 2999			goto undo_rx;
 3000	}
 3001	if (rxq < dev->real_num_rx_queues)
 3002		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
 3003	if (txq < dev->real_num_tx_queues)
 3004		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
 3005
 3006	return 0;
 3007undo_rx:
 3008	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
 3009	return err;
 3010}
 3011EXPORT_SYMBOL(netif_set_real_num_queues);
 3012
 3013/**
 3014 * netif_set_tso_max_size() - set the max size of TSO frames supported
 3015 * @dev:	netdev to update
 3016 * @size:	max skb->len of a TSO frame
 3017 *
 3018 * Set the limit on the size of TSO super-frames the device can handle.
 3019 * Unless explicitly set the stack will assume the value of
 3020 * %GSO_LEGACY_MAX_SIZE.
 3021 */
 3022void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
 3023{
 3024	dev->tso_max_size = min(GSO_MAX_SIZE, size);
 3025	if (size < READ_ONCE(dev->gso_max_size))
 3026		netif_set_gso_max_size(dev, size);
 3027	if (size < READ_ONCE(dev->gso_ipv4_max_size))
 3028		netif_set_gso_ipv4_max_size(dev, size);
 3029}
 3030EXPORT_SYMBOL(netif_set_tso_max_size);
 3031
 3032/**
 3033 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
 3034 * @dev:	netdev to update
 3035 * @segs:	max number of TCP segments
 3036 *
 3037 * Set the limit on the number of TCP segments the device can generate from
 3038 * a single TSO super-frame.
 3039 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
 3040 */
 3041void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
 3042{
 3043	dev->tso_max_segs = segs;
 3044	if (segs < READ_ONCE(dev->gso_max_segs))
 3045		netif_set_gso_max_segs(dev, segs);
 3046}
 3047EXPORT_SYMBOL(netif_set_tso_max_segs);
 3048
 3049/**
 3050 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
 3051 * @to:		netdev to update
 3052 * @from:	netdev from which to copy the limits
 3053 */
 3054void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
 3055{
 3056	netif_set_tso_max_size(to, from->tso_max_size);
 3057	netif_set_tso_max_segs(to, from->tso_max_segs);
 3058}
 3059EXPORT_SYMBOL(netif_inherit_tso_max);
 3060
 3061/**
 3062 * netif_get_num_default_rss_queues - default number of RSS queues
 3063 *
 3064 * Default value is the number of physical cores if there are only 1 or 2, or
 3065 * divided by 2 if there are more.
 3066 */
 3067int netif_get_num_default_rss_queues(void)
 3068{
 3069	cpumask_var_t cpus;
 3070	int cpu, count = 0;
 3071
 3072	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
 3073		return 1;
 3074
 3075	cpumask_copy(cpus, cpu_online_mask);
 3076	for_each_cpu(cpu, cpus) {
 3077		++count;
 3078		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
 3079	}
 3080	free_cpumask_var(cpus);
 3081
 3082	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
 3083}
 3084EXPORT_SYMBOL(netif_get_num_default_rss_queues);
 3085
 3086static void __netif_reschedule(struct Qdisc *q)
 3087{
 3088	struct softnet_data *sd;
 3089	unsigned long flags;
 3090
 3091	local_irq_save(flags);
 3092	sd = this_cpu_ptr(&softnet_data);
 3093	q->next_sched = NULL;
 3094	*sd->output_queue_tailp = q;
 3095	sd->output_queue_tailp = &q->next_sched;
 3096	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 3097	local_irq_restore(flags);
 3098}
 3099
 3100void __netif_schedule(struct Qdisc *q)
 3101{
 3102	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
 3103		__netif_reschedule(q);
 3104}
 3105EXPORT_SYMBOL(__netif_schedule);
 3106
 3107struct dev_kfree_skb_cb {
 3108	enum skb_drop_reason reason;
 3109};
 3110
 3111static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
 3112{
 3113	return (struct dev_kfree_skb_cb *)skb->cb;
 3114}
 
 3115
 3116void netif_schedule_queue(struct netdev_queue *txq)
 3117{
 3118	rcu_read_lock();
 3119	if (!netif_xmit_stopped(txq)) {
 3120		struct Qdisc *q = rcu_dereference(txq->qdisc);
 3121
 3122		__netif_schedule(q);
 3123	}
 3124	rcu_read_unlock();
 3125}
 3126EXPORT_SYMBOL(netif_schedule_queue);
 3127
 3128void netif_tx_wake_queue(struct netdev_queue *dev_queue)
 3129{
 3130	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
 3131		struct Qdisc *q;
 3132
 3133		rcu_read_lock();
 3134		q = rcu_dereference(dev_queue->qdisc);
 3135		__netif_schedule(q);
 3136		rcu_read_unlock();
 3137	}
 3138}
 3139EXPORT_SYMBOL(netif_tx_wake_queue);
 3140
 3141void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 3142{
 3143	unsigned long flags;
 3144
 3145	if (unlikely(!skb))
 3146		return;
 3147
 3148	if (likely(refcount_read(&skb->users) == 1)) {
 3149		smp_rmb();
 3150		refcount_set(&skb->users, 0);
 3151	} else if (likely(!refcount_dec_and_test(&skb->users))) {
 3152		return;
 3153	}
 3154	get_kfree_skb_cb(skb)->reason = reason;
 3155	local_irq_save(flags);
 3156	skb->next = __this_cpu_read(softnet_data.completion_queue);
 3157	__this_cpu_write(softnet_data.completion_queue, skb);
 3158	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 3159	local_irq_restore(flags);
 3160}
 3161EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
 3162
 3163void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 3164{
 3165	if (in_hardirq() || irqs_disabled())
 3166		dev_kfree_skb_irq_reason(skb, reason);
 3167	else
 3168		kfree_skb_reason(skb, reason);
 3169}
 3170EXPORT_SYMBOL(dev_kfree_skb_any_reason);
 3171
 3172
 3173/**
 3174 * netif_device_detach - mark device as removed
 3175 * @dev: network device
 3176 *
 3177 * Mark device as removed from system and therefore no longer available.
 3178 */
 3179void netif_device_detach(struct net_device *dev)
 3180{
 3181	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
 3182	    netif_running(dev)) {
 3183		netif_tx_stop_all_queues(dev);
 3184	}
 3185}
 3186EXPORT_SYMBOL(netif_device_detach);
 3187
 3188/**
 3189 * netif_device_attach - mark device as attached
 3190 * @dev: network device
 3191 *
 3192 * Mark device as attached from system and restart if needed.
 3193 */
 3194void netif_device_attach(struct net_device *dev)
 3195{
 3196	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
 3197	    netif_running(dev)) {
 3198		netif_tx_wake_all_queues(dev);
 3199		__netdev_watchdog_up(dev);
 3200	}
 3201}
 3202EXPORT_SYMBOL(netif_device_attach);
 3203
 3204/*
 3205 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
 3206 * to be used as a distribution range.
 3207 */
 3208static u16 skb_tx_hash(const struct net_device *dev,
 3209		       const struct net_device *sb_dev,
 3210		       struct sk_buff *skb)
 3211{
 3212	u32 hash;
 3213	u16 qoffset = 0;
 3214	u16 qcount = dev->real_num_tx_queues;
 3215
 3216	if (dev->num_tc) {
 3217		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
 3218
 3219		qoffset = sb_dev->tc_to_txq[tc].offset;
 3220		qcount = sb_dev->tc_to_txq[tc].count;
 3221		if (unlikely(!qcount)) {
 3222			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
 3223					     sb_dev->name, qoffset, tc);
 3224			qoffset = 0;
 3225			qcount = dev->real_num_tx_queues;
 3226		}
 3227	}
 3228
 3229	if (skb_rx_queue_recorded(skb)) {
 3230		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
 3231		hash = skb_get_rx_queue(skb);
 3232		if (hash >= qoffset)
 3233			hash -= qoffset;
 3234		while (unlikely(hash >= qcount))
 3235			hash -= qcount;
 3236		return hash + qoffset;
 3237	}
 3238
 3239	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
 3240}
 3241
 3242void skb_warn_bad_offload(const struct sk_buff *skb)
 3243{
 3244	static const netdev_features_t null_features;
 3245	struct net_device *dev = skb->dev;
 3246	const char *name = "";
 3247
 3248	if (!net_ratelimit())
 3249		return;
 3250
 3251	if (dev) {
 3252		if (dev->dev.parent)
 3253			name = dev_driver_string(dev->dev.parent);
 3254		else
 3255			name = netdev_name(dev);
 3256	}
 3257	skb_dump(KERN_WARNING, skb, false);
 3258	WARN(1, "%s: caps=(%pNF, %pNF)\n",
 3259	     name, dev ? &dev->features : &null_features,
 3260	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
 3261}
 
 
 3262
 3263/*
 3264 * Invalidate hardware checksum when packet is to be mangled, and
 3265 * complete checksum manually on outgoing path.
 3266 */
 3267int skb_checksum_help(struct sk_buff *skb)
 3268{
 3269	__wsum csum;
 3270	int ret = 0, offset;
 3271
 3272	if (skb->ip_summed == CHECKSUM_COMPLETE)
 3273		goto out_set_summed;
 3274
 3275	if (unlikely(skb_is_gso(skb))) {
 3276		skb_warn_bad_offload(skb);
 3277		return -EINVAL;
 3278	}
 3279
 3280	/* Before computing a checksum, we should make sure no frag could
 3281	 * be modified by an external entity : checksum could be wrong.
 3282	 */
 3283	if (skb_has_shared_frag(skb)) {
 3284		ret = __skb_linearize(skb);
 3285		if (ret)
 3286			goto out;
 3287	}
 3288
 3289	offset = skb_checksum_start_offset(skb);
 3290	ret = -EINVAL;
 3291	if (unlikely(offset >= skb_headlen(skb))) {
 3292		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
 3293		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
 3294			  offset, skb_headlen(skb));
 3295		goto out;
 3296	}
 3297	csum = skb_checksum(skb, offset, skb->len - offset, 0);
 3298
 3299	offset += skb->csum_offset;
 3300	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
 3301		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
 3302		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
 3303			  offset + sizeof(__sum16), skb_headlen(skb));
 3304		goto out;
 
 
 3305	}
 3306	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
 3307	if (ret)
 3308		goto out;
 3309
 3310	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
 3311out_set_summed:
 3312	skb->ip_summed = CHECKSUM_NONE;
 3313out:
 3314	return ret;
 3315}
 3316EXPORT_SYMBOL(skb_checksum_help);
 3317
 3318int skb_crc32c_csum_help(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 3319{
 3320	__le32 crc32c_csum;
 3321	int ret = 0, offset, start;
 
 
 
 3322
 3323	if (skb->ip_summed != CHECKSUM_PARTIAL)
 3324		goto out;
 3325
 3326	if (unlikely(skb_is_gso(skb)))
 3327		goto out;
 3328
 3329	/* Before computing a checksum, we should make sure no frag could
 3330	 * be modified by an external entity : checksum could be wrong.
 3331	 */
 3332	if (unlikely(skb_has_shared_frag(skb))) {
 3333		ret = __skb_linearize(skb);
 3334		if (ret)
 3335			goto out;
 3336	}
 3337	start = skb_checksum_start_offset(skb);
 3338	offset = start + offsetof(struct sctphdr, checksum);
 3339	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
 3340		ret = -EINVAL;
 3341		goto out;
 3342	}
 3343
 3344	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
 3345	if (ret)
 3346		goto out;
 3347
 3348	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
 3349						  skb->len - start, ~(__u32)0,
 3350						  crc32c_csum_stub));
 3351	*(__le32 *)(skb->data + offset) = crc32c_csum;
 3352	skb_reset_csum_not_inet(skb);
 3353out:
 3354	return ret;
 3355}
 3356
 3357__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
 3358{
 3359	__be16 type = skb->protocol;
 3360
 3361	/* Tunnel gso handlers can set protocol to ethernet. */
 3362	if (type == htons(ETH_P_TEB)) {
 3363		struct ethhdr *eth;
 3364
 3365		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
 3366			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3367
 3368		eth = (struct ethhdr *)skb->data;
 3369		type = eth->h_proto;
 
 
 
 
 
 
 
 
 
 
 
 
 
 3370	}
 
 3371
 3372	return vlan_get_protocol_and_depth(skb, type, depth);
 3373}
 3374
 
 
 
 3375
 3376/* Take action when hardware reception checksum errors are detected. */
 3377#ifdef CONFIG_BUG
 3378static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
 3379{
 3380	netdev_err(dev, "hw csum failure\n");
 3381	skb_dump(KERN_ERR, skb, true);
 3382	dump_stack();
 3383}
 3384
 3385void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
 3386{
 3387	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
 3388}
 3389EXPORT_SYMBOL(netdev_rx_csum_fault);
 3390#endif
 3391
 3392/* XXX: check that highmem exists at all on the given machine. */
 
 
 
 
 3393static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
 3394{
 3395#ifdef CONFIG_HIGHMEM
 3396	int i;
 3397
 3398	if (!(dev->features & NETIF_F_HIGHDMA)) {
 3399		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 3400			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 
 
 
 
 
 3401
 3402			if (PageHighMem(skb_frag_page(frag)))
 
 
 
 
 3403				return 1;
 3404		}
 3405	}
 3406#endif
 3407	return 0;
 3408}
 3409
 3410/* If MPLS offload request, verify we are testing hardware MPLS features
 3411 * instead of standard features for the netdev.
 3412 */
 3413#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
 3414static netdev_features_t net_mpls_features(struct sk_buff *skb,
 3415					   netdev_features_t features,
 3416					   __be16 type)
 3417{
 3418	if (eth_p_mpls(type))
 3419		features &= skb->dev->mpls_features;
 3420
 3421	return features;
 3422}
 3423#else
 3424static netdev_features_t net_mpls_features(struct sk_buff *skb,
 3425					   netdev_features_t features,
 3426					   __be16 type)
 3427{
 3428	return features;
 3429}
 3430#endif
 3431
 3432static netdev_features_t harmonize_features(struct sk_buff *skb,
 3433	netdev_features_t features)
 3434{
 3435	__be16 type;
 3436
 3437	type = skb_network_protocol(skb, NULL);
 3438	features = net_mpls_features(skb, features, type);
 3439
 3440	if (skb->ip_summed != CHECKSUM_NONE &&
 3441	    !can_checksum_protocol(features, type)) {
 3442		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
 3443	}
 3444	if (illegal_highdma(skb->dev, skb))
 3445		features &= ~NETIF_F_SG;
 3446
 3447	return features;
 3448}
 
 
 3449
 3450netdev_features_t passthru_features_check(struct sk_buff *skb,
 3451					  struct net_device *dev,
 3452					  netdev_features_t features)
 3453{
 3454	return features;
 3455}
 3456EXPORT_SYMBOL(passthru_features_check);
 3457
 3458static netdev_features_t dflt_features_check(struct sk_buff *skb,
 3459					     struct net_device *dev,
 3460					     netdev_features_t features)
 
 
 
 
 
 
 3461{
 3462	return vlan_features_check(skb, features);
 3463}
 3464
 3465static netdev_features_t gso_features_check(const struct sk_buff *skb,
 3466					    struct net_device *dev,
 3467					    netdev_features_t features)
 3468{
 3469	u16 gso_segs = skb_shinfo(skb)->gso_segs;
 3470
 3471	if (gso_segs > READ_ONCE(dev->gso_max_segs))
 3472		return features & ~NETIF_F_GSO_MASK;
 
 3473
 3474	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
 3475		return features & ~NETIF_F_GSO_MASK;
 3476
 3477	if (!skb_shinfo(skb)->gso_type) {
 3478		skb_warn_bad_offload(skb);
 3479		return features & ~NETIF_F_GSO_MASK;
 3480	}
 3481
 3482	/* Support for GSO partial features requires software
 3483	 * intervention before we can actually process the packets
 3484	 * so we need to strip support for any partial features now
 3485	 * and we can pull them back in after we have partially
 3486	 * segmented the frame.
 3487	 */
 3488	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
 3489		features &= ~dev->gso_partial_features;
 3490
 3491	/* Make sure to clear the IPv4 ID mangling feature if the
 3492	 * IPv4 header has the potential to be fragmented.
 3493	 */
 3494	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
 3495		struct iphdr *iph = skb->encapsulation ?
 3496				    inner_ip_hdr(skb) : ip_hdr(skb);
 
 
 3497
 3498		if (!(iph->frag_off & htons(IP_DF)))
 3499			features &= ~NETIF_F_TSO_MANGLEID;
 
 
 
 
 
 3500	}
 3501
 3502	return features;
 3503}
 3504
 3505netdev_features_t netif_skb_features(struct sk_buff *skb)
 3506{
 3507	struct net_device *dev = skb->dev;
 3508	netdev_features_t features = dev->features;
 3509
 3510	if (skb_is_gso(skb))
 3511		features = gso_features_check(skb, dev, features);
 3512
 3513	/* If encapsulation offload request, verify we are testing
 3514	 * hardware encapsulation features instead of standard
 3515	 * features for the netdev
 3516	 */
 3517	if (skb->encapsulation)
 3518		features &= dev->hw_enc_features;
 3519
 3520	if (skb_vlan_tagged(skb))
 3521		features = netdev_intersect_features(features,
 3522						     dev->vlan_features |
 3523						     NETIF_F_HW_VLAN_CTAG_TX |
 3524						     NETIF_F_HW_VLAN_STAG_TX);
 3525
 3526	if (dev->netdev_ops->ndo_features_check)
 3527		features &= dev->netdev_ops->ndo_features_check(skb, dev,
 3528								features);
 3529	else
 3530		features &= dflt_features_check(skb, dev, features);
 3531
 3532	return harmonize_features(skb, features);
 3533}
 3534EXPORT_SYMBOL(netif_skb_features);
 3535
 3536static int xmit_one(struct sk_buff *skb, struct net_device *dev,
 3537		    struct netdev_queue *txq, bool more)
 3538{
 3539	unsigned int len;
 3540	int rc;
 3541
 3542	if (dev_nit_active(dev))
 3543		dev_queue_xmit_nit(skb, dev);
 3544
 3545	len = skb->len;
 3546	trace_net_dev_start_xmit(skb, dev);
 3547	rc = netdev_start_xmit(skb, dev, txq, more);
 3548	trace_net_dev_xmit(skb, rc, dev, len);
 3549
 3550	return rc;
 3551}
 3552
 3553struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
 3554				    struct netdev_queue *txq, int *ret)
 3555{
 3556	struct sk_buff *skb = first;
 3557	int rc = NETDEV_TX_OK;
 3558
 3559	while (skb) {
 3560		struct sk_buff *next = skb->next;
 
 
 
 
 3561
 3562		skb_mark_not_on_list(skb);
 3563		rc = xmit_one(skb, dev, txq, next != NULL);
 3564		if (unlikely(!dev_xmit_complete(rc))) {
 3565			skb->next = next;
 3566			goto out;
 3567		}
 3568
 3569		skb = next;
 3570		if (netif_tx_queue_stopped(txq) && skb) {
 3571			rc = NETDEV_TX_BUSY;
 3572			break;
 3573		}
 
 3574	}
 3575
 3576out:
 3577	*ret = rc;
 3578	return skb;
 3579}
 
 3580
 3581static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
 3582					  netdev_features_t features)
 3583{
 3584	if (skb_vlan_tag_present(skb) &&
 3585	    !vlan_hw_offload_capable(features, skb->vlan_proto))
 3586		skb = __vlan_hwaccel_push_inside(skb);
 3587	return skb;
 
 
 
 
 
 
 
 
 3588}
 3589
 3590int skb_csum_hwoffload_help(struct sk_buff *skb,
 3591			    const netdev_features_t features)
 3592{
 3593	if (unlikely(skb_csum_is_sctp(skb)))
 3594		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
 3595			skb_crc32c_csum_help(skb);
 3596
 3597	if (features & NETIF_F_HW_CSUM)
 3598		return 0;
 3599
 3600	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
 3601		switch (skb->csum_offset) {
 3602		case offsetof(struct tcphdr, check):
 3603		case offsetof(struct udphdr, check):
 3604			return 0;
 3605		}
 3606	}
 3607
 3608	return skb_checksum_help(skb);
 3609}
 3610EXPORT_SYMBOL(skb_csum_hwoffload_help);
 3611
 3612static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
 3613{
 3614	netdev_features_t features;
 3615
 3616	features = netif_skb_features(skb);
 3617	skb = validate_xmit_vlan(skb, features);
 3618	if (unlikely(!skb))
 3619		goto out_null;
 3620
 3621	skb = sk_validate_xmit_skb(skb, dev);
 3622	if (unlikely(!skb))
 3623		goto out_null;
 3624
 3625	if (netif_needs_gso(skb, features)) {
 3626		struct sk_buff *segs;
 
 
 
 3627
 3628		segs = skb_gso_segment(skb, features);
 3629		if (IS_ERR(segs)) {
 3630			goto out_kfree_skb;
 3631		} else if (segs) {
 3632			consume_skb(skb);
 3633			skb = segs;
 3634		}
 3635	} else {
 3636		if (skb_needs_linearize(skb, features) &&
 3637		    __skb_linearize(skb))
 3638			goto out_kfree_skb;
 3639
 3640		/* If packet is not checksummed and device does not
 3641		 * support checksumming for this protocol, complete
 3642		 * checksumming here.
 3643		 */
 3644		if (skb->ip_summed == CHECKSUM_PARTIAL) {
 3645			if (skb->encapsulation)
 3646				skb_set_inner_transport_header(skb,
 3647							       skb_checksum_start_offset(skb));
 3648			else
 3649				skb_set_transport_header(skb,
 3650							 skb_checksum_start_offset(skb));
 3651			if (skb_csum_hwoffload_help(skb, features))
 3652				goto out_kfree_skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3653		}
 
 
 
 
 
 
 
 3654	}
 3655
 3656	skb = validate_xmit_xfrm(skb, features, again);
 
 
 3657
 3658	return skb;
 
 3659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3660out_kfree_skb:
 3661	kfree_skb(skb);
 3662out_null:
 3663	dev_core_stats_tx_dropped_inc(dev);
 3664	return NULL;
 3665}
 3666
 3667struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
 
 
 
 
 
 
 
 3668{
 3669	struct sk_buff *next, *head = NULL, *tail;
 
 
 3670
 3671	for (; skb != NULL; skb = next) {
 3672		next = skb->next;
 3673		skb_mark_not_on_list(skb);
 
 
 
 3674
 3675		/* in case skb wont be segmented, point to itself */
 3676		skb->prev = skb;
 
 
 
 3677
 3678		skb = validate_xmit_skb(skb, dev, again);
 3679		if (!skb)
 3680			continue;
 
 
 3681
 3682		if (!head)
 3683			head = skb;
 3684		else
 3685			tail->next = skb;
 3686		/* If skb was segmented, skb->prev points to
 3687		 * the last segment. If not, it still contains skb.
 3688		 */
 3689		tail = skb->prev;
 3690	}
 3691	return head;
 3692}
 3693EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
 3694
 3695static void qdisc_pkt_len_init(struct sk_buff *skb)
 3696{
 3697	const struct skb_shared_info *shinfo = skb_shinfo(skb);
 3698
 3699	qdisc_skb_cb(skb)->pkt_len = skb->len;
 3700
 3701	/* To get more precise estimation of bytes sent on wire,
 3702	 * we add to pkt_len the headers size of all segments
 3703	 */
 3704	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
 3705		u16 gso_segs = shinfo->gso_segs;
 3706		unsigned int hdr_len;
 3707
 3708		/* mac layer + network layer */
 3709		hdr_len = skb_transport_offset(skb);
 3710
 3711		/* + transport layer */
 3712		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
 3713			const struct tcphdr *th;
 3714			struct tcphdr _tcphdr;
 3715
 3716			th = skb_header_pointer(skb, hdr_len,
 3717						sizeof(_tcphdr), &_tcphdr);
 3718			if (likely(th))
 3719				hdr_len += __tcp_hdrlen(th);
 3720		} else {
 3721			struct udphdr _udphdr;
 3722
 3723			if (skb_header_pointer(skb, hdr_len,
 3724					       sizeof(_udphdr), &_udphdr))
 3725				hdr_len += sizeof(struct udphdr);
 3726		}
 
 
 
 
 3727
 3728		if (shinfo->gso_type & SKB_GSO_DODGY)
 3729			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
 3730						shinfo->gso_size);
 
 
 
 3731
 3732		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3733	}
 
 
 
 
 
 
 3734}
 3735
 3736static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
 3737			     struct sk_buff **to_free,
 3738			     struct netdev_queue *txq)
 3739{
 3740	int rc;
 
 3741
 3742	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
 3743	if (rc == NET_XMIT_SUCCESS)
 3744		trace_qdisc_enqueue(q, txq, skb);
 3745	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3746}
 3747
 3748static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
 3749				 struct net_device *dev,
 3750				 struct netdev_queue *txq)
 3751{
 3752	spinlock_t *root_lock = qdisc_lock(q);
 3753	struct sk_buff *to_free = NULL;
 3754	bool contended;
 3755	int rc;
 3756
 
 3757	qdisc_calculate_pkt_len(skb, q);
 3758
 3759	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
 3760
 3761	if (q->flags & TCQ_F_NOLOCK) {
 3762		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
 3763		    qdisc_run_begin(q)) {
 3764			/* Retest nolock_qdisc_is_empty() within the protection
 3765			 * of q->seqlock to protect from racing with requeuing.
 3766			 */
 3767			if (unlikely(!nolock_qdisc_is_empty(q))) {
 3768				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3769				__qdisc_run(q);
 3770				qdisc_run_end(q);
 3771
 3772				goto no_lock_out;
 3773			}
 3774
 3775			qdisc_bstats_cpu_update(q, skb);
 3776			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
 3777			    !nolock_qdisc_is_empty(q))
 3778				__qdisc_run(q);
 3779
 3780			qdisc_run_end(q);
 3781			return NET_XMIT_SUCCESS;
 3782		}
 3783
 3784		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3785		qdisc_run(q);
 3786
 3787no_lock_out:
 3788		if (unlikely(to_free))
 3789			kfree_skb_list_reason(to_free,
 3790					      tcf_get_drop_reason(to_free));
 3791		return rc;
 3792	}
 3793
 3794	/*
 3795	 * Heuristic to force contended enqueues to serialize on a
 3796	 * separate lock before trying to get qdisc main lock.
 3797	 * This permits qdisc->running owner to get the lock more
 3798	 * often and dequeue packets faster.
 3799	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
 3800	 * and then other tasks will only enqueue packets. The packets will be
 3801	 * sent after the qdisc owner is scheduled again. To prevent this
 3802	 * scenario the task always serialize on the lock.
 3803	 */
 3804	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
 3805	if (unlikely(contended))
 3806		spin_lock(&q->busylock);
 3807
 3808	spin_lock(root_lock);
 3809	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
 3810		__qdisc_drop(skb, &to_free);
 3811		rc = NET_XMIT_DROP;
 3812	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
 3813		   qdisc_run_begin(q)) {
 3814		/*
 3815		 * This is a work-conserving queue; there are no old skbs
 3816		 * waiting to be sent out; and the qdisc is not running -
 3817		 * xmit the skb directly.
 3818		 */
 
 
 3819
 3820		qdisc_bstats_update(q, skb);
 3821
 3822		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
 3823			if (unlikely(contended)) {
 3824				spin_unlock(&q->busylock);
 3825				contended = false;
 3826			}
 3827			__qdisc_run(q);
 3828		}
 
 3829
 3830		qdisc_run_end(q);
 3831		rc = NET_XMIT_SUCCESS;
 3832	} else {
 3833		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 
 3834		if (qdisc_run_begin(q)) {
 3835			if (unlikely(contended)) {
 3836				spin_unlock(&q->busylock);
 3837				contended = false;
 3838			}
 3839			__qdisc_run(q);
 3840			qdisc_run_end(q);
 3841		}
 3842	}
 3843	spin_unlock(root_lock);
 3844	if (unlikely(to_free))
 3845		kfree_skb_list_reason(to_free,
 3846				      tcf_get_drop_reason(to_free));
 3847	if (unlikely(contended))
 3848		spin_unlock(&q->busylock);
 3849	return rc;
 3850}
 3851
 3852#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
 3853static void skb_update_prio(struct sk_buff *skb)
 3854{
 3855	const struct netprio_map *map;
 3856	const struct sock *sk;
 3857	unsigned int prioidx;
 3858
 3859	if (skb->priority)
 3860		return;
 3861	map = rcu_dereference_bh(skb->dev->priomap);
 3862	if (!map)
 3863		return;
 3864	sk = skb_to_full_sk(skb);
 3865	if (!sk)
 3866		return;
 3867
 3868	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
 3869
 3870	if (prioidx < map->priomap_len)
 3871		skb->priority = map->priomap[prioidx];
 3872}
 3873#else
 3874#define skb_update_prio(skb)
 3875#endif
 3876
 3877/**
 3878 *	dev_loopback_xmit - loop back @skb
 3879 *	@net: network namespace this loopback is happening in
 3880 *	@sk:  sk needed to be a netfilter okfn
 3881 *	@skb: buffer to transmit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3882 */
 3883int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
 3884{
 3885	skb_reset_mac_header(skb);
 3886	__skb_pull(skb, skb_network_offset(skb));
 3887	skb->pkt_type = PACKET_LOOPBACK;
 3888	if (skb->ip_summed == CHECKSUM_NONE)
 3889		skb->ip_summed = CHECKSUM_UNNECESSARY;
 3890	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
 3891	skb_dst_force(skb);
 3892	netif_rx(skb);
 3893	return 0;
 3894}
 3895EXPORT_SYMBOL(dev_loopback_xmit);
 3896
 3897#ifdef CONFIG_NET_EGRESS
 3898static struct netdev_queue *
 3899netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
 3900{
 3901	int qm = skb_get_queue_mapping(skb);
 3902
 3903	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
 3904}
 3905
 3906static bool netdev_xmit_txqueue_skipped(void)
 3907{
 3908	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
 3909}
 3910
 3911void netdev_xmit_skip_txqueue(bool skip)
 3912{
 3913	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
 3914}
 3915EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
 3916#endif /* CONFIG_NET_EGRESS */
 3917
 3918#ifdef CONFIG_NET_XGRESS
 3919static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
 3920		  enum skb_drop_reason *drop_reason)
 3921{
 3922	int ret = TC_ACT_UNSPEC;
 3923#ifdef CONFIG_NET_CLS_ACT
 3924	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
 3925	struct tcf_result res;
 3926
 3927	if (!miniq)
 3928		return ret;
 3929
 3930	tc_skb_cb(skb)->mru = 0;
 3931	tc_skb_cb(skb)->post_ct = false;
 3932	tcf_set_drop_reason(skb, *drop_reason);
 3933
 3934	mini_qdisc_bstats_cpu_update(miniq, skb);
 3935	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
 3936	/* Only tcf related quirks below. */
 3937	switch (ret) {
 3938	case TC_ACT_SHOT:
 3939		*drop_reason = tcf_get_drop_reason(skb);
 3940		mini_qdisc_qstats_cpu_drop(miniq);
 3941		break;
 3942	case TC_ACT_OK:
 3943	case TC_ACT_RECLASSIFY:
 3944		skb->tc_index = TC_H_MIN(res.classid);
 3945		break;
 3946	}
 3947#endif /* CONFIG_NET_CLS_ACT */
 3948	return ret;
 3949}
 3950
 3951static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
 3952
 3953void tcx_inc(void)
 3954{
 3955	static_branch_inc(&tcx_needed_key);
 3956}
 3957
 3958void tcx_dec(void)
 3959{
 3960	static_branch_dec(&tcx_needed_key);
 3961}
 3962
 3963static __always_inline enum tcx_action_base
 3964tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
 3965	const bool needs_mac)
 3966{
 3967	const struct bpf_mprog_fp *fp;
 3968	const struct bpf_prog *prog;
 3969	int ret = TCX_NEXT;
 3970
 3971	if (needs_mac)
 3972		__skb_push(skb, skb->mac_len);
 3973	bpf_mprog_foreach_prog(entry, fp, prog) {
 3974		bpf_compute_data_pointers(skb);
 3975		ret = bpf_prog_run(prog, skb);
 3976		if (ret != TCX_NEXT)
 3977			break;
 3978	}
 3979	if (needs_mac)
 3980		__skb_pull(skb, skb->mac_len);
 3981	return tcx_action_code(skb, ret);
 3982}
 3983
 3984static __always_inline struct sk_buff *
 3985sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
 3986		   struct net_device *orig_dev, bool *another)
 3987{
 3988	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
 3989	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
 3990	int sch_ret;
 3991
 3992	if (!entry)
 3993		return skb;
 3994	if (*pt_prev) {
 3995		*ret = deliver_skb(skb, *pt_prev, orig_dev);
 3996		*pt_prev = NULL;
 3997	}
 3998
 3999	qdisc_skb_cb(skb)->pkt_len = skb->len;
 4000	tcx_set_ingress(skb, true);
 4001
 4002	if (static_branch_unlikely(&tcx_needed_key)) {
 4003		sch_ret = tcx_run(entry, skb, true);
 4004		if (sch_ret != TC_ACT_UNSPEC)
 4005			goto ingress_verdict;
 4006	}
 4007	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
 4008ingress_verdict:
 4009	switch (sch_ret) {
 4010	case TC_ACT_REDIRECT:
 4011		/* skb_mac_header check was done by BPF, so we can safely
 4012		 * push the L2 header back before redirecting to another
 4013		 * netdev.
 4014		 */
 4015		__skb_push(skb, skb->mac_len);
 4016		if (skb_do_redirect(skb) == -EAGAIN) {
 4017			__skb_pull(skb, skb->mac_len);
 4018			*another = true;
 4019			break;
 4020		}
 4021		*ret = NET_RX_SUCCESS;
 4022		return NULL;
 4023	case TC_ACT_SHOT:
 4024		kfree_skb_reason(skb, drop_reason);
 4025		*ret = NET_RX_DROP;
 4026		return NULL;
 4027	/* used by tc_run */
 4028	case TC_ACT_STOLEN:
 4029	case TC_ACT_QUEUED:
 4030	case TC_ACT_TRAP:
 4031		consume_skb(skb);
 4032		fallthrough;
 4033	case TC_ACT_CONSUMED:
 4034		*ret = NET_RX_SUCCESS;
 4035		return NULL;
 4036	}
 4037
 4038	return skb;
 4039}
 4040
 4041static __always_inline struct sk_buff *
 4042sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 4043{
 4044	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
 4045	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
 4046	int sch_ret;
 4047
 4048	if (!entry)
 4049		return skb;
 4050
 4051	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
 4052	 * already set by the caller.
 4053	 */
 4054	if (static_branch_unlikely(&tcx_needed_key)) {
 4055		sch_ret = tcx_run(entry, skb, false);
 4056		if (sch_ret != TC_ACT_UNSPEC)
 4057			goto egress_verdict;
 4058	}
 4059	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
 4060egress_verdict:
 4061	switch (sch_ret) {
 4062	case TC_ACT_REDIRECT:
 4063		/* No need to push/pop skb's mac_header here on egress! */
 4064		skb_do_redirect(skb);
 4065		*ret = NET_XMIT_SUCCESS;
 4066		return NULL;
 4067	case TC_ACT_SHOT:
 4068		kfree_skb_reason(skb, drop_reason);
 4069		*ret = NET_XMIT_DROP;
 4070		return NULL;
 4071	/* used by tc_run */
 4072	case TC_ACT_STOLEN:
 4073	case TC_ACT_QUEUED:
 4074	case TC_ACT_TRAP:
 4075		consume_skb(skb);
 4076		fallthrough;
 4077	case TC_ACT_CONSUMED:
 4078		*ret = NET_XMIT_SUCCESS;
 4079		return NULL;
 4080	}
 4081
 4082	return skb;
 4083}
 4084#else
 4085static __always_inline struct sk_buff *
 4086sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
 4087		   struct net_device *orig_dev, bool *another)
 4088{
 4089	return skb;
 4090}
 4091
 4092static __always_inline struct sk_buff *
 4093sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 4094{
 4095	return skb;
 4096}
 4097#endif /* CONFIG_NET_XGRESS */
 4098
 4099#ifdef CONFIG_XPS
 4100static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
 4101			       struct xps_dev_maps *dev_maps, unsigned int tci)
 4102{
 4103	int tc = netdev_get_prio_tc_map(dev, skb->priority);
 4104	struct xps_map *map;
 4105	int queue_index = -1;
 4106
 4107	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
 4108		return queue_index;
 4109
 4110	tci *= dev_maps->num_tc;
 4111	tci += tc;
 4112
 4113	map = rcu_dereference(dev_maps->attr_map[tci]);
 4114	if (map) {
 4115		if (map->len == 1)
 4116			queue_index = map->queues[0];
 4117		else
 4118			queue_index = map->queues[reciprocal_scale(
 4119						skb_get_hash(skb), map->len)];
 4120		if (unlikely(queue_index >= dev->real_num_tx_queues))
 4121			queue_index = -1;
 4122	}
 4123	return queue_index;
 4124}
 4125#endif
 4126
 4127static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
 4128			 struct sk_buff *skb)
 4129{
 4130#ifdef CONFIG_XPS
 4131	struct xps_dev_maps *dev_maps;
 4132	struct sock *sk = skb->sk;
 4133	int queue_index = -1;
 4134
 4135	if (!static_key_false(&xps_needed))
 4136		return -1;
 4137
 4138	rcu_read_lock();
 4139	if (!static_key_false(&xps_rxqs_needed))
 4140		goto get_cpus_map;
 4141
 4142	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
 4143	if (dev_maps) {
 4144		int tci = sk_rx_queue_get(sk);
 4145
 4146		if (tci >= 0)
 4147			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
 4148							  tci);
 4149	}
 4150
 4151get_cpus_map:
 4152	if (queue_index < 0) {
 4153		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
 4154		if (dev_maps) {
 4155			unsigned int tci = skb->sender_cpu - 1;
 4156
 4157			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
 4158							  tci);
 4159		}
 4160	}
 4161	rcu_read_unlock();
 4162
 4163	return queue_index;
 4164#else
 4165	return -1;
 4166#endif
 4167}
 4168
 4169u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
 4170		     struct net_device *sb_dev)
 4171{
 4172	return 0;
 4173}
 4174EXPORT_SYMBOL(dev_pick_tx_zero);
 4175
 4176u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
 4177		       struct net_device *sb_dev)
 4178{
 4179	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
 4180}
 4181EXPORT_SYMBOL(dev_pick_tx_cpu_id);
 4182
 4183u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
 4184		     struct net_device *sb_dev)
 4185{
 4186	struct sock *sk = skb->sk;
 4187	int queue_index = sk_tx_queue_get(sk);
 4188
 4189	sb_dev = sb_dev ? : dev;
 4190
 4191	if (queue_index < 0 || skb->ooo_okay ||
 4192	    queue_index >= dev->real_num_tx_queues) {
 4193		int new_index = get_xps_queue(dev, sb_dev, skb);
 4194
 4195		if (new_index < 0)
 4196			new_index = skb_tx_hash(dev, sb_dev, skb);
 4197
 4198		if (queue_index != new_index && sk &&
 4199		    sk_fullsock(sk) &&
 4200		    rcu_access_pointer(sk->sk_dst_cache))
 4201			sk_tx_queue_set(sk, new_index);
 4202
 4203		queue_index = new_index;
 4204	}
 4205
 4206	return queue_index;
 4207}
 4208EXPORT_SYMBOL(netdev_pick_tx);
 4209
 4210struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
 4211					 struct sk_buff *skb,
 4212					 struct net_device *sb_dev)
 4213{
 4214	int queue_index = 0;
 4215
 4216#ifdef CONFIG_XPS
 4217	u32 sender_cpu = skb->sender_cpu - 1;
 4218
 4219	if (sender_cpu >= (u32)NR_CPUS)
 4220		skb->sender_cpu = raw_smp_processor_id() + 1;
 4221#endif
 4222
 4223	if (dev->real_num_tx_queues != 1) {
 4224		const struct net_device_ops *ops = dev->netdev_ops;
 4225
 4226		if (ops->ndo_select_queue)
 4227			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
 4228		else
 4229			queue_index = netdev_pick_tx(dev, skb, sb_dev);
 4230
 4231		queue_index = netdev_cap_txqueue(dev, queue_index);
 4232	}
 4233
 4234	skb_set_queue_mapping(skb, queue_index);
 4235	return netdev_get_tx_queue(dev, queue_index);
 4236}
 4237
 4238/**
 4239 * __dev_queue_xmit() - transmit a buffer
 4240 * @skb:	buffer to transmit
 4241 * @sb_dev:	suboordinate device used for L2 forwarding offload
 4242 *
 4243 * Queue a buffer for transmission to a network device. The caller must
 4244 * have set the device and priority and built the buffer before calling
 4245 * this function. The function can be called from an interrupt.
 4246 *
 4247 * When calling this method, interrupts MUST be enabled. This is because
 4248 * the BH enable code must have IRQs enabled so that it will not deadlock.
 4249 *
 4250 * Regardless of the return value, the skb is consumed, so it is currently
 4251 * difficult to retry a send to this method. (You can bump the ref count
 4252 * before sending to hold a reference for retry if you are careful.)
 4253 *
 4254 * Return:
 4255 * * 0				- buffer successfully transmitted
 4256 * * positive qdisc return code	- NET_XMIT_DROP etc.
 4257 * * negative errno		- other errors
 4258 */
 4259int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
 4260{
 4261	struct net_device *dev = skb->dev;
 4262	struct netdev_queue *txq = NULL;
 4263	struct Qdisc *q;
 4264	int rc = -ENOMEM;
 4265	bool again = false;
 4266
 4267	skb_reset_mac_header(skb);
 4268	skb_assert_len(skb);
 4269
 4270	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
 4271		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
 4272
 4273	/* Disable soft irqs for various locks below. Also
 4274	 * stops preemption for RCU.
 4275	 */
 4276	rcu_read_lock_bh();
 4277
 4278	skb_update_prio(skb);
 4279
 4280	qdisc_pkt_len_init(skb);
 4281	tcx_set_ingress(skb, false);
 4282#ifdef CONFIG_NET_EGRESS
 4283	if (static_branch_unlikely(&egress_needed_key)) {
 4284		if (nf_hook_egress_active()) {
 4285			skb = nf_hook_egress(skb, &rc, dev);
 4286			if (!skb)
 4287				goto out;
 4288		}
 4289
 4290		netdev_xmit_skip_txqueue(false);
 4291
 4292		nf_skip_egress(skb, true);
 4293		skb = sch_handle_egress(skb, &rc, dev);
 4294		if (!skb)
 4295			goto out;
 4296		nf_skip_egress(skb, false);
 4297
 4298		if (netdev_xmit_txqueue_skipped())
 4299			txq = netdev_tx_queue_mapping(dev, skb);
 4300	}
 4301#endif
 4302	/* If device/qdisc don't need skb->dst, release it right now while
 4303	 * its hot in this cpu cache.
 4304	 */
 4305	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
 4306		skb_dst_drop(skb);
 4307	else
 4308		skb_dst_force(skb);
 4309
 4310	if (!txq)
 4311		txq = netdev_core_pick_tx(dev, skb, sb_dev);
 4312
 4313	q = rcu_dereference_bh(txq->qdisc);
 4314
 
 
 
 4315	trace_net_dev_queue(skb);
 4316	if (q->enqueue) {
 4317		rc = __dev_xmit_skb(skb, q, dev, txq);
 4318		goto out;
 4319	}
 4320
 4321	/* The device has no queue. Common case for software devices:
 4322	 * loopback, all the sorts of tunnels...
 4323
 4324	 * Really, it is unlikely that netif_tx_lock protection is necessary
 4325	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
 4326	 * counters.)
 4327	 * However, it is possible, that they rely on protection
 4328	 * made by us here.
 4329
 4330	 * Check this and shot the lock. It is not prone from deadlocks.
 4331	 *Either shot noqueue qdisc, it is even simpler 8)
 4332	 */
 4333	if (dev->flags & IFF_UP) {
 4334		int cpu = smp_processor_id(); /* ok because BHs are off */
 4335
 4336		/* Other cpus might concurrently change txq->xmit_lock_owner
 4337		 * to -1 or to their cpu id, but not to our id.
 4338		 */
 4339		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
 4340			if (dev_xmit_recursion())
 4341				goto recursion_alert;
 4342
 4343			skb = validate_xmit_skb(skb, dev, &again);
 4344			if (!skb)
 4345				goto out;
 4346
 4347			HARD_TX_LOCK(dev, txq, cpu);
 4348
 4349			if (!netif_xmit_stopped(txq)) {
 4350				dev_xmit_recursion_inc();
 4351				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
 4352				dev_xmit_recursion_dec();
 4353				if (dev_xmit_complete(rc)) {
 4354					HARD_TX_UNLOCK(dev, txq);
 4355					goto out;
 4356				}
 4357			}
 4358			HARD_TX_UNLOCK(dev, txq);
 4359			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
 4360					     dev->name);
 
 4361		} else {
 4362			/* Recursion is detected! It is possible,
 4363			 * unfortunately
 4364			 */
 4365recursion_alert:
 4366			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
 4367					     dev->name);
 
 4368		}
 4369	}
 4370
 4371	rc = -ENETDOWN;
 4372	rcu_read_unlock_bh();
 4373
 4374	dev_core_stats_tx_dropped_inc(dev);
 4375	kfree_skb_list(skb);
 4376	return rc;
 4377out:
 4378	rcu_read_unlock_bh();
 4379	return rc;
 4380}
 4381EXPORT_SYMBOL(__dev_queue_xmit);
 4382
 4383int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
 4384{
 4385	struct net_device *dev = skb->dev;
 4386	struct sk_buff *orig_skb = skb;
 4387	struct netdev_queue *txq;
 4388	int ret = NETDEV_TX_BUSY;
 4389	bool again = false;
 4390
 4391	if (unlikely(!netif_running(dev) ||
 4392		     !netif_carrier_ok(dev)))
 4393		goto drop;
 4394
 4395	skb = validate_xmit_skb_list(skb, dev, &again);
 4396	if (skb != orig_skb)
 4397		goto drop;
 4398
 4399	skb_set_queue_mapping(skb, queue_id);
 4400	txq = skb_get_tx_queue(dev, skb);
 4401
 4402	local_bh_disable();
 4403
 4404	dev_xmit_recursion_inc();
 4405	HARD_TX_LOCK(dev, txq, smp_processor_id());
 4406	if (!netif_xmit_frozen_or_drv_stopped(txq))
 4407		ret = netdev_start_xmit(skb, dev, txq, false);
 4408	HARD_TX_UNLOCK(dev, txq);
 4409	dev_xmit_recursion_dec();
 4410
 4411	local_bh_enable();
 4412	return ret;
 4413drop:
 4414	dev_core_stats_tx_dropped_inc(dev);
 4415	kfree_skb_list(skb);
 4416	return NET_XMIT_DROP;
 4417}
 4418EXPORT_SYMBOL(__dev_direct_xmit);
 4419
 4420/*************************************************************************
 4421 *			Receiver routines
 4422 *************************************************************************/
 4423
 4424int netdev_max_backlog __read_mostly = 1000;
 4425EXPORT_SYMBOL(netdev_max_backlog);
 4426
 4427int netdev_tstamp_prequeue __read_mostly = 1;
 4428unsigned int sysctl_skb_defer_max __read_mostly = 64;
 4429int netdev_budget __read_mostly = 300;
 4430/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
 4431unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
 4432int weight_p __read_mostly = 64;           /* old backlog weight */
 4433int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
 4434int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
 4435int dev_rx_weight __read_mostly = 64;
 4436int dev_tx_weight __read_mostly = 64;
 4437
 4438/* Called with irq disabled */
 4439static inline void ____napi_schedule(struct softnet_data *sd,
 4440				     struct napi_struct *napi)
 4441{
 4442	struct task_struct *thread;
 
 
 4443
 4444	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4445
 4446	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
 4447		/* Paired with smp_mb__before_atomic() in
 4448		 * napi_enable()/dev_set_threaded().
 4449		 * Use READ_ONCE() to guarantee a complete
 4450		 * read on napi->thread. Only call
 4451		 * wake_up_process() when it's not NULL.
 4452		 */
 4453		thread = READ_ONCE(napi->thread);
 4454		if (thread) {
 4455			/* Avoid doing set_bit() if the thread is in
 4456			 * INTERRUPTIBLE state, cause napi_thread_wait()
 4457			 * makes sure to proceed with napi polling
 4458			 * if the thread is explicitly woken from here.
 4459			 */
 4460			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
 4461				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
 4462			wake_up_process(thread);
 4463			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 4464		}
 4465	}
 4466
 4467	list_add_tail(&napi->poll_list, &sd->poll_list);
 4468	WRITE_ONCE(napi->list_owner, smp_processor_id());
 4469	/* If not called from net_rx_action()
 4470	 * we have to raise NET_RX_SOFTIRQ.
 4471	 */
 4472	if (!sd->in_net_rx_action)
 4473		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
 
 4474}
 
 4475
 4476#ifdef CONFIG_RPS
 4477
 4478/* One global table that all flow-based protocols share. */
 4479struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
 4480EXPORT_SYMBOL(rps_sock_flow_table);
 4481u32 rps_cpu_mask __read_mostly;
 4482EXPORT_SYMBOL(rps_cpu_mask);
 4483
 4484struct static_key_false rps_needed __read_mostly;
 4485EXPORT_SYMBOL(rps_needed);
 4486struct static_key_false rfs_needed __read_mostly;
 4487EXPORT_SYMBOL(rfs_needed);
 4488
 4489static struct rps_dev_flow *
 4490set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
 4491	    struct rps_dev_flow *rflow, u16 next_cpu)
 4492{
 4493	if (next_cpu < nr_cpu_ids) {
 
 
 
 4494#ifdef CONFIG_RFS_ACCEL
 4495		struct netdev_rx_queue *rxqueue;
 4496		struct rps_dev_flow_table *flow_table;
 4497		struct rps_dev_flow *old_rflow;
 4498		u32 flow_id;
 4499		u16 rxq_index;
 4500		int rc;
 4501
 4502		/* Should we steer this flow to a different hardware queue? */
 4503		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
 4504		    !(dev->features & NETIF_F_NTUPLE))
 4505			goto out;
 4506		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
 4507		if (rxq_index == skb_get_rx_queue(skb))
 4508			goto out;
 4509
 4510		rxqueue = dev->_rx + rxq_index;
 4511		flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4512		if (!flow_table)
 4513			goto out;
 4514		flow_id = skb_get_hash(skb) & flow_table->mask;
 4515		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
 4516							rxq_index, flow_id);
 4517		if (rc < 0)
 4518			goto out;
 4519		old_rflow = rflow;
 4520		rflow = &flow_table->flows[flow_id];
 
 4521		rflow->filter = rc;
 4522		if (old_rflow->filter == rflow->filter)
 4523			old_rflow->filter = RPS_NO_FILTER;
 4524	out:
 4525#endif
 4526		rflow->last_qtail =
 4527			per_cpu(softnet_data, next_cpu).input_queue_head;
 4528	}
 4529
 4530	rflow->cpu = next_cpu;
 4531	return rflow;
 4532}
 4533
 4534/*
 4535 * get_rps_cpu is called from netif_receive_skb and returns the target
 4536 * CPU from the RPS map of the receiving queue for a given skb.
 4537 * rcu_read_lock must be held on entry.
 4538 */
 4539static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
 4540		       struct rps_dev_flow **rflowp)
 4541{
 4542	const struct rps_sock_flow_table *sock_flow_table;
 4543	struct netdev_rx_queue *rxqueue = dev->_rx;
 4544	struct rps_dev_flow_table *flow_table;
 4545	struct rps_map *map;
 
 
 4546	int cpu = -1;
 4547	u32 tcpu;
 4548	u32 hash;
 4549
 4550	if (skb_rx_queue_recorded(skb)) {
 4551		u16 index = skb_get_rx_queue(skb);
 4552
 4553		if (unlikely(index >= dev->real_num_rx_queues)) {
 4554			WARN_ONCE(dev->real_num_rx_queues > 1,
 4555				  "%s received packet on queue %u, but number "
 4556				  "of RX queues is %u\n",
 4557				  dev->name, index, dev->real_num_rx_queues);
 4558			goto done;
 4559		}
 4560		rxqueue += index;
 4561	}
 4562
 4563	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
 4564
 4565	flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4566	map = rcu_dereference(rxqueue->rps_map);
 4567	if (!flow_table && !map)
 
 
 
 
 
 
 
 
 4568		goto done;
 
 4569
 4570	skb_reset_network_header(skb);
 4571	hash = skb_get_hash(skb);
 4572	if (!hash)
 4573		goto done;
 4574
 
 4575	sock_flow_table = rcu_dereference(rps_sock_flow_table);
 4576	if (flow_table && sock_flow_table) {
 
 4577		struct rps_dev_flow *rflow;
 4578		u32 next_cpu;
 4579		u32 ident;
 4580
 4581		/* First check into global flow table if there is a match.
 4582		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
 4583		 */
 4584		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
 4585		if ((ident ^ hash) & ~rps_cpu_mask)
 4586			goto try_rps;
 4587
 4588		next_cpu = ident & rps_cpu_mask;
 4589
 4590		/* OK, now we know there is a match,
 4591		 * we can look at the local (per receive queue) flow table
 4592		 */
 4593		rflow = &flow_table->flows[hash & flow_table->mask];
 4594		tcpu = rflow->cpu;
 4595
 
 
 
 4596		/*
 4597		 * If the desired CPU (where last recvmsg was done) is
 4598		 * different from current CPU (one in the rx-queue flow
 4599		 * table entry), switch if one of the following holds:
 4600		 *   - Current CPU is unset (>= nr_cpu_ids).
 4601		 *   - Current CPU is offline.
 4602		 *   - The current CPU's queue tail has advanced beyond the
 4603		 *     last packet that was enqueued using this table entry.
 4604		 *     This guarantees that all previous packets for the flow
 4605		 *     have been dequeued, thus preserving in order delivery.
 4606		 */
 4607		if (unlikely(tcpu != next_cpu) &&
 4608		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
 4609		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
 4610		      rflow->last_qtail)) >= 0)) {
 4611			tcpu = next_cpu;
 4612			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
 4613		}
 4614
 4615		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
 4616			*rflowp = rflow;
 4617			cpu = tcpu;
 4618			goto done;
 4619		}
 4620	}
 4621
 4622try_rps:
 4623
 4624	if (map) {
 4625		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
 
 4626		if (cpu_online(tcpu)) {
 4627			cpu = tcpu;
 4628			goto done;
 4629		}
 4630	}
 4631
 4632done:
 4633	return cpu;
 4634}
 4635
 4636#ifdef CONFIG_RFS_ACCEL
 4637
 4638/**
 4639 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
 4640 * @dev: Device on which the filter was set
 4641 * @rxq_index: RX queue index
 4642 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
 4643 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
 4644 *
 4645 * Drivers that implement ndo_rx_flow_steer() should periodically call
 4646 * this function for each installed filter and remove the filters for
 4647 * which it returns %true.
 4648 */
 4649bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
 4650			 u32 flow_id, u16 filter_id)
 4651{
 4652	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
 4653	struct rps_dev_flow_table *flow_table;
 4654	struct rps_dev_flow *rflow;
 4655	bool expire = true;
 4656	unsigned int cpu;
 4657
 4658	rcu_read_lock();
 4659	flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4660	if (flow_table && flow_id <= flow_table->mask) {
 4661		rflow = &flow_table->flows[flow_id];
 4662		cpu = READ_ONCE(rflow->cpu);
 4663		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
 4664		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
 4665			   rflow->last_qtail) <
 4666		     (int)(10 * flow_table->mask)))
 4667			expire = false;
 4668	}
 4669	rcu_read_unlock();
 4670	return expire;
 4671}
 4672EXPORT_SYMBOL(rps_may_expire_flow);
 4673
 4674#endif /* CONFIG_RFS_ACCEL */
 4675
 4676/* Called from hardirq (IPI) context */
 4677static void rps_trigger_softirq(void *data)
 4678{
 4679	struct softnet_data *sd = data;
 4680
 4681	____napi_schedule(sd, &sd->backlog);
 4682	sd->received_rps++;
 4683}
 4684
 4685#endif /* CONFIG_RPS */
 4686
 4687/* Called from hardirq (IPI) context */
 4688static void trigger_rx_softirq(void *data)
 4689{
 4690	struct softnet_data *sd = data;
 4691
 4692	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4693	smp_store_release(&sd->defer_ipi_scheduled, 0);
 4694}
 4695
 4696/*
 4697 * After we queued a packet into sd->input_pkt_queue,
 4698 * we need to make sure this queue is serviced soon.
 4699 *
 4700 * - If this is another cpu queue, link it to our rps_ipi_list,
 4701 *   and make sure we will process rps_ipi_list from net_rx_action().
 4702 *
 4703 * - If this is our own queue, NAPI schedule our backlog.
 4704 *   Note that this also raises NET_RX_SOFTIRQ.
 4705 */
 4706static void napi_schedule_rps(struct softnet_data *sd)
 4707{
 4708	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
 4709
 4710#ifdef CONFIG_RPS
 
 
 4711	if (sd != mysd) {
 4712		sd->rps_ipi_next = mysd->rps_ipi_list;
 4713		mysd->rps_ipi_list = sd;
 4714
 4715		/* If not called from net_rx_action() or napi_threaded_poll()
 4716		 * we have to raise NET_RX_SOFTIRQ.
 4717		 */
 4718		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
 4719			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4720		return;
 4721	}
 4722#endif /* CONFIG_RPS */
 4723	__napi_schedule_irqoff(&mysd->backlog);
 4724}
 4725
 4726#ifdef CONFIG_NET_FLOW_LIMIT
 4727int netdev_flow_limit_table_len __read_mostly = (1 << 12);
 4728#endif
 4729
 4730static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
 4731{
 4732#ifdef CONFIG_NET_FLOW_LIMIT
 4733	struct sd_flow_limit *fl;
 4734	struct softnet_data *sd;
 4735	unsigned int old_flow, new_flow;
 4736
 4737	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
 4738		return false;
 4739
 4740	sd = this_cpu_ptr(&softnet_data);
 4741
 4742	rcu_read_lock();
 4743	fl = rcu_dereference(sd->flow_limit);
 4744	if (fl) {
 4745		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
 4746		old_flow = fl->history[fl->history_head];
 4747		fl->history[fl->history_head] = new_flow;
 4748
 4749		fl->history_head++;
 4750		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
 4751
 4752		if (likely(fl->buckets[old_flow]))
 4753			fl->buckets[old_flow]--;
 4754
 4755		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
 4756			fl->count++;
 4757			rcu_read_unlock();
 4758			return true;
 4759		}
 4760	}
 4761	rcu_read_unlock();
 4762#endif
 4763	return false;
 4764}
 4765
 4766/*
 4767 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
 4768 * queue (may be a remote CPU queue).
 4769 */
 4770static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
 4771			      unsigned int *qtail)
 4772{
 4773	enum skb_drop_reason reason;
 4774	struct softnet_data *sd;
 4775	unsigned long flags;
 4776	unsigned int qlen;
 4777
 4778	reason = SKB_DROP_REASON_NOT_SPECIFIED;
 4779	sd = &per_cpu(softnet_data, cpu);
 4780
 4781	rps_lock_irqsave(sd, &flags);
 4782	if (!netif_running(skb->dev))
 4783		goto drop;
 4784	qlen = skb_queue_len(&sd->input_pkt_queue);
 4785	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
 4786		if (qlen) {
 4787enqueue:
 4788			__skb_queue_tail(&sd->input_pkt_queue, skb);
 4789			input_queue_tail_incr_save(sd, qtail);
 4790			rps_unlock_irq_restore(sd, &flags);
 
 4791			return NET_RX_SUCCESS;
 4792		}
 4793
 4794		/* Schedule NAPI for backlog device
 4795		 * We can use non atomic operation since we own the queue lock
 4796		 */
 4797		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
 4798			napi_schedule_rps(sd);
 
 
 4799		goto enqueue;
 4800	}
 4801	reason = SKB_DROP_REASON_CPU_BACKLOG;
 4802
 4803drop:
 4804	sd->dropped++;
 4805	rps_unlock_irq_restore(sd, &flags);
 4806
 4807	dev_core_stats_rx_dropped_inc(skb->dev);
 4808	kfree_skb_reason(skb, reason);
 4809	return NET_RX_DROP;
 4810}
 4811
 4812static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
 4813{
 4814	struct net_device *dev = skb->dev;
 4815	struct netdev_rx_queue *rxqueue;
 4816
 4817	rxqueue = dev->_rx;
 4818
 4819	if (skb_rx_queue_recorded(skb)) {
 4820		u16 index = skb_get_rx_queue(skb);
 4821
 4822		if (unlikely(index >= dev->real_num_rx_queues)) {
 4823			WARN_ONCE(dev->real_num_rx_queues > 1,
 4824				  "%s received packet on queue %u, but number "
 4825				  "of RX queues is %u\n",
 4826				  dev->name, index, dev->real_num_rx_queues);
 4827
 4828			return rxqueue; /* Return first rxqueue */
 4829		}
 4830		rxqueue += index;
 4831	}
 4832	return rxqueue;
 4833}
 4834
 4835u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
 4836			     struct bpf_prog *xdp_prog)
 4837{
 4838	void *orig_data, *orig_data_end, *hard_start;
 4839	struct netdev_rx_queue *rxqueue;
 4840	bool orig_bcast, orig_host;
 4841	u32 mac_len, frame_sz;
 4842	__be16 orig_eth_type;
 4843	struct ethhdr *eth;
 4844	u32 metalen, act;
 4845	int off;
 4846
 4847	/* The XDP program wants to see the packet starting at the MAC
 4848	 * header.
 4849	 */
 4850	mac_len = skb->data - skb_mac_header(skb);
 4851	hard_start = skb->data - skb_headroom(skb);
 4852
 4853	/* SKB "head" area always have tailroom for skb_shared_info */
 4854	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
 4855	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 4856
 4857	rxqueue = netif_get_rxqueue(skb);
 4858	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
 4859	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
 4860			 skb_headlen(skb) + mac_len, true);
 4861
 4862	orig_data_end = xdp->data_end;
 4863	orig_data = xdp->data;
 4864	eth = (struct ethhdr *)xdp->data;
 4865	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
 4866	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
 4867	orig_eth_type = eth->h_proto;
 4868
 4869	act = bpf_prog_run_xdp(xdp_prog, xdp);
 4870
 4871	/* check if bpf_xdp_adjust_head was used */
 4872	off = xdp->data - orig_data;
 4873	if (off) {
 4874		if (off > 0)
 4875			__skb_pull(skb, off);
 4876		else if (off < 0)
 4877			__skb_push(skb, -off);
 4878
 4879		skb->mac_header += off;
 4880		skb_reset_network_header(skb);
 4881	}
 4882
 4883	/* check if bpf_xdp_adjust_tail was used */
 4884	off = xdp->data_end - orig_data_end;
 4885	if (off != 0) {
 4886		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
 4887		skb->len += off; /* positive on grow, negative on shrink */
 4888	}
 4889
 4890	/* check if XDP changed eth hdr such SKB needs update */
 4891	eth = (struct ethhdr *)xdp->data;
 4892	if ((orig_eth_type != eth->h_proto) ||
 4893	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
 4894						  skb->dev->dev_addr)) ||
 4895	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
 4896		__skb_push(skb, ETH_HLEN);
 4897		skb->pkt_type = PACKET_HOST;
 4898		skb->protocol = eth_type_trans(skb, skb->dev);
 4899	}
 4900
 4901	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
 4902	 * before calling us again on redirect path. We do not call do_redirect
 4903	 * as we leave that up to the caller.
 4904	 *
 4905	 * Caller is responsible for managing lifetime of skb (i.e. calling
 4906	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
 4907	 */
 4908	switch (act) {
 4909	case XDP_REDIRECT:
 4910	case XDP_TX:
 4911		__skb_push(skb, mac_len);
 4912		break;
 4913	case XDP_PASS:
 4914		metalen = xdp->data - xdp->data_meta;
 4915		if (metalen)
 4916			skb_metadata_set(skb, metalen);
 4917		break;
 4918	}
 4919
 4920	return act;
 4921}
 4922
 4923static u32 netif_receive_generic_xdp(struct sk_buff *skb,
 4924				     struct xdp_buff *xdp,
 4925				     struct bpf_prog *xdp_prog)
 4926{
 4927	u32 act = XDP_DROP;
 4928
 4929	/* Reinjected packets coming from act_mirred or similar should
 4930	 * not get XDP generic processing.
 4931	 */
 4932	if (skb_is_redirected(skb))
 4933		return XDP_PASS;
 4934
 4935	/* XDP packets must be linear and must have sufficient headroom
 4936	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
 4937	 * native XDP provides, thus we need to do it here as well.
 4938	 */
 4939	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
 4940	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
 4941		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
 4942		int troom = skb->tail + skb->data_len - skb->end;
 4943
 4944		/* In case we have to go down the path and also linearize,
 4945		 * then lets do the pskb_expand_head() work just once here.
 4946		 */
 4947		if (pskb_expand_head(skb,
 4948				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
 4949				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
 4950			goto do_drop;
 4951		if (skb_linearize(skb))
 4952			goto do_drop;
 4953	}
 4954
 4955	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
 4956	switch (act) {
 4957	case XDP_REDIRECT:
 4958	case XDP_TX:
 4959	case XDP_PASS:
 4960		break;
 4961	default:
 4962		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
 4963		fallthrough;
 4964	case XDP_ABORTED:
 4965		trace_xdp_exception(skb->dev, xdp_prog, act);
 4966		fallthrough;
 4967	case XDP_DROP:
 4968	do_drop:
 4969		kfree_skb(skb);
 4970		break;
 4971	}
 4972
 4973	return act;
 
 
 4974}
 4975
 4976/* When doing generic XDP we have to bypass the qdisc layer and the
 4977 * network taps in order to match in-driver-XDP behavior. This also means
 4978 * that XDP packets are able to starve other packets going through a qdisc,
 4979 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
 4980 * queues, so they do not have this starvation issue.
 
 
 
 
 
 
 
 
 4981 */
 4982void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
 4983{
 4984	struct net_device *dev = skb->dev;
 4985	struct netdev_queue *txq;
 4986	bool free_skb = true;
 4987	int cpu, rc;
 4988
 4989	txq = netdev_core_pick_tx(dev, skb, NULL);
 4990	cpu = smp_processor_id();
 4991	HARD_TX_LOCK(dev, txq, cpu);
 4992	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
 4993		rc = netdev_start_xmit(skb, dev, txq, 0);
 4994		if (dev_xmit_complete(rc))
 4995			free_skb = false;
 4996	}
 4997	HARD_TX_UNLOCK(dev, txq);
 4998	if (free_skb) {
 4999		trace_xdp_exception(dev, xdp_prog, XDP_TX);
 5000		dev_core_stats_tx_dropped_inc(dev);
 5001		kfree_skb(skb);
 5002	}
 5003}
 5004
 5005static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
 5006
 5007int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
 5008{
 5009	if (xdp_prog) {
 5010		struct xdp_buff xdp;
 5011		u32 act;
 5012		int err;
 5013
 5014		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
 5015		if (act != XDP_PASS) {
 5016			switch (act) {
 5017			case XDP_REDIRECT:
 5018				err = xdp_do_generic_redirect(skb->dev, skb,
 5019							      &xdp, xdp_prog);
 5020				if (err)
 5021					goto out_redir;
 5022				break;
 5023			case XDP_TX:
 5024				generic_xdp_tx(skb, xdp_prog);
 5025				break;
 5026			}
 5027			return XDP_DROP;
 5028		}
 5029	}
 5030	return XDP_PASS;
 5031out_redir:
 5032	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
 5033	return XDP_DROP;
 5034}
 5035EXPORT_SYMBOL_GPL(do_xdp_generic);
 5036
 5037static int netif_rx_internal(struct sk_buff *skb)
 5038{
 5039	int ret;
 5040
 5041	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
 
 
 5042
 5043	trace_netif_rx(skb);
 
 5044
 
 5045#ifdef CONFIG_RPS
 5046	if (static_branch_unlikely(&rps_needed)) {
 5047		struct rps_dev_flow voidflow, *rflow = &voidflow;
 5048		int cpu;
 5049
 
 5050		rcu_read_lock();
 5051
 5052		cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5053		if (cpu < 0)
 5054			cpu = smp_processor_id();
 5055
 5056		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5057
 5058		rcu_read_unlock();
 5059	} else
 5060#endif
 
 5061	{
 5062		unsigned int qtail;
 5063
 5064		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
 5065	}
 
 5066	return ret;
 5067}
 
 5068
 5069/**
 5070 *	__netif_rx	-	Slightly optimized version of netif_rx
 5071 *	@skb: buffer to post
 5072 *
 5073 *	This behaves as netif_rx except that it does not disable bottom halves.
 5074 *	As a result this function may only be invoked from the interrupt context
 5075 *	(either hard or soft interrupt).
 5076 */
 5077int __netif_rx(struct sk_buff *skb)
 5078{
 5079	int ret;
 5080
 5081	lockdep_assert_once(hardirq_count() | softirq_count());
 
 
 
 
 5082
 5083	trace_netif_rx_entry(skb);
 5084	ret = netif_rx_internal(skb);
 5085	trace_netif_rx_exit(ret);
 5086	return ret;
 5087}
 5088EXPORT_SYMBOL(__netif_rx);
 5089
 5090/**
 5091 *	netif_rx	-	post buffer to the network code
 5092 *	@skb: buffer to post
 5093 *
 5094 *	This function receives a packet from a device driver and queues it for
 5095 *	the upper (protocol) levels to process via the backlog NAPI device. It
 5096 *	always succeeds. The buffer may be dropped during processing for
 5097 *	congestion control or by the protocol layers.
 5098 *	The network buffer is passed via the backlog NAPI device. Modern NIC
 5099 *	driver should use NAPI and GRO.
 5100 *	This function can used from interrupt and from process context. The
 5101 *	caller from process context must not disable interrupts before invoking
 5102 *	this function.
 5103 *
 5104 *	return values:
 5105 *	NET_RX_SUCCESS	(no congestion)
 5106 *	NET_RX_DROP     (packet was dropped)
 5107 *
 5108 */
 5109int netif_rx(struct sk_buff *skb)
 5110{
 5111	bool need_bh_off = !(hardirq_count() | softirq_count());
 5112	int ret;
 5113
 5114	if (need_bh_off)
 5115		local_bh_disable();
 5116	trace_netif_rx_entry(skb);
 5117	ret = netif_rx_internal(skb);
 5118	trace_netif_rx_exit(ret);
 5119	if (need_bh_off)
 5120		local_bh_enable();
 5121	return ret;
 5122}
 5123EXPORT_SYMBOL(netif_rx);
 5124
 5125static __latent_entropy void net_tx_action(struct softirq_action *h)
 5126{
 5127	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
 5128
 5129	if (sd->completion_queue) {
 5130		struct sk_buff *clist;
 5131
 5132		local_irq_disable();
 5133		clist = sd->completion_queue;
 5134		sd->completion_queue = NULL;
 5135		local_irq_enable();
 5136
 5137		while (clist) {
 5138			struct sk_buff *skb = clist;
 5139
 5140			clist = clist->next;
 5141
 5142			WARN_ON(refcount_read(&skb->users));
 5143			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
 5144				trace_consume_skb(skb, net_tx_action);
 5145			else
 5146				trace_kfree_skb(skb, net_tx_action,
 5147						get_kfree_skb_cb(skb)->reason);
 5148
 5149			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
 5150				__kfree_skb(skb);
 5151			else
 5152				__napi_kfree_skb(skb,
 5153						 get_kfree_skb_cb(skb)->reason);
 5154		}
 5155	}
 5156
 5157	if (sd->output_queue) {
 5158		struct Qdisc *head;
 5159
 5160		local_irq_disable();
 5161		head = sd->output_queue;
 5162		sd->output_queue = NULL;
 5163		sd->output_queue_tailp = &sd->output_queue;
 5164		local_irq_enable();
 5165
 5166		rcu_read_lock();
 5167
 5168		while (head) {
 5169			struct Qdisc *q = head;
 5170			spinlock_t *root_lock = NULL;
 5171
 5172			head = head->next_sched;
 5173
 5174			/* We need to make sure head->next_sched is read
 5175			 * before clearing __QDISC_STATE_SCHED
 5176			 */
 5177			smp_mb__before_atomic();
 5178
 5179			if (!(q->flags & TCQ_F_NOLOCK)) {
 5180				root_lock = qdisc_lock(q);
 5181				spin_lock(root_lock);
 5182			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
 5183						     &q->state))) {
 5184				/* There is a synchronize_net() between
 5185				 * STATE_DEACTIVATED flag being set and
 5186				 * qdisc_reset()/some_qdisc_is_busy() in
 5187				 * dev_deactivate(), so we can safely bail out
 5188				 * early here to avoid data race between
 5189				 * qdisc_deactivate() and some_qdisc_is_busy()
 5190				 * for lockless qdisc.
 5191				 */
 5192				clear_bit(__QDISC_STATE_SCHED, &q->state);
 5193				continue;
 5194			}
 5195
 5196			clear_bit(__QDISC_STATE_SCHED, &q->state);
 5197			qdisc_run(q);
 5198			if (root_lock)
 5199				spin_unlock(root_lock);
 
 
 
 
 
 
 
 
 
 
 5200		}
 5201
 5202		rcu_read_unlock();
 5203	}
 5204
 5205	xfrm_dev_backlog(sd);
 5206}
 5207
 5208#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
 
 5209/* This hook is defined here for ATM LANE */
 5210int (*br_fdb_test_addr_hook)(struct net_device *dev,
 5211			     unsigned char *addr) __read_mostly;
 5212EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
 5213#endif
 5214
 5215/**
 5216 *	netdev_is_rx_handler_busy - check if receive handler is registered
 5217 *	@dev: device to check
 5218 *
 5219 *	Check if a receive handler is already registered for a given device.
 5220 *	Return true if there one.
 
 5221 *
 5222 *	The caller must hold the rtnl_mutex.
 5223 */
 5224bool netdev_is_rx_handler_busy(struct net_device *dev)
 5225{
 5226	ASSERT_RTNL();
 5227	return dev && rtnl_dereference(dev->rx_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5228}
 5229EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
 5230
 5231/**
 5232 *	netdev_rx_handler_register - register receive handler
 5233 *	@dev: device to register a handler for
 5234 *	@rx_handler: receive handler to register
 5235 *	@rx_handler_data: data pointer that is used by rx handler
 5236 *
 5237 *	Register a receive handler for a device. This handler will then be
 5238 *	called from __netif_receive_skb. A negative errno code is returned
 5239 *	on a failure.
 5240 *
 5241 *	The caller must hold the rtnl_mutex.
 5242 *
 5243 *	For a general description of rx_handler, see enum rx_handler_result.
 5244 */
 5245int netdev_rx_handler_register(struct net_device *dev,
 5246			       rx_handler_func_t *rx_handler,
 5247			       void *rx_handler_data)
 5248{
 5249	if (netdev_is_rx_handler_busy(dev))
 5250		return -EBUSY;
 5251
 5252	if (dev->priv_flags & IFF_NO_RX_HANDLER)
 5253		return -EINVAL;
 5254
 5255	/* Note: rx_handler_data must be set before rx_handler */
 5256	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
 5257	rcu_assign_pointer(dev->rx_handler, rx_handler);
 5258
 5259	return 0;
 5260}
 5261EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
 5262
 5263/**
 5264 *	netdev_rx_handler_unregister - unregister receive handler
 5265 *	@dev: device to unregister a handler from
 5266 *
 5267 *	Unregister a receive handler from a device.
 5268 *
 5269 *	The caller must hold the rtnl_mutex.
 5270 */
 5271void netdev_rx_handler_unregister(struct net_device *dev)
 5272{
 5273
 5274	ASSERT_RTNL();
 5275	RCU_INIT_POINTER(dev->rx_handler, NULL);
 5276	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
 5277	 * section has a guarantee to see a non NULL rx_handler_data
 5278	 * as well.
 5279	 */
 5280	synchronize_net();
 5281	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
 5282}
 5283EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
 5284
 5285/*
 5286 * Limit the use of PFMEMALLOC reserves to those protocols that implement
 5287 * the special handling of PFMEMALLOC skbs.
 5288 */
 5289static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
 5290{
 5291	switch (skb->protocol) {
 5292	case htons(ETH_P_ARP):
 5293	case htons(ETH_P_IP):
 5294	case htons(ETH_P_IPV6):
 5295	case htons(ETH_P_8021Q):
 5296	case htons(ETH_P_8021AD):
 5297		return true;
 5298	default:
 5299		return false;
 5300	}
 5301}
 5302
 5303static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
 5304			     int *ret, struct net_device *orig_dev)
 5305{
 5306	if (nf_hook_ingress_active(skb)) {
 5307		int ingress_retval;
 5308
 5309		if (*pt_prev) {
 5310			*ret = deliver_skb(skb, *pt_prev, orig_dev);
 5311			*pt_prev = NULL;
 5312		}
 5313
 5314		rcu_read_lock();
 5315		ingress_retval = nf_hook_ingress(skb);
 5316		rcu_read_unlock();
 5317		return ingress_retval;
 5318	}
 5319	return 0;
 5320}
 5321
 5322static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
 5323				    struct packet_type **ppt_prev)
 5324{
 5325	struct packet_type *ptype, *pt_prev;
 5326	rx_handler_func_t *rx_handler;
 5327	struct sk_buff *skb = *pskb;
 5328	struct net_device *orig_dev;
 
 5329	bool deliver_exact = false;
 5330	int ret = NET_RX_DROP;
 5331	__be16 type;
 5332
 5333	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
 
 5334
 5335	trace_netif_receive_skb(skb);
 5336
 
 
 
 
 
 
 5337	orig_dev = skb->dev;
 5338
 5339	skb_reset_network_header(skb);
 5340	if (!skb_transport_header_was_set(skb))
 5341		skb_reset_transport_header(skb);
 5342	skb_reset_mac_len(skb);
 5343
 5344	pt_prev = NULL;
 5345
 
 
 5346another_round:
 5347	skb->skb_iif = skb->dev->ifindex;
 5348
 5349	__this_cpu_inc(softnet_data.processed);
 5350
 5351	if (static_branch_unlikely(&generic_xdp_needed_key)) {
 5352		int ret2;
 5353
 5354		migrate_disable();
 5355		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
 5356		migrate_enable();
 5357
 5358		if (ret2 != XDP_PASS) {
 5359			ret = NET_RX_DROP;
 5360			goto out;
 5361		}
 5362	}
 5363
 5364	if (eth_type_vlan(skb->protocol)) {
 5365		skb = skb_vlan_untag(skb);
 5366		if (unlikely(!skb))
 5367			goto out;
 5368	}
 5369
 5370	if (skb_skip_tc_classify(skb))
 5371		goto skip_classify;
 5372
 5373	if (pfmemalloc)
 5374		goto skip_taps;
 5375
 5376	list_for_each_entry_rcu(ptype, &ptype_all, list) {
 5377		if (pt_prev)
 5378			ret = deliver_skb(skb, pt_prev, orig_dev);
 5379		pt_prev = ptype;
 5380	}
 5381
 5382	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
 5383		if (pt_prev)
 5384			ret = deliver_skb(skb, pt_prev, orig_dev);
 5385		pt_prev = ptype;
 5386	}
 5387
 5388skip_taps:
 5389#ifdef CONFIG_NET_INGRESS
 5390	if (static_branch_unlikely(&ingress_needed_key)) {
 5391		bool another = false;
 5392
 5393		nf_skip_egress(skb, true);
 5394		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
 5395					 &another);
 5396		if (another)
 5397			goto another_round;
 5398		if (!skb)
 5399			goto out;
 5400
 5401		nf_skip_egress(skb, false);
 5402		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
 5403			goto out;
 5404	}
 5405#endif
 5406	skb_reset_redirect(skb);
 5407skip_classify:
 5408	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
 5409		goto drop;
 5410
 5411	if (skb_vlan_tag_present(skb)) {
 5412		if (pt_prev) {
 5413			ret = deliver_skb(skb, pt_prev, orig_dev);
 5414			pt_prev = NULL;
 
 5415		}
 5416		if (vlan_do_receive(&skb))
 5417			goto another_round;
 5418		else if (unlikely(!skb))
 5419			goto out;
 5420	}
 5421
 
 
 
 
 
 
 
 5422	rx_handler = rcu_dereference(skb->dev->rx_handler);
 5423	if (rx_handler) {
 5424		if (pt_prev) {
 5425			ret = deliver_skb(skb, pt_prev, orig_dev);
 5426			pt_prev = NULL;
 5427		}
 5428		switch (rx_handler(&skb)) {
 5429		case RX_HANDLER_CONSUMED:
 5430			ret = NET_RX_SUCCESS;
 5431			goto out;
 5432		case RX_HANDLER_ANOTHER:
 5433			goto another_round;
 5434		case RX_HANDLER_EXACT:
 5435			deliver_exact = true;
 5436			break;
 5437		case RX_HANDLER_PASS:
 5438			break;
 5439		default:
 5440			BUG();
 5441		}
 5442	}
 5443
 5444	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
 5445check_vlan_id:
 5446		if (skb_vlan_tag_get_id(skb)) {
 5447			/* Vlan id is non 0 and vlan_do_receive() above couldn't
 5448			 * find vlan device.
 5449			 */
 5450			skb->pkt_type = PACKET_OTHERHOST;
 5451		} else if (eth_type_vlan(skb->protocol)) {
 5452			/* Outer header is 802.1P with vlan 0, inner header is
 5453			 * 802.1Q or 802.1AD and vlan_do_receive() above could
 5454			 * not find vlan dev for vlan id 0.
 5455			 */
 5456			__vlan_hwaccel_clear_tag(skb);
 5457			skb = skb_vlan_untag(skb);
 5458			if (unlikely(!skb))
 5459				goto out;
 5460			if (vlan_do_receive(&skb))
 5461				/* After stripping off 802.1P header with vlan 0
 5462				 * vlan dev is found for inner header.
 5463				 */
 5464				goto another_round;
 5465			else if (unlikely(!skb))
 5466				goto out;
 5467			else
 5468				/* We have stripped outer 802.1P vlan 0 header.
 5469				 * But could not find vlan dev.
 5470				 * check again for vlan id to set OTHERHOST.
 5471				 */
 5472				goto check_vlan_id;
 5473		}
 5474		/* Note: we might in the future use prio bits
 5475		 * and set skb->priority like in vlan_do_receive()
 5476		 * For the time being, just ignore Priority Code Point
 5477		 */
 5478		__vlan_hwaccel_clear_tag(skb);
 5479	}
 5480
 5481	type = skb->protocol;
 5482
 5483	/* deliver only exact match when indicated */
 5484	if (likely(!deliver_exact)) {
 5485		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5486				       &ptype_base[ntohs(type) &
 5487						   PTYPE_HASH_MASK]);
 5488	}
 5489
 5490	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5491			       &orig_dev->ptype_specific);
 5492
 5493	if (unlikely(skb->dev != orig_dev)) {
 5494		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5495				       &skb->dev->ptype_specific);
 
 
 
 
 5496	}
 5497
 5498	if (pt_prev) {
 5499		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
 5500			goto drop;
 5501		*ppt_prev = pt_prev;
 5502	} else {
 5503drop:
 5504		if (!deliver_exact)
 5505			dev_core_stats_rx_dropped_inc(skb->dev);
 5506		else
 5507			dev_core_stats_rx_nohandler_inc(skb->dev);
 5508		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
 5509		/* Jamal, now you will not able to escape explaining
 5510		 * me how you were going to use this. :-)
 5511		 */
 5512		ret = NET_RX_DROP;
 5513	}
 5514
 5515out:
 5516	/* The invariant here is that if *ppt_prev is not NULL
 5517	 * then skb should also be non-NULL.
 5518	 *
 5519	 * Apparently *ppt_prev assignment above holds this invariant due to
 5520	 * skb dereferencing near it.
 5521	 */
 5522	*pskb = skb;
 5523	return ret;
 5524}
 5525
 5526static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
 5527{
 5528	struct net_device *orig_dev = skb->dev;
 5529	struct packet_type *pt_prev = NULL;
 5530	int ret;
 5531
 5532	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
 5533	if (pt_prev)
 5534		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
 5535					 skb->dev, pt_prev, orig_dev);
 5536	return ret;
 5537}
 5538
 5539/**
 5540 *	netif_receive_skb_core - special purpose version of netif_receive_skb
 5541 *	@skb: buffer to process
 5542 *
 5543 *	More direct receive version of netif_receive_skb().  It should
 5544 *	only be used by callers that have a need to skip RPS and Generic XDP.
 5545 *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
 5546 *
 5547 *	This function may only be called from softirq context and interrupts
 5548 *	should be enabled.
 5549 *
 5550 *	Return values (usually ignored):
 5551 *	NET_RX_SUCCESS: no congestion
 5552 *	NET_RX_DROP: packet was dropped
 5553 */
 5554int netif_receive_skb_core(struct sk_buff *skb)
 5555{
 5556	int ret;
 
 5557
 5558	rcu_read_lock();
 5559	ret = __netif_receive_skb_one_core(skb, false);
 5560	rcu_read_unlock();
 5561
 5562	return ret;
 5563}
 5564EXPORT_SYMBOL(netif_receive_skb_core);
 
 5565
 5566static inline void __netif_receive_skb_list_ptype(struct list_head *head,
 5567						  struct packet_type *pt_prev,
 5568						  struct net_device *orig_dev)
 5569{
 5570	struct sk_buff *skb, *next;
 5571
 5572	if (!pt_prev)
 5573		return;
 5574	if (list_empty(head))
 5575		return;
 5576	if (pt_prev->list_func != NULL)
 5577		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
 5578				   ip_list_rcv, head, pt_prev, orig_dev);
 5579	else
 5580		list_for_each_entry_safe(skb, next, head, list) {
 5581			skb_list_del_init(skb);
 5582			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 5583		}
 
 
 
 
 
 
 5584}
 
 5585
 5586static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
 5587{
 5588	/* Fast-path assumptions:
 5589	 * - There is no RX handler.
 5590	 * - Only one packet_type matches.
 5591	 * If either of these fails, we will end up doing some per-packet
 5592	 * processing in-line, then handling the 'last ptype' for the whole
 5593	 * sublist.  This can't cause out-of-order delivery to any single ptype,
 5594	 * because the 'last ptype' must be constant across the sublist, and all
 5595	 * other ptypes are handled per-packet.
 5596	 */
 5597	/* Current (common) ptype of sublist */
 5598	struct packet_type *pt_curr = NULL;
 5599	/* Current (common) orig_dev of sublist */
 5600	struct net_device *od_curr = NULL;
 5601	struct list_head sublist;
 5602	struct sk_buff *skb, *next;
 5603
 5604	INIT_LIST_HEAD(&sublist);
 5605	list_for_each_entry_safe(skb, next, head, list) {
 5606		struct net_device *orig_dev = skb->dev;
 5607		struct packet_type *pt_prev = NULL;
 5608
 5609		skb_list_del_init(skb);
 5610		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
 5611		if (!pt_prev)
 5612			continue;
 5613		if (pt_curr != pt_prev || od_curr != orig_dev) {
 5614			/* dispatch old sublist */
 5615			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
 5616			/* start new sublist */
 5617			INIT_LIST_HEAD(&sublist);
 5618			pt_curr = pt_prev;
 5619			od_curr = orig_dev;
 5620		}
 5621		list_add_tail(&skb->list, &sublist);
 5622	}
 
 5623
 5624	/* dispatch final sublist */
 5625	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
 
 
 
 
 
 5626}
 5627
 5628static int __netif_receive_skb(struct sk_buff *skb)
 5629{
 5630	int ret;
 
 
 
 5631
 5632	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
 5633		unsigned int noreclaim_flag;
 
 
 5634
 5635		/*
 5636		 * PFMEMALLOC skbs are special, they should
 5637		 * - be delivered to SOCK_MEMALLOC sockets only
 5638		 * - stay away from userspace
 5639		 * - have bounded memory usage
 5640		 *
 5641		 * Use PF_MEMALLOC as this saves us from propagating the allocation
 5642		 * context down to all allocation sites.
 5643		 */
 5644		noreclaim_flag = memalloc_noreclaim_save();
 5645		ret = __netif_receive_skb_one_core(skb, true);
 5646		memalloc_noreclaim_restore(noreclaim_flag);
 5647	} else
 5648		ret = __netif_receive_skb_one_core(skb, false);
 5649
 5650	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 5651}
 5652
 5653static void __netif_receive_skb_list(struct list_head *head)
 5654{
 5655	unsigned long noreclaim_flag = 0;
 5656	struct sk_buff *skb, *next;
 5657	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
 5658
 5659	list_for_each_entry_safe(skb, next, head, list) {
 5660		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
 5661			struct list_head sublist;
 5662
 5663			/* Handle the previous sublist */
 5664			list_cut_before(&sublist, head, &skb->list);
 5665			if (!list_empty(&sublist))
 5666				__netif_receive_skb_list_core(&sublist, pfmemalloc);
 5667			pfmemalloc = !pfmemalloc;
 5668			/* See comments in __netif_receive_skb */
 5669			if (pfmemalloc)
 5670				noreclaim_flag = memalloc_noreclaim_save();
 5671			else
 5672				memalloc_noreclaim_restore(noreclaim_flag);
 5673		}
 5674	}
 5675	/* Handle the remaining sublist */
 5676	if (!list_empty(head))
 5677		__netif_receive_skb_list_core(head, pfmemalloc);
 5678	/* Restore pflags */
 5679	if (pfmemalloc)
 5680		memalloc_noreclaim_restore(noreclaim_flag);
 5681}
 
 5682
 5683static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
 5684{
 5685	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
 5686	struct bpf_prog *new = xdp->prog;
 5687	int ret = 0;
 
 
 
 
 5688
 5689	switch (xdp->command) {
 5690	case XDP_SETUP_PROG:
 5691		rcu_assign_pointer(dev->xdp_prog, new);
 5692		if (old)
 5693			bpf_prog_put(old);
 5694
 5695		if (old && !new) {
 5696			static_branch_dec(&generic_xdp_needed_key);
 5697		} else if (new && !old) {
 5698			static_branch_inc(&generic_xdp_needed_key);
 5699			dev_disable_lro(dev);
 5700			dev_disable_gro_hw(dev);
 5701		}
 5702		break;
 5703
 5704	default:
 5705		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 5706		break;
 5707	}
 
 5708
 5709	return ret;
 5710}
 5711
 5712static int netif_receive_skb_internal(struct sk_buff *skb)
 5713{
 5714	int ret;
 5715
 5716	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
 
 5717
 5718	if (skb_defer_rx_timestamp(skb))
 5719		return NET_RX_SUCCESS;
 
 
 
 5720
 5721	rcu_read_lock();
 5722#ifdef CONFIG_RPS
 5723	if (static_branch_unlikely(&rps_needed)) {
 5724		struct rps_dev_flow voidflow, *rflow = &voidflow;
 5725		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5726
 5727		if (cpu >= 0) {
 5728			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5729			rcu_read_unlock();
 5730			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5731		}
 5732	}
 5733#endif
 5734	ret = __netif_receive_skb(skb);
 5735	rcu_read_unlock();
 5736	return ret;
 
 
 
 
 5737}
 
 5738
 5739void netif_receive_skb_list_internal(struct list_head *head)
 
 5740{
 5741	struct sk_buff *skb, *next;
 5742	struct list_head sublist;
 5743
 5744	INIT_LIST_HEAD(&sublist);
 5745	list_for_each_entry_safe(skb, next, head, list) {
 5746		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
 5747		skb_list_del_init(skb);
 5748		if (!skb_defer_rx_timestamp(skb))
 5749			list_add_tail(&skb->list, &sublist);
 5750	}
 5751	list_splice_init(&sublist, head);
 5752
 5753	rcu_read_lock();
 5754#ifdef CONFIG_RPS
 5755	if (static_branch_unlikely(&rps_needed)) {
 5756		list_for_each_entry_safe(skb, next, head, list) {
 5757			struct rps_dev_flow voidflow, *rflow = &voidflow;
 5758			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5759
 5760			if (cpu >= 0) {
 5761				/* Will be handled, remove from list */
 5762				skb_list_del_init(skb);
 5763				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5764			}
 5765		}
 5766	}
 5767#endif
 5768	__netif_receive_skb_list(head);
 5769	rcu_read_unlock();
 5770}
 5771
 5772/**
 5773 *	netif_receive_skb - process receive buffer from network
 5774 *	@skb: buffer to process
 5775 *
 5776 *	netif_receive_skb() is the main receive data processing function.
 5777 *	It always succeeds. The buffer may be dropped during processing
 5778 *	for congestion control or by the protocol layers.
 5779 *
 5780 *	This function may only be called from softirq context and interrupts
 5781 *	should be enabled.
 5782 *
 5783 *	Return values (usually ignored):
 5784 *	NET_RX_SUCCESS: no congestion
 5785 *	NET_RX_DROP: packet was dropped
 5786 */
 5787int netif_receive_skb(struct sk_buff *skb)
 5788{
 5789	int ret;
 
 
 
 
 5790
 5791	trace_netif_receive_skb_entry(skb);
 
 
 
 5792
 5793	ret = netif_receive_skb_internal(skb);
 5794	trace_netif_receive_skb_exit(ret);
 
 
 5795
 5796	return ret;
 5797}
 5798EXPORT_SYMBOL(netif_receive_skb);
 5799
 5800/**
 5801 *	netif_receive_skb_list - process many receive buffers from network
 5802 *	@head: list of skbs to process.
 5803 *
 5804 *	Since return value of netif_receive_skb() is normally ignored, and
 5805 *	wouldn't be meaningful for a list, this function returns void.
 5806 *
 5807 *	This function may only be called from softirq context and interrupts
 5808 *	should be enabled.
 5809 */
 5810void netif_receive_skb_list(struct list_head *head)
 5811{
 5812	struct sk_buff *skb;
 
 
 5813
 5814	if (list_empty(head))
 5815		return;
 5816	if (trace_netif_receive_skb_list_entry_enabled()) {
 5817		list_for_each_entry(skb, head, list)
 5818			trace_netif_receive_skb_list_entry(skb);
 
 5819	}
 5820	netif_receive_skb_list_internal(head);
 5821	trace_netif_receive_skb_list_exit(0);
 5822}
 5823EXPORT_SYMBOL(netif_receive_skb_list);
 5824
 5825static DEFINE_PER_CPU(struct work_struct, flush_works);
 
 
 
 
 
 
 5826
 5827/* Network device is going away, flush any packets still pending */
 5828static void flush_backlog(struct work_struct *work)
 5829{
 5830	struct sk_buff *skb, *tmp;
 5831	struct softnet_data *sd;
 
 
 
 5832
 5833	local_bh_disable();
 5834	sd = this_cpu_ptr(&softnet_data);
 5835
 5836	rps_lock_irq_disable(sd);
 5837	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
 5838		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
 5839			__skb_unlink(skb, &sd->input_pkt_queue);
 5840			dev_kfree_skb_irq(skb);
 5841			input_queue_head_incr(sd);
 5842		}
 5843	}
 5844	rps_unlock_irq_enable(sd);
 5845
 5846	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
 5847		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
 5848			__skb_unlink(skb, &sd->process_queue);
 5849			kfree_skb(skb);
 5850			input_queue_head_incr(sd);
 5851		}
 5852	}
 5853	local_bh_enable();
 5854}
 
 5855
 5856static bool flush_required(int cpu)
 
 5857{
 5858#if IS_ENABLED(CONFIG_RPS)
 5859	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
 5860	bool do_flush;
 
 5861
 5862	rps_lock_irq_disable(sd);
 
 
 
 
 5863
 5864	/* as insertion into process_queue happens with the rps lock held,
 5865	 * process_queue access may race only with dequeue
 5866	 */
 5867	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
 5868		   !skb_queue_empty_lockless(&sd->process_queue);
 5869	rps_unlock_irq_enable(sd);
 5870
 5871	return do_flush;
 5872#endif
 5873	/* without RPS we can't safely check input_pkt_queue: during a
 5874	 * concurrent remote skb_queue_splice() we can detect as empty both
 5875	 * input_pkt_queue and process_queue even if the latter could end-up
 5876	 * containing a lot of packets.
 5877	 */
 5878	return true;
 5879}
 
 5880
 5881static void flush_all_backlogs(void)
 5882{
 5883	static cpumask_t flush_cpus;
 5884	unsigned int cpu;
 
 
 5885
 5886	/* since we are under rtnl lock protection we can use static data
 5887	 * for the cpumask and avoid allocating on stack the possibly
 5888	 * large mask
 5889	 */
 5890	ASSERT_RTNL();
 5891
 5892	cpus_read_lock();
 
 5893
 5894	cpumask_clear(&flush_cpus);
 5895	for_each_online_cpu(cpu) {
 5896		if (flush_required(cpu)) {
 5897			queue_work_on(cpu, system_highpri_wq,
 5898				      per_cpu_ptr(&flush_works, cpu));
 5899			cpumask_set_cpu(cpu, &flush_cpus);
 
 
 
 5900		}
 5901	}
 5902
 5903	/* we can have in flight packet[s] on the cpus we are not flushing,
 5904	 * synchronize_net() in unregister_netdevice_many() will take care of
 5905	 * them
 
 
 5906	 */
 5907	for_each_cpu(cpu, &flush_cpus)
 5908		flush_work(per_cpu_ptr(&flush_works, cpu));
 5909
 5910	cpus_read_unlock();
 
 5911}
 
 5912
 5913static void net_rps_send_ipi(struct softnet_data *remsd)
 5914{
 5915#ifdef CONFIG_RPS
 5916	while (remsd) {
 5917		struct softnet_data *next = remsd->rps_ipi_next;
 5918
 5919		if (cpu_online(remsd->cpu))
 5920			smp_call_function_single_async(remsd->cpu, &remsd->csd);
 5921		remsd = next;
 5922	}
 5923#endif
 5924}
 
 5925
 5926/*
 5927 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
 5928 * Note: called with local irq disabled, but exits with local irq enabled.
 5929 */
 5930static void net_rps_action_and_irq_enable(struct softnet_data *sd)
 5931{
 5932#ifdef CONFIG_RPS
 5933	struct softnet_data *remsd = sd->rps_ipi_list;
 5934
 5935	if (remsd) {
 5936		sd->rps_ipi_list = NULL;
 5937
 5938		local_irq_enable();
 5939
 5940		/* Send pending IPI's to kick RPS processing on remote cpus. */
 5941		net_rps_send_ipi(remsd);
 
 
 
 
 
 
 
 5942	} else
 5943#endif
 5944		local_irq_enable();
 5945}
 5946
 5947static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
 5948{
 5949#ifdef CONFIG_RPS
 5950	return sd->rps_ipi_list != NULL;
 5951#else
 5952	return false;
 5953#endif
 5954}
 5955
 5956static int process_backlog(struct napi_struct *napi, int quota)
 5957{
 5958	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
 5959	bool again = true;
 5960	int work = 0;
 
 5961
 
 5962	/* Check if we have pending ipi, its better to send them now,
 5963	 * not waiting net_rx_action() end.
 5964	 */
 5965	if (sd_has_rps_ipi_waiting(sd)) {
 5966		local_irq_disable();
 5967		net_rps_action_and_irq_enable(sd);
 5968	}
 5969
 5970	napi->weight = READ_ONCE(dev_rx_weight);
 5971	while (again) {
 
 5972		struct sk_buff *skb;
 
 5973
 5974		while ((skb = __skb_dequeue(&sd->process_queue))) {
 5975			rcu_read_lock();
 5976			__netif_receive_skb(skb);
 5977			rcu_read_unlock();
 5978			input_queue_head_incr(sd);
 5979			if (++work >= quota)
 
 5980				return work;
 5981
 5982		}
 5983
 5984		rps_lock_irq_disable(sd);
 5985		if (skb_queue_empty(&sd->input_pkt_queue)) {
 
 
 
 
 
 5986			/*
 5987			 * Inline a custom version of __napi_complete().
 5988			 * only current cpu owns and manipulates this napi,
 5989			 * and NAPI_STATE_SCHED is the only possible flag set
 5990			 * on backlog.
 5991			 * We can use a plain write instead of clear_bit(),
 5992			 * and we dont need an smp_mb() memory barrier.
 5993			 */
 
 5994			napi->state = 0;
 5995			again = false;
 5996		} else {
 5997			skb_queue_splice_tail_init(&sd->input_pkt_queue,
 5998						   &sd->process_queue);
 5999		}
 6000		rps_unlock_irq_enable(sd);
 6001	}
 
 6002
 6003	return work;
 6004}
 6005
 6006/**
 6007 * __napi_schedule - schedule for receive
 6008 * @n: entry to schedule
 6009 *
 6010 * The entry's receive function will be scheduled to run.
 6011 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
 6012 */
 6013void __napi_schedule(struct napi_struct *n)
 6014{
 6015	unsigned long flags;
 6016
 6017	local_irq_save(flags);
 6018	____napi_schedule(this_cpu_ptr(&softnet_data), n);
 6019	local_irq_restore(flags);
 6020}
 6021EXPORT_SYMBOL(__napi_schedule);
 6022
 6023/**
 6024 *	napi_schedule_prep - check if napi can be scheduled
 6025 *	@n: napi context
 6026 *
 6027 * Test if NAPI routine is already running, and if not mark
 6028 * it as running.  This is used as a condition variable to
 6029 * insure only one NAPI poll instance runs.  We also make
 6030 * sure there is no pending NAPI disable.
 6031 */
 6032bool napi_schedule_prep(struct napi_struct *n)
 6033{
 6034	unsigned long new, val = READ_ONCE(n->state);
 6035
 6036	do {
 6037		if (unlikely(val & NAPIF_STATE_DISABLE))
 6038			return false;
 6039		new = val | NAPIF_STATE_SCHED;
 6040
 6041		/* Sets STATE_MISSED bit if STATE_SCHED was already set
 6042		 * This was suggested by Alexander Duyck, as compiler
 6043		 * emits better code than :
 6044		 * if (val & NAPIF_STATE_SCHED)
 6045		 *     new |= NAPIF_STATE_MISSED;
 6046		 */
 6047		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
 6048						   NAPIF_STATE_MISSED;
 6049	} while (!try_cmpxchg(&n->state, &val, new));
 6050
 6051	return !(val & NAPIF_STATE_SCHED);
 
 
 6052}
 6053EXPORT_SYMBOL(napi_schedule_prep);
 6054
 6055/**
 6056 * __napi_schedule_irqoff - schedule for receive
 6057 * @n: entry to schedule
 6058 *
 6059 * Variant of __napi_schedule() assuming hard irqs are masked.
 6060 *
 6061 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
 6062 * because the interrupt disabled assumption might not be true
 6063 * due to force-threaded interrupts and spinlock substitution.
 6064 */
 6065void __napi_schedule_irqoff(struct napi_struct *n)
 6066{
 6067	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6068		____napi_schedule(this_cpu_ptr(&softnet_data), n);
 6069	else
 6070		__napi_schedule(n);
 6071}
 6072EXPORT_SYMBOL(__napi_schedule_irqoff);
 6073
 6074bool napi_complete_done(struct napi_struct *n, int work_done)
 6075{
 6076	unsigned long flags, val, new, timeout = 0;
 6077	bool ret = true;
 6078
 6079	/*
 6080	 * 1) Don't let napi dequeue from the cpu poll list
 6081	 *    just in case its running on a different cpu.
 6082	 * 2) If we are busy polling, do nothing here, we have
 6083	 *    the guarantee we will be called later.
 6084	 */
 6085	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
 6086				 NAPIF_STATE_IN_BUSY_POLL)))
 6087		return false;
 6088
 6089	if (work_done) {
 6090		if (n->gro_bitmask)
 6091			timeout = READ_ONCE(n->dev->gro_flush_timeout);
 6092		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
 6093	}
 6094	if (n->defer_hard_irqs_count > 0) {
 6095		n->defer_hard_irqs_count--;
 6096		timeout = READ_ONCE(n->dev->gro_flush_timeout);
 6097		if (timeout)
 6098			ret = false;
 6099	}
 6100	if (n->gro_bitmask) {
 6101		/* When the NAPI instance uses a timeout and keeps postponing
 6102		 * it, we need to bound somehow the time packets are kept in
 6103		 * the GRO layer
 6104		 */
 6105		napi_gro_flush(n, !!timeout);
 6106	}
 6107
 6108	gro_normal_list(n);
 6109
 6110	if (unlikely(!list_empty(&n->poll_list))) {
 6111		/* If n->poll_list is not empty, we need to mask irqs */
 6112		local_irq_save(flags);
 6113		list_del_init(&n->poll_list);
 6114		local_irq_restore(flags);
 6115	}
 6116	WRITE_ONCE(n->list_owner, -1);
 6117
 6118	val = READ_ONCE(n->state);
 6119	do {
 6120		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
 6121
 6122		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
 6123			      NAPIF_STATE_SCHED_THREADED |
 6124			      NAPIF_STATE_PREFER_BUSY_POLL);
 6125
 6126		/* If STATE_MISSED was set, leave STATE_SCHED set,
 6127		 * because we will call napi->poll() one more time.
 6128		 * This C code was suggested by Alexander Duyck to help gcc.
 6129		 */
 6130		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
 6131						    NAPIF_STATE_SCHED;
 6132	} while (!try_cmpxchg(&n->state, &val, new));
 6133
 6134	if (unlikely(val & NAPIF_STATE_MISSED)) {
 6135		__napi_schedule(n);
 6136		return false;
 6137	}
 6138
 6139	if (timeout)
 6140		hrtimer_start(&n->timer, ns_to_ktime(timeout),
 6141			      HRTIMER_MODE_REL_PINNED);
 6142	return ret;
 6143}
 6144EXPORT_SYMBOL(napi_complete_done);
 6145
 6146/* must be called under rcu_read_lock(), as we dont take a reference */
 6147struct napi_struct *napi_by_id(unsigned int napi_id)
 6148{
 6149	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
 6150	struct napi_struct *napi;
 6151
 6152	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
 6153		if (napi->napi_id == napi_id)
 6154			return napi;
 6155
 6156	return NULL;
 6157}
 6158
 6159#if defined(CONFIG_NET_RX_BUSY_POLL)
 6160
 6161static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
 6162{
 6163	if (!skip_schedule) {
 6164		gro_normal_list(napi);
 6165		__napi_schedule(napi);
 6166		return;
 6167	}
 6168
 6169	if (napi->gro_bitmask) {
 6170		/* flush too old packets
 6171		 * If HZ < 1000, flush all packets.
 6172		 */
 6173		napi_gro_flush(napi, HZ >= 1000);
 6174	}
 6175
 6176	gro_normal_list(napi);
 6177	clear_bit(NAPI_STATE_SCHED, &napi->state);
 6178}
 6179
 6180static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
 6181			   u16 budget)
 6182{
 6183	bool skip_schedule = false;
 6184	unsigned long timeout;
 6185	int rc;
 6186
 6187	/* Busy polling means there is a high chance device driver hard irq
 6188	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
 6189	 * set in napi_schedule_prep().
 6190	 * Since we are about to call napi->poll() once more, we can safely
 6191	 * clear NAPI_STATE_MISSED.
 6192	 *
 6193	 * Note: x86 could use a single "lock and ..." instruction
 6194	 * to perform these two clear_bit()
 6195	 */
 6196	clear_bit(NAPI_STATE_MISSED, &napi->state);
 6197	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
 6198
 6199	local_bh_disable();
 6200
 6201	if (prefer_busy_poll) {
 6202		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
 6203		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
 6204		if (napi->defer_hard_irqs_count && timeout) {
 6205			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
 6206			skip_schedule = true;
 6207		}
 6208	}
 6209
 6210	/* All we really want here is to re-enable device interrupts.
 6211	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
 6212	 */
 6213	rc = napi->poll(napi, budget);
 6214	/* We can't gro_normal_list() here, because napi->poll() might have
 6215	 * rearmed the napi (napi_complete_done()) in which case it could
 6216	 * already be running on another CPU.
 6217	 */
 6218	trace_napi_poll(napi, rc, budget);
 6219	netpoll_poll_unlock(have_poll_lock);
 6220	if (rc == budget)
 6221		__busy_poll_stop(napi, skip_schedule);
 6222	local_bh_enable();
 6223}
 6224
 6225void napi_busy_loop(unsigned int napi_id,
 6226		    bool (*loop_end)(void *, unsigned long),
 6227		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
 6228{
 6229	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
 6230	int (*napi_poll)(struct napi_struct *napi, int budget);
 6231	void *have_poll_lock = NULL;
 6232	struct napi_struct *napi;
 6233
 6234restart:
 6235	napi_poll = NULL;
 6236
 6237	rcu_read_lock();
 6238
 6239	napi = napi_by_id(napi_id);
 6240	if (!napi)
 6241		goto out;
 6242
 6243	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6244		preempt_disable();
 6245	for (;;) {
 6246		int work = 0;
 6247
 6248		local_bh_disable();
 6249		if (!napi_poll) {
 6250			unsigned long val = READ_ONCE(napi->state);
 6251
 6252			/* If multiple threads are competing for this napi,
 6253			 * we avoid dirtying napi->state as much as we can.
 6254			 */
 6255			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
 6256				   NAPIF_STATE_IN_BUSY_POLL)) {
 6257				if (prefer_busy_poll)
 6258					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6259				goto count;
 6260			}
 6261			if (cmpxchg(&napi->state, val,
 6262				    val | NAPIF_STATE_IN_BUSY_POLL |
 6263					  NAPIF_STATE_SCHED) != val) {
 6264				if (prefer_busy_poll)
 6265					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6266				goto count;
 6267			}
 6268			have_poll_lock = netpoll_poll_lock(napi);
 6269			napi_poll = napi->poll;
 6270		}
 6271		work = napi_poll(napi, budget);
 6272		trace_napi_poll(napi, work, budget);
 6273		gro_normal_list(napi);
 6274count:
 6275		if (work > 0)
 6276			__NET_ADD_STATS(dev_net(napi->dev),
 6277					LINUX_MIB_BUSYPOLLRXPACKETS, work);
 6278		local_bh_enable();
 6279
 6280		if (!loop_end || loop_end(loop_end_arg, start_time))
 6281			break;
 6282
 6283		if (unlikely(need_resched())) {
 6284			if (napi_poll)
 6285				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
 6286			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6287				preempt_enable();
 6288			rcu_read_unlock();
 6289			cond_resched();
 6290			if (loop_end(loop_end_arg, start_time))
 6291				return;
 6292			goto restart;
 6293		}
 6294		cpu_relax();
 6295	}
 6296	if (napi_poll)
 6297		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
 6298	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6299		preempt_enable();
 6300out:
 6301	rcu_read_unlock();
 6302}
 6303EXPORT_SYMBOL(napi_busy_loop);
 6304
 6305#endif /* CONFIG_NET_RX_BUSY_POLL */
 6306
 6307static void napi_hash_add(struct napi_struct *napi)
 6308{
 6309	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
 6310		return;
 6311
 6312	spin_lock(&napi_hash_lock);
 6313
 6314	/* 0..NR_CPUS range is reserved for sender_cpu use */
 6315	do {
 6316		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
 6317			napi_gen_id = MIN_NAPI_ID;
 6318	} while (napi_by_id(napi_gen_id));
 6319	napi->napi_id = napi_gen_id;
 6320
 6321	hlist_add_head_rcu(&napi->napi_hash_node,
 6322			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
 6323
 6324	spin_unlock(&napi_hash_lock);
 6325}
 6326
 6327/* Warning : caller is responsible to make sure rcu grace period
 6328 * is respected before freeing memory containing @napi
 6329 */
 6330static void napi_hash_del(struct napi_struct *napi)
 6331{
 6332	spin_lock(&napi_hash_lock);
 6333
 6334	hlist_del_init_rcu(&napi->napi_hash_node);
 6335
 6336	spin_unlock(&napi_hash_lock);
 6337}
 6338
 6339static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
 6340{
 6341	struct napi_struct *napi;
 6342
 6343	napi = container_of(timer, struct napi_struct, timer);
 6344
 6345	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
 6346	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
 6347	 */
 6348	if (!napi_disable_pending(napi) &&
 6349	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
 6350		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6351		__napi_schedule_irqoff(napi);
 6352	}
 6353
 6354	return HRTIMER_NORESTART;
 6355}
 6356
 6357static void init_gro_hash(struct napi_struct *napi)
 6358{
 6359	int i;
 6360
 6361	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
 6362		INIT_LIST_HEAD(&napi->gro_hash[i].list);
 6363		napi->gro_hash[i].count = 0;
 6364	}
 6365	napi->gro_bitmask = 0;
 6366}
 6367
 6368int dev_set_threaded(struct net_device *dev, bool threaded)
 6369{
 6370	struct napi_struct *napi;
 6371	int err = 0;
 6372
 6373	if (dev->threaded == threaded)
 6374		return 0;
 6375
 6376	if (threaded) {
 6377		list_for_each_entry(napi, &dev->napi_list, dev_list) {
 6378			if (!napi->thread) {
 6379				err = napi_kthread_create(napi);
 6380				if (err) {
 6381					threaded = false;
 6382					break;
 6383				}
 6384			}
 6385		}
 6386	}
 6387
 6388	dev->threaded = threaded;
 6389
 6390	/* Make sure kthread is created before THREADED bit
 6391	 * is set.
 6392	 */
 6393	smp_mb__before_atomic();
 6394
 6395	/* Setting/unsetting threaded mode on a napi might not immediately
 6396	 * take effect, if the current napi instance is actively being
 6397	 * polled. In this case, the switch between threaded mode and
 6398	 * softirq mode will happen in the next round of napi_schedule().
 6399	 * This should not cause hiccups/stalls to the live traffic.
 6400	 */
 6401	list_for_each_entry(napi, &dev->napi_list, dev_list)
 6402		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
 6403
 6404	return err;
 6405}
 6406EXPORT_SYMBOL(dev_set_threaded);
 6407
 6408/**
 6409 * netif_queue_set_napi - Associate queue with the napi
 6410 * @dev: device to which NAPI and queue belong
 6411 * @queue_index: Index of queue
 6412 * @type: queue type as RX or TX
 6413 * @napi: NAPI context, pass NULL to clear previously set NAPI
 6414 *
 6415 * Set queue with its corresponding napi context. This should be done after
 6416 * registering the NAPI handler for the queue-vector and the queues have been
 6417 * mapped to the corresponding interrupt vector.
 6418 */
 6419void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
 6420			  enum netdev_queue_type type, struct napi_struct *napi)
 6421{
 6422	struct netdev_rx_queue *rxq;
 6423	struct netdev_queue *txq;
 6424
 6425	if (WARN_ON_ONCE(napi && !napi->dev))
 6426		return;
 6427	if (dev->reg_state >= NETREG_REGISTERED)
 6428		ASSERT_RTNL();
 6429
 6430	switch (type) {
 6431	case NETDEV_QUEUE_TYPE_RX:
 6432		rxq = __netif_get_rx_queue(dev, queue_index);
 6433		rxq->napi = napi;
 6434		return;
 6435	case NETDEV_QUEUE_TYPE_TX:
 6436		txq = netdev_get_tx_queue(dev, queue_index);
 6437		txq->napi = napi;
 6438		return;
 6439	default:
 6440		return;
 6441	}
 6442}
 6443EXPORT_SYMBOL(netif_queue_set_napi);
 6444
 6445void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
 6446			   int (*poll)(struct napi_struct *, int), int weight)
 6447{
 6448	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
 6449		return;
 6450
 6451	INIT_LIST_HEAD(&napi->poll_list);
 6452	INIT_HLIST_NODE(&napi->napi_hash_node);
 6453	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 6454	napi->timer.function = napi_watchdog;
 6455	init_gro_hash(napi);
 6456	napi->skb = NULL;
 6457	INIT_LIST_HEAD(&napi->rx_list);
 6458	napi->rx_count = 0;
 6459	napi->poll = poll;
 6460	if (weight > NAPI_POLL_WEIGHT)
 6461		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
 6462				weight);
 6463	napi->weight = weight;
 
 6464	napi->dev = dev;
 6465#ifdef CONFIG_NETPOLL
 
 6466	napi->poll_owner = -1;
 6467#endif
 6468	napi->list_owner = -1;
 6469	set_bit(NAPI_STATE_SCHED, &napi->state);
 6470	set_bit(NAPI_STATE_NPSVC, &napi->state);
 6471	list_add_rcu(&napi->dev_list, &dev->napi_list);
 6472	napi_hash_add(napi);
 6473	napi_get_frags_check(napi);
 6474	/* Create kthread for this napi if dev->threaded is set.
 6475	 * Clear dev->threaded if kthread creation failed so that
 6476	 * threaded mode will not be enabled in napi_enable().
 6477	 */
 6478	if (dev->threaded && napi_kthread_create(napi))
 6479		dev->threaded = 0;
 6480	netif_napi_set_irq(napi, -1);
 6481}
 6482EXPORT_SYMBOL(netif_napi_add_weight);
 6483
 6484void napi_disable(struct napi_struct *n)
 6485{
 6486	unsigned long val, new;
 6487
 6488	might_sleep();
 6489	set_bit(NAPI_STATE_DISABLE, &n->state);
 6490
 6491	val = READ_ONCE(n->state);
 6492	do {
 6493		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
 6494			usleep_range(20, 200);
 6495			val = READ_ONCE(n->state);
 6496		}
 6497
 6498		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
 6499		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
 6500	} while (!try_cmpxchg(&n->state, &val, new));
 6501
 6502	hrtimer_cancel(&n->timer);
 6503
 6504	clear_bit(NAPI_STATE_DISABLE, &n->state);
 6505}
 6506EXPORT_SYMBOL(napi_disable);
 6507
 6508/**
 6509 *	napi_enable - enable NAPI scheduling
 6510 *	@n: NAPI context
 6511 *
 6512 * Resume NAPI from being scheduled on this context.
 6513 * Must be paired with napi_disable.
 6514 */
 6515void napi_enable(struct napi_struct *n)
 6516{
 6517	unsigned long new, val = READ_ONCE(n->state);
 6518
 6519	do {
 6520		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
 6521
 6522		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
 6523		if (n->dev->threaded && n->thread)
 6524			new |= NAPIF_STATE_THREADED;
 6525	} while (!try_cmpxchg(&n->state, &val, new));
 6526}
 6527EXPORT_SYMBOL(napi_enable);
 6528
 6529static void flush_gro_hash(struct napi_struct *napi)
 6530{
 6531	int i;
 6532
 6533	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
 6534		struct sk_buff *skb, *n;
 6535
 6536		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
 6537			kfree_skb(skb);
 6538		napi->gro_hash[i].count = 0;
 6539	}
 6540}
 6541
 6542/* Must be called in process context */
 6543void __netif_napi_del(struct napi_struct *napi)
 6544{
 6545	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
 6546		return;
 6547
 6548	napi_hash_del(napi);
 6549	list_del_rcu(&napi->dev_list);
 6550	napi_free_frags(napi);
 6551
 6552	flush_gro_hash(napi);
 6553	napi->gro_bitmask = 0;
 6554
 6555	if (napi->thread) {
 6556		kthread_stop(napi->thread);
 6557		napi->thread = NULL;
 6558	}
 6559}
 6560EXPORT_SYMBOL(__netif_napi_del);
 6561
 6562static int __napi_poll(struct napi_struct *n, bool *repoll)
 6563{
 6564	int work, weight;
 6565
 6566	weight = n->weight;
 6567
 6568	/* This NAPI_STATE_SCHED test is for avoiding a race
 6569	 * with netpoll's poll_napi().  Only the entity which
 6570	 * obtains the lock and sees NAPI_STATE_SCHED set will
 6571	 * actually make the ->poll() call.  Therefore we avoid
 6572	 * accidentally calling ->poll() when NAPI is not scheduled.
 6573	 */
 6574	work = 0;
 6575	if (napi_is_scheduled(n)) {
 6576		work = n->poll(n, weight);
 6577		trace_napi_poll(n, work, weight);
 6578
 6579		xdp_do_check_flushed(n);
 6580	}
 6581
 6582	if (unlikely(work > weight))
 6583		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
 6584				n->poll, work, weight);
 6585
 6586	if (likely(work < weight))
 6587		return work;
 6588
 6589	/* Drivers must not modify the NAPI state if they
 6590	 * consume the entire weight.  In such cases this code
 6591	 * still "owns" the NAPI instance and therefore can
 6592	 * move the instance around on the list at-will.
 6593	 */
 6594	if (unlikely(napi_disable_pending(n))) {
 6595		napi_complete(n);
 6596		return work;
 6597	}
 6598
 6599	/* The NAPI context has more processing work, but busy-polling
 6600	 * is preferred. Exit early.
 6601	 */
 6602	if (napi_prefer_busy_poll(n)) {
 6603		if (napi_complete_done(n, work)) {
 6604			/* If timeout is not set, we need to make sure
 6605			 * that the NAPI is re-scheduled.
 6606			 */
 6607			napi_schedule(n);
 6608		}
 6609		return work;
 6610	}
 6611
 6612	if (n->gro_bitmask) {
 6613		/* flush too old packets
 6614		 * If HZ < 1000, flush all packets.
 6615		 */
 6616		napi_gro_flush(n, HZ >= 1000);
 6617	}
 6618
 6619	gro_normal_list(n);
 6620
 6621	/* Some drivers may have called napi_schedule
 6622	 * prior to exhausting their budget.
 6623	 */
 6624	if (unlikely(!list_empty(&n->poll_list))) {
 6625		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
 6626			     n->dev ? n->dev->name : "backlog");
 6627		return work;
 6628	}
 6629
 6630	*repoll = true;
 6631
 6632	return work;
 6633}
 6634
 6635static int napi_poll(struct napi_struct *n, struct list_head *repoll)
 6636{
 6637	bool do_repoll = false;
 6638	void *have;
 6639	int work;
 6640
 6641	list_del_init(&n->poll_list);
 6642
 6643	have = netpoll_poll_lock(n);
 6644
 6645	work = __napi_poll(n, &do_repoll);
 6646
 6647	if (do_repoll)
 6648		list_add_tail(&n->poll_list, repoll);
 6649
 6650	netpoll_poll_unlock(have);
 6651
 6652	return work;
 6653}
 
 6654
 6655static int napi_thread_wait(struct napi_struct *napi)
 6656{
 6657	bool woken = false;
 6658
 6659	set_current_state(TASK_INTERRUPTIBLE);
 6660
 6661	while (!kthread_should_stop()) {
 6662		/* Testing SCHED_THREADED bit here to make sure the current
 6663		 * kthread owns this napi and could poll on this napi.
 6664		 * Testing SCHED bit is not enough because SCHED bit might be
 6665		 * set by some other busy poll thread or by napi_disable().
 6666		 */
 6667		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
 6668			WARN_ON(!list_empty(&napi->poll_list));
 6669			__set_current_state(TASK_RUNNING);
 6670			return 0;
 6671		}
 6672
 6673		schedule();
 6674		/* woken being true indicates this thread owns this napi. */
 6675		woken = true;
 6676		set_current_state(TASK_INTERRUPTIBLE);
 6677	}
 6678	__set_current_state(TASK_RUNNING);
 6679
 6680	return -1;
 6681}
 6682
 6683static void skb_defer_free_flush(struct softnet_data *sd)
 6684{
 6685	struct sk_buff *skb, *next;
 6686
 6687	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
 6688	if (!READ_ONCE(sd->defer_list))
 6689		return;
 6690
 6691	spin_lock(&sd->defer_lock);
 6692	skb = sd->defer_list;
 6693	sd->defer_list = NULL;
 6694	sd->defer_count = 0;
 6695	spin_unlock(&sd->defer_lock);
 6696
 6697	while (skb != NULL) {
 6698		next = skb->next;
 6699		napi_consume_skb(skb, 1);
 6700		skb = next;
 6701	}
 6702}
 6703
 6704static int napi_threaded_poll(void *data)
 6705{
 6706	struct napi_struct *napi = data;
 6707	struct softnet_data *sd;
 6708	void *have;
 6709
 6710	while (!napi_thread_wait(napi)) {
 6711		for (;;) {
 6712			bool repoll = false;
 6713
 6714			local_bh_disable();
 6715			sd = this_cpu_ptr(&softnet_data);
 6716			sd->in_napi_threaded_poll = true;
 6717
 6718			have = netpoll_poll_lock(napi);
 6719			__napi_poll(napi, &repoll);
 6720			netpoll_poll_unlock(have);
 6721
 6722			sd->in_napi_threaded_poll = false;
 6723			barrier();
 6724
 6725			if (sd_has_rps_ipi_waiting(sd)) {
 6726				local_irq_disable();
 6727				net_rps_action_and_irq_enable(sd);
 6728			}
 6729			skb_defer_free_flush(sd);
 6730			local_bh_enable();
 6731
 6732			if (!repoll)
 6733				break;
 6734
 6735			cond_resched();
 6736		}
 6737	}
 6738	return 0;
 6739}
 
 6740
 6741static __latent_entropy void net_rx_action(struct softirq_action *h)
 6742{
 6743	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
 6744	unsigned long time_limit = jiffies +
 6745		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
 6746	int budget = READ_ONCE(netdev_budget);
 6747	LIST_HEAD(list);
 6748	LIST_HEAD(repoll);
 6749
 6750start:
 6751	sd->in_net_rx_action = true;
 6752	local_irq_disable();
 6753	list_splice_init(&sd->poll_list, &list);
 6754	local_irq_enable();
 6755
 6756	for (;;) {
 6757		struct napi_struct *n;
 
 6758
 6759		skb_defer_free_flush(sd);
 6760
 6761		if (list_empty(&list)) {
 6762			if (list_empty(&repoll)) {
 6763				sd->in_net_rx_action = false;
 6764				barrier();
 6765				/* We need to check if ____napi_schedule()
 6766				 * had refilled poll_list while
 6767				 * sd->in_net_rx_action was true.
 6768				 */
 6769				if (!list_empty(&sd->poll_list))
 6770					goto start;
 6771				if (!sd_has_rps_ipi_waiting(sd))
 6772					goto end;
 6773			}
 6774			break;
 6775		}
 6776
 6777		n = list_first_entry(&list, struct napi_struct, poll_list);
 6778		budget -= napi_poll(n, &repoll);
 6779
 6780		/* If softirq window is exhausted then punt.
 6781		 * Allow this to run for 2 jiffies since which will allow
 6782		 * an average latency of 1.5/HZ.
 6783		 */
 6784		if (unlikely(budget <= 0 ||
 6785			     time_after_eq(jiffies, time_limit))) {
 6786			sd->time_squeeze++;
 6787			break;
 6788		}
 6789	}
 6790
 6791	local_irq_disable();
 6792
 6793	list_splice_tail_init(&sd->poll_list, &list);
 6794	list_splice_tail(&repoll, &list);
 6795	list_splice(&list, &sd->poll_list);
 6796	if (!list_empty(&sd->poll_list))
 6797		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 6798	else
 6799		sd->in_net_rx_action = false;
 6800
 6801	net_rps_action_and_irq_enable(sd);
 6802end:;
 6803}
 
 
 
 6804
 6805struct netdev_adjacent {
 6806	struct net_device *dev;
 6807	netdevice_tracker dev_tracker;
 6808
 6809	/* upper master flag, there can only be one master device per list */
 6810	bool master;
 6811
 6812	/* lookup ignore flag */
 6813	bool ignore;
 
 
 
 
 
 
 
 
 
 6814
 6815	/* counter for the number of times this device was added to us */
 6816	u16 ref_nr;
 6817
 6818	/* private field for the users */
 6819	void *private;
 6820
 6821	struct list_head list;
 6822	struct rcu_head rcu;
 6823};
 6824
 6825static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
 6826						 struct list_head *adj_list)
 6827{
 6828	struct netdev_adjacent *adj;
 
 
 
 
 
 
 
 
 
 6829
 6830	list_for_each_entry(adj, adj_list, list) {
 6831		if (adj->dev == adj_dev)
 6832			return adj;
 6833	}
 6834	return NULL;
 6835}
 6836
 6837static int ____netdev_has_upper_dev(struct net_device *upper_dev,
 6838				    struct netdev_nested_priv *priv)
 6839{
 6840	struct net_device *dev = (struct net_device *)priv->data;
 6841
 6842	return upper_dev == dev;
 6843}
 6844
 6845/**
 6846 * netdev_has_upper_dev - Check if device is linked to an upper device
 6847 * @dev: device
 6848 * @upper_dev: upper device to check
 6849 *
 6850 * Find out if a device is linked to specified upper device and return true
 6851 * in case it is. Note that this checks only immediate upper device,
 6852 * not through a complete stack of devices. The caller must hold the RTNL lock.
 6853 */
 6854bool netdev_has_upper_dev(struct net_device *dev,
 6855			  struct net_device *upper_dev)
 6856{
 6857	struct netdev_nested_priv priv = {
 6858		.data = (void *)upper_dev,
 6859	};
 6860
 6861	ASSERT_RTNL();
 6862
 6863	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
 6864					     &priv);
 
 
 6865}
 6866EXPORT_SYMBOL(netdev_has_upper_dev);
 6867
 6868/**
 6869 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
 6870 * @dev: device
 6871 * @upper_dev: upper device to check
 6872 *
 6873 * Find out if a device is linked to specified upper device and return true
 6874 * in case it is. Note that this checks the entire upper device chain.
 6875 * The caller must hold rcu lock.
 6876 */
 6877
 6878bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
 6879				  struct net_device *upper_dev)
 6880{
 6881	struct netdev_nested_priv priv = {
 6882		.data = (void *)upper_dev,
 6883	};
 6884
 6885	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
 6886					       &priv);
 6887}
 6888EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
 6889
 6890/**
 6891 * netdev_has_any_upper_dev - Check if device is linked to some device
 6892 * @dev: device
 
 6893 *
 6894 * Find out if a device is linked to an upper device and return true in case
 6895 * it is. The caller must hold the RTNL lock.
 
 6896 */
 6897bool netdev_has_any_upper_dev(struct net_device *dev)
 6898{
 6899	ASSERT_RTNL();
 6900
 6901	return !list_empty(&dev->adj_list.upper);
 6902}
 6903EXPORT_SYMBOL(netdev_has_any_upper_dev);
 6904
 6905/**
 6906 * netdev_master_upper_dev_get - Get master upper device
 6907 * @dev: device
 6908 *
 6909 * Find a master upper device and return pointer to it or NULL in case
 6910 * it's not there. The caller must hold the RTNL lock.
 6911 */
 6912struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
 6913{
 6914	struct netdev_adjacent *upper;
 6915
 6916	ASSERT_RTNL();
 6917
 6918	if (list_empty(&dev->adj_list.upper))
 6919		return NULL;
 6920
 6921	upper = list_first_entry(&dev->adj_list.upper,
 6922				 struct netdev_adjacent, list);
 6923	if (likely(upper->master))
 6924		return upper->dev;
 6925	return NULL;
 6926}
 6927EXPORT_SYMBOL(netdev_master_upper_dev_get);
 6928
 6929static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
 6930{
 6931	struct netdev_adjacent *upper;
 6932
 6933	ASSERT_RTNL();
 6934
 6935	if (list_empty(&dev->adj_list.upper))
 6936		return NULL;
 6937
 6938	upper = list_first_entry(&dev->adj_list.upper,
 6939				 struct netdev_adjacent, list);
 6940	if (likely(upper->master) && !upper->ignore)
 6941		return upper->dev;
 6942	return NULL;
 6943}
 6944
 6945/**
 6946 * netdev_has_any_lower_dev - Check if device is linked to some device
 6947 * @dev: device
 6948 *
 6949 * Find out if a device is linked to a lower device and return true in case
 6950 * it is. The caller must hold the RTNL lock.
 6951 */
 6952static bool netdev_has_any_lower_dev(struct net_device *dev)
 6953{
 6954	ASSERT_RTNL();
 6955
 6956	return !list_empty(&dev->adj_list.lower);
 6957}
 6958
 6959void *netdev_adjacent_get_private(struct list_head *adj_list)
 6960{
 6961	struct netdev_adjacent *adj;
 6962
 6963	adj = list_entry(adj_list, struct netdev_adjacent, list);
 6964
 6965	return adj->private;
 6966}
 6967EXPORT_SYMBOL(netdev_adjacent_get_private);
 6968
 6969/**
 6970 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
 6971 * @dev: device
 6972 * @iter: list_head ** of the current position
 6973 *
 6974 * Gets the next device from the dev's upper list, starting from iter
 6975 * position. The caller must hold RCU read lock.
 6976 */
 6977struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
 6978						 struct list_head **iter)
 6979{
 6980	struct netdev_adjacent *upper;
 6981
 6982	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
 6983
 6984	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 6985
 6986	if (&upper->list == &dev->adj_list.upper)
 6987		return NULL;
 6988
 6989	*iter = &upper->list;
 6990
 6991	return upper->dev;
 6992}
 6993EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
 6994
 6995static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
 6996						  struct list_head **iter,
 6997						  bool *ignore)
 6998{
 6999	struct netdev_adjacent *upper;
 7000
 7001	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
 7002
 7003	if (&upper->list == &dev->adj_list.upper)
 7004		return NULL;
 7005
 7006	*iter = &upper->list;
 7007	*ignore = upper->ignore;
 7008
 7009	return upper->dev;
 7010}
 7011
 7012static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
 7013						    struct list_head **iter)
 7014{
 7015	struct netdev_adjacent *upper;
 7016
 7017	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
 7018
 7019	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7020
 7021	if (&upper->list == &dev->adj_list.upper)
 7022		return NULL;
 7023
 7024	*iter = &upper->list;
 7025
 7026	return upper->dev;
 7027}
 7028
 7029static int __netdev_walk_all_upper_dev(struct net_device *dev,
 7030				       int (*fn)(struct net_device *dev,
 7031					 struct netdev_nested_priv *priv),
 7032				       struct netdev_nested_priv *priv)
 7033{
 7034	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7035	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7036	int ret, cur = 0;
 7037	bool ignore;
 7038
 7039	now = dev;
 7040	iter = &dev->adj_list.upper;
 7041
 7042	while (1) {
 7043		if (now != dev) {
 7044			ret = fn(now, priv);
 7045			if (ret)
 7046				return ret;
 7047		}
 7048
 7049		next = NULL;
 7050		while (1) {
 7051			udev = __netdev_next_upper_dev(now, &iter, &ignore);
 7052			if (!udev)
 7053				break;
 7054			if (ignore)
 7055				continue;
 7056
 7057			next = udev;
 7058			niter = &udev->adj_list.upper;
 7059			dev_stack[cur] = now;
 7060			iter_stack[cur++] = iter;
 7061			break;
 7062		}
 7063
 7064		if (!next) {
 7065			if (!cur)
 7066				return 0;
 7067			next = dev_stack[--cur];
 7068			niter = iter_stack[cur];
 7069		}
 7070
 7071		now = next;
 7072		iter = niter;
 
 
 
 7073	}
 7074
 7075	return 0;
 7076}
 7077
 7078int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
 7079				  int (*fn)(struct net_device *dev,
 7080					    struct netdev_nested_priv *priv),
 7081				  struct netdev_nested_priv *priv)
 7082{
 7083	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7084	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7085	int ret, cur = 0;
 7086
 7087	now = dev;
 7088	iter = &dev->adj_list.upper;
 7089
 7090	while (1) {
 7091		if (now != dev) {
 7092			ret = fn(now, priv);
 7093			if (ret)
 7094				return ret;
 7095		}
 7096
 7097		next = NULL;
 7098		while (1) {
 7099			udev = netdev_next_upper_dev_rcu(now, &iter);
 7100			if (!udev)
 7101				break;
 7102
 7103			next = udev;
 7104			niter = &udev->adj_list.upper;
 7105			dev_stack[cur] = now;
 7106			iter_stack[cur++] = iter;
 7107			break;
 7108		}
 7109
 7110		if (!next) {
 7111			if (!cur)
 7112				return 0;
 7113			next = dev_stack[--cur];
 7114			niter = iter_stack[cur];
 7115		}
 7116
 7117		now = next;
 7118		iter = niter;
 7119	}
 7120
 
 
 7121	return 0;
 7122}
 7123EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
 7124
 7125static bool __netdev_has_upper_dev(struct net_device *dev,
 7126				   struct net_device *upper_dev)
 7127{
 7128	struct netdev_nested_priv priv = {
 7129		.flags = 0,
 7130		.data = (void *)upper_dev,
 7131	};
 7132
 7133	ASSERT_RTNL();
 7134
 7135	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
 7136					   &priv);
 7137}
 7138
 7139/**
 7140 * netdev_lower_get_next_private - Get the next ->private from the
 7141 *				   lower neighbour list
 7142 * @dev: device
 7143 * @iter: list_head ** of the current position
 7144 *
 7145 * Gets the next netdev_adjacent->private from the dev's lower neighbour
 7146 * list, starting from iter position. The caller must hold either hold the
 7147 * RTNL lock or its own locking that guarantees that the neighbour lower
 7148 * list will remain unchanged.
 7149 */
 7150void *netdev_lower_get_next_private(struct net_device *dev,
 7151				    struct list_head **iter)
 7152{
 7153	struct netdev_adjacent *lower;
 7154
 7155	lower = list_entry(*iter, struct netdev_adjacent, list);
 7156
 7157	if (&lower->list == &dev->adj_list.lower)
 7158		return NULL;
 7159
 7160	*iter = lower->list.next;
 7161
 7162	return lower->private;
 7163}
 7164EXPORT_SYMBOL(netdev_lower_get_next_private);
 7165
 7166/**
 7167 * netdev_lower_get_next_private_rcu - Get the next ->private from the
 7168 *				       lower neighbour list, RCU
 7169 *				       variant
 7170 * @dev: device
 7171 * @iter: list_head ** of the current position
 7172 *
 7173 * Gets the next netdev_adjacent->private from the dev's lower neighbour
 7174 * list, starting from iter position. The caller must hold RCU read lock.
 7175 */
 7176void *netdev_lower_get_next_private_rcu(struct net_device *dev,
 7177					struct list_head **iter)
 7178{
 7179	struct netdev_adjacent *lower;
 7180
 7181	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 7182
 7183	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7184
 7185	if (&lower->list == &dev->adj_list.lower)
 7186		return NULL;
 7187
 7188	*iter = &lower->list;
 7189
 7190	return lower->private;
 7191}
 7192EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
 7193
 7194/**
 7195 * netdev_lower_get_next - Get the next device from the lower neighbour
 7196 *                         list
 7197 * @dev: device
 7198 * @iter: list_head ** of the current position
 7199 *
 7200 * Gets the next netdev_adjacent from the dev's lower neighbour
 7201 * list, starting from iter position. The caller must hold RTNL lock or
 7202 * its own locking that guarantees that the neighbour lower
 7203 * list will remain unchanged.
 7204 */
 7205void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
 7206{
 7207	struct netdev_adjacent *lower;
 7208
 7209	lower = list_entry(*iter, struct netdev_adjacent, list);
 7210
 7211	if (&lower->list == &dev->adj_list.lower)
 7212		return NULL;
 7213
 7214	*iter = lower->list.next;
 7215
 7216	return lower->dev;
 7217}
 7218EXPORT_SYMBOL(netdev_lower_get_next);
 7219
 7220static struct net_device *netdev_next_lower_dev(struct net_device *dev,
 7221						struct list_head **iter)
 7222{
 7223	struct netdev_adjacent *lower;
 7224
 7225	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
 7226
 7227	if (&lower->list == &dev->adj_list.lower)
 7228		return NULL;
 7229
 7230	*iter = &lower->list;
 7231
 7232	return lower->dev;
 7233}
 7234
 7235static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
 7236						  struct list_head **iter,
 7237						  bool *ignore)
 7238{
 7239	struct netdev_adjacent *lower;
 7240
 7241	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
 7242
 7243	if (&lower->list == &dev->adj_list.lower)
 7244		return NULL;
 7245
 7246	*iter = &lower->list;
 7247	*ignore = lower->ignore;
 7248
 7249	return lower->dev;
 7250}
 7251
 7252int netdev_walk_all_lower_dev(struct net_device *dev,
 7253			      int (*fn)(struct net_device *dev,
 7254					struct netdev_nested_priv *priv),
 7255			      struct netdev_nested_priv *priv)
 7256{
 7257	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7258	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7259	int ret, cur = 0;
 
 
 
 7260
 7261	now = dev;
 7262	iter = &dev->adj_list.lower;
 
 7263
 7264	while (1) {
 7265		if (now != dev) {
 7266			ret = fn(now, priv);
 7267			if (ret)
 7268				return ret;
 7269		}
 7270
 7271		next = NULL;
 7272		while (1) {
 7273			ldev = netdev_next_lower_dev(now, &iter);
 7274			if (!ldev)
 7275				break;
 7276
 7277			next = ldev;
 7278			niter = &ldev->adj_list.lower;
 7279			dev_stack[cur] = now;
 7280			iter_stack[cur++] = iter;
 7281			break;
 7282		}
 7283
 7284		if (!next) {
 7285			if (!cur)
 7286				return 0;
 7287			next = dev_stack[--cur];
 7288			niter = iter_stack[cur];
 
 
 
 
 
 
 
 
 
 7289		}
 7290
 7291		now = next;
 7292		iter = niter;
 7293	}
 7294
 7295	return 0;
 7296}
 7297EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
 7298
 7299static int __netdev_walk_all_lower_dev(struct net_device *dev,
 7300				       int (*fn)(struct net_device *dev,
 7301					 struct netdev_nested_priv *priv),
 7302				       struct netdev_nested_priv *priv)
 7303{
 7304	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7305	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7306	int ret, cur = 0;
 7307	bool ignore;
 7308
 7309	now = dev;
 7310	iter = &dev->adj_list.lower;
 7311
 7312	while (1) {
 7313		if (now != dev) {
 7314			ret = fn(now, priv);
 7315			if (ret)
 7316				return ret;
 7317		}
 7318
 7319		next = NULL;
 7320		while (1) {
 7321			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
 7322			if (!ldev)
 7323				break;
 7324			if (ignore)
 7325				continue;
 7326
 7327			next = ldev;
 7328			niter = &ldev->adj_list.lower;
 7329			dev_stack[cur] = now;
 7330			iter_stack[cur++] = iter;
 7331			break;
 7332		}
 7333
 7334		if (!next) {
 7335			if (!cur)
 7336				return 0;
 7337			next = dev_stack[--cur];
 7338			niter = iter_stack[cur];
 7339		}
 7340
 7341		now = next;
 7342		iter = niter;
 7343	}
 7344
 7345	return 0;
 
 
 
 7346}
 7347
 7348struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
 7349					     struct list_head **iter)
 
 
 
 
 
 7350{
 7351	struct netdev_adjacent *lower;
 
 
 7352
 7353	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7354	if (&lower->list == &dev->adj_list.lower)
 7355		return NULL;
 7356
 7357	*iter = &lower->list;
 
 
 
 7358
 7359	return lower->dev;
 7360}
 7361EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
 7362
 7363static u8 __netdev_upper_depth(struct net_device *dev)
 7364{
 7365	struct net_device *udev;
 7366	struct list_head *iter;
 7367	u8 max_depth = 0;
 7368	bool ignore;
 7369
 7370	for (iter = &dev->adj_list.upper,
 7371	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
 7372	     udev;
 7373	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
 7374		if (ignore)
 7375			continue;
 7376		if (max_depth < udev->upper_level)
 7377			max_depth = udev->upper_level;
 7378	}
 7379
 7380	return max_depth;
 
 7381}
 7382
 7383static u8 __netdev_lower_depth(struct net_device *dev)
 
 7384{
 7385	struct net_device *ldev;
 7386	struct list_head *iter;
 7387	u8 max_depth = 0;
 7388	bool ignore;
 7389
 7390	for (iter = &dev->adj_list.lower,
 7391	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
 7392	     ldev;
 7393	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
 7394		if (ignore)
 7395			continue;
 7396		if (max_depth < ldev->lower_level)
 7397			max_depth = ldev->lower_level;
 7398	}
 7399
 7400	return max_depth;
 7401}
 7402
 7403static int __netdev_update_upper_level(struct net_device *dev,
 7404				       struct netdev_nested_priv *__unused)
 7405{
 7406	dev->upper_level = __netdev_upper_depth(dev) + 1;
 7407	return 0;
 7408}
 7409
 7410#ifdef CONFIG_LOCKDEP
 7411static LIST_HEAD(net_unlink_list);
 7412
 7413static void net_unlink_todo(struct net_device *dev)
 7414{
 7415	if (list_empty(&dev->unlink_list))
 7416		list_add_tail(&dev->unlink_list, &net_unlink_list);
 
 
 
 
 
 
 
 
 
 
 7417}
 7418#endif
 7419
 7420static int __netdev_update_lower_level(struct net_device *dev,
 7421				       struct netdev_nested_priv *priv)
 
 
 
 7422{
 7423	dev->lower_level = __netdev_lower_depth(dev) + 1;
 7424
 7425#ifdef CONFIG_LOCKDEP
 7426	if (!priv)
 7427		return 0;
 7428
 7429	if (priv->flags & NESTED_SYNC_IMM)
 7430		dev->nested_level = dev->lower_level - 1;
 7431	if (priv->flags & NESTED_SYNC_TODO)
 7432		net_unlink_todo(dev);
 7433#endif
 7434	return 0;
 7435}
 7436
 7437int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
 7438				  int (*fn)(struct net_device *dev,
 7439					    struct netdev_nested_priv *priv),
 7440				  struct netdev_nested_priv *priv)
 7441{
 7442	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7443	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7444	int ret, cur = 0;
 7445
 7446	now = dev;
 7447	iter = &dev->adj_list.lower;
 7448
 7449	while (1) {
 7450		if (now != dev) {
 7451			ret = fn(now, priv);
 7452			if (ret)
 7453				return ret;
 7454		}
 7455
 7456		next = NULL;
 7457		while (1) {
 7458			ldev = netdev_next_lower_dev_rcu(now, &iter);
 7459			if (!ldev)
 7460				break;
 7461
 7462			next = ldev;
 7463			niter = &ldev->adj_list.lower;
 7464			dev_stack[cur] = now;
 7465			iter_stack[cur++] = iter;
 7466			break;
 7467		}
 7468
 7469		if (!next) {
 7470			if (!cur)
 7471				return 0;
 7472			next = dev_stack[--cur];
 7473			niter = iter_stack[cur];
 7474		}
 7475
 7476		now = next;
 7477		iter = niter;
 7478	}
 7479
 7480	return 0;
 7481}
 7482EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
 7483
 7484/**
 7485 * netdev_lower_get_first_private_rcu - Get the first ->private from the
 7486 *				       lower neighbour list, RCU
 7487 *				       variant
 7488 * @dev: device
 7489 *
 7490 * Gets the first netdev_adjacent->private from the dev's lower neighbour
 7491 * list. The caller must hold RCU read lock.
 7492 */
 7493void *netdev_lower_get_first_private_rcu(struct net_device *dev)
 7494{
 7495	struct netdev_adjacent *lower;
 7496
 7497	lower = list_first_or_null_rcu(&dev->adj_list.lower,
 7498			struct netdev_adjacent, list);
 7499	if (lower)
 7500		return lower->private;
 7501	return NULL;
 
 
 7502}
 7503EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
 7504
 7505/**
 7506 * netdev_master_upper_dev_get_rcu - Get master upper device
 7507 * @dev: device
 7508 *
 7509 * Find a master upper device and return pointer to it or NULL in case
 7510 * it's not there. The caller must hold the RCU read lock.
 7511 */
 7512struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
 7513{
 7514	struct netdev_adjacent *upper;
 7515
 7516	upper = list_first_or_null_rcu(&dev->adj_list.upper,
 7517				       struct netdev_adjacent, list);
 7518	if (upper && likely(upper->master))
 7519		return upper->dev;
 7520	return NULL;
 7521}
 7522EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
 7523
 7524static int netdev_adjacent_sysfs_add(struct net_device *dev,
 7525			      struct net_device *adj_dev,
 7526			      struct list_head *dev_list)
 7527{
 7528	char linkname[IFNAMSIZ+7];
 7529
 7530	sprintf(linkname, dev_list == &dev->adj_list.upper ?
 7531		"upper_%s" : "lower_%s", adj_dev->name);
 7532	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
 7533				 linkname);
 7534}
 7535static void netdev_adjacent_sysfs_del(struct net_device *dev,
 7536			       char *name,
 7537			       struct list_head *dev_list)
 7538{
 7539	char linkname[IFNAMSIZ+7];
 7540
 7541	sprintf(linkname, dev_list == &dev->adj_list.upper ?
 7542		"upper_%s" : "lower_%s", name);
 7543	sysfs_remove_link(&(dev->dev.kobj), linkname);
 7544}
 7545
 7546static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
 7547						 struct net_device *adj_dev,
 7548						 struct list_head *dev_list)
 7549{
 7550	return (dev_list == &dev->adj_list.upper ||
 7551		dev_list == &dev->adj_list.lower) &&
 7552		net_eq(dev_net(dev), dev_net(adj_dev));
 7553}
 7554
 7555static int __netdev_adjacent_dev_insert(struct net_device *dev,
 7556					struct net_device *adj_dev,
 7557					struct list_head *dev_list,
 7558					void *private, bool master)
 7559{
 7560	struct netdev_adjacent *adj;
 7561	int ret;
 7562
 7563	adj = __netdev_find_adj(adj_dev, dev_list);
 7564
 7565	if (adj) {
 7566		adj->ref_nr += 1;
 7567		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
 7568			 dev->name, adj_dev->name, adj->ref_nr);
 7569
 7570		return 0;
 7571	}
 7572
 7573	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
 7574	if (!adj)
 7575		return -ENOMEM;
 7576
 7577	adj->dev = adj_dev;
 7578	adj->master = master;
 7579	adj->ref_nr = 1;
 7580	adj->private = private;
 7581	adj->ignore = false;
 7582	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
 7583
 7584	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
 7585		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
 7586
 7587	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
 7588		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
 7589		if (ret)
 7590			goto free_adj;
 7591	}
 7592
 7593	/* Ensure that master link is always the first item in list. */
 7594	if (master) {
 7595		ret = sysfs_create_link(&(dev->dev.kobj),
 7596					&(adj_dev->dev.kobj), "master");
 7597		if (ret)
 7598			goto remove_symlinks;
 7599
 7600		list_add_rcu(&adj->list, dev_list);
 7601	} else {
 7602		list_add_tail_rcu(&adj->list, dev_list);
 7603	}
 7604
 
 
 
 
 7605	return 0;
 7606
 7607remove_symlinks:
 7608	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
 7609		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
 7610free_adj:
 7611	netdev_put(adj_dev, &adj->dev_tracker);
 7612	kfree(adj);
 7613
 7614	return ret;
 7615}
 7616
 7617static void __netdev_adjacent_dev_remove(struct net_device *dev,
 7618					 struct net_device *adj_dev,
 7619					 u16 ref_nr,
 7620					 struct list_head *dev_list)
 7621{
 7622	struct netdev_adjacent *adj;
 7623
 7624	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
 7625		 dev->name, adj_dev->name, ref_nr);
 7626
 7627	adj = __netdev_find_adj(adj_dev, dev_list);
 7628
 7629	if (!adj) {
 7630		pr_err("Adjacency does not exist for device %s from %s\n",
 7631		       dev->name, adj_dev->name);
 7632		WARN_ON(1);
 7633		return;
 7634	}
 7635
 7636	if (adj->ref_nr > ref_nr) {
 7637		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
 7638			 dev->name, adj_dev->name, ref_nr,
 7639			 adj->ref_nr - ref_nr);
 7640		adj->ref_nr -= ref_nr;
 7641		return;
 7642	}
 7643
 7644	if (adj->master)
 7645		sysfs_remove_link(&(dev->dev.kobj), "master");
 7646
 7647	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
 7648		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
 7649
 7650	list_del_rcu(&adj->list);
 7651	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
 7652		 adj_dev->name, dev->name, adj_dev->name);
 7653	netdev_put(adj_dev, &adj->dev_tracker);
 7654	kfree_rcu(adj, rcu);
 7655}
 7656
 7657static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
 7658					    struct net_device *upper_dev,
 7659					    struct list_head *up_list,
 7660					    struct list_head *down_list,
 7661					    void *private, bool master)
 7662{
 7663	int ret;
 7664
 7665	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
 7666					   private, master);
 7667	if (ret)
 7668		return ret;
 7669
 7670	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
 7671					   private, false);
 7672	if (ret) {
 7673		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
 7674		return ret;
 7675	}
 7676
 7677	return 0;
 7678}
 7679
 7680static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
 7681					       struct net_device *upper_dev,
 7682					       u16 ref_nr,
 7683					       struct list_head *up_list,
 7684					       struct list_head *down_list)
 7685{
 7686	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
 7687	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
 7688}
 7689
 7690static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
 7691						struct net_device *upper_dev,
 7692						void *private, bool master)
 7693{
 7694	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
 7695						&dev->adj_list.upper,
 7696						&upper_dev->adj_list.lower,
 7697						private, master);
 7698}
 7699
 7700static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
 7701						   struct net_device *upper_dev)
 7702{
 7703	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
 7704					   &dev->adj_list.upper,
 7705					   &upper_dev->adj_list.lower);
 7706}
 7707
 7708static int __netdev_upper_dev_link(struct net_device *dev,
 7709				   struct net_device *upper_dev, bool master,
 7710				   void *upper_priv, void *upper_info,
 7711				   struct netdev_nested_priv *priv,
 7712				   struct netlink_ext_ack *extack)
 7713{
 7714	struct netdev_notifier_changeupper_info changeupper_info = {
 7715		.info = {
 7716			.dev = dev,
 7717			.extack = extack,
 7718		},
 7719		.upper_dev = upper_dev,
 7720		.master = master,
 7721		.linking = true,
 7722		.upper_info = upper_info,
 7723	};
 7724	struct net_device *master_dev;
 7725	int ret = 0;
 7726
 7727	ASSERT_RTNL();
 7728
 7729	if (dev == upper_dev)
 7730		return -EBUSY;
 7731
 7732	/* To prevent loops, check if dev is not upper device to upper_dev. */
 7733	if (__netdev_has_upper_dev(upper_dev, dev))
 7734		return -EBUSY;
 7735
 7736	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
 7737		return -EMLINK;
 7738
 7739	if (!master) {
 7740		if (__netdev_has_upper_dev(dev, upper_dev))
 7741			return -EEXIST;
 7742	} else {
 7743		master_dev = __netdev_master_upper_dev_get(dev);
 7744		if (master_dev)
 7745			return master_dev == upper_dev ? -EEXIST : -EBUSY;
 7746	}
 7747
 7748	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
 7749					    &changeupper_info.info);
 7750	ret = notifier_to_errno(ret);
 7751	if (ret)
 7752		return ret;
 7753
 7754	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
 7755						   master);
 7756	if (ret)
 7757		return ret;
 7758
 7759	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
 7760					    &changeupper_info.info);
 7761	ret = notifier_to_errno(ret);
 7762	if (ret)
 7763		goto rollback;
 7764
 7765	__netdev_update_upper_level(dev, NULL);
 7766	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
 7767
 7768	__netdev_update_lower_level(upper_dev, priv);
 7769	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
 7770				    priv);
 7771
 7772	return 0;
 7773
 7774rollback:
 7775	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 7776
 7777	return ret;
 7778}
 7779
 7780/**
 7781 * netdev_upper_dev_link - Add a link to the upper device
 7782 * @dev: device
 7783 * @upper_dev: new upper device
 7784 * @extack: netlink extended ack
 7785 *
 7786 * Adds a link to device which is upper to this one. The caller must hold
 7787 * the RTNL lock. On a failure a negative errno code is returned.
 7788 * On success the reference counts are adjusted and the function
 7789 * returns zero.
 7790 */
 7791int netdev_upper_dev_link(struct net_device *dev,
 7792			  struct net_device *upper_dev,
 7793			  struct netlink_ext_ack *extack)
 7794{
 7795	struct netdev_nested_priv priv = {
 7796		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7797		.data = NULL,
 7798	};
 7799
 7800	return __netdev_upper_dev_link(dev, upper_dev, false,
 7801				       NULL, NULL, &priv, extack);
 7802}
 7803EXPORT_SYMBOL(netdev_upper_dev_link);
 7804
 7805/**
 7806 * netdev_master_upper_dev_link - Add a master link to the upper device
 7807 * @dev: device
 7808 * @upper_dev: new upper device
 7809 * @upper_priv: upper device private
 7810 * @upper_info: upper info to be passed down via notifier
 7811 * @extack: netlink extended ack
 7812 *
 7813 * Adds a link to device which is upper to this one. In this case, only
 7814 * one master upper device can be linked, although other non-master devices
 7815 * might be linked as well. The caller must hold the RTNL lock.
 7816 * On a failure a negative errno code is returned. On success the reference
 7817 * counts are adjusted and the function returns zero.
 7818 */
 7819int netdev_master_upper_dev_link(struct net_device *dev,
 7820				 struct net_device *upper_dev,
 7821				 void *upper_priv, void *upper_info,
 7822				 struct netlink_ext_ack *extack)
 7823{
 7824	struct netdev_nested_priv priv = {
 7825		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7826		.data = NULL,
 7827	};
 7828
 7829	return __netdev_upper_dev_link(dev, upper_dev, true,
 7830				       upper_priv, upper_info, &priv, extack);
 7831}
 7832EXPORT_SYMBOL(netdev_master_upper_dev_link);
 7833
 7834static void __netdev_upper_dev_unlink(struct net_device *dev,
 7835				      struct net_device *upper_dev,
 7836				      struct netdev_nested_priv *priv)
 7837{
 7838	struct netdev_notifier_changeupper_info changeupper_info = {
 7839		.info = {
 7840			.dev = dev,
 7841		},
 7842		.upper_dev = upper_dev,
 7843		.linking = false,
 7844	};
 7845
 7846	ASSERT_RTNL();
 7847
 7848	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
 7849
 7850	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
 7851				      &changeupper_info.info);
 7852
 7853	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 7854
 7855	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
 7856				      &changeupper_info.info);
 7857
 7858	__netdev_update_upper_level(dev, NULL);
 7859	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
 7860
 7861	__netdev_update_lower_level(upper_dev, priv);
 7862	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
 7863				    priv);
 7864}
 7865
 7866/**
 7867 * netdev_upper_dev_unlink - Removes a link to upper device
 7868 * @dev: device
 7869 * @upper_dev: new upper device
 7870 *
 7871 * Removes a link to device which is upper to this one. The caller must hold
 7872 * the RTNL lock.
 7873 */
 7874void netdev_upper_dev_unlink(struct net_device *dev,
 7875			     struct net_device *upper_dev)
 7876{
 7877	struct netdev_nested_priv priv = {
 7878		.flags = NESTED_SYNC_TODO,
 7879		.data = NULL,
 7880	};
 7881
 7882	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
 7883}
 7884EXPORT_SYMBOL(netdev_upper_dev_unlink);
 7885
 7886static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
 7887				      struct net_device *lower_dev,
 7888				      bool val)
 7889{
 7890	struct netdev_adjacent *adj;
 7891
 7892	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
 7893	if (adj)
 7894		adj->ignore = val;
 7895
 7896	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
 7897	if (adj)
 7898		adj->ignore = val;
 7899}
 
 
 7900
 7901static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
 7902					struct net_device *lower_dev)
 7903{
 7904	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
 7905}
 7906
 7907static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
 7908				       struct net_device *lower_dev)
 7909{
 7910	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
 7911}
 
 
 7912
 7913int netdev_adjacent_change_prepare(struct net_device *old_dev,
 7914				   struct net_device *new_dev,
 7915				   struct net_device *dev,
 7916				   struct netlink_ext_ack *extack)
 7917{
 7918	struct netdev_nested_priv priv = {
 7919		.flags = 0,
 7920		.data = NULL,
 7921	};
 7922	int err;
 7923
 7924	if (!new_dev)
 7925		return 0;
 7926
 7927	if (old_dev && new_dev != old_dev)
 7928		netdev_adjacent_dev_disable(dev, old_dev);
 7929	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
 7930				      extack);
 7931	if (err) {
 7932		if (old_dev && new_dev != old_dev)
 7933			netdev_adjacent_dev_enable(dev, old_dev);
 7934		return err;
 7935	}
 7936
 7937	return 0;
 7938}
 7939EXPORT_SYMBOL(netdev_adjacent_change_prepare);
 7940
 7941void netdev_adjacent_change_commit(struct net_device *old_dev,
 7942				   struct net_device *new_dev,
 7943				   struct net_device *dev)
 7944{
 7945	struct netdev_nested_priv priv = {
 7946		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7947		.data = NULL,
 7948	};
 7949
 7950	if (!new_dev || !old_dev)
 7951		return;
 7952
 7953	if (new_dev == old_dev)
 7954		return;
 7955
 7956	netdev_adjacent_dev_enable(dev, old_dev);
 7957	__netdev_upper_dev_unlink(old_dev, dev, &priv);
 7958}
 7959EXPORT_SYMBOL(netdev_adjacent_change_commit);
 7960
 7961void netdev_adjacent_change_abort(struct net_device *old_dev,
 7962				  struct net_device *new_dev,
 7963				  struct net_device *dev)
 7964{
 7965	struct netdev_nested_priv priv = {
 7966		.flags = 0,
 7967		.data = NULL,
 7968	};
 7969
 7970	if (!new_dev)
 7971		return;
 7972
 7973	if (old_dev && new_dev != old_dev)
 7974		netdev_adjacent_dev_enable(dev, old_dev);
 7975
 7976	__netdev_upper_dev_unlink(new_dev, dev, &priv);
 7977}
 7978EXPORT_SYMBOL(netdev_adjacent_change_abort);
 7979
 7980/**
 7981 * netdev_bonding_info_change - Dispatch event about slave change
 7982 * @dev: device
 7983 * @bonding_info: info to dispatch
 7984 *
 7985 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
 7986 * The caller must hold the RTNL lock.
 7987 */
 7988void netdev_bonding_info_change(struct net_device *dev,
 7989				struct netdev_bonding_info *bonding_info)
 7990{
 7991	struct netdev_notifier_bonding_info info = {
 7992		.info.dev = dev,
 7993	};
 7994
 7995	memcpy(&info.bonding_info, bonding_info,
 7996	       sizeof(struct netdev_bonding_info));
 7997	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
 7998				      &info.info);
 7999}
 8000EXPORT_SYMBOL(netdev_bonding_info_change);
 8001
 8002static int netdev_offload_xstats_enable_l3(struct net_device *dev,
 8003					   struct netlink_ext_ack *extack)
 8004{
 8005	struct netdev_notifier_offload_xstats_info info = {
 8006		.info.dev = dev,
 8007		.info.extack = extack,
 8008		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
 8009	};
 8010	int err;
 8011	int rc;
 8012
 8013	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
 8014					 GFP_KERNEL);
 8015	if (!dev->offload_xstats_l3)
 8016		return -ENOMEM;
 8017
 8018	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
 8019						  NETDEV_OFFLOAD_XSTATS_DISABLE,
 8020						  &info.info);
 8021	err = notifier_to_errno(rc);
 8022	if (err)
 8023		goto free_stats;
 8024
 8025	return 0;
 8026
 8027free_stats:
 8028	kfree(dev->offload_xstats_l3);
 8029	dev->offload_xstats_l3 = NULL;
 8030	return err;
 8031}
 8032
 8033int netdev_offload_xstats_enable(struct net_device *dev,
 8034				 enum netdev_offload_xstats_type type,
 8035				 struct netlink_ext_ack *extack)
 8036{
 8037	ASSERT_RTNL();
 8038
 8039	if (netdev_offload_xstats_enabled(dev, type))
 8040		return -EALREADY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 8041
 8042	switch (type) {
 8043	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8044		return netdev_offload_xstats_enable_l3(dev, extack);
 
 8045	}
 8046
 8047	WARN_ON(1);
 8048	return -EINVAL;
 8049}
 8050EXPORT_SYMBOL(netdev_offload_xstats_enable);
 8051
 8052static void netdev_offload_xstats_disable_l3(struct net_device *dev)
 
 8053{
 8054	struct netdev_notifier_offload_xstats_info info = {
 8055		.info.dev = dev,
 8056		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
 8057	};
 8058
 8059	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
 8060				      &info.info);
 8061	kfree(dev->offload_xstats_l3);
 8062	dev->offload_xstats_l3 = NULL;
 8063}
 8064
 8065int netdev_offload_xstats_disable(struct net_device *dev,
 8066				  enum netdev_offload_xstats_type type)
 8067{
 8068	ASSERT_RTNL();
 8069
 8070	if (!netdev_offload_xstats_enabled(dev, type))
 8071		return -EALREADY;
 
 
 
 
 
 8072
 8073	switch (type) {
 8074	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8075		netdev_offload_xstats_disable_l3(dev);
 8076		return 0;
 8077	}
 8078
 8079	WARN_ON(1);
 8080	return -EINVAL;
 8081}
 8082EXPORT_SYMBOL(netdev_offload_xstats_disable);
 8083
 8084static void netdev_offload_xstats_disable_all(struct net_device *dev)
 8085{
 8086	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
 8087}
 8088
 8089static struct rtnl_hw_stats64 *
 8090netdev_offload_xstats_get_ptr(const struct net_device *dev,
 8091			      enum netdev_offload_xstats_type type)
 8092{
 8093	switch (type) {
 8094	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8095		return dev->offload_xstats_l3;
 8096	}
 8097
 8098	WARN_ON(1);
 8099	return NULL;
 8100}
 8101
 8102bool netdev_offload_xstats_enabled(const struct net_device *dev,
 8103				   enum netdev_offload_xstats_type type)
 8104{
 8105	ASSERT_RTNL();
 8106
 8107	return netdev_offload_xstats_get_ptr(dev, type);
 8108}
 8109EXPORT_SYMBOL(netdev_offload_xstats_enabled);
 8110
 8111struct netdev_notifier_offload_xstats_ru {
 8112	bool used;
 
 
 
 
 8113};
 8114
 8115struct netdev_notifier_offload_xstats_rd {
 8116	struct rtnl_hw_stats64 stats;
 8117	bool used;
 8118};
 8119
 8120static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
 8121				  const struct rtnl_hw_stats64 *src)
 8122{
 8123	dest->rx_packets	  += src->rx_packets;
 8124	dest->tx_packets	  += src->tx_packets;
 8125	dest->rx_bytes		  += src->rx_bytes;
 8126	dest->tx_bytes		  += src->tx_bytes;
 8127	dest->rx_errors		  += src->rx_errors;
 8128	dest->tx_errors		  += src->tx_errors;
 8129	dest->rx_dropped	  += src->rx_dropped;
 8130	dest->tx_dropped	  += src->tx_dropped;
 8131	dest->multicast		  += src->multicast;
 8132}
 8133
 8134static int netdev_offload_xstats_get_used(struct net_device *dev,
 8135					  enum netdev_offload_xstats_type type,
 8136					  bool *p_used,
 8137					  struct netlink_ext_ack *extack)
 8138{
 8139	struct netdev_notifier_offload_xstats_ru report_used = {};
 8140	struct netdev_notifier_offload_xstats_info info = {
 8141		.info.dev = dev,
 8142		.info.extack = extack,
 8143		.type = type,
 8144		.report_used = &report_used,
 8145	};
 8146	int rc;
 8147
 8148	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
 8149	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
 8150					   &info.info);
 8151	*p_used = report_used.used;
 8152	return notifier_to_errno(rc);
 8153}
 8154
 8155static int netdev_offload_xstats_get_stats(struct net_device *dev,
 8156					   enum netdev_offload_xstats_type type,
 8157					   struct rtnl_hw_stats64 *p_stats,
 8158					   bool *p_used,
 8159					   struct netlink_ext_ack *extack)
 8160{
 8161	struct netdev_notifier_offload_xstats_rd report_delta = {};
 8162	struct netdev_notifier_offload_xstats_info info = {
 8163		.info.dev = dev,
 8164		.info.extack = extack,
 8165		.type = type,
 8166		.report_delta = &report_delta,
 8167	};
 8168	struct rtnl_hw_stats64 *stats;
 8169	int rc;
 8170
 8171	stats = netdev_offload_xstats_get_ptr(dev, type);
 8172	if (WARN_ON(!stats))
 8173		return -EINVAL;
 8174
 8175	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
 8176					   &info.info);
 8177
 8178	/* Cache whatever we got, even if there was an error, otherwise the
 8179	 * successful stats retrievals would get lost.
 8180	 */
 8181	netdev_hw_stats64_add(stats, &report_delta.stats);
 8182
 8183	if (p_stats)
 8184		*p_stats = *stats;
 8185	*p_used = report_delta.used;
 
 
 
 8186
 8187	return notifier_to_errno(rc);
 
 
 
 
 
 
 
 
 
 
 
 8188}
 8189
 8190int netdev_offload_xstats_get(struct net_device *dev,
 8191			      enum netdev_offload_xstats_type type,
 8192			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
 8193			      struct netlink_ext_ack *extack)
 8194{
 8195	ASSERT_RTNL();
 8196
 8197	if (p_stats)
 8198		return netdev_offload_xstats_get_stats(dev, type, p_stats,
 8199						       p_used, extack);
 8200	else
 8201		return netdev_offload_xstats_get_used(dev, type, p_used,
 8202						      extack);
 8203}
 8204EXPORT_SYMBOL(netdev_offload_xstats_get);
 8205
 8206void
 8207netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
 8208				   const struct rtnl_hw_stats64 *stats)
 8209{
 8210	report_delta->used = true;
 8211	netdev_hw_stats64_add(&report_delta->stats, stats);
 8212}
 8213EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
 8214
 8215void
 8216netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
 8217{
 8218	report_used->used = true;
 8219}
 8220EXPORT_SYMBOL(netdev_offload_xstats_report_used);
 8221
 8222void netdev_offload_xstats_push_delta(struct net_device *dev,
 8223				      enum netdev_offload_xstats_type type,
 8224				      const struct rtnl_hw_stats64 *p_stats)
 8225{
 8226	struct rtnl_hw_stats64 *stats;
 8227
 8228	ASSERT_RTNL();
 8229
 8230	stats = netdev_offload_xstats_get_ptr(dev, type);
 8231	if (WARN_ON(!stats))
 8232		return;
 8233
 8234	netdev_hw_stats64_add(stats, p_stats);
 8235}
 8236EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
 8237
 8238/**
 8239 * netdev_get_xmit_slave - Get the xmit slave of master device
 8240 * @dev: device
 8241 * @skb: The packet
 8242 * @all_slaves: assume all the slaves are active
 8243 *
 8244 * The reference counters are not incremented so the caller must be
 8245 * careful with locks. The caller must hold RCU lock.
 8246 * %NULL is returned if no slave is found.
 8247 */
 8248
 8249struct net_device *netdev_get_xmit_slave(struct net_device *dev,
 8250					 struct sk_buff *skb,
 8251					 bool all_slaves)
 8252{
 8253	const struct net_device_ops *ops = dev->netdev_ops;
 8254
 8255	if (!ops->ndo_get_xmit_slave)
 8256		return NULL;
 8257	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
 8258}
 8259EXPORT_SYMBOL(netdev_get_xmit_slave);
 8260
 8261static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
 8262						  struct sock *sk)
 8263{
 8264	const struct net_device_ops *ops = dev->netdev_ops;
 8265
 8266	if (!ops->ndo_sk_get_lower_dev)
 8267		return NULL;
 8268	return ops->ndo_sk_get_lower_dev(dev, sk);
 8269}
 8270
 8271/**
 8272 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
 8273 * @dev: device
 8274 * @sk: the socket
 8275 *
 8276 * %NULL is returned if no lower device is found.
 
 
 
 8277 */
 8278
 8279struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
 8280					    struct sock *sk)
 8281{
 8282	struct net_device *lower;
 8283
 8284	lower = netdev_sk_get_lower_dev(dev, sk);
 8285	while (lower) {
 8286		dev = lower;
 8287		lower = netdev_sk_get_lower_dev(dev, sk);
 8288	}
 8289
 8290	return dev;
 8291}
 8292EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
 8293
 8294static void netdev_adjacent_add_links(struct net_device *dev)
 8295{
 8296	struct netdev_adjacent *iter;
 8297
 8298	struct net *net = dev_net(dev);
 8299
 8300	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8301		if (!net_eq(net, dev_net(iter->dev)))
 8302			continue;
 8303		netdev_adjacent_sysfs_add(iter->dev, dev,
 8304					  &iter->dev->adj_list.lower);
 8305		netdev_adjacent_sysfs_add(dev, iter->dev,
 8306					  &dev->adj_list.upper);
 8307	}
 8308
 8309	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8310		if (!net_eq(net, dev_net(iter->dev)))
 8311			continue;
 8312		netdev_adjacent_sysfs_add(iter->dev, dev,
 8313					  &iter->dev->adj_list.upper);
 8314		netdev_adjacent_sysfs_add(dev, iter->dev,
 8315					  &dev->adj_list.lower);
 8316	}
 8317}
 8318
 8319static void netdev_adjacent_del_links(struct net_device *dev)
 8320{
 8321	struct netdev_adjacent *iter;
 8322
 8323	struct net *net = dev_net(dev);
 8324
 8325	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8326		if (!net_eq(net, dev_net(iter->dev)))
 8327			continue;
 8328		netdev_adjacent_sysfs_del(iter->dev, dev->name,
 8329					  &iter->dev->adj_list.lower);
 8330		netdev_adjacent_sysfs_del(dev, iter->dev->name,
 8331					  &dev->adj_list.upper);
 8332	}
 8333
 8334	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8335		if (!net_eq(net, dev_net(iter->dev)))
 8336			continue;
 8337		netdev_adjacent_sysfs_del(iter->dev, dev->name,
 8338					  &iter->dev->adj_list.upper);
 8339		netdev_adjacent_sysfs_del(dev, iter->dev->name,
 8340					  &dev->adj_list.lower);
 8341	}
 8342}
 8343
 8344void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
 8345{
 8346	struct netdev_adjacent *iter;
 8347
 8348	struct net *net = dev_net(dev);
 8349
 8350	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8351		if (!net_eq(net, dev_net(iter->dev)))
 8352			continue;
 8353		netdev_adjacent_sysfs_del(iter->dev, oldname,
 8354					  &iter->dev->adj_list.lower);
 8355		netdev_adjacent_sysfs_add(iter->dev, dev,
 8356					  &iter->dev->adj_list.lower);
 8357	}
 8358
 8359	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8360		if (!net_eq(net, dev_net(iter->dev)))
 8361			continue;
 8362		netdev_adjacent_sysfs_del(iter->dev, oldname,
 8363					  &iter->dev->adj_list.upper);
 8364		netdev_adjacent_sysfs_add(iter->dev, dev,
 8365					  &iter->dev->adj_list.upper);
 8366	}
 8367}
 8368
 8369void *netdev_lower_dev_get_private(struct net_device *dev,
 8370				   struct net_device *lower_dev)
 8371{
 8372	struct netdev_adjacent *lower;
 8373
 8374	if (!lower_dev)
 8375		return NULL;
 8376	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
 8377	if (!lower)
 8378		return NULL;
 8379
 8380	return lower->private;
 
 
 8381}
 8382EXPORT_SYMBOL(netdev_lower_dev_get_private);
 8383
 8384
 8385/**
 8386 * netdev_lower_state_changed - Dispatch event about lower device state change
 8387 * @lower_dev: device
 8388 * @lower_state_info: state to dispatch
 8389 *
 8390 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
 8391 * The caller must hold the RTNL lock.
 
 
 8392 */
 8393void netdev_lower_state_changed(struct net_device *lower_dev,
 8394				void *lower_state_info)
 8395{
 8396	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
 8397		.info.dev = lower_dev,
 8398	};
 8399
 8400	ASSERT_RTNL();
 8401	changelowerstate_info.lower_state_info = lower_state_info;
 8402	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
 8403				      &changelowerstate_info.info);
 
 
 
 
 
 
 
 
 8404}
 8405EXPORT_SYMBOL(netdev_lower_state_changed);
 8406
 8407static void dev_change_rx_flags(struct net_device *dev, int flags)
 8408{
 8409	const struct net_device_ops *ops = dev->netdev_ops;
 8410
 8411	if (ops->ndo_change_rx_flags)
 8412		ops->ndo_change_rx_flags(dev, flags);
 8413}
 8414
 8415static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
 8416{
 8417	unsigned int old_flags = dev->flags;
 8418	kuid_t uid;
 8419	kgid_t gid;
 8420
 8421	ASSERT_RTNL();
 8422
 8423	dev->flags |= IFF_PROMISC;
 8424	dev->promiscuity += inc;
 8425	if (dev->promiscuity == 0) {
 8426		/*
 8427		 * Avoid overflow.
 8428		 * If inc causes overflow, untouch promisc and return error.
 8429		 */
 8430		if (inc < 0)
 8431			dev->flags &= ~IFF_PROMISC;
 8432		else {
 8433			dev->promiscuity -= inc;
 8434			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
 
 
 8435			return -EOVERFLOW;
 8436		}
 8437	}
 8438	if (dev->flags != old_flags) {
 8439		netdev_info(dev, "%s promiscuous mode\n",
 8440			    dev->flags & IFF_PROMISC ? "entered" : "left");
 
 8441		if (audit_enabled) {
 8442			current_uid_gid(&uid, &gid);
 8443			audit_log(audit_context(), GFP_ATOMIC,
 8444				  AUDIT_ANOM_PROMISCUOUS,
 8445				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
 8446				  dev->name, (dev->flags & IFF_PROMISC),
 8447				  (old_flags & IFF_PROMISC),
 8448				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
 8449				  from_kuid(&init_user_ns, uid),
 8450				  from_kgid(&init_user_ns, gid),
 8451				  audit_get_sessionid(current));
 8452		}
 8453
 8454		dev_change_rx_flags(dev, IFF_PROMISC);
 8455	}
 8456	if (notify)
 8457		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
 8458	return 0;
 8459}
 8460
 8461/**
 8462 *	dev_set_promiscuity	- update promiscuity count on a device
 8463 *	@dev: device
 8464 *	@inc: modifier
 8465 *
 8466 *	Add or remove promiscuity from a device. While the count in the device
 8467 *	remains above zero the interface remains promiscuous. Once it hits zero
 8468 *	the device reverts back to normal filtering operation. A negative inc
 8469 *	value is used to drop promiscuity on the device.
 8470 *	Return 0 if successful or a negative errno code on error.
 8471 */
 8472int dev_set_promiscuity(struct net_device *dev, int inc)
 8473{
 8474	unsigned int old_flags = dev->flags;
 8475	int err;
 8476
 8477	err = __dev_set_promiscuity(dev, inc, true);
 8478	if (err < 0)
 8479		return err;
 8480	if (dev->flags != old_flags)
 8481		dev_set_rx_mode(dev);
 8482	return err;
 8483}
 8484EXPORT_SYMBOL(dev_set_promiscuity);
 8485
 8486static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
 
 
 
 
 
 
 
 
 
 
 
 
 
 8487{
 8488	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
 8489
 8490	ASSERT_RTNL();
 8491
 8492	dev->flags |= IFF_ALLMULTI;
 8493	dev->allmulti += inc;
 8494	if (dev->allmulti == 0) {
 8495		/*
 8496		 * Avoid overflow.
 8497		 * If inc causes overflow, untouch allmulti and return error.
 8498		 */
 8499		if (inc < 0)
 8500			dev->flags &= ~IFF_ALLMULTI;
 8501		else {
 8502			dev->allmulti -= inc;
 8503			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
 
 
 8504			return -EOVERFLOW;
 8505		}
 8506	}
 8507	if (dev->flags ^ old_flags) {
 8508		netdev_info(dev, "%s allmulticast mode\n",
 8509			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
 8510		dev_change_rx_flags(dev, IFF_ALLMULTI);
 8511		dev_set_rx_mode(dev);
 8512		if (notify)
 8513			__dev_notify_flags(dev, old_flags,
 8514					   dev->gflags ^ old_gflags, 0, NULL);
 8515	}
 8516	return 0;
 8517}
 8518
 8519/**
 8520 *	dev_set_allmulti	- update allmulti count on a device
 8521 *	@dev: device
 8522 *	@inc: modifier
 8523 *
 8524 *	Add or remove reception of all multicast frames to a device. While the
 8525 *	count in the device remains above zero the interface remains listening
 8526 *	to all interfaces. Once it hits zero the device reverts back to normal
 8527 *	filtering operation. A negative @inc value is used to drop the counter
 8528 *	when releasing a resource needing all multicasts.
 8529 *	Return 0 if successful or a negative errno code on error.
 8530 */
 8531
 8532int dev_set_allmulti(struct net_device *dev, int inc)
 8533{
 8534	return __dev_set_allmulti(dev, inc, true);
 8535}
 8536EXPORT_SYMBOL(dev_set_allmulti);
 8537
 8538/*
 8539 *	Upload unicast and multicast address lists to device and
 8540 *	configure RX filtering. When the device doesn't support unicast
 8541 *	filtering it is put in promiscuous mode while unicast addresses
 8542 *	are present.
 8543 */
 8544void __dev_set_rx_mode(struct net_device *dev)
 8545{
 8546	const struct net_device_ops *ops = dev->netdev_ops;
 8547
 8548	/* dev_open will call this function so the list will stay sane. */
 8549	if (!(dev->flags&IFF_UP))
 8550		return;
 8551
 8552	if (!netif_device_present(dev))
 8553		return;
 8554
 8555	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
 
 
 8556		/* Unicast addresses changes may only happen under the rtnl,
 8557		 * therefore calling __dev_set_promiscuity here is safe.
 8558		 */
 8559		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
 8560			__dev_set_promiscuity(dev, 1, false);
 8561			dev->uc_promisc = true;
 8562		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
 8563			__dev_set_promiscuity(dev, -1, false);
 8564			dev->uc_promisc = false;
 8565		}
 8566	}
 8567
 8568	if (ops->ndo_set_rx_mode)
 8569		ops->ndo_set_rx_mode(dev);
 
 8570}
 8571
 8572void dev_set_rx_mode(struct net_device *dev)
 8573{
 8574	netif_addr_lock_bh(dev);
 8575	__dev_set_rx_mode(dev);
 8576	netif_addr_unlock_bh(dev);
 8577}
 8578
 8579/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8580 *	dev_get_flags - get flags reported to userspace
 8581 *	@dev: device
 8582 *
 8583 *	Get the combination of flag bits exported through APIs to userspace.
 8584 */
 8585unsigned int dev_get_flags(const struct net_device *dev)
 8586{
 8587	unsigned int flags;
 8588
 8589	flags = (dev->flags & ~(IFF_PROMISC |
 8590				IFF_ALLMULTI |
 8591				IFF_RUNNING |
 8592				IFF_LOWER_UP |
 8593				IFF_DORMANT)) |
 8594		(dev->gflags & (IFF_PROMISC |
 8595				IFF_ALLMULTI));
 8596
 8597	if (netif_running(dev)) {
 8598		if (netif_oper_up(dev))
 8599			flags |= IFF_RUNNING;
 8600		if (netif_carrier_ok(dev))
 8601			flags |= IFF_LOWER_UP;
 8602		if (netif_dormant(dev))
 8603			flags |= IFF_DORMANT;
 8604	}
 8605
 8606	return flags;
 8607}
 8608EXPORT_SYMBOL(dev_get_flags);
 8609
 8610int __dev_change_flags(struct net_device *dev, unsigned int flags,
 8611		       struct netlink_ext_ack *extack)
 8612{
 8613	unsigned int old_flags = dev->flags;
 8614	int ret;
 8615
 8616	ASSERT_RTNL();
 8617
 8618	/*
 8619	 *	Set the flags on our device.
 8620	 */
 8621
 8622	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
 8623			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
 8624			       IFF_AUTOMEDIA)) |
 8625		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
 8626				    IFF_ALLMULTI));
 8627
 8628	/*
 8629	 *	Load in the correct multicast list now the flags have changed.
 8630	 */
 8631
 8632	if ((old_flags ^ flags) & IFF_MULTICAST)
 8633		dev_change_rx_flags(dev, IFF_MULTICAST);
 8634
 8635	dev_set_rx_mode(dev);
 8636
 8637	/*
 8638	 *	Have we downed the interface. We handle IFF_UP ourselves
 8639	 *	according to user attempts to set it, rather than blindly
 8640	 *	setting it.
 8641	 */
 8642
 8643	ret = 0;
 8644	if ((old_flags ^ flags) & IFF_UP) {
 8645		if (old_flags & IFF_UP)
 8646			__dev_close(dev);
 8647		else
 8648			ret = __dev_open(dev, extack);
 8649	}
 8650
 8651	if ((flags ^ dev->gflags) & IFF_PROMISC) {
 8652		int inc = (flags & IFF_PROMISC) ? 1 : -1;
 8653		unsigned int old_flags = dev->flags;
 8654
 8655		dev->gflags ^= IFF_PROMISC;
 8656
 8657		if (__dev_set_promiscuity(dev, inc, false) >= 0)
 8658			if (dev->flags != old_flags)
 8659				dev_set_rx_mode(dev);
 8660	}
 8661
 8662	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
 8663	 * is important. Some (broken) drivers set IFF_PROMISC, when
 8664	 * IFF_ALLMULTI is requested not asking us and not reporting.
 8665	 */
 8666	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
 8667		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
 8668
 8669		dev->gflags ^= IFF_ALLMULTI;
 8670		__dev_set_allmulti(dev, inc, false);
 8671	}
 8672
 8673	return ret;
 8674}
 8675
 8676void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
 8677			unsigned int gchanges, u32 portid,
 8678			const struct nlmsghdr *nlh)
 8679{
 8680	unsigned int changes = dev->flags ^ old_flags;
 8681
 8682	if (gchanges)
 8683		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
 8684
 8685	if (changes & IFF_UP) {
 8686		if (dev->flags & IFF_UP)
 8687			call_netdevice_notifiers(NETDEV_UP, dev);
 8688		else
 8689			call_netdevice_notifiers(NETDEV_DOWN, dev);
 8690	}
 8691
 8692	if (dev->flags & IFF_UP &&
 8693	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
 8694		struct netdev_notifier_change_info change_info = {
 8695			.info = {
 8696				.dev = dev,
 8697			},
 8698			.flags_changed = changes,
 8699		};
 8700
 8701		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
 8702	}
 8703}
 8704
 8705/**
 8706 *	dev_change_flags - change device settings
 8707 *	@dev: device
 8708 *	@flags: device state flags
 8709 *	@extack: netlink extended ack
 8710 *
 8711 *	Change settings on device based state flags. The flags are
 8712 *	in the userspace exported format.
 8713 */
 8714int dev_change_flags(struct net_device *dev, unsigned int flags,
 8715		     struct netlink_ext_ack *extack)
 8716{
 8717	int ret;
 8718	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
 8719
 8720	ret = __dev_change_flags(dev, flags, extack);
 8721	if (ret < 0)
 8722		return ret;
 8723
 8724	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
 8725	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
 
 
 
 8726	return ret;
 8727}
 8728EXPORT_SYMBOL(dev_change_flags);
 8729
 8730int __dev_set_mtu(struct net_device *dev, int new_mtu)
 8731{
 8732	const struct net_device_ops *ops = dev->netdev_ops;
 8733
 8734	if (ops->ndo_change_mtu)
 8735		return ops->ndo_change_mtu(dev, new_mtu);
 8736
 8737	/* Pairs with all the lockless reads of dev->mtu in the stack */
 8738	WRITE_ONCE(dev->mtu, new_mtu);
 8739	return 0;
 8740}
 8741EXPORT_SYMBOL(__dev_set_mtu);
 8742
 8743int dev_validate_mtu(struct net_device *dev, int new_mtu,
 8744		     struct netlink_ext_ack *extack)
 8745{
 8746	/* MTU must be positive, and in range */
 8747	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
 8748		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
 8749		return -EINVAL;
 8750	}
 8751
 8752	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
 8753		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
 8754		return -EINVAL;
 8755	}
 8756	return 0;
 8757}
 8758
 8759/**
 8760 *	dev_set_mtu_ext - Change maximum transfer unit
 8761 *	@dev: device
 8762 *	@new_mtu: new transfer unit
 8763 *	@extack: netlink extended ack
 8764 *
 8765 *	Change the maximum transfer size of the network device.
 8766 */
 8767int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
 8768		    struct netlink_ext_ack *extack)
 8769{
 8770	int err, orig_mtu;
 
 8771
 8772	if (new_mtu == dev->mtu)
 8773		return 0;
 8774
 8775	err = dev_validate_mtu(dev, new_mtu, extack);
 8776	if (err)
 8777		return err;
 8778
 8779	if (!netif_device_present(dev))
 8780		return -ENODEV;
 8781
 8782	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
 8783	err = notifier_to_errno(err);
 8784	if (err)
 8785		return err;
 8786
 8787	orig_mtu = dev->mtu;
 8788	err = __dev_set_mtu(dev, new_mtu);
 8789
 8790	if (!err) {
 8791		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
 8792						   orig_mtu);
 8793		err = notifier_to_errno(err);
 8794		if (err) {
 8795			/* setting mtu back and notifying everyone again,
 8796			 * so that they have a chance to revert changes.
 8797			 */
 8798			__dev_set_mtu(dev, orig_mtu);
 8799			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
 8800						     new_mtu);
 8801		}
 8802	}
 8803	return err;
 8804}
 8805
 8806int dev_set_mtu(struct net_device *dev, int new_mtu)
 8807{
 8808	struct netlink_ext_ack extack;
 8809	int err;
 8810
 8811	memset(&extack, 0, sizeof(extack));
 8812	err = dev_set_mtu_ext(dev, new_mtu, &extack);
 8813	if (err && extack._msg)
 8814		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
 8815	return err;
 8816}
 8817EXPORT_SYMBOL(dev_set_mtu);
 8818
 8819/**
 8820 *	dev_change_tx_queue_len - Change TX queue length of a netdevice
 8821 *	@dev: device
 8822 *	@new_len: new tx queue length
 8823 */
 8824int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
 8825{
 8826	unsigned int orig_len = dev->tx_queue_len;
 8827	int res;
 8828
 8829	if (new_len != (unsigned int)new_len)
 8830		return -ERANGE;
 8831
 8832	if (new_len != orig_len) {
 8833		dev->tx_queue_len = new_len;
 8834		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
 8835		res = notifier_to_errno(res);
 8836		if (res)
 8837			goto err_rollback;
 8838		res = dev_qdisc_change_tx_queue_len(dev);
 8839		if (res)
 8840			goto err_rollback;
 8841	}
 8842
 8843	return 0;
 8844
 8845err_rollback:
 8846	netdev_err(dev, "refused to change device tx_queue_len\n");
 8847	dev->tx_queue_len = orig_len;
 8848	return res;
 8849}
 8850
 8851/**
 8852 *	dev_set_group - Change group this device belongs to
 8853 *	@dev: device
 8854 *	@new_group: group this device should belong to
 8855 */
 8856void dev_set_group(struct net_device *dev, int new_group)
 8857{
 8858	dev->group = new_group;
 8859}
 8860
 8861/**
 8862 *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
 8863 *	@dev: device
 8864 *	@addr: new address
 8865 *	@extack: netlink extended ack
 8866 */
 8867int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
 8868			      struct netlink_ext_ack *extack)
 8869{
 8870	struct netdev_notifier_pre_changeaddr_info info = {
 8871		.info.dev = dev,
 8872		.info.extack = extack,
 8873		.dev_addr = addr,
 8874	};
 8875	int rc;
 8876
 8877	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
 8878	return notifier_to_errno(rc);
 8879}
 8880EXPORT_SYMBOL(dev_pre_changeaddr_notify);
 8881
 8882/**
 8883 *	dev_set_mac_address - Change Media Access Control Address
 8884 *	@dev: device
 8885 *	@sa: new address
 8886 *	@extack: netlink extended ack
 8887 *
 8888 *	Change the hardware (MAC) address of the device
 8889 */
 8890int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
 8891			struct netlink_ext_ack *extack)
 8892{
 8893	const struct net_device_ops *ops = dev->netdev_ops;
 8894	int err;
 8895
 8896	if (!ops->ndo_set_mac_address)
 8897		return -EOPNOTSUPP;
 8898	if (sa->sa_family != dev->type)
 8899		return -EINVAL;
 8900	if (!netif_device_present(dev))
 8901		return -ENODEV;
 8902	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
 8903	if (err)
 8904		return err;
 8905	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
 8906		err = ops->ndo_set_mac_address(dev, sa);
 8907		if (err)
 8908			return err;
 8909	}
 8910	dev->addr_assign_type = NET_ADDR_SET;
 8911	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
 8912	add_device_randomness(dev->dev_addr, dev->addr_len);
 8913	return 0;
 8914}
 8915EXPORT_SYMBOL(dev_set_mac_address);
 8916
 8917static DECLARE_RWSEM(dev_addr_sem);
 8918
 8919int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
 8920			     struct netlink_ext_ack *extack)
 8921{
 8922	int ret;
 8923
 8924	down_write(&dev_addr_sem);
 8925	ret = dev_set_mac_address(dev, sa, extack);
 8926	up_write(&dev_addr_sem);
 8927	return ret;
 8928}
 8929EXPORT_SYMBOL(dev_set_mac_address_user);
 8930
 8931int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
 8932{
 8933	size_t size = sizeof(sa->sa_data_min);
 8934	struct net_device *dev;
 8935	int ret = 0;
 8936
 8937	down_read(&dev_addr_sem);
 8938	rcu_read_lock();
 8939
 8940	dev = dev_get_by_name_rcu(net, dev_name);
 8941	if (!dev) {
 8942		ret = -ENODEV;
 8943		goto unlock;
 8944	}
 8945	if (!dev->addr_len)
 8946		memset(sa->sa_data, 0, size);
 8947	else
 8948		memcpy(sa->sa_data, dev->dev_addr,
 8949		       min_t(size_t, size, dev->addr_len));
 8950	sa->sa_family = dev->type;
 8951
 8952unlock:
 8953	rcu_read_unlock();
 8954	up_read(&dev_addr_sem);
 8955	return ret;
 8956}
 8957EXPORT_SYMBOL(dev_get_mac_address);
 8958
 8959/**
 8960 *	dev_change_carrier - Change device carrier
 8961 *	@dev: device
 8962 *	@new_carrier: new value
 8963 *
 8964 *	Change device carrier
 8965 */
 8966int dev_change_carrier(struct net_device *dev, bool new_carrier)
 8967{
 8968	const struct net_device_ops *ops = dev->netdev_ops;
 
 8969
 8970	if (!ops->ndo_change_carrier)
 8971		return -EOPNOTSUPP;
 8972	if (!netif_device_present(dev))
 8973		return -ENODEV;
 8974	return ops->ndo_change_carrier(dev, new_carrier);
 8975}
 8976
 8977/**
 8978 *	dev_get_phys_port_id - Get device physical port ID
 8979 *	@dev: device
 8980 *	@ppid: port ID
 8981 *
 8982 *	Get device physical port ID
 8983 */
 8984int dev_get_phys_port_id(struct net_device *dev,
 8985			 struct netdev_phys_item_id *ppid)
 8986{
 8987	const struct net_device_ops *ops = dev->netdev_ops;
 8988
 8989	if (!ops->ndo_get_phys_port_id)
 8990		return -EOPNOTSUPP;
 8991	return ops->ndo_get_phys_port_id(dev, ppid);
 8992}
 8993
 8994/**
 8995 *	dev_get_phys_port_name - Get device physical port name
 8996 *	@dev: device
 8997 *	@name: port name
 8998 *	@len: limit of bytes to copy to name
 8999 *
 9000 *	Get device physical port name
 9001 */
 9002int dev_get_phys_port_name(struct net_device *dev,
 9003			   char *name, size_t len)
 9004{
 9005	const struct net_device_ops *ops = dev->netdev_ops;
 9006	int err;
 9007
 9008	if (ops->ndo_get_phys_port_name) {
 9009		err = ops->ndo_get_phys_port_name(dev, name, len);
 9010		if (err != -EOPNOTSUPP)
 9011			return err;
 9012	}
 9013	return devlink_compat_phys_port_name_get(dev, name, len);
 9014}
 
 9015
 9016/**
 9017 *	dev_get_port_parent_id - Get the device's port parent identifier
 9018 *	@dev: network device
 9019 *	@ppid: pointer to a storage for the port's parent identifier
 9020 *	@recurse: allow/disallow recursion to lower devices
 9021 *
 9022 *	Get the devices's port parent identifier
 9023 */
 9024int dev_get_port_parent_id(struct net_device *dev,
 9025			   struct netdev_phys_item_id *ppid,
 9026			   bool recurse)
 9027{
 9028	const struct net_device_ops *ops = dev->netdev_ops;
 9029	struct netdev_phys_item_id first = { };
 9030	struct net_device *lower_dev;
 9031	struct list_head *iter;
 9032	int err;
 9033
 9034	if (ops->ndo_get_port_parent_id) {
 9035		err = ops->ndo_get_port_parent_id(dev, ppid);
 9036		if (err != -EOPNOTSUPP)
 9037			return err;
 9038	}
 
 
 
 9039
 9040	err = devlink_compat_switch_id_get(dev, ppid);
 9041	if (!recurse || err != -EOPNOTSUPP)
 9042		return err;
 9043
 9044	netdev_for_each_lower_dev(dev, lower_dev, iter) {
 9045		err = dev_get_port_parent_id(lower_dev, ppid, true);
 9046		if (err)
 9047			break;
 9048		if (!first.id_len)
 9049			first = *ppid;
 9050		else if (memcmp(&first, ppid, sizeof(*ppid)))
 9051			return -EOPNOTSUPP;
 9052	}
 
 
 9053
 
 9054	return err;
 9055}
 9056EXPORT_SYMBOL(dev_get_port_parent_id);
 9057
 9058/**
 9059 *	netdev_port_same_parent_id - Indicate if two network devices have
 9060 *	the same port parent identifier
 9061 *	@a: first network device
 9062 *	@b: second network device
 9063 */
 9064bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
 9065{
 9066	struct netdev_phys_item_id a_id = { };
 9067	struct netdev_phys_item_id b_id = { };
 9068
 9069	if (dev_get_port_parent_id(a, &a_id, true) ||
 9070	    dev_get_port_parent_id(b, &b_id, true))
 9071		return false;
 9072
 9073	return netdev_phys_item_id_same(&a_id, &b_id);
 9074}
 9075EXPORT_SYMBOL(netdev_port_same_parent_id);
 9076
 9077/**
 9078 *	dev_change_proto_down - set carrier according to proto_down.
 9079 *
 9080 *	@dev: device
 9081 *	@proto_down: new value
 9082 */
 9083int dev_change_proto_down(struct net_device *dev, bool proto_down)
 9084{
 9085	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
 9086		return -EOPNOTSUPP;
 9087	if (!netif_device_present(dev))
 9088		return -ENODEV;
 9089	if (proto_down)
 9090		netif_carrier_off(dev);
 9091	else
 9092		netif_carrier_on(dev);
 9093	dev->proto_down = proto_down;
 9094	return 0;
 9095}
 9096
 9097/**
 9098 *	dev_change_proto_down_reason - proto down reason
 9099 *
 9100 *	@dev: device
 9101 *	@mask: proto down mask
 9102 *	@value: proto down value
 9103 */
 9104void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
 9105				  u32 value)
 9106{
 9107	int b;
 9108
 9109	if (!mask) {
 9110		dev->proto_down_reason = value;
 9111	} else {
 9112		for_each_set_bit(b, &mask, 32) {
 9113			if (value & (1 << b))
 9114				dev->proto_down_reason |= BIT(b);
 9115			else
 9116				dev->proto_down_reason &= ~BIT(b);
 9117		}
 9118	}
 9119}
 9120
 9121struct bpf_xdp_link {
 9122	struct bpf_link link;
 9123	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
 9124	int flags;
 9125};
 9126
 9127static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
 9128{
 9129	if (flags & XDP_FLAGS_HW_MODE)
 9130		return XDP_MODE_HW;
 9131	if (flags & XDP_FLAGS_DRV_MODE)
 9132		return XDP_MODE_DRV;
 9133	if (flags & XDP_FLAGS_SKB_MODE)
 9134		return XDP_MODE_SKB;
 9135	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
 9136}
 9137
 9138static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
 9139{
 9140	switch (mode) {
 9141	case XDP_MODE_SKB:
 9142		return generic_xdp_install;
 9143	case XDP_MODE_DRV:
 9144	case XDP_MODE_HW:
 9145		return dev->netdev_ops->ndo_bpf;
 9146	default:
 9147		return NULL;
 9148	}
 9149}
 9150
 9151static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
 9152					 enum bpf_xdp_mode mode)
 9153{
 9154	return dev->xdp_state[mode].link;
 9155}
 9156
 9157static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
 9158				     enum bpf_xdp_mode mode)
 9159{
 9160	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
 9161
 9162	if (link)
 9163		return link->link.prog;
 9164	return dev->xdp_state[mode].prog;
 9165}
 9166
 9167u8 dev_xdp_prog_count(struct net_device *dev)
 9168{
 9169	u8 count = 0;
 9170	int i;
 
 
 
 9171
 9172	for (i = 0; i < __MAX_XDP_MODE; i++)
 9173		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
 9174			count++;
 9175	return count;
 9176}
 9177EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
 
 9178
 9179u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
 9180{
 9181	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
 
 
 
 
 9182
 9183	return prog ? prog->aux->id : 0;
 9184}
 
 
 
 
 
 9185
 9186static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
 9187			     struct bpf_xdp_link *link)
 9188{
 9189	dev->xdp_state[mode].link = link;
 9190	dev->xdp_state[mode].prog = NULL;
 9191}
 9192
 9193static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
 9194			     struct bpf_prog *prog)
 9195{
 9196	dev->xdp_state[mode].link = NULL;
 9197	dev->xdp_state[mode].prog = prog;
 9198}
 9199
 9200static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
 9201			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
 9202			   u32 flags, struct bpf_prog *prog)
 9203{
 9204	struct netdev_bpf xdp;
 9205	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9206
 9207	memset(&xdp, 0, sizeof(xdp));
 9208	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
 9209	xdp.extack = extack;
 9210	xdp.flags = flags;
 9211	xdp.prog = prog;
 9212
 9213	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
 9214	 * "moved" into driver), so they don't increment it on their own, but
 9215	 * they do decrement refcnt when program is detached or replaced.
 9216	 * Given net_device also owns link/prog, we need to bump refcnt here
 9217	 * to prevent drivers from underflowing it.
 9218	 */
 9219	if (prog)
 9220		bpf_prog_inc(prog);
 9221	err = bpf_op(dev, &xdp);
 9222	if (err) {
 9223		if (prog)
 9224			bpf_prog_put(prog);
 9225		return err;
 9226	}
 9227
 9228	if (mode != XDP_MODE_HW)
 9229		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
 9230
 9231	return 0;
 9232}
 9233
 9234static void dev_xdp_uninstall(struct net_device *dev)
 9235{
 9236	struct bpf_xdp_link *link;
 9237	struct bpf_prog *prog;
 9238	enum bpf_xdp_mode mode;
 9239	bpf_op_t bpf_op;
 9240
 9241	ASSERT_RTNL();
 9242
 9243	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
 9244		prog = dev_xdp_prog(dev, mode);
 9245		if (!prog)
 9246			continue;
 9247
 9248		bpf_op = dev_xdp_bpf_op(dev, mode);
 9249		if (!bpf_op)
 9250			continue;
 9251
 9252		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
 9253
 9254		/* auto-detach link from net device */
 9255		link = dev_xdp_link(dev, mode);
 9256		if (link)
 9257			link->dev = NULL;
 9258		else
 9259			bpf_prog_put(prog);
 9260
 9261		dev_xdp_set_link(dev, mode, NULL);
 9262	}
 9263}
 
 
 
 
 
 
 
 
 9264
 9265static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
 9266			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
 9267			  struct bpf_prog *old_prog, u32 flags)
 9268{
 9269	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
 9270	struct bpf_prog *cur_prog;
 9271	struct net_device *upper;
 9272	struct list_head *iter;
 9273	enum bpf_xdp_mode mode;
 9274	bpf_op_t bpf_op;
 9275	int err;
 9276
 9277	ASSERT_RTNL();
 
 
 
 9278
 9279	/* either link or prog attachment, never both */
 9280	if (link && (new_prog || old_prog))
 9281		return -EINVAL;
 9282	/* link supports only XDP mode flags */
 9283	if (link && (flags & ~XDP_FLAGS_MODES)) {
 9284		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
 9285		return -EINVAL;
 9286	}
 9287	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
 9288	if (num_modes > 1) {
 9289		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
 9290		return -EINVAL;
 9291	}
 9292	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
 9293	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
 9294		NL_SET_ERR_MSG(extack,
 9295			       "More than one program loaded, unset mode is ambiguous");
 9296		return -EINVAL;
 9297	}
 9298	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
 9299	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
 9300		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
 9301		return -EINVAL;
 9302	}
 
 
 9303
 9304	mode = dev_xdp_mode(dev, flags);
 9305	/* can't replace attached link */
 9306	if (dev_xdp_link(dev, mode)) {
 9307		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
 9308		return -EBUSY;
 9309	}
 9310
 9311	/* don't allow if an upper device already has a program */
 9312	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
 9313		if (dev_xdp_prog_count(upper) > 0) {
 9314			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
 9315			return -EEXIST;
 9316		}
 9317	}
 9318
 9319	cur_prog = dev_xdp_prog(dev, mode);
 9320	/* can't replace attached prog with link */
 9321	if (link && cur_prog) {
 9322		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
 9323		return -EBUSY;
 9324	}
 9325	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
 9326		NL_SET_ERR_MSG(extack, "Active program does not match expected");
 9327		return -EEXIST;
 9328	}
 9329
 9330	/* put effective new program into new_prog */
 9331	if (link)
 9332		new_prog = link->link.prog;
 9333
 9334	if (new_prog) {
 9335		bool offload = mode == XDP_MODE_HW;
 9336		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
 9337					       ? XDP_MODE_DRV : XDP_MODE_SKB;
 9338
 9339		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
 9340			NL_SET_ERR_MSG(extack, "XDP program already attached");
 9341			return -EBUSY;
 9342		}
 9343		if (!offload && dev_xdp_prog(dev, other_mode)) {
 9344			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
 9345			return -EEXIST;
 9346		}
 9347		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
 9348			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
 9349			return -EINVAL;
 9350		}
 9351		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
 9352			NL_SET_ERR_MSG(extack, "Program bound to different device");
 9353			return -EINVAL;
 9354		}
 9355		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
 9356			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
 9357			return -EINVAL;
 9358		}
 9359		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
 9360			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
 9361			return -EINVAL;
 
 
 9362		}
 9363	}
 9364
 9365	/* don't call drivers if the effective program didn't change */
 9366	if (new_prog != cur_prog) {
 9367		bpf_op = dev_xdp_bpf_op(dev, mode);
 9368		if (!bpf_op) {
 9369			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
 9370			return -EOPNOTSUPP;
 
 
 
 
 
 9371		}
 
 9372
 9373		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
 9374		if (err)
 9375			return err;
 9376	}
 9377
 9378	if (link)
 9379		dev_xdp_set_link(dev, mode, link);
 9380	else
 9381		dev_xdp_set_prog(dev, mode, new_prog);
 9382	if (cur_prog)
 9383		bpf_prog_put(cur_prog);
 9384
 9385	return 0;
 9386}
 9387
 9388static int dev_xdp_attach_link(struct net_device *dev,
 9389			       struct netlink_ext_ack *extack,
 9390			       struct bpf_xdp_link *link)
 9391{
 9392	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
 9393}
 9394
 9395static int dev_xdp_detach_link(struct net_device *dev,
 9396			       struct netlink_ext_ack *extack,
 9397			       struct bpf_xdp_link *link)
 9398{
 9399	enum bpf_xdp_mode mode;
 9400	bpf_op_t bpf_op;
 9401
 9402	ASSERT_RTNL();
 9403
 9404	mode = dev_xdp_mode(dev, link->flags);
 9405	if (dev_xdp_link(dev, mode) != link)
 9406		return -EINVAL;
 9407
 9408	bpf_op = dev_xdp_bpf_op(dev, mode);
 9409	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
 9410	dev_xdp_set_link(dev, mode, NULL);
 9411	return 0;
 9412}
 9413
 9414static void bpf_xdp_link_release(struct bpf_link *link)
 9415{
 9416	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9417
 9418	rtnl_lock();
 
 
 
 
 
 
 
 9419
 9420	/* if racing with net_device's tear down, xdp_link->dev might be
 9421	 * already NULL, in which case link was already auto-detached
 9422	 */
 9423	if (xdp_link->dev) {
 9424		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
 9425		xdp_link->dev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 9426	}
 9427
 9428	rtnl_unlock();
 9429}
 9430
 9431static int bpf_xdp_link_detach(struct bpf_link *link)
 9432{
 9433	bpf_xdp_link_release(link);
 9434	return 0;
 9435}
 9436
 9437static void bpf_xdp_link_dealloc(struct bpf_link *link)
 
 
 
 
 
 
 
 
 9438{
 9439	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9440
 9441	kfree(xdp_link);
 
 
 
 
 9442}
 9443
 9444static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
 9445				     struct seq_file *seq)
 9446{
 9447	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9448	u32 ifindex = 0;
 9449
 9450	rtnl_lock();
 9451	if (xdp_link->dev)
 9452		ifindex = xdp_link->dev->ifindex;
 9453	rtnl_unlock();
 9454
 9455	seq_printf(seq, "ifindex:\t%u\n", ifindex);
 9456}
 9457
 9458static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
 9459				       struct bpf_link_info *info)
 9460{
 9461	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9462	u32 ifindex = 0;
 9463
 9464	rtnl_lock();
 9465	if (xdp_link->dev)
 9466		ifindex = xdp_link->dev->ifindex;
 9467	rtnl_unlock();
 9468
 9469	info->xdp.ifindex = ifindex;
 9470	return 0;
 9471}
 9472
 9473static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
 9474			       struct bpf_prog *old_prog)
 9475{
 9476	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9477	enum bpf_xdp_mode mode;
 9478	bpf_op_t bpf_op;
 9479	int err = 0;
 9480
 9481	rtnl_lock();
 9482
 9483	/* link might have been auto-released already, so fail */
 9484	if (!xdp_link->dev) {
 9485		err = -ENOLINK;
 9486		goto out_unlock;
 9487	}
 9488
 9489	if (old_prog && link->prog != old_prog) {
 9490		err = -EPERM;
 9491		goto out_unlock;
 9492	}
 9493	old_prog = link->prog;
 9494	if (old_prog->type != new_prog->type ||
 9495	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
 9496		err = -EINVAL;
 9497		goto out_unlock;
 9498	}
 9499
 9500	if (old_prog == new_prog) {
 9501		/* no-op, don't disturb drivers */
 9502		bpf_prog_put(new_prog);
 9503		goto out_unlock;
 9504	}
 9505
 9506	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
 9507	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
 9508	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
 9509			      xdp_link->flags, new_prog);
 9510	if (err)
 9511		goto out_unlock;
 9512
 9513	old_prog = xchg(&link->prog, new_prog);
 9514	bpf_prog_put(old_prog);
 9515
 9516out_unlock:
 9517	rtnl_unlock();
 9518	return err;
 9519}
 9520
 9521static const struct bpf_link_ops bpf_xdp_link_lops = {
 9522	.release = bpf_xdp_link_release,
 9523	.dealloc = bpf_xdp_link_dealloc,
 9524	.detach = bpf_xdp_link_detach,
 9525	.show_fdinfo = bpf_xdp_link_show_fdinfo,
 9526	.fill_link_info = bpf_xdp_link_fill_link_info,
 9527	.update_prog = bpf_xdp_link_update,
 9528};
 9529
 9530int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
 9531{
 9532	struct net *net = current->nsproxy->net_ns;
 9533	struct bpf_link_primer link_primer;
 9534	struct netlink_ext_ack extack = {};
 9535	struct bpf_xdp_link *link;
 9536	struct net_device *dev;
 9537	int err, fd;
 9538
 9539	rtnl_lock();
 9540	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
 9541	if (!dev) {
 9542		rtnl_unlock();
 9543		return -EINVAL;
 9544	}
 
 
 9545
 9546	link = kzalloc(sizeof(*link), GFP_USER);
 9547	if (!link) {
 9548		err = -ENOMEM;
 9549		goto unlock;
 
 
 9550	}
 9551
 9552	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
 9553	link->dev = dev;
 9554	link->flags = attr->link_create.flags;
 9555
 9556	err = bpf_link_prime(&link->link, &link_primer);
 9557	if (err) {
 9558		kfree(link);
 9559		goto unlock;
 9560	}
 9561
 9562	err = dev_xdp_attach_link(dev, &extack, link);
 9563	rtnl_unlock();
 
 9564
 9565	if (err) {
 9566		link->dev = NULL;
 9567		bpf_link_cleanup(&link_primer);
 9568		trace_bpf_xdp_link_attach_failed(extack._msg);
 9569		goto out_put_dev;
 9570	}
 9571
 9572	fd = bpf_link_settle(&link_primer);
 9573	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
 9574	dev_put(dev);
 9575	return fd;
 9576
 9577unlock:
 9578	rtnl_unlock();
 
 9579
 9580out_put_dev:
 9581	dev_put(dev);
 9582	return err;
 9583}
 9584
 9585/**
 9586 *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
 9587 *	@dev: device
 9588 *	@extack: netlink extended ack
 9589 *	@fd: new program fd or negative value to clear
 9590 *	@expected_fd: old program fd that userspace expects to replace or clear
 9591 *	@flags: xdp-related flags
 9592 *
 9593 *	Set or clear a bpf program for a device
 9594 */
 9595int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
 9596		      int fd, int expected_fd, u32 flags)
 9597{
 9598	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
 9599	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
 9600	int err;
 9601
 9602	ASSERT_RTNL();
 
 
 9603
 9604	if (fd >= 0) {
 9605		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
 9606						 mode != XDP_MODE_SKB);
 9607		if (IS_ERR(new_prog))
 9608			return PTR_ERR(new_prog);
 9609	}
 9610
 9611	if (expected_fd >= 0) {
 9612		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
 9613						 mode != XDP_MODE_SKB);
 9614		if (IS_ERR(old_prog)) {
 9615			err = PTR_ERR(old_prog);
 9616			old_prog = NULL;
 9617			goto err_out;
 9618		}
 9619	}
 9620
 9621	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
 9622
 9623err_out:
 9624	if (err && new_prog)
 9625		bpf_prog_put(new_prog);
 9626	if (old_prog)
 9627		bpf_prog_put(old_prog);
 9628	return err;
 9629}
 9630
 9631/**
 9632 * dev_index_reserve() - allocate an ifindex in a namespace
 9633 * @net: the applicable net namespace
 9634 * @ifindex: requested ifindex, pass %0 to get one allocated
 9635 *
 9636 * Allocate a ifindex for a new device. Caller must either use the ifindex
 9637 * to store the device (via list_netdevice()) or call dev_index_release()
 9638 * to give the index up.
 9639 *
 9640 * Return: a suitable unique value for a new device interface number or -errno.
 9641 */
 9642static int dev_index_reserve(struct net *net, u32 ifindex)
 9643{
 9644	int err;
 9645
 9646	if (ifindex > INT_MAX) {
 9647		DEBUG_NET_WARN_ON_ONCE(1);
 9648		return -EINVAL;
 9649	}
 9650
 9651	if (!ifindex)
 9652		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
 9653				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
 9654	else
 9655		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
 9656	if (err < 0)
 9657		return err;
 9658
 9659	return ifindex;
 9660}
 9661
 9662static void dev_index_release(struct net *net, int ifindex)
 9663{
 9664	/* Expect only unused indexes, unlist_netdevice() removes the used */
 9665	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
 9666}
 9667
 9668/* Delayed registration/unregisteration */
 9669LIST_HEAD(net_todo_list);
 9670DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
 9671
 9672static void net_set_todo(struct net_device *dev)
 9673{
 9674	list_add_tail(&dev->todo_list, &net_todo_list);
 9675	atomic_inc(&dev_net(dev)->dev_unreg_count);
 9676}
 9677
 9678static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
 9679	struct net_device *upper, netdev_features_t features)
 9680{
 9681	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
 9682	netdev_features_t feature;
 9683	int feature_bit;
 9684
 9685	for_each_netdev_feature(upper_disables, feature_bit) {
 9686		feature = __NETIF_F_BIT(feature_bit);
 9687		if (!(upper->wanted_features & feature)
 9688		    && (features & feature)) {
 9689			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
 9690				   &feature, upper->name);
 9691			features &= ~feature;
 9692		}
 9693	}
 9694
 9695	return features;
 9696}
 9697
 9698static void netdev_sync_lower_features(struct net_device *upper,
 9699	struct net_device *lower, netdev_features_t features)
 9700{
 9701	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
 9702	netdev_features_t feature;
 9703	int feature_bit;
 9704
 9705	for_each_netdev_feature(upper_disables, feature_bit) {
 9706		feature = __NETIF_F_BIT(feature_bit);
 9707		if (!(features & feature) && (lower->features & feature)) {
 9708			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
 9709				   &feature, lower->name);
 9710			lower->wanted_features &= ~feature;
 9711			__netdev_update_features(lower);
 9712
 9713			if (unlikely(lower->features & feature))
 9714				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
 9715					    &feature, lower->name);
 9716			else
 9717				netdev_features_change(lower);
 9718		}
 9719	}
 9720}
 9721
 9722static netdev_features_t netdev_fix_features(struct net_device *dev,
 9723	netdev_features_t features)
 9724{
 9725	/* Fix illegal checksum combinations */
 9726	if ((features & NETIF_F_HW_CSUM) &&
 9727	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
 9728		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
 9729		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
 9730	}
 9731
 9732	/* TSO requires that SG is present as well. */
 9733	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
 9734		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
 9735		features &= ~NETIF_F_ALL_TSO;
 9736	}
 9737
 9738	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
 9739					!(features & NETIF_F_IP_CSUM)) {
 9740		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
 9741		features &= ~NETIF_F_TSO;
 9742		features &= ~NETIF_F_TSO_ECN;
 
 9743	}
 9744
 9745	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
 9746					 !(features & NETIF_F_IPV6_CSUM)) {
 9747		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
 9748		features &= ~NETIF_F_TSO6;
 9749	}
 9750
 9751	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
 9752	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
 9753		features &= ~NETIF_F_TSO_MANGLEID;
 9754
 9755	/* TSO ECN requires that TSO is present as well. */
 9756	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
 9757		features &= ~NETIF_F_TSO_ECN;
 9758
 9759	/* Software GSO depends on SG. */
 9760	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
 9761		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
 9762		features &= ~NETIF_F_GSO;
 9763	}
 9764
 9765	/* GSO partial features require GSO partial be set */
 9766	if ((features & dev->gso_partial_features) &&
 9767	    !(features & NETIF_F_GSO_PARTIAL)) {
 9768		netdev_dbg(dev,
 9769			   "Dropping partially supported GSO features since no GSO partial.\n");
 9770		features &= ~dev->gso_partial_features;
 9771	}
 9772
 9773	if (!(features & NETIF_F_RXCSUM)) {
 9774		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
 9775		 * successfully merged by hardware must also have the
 9776		 * checksum verified by hardware.  If the user does not
 9777		 * want to enable RXCSUM, logically, we should disable GRO_HW.
 9778		 */
 9779		if (features & NETIF_F_GRO_HW) {
 9780			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
 9781			features &= ~NETIF_F_GRO_HW;
 9782		}
 9783	}
 9784
 9785	/* LRO/HW-GRO features cannot be combined with RX-FCS */
 9786	if (features & NETIF_F_RXFCS) {
 9787		if (features & NETIF_F_LRO) {
 9788			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
 9789			features &= ~NETIF_F_LRO;
 9790		}
 9791
 9792		if (features & NETIF_F_GRO_HW) {
 9793			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
 9794			features &= ~NETIF_F_GRO_HW;
 
 9795		}
 9796	}
 9797
 9798	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
 9799		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
 9800		features &= ~NETIF_F_LRO;
 9801	}
 9802
 9803	if (features & NETIF_F_HW_TLS_TX) {
 9804		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
 9805			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
 9806		bool hw_csum = features & NETIF_F_HW_CSUM;
 9807
 9808		if (!ip_csum && !hw_csum) {
 9809			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
 9810			features &= ~NETIF_F_HW_TLS_TX;
 9811		}
 9812	}
 9813
 9814	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
 9815		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
 9816		features &= ~NETIF_F_HW_TLS_RX;
 9817	}
 9818
 9819	return features;
 9820}
 9821
 9822int __netdev_update_features(struct net_device *dev)
 9823{
 9824	struct net_device *upper, *lower;
 9825	netdev_features_t features;
 9826	struct list_head *iter;
 9827	int err = -1;
 9828
 9829	ASSERT_RTNL();
 9830
 9831	features = netdev_get_wanted_features(dev);
 9832
 9833	if (dev->netdev_ops->ndo_fix_features)
 9834		features = dev->netdev_ops->ndo_fix_features(dev, features);
 9835
 9836	/* driver might be less strict about feature dependencies */
 9837	features = netdev_fix_features(dev, features);
 9838
 9839	/* some features can't be enabled if they're off on an upper device */
 9840	netdev_for_each_upper_dev_rcu(dev, upper, iter)
 9841		features = netdev_sync_upper_features(dev, upper, features);
 9842
 9843	if (dev->features == features)
 9844		goto sync_lower;
 9845
 9846	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
 9847		&dev->features, &features);
 9848
 9849	if (dev->netdev_ops->ndo_set_features)
 9850		err = dev->netdev_ops->ndo_set_features(dev, features);
 9851	else
 9852		err = 0;
 9853
 9854	if (unlikely(err < 0)) {
 9855		netdev_err(dev,
 9856			"set_features() failed (%d); wanted %pNF, left %pNF\n",
 9857			err, &features, &dev->features);
 9858		/* return non-0 since some features might have changed and
 9859		 * it's better to fire a spurious notification than miss it
 9860		 */
 9861		return -1;
 9862	}
 9863
 9864sync_lower:
 9865	/* some features must be disabled on lower devices when disabled
 9866	 * on an upper device (think: bonding master or bridge)
 9867	 */
 9868	netdev_for_each_lower_dev(dev, lower, iter)
 9869		netdev_sync_lower_features(dev, lower, features);
 9870
 9871	if (!err) {
 9872		netdev_features_t diff = features ^ dev->features;
 9873
 9874		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
 9875			/* udp_tunnel_{get,drop}_rx_info both need
 9876			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
 9877			 * device, or they won't do anything.
 9878			 * Thus we need to update dev->features
 9879			 * *before* calling udp_tunnel_get_rx_info,
 9880			 * but *after* calling udp_tunnel_drop_rx_info.
 9881			 */
 9882			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
 9883				dev->features = features;
 9884				udp_tunnel_get_rx_info(dev);
 9885			} else {
 9886				udp_tunnel_drop_rx_info(dev);
 9887			}
 9888		}
 9889
 9890		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
 9891			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
 9892				dev->features = features;
 9893				err |= vlan_get_rx_ctag_filter_info(dev);
 9894			} else {
 9895				vlan_drop_rx_ctag_filter_info(dev);
 9896			}
 9897		}
 9898
 9899		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
 9900			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
 9901				dev->features = features;
 9902				err |= vlan_get_rx_stag_filter_info(dev);
 9903			} else {
 9904				vlan_drop_rx_stag_filter_info(dev);
 9905			}
 9906		}
 9907
 9908		dev->features = features;
 9909	}
 9910
 9911	return err < 0 ? 0 : 1;
 9912}
 9913
 9914/**
 9915 *	netdev_update_features - recalculate device features
 9916 *	@dev: the device to check
 9917 *
 9918 *	Recalculate dev->features set and send notifications if it
 9919 *	has changed. Should be called after driver or hardware dependent
 9920 *	conditions might have changed that influence the features.
 9921 */
 9922void netdev_update_features(struct net_device *dev)
 9923{
 9924	if (__netdev_update_features(dev))
 9925		netdev_features_change(dev);
 9926}
 9927EXPORT_SYMBOL(netdev_update_features);
 9928
 9929/**
 9930 *	netdev_change_features - recalculate device features
 9931 *	@dev: the device to check
 9932 *
 9933 *	Recalculate dev->features set and send notifications even
 9934 *	if they have not changed. Should be called instead of
 9935 *	netdev_update_features() if also dev->vlan_features might
 9936 *	have changed to allow the changes to be propagated to stacked
 9937 *	VLAN devices.
 9938 */
 9939void netdev_change_features(struct net_device *dev)
 9940{
 9941	__netdev_update_features(dev);
 9942	netdev_features_change(dev);
 9943}
 9944EXPORT_SYMBOL(netdev_change_features);
 9945
 9946/**
 9947 *	netif_stacked_transfer_operstate -	transfer operstate
 9948 *	@rootdev: the root or lower level device to transfer state from
 9949 *	@dev: the device to transfer operstate to
 9950 *
 9951 *	Transfer operational state from root to device. This is normally
 9952 *	called when a stacking relationship exists between the root
 9953 *	device and the device(a leaf device).
 9954 */
 9955void netif_stacked_transfer_operstate(const struct net_device *rootdev,
 9956					struct net_device *dev)
 9957{
 9958	if (rootdev->operstate == IF_OPER_DORMANT)
 9959		netif_dormant_on(dev);
 9960	else
 9961		netif_dormant_off(dev);
 9962
 9963	if (rootdev->operstate == IF_OPER_TESTING)
 9964		netif_testing_on(dev);
 9965	else
 9966		netif_testing_off(dev);
 9967
 9968	if (netif_carrier_ok(rootdev))
 9969		netif_carrier_on(dev);
 9970	else
 9971		netif_carrier_off(dev);
 9972}
 9973EXPORT_SYMBOL(netif_stacked_transfer_operstate);
 9974
 
 9975static int netif_alloc_rx_queues(struct net_device *dev)
 9976{
 9977	unsigned int i, count = dev->num_rx_queues;
 9978	struct netdev_rx_queue *rx;
 9979	size_t sz = count * sizeof(*rx);
 9980	int err = 0;
 9981
 9982	BUG_ON(count < 1);
 9983
 9984	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
 9985	if (!rx)
 
 9986		return -ENOMEM;
 9987
 9988	dev->_rx = rx;
 9989
 9990	for (i = 0; i < count; i++) {
 9991		rx[i].dev = dev;
 9992
 9993		/* XDP RX-queue setup */
 9994		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
 9995		if (err < 0)
 9996			goto err_rxq_info;
 9997	}
 9998	return 0;
 9999
10000err_rxq_info:
10001	/* Rollback successful reg's and free other resources */
10002	while (i--)
10003		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10004	kvfree(dev->_rx);
10005	dev->_rx = NULL;
10006	return err;
10007}
10008
10009static void netif_free_rx_queues(struct net_device *dev)
10010{
10011	unsigned int i, count = dev->num_rx_queues;
10012
10013	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10014	if (!dev->_rx)
10015		return;
10016
10017	for (i = 0; i < count; i++)
10018		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10019
10020	kvfree(dev->_rx);
10021}
 
10022
10023static void netdev_init_one_queue(struct net_device *dev,
10024				  struct netdev_queue *queue, void *_unused)
10025{
10026	/* Initialize queue lock */
10027	spin_lock_init(&queue->_xmit_lock);
10028	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10029	queue->xmit_lock_owner = -1;
10030	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10031	queue->dev = dev;
10032#ifdef CONFIG_BQL
10033	dql_init(&queue->dql, HZ);
10034#endif
10035}
10036
10037static void netif_free_tx_queues(struct net_device *dev)
10038{
10039	kvfree(dev->_tx);
10040}
10041
10042static int netif_alloc_netdev_queues(struct net_device *dev)
10043{
10044	unsigned int count = dev->num_tx_queues;
10045	struct netdev_queue *tx;
10046	size_t sz = count * sizeof(*tx);
10047
10048	if (count < 1 || count > 0xffff)
10049		return -EINVAL;
10050
10051	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10052	if (!tx)
 
 
10053		return -ENOMEM;
10054
10055	dev->_tx = tx;
10056
10057	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10058	spin_lock_init(&dev->tx_global_lock);
10059
10060	return 0;
10061}
10062
10063void netif_tx_stop_all_queues(struct net_device *dev)
10064{
10065	unsigned int i;
10066
10067	for (i = 0; i < dev->num_tx_queues; i++) {
10068		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10069
10070		netif_tx_stop_queue(txq);
10071	}
10072}
10073EXPORT_SYMBOL(netif_tx_stop_all_queues);
10074
10075static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10076{
10077	void __percpu *v;
10078
10079	/* Drivers implementing ndo_get_peer_dev must support tstat
10080	 * accounting, so that skb_do_redirect() can bump the dev's
10081	 * RX stats upon network namespace switch.
10082	 */
10083	if (dev->netdev_ops->ndo_get_peer_dev &&
10084	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10085		return -EOPNOTSUPP;
10086
10087	switch (dev->pcpu_stat_type) {
10088	case NETDEV_PCPU_STAT_NONE:
10089		return 0;
10090	case NETDEV_PCPU_STAT_LSTATS:
10091		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10092		break;
10093	case NETDEV_PCPU_STAT_TSTATS:
10094		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10095		break;
10096	case NETDEV_PCPU_STAT_DSTATS:
10097		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10098		break;
10099	default:
10100		return -EINVAL;
10101	}
10102
10103	return v ? 0 : -ENOMEM;
10104}
10105
10106static void netdev_do_free_pcpu_stats(struct net_device *dev)
10107{
10108	switch (dev->pcpu_stat_type) {
10109	case NETDEV_PCPU_STAT_NONE:
10110		return;
10111	case NETDEV_PCPU_STAT_LSTATS:
10112		free_percpu(dev->lstats);
10113		break;
10114	case NETDEV_PCPU_STAT_TSTATS:
10115		free_percpu(dev->tstats);
10116		break;
10117	case NETDEV_PCPU_STAT_DSTATS:
10118		free_percpu(dev->dstats);
10119		break;
10120	}
10121}
10122
10123/**
10124 * register_netdevice() - register a network device
10125 * @dev: device to register
10126 *
10127 * Take a prepared network device structure and make it externally accessible.
10128 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10129 * Callers must hold the rtnl lock - you may want register_netdev()
10130 * instead of this.
 
 
 
 
 
 
 
10131 */
 
10132int register_netdevice(struct net_device *dev)
10133{
10134	int ret;
10135	struct net *net = dev_net(dev);
10136
10137	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10138		     NETDEV_FEATURE_COUNT);
10139	BUG_ON(dev_boot_phase);
10140	ASSERT_RTNL();
10141
10142	might_sleep();
10143
10144	/* When net_device's are persistent, this will be fatal. */
10145	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10146	BUG_ON(!net);
10147
10148	ret = ethtool_check_ops(dev->ethtool_ops);
10149	if (ret)
10150		return ret;
10151
10152	spin_lock_init(&dev->addr_list_lock);
10153	netdev_set_addr_lockdep_class(dev);
10154
10155	ret = dev_get_valid_name(net, dev, dev->name);
10156	if (ret < 0)
10157		goto out;
10158
10159	ret = -ENOMEM;
10160	dev->name_node = netdev_name_node_head_alloc(dev);
10161	if (!dev->name_node)
10162		goto out;
10163
10164	/* Init, if this function is available */
10165	if (dev->netdev_ops->ndo_init) {
10166		ret = dev->netdev_ops->ndo_init(dev);
10167		if (ret) {
10168			if (ret > 0)
10169				ret = -EIO;
10170			goto err_free_name;
10171		}
10172	}
10173
10174	if (((dev->hw_features | dev->features) &
10175	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10176	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10177	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10178		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10179		ret = -EINVAL;
10180		goto err_uninit;
10181	}
10182
10183	ret = netdev_do_alloc_pcpu_stats(dev);
10184	if (ret)
10185		goto err_uninit;
10186
10187	ret = dev_index_reserve(net, dev->ifindex);
10188	if (ret < 0)
10189		goto err_free_pcpu;
10190	dev->ifindex = ret;
10191
10192	/* Transfer changeable features to wanted_features and enable
10193	 * software offloads (GSO and GRO).
10194	 */
10195	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10196	dev->features |= NETIF_F_SOFT_FEATURES;
10197
10198	if (dev->udp_tunnel_nic_info) {
10199		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10200		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10201	}
10202
10203	dev->wanted_features = dev->features & dev->hw_features;
10204
10205	if (!(dev->flags & IFF_LOOPBACK))
10206		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10207
10208	/* If IPv4 TCP segmentation offload is supported we should also
10209	 * allow the device to enable segmenting the frame with the option
10210	 * of ignoring a static IP ID value.  This doesn't enable the
10211	 * feature itself but allows the user to enable it later.
10212	 */
10213	if (dev->hw_features & NETIF_F_TSO)
10214		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10215	if (dev->vlan_features & NETIF_F_TSO)
10216		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10217	if (dev->mpls_features & NETIF_F_TSO)
10218		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10219	if (dev->hw_enc_features & NETIF_F_TSO)
10220		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10221
10222	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10223	 */
10224	dev->vlan_features |= NETIF_F_HIGHDMA;
10225
10226	/* Make NETIF_F_SG inheritable to tunnel devices.
10227	 */
10228	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10229
10230	/* Make NETIF_F_SG inheritable to MPLS.
10231	 */
10232	dev->mpls_features |= NETIF_F_SG;
10233
10234	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10235	ret = notifier_to_errno(ret);
10236	if (ret)
10237		goto err_ifindex_release;
10238
10239	ret = netdev_register_kobject(dev);
10240	write_lock(&dev_base_lock);
10241	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10242	write_unlock(&dev_base_lock);
10243	if (ret)
10244		goto err_uninit_notify;
 
10245
10246	__netdev_update_features(dev);
10247
10248	/*
10249	 *	Default initial state at registry is that the
10250	 *	device is present.
10251	 */
10252
10253	set_bit(__LINK_STATE_PRESENT, &dev->state);
10254
10255	linkwatch_init_dev(dev);
10256
10257	dev_init_scheduler(dev);
10258
10259	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10260	list_netdevice(dev);
10261
10262	add_device_randomness(dev->dev_addr, dev->addr_len);
10263
10264	/* If the device has permanent device address, driver should
10265	 * set dev_addr and also addr_assign_type should be set to
10266	 * NET_ADDR_PERM (default value).
10267	 */
10268	if (dev->addr_assign_type == NET_ADDR_PERM)
10269		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10270
10271	/* Notify protocols, that a new device appeared. */
10272	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10273	ret = notifier_to_errno(ret);
10274	if (ret) {
10275		/* Expect explicit free_netdev() on failure */
10276		dev->needs_free_netdev = false;
10277		unregister_netdevice_queue(dev, NULL);
10278		goto out;
10279	}
10280	/*
10281	 *	Prevent userspace races by waiting until the network
10282	 *	device is fully setup before sending notifications.
10283	 */
10284	if (!dev->rtnl_link_ops ||
10285	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10286		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10287
10288out:
10289	return ret;
10290
10291err_uninit_notify:
10292	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10293err_ifindex_release:
10294	dev_index_release(net, dev->ifindex);
10295err_free_pcpu:
10296	netdev_do_free_pcpu_stats(dev);
10297err_uninit:
10298	if (dev->netdev_ops->ndo_uninit)
10299		dev->netdev_ops->ndo_uninit(dev);
10300	if (dev->priv_destructor)
10301		dev->priv_destructor(dev);
10302err_free_name:
10303	netdev_name_node_free(dev->name_node);
10304	goto out;
10305}
10306EXPORT_SYMBOL(register_netdevice);
10307
10308/**
10309 *	init_dummy_netdev	- init a dummy network device for NAPI
10310 *	@dev: device to init
10311 *
10312 *	This takes a network device structure and initialize the minimum
10313 *	amount of fields so it can be used to schedule NAPI polls without
10314 *	registering a full blown interface. This is to be used by drivers
10315 *	that need to tie several hardware interfaces to a single NAPI
10316 *	poll scheduler due to HW limitations.
10317 */
10318int init_dummy_netdev(struct net_device *dev)
10319{
10320	/* Clear everything. Note we don't initialize spinlocks
10321	 * are they aren't supposed to be taken by any of the
10322	 * NAPI code and this dummy netdev is supposed to be
10323	 * only ever used for NAPI polls
10324	 */
10325	memset(dev, 0, sizeof(struct net_device));
10326
10327	/* make sure we BUG if trying to hit standard
10328	 * register/unregister code path
10329	 */
10330	dev->reg_state = NETREG_DUMMY;
10331
10332	/* NAPI wants this */
10333	INIT_LIST_HEAD(&dev->napi_list);
10334
10335	/* a dummy interface is started by default */
10336	set_bit(__LINK_STATE_PRESENT, &dev->state);
10337	set_bit(__LINK_STATE_START, &dev->state);
10338
10339	/* napi_busy_loop stats accounting wants this */
10340	dev_net_set(dev, &init_net);
10341
10342	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10343	 * because users of this 'device' dont need to change
10344	 * its refcount.
10345	 */
10346
10347	return 0;
10348}
10349EXPORT_SYMBOL_GPL(init_dummy_netdev);
10350
10351
10352/**
10353 *	register_netdev	- register a network device
10354 *	@dev: device to register
10355 *
10356 *	Take a completed network device structure and add it to the kernel
10357 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10358 *	chain. 0 is returned on success. A negative errno code is returned
10359 *	on a failure to set up the device, or if the name is a duplicate.
10360 *
10361 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10362 *	and expands the device name if you passed a format string to
10363 *	alloc_netdev.
10364 */
10365int register_netdev(struct net_device *dev)
10366{
10367	int err;
10368
10369	if (rtnl_lock_killable())
10370		return -EINTR;
10371	err = register_netdevice(dev);
10372	rtnl_unlock();
10373	return err;
10374}
10375EXPORT_SYMBOL(register_netdev);
10376
10377int netdev_refcnt_read(const struct net_device *dev)
10378{
10379#ifdef CONFIG_PCPU_DEV_REFCNT
10380	int i, refcnt = 0;
10381
10382	for_each_possible_cpu(i)
10383		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10384	return refcnt;
10385#else
10386	return refcount_read(&dev->dev_refcnt);
10387#endif
10388}
10389EXPORT_SYMBOL(netdev_refcnt_read);
10390
10391int netdev_unregister_timeout_secs __read_mostly = 10;
10392
10393#define WAIT_REFS_MIN_MSECS 1
10394#define WAIT_REFS_MAX_MSECS 250
10395/**
10396 * netdev_wait_allrefs_any - wait until all references are gone.
10397 * @list: list of net_devices to wait on
10398 *
10399 * This is called when unregistering network devices.
10400 *
10401 * Any protocol or device that holds a reference should register
10402 * for netdevice notification, and cleanup and put back the
10403 * reference if they receive an UNREGISTER event.
10404 * We can get stuck here if buggy protocols don't correctly
10405 * call dev_put.
10406 */
10407static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10408{
10409	unsigned long rebroadcast_time, warning_time;
10410	struct net_device *dev;
10411	int wait = 0;
10412
10413	rebroadcast_time = warning_time = jiffies;
10414
10415	list_for_each_entry(dev, list, todo_list)
10416		if (netdev_refcnt_read(dev) == 1)
10417			return dev;
10418
10419	while (true) {
10420		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10421			rtnl_lock();
10422
10423			/* Rebroadcast unregister notification */
10424			list_for_each_entry(dev, list, todo_list)
10425				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10426
10427			__rtnl_unlock();
10428			rcu_barrier();
10429			rtnl_lock();
10430
10431			list_for_each_entry(dev, list, todo_list)
10432				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10433					     &dev->state)) {
10434					/* We must not have linkwatch events
10435					 * pending on unregister. If this
10436					 * happens, we simply run the queue
10437					 * unscheduled, resulting in a noop
10438					 * for this device.
10439					 */
10440					linkwatch_run_queue();
10441					break;
10442				}
10443
10444			__rtnl_unlock();
10445
10446			rebroadcast_time = jiffies;
10447		}
10448
10449		if (!wait) {
10450			rcu_barrier();
10451			wait = WAIT_REFS_MIN_MSECS;
10452		} else {
10453			msleep(wait);
10454			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10455		}
10456
10457		list_for_each_entry(dev, list, todo_list)
10458			if (netdev_refcnt_read(dev) == 1)
10459				return dev;
10460
10461		if (time_after(jiffies, warning_time +
10462			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10463			list_for_each_entry(dev, list, todo_list) {
10464				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10465					 dev->name, netdev_refcnt_read(dev));
10466				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10467			}
10468
 
 
 
 
 
10469			warning_time = jiffies;
10470		}
10471	}
10472}
10473
10474/* The sequence is:
10475 *
10476 *	rtnl_lock();
10477 *	...
10478 *	register_netdevice(x1);
10479 *	register_netdevice(x2);
10480 *	...
10481 *	unregister_netdevice(y1);
10482 *	unregister_netdevice(y2);
10483 *      ...
10484 *	rtnl_unlock();
10485 *	free_netdev(y1);
10486 *	free_netdev(y2);
10487 *
10488 * We are invoked by rtnl_unlock().
10489 * This allows us to deal with problems:
10490 * 1) We can delete sysfs objects which invoke hotplug
10491 *    without deadlocking with linkwatch via keventd.
10492 * 2) Since we run with the RTNL semaphore not held, we can sleep
10493 *    safely in order to wait for the netdev refcnt to drop to zero.
10494 *
10495 * We must not return until all unregister events added during
10496 * the interval the lock was held have been completed.
10497 */
10498void netdev_run_todo(void)
10499{
10500	struct net_device *dev, *tmp;
10501	struct list_head list;
10502#ifdef CONFIG_LOCKDEP
10503	struct list_head unlink_list;
10504
10505	list_replace_init(&net_unlink_list, &unlink_list);
10506
10507	while (!list_empty(&unlink_list)) {
10508		struct net_device *dev = list_first_entry(&unlink_list,
10509							  struct net_device,
10510							  unlink_list);
10511		list_del_init(&dev->unlink_list);
10512		dev->nested_level = dev->lower_level - 1;
10513	}
10514#endif
10515
10516	/* Snapshot list, allow later requests */
10517	list_replace_init(&net_todo_list, &list);
10518
10519	__rtnl_unlock();
10520
10521	/* Wait for rcu callbacks to finish before next phase */
10522	if (!list_empty(&list))
10523		rcu_barrier();
 
10524
10525	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10526		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10527			netdev_WARN(dev, "run_todo but not unregistering\n");
10528			list_del(&dev->todo_list);
 
10529			continue;
10530		}
10531
10532		write_lock(&dev_base_lock);
10533		dev->reg_state = NETREG_UNREGISTERED;
10534		write_unlock(&dev_base_lock);
10535		linkwatch_sync_dev(dev);
10536	}
10537
10538	while (!list_empty(&list)) {
10539		dev = netdev_wait_allrefs_any(&list);
10540		list_del(&dev->todo_list);
10541
10542		/* paranoia */
10543		BUG_ON(netdev_refcnt_read(dev) != 1);
10544		BUG_ON(!list_empty(&dev->ptype_all));
10545		BUG_ON(!list_empty(&dev->ptype_specific));
10546		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10547		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10548
10549		netdev_do_free_pcpu_stats(dev);
10550		if (dev->priv_destructor)
10551			dev->priv_destructor(dev);
10552		if (dev->needs_free_netdev)
10553			free_netdev(dev);
10554
10555		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10556			wake_up(&netdev_unregistering_wq);
10557
10558		/* Free network device */
10559		kobject_put(&dev->dev.kobj);
10560	}
10561}
10562
10563/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10564 * all the same fields in the same order as net_device_stats, with only
10565 * the type differing, but rtnl_link_stats64 may have additional fields
10566 * at the end for newer counters.
10567 */
10568void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10569			     const struct net_device_stats *netdev_stats)
10570{
10571	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10572	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
 
 
 
 
10573	u64 *dst = (u64 *)stats64;
10574
10575	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
 
10576	for (i = 0; i < n; i++)
10577		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10578	/* zero out counters that only exist in rtnl_link_stats64 */
10579	memset((char *)stats64 + n * sizeof(u64), 0,
10580	       sizeof(*stats64) - n * sizeof(u64));
10581}
10582EXPORT_SYMBOL(netdev_stats_to_stats64);
10583
10584static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10585		struct net_device *dev)
10586{
10587	struct net_device_core_stats __percpu *p;
10588
10589	p = alloc_percpu_gfp(struct net_device_core_stats,
10590			     GFP_ATOMIC | __GFP_NOWARN);
10591
10592	if (p && cmpxchg(&dev->core_stats, NULL, p))
10593		free_percpu(p);
10594
10595	/* This READ_ONCE() pairs with the cmpxchg() above */
10596	return READ_ONCE(dev->core_stats);
10597}
10598
10599noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10600{
10601	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10602	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10603	unsigned long __percpu *field;
10604
10605	if (unlikely(!p)) {
10606		p = netdev_core_stats_alloc(dev);
10607		if (!p)
10608			return;
10609	}
10610
10611	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10612	this_cpu_inc(*field);
10613}
10614EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10615
10616/**
10617 *	dev_get_stats	- get network device statistics
10618 *	@dev: device to get statistics from
10619 *	@storage: place to store stats
10620 *
10621 *	Get network statistics from device. Return @storage.
10622 *	The device driver may provide its own method by setting
10623 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10624 *	otherwise the internal statistics structure is used.
10625 */
10626struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10627					struct rtnl_link_stats64 *storage)
10628{
10629	const struct net_device_ops *ops = dev->netdev_ops;
10630	const struct net_device_core_stats __percpu *p;
10631
10632	if (ops->ndo_get_stats64) {
10633		memset(storage, 0, sizeof(*storage));
10634		ops->ndo_get_stats64(dev, storage);
10635	} else if (ops->ndo_get_stats) {
10636		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10637	} else {
10638		netdev_stats_to_stats64(storage, &dev->stats);
10639	}
10640
10641	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10642	p = READ_ONCE(dev->core_stats);
10643	if (p) {
10644		const struct net_device_core_stats *core_stats;
10645		int i;
10646
10647		for_each_possible_cpu(i) {
10648			core_stats = per_cpu_ptr(p, i);
10649			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10650			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10651			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10652			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10653		}
10654	}
10655	return storage;
10656}
10657EXPORT_SYMBOL(dev_get_stats);
10658
10659/**
10660 *	dev_fetch_sw_netstats - get per-cpu network device statistics
10661 *	@s: place to store stats
10662 *	@netstats: per-cpu network stats to read from
10663 *
10664 *	Read per-cpu network statistics and populate the related fields in @s.
10665 */
10666void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10667			   const struct pcpu_sw_netstats __percpu *netstats)
10668{
10669	int cpu;
10670
10671	for_each_possible_cpu(cpu) {
10672		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10673		const struct pcpu_sw_netstats *stats;
10674		unsigned int start;
10675
10676		stats = per_cpu_ptr(netstats, cpu);
10677		do {
10678			start = u64_stats_fetch_begin(&stats->syncp);
10679			rx_packets = u64_stats_read(&stats->rx_packets);
10680			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10681			tx_packets = u64_stats_read(&stats->tx_packets);
10682			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10683		} while (u64_stats_fetch_retry(&stats->syncp, start));
10684
10685		s->rx_packets += rx_packets;
10686		s->rx_bytes   += rx_bytes;
10687		s->tx_packets += tx_packets;
10688		s->tx_bytes   += tx_bytes;
10689	}
10690}
10691EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10692
10693/**
10694 *	dev_get_tstats64 - ndo_get_stats64 implementation
10695 *	@dev: device to get statistics from
10696 *	@s: place to store stats
10697 *
10698 *	Populate @s from dev->stats and dev->tstats. Can be used as
10699 *	ndo_get_stats64() callback.
10700 */
10701void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10702{
10703	netdev_stats_to_stats64(s, &dev->stats);
10704	dev_fetch_sw_netstats(s, dev->tstats);
10705}
10706EXPORT_SYMBOL_GPL(dev_get_tstats64);
10707
10708struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10709{
10710	struct netdev_queue *queue = dev_ingress_queue(dev);
10711
10712#ifdef CONFIG_NET_CLS_ACT
10713	if (queue)
10714		return queue;
10715	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10716	if (!queue)
10717		return NULL;
10718	netdev_init_one_queue(dev, queue, NULL);
10719	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10720	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10721	rcu_assign_pointer(dev->ingress_queue, queue);
10722#endif
10723	return queue;
10724}
10725
10726static const struct ethtool_ops default_ethtool_ops;
10727
10728void netdev_set_default_ethtool_ops(struct net_device *dev,
10729				    const struct ethtool_ops *ops)
10730{
10731	if (dev->ethtool_ops == &default_ethtool_ops)
10732		dev->ethtool_ops = ops;
10733}
10734EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10735
10736/**
10737 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10738 * @dev: netdev to enable the IRQ coalescing on
10739 *
10740 * Sets a conservative default for SW IRQ coalescing. Users can use
10741 * sysfs attributes to override the default values.
10742 */
10743void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10744{
10745	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10746
10747	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10748		dev->gro_flush_timeout = 20000;
10749		dev->napi_defer_hard_irqs = 1;
10750	}
10751}
10752EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10753
10754void netdev_freemem(struct net_device *dev)
10755{
10756	char *addr = (char *)dev - dev->padded;
10757
10758	kvfree(addr);
10759}
10760
10761/**
10762 * alloc_netdev_mqs - allocate network device
10763 * @sizeof_priv: size of private data to allocate space for
10764 * @name: device name format string
10765 * @name_assign_type: origin of device name
10766 * @setup: callback to initialize device
10767 * @txqs: the number of TX subqueues to allocate
10768 * @rxqs: the number of RX subqueues to allocate
10769 *
10770 * Allocates a struct net_device with private data area for driver use
10771 * and performs basic initialization.  Also allocates subqueue structs
10772 * for each queue on the device.
10773 */
10774struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10775		unsigned char name_assign_type,
10776		void (*setup)(struct net_device *),
10777		unsigned int txqs, unsigned int rxqs)
10778{
10779	struct net_device *dev;
10780	unsigned int alloc_size;
10781	struct net_device *p;
10782
10783	BUG_ON(strlen(name) >= sizeof(dev->name));
10784
10785	if (txqs < 1) {
10786		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
 
10787		return NULL;
10788	}
10789
 
10790	if (rxqs < 1) {
10791		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
 
10792		return NULL;
10793	}
 
10794
10795	alloc_size = sizeof(struct net_device);
10796	if (sizeof_priv) {
10797		/* ensure 32-byte alignment of private area */
10798		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10799		alloc_size += sizeof_priv;
10800	}
10801	/* ensure 32-byte alignment of whole construct */
10802	alloc_size += NETDEV_ALIGN - 1;
10803
10804	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10805	if (!p)
 
10806		return NULL;
 
10807
10808	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10809	dev->padded = (char *)dev - (char *)p;
10810
10811	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10812#ifdef CONFIG_PCPU_DEV_REFCNT
10813	dev->pcpu_refcnt = alloc_percpu(int);
10814	if (!dev->pcpu_refcnt)
10815		goto free_dev;
10816	__dev_hold(dev);
10817#else
10818	refcount_set(&dev->dev_refcnt, 1);
10819#endif
10820
10821	if (dev_addr_init(dev))
10822		goto free_pcpu;
10823
10824	dev_mc_init(dev);
10825	dev_uc_init(dev);
10826
10827	dev_net_set(dev, &init_net);
10828
10829	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10830	dev->xdp_zc_max_segs = 1;
10831	dev->gso_max_segs = GSO_MAX_SEGS;
10832	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10833	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10834	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10835	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10836	dev->tso_max_segs = TSO_MAX_SEGS;
10837	dev->upper_level = 1;
10838	dev->lower_level = 1;
10839#ifdef CONFIG_LOCKDEP
10840	dev->nested_level = 0;
10841	INIT_LIST_HEAD(&dev->unlink_list);
10842#endif
10843
10844	INIT_LIST_HEAD(&dev->napi_list);
10845	INIT_LIST_HEAD(&dev->unreg_list);
10846	INIT_LIST_HEAD(&dev->close_list);
10847	INIT_LIST_HEAD(&dev->link_watch_list);
10848	INIT_LIST_HEAD(&dev->adj_list.upper);
10849	INIT_LIST_HEAD(&dev->adj_list.lower);
10850	INIT_LIST_HEAD(&dev->ptype_all);
10851	INIT_LIST_HEAD(&dev->ptype_specific);
10852	INIT_LIST_HEAD(&dev->net_notifier_list);
10853#ifdef CONFIG_NET_SCHED
10854	hash_init(dev->qdisc_hash);
10855#endif
10856	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10857	setup(dev);
10858
10859	if (!dev->tx_queue_len) {
10860		dev->priv_flags |= IFF_NO_QUEUE;
10861		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10862	}
10863
10864	dev->num_tx_queues = txqs;
10865	dev->real_num_tx_queues = txqs;
10866	if (netif_alloc_netdev_queues(dev))
10867		goto free_all;
10868
 
10869	dev->num_rx_queues = rxqs;
10870	dev->real_num_rx_queues = rxqs;
10871	if (netif_alloc_rx_queues(dev))
10872		goto free_all;
 
10873
10874	strcpy(dev->name, name);
10875	dev->name_assign_type = name_assign_type;
10876	dev->group = INIT_NETDEV_GROUP;
10877	if (!dev->ethtool_ops)
10878		dev->ethtool_ops = &default_ethtool_ops;
10879
10880	nf_hook_netdev_init(dev);
10881
10882	return dev;
10883
10884free_all:
10885	free_netdev(dev);
10886	return NULL;
10887
10888free_pcpu:
10889#ifdef CONFIG_PCPU_DEV_REFCNT
10890	free_percpu(dev->pcpu_refcnt);
10891free_dev:
 
 
10892#endif
10893	netdev_freemem(dev);
 
 
10894	return NULL;
10895}
10896EXPORT_SYMBOL(alloc_netdev_mqs);
10897
10898/**
10899 * free_netdev - free network device
10900 * @dev: device
10901 *
10902 * This function does the last stage of destroying an allocated device
10903 * interface. The reference to the device object is released. If this
10904 * is the last reference then it will be freed.Must be called in process
10905 * context.
10906 */
10907void free_netdev(struct net_device *dev)
10908{
10909	struct napi_struct *p, *n;
10910
10911	might_sleep();
10912
10913	/* When called immediately after register_netdevice() failed the unwind
10914	 * handling may still be dismantling the device. Handle that case by
10915	 * deferring the free.
10916	 */
10917	if (dev->reg_state == NETREG_UNREGISTERING) {
10918		ASSERT_RTNL();
10919		dev->needs_free_netdev = true;
10920		return;
10921	}
10922
10923	netif_free_tx_queues(dev);
10924	netif_free_rx_queues(dev);
10925
10926	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10927
10928	/* Flush device addresses */
10929	dev_addr_flush(dev);
10930
10931	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10932		netif_napi_del(p);
10933
10934	ref_tracker_dir_exit(&dev->refcnt_tracker);
10935#ifdef CONFIG_PCPU_DEV_REFCNT
10936	free_percpu(dev->pcpu_refcnt);
10937	dev->pcpu_refcnt = NULL;
10938#endif
10939	free_percpu(dev->core_stats);
10940	dev->core_stats = NULL;
10941	free_percpu(dev->xdp_bulkq);
10942	dev->xdp_bulkq = NULL;
10943
10944	/*  Compatibility with error handling in drivers */
10945	if (dev->reg_state == NETREG_UNINITIALIZED) {
10946		netdev_freemem(dev);
10947		return;
10948	}
10949
10950	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10951	dev->reg_state = NETREG_RELEASED;
10952
10953	/* will free via device release */
10954	put_device(&dev->dev);
10955}
10956EXPORT_SYMBOL(free_netdev);
10957
10958/**
10959 *	synchronize_net -  Synchronize with packet receive processing
10960 *
10961 *	Wait for packets currently being received to be done.
10962 *	Does not block later packets from starting.
10963 */
10964void synchronize_net(void)
10965{
10966	might_sleep();
10967	if (rtnl_is_locked())
10968		synchronize_rcu_expedited();
10969	else
10970		synchronize_rcu();
10971}
10972EXPORT_SYMBOL(synchronize_net);
10973
10974/**
10975 *	unregister_netdevice_queue - remove device from the kernel
10976 *	@dev: device
10977 *	@head: list
10978 *
10979 *	This function shuts down a device interface and removes it
10980 *	from the kernel tables.
10981 *	If head not NULL, device is queued to be unregistered later.
10982 *
10983 *	Callers must hold the rtnl semaphore.  You may want
10984 *	unregister_netdev() instead of this.
10985 */
10986
10987void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10988{
10989	ASSERT_RTNL();
10990
10991	if (head) {
10992		list_move_tail(&dev->unreg_list, head);
10993	} else {
10994		LIST_HEAD(single);
10995
10996		list_add(&dev->unreg_list, &single);
10997		unregister_netdevice_many(&single);
10998	}
10999}
11000EXPORT_SYMBOL(unregister_netdevice_queue);
11001
11002void unregister_netdevice_many_notify(struct list_head *head,
11003				      u32 portid, const struct nlmsghdr *nlh)
11004{
11005	struct net_device *dev, *tmp;
11006	LIST_HEAD(close_head);
11007
11008	BUG_ON(dev_boot_phase);
11009	ASSERT_RTNL();
11010
11011	if (list_empty(head))
11012		return;
11013
11014	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11015		/* Some devices call without registering
11016		 * for initialization unwind. Remove those
11017		 * devices and proceed with the remaining.
11018		 */
11019		if (dev->reg_state == NETREG_UNINITIALIZED) {
11020			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11021				 dev->name, dev);
11022
11023			WARN_ON(1);
11024			list_del(&dev->unreg_list);
11025			continue;
11026		}
11027		dev->dismantle = true;
11028		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11029	}
11030
11031	/* If device is running, close it first. */
11032	list_for_each_entry(dev, head, unreg_list)
11033		list_add_tail(&dev->close_list, &close_head);
11034	dev_close_many(&close_head, true);
11035
11036	list_for_each_entry(dev, head, unreg_list) {
11037		/* And unlink it from device chain. */
11038		write_lock(&dev_base_lock);
11039		unlist_netdevice(dev, false);
11040		dev->reg_state = NETREG_UNREGISTERING;
11041		write_unlock(&dev_base_lock);
11042	}
11043	flush_all_backlogs();
11044
11045	synchronize_net();
11046
11047	list_for_each_entry(dev, head, unreg_list) {
11048		struct sk_buff *skb = NULL;
11049
11050		/* Shutdown queueing discipline. */
11051		dev_shutdown(dev);
11052		dev_tcx_uninstall(dev);
11053		dev_xdp_uninstall(dev);
11054		bpf_dev_bound_netdev_unregister(dev);
11055
11056		netdev_offload_xstats_disable_all(dev);
11057
11058		/* Notify protocols, that we are about to destroy
11059		 * this device. They should clean all the things.
11060		 */
11061		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11062
11063		if (!dev->rtnl_link_ops ||
11064		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11065			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11066						     GFP_KERNEL, NULL, 0,
11067						     portid, nlh);
11068
11069		/*
11070		 *	Flush the unicast and multicast chains
11071		 */
11072		dev_uc_flush(dev);
11073		dev_mc_flush(dev);
11074
11075		netdev_name_node_alt_flush(dev);
11076		netdev_name_node_free(dev->name_node);
11077
11078		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11079
11080		if (dev->netdev_ops->ndo_uninit)
11081			dev->netdev_ops->ndo_uninit(dev);
11082
11083		if (skb)
11084			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11085
11086		/* Notifier chain MUST detach us all upper devices. */
11087		WARN_ON(netdev_has_any_upper_dev(dev));
11088		WARN_ON(netdev_has_any_lower_dev(dev));
11089
11090		/* Remove entries from kobject tree */
11091		netdev_unregister_kobject(dev);
11092#ifdef CONFIG_XPS
11093		/* Remove XPS queueing entries */
11094		netif_reset_xps_queues_gt(dev, 0);
11095#endif
11096	}
11097
11098	synchronize_net();
11099
11100	list_for_each_entry(dev, head, unreg_list) {
11101		netdev_put(dev, &dev->dev_registered_tracker);
11102		net_set_todo(dev);
11103	}
11104
11105	list_del(head);
11106}
 
11107
11108/**
11109 *	unregister_netdevice_many - unregister many devices
11110 *	@head: list of devices
11111 *
11112 *  Note: As most callers use a stack allocated list_head,
11113 *  we force a list_del() to make sure stack wont be corrupted later.
11114 */
11115void unregister_netdevice_many(struct list_head *head)
11116{
11117	unregister_netdevice_many_notify(head, 0, NULL);
 
 
 
 
 
 
11118}
11119EXPORT_SYMBOL(unregister_netdevice_many);
11120
11121/**
11122 *	unregister_netdev - remove device from the kernel
11123 *	@dev: device
11124 *
11125 *	This function shuts down a device interface and removes it
11126 *	from the kernel tables.
11127 *
11128 *	This is just a wrapper for unregister_netdevice that takes
11129 *	the rtnl semaphore.  In general you want to use this and not
11130 *	unregister_netdevice.
11131 */
11132void unregister_netdev(struct net_device *dev)
11133{
11134	rtnl_lock();
11135	unregister_netdevice(dev);
11136	rtnl_unlock();
11137}
11138EXPORT_SYMBOL(unregister_netdev);
11139
11140/**
11141 *	__dev_change_net_namespace - move device to different nethost namespace
11142 *	@dev: device
11143 *	@net: network namespace
11144 *	@pat: If not NULL name pattern to try if the current device name
11145 *	      is already taken in the destination network namespace.
11146 *	@new_ifindex: If not zero, specifies device index in the target
11147 *	              namespace.
11148 *
11149 *	This function shuts down a device interface and moves it
11150 *	to a new network namespace. On success 0 is returned, on
11151 *	a failure a netagive errno code is returned.
11152 *
11153 *	Callers must hold the rtnl semaphore.
11154 */
11155
11156int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11157			       const char *pat, int new_ifindex)
11158{
11159	struct netdev_name_node *name_node;
11160	struct net *net_old = dev_net(dev);
11161	char new_name[IFNAMSIZ] = {};
11162	int err, new_nsid;
11163
11164	ASSERT_RTNL();
11165
11166	/* Don't allow namespace local devices to be moved. */
11167	err = -EINVAL;
11168	if (dev->features & NETIF_F_NETNS_LOCAL)
11169		goto out;
11170
11171	/* Ensure the device has been registrered */
 
11172	if (dev->reg_state != NETREG_REGISTERED)
11173		goto out;
11174
11175	/* Get out if there is nothing todo */
11176	err = 0;
11177	if (net_eq(net_old, net))
11178		goto out;
11179
11180	/* Pick the destination device name, and ensure
11181	 * we can use it in the destination network namespace.
11182	 */
11183	err = -EEXIST;
11184	if (netdev_name_in_use(net, dev->name)) {
11185		/* We get here if we can't use the current device name */
11186		if (!pat)
11187			goto out;
11188		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11189		if (err < 0)
11190			goto out;
11191	}
11192	/* Check that none of the altnames conflicts. */
11193	err = -EEXIST;
11194	netdev_for_each_altname(dev, name_node)
11195		if (netdev_name_in_use(net, name_node->name))
11196			goto out;
11197
11198	/* Check that new_ifindex isn't used yet. */
11199	if (new_ifindex) {
11200		err = dev_index_reserve(net, new_ifindex);
11201		if (err < 0)
11202			goto out;
11203	} else {
11204		/* If there is an ifindex conflict assign a new one */
11205		err = dev_index_reserve(net, dev->ifindex);
11206		if (err == -EBUSY)
11207			err = dev_index_reserve(net, 0);
11208		if (err < 0)
11209			goto out;
11210		new_ifindex = err;
11211	}
11212
11213	/*
11214	 * And now a mini version of register_netdevice unregister_netdevice.
11215	 */
11216
11217	/* If device is running close it first. */
11218	dev_close(dev);
11219
11220	/* And unlink it from device chain */
11221	unlist_netdevice(dev, true);
 
11222
11223	synchronize_net();
11224
11225	/* Shutdown queueing discipline. */
11226	dev_shutdown(dev);
11227
11228	/* Notify protocols, that we are about to destroy
11229	 * this device. They should clean all the things.
11230	 *
11231	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11232	 * This is wanted because this way 8021q and macvlan know
11233	 * the device is just moving and can keep their slaves up.
11234	 */
11235	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11236	rcu_barrier();
11237
11238	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11239
11240	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11241			    new_ifindex);
 
 
11242
11243	/*
11244	 *	Flush the unicast and multicast chains
11245	 */
11246	dev_uc_flush(dev);
11247	dev_mc_flush(dev);
11248
11249	/* Send a netdev-removed uevent to the old namespace */
11250	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11251	netdev_adjacent_del_links(dev);
11252
11253	/* Move per-net netdevice notifiers that are following the netdevice */
11254	move_netdevice_notifiers_dev_net(dev, net);
11255
11256	/* Actually switch the network namespace */
11257	dev_net_set(dev, net);
11258	dev->ifindex = new_ifindex;
11259
11260	if (new_name[0]) /* Rename the netdev to prepared name */
11261		strscpy(dev->name, new_name, IFNAMSIZ);
 
 
 
 
 
11262
11263	/* Fixup kobjects */
11264	dev_set_uevent_suppress(&dev->dev, 1);
11265	err = device_rename(&dev->dev, dev->name);
11266	dev_set_uevent_suppress(&dev->dev, 0);
11267	WARN_ON(err);
11268
11269	/* Send a netdev-add uevent to the new namespace */
11270	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11271	netdev_adjacent_add_links(dev);
11272
11273	/* Adapt owner in case owning user namespace of target network
11274	 * namespace is different from the original one.
11275	 */
11276	err = netdev_change_owner(dev, net_old, net);
11277	WARN_ON(err);
11278
11279	/* Add the device back in the hashes */
11280	list_netdevice(dev);
11281
11282	/* Notify protocols, that a new device appeared. */
11283	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11284
11285	/*
11286	 *	Prevent userspace races by waiting until the network
11287	 *	device is fully setup before sending notifications.
11288	 */
11289	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11290
11291	synchronize_net();
11292	err = 0;
11293out:
11294	return err;
11295}
11296EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11297
11298static int dev_cpu_dead(unsigned int oldcpu)
 
 
11299{
11300	struct sk_buff **list_skb;
11301	struct sk_buff *skb;
11302	unsigned int cpu;
11303	struct softnet_data *sd, *oldsd, *remsd = NULL;
 
 
 
11304
11305	local_irq_disable();
11306	cpu = smp_processor_id();
11307	sd = &per_cpu(softnet_data, cpu);
11308	oldsd = &per_cpu(softnet_data, oldcpu);
11309
11310	/* Find end of our completion_queue. */
11311	list_skb = &sd->completion_queue;
11312	while (*list_skb)
11313		list_skb = &(*list_skb)->next;
11314	/* Append completion queue from offline CPU. */
11315	*list_skb = oldsd->completion_queue;
11316	oldsd->completion_queue = NULL;
11317
11318	/* Append output queue from offline CPU. */
11319	if (oldsd->output_queue) {
11320		*sd->output_queue_tailp = oldsd->output_queue;
11321		sd->output_queue_tailp = oldsd->output_queue_tailp;
11322		oldsd->output_queue = NULL;
11323		oldsd->output_queue_tailp = &oldsd->output_queue;
11324	}
11325	/* Append NAPI poll list from offline CPU, with one exception :
11326	 * process_backlog() must be called by cpu owning percpu backlog.
11327	 * We properly handle process_queue & input_pkt_queue later.
11328	 */
11329	while (!list_empty(&oldsd->poll_list)) {
11330		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11331							    struct napi_struct,
11332							    poll_list);
11333
11334		list_del_init(&napi->poll_list);
11335		if (napi->poll == process_backlog)
11336			napi->state = 0;
11337		else
11338			____napi_schedule(sd, napi);
11339	}
11340
11341	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11342	local_irq_enable();
11343
11344#ifdef CONFIG_RPS
11345	remsd = oldsd->rps_ipi_list;
11346	oldsd->rps_ipi_list = NULL;
11347#endif
11348	/* send out pending IPI's on offline CPU */
11349	net_rps_send_ipi(remsd);
11350
11351	/* Process offline CPU's input_pkt_queue */
11352	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11353		netif_rx(skb);
11354		input_queue_head_incr(oldsd);
11355	}
11356	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11357		netif_rx(skb);
11358		input_queue_head_incr(oldsd);
11359	}
11360
11361	return 0;
11362}
11363
 
11364/**
11365 *	netdev_increment_features - increment feature set by one
11366 *	@all: current feature set
11367 *	@one: new feature set
11368 *	@mask: mask feature set
11369 *
11370 *	Computes a new feature set after adding a device with feature set
11371 *	@one to the master device with current feature set @all.  Will not
11372 *	enable anything that is off in @mask. Returns the new feature set.
11373 */
11374netdev_features_t netdev_increment_features(netdev_features_t all,
11375	netdev_features_t one, netdev_features_t mask)
11376{
11377	if (mask & NETIF_F_HW_CSUM)
11378		mask |= NETIF_F_CSUM_MASK;
11379	mask |= NETIF_F_VLAN_CHALLENGED;
11380
11381	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11382	all &= one | ~NETIF_F_ALL_FOR_ALL;
11383
 
 
 
 
11384	/* If one device supports hw checksumming, set for all. */
11385	if (all & NETIF_F_HW_CSUM)
11386		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11387
11388	return all;
11389}
11390EXPORT_SYMBOL(netdev_increment_features);
11391
11392static struct hlist_head * __net_init netdev_create_hash(void)
11393{
11394	int i;
11395	struct hlist_head *hash;
11396
11397	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11398	if (hash != NULL)
11399		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11400			INIT_HLIST_HEAD(&hash[i]);
11401
11402	return hash;
11403}
11404
11405/* Initialize per network namespace state */
11406static int __net_init netdev_init(struct net *net)
11407{
11408	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11409		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11410
11411	INIT_LIST_HEAD(&net->dev_base_head);
11412
11413	net->dev_name_head = netdev_create_hash();
11414	if (net->dev_name_head == NULL)
11415		goto err_name;
11416
11417	net->dev_index_head = netdev_create_hash();
11418	if (net->dev_index_head == NULL)
11419		goto err_idx;
11420
11421	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11422
11423	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11424
11425	return 0;
11426
11427err_idx:
11428	kfree(net->dev_name_head);
11429err_name:
11430	return -ENOMEM;
11431}
11432
11433/**
11434 *	netdev_drivername - network driver for the device
11435 *	@dev: network device
11436 *
11437 *	Determine network driver for device.
11438 */
11439const char *netdev_drivername(const struct net_device *dev)
11440{
11441	const struct device_driver *driver;
11442	const struct device *parent;
11443	const char *empty = "";
11444
11445	parent = dev->dev.parent;
11446	if (!parent)
11447		return empty;
11448
11449	driver = parent->driver;
11450	if (driver && driver->name)
11451		return driver->name;
11452	return empty;
11453}
11454
11455static void __netdev_printk(const char *level, const struct net_device *dev,
11456			    struct va_format *vaf)
11457{
11458	if (dev && dev->dev.parent) {
11459		dev_printk_emit(level[1] - '0',
11460				dev->dev.parent,
11461				"%s %s %s%s: %pV",
11462				dev_driver_string(dev->dev.parent),
11463				dev_name(dev->dev.parent),
11464				netdev_name(dev), netdev_reg_state(dev),
11465				vaf);
11466	} else if (dev) {
11467		printk("%s%s%s: %pV",
11468		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11469	} else {
11470		printk("%s(NULL net_device): %pV", level, vaf);
11471	}
11472}
11473
11474void netdev_printk(const char *level, const struct net_device *dev,
11475		   const char *format, ...)
11476{
11477	struct va_format vaf;
11478	va_list args;
 
11479
11480	va_start(args, format);
11481
11482	vaf.fmt = format;
11483	vaf.va = &args;
11484
11485	__netdev_printk(level, dev, &vaf);
11486
11487	va_end(args);
 
 
11488}
11489EXPORT_SYMBOL(netdev_printk);
11490
11491#define define_netdev_printk_level(func, level)			\
11492void func(const struct net_device *dev, const char *fmt, ...)	\
11493{								\
 
11494	struct va_format vaf;					\
11495	va_list args;						\
11496								\
11497	va_start(args, fmt);					\
11498								\
11499	vaf.fmt = fmt;						\
11500	vaf.va = &args;						\
11501								\
11502	__netdev_printk(level, dev, &vaf);			\
11503								\
11504	va_end(args);						\
 
 
11505}								\
11506EXPORT_SYMBOL(func);
11507
11508define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11509define_netdev_printk_level(netdev_alert, KERN_ALERT);
11510define_netdev_printk_level(netdev_crit, KERN_CRIT);
11511define_netdev_printk_level(netdev_err, KERN_ERR);
11512define_netdev_printk_level(netdev_warn, KERN_WARNING);
11513define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11514define_netdev_printk_level(netdev_info, KERN_INFO);
11515
11516static void __net_exit netdev_exit(struct net *net)
11517{
11518	kfree(net->dev_name_head);
11519	kfree(net->dev_index_head);
11520	xa_destroy(&net->dev_by_index);
11521	if (net != &init_net)
11522		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11523}
11524
11525static struct pernet_operations __net_initdata netdev_net_ops = {
11526	.init = netdev_init,
11527	.exit = netdev_exit,
11528};
11529
11530static void __net_exit default_device_exit_net(struct net *net)
11531{
11532	struct netdev_name_node *name_node, *tmp;
11533	struct net_device *dev, *aux;
11534	/*
11535	 * Push all migratable network devices back to the
11536	 * initial network namespace
11537	 */
11538	ASSERT_RTNL();
11539	for_each_netdev_safe(net, dev, aux) {
11540		int err;
11541		char fb_name[IFNAMSIZ];
11542
11543		/* Ignore unmoveable devices (i.e. loopback) */
11544		if (dev->features & NETIF_F_NETNS_LOCAL)
11545			continue;
11546
11547		/* Leave virtual devices for the generic cleanup */
11548		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11549			continue;
11550
11551		/* Push remaining network devices to init_net */
11552		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11553		if (netdev_name_in_use(&init_net, fb_name))
11554			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11555
11556		netdev_for_each_altname_safe(dev, name_node, tmp)
11557			if (netdev_name_in_use(&init_net, name_node->name)) {
11558				netdev_name_node_del(name_node);
11559				synchronize_rcu();
11560				__netdev_name_node_alt_destroy(name_node);
11561			}
11562
11563		err = dev_change_net_namespace(dev, &init_net, fb_name);
11564		if (err) {
11565			pr_emerg("%s: failed to move %s to init_net: %d\n",
11566				 __func__, dev->name, err);
11567			BUG();
11568		}
11569	}
 
11570}
11571
11572static void __net_exit default_device_exit_batch(struct list_head *net_list)
11573{
11574	/* At exit all network devices most be removed from a network
11575	 * namespace.  Do this in the reverse order of registration.
11576	 * Do this across as many network namespaces as possible to
11577	 * improve batching efficiency.
11578	 */
11579	struct net_device *dev;
11580	struct net *net;
11581	LIST_HEAD(dev_kill_list);
11582
11583	rtnl_lock();
11584	list_for_each_entry(net, net_list, exit_list) {
11585		default_device_exit_net(net);
11586		cond_resched();
11587	}
11588
11589	list_for_each_entry(net, net_list, exit_list) {
11590		for_each_netdev_reverse(net, dev) {
11591			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11592				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11593			else
11594				unregister_netdevice_queue(dev, &dev_kill_list);
11595		}
11596	}
11597	unregister_netdevice_many(&dev_kill_list);
 
11598	rtnl_unlock();
11599}
11600
11601static struct pernet_operations __net_initdata default_device_ops = {
 
11602	.exit_batch = default_device_exit_batch,
11603};
11604
11605static void __init net_dev_struct_check(void)
11606{
11607	/* TX read-mostly hotpath */
11608	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11609	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11610	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11611	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11612	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11613	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11614	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11615	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11616	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11617	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11618	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11619	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11620	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11621#ifdef CONFIG_XPS
11622	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11623#endif
11624#ifdef CONFIG_NETFILTER_EGRESS
11625	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11626#endif
11627#ifdef CONFIG_NET_XGRESS
11628	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11629#endif
11630	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11631
11632	/* TXRX read-mostly hotpath */
11633	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11634	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11635	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11636	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11637	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11638	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 38);
11639
11640	/* RX read-mostly hotpath */
11641	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11642	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11643	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11644	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11645	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11646	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11647	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11648	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11649	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11650	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11651	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11652#ifdef CONFIG_NETPOLL
11653	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11654#endif
11655#ifdef CONFIG_NET_XGRESS
11656	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11657#endif
11658	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11659}
11660
11661/*
11662 *	Initialize the DEV module. At boot time this walks the device list and
11663 *	unhooks any devices that fail to initialise (normally hardware not
11664 *	present) and leaves us with a valid list of present and active devices.
11665 *
11666 */
11667
11668/*
11669 *       This is called single threaded during boot, so no need
11670 *       to take the rtnl semaphore.
11671 */
11672static int __init net_dev_init(void)
11673{
11674	int i, rc = -ENOMEM;
11675
11676	BUG_ON(!dev_boot_phase);
11677
11678	net_dev_struct_check();
11679
11680	if (dev_proc_init())
11681		goto out;
11682
11683	if (netdev_kobject_init())
11684		goto out;
11685
11686	INIT_LIST_HEAD(&ptype_all);
11687	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11688		INIT_LIST_HEAD(&ptype_base[i]);
11689
11690	if (register_pernet_subsys(&netdev_net_ops))
11691		goto out;
11692
11693	/*
11694	 *	Initialise the packet receive queues.
11695	 */
11696
11697	for_each_possible_cpu(i) {
11698		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11699		struct softnet_data *sd = &per_cpu(softnet_data, i);
11700
11701		INIT_WORK(flush, flush_backlog);
11702
11703		skb_queue_head_init(&sd->input_pkt_queue);
11704		skb_queue_head_init(&sd->process_queue);
11705#ifdef CONFIG_XFRM_OFFLOAD
11706		skb_queue_head_init(&sd->xfrm_backlog);
11707#endif
11708		INIT_LIST_HEAD(&sd->poll_list);
 
11709		sd->output_queue_tailp = &sd->output_queue;
11710#ifdef CONFIG_RPS
11711		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
 
 
11712		sd->cpu = i;
11713#endif
11714		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11715		spin_lock_init(&sd->defer_lock);
11716
11717		init_gro_hash(&sd->backlog);
11718		sd->backlog.poll = process_backlog;
11719		sd->backlog.weight = weight_p;
 
 
11720	}
11721
11722	dev_boot_phase = 0;
11723
11724	/* The loopback device is special if any other network devices
11725	 * is present in a network namespace the loopback device must
11726	 * be present. Since we now dynamically allocate and free the
11727	 * loopback device ensure this invariant is maintained by
11728	 * keeping the loopback device as the first device on the
11729	 * list of network devices.  Ensuring the loopback devices
11730	 * is the first device that appears and the last network device
11731	 * that disappears.
11732	 */
11733	if (register_pernet_device(&loopback_net_ops))
11734		goto out;
11735
11736	if (register_pernet_device(&default_device_ops))
11737		goto out;
11738
11739	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11740	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11741
11742	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11743				       NULL, dev_cpu_dead);
11744	WARN_ON(rc < 0);
11745	rc = 0;
11746out:
11747	return rc;
11748}
11749
11750subsys_initcall(net_dev_init);
v3.1
 
   1/*
   2 * 	NET3	Protocol independent device support routines.
   3 *
   4 *		This program is free software; you can redistribute it and/or
   5 *		modify it under the terms of the GNU General Public License
   6 *		as published by the Free Software Foundation; either version
   7 *		2 of the License, or (at your option) any later version.
   8 *
   9 *	Derived from the non IP parts of dev.c 1.0.19
  10 * 		Authors:	Ross Biro
  11 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *	Additional Authors:
  15 *		Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *		Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *		David Hinds <dahinds@users.sourceforge.net>
  18 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *		Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *	Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *              			to 2 if register_netdev gets called
  25 *              			before net_dev_init & also removed a
  26 *              			few lines of code in the process.
  27 *		Alan Cox	:	device private ioctl copies fields back.
  28 *		Alan Cox	:	Transmit queue code does relevant
  29 *					stunts to keep the queue safe.
  30 *		Alan Cox	:	Fixed double lock.
  31 *		Alan Cox	:	Fixed promisc NULL pointer trap
  32 *		????????	:	Support the full private ioctl range
  33 *		Alan Cox	:	Moved ioctl permission check into
  34 *					drivers
  35 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
  36 *		Alan Cox	:	100 backlog just doesn't cut it when
  37 *					you start doing multicast video 8)
  38 *		Alan Cox	:	Rewrote net_bh and list manager.
  39 *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
  40 *		Alan Cox	:	Took out transmit every packet pass
  41 *					Saved a few bytes in the ioctl handler
  42 *		Alan Cox	:	Network driver sets packet type before
  43 *					calling netif_rx. Saves a function
  44 *					call a packet.
  45 *		Alan Cox	:	Hashed net_bh()
  46 *		Richard Kooijman:	Timestamp fixes.
  47 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
  48 *		Alan Cox	:	Device lock protection.
  49 *		Alan Cox	: 	Fixed nasty side effect of device close
  50 *					changes.
  51 *		Rudi Cilibrasi	:	Pass the right thing to
  52 *					set_mac_address()
  53 *		Dave Miller	:	32bit quantity for the device lock to
  54 *					make it work out on a Sparc.
  55 *		Bjorn Ekwall	:	Added KERNELD hack.
  56 *		Alan Cox	:	Cleaned up the backlog initialise.
  57 *		Craig Metz	:	SIOCGIFCONF fix if space for under
  58 *					1 device.
  59 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
  60 *					is no device open function.
  61 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
  62 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
  63 *		Cyrus Durgin	:	Cleaned for KMOD
  64 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
  65 *					A network device unload needs to purge
  66 *					the backlog queue.
  67 *	Paul Rusty Russell	:	SIOCSIFNAME
  68 *              Pekka Riikonen  :	Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *              			indefinitely on dev->refcnt
  71 * 		J Hadi Salim	:	- Backlog queue sampling
  72 *				        - netif_rx() feedback
  73 */
  74
  75#include <asm/uaccess.h>
  76#include <asm/system.h>
  77#include <linux/bitops.h>
  78#include <linux/capability.h>
  79#include <linux/cpu.h>
  80#include <linux/types.h>
  81#include <linux/kernel.h>
  82#include <linux/hash.h>
  83#include <linux/slab.h>
  84#include <linux/sched.h>
 
  85#include <linux/mutex.h>
 
  86#include <linux/string.h>
  87#include <linux/mm.h>
  88#include <linux/socket.h>
  89#include <linux/sockios.h>
  90#include <linux/errno.h>
  91#include <linux/interrupt.h>
  92#include <linux/if_ether.h>
  93#include <linux/netdevice.h>
  94#include <linux/etherdevice.h>
  95#include <linux/ethtool.h>
  96#include <linux/notifier.h>
  97#include <linux/skbuff.h>
 
 
 
  98#include <net/net_namespace.h>
  99#include <net/sock.h>
 
 100#include <linux/rtnetlink.h>
 101#include <linux/proc_fs.h>
 102#include <linux/seq_file.h>
 103#include <linux/stat.h>
 
 104#include <net/dst.h>
 
 
 105#include <net/pkt_sched.h>
 
 106#include <net/checksum.h>
 107#include <net/xfrm.h>
 
 108#include <linux/highmem.h>
 109#include <linux/init.h>
 110#include <linux/kmod.h>
 111#include <linux/module.h>
 112#include <linux/netpoll.h>
 113#include <linux/rcupdate.h>
 114#include <linux/delay.h>
 115#include <net/wext.h>
 116#include <net/iw_handler.h>
 117#include <asm/current.h>
 118#include <linux/audit.h>
 119#include <linux/dmaengine.h>
 120#include <linux/err.h>
 121#include <linux/ctype.h>
 122#include <linux/if_arp.h>
 123#include <linux/if_vlan.h>
 124#include <linux/ip.h>
 125#include <net/ip.h>
 
 126#include <linux/ipv6.h>
 127#include <linux/in.h>
 128#include <linux/jhash.h>
 129#include <linux/random.h>
 130#include <trace/events/napi.h>
 131#include <trace/events/net.h>
 132#include <trace/events/skb.h>
 133#include <linux/pci.h>
 
 134#include <linux/inetdevice.h>
 135#include <linux/cpu_rmap.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 
 137#include "net-sysfs.h"
 138
 139/* Instead of increasing this, you should create a hash table. */
 140#define MAX_GRO_SKBS 8
 
 141
 142/* This should be increased if a protocol with a bigger head is added. */
 143#define GRO_MAX_HEAD (MAX_HEADER + 128)
 144
 145/*
 146 *	The list of packet types we will receive (as opposed to discard)
 147 *	and the routines to invoke.
 148 *
 149 *	Why 16. Because with 16 the only overlap we get on a hash of the
 150 *	low nibble of the protocol value is RARP/SNAP/X.25.
 151 *
 152 *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
 153 *             sure which should go first, but I bet it won't make much
 154 *             difference if we are running VLANs.  The good news is that
 155 *             this protocol won't be in the list unless compiled in, so
 156 *             the average user (w/out VLANs) will not be adversely affected.
 157 *             --BLG
 158 *
 159 *		0800	IP
 160 *		8100    802.1Q VLAN
 161 *		0001	802.3
 162 *		0002	AX.25
 163 *		0004	802.2
 164 *		8035	RARP
 165 *		0005	SNAP
 166 *		0805	X.25
 167 *		0806	ARP
 168 *		8137	IPX
 169 *		0009	Localtalk
 170 *		86DD	IPv6
 171 */
 172
 173#define PTYPE_HASH_SIZE	(16)
 174#define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
 175
 176static DEFINE_SPINLOCK(ptype_lock);
 177static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 178static struct list_head ptype_all __read_mostly;	/* Taps */
 179
 180/*
 181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 182 * semaphore.
 183 *
 184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 185 *
 186 * Writers must hold the rtnl semaphore while they loop through the
 187 * dev_base_head list, and hold dev_base_lock for writing when they do the
 188 * actual updates.  This allows pure readers to access the list even
 189 * while a writer is preparing to update it.
 190 *
 191 * To put it another way, dev_base_lock is held for writing only to
 192 * protect against pure readers; the rtnl semaphore provides the
 193 * protection against other writers.
 194 *
 195 * See, for example usages, register_netdevice() and
 196 * unregister_netdevice(), which must be called with the rtnl
 197 * semaphore held.
 198 */
 199DEFINE_RWLOCK(dev_base_lock);
 200EXPORT_SYMBOL(dev_base_lock);
 201
 
 
 
 
 
 
 
 
 
 
 202static inline void dev_base_seq_inc(struct net *net)
 203{
 204	while (++net->dev_base_seq == 0);
 
 205}
 206
 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 208{
 209	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
 
 210	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 211}
 212
 213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 214{
 215	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 216}
 217
 218static inline void rps_lock(struct softnet_data *sd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219{
 220#ifdef CONFIG_RPS
 221	spin_lock(&sd->input_pkt_queue.lock);
 222#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223}
 224
 225static inline void rps_unlock(struct softnet_data *sd)
 226{
 227#ifdef CONFIG_RPS
 228	spin_unlock(&sd->input_pkt_queue.lock);
 229#endif
 
 230}
 231
 232/* Device list insertion */
 233static int list_netdevice(struct net_device *dev)
 234{
 
 235	struct net *net = dev_net(dev);
 236
 237	ASSERT_RTNL();
 238
 239	write_lock_bh(&dev_base_lock);
 240	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 241	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 242	hlist_add_head_rcu(&dev->index_hlist,
 243			   dev_index_hash(net, dev->ifindex));
 244	write_unlock_bh(&dev_base_lock);
 
 
 
 
 
 
 245
 246	dev_base_seq_inc(net);
 247
 248	return 0;
 249}
 250
 251/* Device list removal
 252 * caller must respect a RCU grace period before freeing/reusing dev
 253 */
 254static void unlist_netdevice(struct net_device *dev)
 255{
 
 
 
 256	ASSERT_RTNL();
 257
 
 
 
 
 
 258	/* Unlink dev from the device chain */
 259	write_lock_bh(&dev_base_lock);
 
 260	list_del_rcu(&dev->dev_list);
 261	hlist_del_rcu(&dev->name_hlist);
 262	hlist_del_rcu(&dev->index_hlist);
 263	write_unlock_bh(&dev_base_lock);
 
 264
 265	dev_base_seq_inc(dev_net(dev));
 266}
 267
 268/*
 269 *	Our notifier list
 270 */
 271
 272static RAW_NOTIFIER_HEAD(netdev_chain);
 273
 274/*
 275 *	Device drivers call our routines to queue packets here. We empty the
 276 *	queue in the local softnet handler.
 277 */
 278
 279DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 280EXPORT_PER_CPU_SYMBOL(softnet_data);
 281
 282#ifdef CONFIG_LOCKDEP
 283/*
 284 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 285 * according to dev->type
 286 */
 287static const unsigned short netdev_lock_type[] =
 288	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 289	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 290	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 291	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 292	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 293	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 294	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 295	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 296	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 297	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 298	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 299	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 300	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
 301	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
 302	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
 303	 ARPHRD_VOID, ARPHRD_NONE};
 304
 305static const char *const netdev_lock_name[] =
 306	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 307	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 308	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 309	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 310	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 311	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 312	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 313	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 314	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 315	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 316	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 317	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 318	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
 319	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
 320	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
 321	 "_xmit_VOID", "_xmit_NONE"};
 322
 323static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 324static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 325
 326static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 327{
 328	int i;
 329
 330	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 331		if (netdev_lock_type[i] == dev_type)
 332			return i;
 333	/* the last key is used by default */
 334	return ARRAY_SIZE(netdev_lock_type) - 1;
 335}
 336
 337static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 338						 unsigned short dev_type)
 339{
 340	int i;
 341
 342	i = netdev_lock_pos(dev_type);
 343	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 344				   netdev_lock_name[i]);
 345}
 346
 347static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 348{
 349	int i;
 350
 351	i = netdev_lock_pos(dev->type);
 352	lockdep_set_class_and_name(&dev->addr_list_lock,
 353				   &netdev_addr_lock_key[i],
 354				   netdev_lock_name[i]);
 355}
 356#else
 357static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 358						 unsigned short dev_type)
 359{
 360}
 
 361static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 362{
 363}
 364#endif
 365
 366/*******************************************************************************
 
 
 
 
 367
 368		Protocol management and registration routines
 369
 370*******************************************************************************/
 371
 372/*
 373 *	Add a protocol ID to the list. Now that the input handler is
 374 *	smarter we can dispense with all the messy stuff that used to be
 375 *	here.
 376 *
 377 *	BEWARE!!! Protocol handlers, mangling input packets,
 378 *	MUST BE last in hash buckets and checking protocol handlers
 379 *	MUST start from promiscuous ptype_all chain in net_bh.
 380 *	It is true now, do not change it.
 381 *	Explanation follows: if protocol handler, mangling packet, will
 382 *	be the first on list, it is not able to sense, that packet
 383 *	is cloned and should be copied-on-write, so that it will
 384 *	change it and subsequent readers will get broken packet.
 385 *							--ANK (980803)
 386 */
 387
 388static inline struct list_head *ptype_head(const struct packet_type *pt)
 389{
 390	if (pt->type == htons(ETH_P_ALL))
 391		return &ptype_all;
 392	else
 393		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 
 394}
 395
 396/**
 397 *	dev_add_pack - add packet handler
 398 *	@pt: packet type declaration
 399 *
 400 *	Add a protocol handler to the networking stack. The passed &packet_type
 401 *	is linked into kernel lists and may not be freed until it has been
 402 *	removed from the kernel lists.
 403 *
 404 *	This call does not sleep therefore it can not
 405 *	guarantee all CPU's that are in middle of receiving packets
 406 *	will see the new packet type (until the next received packet).
 407 */
 408
 409void dev_add_pack(struct packet_type *pt)
 410{
 411	struct list_head *head = ptype_head(pt);
 412
 413	spin_lock(&ptype_lock);
 414	list_add_rcu(&pt->list, head);
 415	spin_unlock(&ptype_lock);
 416}
 417EXPORT_SYMBOL(dev_add_pack);
 418
 419/**
 420 *	__dev_remove_pack	 - remove packet handler
 421 *	@pt: packet type declaration
 422 *
 423 *	Remove a protocol handler that was previously added to the kernel
 424 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 425 *	from the kernel lists and can be freed or reused once this function
 426 *	returns.
 427 *
 428 *      The packet type might still be in use by receivers
 429 *	and must not be freed until after all the CPU's have gone
 430 *	through a quiescent state.
 431 */
 432void __dev_remove_pack(struct packet_type *pt)
 433{
 434	struct list_head *head = ptype_head(pt);
 435	struct packet_type *pt1;
 436
 437	spin_lock(&ptype_lock);
 438
 439	list_for_each_entry(pt1, head, list) {
 440		if (pt == pt1) {
 441			list_del_rcu(&pt->list);
 442			goto out;
 443		}
 444	}
 445
 446	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
 447out:
 448	spin_unlock(&ptype_lock);
 449}
 450EXPORT_SYMBOL(__dev_remove_pack);
 451
 452/**
 453 *	dev_remove_pack	 - remove packet handler
 454 *	@pt: packet type declaration
 455 *
 456 *	Remove a protocol handler that was previously added to the kernel
 457 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 458 *	from the kernel lists and can be freed or reused once this function
 459 *	returns.
 460 *
 461 *	This call sleeps to guarantee that no CPU is looking at the packet
 462 *	type after return.
 463 */
 464void dev_remove_pack(struct packet_type *pt)
 465{
 466	__dev_remove_pack(pt);
 467
 468	synchronize_net();
 469}
 470EXPORT_SYMBOL(dev_remove_pack);
 471
 472/******************************************************************************
 473
 474		      Device Boot-time Settings Routines
 475
 476*******************************************************************************/
 477
 478/* Boot time configuration table */
 479static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 480
 481/**
 482 *	netdev_boot_setup_add	- add new setup entry
 483 *	@name: name of the device
 484 *	@map: configured settings for the device
 485 *
 486 *	Adds new setup entry to the dev_boot_setup list.  The function
 487 *	returns 0 on error and 1 on success.  This is a generic routine to
 488 *	all netdevices.
 489 */
 490static int netdev_boot_setup_add(char *name, struct ifmap *map)
 
 491{
 492	struct netdev_boot_setup *s;
 493	int i;
 494
 495	s = dev_boot_setup;
 496	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 497		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 498			memset(s[i].name, 0, sizeof(s[i].name));
 499			strlcpy(s[i].name, name, IFNAMSIZ);
 500			memcpy(&s[i].map, map, sizeof(s[i].map));
 501			break;
 502		}
 503	}
 504
 505	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 506}
 
 507
 508/**
 509 *	netdev_boot_setup_check	- check boot time settings
 510 *	@dev: the netdevice
 
 511 *
 512 * 	Check boot time settings for the device.
 513 *	The found settings are set for the device to be used
 514 *	later in the device probing.
 515 *	Returns 0 if no settings found, 1 if they are.
 516 */
 517int netdev_boot_setup_check(struct net_device *dev)
 518{
 519	struct netdev_boot_setup *s = dev_boot_setup;
 520	int i;
 
 
 
 
 
 
 
 
 521
 522	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 523		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 524		    !strcmp(dev->name, s[i].name)) {
 525			dev->irq 	= s[i].map.irq;
 526			dev->base_addr 	= s[i].map.base_addr;
 527			dev->mem_start 	= s[i].map.mem_start;
 528			dev->mem_end 	= s[i].map.mem_end;
 529			return 1;
 530		}
 531	}
 532	return 0;
 533}
 534EXPORT_SYMBOL(netdev_boot_setup_check);
 535
 536
 537/**
 538 *	netdev_boot_base	- get address from boot time settings
 539 *	@prefix: prefix for network device
 540 *	@unit: id for network device
 541 *
 542 * 	Check boot time settings for the base address of device.
 543 *	The found settings are set for the device to be used
 544 *	later in the device probing.
 545 *	Returns 0 if no settings found.
 546 */
 547unsigned long netdev_boot_base(const char *prefix, int unit)
 548{
 549	const struct netdev_boot_setup *s = dev_boot_setup;
 550	char name[IFNAMSIZ];
 551	int i;
 552
 553	sprintf(name, "%s%d", prefix, unit);
 
 554
 555	/*
 556	 * If device already registered then return base of 1
 557	 * to indicate not to probe for this interface
 558	 */
 559	if (__dev_get_by_name(&init_net, name))
 560		return 1;
 561
 562	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 563		if (!strcmp(name, s[i].name))
 564			return s[i].map.base_addr;
 565	return 0;
 566}
 567
 568/*
 569 * Saves at boot time configured settings for any netdevice.
 570 */
 571int __init netdev_boot_setup(char *str)
 572{
 573	int ints[5];
 574	struct ifmap map;
 
 
 
 
 575
 576	str = get_options(str, ARRAY_SIZE(ints), ints);
 577	if (!str || !*str)
 578		return 0;
 
 
 
 
 579
 580	/* Save settings */
 581	memset(&map, 0, sizeof(map));
 582	if (ints[0] > 0)
 583		map.irq = ints[1];
 584	if (ints[0] > 1)
 585		map.base_addr = ints[2];
 586	if (ints[0] > 2)
 587		map.mem_start = ints[3];
 588	if (ints[0] > 3)
 589		map.mem_end = ints[4];
 590
 591	/* Add new entry to the list */
 592	return netdev_boot_setup_add(str, &map);
 593}
 594
 595__setup("netdev=", netdev_boot_setup);
 
 596
 597/*******************************************************************************
 
 
 
 
 598
 599			    Device Interface Subroutines
 600
 601*******************************************************************************/
 602
 603/**
 604 *	__dev_get_by_name	- find a device by its name
 605 *	@net: the applicable net namespace
 606 *	@name: name to find
 607 *
 608 *	Find an interface by name. Must be called under RTNL semaphore
 609 *	or @dev_base_lock. If the name is found a pointer to the device
 610 *	is returned. If the name is not found then %NULL is returned. The
 611 *	reference counters are not incremented so the caller must be
 612 *	careful with locks.
 613 */
 614
 615struct net_device *__dev_get_by_name(struct net *net, const char *name)
 616{
 617	struct hlist_node *p;
 618	struct net_device *dev;
 619	struct hlist_head *head = dev_name_hash(net, name);
 620
 621	hlist_for_each_entry(dev, p, head, name_hlist)
 622		if (!strncmp(dev->name, name, IFNAMSIZ))
 623			return dev;
 624
 625	return NULL;
 
 626}
 627EXPORT_SYMBOL(__dev_get_by_name);
 628
 629/**
 630 *	dev_get_by_name_rcu	- find a device by its name
 631 *	@net: the applicable net namespace
 632 *	@name: name to find
 633 *
 634 *	Find an interface by name.
 635 *	If the name is found a pointer to the device is returned.
 636 * 	If the name is not found then %NULL is returned.
 637 *	The reference counters are not incremented so the caller must be
 638 *	careful with locks. The caller must hold RCU lock.
 639 */
 640
 641struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 642{
 643	struct hlist_node *p;
 
 
 
 
 
 
 
 
 
 644	struct net_device *dev;
 645	struct hlist_head *head = dev_name_hash(net, name);
 646
 647	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
 648		if (!strncmp(dev->name, name, IFNAMSIZ))
 649			return dev;
 650
 651	return NULL;
 652}
 653EXPORT_SYMBOL(dev_get_by_name_rcu);
 654
 655/**
 656 *	dev_get_by_name		- find a device by its name
 657 *	@net: the applicable net namespace
 658 *	@name: name to find
 
 
 659 *
 660 *	Find an interface by name. This can be called from any
 661 *	context and does its own locking. The returned handle has
 662 *	the usage count incremented and the caller must use dev_put() to
 663 *	release it when it is no longer needed. %NULL is returned if no
 664 *	matching device is found.
 665 */
 666
 667struct net_device *dev_get_by_name(struct net *net, const char *name)
 668{
 669	struct net_device *dev;
 670
 671	rcu_read_lock();
 672	dev = dev_get_by_name_rcu(net, name);
 673	if (dev)
 674		dev_hold(dev);
 675	rcu_read_unlock();
 676	return dev;
 677}
 678EXPORT_SYMBOL(dev_get_by_name);
 679
 680/**
 681 *	__dev_get_by_index - find a device by its ifindex
 682 *	@net: the applicable net namespace
 683 *	@ifindex: index of device
 684 *
 685 *	Search for an interface by index. Returns %NULL if the device
 686 *	is not found or a pointer to the device. The device has not
 687 *	had its reference counter increased so the caller must be careful
 688 *	about locking. The caller must hold either the RTNL semaphore
 689 *	or @dev_base_lock.
 690 */
 691
 692struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 693{
 694	struct hlist_node *p;
 695	struct net_device *dev;
 696	struct hlist_head *head = dev_index_hash(net, ifindex);
 697
 698	hlist_for_each_entry(dev, p, head, index_hlist)
 699		if (dev->ifindex == ifindex)
 700			return dev;
 701
 702	return NULL;
 703}
 704EXPORT_SYMBOL(__dev_get_by_index);
 705
 706/**
 707 *	dev_get_by_index_rcu - find a device by its ifindex
 708 *	@net: the applicable net namespace
 709 *	@ifindex: index of device
 710 *
 711 *	Search for an interface by index. Returns %NULL if the device
 712 *	is not found or a pointer to the device. The device has not
 713 *	had its reference counter increased so the caller must be careful
 714 *	about locking. The caller must hold RCU lock.
 715 */
 716
 717struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 718{
 719	struct hlist_node *p;
 720	struct net_device *dev;
 721	struct hlist_head *head = dev_index_hash(net, ifindex);
 722
 723	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
 724		if (dev->ifindex == ifindex)
 725			return dev;
 726
 727	return NULL;
 728}
 729EXPORT_SYMBOL(dev_get_by_index_rcu);
 730
 
 
 
 
 
 
 
 
 
 
 
 
 731
 732/**
 733 *	dev_get_by_index - find a device by its ifindex
 734 *	@net: the applicable net namespace
 735 *	@ifindex: index of device
 
 
 736 *
 737 *	Search for an interface by index. Returns NULL if the device
 738 *	is not found or a pointer to the device. The device returned has
 739 *	had a reference added and the pointer is safe until the user calls
 740 *	dev_put to indicate they have finished with it.
 741 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742
 743struct net_device *dev_get_by_index(struct net *net, int ifindex)
 
 
 
 
 
 
 744{
 745	struct net_device *dev;
 
 746
 
 747	rcu_read_lock();
 
 748	dev = dev_get_by_index_rcu(net, ifindex);
 749	if (dev)
 750		dev_hold(dev);
 
 
 
 
 
 
 
 751	rcu_read_unlock();
 752	return dev;
 
 753}
 754EXPORT_SYMBOL(dev_get_by_index);
 755
 756/**
 757 *	dev_getbyhwaddr_rcu - find a device by its hardware address
 758 *	@net: the applicable net namespace
 759 *	@type: media type of device
 760 *	@ha: hardware address
 761 *
 762 *	Search for an interface by MAC address. Returns NULL if the device
 763 *	is not found or a pointer to the device.
 764 *	The caller must hold RCU or RTNL.
 765 *	The returned device has not had its ref count increased
 766 *	and the caller must therefore be careful about locking
 767 *
 768 */
 769
 770struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 771				       const char *ha)
 772{
 773	struct net_device *dev;
 774
 775	for_each_netdev_rcu(net, dev)
 776		if (dev->type == type &&
 777		    !memcmp(dev->dev_addr, ha, dev->addr_len))
 778			return dev;
 779
 780	return NULL;
 781}
 782EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 783
 784struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 785{
 786	struct net_device *dev;
 787
 788	ASSERT_RTNL();
 789	for_each_netdev(net, dev)
 790		if (dev->type == type)
 791			return dev;
 792
 793	return NULL;
 794}
 795EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 796
 797struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 798{
 799	struct net_device *dev, *ret = NULL;
 800
 801	rcu_read_lock();
 802	for_each_netdev_rcu(net, dev)
 803		if (dev->type == type) {
 804			dev_hold(dev);
 805			ret = dev;
 806			break;
 807		}
 808	rcu_read_unlock();
 809	return ret;
 810}
 811EXPORT_SYMBOL(dev_getfirstbyhwtype);
 812
 813/**
 814 *	dev_get_by_flags_rcu - find any device with given flags
 815 *	@net: the applicable net namespace
 816 *	@if_flags: IFF_* values
 817 *	@mask: bitmask of bits in if_flags to check
 818 *
 819 *	Search for any interface with the given flags. Returns NULL if a device
 820 *	is not found or a pointer to the device. Must be called inside
 821 *	rcu_read_lock(), and result refcount is unchanged.
 822 */
 823
 824struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
 825				    unsigned short mask)
 826{
 827	struct net_device *dev, *ret;
 828
 
 
 829	ret = NULL;
 830	for_each_netdev_rcu(net, dev) {
 831		if (((dev->flags ^ if_flags) & mask) == 0) {
 832			ret = dev;
 833			break;
 834		}
 835	}
 836	return ret;
 837}
 838EXPORT_SYMBOL(dev_get_by_flags_rcu);
 839
 840/**
 841 *	dev_valid_name - check if name is okay for network device
 842 *	@name: name string
 843 *
 844 *	Network device names need to be valid file names to
 845 *	to allow sysfs to work.  We also disallow any kind of
 846 *	whitespace.
 847 */
 848int dev_valid_name(const char *name)
 849{
 850	if (*name == '\0')
 851		return 0;
 852	if (strlen(name) >= IFNAMSIZ)
 853		return 0;
 854	if (!strcmp(name, ".") || !strcmp(name, ".."))
 855		return 0;
 856
 857	while (*name) {
 858		if (*name == '/' || isspace(*name))
 859			return 0;
 860		name++;
 861	}
 862	return 1;
 863}
 864EXPORT_SYMBOL(dev_valid_name);
 865
 866/**
 867 *	__dev_alloc_name - allocate a name for a device
 868 *	@net: network namespace to allocate the device name in
 869 *	@name: name format string
 870 *	@buf:  scratch buffer and result name string
 871 *
 872 *	Passed a format string - eg "lt%d" it will try and find a suitable
 873 *	id. It scans list of devices to build up a free map, then chooses
 874 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 875 *	while allocating the name and adding the device in order to avoid
 876 *	duplicates.
 877 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 878 *	Returns the number of the unit assigned or a negative errno code.
 879 */
 880
 881static int __dev_alloc_name(struct net *net, const char *name, char *buf)
 882{
 883	int i = 0;
 884	const char *p;
 885	const int max_netdevices = 8*PAGE_SIZE;
 886	unsigned long *inuse;
 887	struct net_device *d;
 
 
 
 
 
 
 
 
 888
 889	p = strnchr(name, IFNAMSIZ-1, '%');
 890	if (p) {
 891		/*
 892		 * Verify the string as this thing may have come from
 893		 * the user.  There must be either one "%d" and no other "%"
 894		 * characters.
 895		 */
 896		if (p[1] != 'd' || strchr(p + 2, '%'))
 897			return -EINVAL;
 898
 899		/* Use one page as a bit array of possible slots */
 900		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
 901		if (!inuse)
 902			return -ENOMEM;
 903
 904		for_each_netdev(net, d) {
 905			if (!sscanf(d->name, name, &i))
 906				continue;
 907			if (i < 0 || i >= max_netdevices)
 908				continue;
 909
 910			/*  avoid cases where sscanf is not exact inverse of printf */
 911			snprintf(buf, IFNAMSIZ, name, i);
 912			if (!strncmp(buf, d->name, IFNAMSIZ))
 913				set_bit(i, inuse);
 914		}
 
 
 
 
 915
 916		i = find_first_zero_bit(inuse, max_netdevices);
 917		free_page((unsigned long) inuse);
 
 
 918	}
 919
 920	if (buf != name)
 921		snprintf(buf, IFNAMSIZ, name, i);
 922	if (!__dev_get_by_name(net, buf))
 923		return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924
 925	/* It is possible to run out of possible slots
 926	 * when the name is long and there isn't enough space left
 927	 * for the digits, or if all bits are used.
 928	 */
 929	return -ENFILE;
 930}
 931
 932/**
 933 *	dev_alloc_name - allocate a name for a device
 934 *	@dev: device
 935 *	@name: name format string
 936 *
 937 *	Passed a format string - eg "lt%d" it will try and find a suitable
 938 *	id. It scans list of devices to build up a free map, then chooses
 939 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 940 *	while allocating the name and adding the device in order to avoid
 941 *	duplicates.
 942 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 943 *	Returns the number of the unit assigned or a negative errno code.
 944 */
 945
 946int dev_alloc_name(struct net_device *dev, const char *name)
 947{
 948	char buf[IFNAMSIZ];
 949	struct net *net;
 950	int ret;
 951
 952	BUG_ON(!dev_net(dev));
 953	net = dev_net(dev);
 954	ret = __dev_alloc_name(net, name, buf);
 955	if (ret >= 0)
 956		strlcpy(dev->name, buf, IFNAMSIZ);
 957	return ret;
 958}
 959EXPORT_SYMBOL(dev_alloc_name);
 960
 961static int dev_get_valid_name(struct net_device *dev, const char *name)
 
 962{
 963	struct net *net;
 964
 965	BUG_ON(!dev_net(dev));
 966	net = dev_net(dev);
 967
 968	if (!dev_valid_name(name))
 969		return -EINVAL;
 970
 971	if (strchr(name, '%'))
 972		return dev_alloc_name(dev, name);
 973	else if (__dev_get_by_name(net, name))
 974		return -EEXIST;
 975	else if (dev->name != name)
 976		strlcpy(dev->name, name, IFNAMSIZ);
 977
 978	return 0;
 979}
 980
 981/**
 982 *	dev_change_name - change name of a device
 983 *	@dev: device
 984 *	@newname: name (or format string) must be at least IFNAMSIZ
 985 *
 986 *	Change name of a device, can pass format strings "eth%d".
 987 *	for wildcarding.
 988 */
 989int dev_change_name(struct net_device *dev, const char *newname)
 990{
 
 991	char oldname[IFNAMSIZ];
 992	int err = 0;
 993	int ret;
 994	struct net *net;
 995
 996	ASSERT_RTNL();
 997	BUG_ON(!dev_net(dev));
 998
 999	net = dev_net(dev);
1000	if (dev->flags & IFF_UP)
1001		return -EBUSY;
1002
1003	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
 
 
 
1004		return 0;
 
1005
1006	memcpy(oldname, dev->name, IFNAMSIZ);
1007
1008	err = dev_get_valid_name(dev, newname);
1009	if (err < 0)
 
1010		return err;
 
 
 
 
 
 
 
 
1011
1012rollback:
1013	ret = device_rename(&dev->dev, dev->name);
1014	if (ret) {
1015		memcpy(dev->name, oldname, IFNAMSIZ);
 
 
1016		return ret;
1017	}
1018
1019	write_lock_bh(&dev_base_lock);
1020	hlist_del_rcu(&dev->name_hlist);
1021	write_unlock_bh(&dev_base_lock);
 
 
 
 
1022
1023	synchronize_rcu();
1024
1025	write_lock_bh(&dev_base_lock);
1026	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1027	write_unlock_bh(&dev_base_lock);
1028
1029	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1030	ret = notifier_to_errno(ret);
1031
1032	if (ret) {
1033		/* err >= 0 after dev_alloc_name() or stores the first errno */
1034		if (err >= 0) {
1035			err = ret;
 
1036			memcpy(dev->name, oldname, IFNAMSIZ);
 
 
 
1037			goto rollback;
1038		} else {
1039			printk(KERN_ERR
1040			       "%s: name change rollback failed: %d.\n",
1041			       dev->name, ret);
1042		}
1043	}
1044
1045	return err;
1046}
1047
1048/**
1049 *	dev_set_alias - change ifalias of a device
1050 *	@dev: device
1051 *	@alias: name up to IFALIASZ
1052 *	@len: limit of bytes to copy from info
1053 *
1054 *	Set ifalias for a device,
1055 */
1056int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1057{
1058	ASSERT_RTNL();
1059
1060	if (len >= IFALIASZ)
1061		return -EINVAL;
1062
1063	if (!len) {
1064		if (dev->ifalias) {
1065			kfree(dev->ifalias);
1066			dev->ifalias = NULL;
1067		}
1068		return 0;
 
1069	}
1070
1071	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1072	if (!dev->ifalias)
1073		return -ENOMEM;
 
 
 
 
1074
1075	strlcpy(dev->ifalias, alias, len+1);
1076	return len;
1077}
 
1078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079
1080/**
1081 *	netdev_features_change - device changes features
1082 *	@dev: device to cause notification
1083 *
1084 *	Called to indicate a device has changed features.
1085 */
1086void netdev_features_change(struct net_device *dev)
1087{
1088	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1089}
1090EXPORT_SYMBOL(netdev_features_change);
1091
1092/**
1093 *	netdev_state_change - device changes state
1094 *	@dev: device to cause notification
1095 *
1096 *	Called to indicate a device has changed state. This function calls
1097 *	the notifier chains for netdev_chain and sends a NEWLINK message
1098 *	to the routing socket.
1099 */
1100void netdev_state_change(struct net_device *dev)
1101{
1102	if (dev->flags & IFF_UP) {
1103		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1104		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
 
 
 
 
 
1105	}
1106}
1107EXPORT_SYMBOL(netdev_state_change);
1108
1109int netdev_bonding_change(struct net_device *dev, unsigned long event)
 
 
 
 
 
 
 
 
 
 
 
1110{
1111	return call_netdevice_notifiers(event, dev);
 
 
1112}
1113EXPORT_SYMBOL(netdev_bonding_change);
1114
1115/**
1116 *	dev_load 	- load a network module
1117 *	@net: the applicable net namespace
1118 *	@name: name of interface
1119 *
1120 *	If a network interface is not present and the process has suitable
1121 *	privileges this function loads the module. If module loading is not
1122 *	available in this kernel then it becomes a nop.
 
 
1123 */
 
 
 
 
 
 
 
 
 
1124
1125void dev_load(struct net *net, const char *name)
1126{
1127	struct net_device *dev;
1128	int no_module;
1129
1130	rcu_read_lock();
1131	dev = dev_get_by_name_rcu(net, name);
1132	rcu_read_unlock();
 
 
 
 
 
 
 
 
1133
1134	no_module = !dev;
1135	if (no_module && capable(CAP_NET_ADMIN))
1136		no_module = request_module("netdev-%s", name);
1137	if (no_module && capable(CAP_SYS_MODULE)) {
1138		if (!request_module("%s", name))
1139			pr_err("Loading kernel module for a network device "
1140"with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s "
1141"instead\n", name);
1142	}
1143}
1144EXPORT_SYMBOL(dev_load);
1145
1146static int __dev_open(struct net_device *dev)
1147{
1148	const struct net_device_ops *ops = dev->netdev_ops;
1149	int ret;
1150
1151	ASSERT_RTNL();
 
1152
1153	if (!netif_device_present(dev))
1154		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
1155
1156	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1157	ret = notifier_to_errno(ret);
1158	if (ret)
1159		return ret;
1160
1161	set_bit(__LINK_STATE_START, &dev->state);
1162
1163	if (ops->ndo_validate_addr)
1164		ret = ops->ndo_validate_addr(dev);
1165
1166	if (!ret && ops->ndo_open)
1167		ret = ops->ndo_open(dev);
1168
 
 
1169	if (ret)
1170		clear_bit(__LINK_STATE_START, &dev->state);
1171	else {
1172		dev->flags |= IFF_UP;
1173		net_dmaengine_get();
1174		dev_set_rx_mode(dev);
1175		dev_activate(dev);
 
1176	}
1177
1178	return ret;
1179}
1180
1181/**
1182 *	dev_open	- prepare an interface for use.
1183 *	@dev:	device to open
 
1184 *
1185 *	Takes a device from down to up state. The device's private open
1186 *	function is invoked and then the multicast lists are loaded. Finally
1187 *	the device is moved into the up state and a %NETDEV_UP message is
1188 *	sent to the netdev notifier chain.
1189 *
1190 *	Calling this function on an active interface is a nop. On a failure
1191 *	a negative errno code is returned.
1192 */
1193int dev_open(struct net_device *dev)
1194{
1195	int ret;
1196
1197	if (dev->flags & IFF_UP)
1198		return 0;
1199
1200	ret = __dev_open(dev);
1201	if (ret < 0)
1202		return ret;
1203
1204	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1205	call_netdevice_notifiers(NETDEV_UP, dev);
1206
1207	return ret;
1208}
1209EXPORT_SYMBOL(dev_open);
1210
1211static int __dev_close_many(struct list_head *head)
1212{
1213	struct net_device *dev;
1214
1215	ASSERT_RTNL();
1216	might_sleep();
1217
1218	list_for_each_entry(dev, head, unreg_list) {
 
 
 
1219		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1220
1221		clear_bit(__LINK_STATE_START, &dev->state);
1222
1223		/* Synchronize to scheduled poll. We cannot touch poll list, it
1224		 * can be even on different cpu. So just clear netif_running().
1225		 *
1226		 * dev->stop() will invoke napi_disable() on all of it's
1227		 * napi_struct instances on this device.
1228		 */
1229		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1230	}
1231
1232	dev_deactivate_many(head);
1233
1234	list_for_each_entry(dev, head, unreg_list) {
1235		const struct net_device_ops *ops = dev->netdev_ops;
1236
1237		/*
1238		 *	Call the device specific close. This cannot fail.
1239		 *	Only if device is UP
1240		 *
1241		 *	We allow it to be called even after a DETACH hot-plug
1242		 *	event.
1243		 */
1244		if (ops->ndo_stop)
1245			ops->ndo_stop(dev);
1246
1247		dev->flags &= ~IFF_UP;
1248		net_dmaengine_put();
1249	}
1250
1251	return 0;
1252}
1253
1254static int __dev_close(struct net_device *dev)
1255{
1256	int retval;
1257	LIST_HEAD(single);
1258
1259	list_add(&dev->unreg_list, &single);
1260	retval = __dev_close_many(&single);
1261	list_del(&single);
1262	return retval;
1263}
1264
1265static int dev_close_many(struct list_head *head)
1266{
1267	struct net_device *dev, *tmp;
1268	LIST_HEAD(tmp_list);
1269
1270	list_for_each_entry_safe(dev, tmp, head, unreg_list)
 
1271		if (!(dev->flags & IFF_UP))
1272			list_move(&dev->unreg_list, &tmp_list);
1273
1274	__dev_close_many(head);
1275
1276	list_for_each_entry(dev, head, unreg_list) {
1277		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1278		call_netdevice_notifiers(NETDEV_DOWN, dev);
 
 
1279	}
1280
1281	/* rollback_registered_many needs the complete original list */
1282	list_splice(&tmp_list, head);
1283	return 0;
1284}
 
1285
1286/**
1287 *	dev_close - shutdown an interface.
1288 *	@dev: device to shutdown
1289 *
1290 *	This function moves an active device into down state. A
1291 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1292 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1293 *	chain.
1294 */
1295int dev_close(struct net_device *dev)
1296{
1297	if (dev->flags & IFF_UP) {
1298		LIST_HEAD(single);
1299
1300		list_add(&dev->unreg_list, &single);
1301		dev_close_many(&single);
1302		list_del(&single);
1303	}
1304	return 0;
1305}
1306EXPORT_SYMBOL(dev_close);
1307
1308
1309/**
1310 *	dev_disable_lro - disable Large Receive Offload on a device
1311 *	@dev: device
1312 *
1313 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1314 *	called under RTNL.  This is needed if received packets may be
1315 *	forwarded to another interface.
1316 */
1317void dev_disable_lro(struct net_device *dev)
1318{
1319	u32 flags;
 
1320
1321	/*
1322	 * If we're trying to disable lro on a vlan device
1323	 * use the underlying physical device instead
1324	 */
1325	if (is_vlan_dev(dev))
1326		dev = vlan_dev_real_dev(dev);
1327
1328	if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1329		flags = dev->ethtool_ops->get_flags(dev);
1330	else
1331		flags = ethtool_op_get_flags(dev);
1332
1333	if (!(flags & ETH_FLAG_LRO))
1334		return;
1335
1336	__ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1337	if (unlikely(dev->features & NETIF_F_LRO))
1338		netdev_WARN(dev, "failed to disable LRO!\n");
 
 
 
1339}
1340EXPORT_SYMBOL(dev_disable_lro);
1341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343static int dev_boot_phase = 1;
1344
1345/**
1346 *	register_netdevice_notifier - register a network notifier block
1347 *	@nb: notifier
1348 *
1349 *	Register a notifier to be called when network device events occur.
1350 *	The notifier passed is linked into the kernel structures and must
1351 *	not be reused until it has been unregistered. A negative errno code
1352 *	is returned on a failure.
1353 *
1354 * 	When registered all registration and up events are replayed
1355 *	to the new notifier to allow device to have a race free
1356 *	view of the network device list.
1357 */
1358
1359int register_netdevice_notifier(struct notifier_block *nb)
1360{
1361	struct net_device *dev;
1362	struct net_device *last;
1363	struct net *net;
1364	int err;
1365
 
 
1366	rtnl_lock();
1367	err = raw_notifier_chain_register(&netdev_chain, nb);
1368	if (err)
1369		goto unlock;
1370	if (dev_boot_phase)
1371		goto unlock;
1372	for_each_net(net) {
1373		for_each_netdev(net, dev) {
1374			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1375			err = notifier_to_errno(err);
1376			if (err)
1377				goto rollback;
1378
1379			if (!(dev->flags & IFF_UP))
1380				continue;
1381
1382			nb->notifier_call(nb, NETDEV_UP, dev);
1383		}
1384	}
1385
1386unlock:
1387	rtnl_unlock();
 
1388	return err;
1389
1390rollback:
1391	last = dev;
1392	for_each_net(net) {
1393		for_each_netdev(net, dev) {
1394			if (dev == last)
1395				break;
1396
1397			if (dev->flags & IFF_UP) {
1398				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1399				nb->notifier_call(nb, NETDEV_DOWN, dev);
1400			}
1401			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1402			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1403		}
1404	}
1405
1406	raw_notifier_chain_unregister(&netdev_chain, nb);
1407	goto unlock;
1408}
1409EXPORT_SYMBOL(register_netdevice_notifier);
1410
1411/**
1412 *	unregister_netdevice_notifier - unregister a network notifier block
1413 *	@nb: notifier
1414 *
1415 *	Unregister a notifier previously registered by
1416 *	register_netdevice_notifier(). The notifier is unlinked into the
1417 *	kernel structures and may then be reused. A negative errno code
1418 *	is returned on a failure.
 
 
 
 
1419 */
1420
1421int unregister_netdevice_notifier(struct notifier_block *nb)
1422{
 
1423	int err;
1424
 
 
1425	rtnl_lock();
1426	err = raw_notifier_chain_unregister(&netdev_chain, nb);
 
 
 
 
 
 
 
1427	rtnl_unlock();
 
1428	return err;
1429}
1430EXPORT_SYMBOL(unregister_netdevice_notifier);
1431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432/**
1433 *	call_netdevice_notifiers - call all network notifier blocks
1434 *      @val: value passed unmodified to notifier function
1435 *      @dev: net_device pointer passed unmodified to notifier function
1436 *
1437 *	Call all network notifier blocks.  Parameters and return value
1438 *	are as for raw_notifier_call_chain().
1439 */
1440
1441int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1442{
1443	ASSERT_RTNL();
1444	return raw_notifier_call_chain(&netdev_chain, val, dev);
1445}
1446EXPORT_SYMBOL(call_netdevice_notifiers);
1447
1448/* When > 0 there are consumers of rx skb time stamps */
1449static atomic_t netstamp_needed = ATOMIC_INIT(0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450
1451void net_enable_timestamp(void)
1452{
1453	atomic_inc(&netstamp_needed);
 
 
 
 
 
 
 
 
 
 
 
1454}
1455EXPORT_SYMBOL(net_enable_timestamp);
1456
1457void net_disable_timestamp(void)
1458{
1459	atomic_dec(&netstamp_needed);
 
 
 
 
 
 
 
 
 
 
 
1460}
1461EXPORT_SYMBOL(net_disable_timestamp);
1462
1463static inline void net_timestamp_set(struct sk_buff *skb)
1464{
1465	if (atomic_read(&netstamp_needed))
1466		__net_timestamp(skb);
1467	else
1468		skb->tstamp.tv64 = 0;
1469}
1470
1471static inline void net_timestamp_check(struct sk_buff *skb)
 
 
 
 
 
 
1472{
1473	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1474		__net_timestamp(skb);
1475}
 
1476
1477static inline bool is_skb_forwardable(struct net_device *dev,
1478				      struct sk_buff *skb)
1479{
1480	unsigned int len;
1481
1482	if (!(dev->flags & IFF_UP))
1483		return false;
 
 
1484
1485	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1486	if (skb->len <= len)
1487		return true;
1488
1489	/* if TSO is enabled, we don't care about the length as the packet
1490	 * could be forwarded without being segmented before
1491	 */
1492	if (skb_is_gso(skb))
1493		return true;
1494
1495	return false;
1496}
 
1497
1498/**
1499 * dev_forward_skb - loopback an skb to another netif
1500 *
1501 * @dev: destination network device
1502 * @skb: buffer to forward
1503 *
1504 * return values:
1505 *	NET_RX_SUCCESS	(no congestion)
1506 *	NET_RX_DROP     (packet was dropped, but freed)
1507 *
1508 * dev_forward_skb can be used for injecting an skb from the
1509 * start_xmit function of one device into the receive queue
1510 * of another device.
1511 *
1512 * The receiving device may be in another namespace, so
1513 * we have to clear all information in the skb that could
1514 * impact namespace isolation.
1515 */
1516int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1517{
1518	if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1519		if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1520			atomic_long_inc(&dev->rx_dropped);
1521			kfree_skb(skb);
1522			return NET_RX_DROP;
1523		}
1524	}
1525
1526	skb_orphan(skb);
1527	nf_reset(skb);
1528
1529	if (unlikely(!is_skb_forwardable(dev, skb))) {
1530		atomic_long_inc(&dev->rx_dropped);
1531		kfree_skb(skb);
1532		return NET_RX_DROP;
1533	}
1534	skb_set_dev(skb, dev);
1535	skb->tstamp.tv64 = 0;
1536	skb->pkt_type = PACKET_HOST;
1537	skb->protocol = eth_type_trans(skb, dev);
1538	return netif_rx(skb);
1539}
1540EXPORT_SYMBOL_GPL(dev_forward_skb);
1541
1542static inline int deliver_skb(struct sk_buff *skb,
1543			      struct packet_type *pt_prev,
1544			      struct net_device *orig_dev)
1545{
1546	atomic_inc(&skb->users);
 
 
1547	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1548}
1549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550/*
1551 *	Support routine. Sends outgoing frames to any network
1552 *	taps currently in use.
1553 */
1554
1555static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1556{
1557	struct packet_type *ptype;
1558	struct sk_buff *skb2 = NULL;
1559	struct packet_type *pt_prev = NULL;
 
1560
1561	rcu_read_lock();
1562	list_for_each_entry_rcu(ptype, &ptype_all, list) {
 
 
 
 
1563		/* Never send packets back to the socket
1564		 * they originated from - MvS (miquels@drinkel.ow.org)
1565		 */
1566		if ((ptype->dev == dev || !ptype->dev) &&
1567		    (ptype->af_packet_priv == NULL ||
1568		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1569			if (pt_prev) {
1570				deliver_skb(skb2, pt_prev, skb->dev);
1571				pt_prev = ptype;
1572				continue;
1573			}
1574
1575			skb2 = skb_clone(skb, GFP_ATOMIC);
1576			if (!skb2)
1577				break;
 
 
1578
1579			net_timestamp_set(skb2);
 
 
 
 
 
 
 
 
 
 
 
1580
1581			/* skb->nh should be correctly
1582			   set by sender, so that the second statement is
1583			   just protection against buggy protocols.
1584			 */
1585			skb_reset_mac_header(skb2);
 
 
1586
1587			if (skb_network_header(skb2) < skb2->data ||
1588			    skb2->network_header > skb2->tail) {
1589				if (net_ratelimit())
1590					printk(KERN_CRIT "protocol %04x is "
1591					       "buggy, dev %s\n",
1592					       ntohs(skb2->protocol),
1593					       dev->name);
1594				skb_reset_network_header(skb2);
1595			}
1596
1597			skb2->transport_header = skb2->network_header;
1598			skb2->pkt_type = PACKET_OUTGOING;
1599			pt_prev = ptype;
1600		}
 
 
 
 
 
 
1601	}
1602	if (pt_prev)
1603		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1604	rcu_read_unlock();
1605}
 
1606
1607/* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
 
1608 * @dev: Network device
1609 * @txq: number of queues available
1610 *
1611 * If real_num_tx_queues is changed the tc mappings may no longer be
1612 * valid. To resolve this verify the tc mapping remains valid and if
1613 * not NULL the mapping. With no priorities mapping to this
1614 * offset/count pair it will no longer be used. In the worst case TC0
1615 * is invalid nothing can be done so disable priority mappings. If is
1616 * expected that drivers will fix this mapping if they can before
1617 * calling netif_set_real_num_tx_queues.
1618 */
1619static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1620{
1621	int i;
1622	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1623
1624	/* If TC0 is invalidated disable TC mapping */
1625	if (tc->offset + tc->count > txq) {
1626		pr_warning("Number of in use tx queues changed "
1627			   "invalidating tc mappings. Priority "
1628			   "traffic classification disabled!\n");
1629		dev->num_tc = 0;
1630		return;
1631	}
1632
1633	/* Invalidated prio to tc mappings set to TC0 */
1634	for (i = 1; i < TC_BITMASK + 1; i++) {
1635		int q = netdev_get_prio_tc_map(dev, i);
1636
1637		tc = &dev->tc_to_txq[q];
1638		if (tc->offset + tc->count > txq) {
1639			pr_warning("Number of in use tx queues "
1640				   "changed. Priority %i to tc "
1641				   "mapping %i is no longer valid "
1642				   "setting map to 0\n",
1643				   i, q);
1644			netdev_set_prio_tc_map(dev, i, 0);
1645		}
1646	}
1647}
1648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649/*
1650 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1651 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1652 */
1653int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1654{
 
1655	int rc;
1656
 
 
1657	if (txq < 1 || txq > dev->num_tx_queues)
1658		return -EINVAL;
1659
1660	if (dev->reg_state == NETREG_REGISTERED ||
1661	    dev->reg_state == NETREG_UNREGISTERING) {
1662		ASSERT_RTNL();
1663
1664		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1665						  txq);
1666		if (rc)
1667			return rc;
1668
1669		if (dev->num_tc)
1670			netif_setup_tc(dev, txq);
1671
1672		if (txq < dev->real_num_tx_queues)
 
 
 
 
 
1673			qdisc_reset_all_tx_gt(dev, txq);
 
 
 
 
 
 
1674	}
1675
1676	dev->real_num_tx_queues = txq;
1677	return 0;
1678}
1679EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1680
1681#ifdef CONFIG_RPS
1682/**
1683 *	netif_set_real_num_rx_queues - set actual number of RX queues used
1684 *	@dev: Network device
1685 *	@rxq: Actual number of RX queues
1686 *
1687 *	This must be called either with the rtnl_lock held or before
1688 *	registration of the net device.  Returns 0 on success, or a
1689 *	negative error code.  If called before registration, it always
1690 *	succeeds.
1691 */
1692int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1693{
1694	int rc;
1695
1696	if (rxq < 1 || rxq > dev->num_rx_queues)
1697		return -EINVAL;
1698
1699	if (dev->reg_state == NETREG_REGISTERED) {
1700		ASSERT_RTNL();
1701
1702		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1703						  rxq);
1704		if (rc)
1705			return rc;
1706	}
1707
1708	dev->real_num_rx_queues = rxq;
1709	return 0;
1710}
1711EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1712#endif
1713
1714static inline void __netif_reschedule(struct Qdisc *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715{
1716	struct softnet_data *sd;
1717	unsigned long flags;
1718
1719	local_irq_save(flags);
1720	sd = &__get_cpu_var(softnet_data);
1721	q->next_sched = NULL;
1722	*sd->output_queue_tailp = q;
1723	sd->output_queue_tailp = &q->next_sched;
1724	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1725	local_irq_restore(flags);
1726}
1727
1728void __netif_schedule(struct Qdisc *q)
1729{
1730	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1731		__netif_reschedule(q);
1732}
1733EXPORT_SYMBOL(__netif_schedule);
1734
1735void dev_kfree_skb_irq(struct sk_buff *skb)
 
 
 
 
1736{
1737	if (atomic_dec_and_test(&skb->users)) {
1738		struct softnet_data *sd;
1739		unsigned long flags;
1740
1741		local_irq_save(flags);
1742		sd = &__get_cpu_var(softnet_data);
1743		skb->next = sd->completion_queue;
1744		sd->completion_queue = skb;
1745		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1746		local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747	}
 
 
 
 
 
 
1748}
1749EXPORT_SYMBOL(dev_kfree_skb_irq);
1750
1751void dev_kfree_skb_any(struct sk_buff *skb)
1752{
1753	if (in_irq() || irqs_disabled())
1754		dev_kfree_skb_irq(skb);
1755	else
1756		dev_kfree_skb(skb);
1757}
1758EXPORT_SYMBOL(dev_kfree_skb_any);
1759
1760
1761/**
1762 * netif_device_detach - mark device as removed
1763 * @dev: network device
1764 *
1765 * Mark device as removed from system and therefore no longer available.
1766 */
1767void netif_device_detach(struct net_device *dev)
1768{
1769	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1770	    netif_running(dev)) {
1771		netif_tx_stop_all_queues(dev);
1772	}
1773}
1774EXPORT_SYMBOL(netif_device_detach);
1775
1776/**
1777 * netif_device_attach - mark device as attached
1778 * @dev: network device
1779 *
1780 * Mark device as attached from system and restart if needed.
1781 */
1782void netif_device_attach(struct net_device *dev)
1783{
1784	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1785	    netif_running(dev)) {
1786		netif_tx_wake_all_queues(dev);
1787		__netdev_watchdog_up(dev);
1788	}
1789}
1790EXPORT_SYMBOL(netif_device_attach);
1791
1792/**
1793 * skb_dev_set -- assign a new device to a buffer
1794 * @skb: buffer for the new device
1795 * @dev: network device
1796 *
1797 * If an skb is owned by a device already, we have to reset
1798 * all data private to the namespace a device belongs to
1799 * before assigning it a new device.
1800 */
1801#ifdef CONFIG_NET_NS
1802void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1803{
1804	skb_dst_drop(skb);
1805	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1806		secpath_reset(skb);
1807		nf_reset(skb);
1808		skb_init_secmark(skb);
1809		skb->mark = 0;
1810		skb->priority = 0;
1811		skb->nf_trace = 0;
1812		skb->ipvs_property = 0;
1813#ifdef CONFIG_NET_SCHED
1814		skb->tc_index = 0;
1815#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1816	}
1817	skb->dev = dev;
 
 
 
1818}
1819EXPORT_SYMBOL(skb_set_dev);
1820#endif /* CONFIG_NET_NS */
1821
1822/*
1823 * Invalidate hardware checksum when packet is to be mangled, and
1824 * complete checksum manually on outgoing path.
1825 */
1826int skb_checksum_help(struct sk_buff *skb)
1827{
1828	__wsum csum;
1829	int ret = 0, offset;
1830
1831	if (skb->ip_summed == CHECKSUM_COMPLETE)
1832		goto out_set_summed;
1833
1834	if (unlikely(skb_shinfo(skb)->gso_size)) {
1835		/* Let GSO fix up the checksum. */
1836		goto out_set_summed;
 
 
 
 
 
 
 
 
 
1837	}
1838
1839	offset = skb_checksum_start_offset(skb);
1840	BUG_ON(offset >= skb_headlen(skb));
 
 
 
 
 
 
1841	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1842
1843	offset += skb->csum_offset;
1844	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1845
1846	if (skb_cloned(skb) &&
1847	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1848		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1849		if (ret)
1850			goto out;
1851	}
 
 
 
1852
1853	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1854out_set_summed:
1855	skb->ip_summed = CHECKSUM_NONE;
1856out:
1857	return ret;
1858}
1859EXPORT_SYMBOL(skb_checksum_help);
1860
1861/**
1862 *	skb_gso_segment - Perform segmentation on skb.
1863 *	@skb: buffer to segment
1864 *	@features: features for the output path (see dev->features)
1865 *
1866 *	This function segments the given skb and returns a list of segments.
1867 *
1868 *	It may return NULL if the skb requires no segmentation.  This is
1869 *	only possible when GSO is used for verifying header integrity.
1870 */
1871struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1872{
1873	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1874	struct packet_type *ptype;
1875	__be16 type = skb->protocol;
1876	int vlan_depth = ETH_HLEN;
1877	int err;
1878
1879	while (type == htons(ETH_P_8021Q)) {
1880		struct vlan_hdr *vh;
1881
1882		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1883			return ERR_PTR(-EINVAL);
1884
1885		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1886		type = vh->h_vlan_encapsulated_proto;
1887		vlan_depth += VLAN_HLEN;
 
 
 
 
 
 
 
 
 
 
1888	}
1889
1890	skb_reset_mac_header(skb);
1891	skb->mac_len = skb->network_header - skb->mac_header;
1892	__skb_pull(skb, skb->mac_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893
1894	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1895		struct net_device *dev = skb->dev;
1896		struct ethtool_drvinfo info = {};
1897
1898		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1899			dev->ethtool_ops->get_drvinfo(dev, &info);
1900
1901		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1902		     info.driver, dev ? dev->features : 0L,
1903		     skb->sk ? skb->sk->sk_route_caps : 0L,
1904		     skb->len, skb->data_len, skb->ip_summed);
1905
1906		if (skb_header_cloned(skb) &&
1907		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1908			return ERR_PTR(err);
1909	}
1910
1911	rcu_read_lock();
1912	list_for_each_entry_rcu(ptype,
1913			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1914		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1915			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1916				err = ptype->gso_send_check(skb);
1917				segs = ERR_PTR(err);
1918				if (err || skb_gso_ok(skb, features))
1919					break;
1920				__skb_push(skb, (skb->data -
1921						 skb_network_header(skb)));
1922			}
1923			segs = ptype->gso_segment(skb, features);
1924			break;
1925		}
1926	}
1927	rcu_read_unlock();
1928
1929	__skb_push(skb, skb->data - skb_mac_header(skb));
 
1930
1931	return segs;
1932}
1933EXPORT_SYMBOL(skb_gso_segment);
1934
1935/* Take action when hardware reception checksum errors are detected. */
1936#ifdef CONFIG_BUG
1937void netdev_rx_csum_fault(struct net_device *dev)
1938{
1939	if (net_ratelimit()) {
1940		printk(KERN_ERR "%s: hw csum failure.\n",
1941			dev ? dev->name : "<unknown>");
1942		dump_stack();
1943	}
 
 
 
1944}
1945EXPORT_SYMBOL(netdev_rx_csum_fault);
1946#endif
1947
1948/* Actually, we should eliminate this check as soon as we know, that:
1949 * 1. IOMMU is present and allows to map all the memory.
1950 * 2. No high memory really exists on this machine.
1951 */
1952
1953static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1954{
1955#ifdef CONFIG_HIGHMEM
1956	int i;
 
1957	if (!(dev->features & NETIF_F_HIGHDMA)) {
1958		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1959			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1960				return 1;
1961	}
1962
1963	if (PCI_DMA_BUS_IS_PHYS) {
1964		struct device *pdev = dev->dev.parent;
1965
1966		if (!pdev)
1967			return 0;
1968		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1969			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1970			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1971				return 1;
1972		}
1973	}
1974#endif
1975	return 0;
1976}
1977
1978struct dev_gso_cb {
1979	void (*destructor)(struct sk_buff *skb);
1980};
 
 
 
 
 
 
 
1981
1982#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
 
 
 
 
 
 
 
 
 
1983
1984static void dev_gso_skb_destructor(struct sk_buff *skb)
 
1985{
1986	struct dev_gso_cb *cb;
 
 
 
1987
1988	do {
1989		struct sk_buff *nskb = skb->next;
 
 
 
 
1990
1991		skb->next = nskb->next;
1992		nskb->next = NULL;
1993		kfree_skb(nskb);
1994	} while (skb->next);
1995
1996	cb = DEV_GSO_CB(skb);
1997	if (cb->destructor)
1998		cb->destructor(skb);
 
 
1999}
 
2000
2001/**
2002 *	dev_gso_segment - Perform emulated hardware segmentation on skb.
2003 *	@skb: buffer to segment
2004 *	@features: device features as applicable to this skb
2005 *
2006 *	This function segments the given skb and stores the list of segments
2007 *	in skb->next.
2008 */
2009static int dev_gso_segment(struct sk_buff *skb, int features)
2010{
2011	struct sk_buff *segs;
 
2012
2013	segs = skb_gso_segment(skb, features);
 
 
 
 
2014
2015	/* Verifying header integrity only. */
2016	if (!segs)
2017		return 0;
2018
2019	if (IS_ERR(segs))
2020		return PTR_ERR(segs);
2021
2022	skb->next = segs;
2023	DEV_GSO_CB(skb)->destructor = skb->destructor;
2024	skb->destructor = dev_gso_skb_destructor;
 
2025
2026	return 0;
2027}
 
 
 
 
 
 
2028
2029/*
2030 * Try to orphan skb early, right before transmission by the device.
2031 * We cannot orphan skb if tx timestamp is requested or the sk-reference
2032 * is needed on driver level for other reasons, e.g. see net/can/raw.c
2033 */
2034static inline void skb_orphan_try(struct sk_buff *skb)
2035{
2036	struct sock *sk = skb->sk;
2037
2038	if (sk && !skb_shinfo(skb)->tx_flags) {
2039		/* skb_tx_hash() wont be able to get sk.
2040		 * We copy sk_hash into skb->rxhash
2041		 */
2042		if (!skb->rxhash)
2043			skb->rxhash = sk->sk_hash;
2044		skb_orphan(skb);
2045	}
 
 
2046}
2047
2048static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2049{
2050	return ((features & NETIF_F_GEN_CSUM) ||
2051		((features & NETIF_F_V4_CSUM) &&
2052		 protocol == htons(ETH_P_IP)) ||
2053		((features & NETIF_F_V6_CSUM) &&
2054		 protocol == htons(ETH_P_IPV6)) ||
2055		((features & NETIF_F_FCOE_CRC) &&
2056		 protocol == htons(ETH_P_FCOE)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057}
 
2058
2059static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
 
2060{
2061	if (!can_checksum_protocol(features, protocol)) {
2062		features &= ~NETIF_F_ALL_CSUM;
2063		features &= ~NETIF_F_SG;
2064	} else if (illegal_highdma(skb->dev, skb)) {
2065		features &= ~NETIF_F_SG;
2066	}
 
 
 
 
2067
2068	return features;
2069}
2070
2071u32 netif_skb_features(struct sk_buff *skb)
 
2072{
2073	__be16 protocol = skb->protocol;
2074	u32 features = skb->dev->features;
2075
2076	if (protocol == htons(ETH_P_8021Q)) {
2077		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2078		protocol = veh->h_vlan_encapsulated_proto;
2079	} else if (!vlan_tx_tag_present(skb)) {
2080		return harmonize_features(skb, protocol, features);
2081	}
2082
2083	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
 
 
 
 
 
2084
2085	if (protocol != htons(ETH_P_8021Q)) {
2086		return harmonize_features(skb, protocol, features);
2087	} else {
2088		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2089				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2090		return harmonize_features(skb, protocol, features);
2091	}
 
 
 
 
2092}
2093EXPORT_SYMBOL(netif_skb_features);
2094
2095/*
2096 * Returns true if either:
2097 *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2098 *	2. skb is fragmented and the device does not support SG, or if
2099 *	   at least one of fragments is in highmem and device does not
2100 *	   support DMA from it.
2101 */
2102static inline int skb_needs_linearize(struct sk_buff *skb,
2103				      int features)
2104{
2105	return skb_is_nonlinear(skb) &&
2106			((skb_has_frag_list(skb) &&
2107				!(features & NETIF_F_FRAGLIST)) ||
2108			(skb_shinfo(skb)->nr_frags &&
2109				!(features & NETIF_F_SG)));
2110}
2111
2112int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2113			struct netdev_queue *txq)
2114{
2115	const struct net_device_ops *ops = dev->netdev_ops;
2116	int rc = NETDEV_TX_OK;
2117	unsigned int skb_len;
2118
2119	if (likely(!skb->next)) {
2120		u32 features;
2121
2122		/*
2123		 * If device doesn't need skb->dst, release it right now while
2124		 * its hot in this cpu cache
2125		 */
2126		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2127			skb_dst_drop(skb);
 
 
 
 
 
2128
2129		if (!list_empty(&ptype_all))
2130			dev_queue_xmit_nit(skb, dev);
 
2131
2132		skb_orphan_try(skb);
 
 
 
2133
2134		features = netif_skb_features(skb);
 
 
2135
2136		if (vlan_tx_tag_present(skb) &&
2137		    !(features & NETIF_F_HW_VLAN_TX)) {
2138			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2139			if (unlikely(!skb))
2140				goto out;
2141
2142			skb->vlan_tci = 0;
 
 
 
 
 
2143		}
2144
2145		if (netif_needs_gso(skb, features)) {
2146			if (unlikely(dev_gso_segment(skb, features)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2147				goto out_kfree_skb;
2148			if (skb->next)
2149				goto gso;
2150		} else {
2151			if (skb_needs_linearize(skb, features) &&
2152			    __skb_linearize(skb))
2153				goto out_kfree_skb;
2154
2155			/* If packet is not checksummed and device does not
2156			 * support checksumming for this protocol, complete
2157			 * checksumming here.
2158			 */
2159			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2160				skb_set_transport_header(skb,
2161					skb_checksum_start_offset(skb));
2162				if (!(features & NETIF_F_ALL_CSUM) &&
2163				     skb_checksum_help(skb))
2164					goto out_kfree_skb;
2165			}
2166		}
2167
2168		skb_len = skb->len;
2169		rc = ops->ndo_start_xmit(skb, dev);
2170		trace_net_dev_xmit(skb, rc, dev, skb_len);
2171		if (rc == NETDEV_TX_OK)
2172			txq_trans_update(txq);
2173		return rc;
2174	}
2175
2176gso:
2177	do {
2178		struct sk_buff *nskb = skb->next;
2179
2180		skb->next = nskb->next;
2181		nskb->next = NULL;
2182
2183		/*
2184		 * If device doesn't need nskb->dst, release it right now while
2185		 * its hot in this cpu cache
2186		 */
2187		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2188			skb_dst_drop(nskb);
2189
2190		skb_len = nskb->len;
2191		rc = ops->ndo_start_xmit(nskb, dev);
2192		trace_net_dev_xmit(nskb, rc, dev, skb_len);
2193		if (unlikely(rc != NETDEV_TX_OK)) {
2194			if (rc & ~NETDEV_TX_MASK)
2195				goto out_kfree_gso_skb;
2196			nskb->next = skb->next;
2197			skb->next = nskb;
2198			return rc;
2199		}
2200		txq_trans_update(txq);
2201		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2202			return NETDEV_TX_BUSY;
2203	} while (skb->next);
2204
2205out_kfree_gso_skb:
2206	if (likely(skb->next == NULL))
2207		skb->destructor = DEV_GSO_CB(skb)->destructor;
2208out_kfree_skb:
2209	kfree_skb(skb);
2210out:
2211	return rc;
 
2212}
2213
2214static u32 hashrnd __read_mostly;
2215
2216/*
2217 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2218 * to be used as a distribution range.
2219 */
2220u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2221		  unsigned int num_tx_queues)
2222{
2223	u32 hash;
2224	u16 qoffset = 0;
2225	u16 qcount = num_tx_queues;
2226
2227	if (skb_rx_queue_recorded(skb)) {
2228		hash = skb_get_rx_queue(skb);
2229		while (unlikely(hash >= num_tx_queues))
2230			hash -= num_tx_queues;
2231		return hash;
2232	}
2233
2234	if (dev->num_tc) {
2235		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2236		qoffset = dev->tc_to_txq[tc].offset;
2237		qcount = dev->tc_to_txq[tc].count;
2238	}
2239
2240	if (skb->sk && skb->sk->sk_hash)
2241		hash = skb->sk->sk_hash;
2242	else
2243		hash = (__force u16) skb->protocol ^ skb->rxhash;
2244	hash = jhash_1word(hash, hashrnd);
2245
2246	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
 
 
 
 
 
 
 
 
 
2247}
2248EXPORT_SYMBOL(__skb_tx_hash);
2249
2250static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2251{
2252	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2253		if (net_ratelimit()) {
2254			pr_warning("%s selects TX queue %d, but "
2255				"real number of TX queues is %d\n",
2256				dev->name, queue_index, dev->real_num_tx_queues);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257		}
2258		return 0;
2259	}
2260	return queue_index;
2261}
2262
2263static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2264{
2265#ifdef CONFIG_XPS
2266	struct xps_dev_maps *dev_maps;
2267	struct xps_map *map;
2268	int queue_index = -1;
2269
2270	rcu_read_lock();
2271	dev_maps = rcu_dereference(dev->xps_maps);
2272	if (dev_maps) {
2273		map = rcu_dereference(
2274		    dev_maps->cpu_map[raw_smp_processor_id()]);
2275		if (map) {
2276			if (map->len == 1)
2277				queue_index = map->queues[0];
2278			else {
2279				u32 hash;
2280				if (skb->sk && skb->sk->sk_hash)
2281					hash = skb->sk->sk_hash;
2282				else
2283					hash = (__force u16) skb->protocol ^
2284					    skb->rxhash;
2285				hash = jhash_1word(hash, hashrnd);
2286				queue_index = map->queues[
2287				    ((u64)hash * map->len) >> 32];
2288			}
2289			if (unlikely(queue_index >= dev->real_num_tx_queues))
2290				queue_index = -1;
2291		}
2292	}
2293	rcu_read_unlock();
2294
2295	return queue_index;
2296#else
2297	return -1;
2298#endif
2299}
2300
2301static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2302					struct sk_buff *skb)
 
2303{
2304	int queue_index;
2305	const struct net_device_ops *ops = dev->netdev_ops;
2306
2307	if (dev->real_num_tx_queues == 1)
2308		queue_index = 0;
2309	else if (ops->ndo_select_queue) {
2310		queue_index = ops->ndo_select_queue(dev, skb);
2311		queue_index = dev_cap_txqueue(dev, queue_index);
2312	} else {
2313		struct sock *sk = skb->sk;
2314		queue_index = sk_tx_queue_get(sk);
2315
2316		if (queue_index < 0 || skb->ooo_okay ||
2317		    queue_index >= dev->real_num_tx_queues) {
2318			int old_index = queue_index;
2319
2320			queue_index = get_xps_queue(dev, skb);
2321			if (queue_index < 0)
2322				queue_index = skb_tx_hash(dev, skb);
2323
2324			if (queue_index != old_index && sk) {
2325				struct dst_entry *dst =
2326				    rcu_dereference_check(sk->sk_dst_cache, 1);
2327
2328				if (dst && skb_dst(skb) == dst)
2329					sk_tx_queue_set(sk, queue_index);
2330			}
2331		}
2332	}
2333
2334	skb_set_queue_mapping(skb, queue_index);
2335	return netdev_get_tx_queue(dev, queue_index);
2336}
2337
2338static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2339				 struct net_device *dev,
2340				 struct netdev_queue *txq)
2341{
2342	spinlock_t *root_lock = qdisc_lock(q);
 
2343	bool contended;
2344	int rc;
2345
2346	qdisc_skb_cb(skb)->pkt_len = skb->len;
2347	qdisc_calculate_pkt_len(skb, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2348	/*
2349	 * Heuristic to force contended enqueues to serialize on a
2350	 * separate lock before trying to get qdisc main lock.
2351	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2352	 * and dequeue packets faster.
 
 
 
 
2353	 */
2354	contended = qdisc_is_running(q);
2355	if (unlikely(contended))
2356		spin_lock(&q->busylock);
2357
2358	spin_lock(root_lock);
2359	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2360		kfree_skb(skb);
2361		rc = NET_XMIT_DROP;
2362	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2363		   qdisc_run_begin(q)) {
2364		/*
2365		 * This is a work-conserving queue; there are no old skbs
2366		 * waiting to be sent out; and the qdisc is not running -
2367		 * xmit the skb directly.
2368		 */
2369		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2370			skb_dst_force(skb);
2371
2372		qdisc_bstats_update(q, skb);
2373
2374		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2375			if (unlikely(contended)) {
2376				spin_unlock(&q->busylock);
2377				contended = false;
2378			}
2379			__qdisc_run(q);
2380		} else
2381			qdisc_run_end(q);
2382
 
2383		rc = NET_XMIT_SUCCESS;
2384	} else {
2385		skb_dst_force(skb);
2386		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2387		if (qdisc_run_begin(q)) {
2388			if (unlikely(contended)) {
2389				spin_unlock(&q->busylock);
2390				contended = false;
2391			}
2392			__qdisc_run(q);
 
2393		}
2394	}
2395	spin_unlock(root_lock);
 
 
 
2396	if (unlikely(contended))
2397		spin_unlock(&q->busylock);
2398	return rc;
2399}
2400
2401static DEFINE_PER_CPU(int, xmit_recursion);
2402#define RECURSION_LIMIT 10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403
2404/**
2405 *	dev_queue_xmit - transmit a buffer
 
 
2406 *	@skb: buffer to transmit
2407 *
2408 *	Queue a buffer for transmission to a network device. The caller must
2409 *	have set the device and priority and built the buffer before calling
2410 *	this function. The function can be called from an interrupt.
2411 *
2412 *	A negative errno code is returned on a failure. A success does not
2413 *	guarantee the frame will be transmitted as it may be dropped due
2414 *	to congestion or traffic shaping.
2415 *
2416 * -----------------------------------------------------------------------------------
2417 *      I notice this method can also return errors from the queue disciplines,
2418 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2419 *      be positive.
2420 *
2421 *      Regardless of the return value, the skb is consumed, so it is currently
2422 *      difficult to retry a send to this method.  (You can bump the ref count
2423 *      before sending to hold a reference for retry if you are careful.)
2424 *
2425 *      When calling this method, interrupts MUST be enabled.  This is because
2426 *      the BH enable code must have IRQs enabled so that it will not deadlock.
2427 *          --BLG
2428 */
2429int dev_queue_xmit(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2430{
2431	struct net_device *dev = skb->dev;
2432	struct netdev_queue *txq;
2433	struct Qdisc *q;
2434	int rc = -ENOMEM;
 
 
 
 
 
 
 
2435
2436	/* Disable soft irqs for various locks below. Also
2437	 * stops preemption for RCU.
2438	 */
2439	rcu_read_lock_bh();
2440
2441	txq = dev_pick_tx(dev, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2442	q = rcu_dereference_bh(txq->qdisc);
2443
2444#ifdef CONFIG_NET_CLS_ACT
2445	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2446#endif
2447	trace_net_dev_queue(skb);
2448	if (q->enqueue) {
2449		rc = __dev_xmit_skb(skb, q, dev, txq);
2450		goto out;
2451	}
2452
2453	/* The device has no queue. Common case for software devices:
2454	   loopback, all the sorts of tunnels...
2455
2456	   Really, it is unlikely that netif_tx_lock protection is necessary
2457	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2458	   counters.)
2459	   However, it is possible, that they rely on protection
2460	   made by us here.
2461
2462	   Check this and shot the lock. It is not prone from deadlocks.
2463	   Either shot noqueue qdisc, it is even simpler 8)
2464	 */
2465	if (dev->flags & IFF_UP) {
2466		int cpu = smp_processor_id(); /* ok because BHs are off */
2467
2468		if (txq->xmit_lock_owner != cpu) {
 
 
 
 
 
2469
2470			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2471				goto recursion_alert;
 
2472
2473			HARD_TX_LOCK(dev, txq, cpu);
2474
2475			if (!netif_tx_queue_stopped(txq)) {
2476				__this_cpu_inc(xmit_recursion);
2477				rc = dev_hard_start_xmit(skb, dev, txq);
2478				__this_cpu_dec(xmit_recursion);
2479				if (dev_xmit_complete(rc)) {
2480					HARD_TX_UNLOCK(dev, txq);
2481					goto out;
2482				}
2483			}
2484			HARD_TX_UNLOCK(dev, txq);
2485			if (net_ratelimit())
2486				printk(KERN_CRIT "Virtual device %s asks to "
2487				       "queue packet!\n", dev->name);
2488		} else {
2489			/* Recursion is detected! It is possible,
2490			 * unfortunately
2491			 */
2492recursion_alert:
2493			if (net_ratelimit())
2494				printk(KERN_CRIT "Dead loop on virtual device "
2495				       "%s, fix it urgently!\n", dev->name);
2496		}
2497	}
2498
2499	rc = -ENETDOWN;
2500	rcu_read_unlock_bh();
2501
2502	kfree_skb(skb);
 
2503	return rc;
2504out:
2505	rcu_read_unlock_bh();
2506	return rc;
2507}
2508EXPORT_SYMBOL(dev_queue_xmit);
2509
 
 
 
 
 
 
 
2510
2511/*=======================================================================
2512			Receiver routines
2513  =======================================================================*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2514
2515int netdev_max_backlog __read_mostly = 1000;
 
 
2516int netdev_tstamp_prequeue __read_mostly = 1;
 
2517int netdev_budget __read_mostly = 300;
2518int weight_p __read_mostly = 64;            /* old backlog weight */
 
 
 
 
 
 
2519
2520/* Called with irq disabled */
2521static inline void ____napi_schedule(struct softnet_data *sd,
2522				     struct napi_struct *napi)
2523{
2524	list_add_tail(&napi->poll_list, &sd->poll_list);
2525	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2526}
2527
2528/*
2529 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2530 * and src/dst port numbers. Returns a non-zero hash number on success
2531 * and 0 on failure.
2532 */
2533__u32 __skb_get_rxhash(struct sk_buff *skb)
2534{
2535	int nhoff, hash = 0, poff;
2536	const struct ipv6hdr *ip6;
2537	const struct iphdr *ip;
2538	u8 ip_proto;
2539	u32 addr1, addr2, ihl;
2540	union {
2541		u32 v32;
2542		u16 v16[2];
2543	} ports;
2544
2545	nhoff = skb_network_offset(skb);
2546
2547	switch (skb->protocol) {
2548	case __constant_htons(ETH_P_IP):
2549		if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2550			goto done;
2551
2552		ip = (const struct iphdr *) (skb->data + nhoff);
2553		if (ip_is_fragment(ip))
2554			ip_proto = 0;
2555		else
2556			ip_proto = ip->protocol;
2557		addr1 = (__force u32) ip->saddr;
2558		addr2 = (__force u32) ip->daddr;
2559		ihl = ip->ihl;
2560		break;
2561	case __constant_htons(ETH_P_IPV6):
2562		if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2563			goto done;
2564
2565		ip6 = (const struct ipv6hdr *) (skb->data + nhoff);
2566		ip_proto = ip6->nexthdr;
2567		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2568		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2569		ihl = (40 >> 2);
2570		break;
2571	default:
2572		goto done;
2573	}
2574
2575	ports.v32 = 0;
2576	poff = proto_ports_offset(ip_proto);
2577	if (poff >= 0) {
2578		nhoff += ihl * 4 + poff;
2579		if (pskb_may_pull(skb, nhoff + 4)) {
2580			ports.v32 = * (__force u32 *) (skb->data + nhoff);
2581			if (ports.v16[1] < ports.v16[0])
2582				swap(ports.v16[0], ports.v16[1]);
2583		}
2584	}
2585
2586	/* get a consistent hash (same value on both flow directions) */
2587	if (addr2 < addr1)
2588		swap(addr1, addr2);
2589
2590	hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2591	if (!hash)
2592		hash = 1;
2593
2594done:
2595	return hash;
2596}
2597EXPORT_SYMBOL(__skb_get_rxhash);
2598
2599#ifdef CONFIG_RPS
2600
2601/* One global table that all flow-based protocols share. */
2602struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2603EXPORT_SYMBOL(rps_sock_flow_table);
 
 
 
 
 
 
 
2604
2605static struct rps_dev_flow *
2606set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2607	    struct rps_dev_flow *rflow, u16 next_cpu)
2608{
2609	u16 tcpu;
2610
2611	tcpu = rflow->cpu = next_cpu;
2612	if (tcpu != RPS_NO_CPU) {
2613#ifdef CONFIG_RFS_ACCEL
2614		struct netdev_rx_queue *rxqueue;
2615		struct rps_dev_flow_table *flow_table;
2616		struct rps_dev_flow *old_rflow;
2617		u32 flow_id;
2618		u16 rxq_index;
2619		int rc;
2620
2621		/* Should we steer this flow to a different hardware queue? */
2622		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2623		    !(dev->features & NETIF_F_NTUPLE))
2624			goto out;
2625		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2626		if (rxq_index == skb_get_rx_queue(skb))
2627			goto out;
2628
2629		rxqueue = dev->_rx + rxq_index;
2630		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2631		if (!flow_table)
2632			goto out;
2633		flow_id = skb->rxhash & flow_table->mask;
2634		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2635							rxq_index, flow_id);
2636		if (rc < 0)
2637			goto out;
2638		old_rflow = rflow;
2639		rflow = &flow_table->flows[flow_id];
2640		rflow->cpu = next_cpu;
2641		rflow->filter = rc;
2642		if (old_rflow->filter == rflow->filter)
2643			old_rflow->filter = RPS_NO_FILTER;
2644	out:
2645#endif
2646		rflow->last_qtail =
2647			per_cpu(softnet_data, tcpu).input_queue_head;
2648	}
2649
 
2650	return rflow;
2651}
2652
2653/*
2654 * get_rps_cpu is called from netif_receive_skb and returns the target
2655 * CPU from the RPS map of the receiving queue for a given skb.
2656 * rcu_read_lock must be held on entry.
2657 */
2658static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2659		       struct rps_dev_flow **rflowp)
2660{
2661	struct netdev_rx_queue *rxqueue;
 
 
2662	struct rps_map *map;
2663	struct rps_dev_flow_table *flow_table;
2664	struct rps_sock_flow_table *sock_flow_table;
2665	int cpu = -1;
2666	u16 tcpu;
 
2667
2668	if (skb_rx_queue_recorded(skb)) {
2669		u16 index = skb_get_rx_queue(skb);
 
2670		if (unlikely(index >= dev->real_num_rx_queues)) {
2671			WARN_ONCE(dev->real_num_rx_queues > 1,
2672				  "%s received packet on queue %u, but number "
2673				  "of RX queues is %u\n",
2674				  dev->name, index, dev->real_num_rx_queues);
2675			goto done;
2676		}
2677		rxqueue = dev->_rx + index;
2678	} else
2679		rxqueue = dev->_rx;
 
2680
 
2681	map = rcu_dereference(rxqueue->rps_map);
2682	if (map) {
2683		if (map->len == 1 &&
2684		    !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2685			tcpu = map->cpus[0];
2686			if (cpu_online(tcpu))
2687				cpu = tcpu;
2688			goto done;
2689		}
2690	} else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2691		goto done;
2692	}
2693
2694	skb_reset_network_header(skb);
2695	if (!skb_get_rxhash(skb))
 
2696		goto done;
2697
2698	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2699	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2700	if (flow_table && sock_flow_table) {
2701		u16 next_cpu;
2702		struct rps_dev_flow *rflow;
 
 
 
 
 
 
 
 
 
2703
2704		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
 
 
 
 
 
2705		tcpu = rflow->cpu;
2706
2707		next_cpu = sock_flow_table->ents[skb->rxhash &
2708		    sock_flow_table->mask];
2709
2710		/*
2711		 * If the desired CPU (where last recvmsg was done) is
2712		 * different from current CPU (one in the rx-queue flow
2713		 * table entry), switch if one of the following holds:
2714		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2715		 *   - Current CPU is offline.
2716		 *   - The current CPU's queue tail has advanced beyond the
2717		 *     last packet that was enqueued using this table entry.
2718		 *     This guarantees that all previous packets for the flow
2719		 *     have been dequeued, thus preserving in order delivery.
2720		 */
2721		if (unlikely(tcpu != next_cpu) &&
2722		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2723		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2724		      rflow->last_qtail)) >= 0))
 
2725			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
 
2726
2727		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2728			*rflowp = rflow;
2729			cpu = tcpu;
2730			goto done;
2731		}
2732	}
2733
 
 
2734	if (map) {
2735		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2736
2737		if (cpu_online(tcpu)) {
2738			cpu = tcpu;
2739			goto done;
2740		}
2741	}
2742
2743done:
2744	return cpu;
2745}
2746
2747#ifdef CONFIG_RFS_ACCEL
2748
2749/**
2750 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2751 * @dev: Device on which the filter was set
2752 * @rxq_index: RX queue index
2753 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2754 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2755 *
2756 * Drivers that implement ndo_rx_flow_steer() should periodically call
2757 * this function for each installed filter and remove the filters for
2758 * which it returns %true.
2759 */
2760bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2761			 u32 flow_id, u16 filter_id)
2762{
2763	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2764	struct rps_dev_flow_table *flow_table;
2765	struct rps_dev_flow *rflow;
2766	bool expire = true;
2767	int cpu;
2768
2769	rcu_read_lock();
2770	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2771	if (flow_table && flow_id <= flow_table->mask) {
2772		rflow = &flow_table->flows[flow_id];
2773		cpu = ACCESS_ONCE(rflow->cpu);
2774		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2775		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2776			   rflow->last_qtail) <
2777		     (int)(10 * flow_table->mask)))
2778			expire = false;
2779	}
2780	rcu_read_unlock();
2781	return expire;
2782}
2783EXPORT_SYMBOL(rps_may_expire_flow);
2784
2785#endif /* CONFIG_RFS_ACCEL */
2786
2787/* Called from hardirq (IPI) context */
2788static void rps_trigger_softirq(void *data)
2789{
2790	struct softnet_data *sd = data;
2791
2792	____napi_schedule(sd, &sd->backlog);
2793	sd->received_rps++;
2794}
2795
2796#endif /* CONFIG_RPS */
2797
 
 
 
 
 
 
 
 
 
2798/*
2799 * Check if this softnet_data structure is another cpu one
2800 * If yes, queue it to our IPI list and return 1
2801 * If no, return 0
 
 
 
 
 
2802 */
2803static int rps_ipi_queued(struct softnet_data *sd)
2804{
 
 
2805#ifdef CONFIG_RPS
2806	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2807
2808	if (sd != mysd) {
2809		sd->rps_ipi_next = mysd->rps_ipi_list;
2810		mysd->rps_ipi_list = sd;
2811
2812		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2813		return 1;
 
 
 
 
2814	}
2815#endif /* CONFIG_RPS */
2816	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2817}
2818
2819/*
2820 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2821 * queue (may be a remote CPU queue).
2822 */
2823static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2824			      unsigned int *qtail)
2825{
 
2826	struct softnet_data *sd;
2827	unsigned long flags;
 
2828
 
2829	sd = &per_cpu(softnet_data, cpu);
2830
2831	local_irq_save(flags);
2832
2833	rps_lock(sd);
2834	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2835		if (skb_queue_len(&sd->input_pkt_queue)) {
 
2836enqueue:
2837			__skb_queue_tail(&sd->input_pkt_queue, skb);
2838			input_queue_tail_incr_save(sd, qtail);
2839			rps_unlock(sd);
2840			local_irq_restore(flags);
2841			return NET_RX_SUCCESS;
2842		}
2843
2844		/* Schedule NAPI for backlog device
2845		 * We can use non atomic operation since we own the queue lock
2846		 */
2847		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2848			if (!rps_ipi_queued(sd))
2849				____napi_schedule(sd, &sd->backlog);
2850		}
2851		goto enqueue;
2852	}
 
2853
 
2854	sd->dropped++;
2855	rps_unlock(sd);
2856
2857	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2858
2859	atomic_long_inc(&skb->dev->rx_dropped);
2860	kfree_skb(skb);
2861	return NET_RX_DROP;
2862}
2863
2864/**
2865 *	netif_rx	-	post buffer to the network code
2866 *	@skb: buffer to post
2867 *
2868 *	This function receives a packet from a device driver and queues it for
2869 *	the upper (protocol) levels to process.  It always succeeds. The buffer
2870 *	may be dropped during processing for congestion control or by the
2871 *	protocol layers.
2872 *
2873 *	return values:
2874 *	NET_RX_SUCCESS	(no congestion)
2875 *	NET_RX_DROP     (packet was dropped)
2876 *
2877 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2878
2879int netif_rx(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880{
2881	int ret;
2882
2883	/* if netpoll wants it, pretend we never saw it */
2884	if (netpoll_rx(skb))
2885		return NET_RX_DROP;
2886
2887	if (netdev_tstamp_prequeue)
2888		net_timestamp_check(skb);
2889
2890	trace_netif_rx(skb);
2891#ifdef CONFIG_RPS
2892	{
2893		struct rps_dev_flow voidflow, *rflow = &voidflow;
2894		int cpu;
2895
2896		preempt_disable();
2897		rcu_read_lock();
2898
2899		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2900		if (cpu < 0)
2901			cpu = smp_processor_id();
2902
2903		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2904
2905		rcu_read_unlock();
2906		preempt_enable();
2907	}
2908#else
2909	{
2910		unsigned int qtail;
2911		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2912		put_cpu();
2913	}
2914#endif
2915	return ret;
2916}
2917EXPORT_SYMBOL(netif_rx);
2918
2919int netif_rx_ni(struct sk_buff *skb)
 
 
 
 
 
 
 
 
2920{
2921	int err;
2922
2923	preempt_disable();
2924	err = netif_rx(skb);
2925	if (local_softirq_pending())
2926		do_softirq();
2927	preempt_enable();
2928
2929	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2930}
2931EXPORT_SYMBOL(netif_rx_ni);
2932
2933static void net_tx_action(struct softirq_action *h)
2934{
2935	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2936
2937	if (sd->completion_queue) {
2938		struct sk_buff *clist;
2939
2940		local_irq_disable();
2941		clist = sd->completion_queue;
2942		sd->completion_queue = NULL;
2943		local_irq_enable();
2944
2945		while (clist) {
2946			struct sk_buff *skb = clist;
 
2947			clist = clist->next;
2948
2949			WARN_ON(atomic_read(&skb->users));
2950			trace_kfree_skb(skb, net_tx_action);
2951			__kfree_skb(skb);
 
 
 
 
 
 
 
 
 
2952		}
2953	}
2954
2955	if (sd->output_queue) {
2956		struct Qdisc *head;
2957
2958		local_irq_disable();
2959		head = sd->output_queue;
2960		sd->output_queue = NULL;
2961		sd->output_queue_tailp = &sd->output_queue;
2962		local_irq_enable();
2963
 
 
2964		while (head) {
2965			struct Qdisc *q = head;
2966			spinlock_t *root_lock;
2967
2968			head = head->next_sched;
2969
2970			root_lock = qdisc_lock(q);
2971			if (spin_trylock(root_lock)) {
2972				smp_mb__before_clear_bit();
2973				clear_bit(__QDISC_STATE_SCHED,
2974					  &q->state);
2975				qdisc_run(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2976				spin_unlock(root_lock);
2977			} else {
2978				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2979					      &q->state)) {
2980					__netif_reschedule(q);
2981				} else {
2982					smp_mb__before_clear_bit();
2983					clear_bit(__QDISC_STATE_SCHED,
2984						  &q->state);
2985				}
2986			}
2987		}
 
 
2988	}
 
 
2989}
2990
2991#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2992    (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2993/* This hook is defined here for ATM LANE */
2994int (*br_fdb_test_addr_hook)(struct net_device *dev,
2995			     unsigned char *addr) __read_mostly;
2996EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2997#endif
2998
2999#ifdef CONFIG_NET_CLS_ACT
3000/* TODO: Maybe we should just force sch_ingress to be compiled in
3001 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3002 * a compare and 2 stores extra right now if we dont have it on
3003 * but have CONFIG_NET_CLS_ACT
3004 * NOTE: This doesn't stop any functionality; if you dont have
3005 * the ingress scheduler, you just can't add policies on ingress.
3006 *
 
3007 */
3008static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3009{
3010	struct net_device *dev = skb->dev;
3011	u32 ttl = G_TC_RTTL(skb->tc_verd);
3012	int result = TC_ACT_OK;
3013	struct Qdisc *q;
3014
3015	if (unlikely(MAX_RED_LOOP < ttl++)) {
3016		if (net_ratelimit())
3017			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
3018			       skb->skb_iif, dev->ifindex);
3019		return TC_ACT_SHOT;
3020	}
3021
3022	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3023	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3024
3025	q = rxq->qdisc;
3026	if (q != &noop_qdisc) {
3027		spin_lock(qdisc_lock(q));
3028		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3029			result = qdisc_enqueue_root(skb, q);
3030		spin_unlock(qdisc_lock(q));
3031	}
3032
3033	return result;
3034}
3035
3036static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3037					 struct packet_type **pt_prev,
3038					 int *ret, struct net_device *orig_dev)
3039{
3040	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3041
3042	if (!rxq || rxq->qdisc == &noop_qdisc)
3043		goto out;
3044
3045	if (*pt_prev) {
3046		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3047		*pt_prev = NULL;
3048	}
3049
3050	switch (ing_filter(skb, rxq)) {
3051	case TC_ACT_SHOT:
3052	case TC_ACT_STOLEN:
3053		kfree_skb(skb);
3054		return NULL;
3055	}
3056
3057out:
3058	skb->tc_verd = 0;
3059	return skb;
3060}
3061#endif
3062
3063/**
3064 *	netdev_rx_handler_register - register receive handler
3065 *	@dev: device to register a handler for
3066 *	@rx_handler: receive handler to register
3067 *	@rx_handler_data: data pointer that is used by rx handler
3068 *
3069 *	Register a receive hander for a device. This handler will then be
3070 *	called from __netif_receive_skb. A negative errno code is returned
3071 *	on a failure.
3072 *
3073 *	The caller must hold the rtnl_mutex.
3074 *
3075 *	For a general description of rx_handler, see enum rx_handler_result.
3076 */
3077int netdev_rx_handler_register(struct net_device *dev,
3078			       rx_handler_func_t *rx_handler,
3079			       void *rx_handler_data)
3080{
3081	ASSERT_RTNL();
 
3082
3083	if (dev->rx_handler)
3084		return -EBUSY;
3085
 
3086	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3087	rcu_assign_pointer(dev->rx_handler, rx_handler);
3088
3089	return 0;
3090}
3091EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3092
3093/**
3094 *	netdev_rx_handler_unregister - unregister receive handler
3095 *	@dev: device to unregister a handler from
3096 *
3097 *	Unregister a receive hander from a device.
3098 *
3099 *	The caller must hold the rtnl_mutex.
3100 */
3101void netdev_rx_handler_unregister(struct net_device *dev)
3102{
3103
3104	ASSERT_RTNL();
3105	rcu_assign_pointer(dev->rx_handler, NULL);
3106	rcu_assign_pointer(dev->rx_handler_data, NULL);
 
 
 
 
 
3107}
3108EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3109
3110static int __netif_receive_skb(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3111{
3112	struct packet_type *ptype, *pt_prev;
3113	rx_handler_func_t *rx_handler;
 
3114	struct net_device *orig_dev;
3115	struct net_device *null_or_dev;
3116	bool deliver_exact = false;
3117	int ret = NET_RX_DROP;
3118	__be16 type;
3119
3120	if (!netdev_tstamp_prequeue)
3121		net_timestamp_check(skb);
3122
3123	trace_netif_receive_skb(skb);
3124
3125	/* if we've gotten here through NAPI, check netpoll */
3126	if (netpoll_receive_skb(skb))
3127		return NET_RX_DROP;
3128
3129	if (!skb->skb_iif)
3130		skb->skb_iif = skb->dev->ifindex;
3131	orig_dev = skb->dev;
3132
3133	skb_reset_network_header(skb);
3134	skb_reset_transport_header(skb);
 
3135	skb_reset_mac_len(skb);
3136
3137	pt_prev = NULL;
3138
3139	rcu_read_lock();
3140
3141another_round:
 
3142
3143	__this_cpu_inc(softnet_data.processed);
3144
3145	if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3146		skb = vlan_untag(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
3147		if (unlikely(!skb))
3148			goto out;
3149	}
3150
3151#ifdef CONFIG_NET_CLS_ACT
3152	if (skb->tc_verd & TC_NCLS) {
3153		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3154		goto ncls;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155	}
3156#endif
 
 
 
 
3157
3158	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3159		if (!ptype->dev || ptype->dev == skb->dev) {
3160			if (pt_prev)
3161				ret = deliver_skb(skb, pt_prev, orig_dev);
3162			pt_prev = ptype;
3163		}
 
 
 
 
3164	}
3165
3166#ifdef CONFIG_NET_CLS_ACT
3167	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3168	if (!skb)
3169		goto out;
3170ncls:
3171#endif
3172
3173	rx_handler = rcu_dereference(skb->dev->rx_handler);
3174	if (rx_handler) {
3175		if (pt_prev) {
3176			ret = deliver_skb(skb, pt_prev, orig_dev);
3177			pt_prev = NULL;
3178		}
3179		switch (rx_handler(&skb)) {
3180		case RX_HANDLER_CONSUMED:
 
3181			goto out;
3182		case RX_HANDLER_ANOTHER:
3183			goto another_round;
3184		case RX_HANDLER_EXACT:
3185			deliver_exact = true;
 
3186		case RX_HANDLER_PASS:
3187			break;
3188		default:
3189			BUG();
3190		}
3191	}
3192
3193	if (vlan_tx_tag_present(skb)) {
3194		if (pt_prev) {
3195			ret = deliver_skb(skb, pt_prev, orig_dev);
3196			pt_prev = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197		}
3198		if (vlan_do_receive(&skb)) {
3199			ret = __netif_receive_skb(skb);
3200			goto out;
3201		} else if (unlikely(!skb))
3202			goto out;
3203	}
3204
 
 
3205	/* deliver only exact match when indicated */
3206	null_or_dev = deliver_exact ? skb->dev : NULL;
 
 
 
 
3207
3208	type = skb->protocol;
3209	list_for_each_entry_rcu(ptype,
3210			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3211		if (ptype->type == type &&
3212		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3213		     ptype->dev == orig_dev)) {
3214			if (pt_prev)
3215				ret = deliver_skb(skb, pt_prev, orig_dev);
3216			pt_prev = ptype;
3217		}
3218	}
3219
3220	if (pt_prev) {
3221		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 
 
3222	} else {
3223		atomic_long_inc(&skb->dev->rx_dropped);
3224		kfree_skb(skb);
 
 
 
 
3225		/* Jamal, now you will not able to escape explaining
3226		 * me how you were going to use this. :-)
3227		 */
3228		ret = NET_RX_DROP;
3229	}
3230
3231out:
3232	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3233	return ret;
3234}
3235
3236/**
3237 *	netif_receive_skb - process receive buffer from network
3238 *	@skb: buffer to process
3239 *
3240 *	netif_receive_skb() is the main receive data processing function.
3241 *	It always succeeds. The buffer may be dropped during processing
3242 *	for congestion control or by the protocol layers.
3243 *
3244 *	This function may only be called from softirq context and interrupts
3245 *	should be enabled.
3246 *
3247 *	Return values (usually ignored):
3248 *	NET_RX_SUCCESS: no congestion
3249 *	NET_RX_DROP: packet was dropped
3250 */
3251int netif_receive_skb(struct sk_buff *skb)
3252{
3253	if (netdev_tstamp_prequeue)
3254		net_timestamp_check(skb);
3255
3256	if (skb_defer_rx_timestamp(skb))
3257		return NET_RX_SUCCESS;
 
3258
3259#ifdef CONFIG_RPS
3260	{
3261		struct rps_dev_flow voidflow, *rflow = &voidflow;
3262		int cpu, ret;
3263
3264		rcu_read_lock();
 
 
 
 
3265
3266		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3267
3268		if (cpu >= 0) {
3269			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3270			rcu_read_unlock();
3271		} else {
3272			rcu_read_unlock();
3273			ret = __netif_receive_skb(skb);
 
 
 
3274		}
3275
3276		return ret;
3277	}
3278#else
3279	return __netif_receive_skb(skb);
3280#endif
3281}
3282EXPORT_SYMBOL(netif_receive_skb);
3283
3284/* Network device is going away, flush any packets still pending
3285 * Called with irqs disabled.
3286 */
3287static void flush_backlog(void *arg)
3288{
3289	struct net_device *dev = arg;
3290	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3291	struct sk_buff *skb, *tmp;
 
 
 
 
 
 
 
 
 
3292
3293	rps_lock(sd);
3294	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3295		if (skb->dev == dev) {
3296			__skb_unlink(skb, &sd->input_pkt_queue);
3297			kfree_skb(skb);
3298			input_queue_head_incr(sd);
 
 
 
 
 
 
 
 
 
 
3299		}
 
3300	}
3301	rps_unlock(sd);
3302
3303	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3304		if (skb->dev == dev) {
3305			__skb_unlink(skb, &sd->process_queue);
3306			kfree_skb(skb);
3307			input_queue_head_incr(sd);
3308		}
3309	}
3310}
3311
3312static int napi_gro_complete(struct sk_buff *skb)
3313{
3314	struct packet_type *ptype;
3315	__be16 type = skb->protocol;
3316	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3317	int err = -ENOENT;
3318
3319	if (NAPI_GRO_CB(skb)->count == 1) {
3320		skb_shinfo(skb)->gso_size = 0;
3321		goto out;
3322	}
3323
3324	rcu_read_lock();
3325	list_for_each_entry_rcu(ptype, head, list) {
3326		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3327			continue;
 
 
 
 
 
 
 
 
 
 
3328
3329		err = ptype->gro_complete(skb);
3330		break;
3331	}
3332	rcu_read_unlock();
3333
3334	if (err) {
3335		WARN_ON(&ptype->list == head);
3336		kfree_skb(skb);
3337		return NET_RX_SUCCESS;
3338	}
3339
3340out:
3341	return netif_receive_skb(skb);
3342}
3343
3344inline void napi_gro_flush(struct napi_struct *napi)
3345{
 
3346	struct sk_buff *skb, *next;
 
3347
3348	for (skb = napi->gro_list; skb; skb = next) {
3349		next = skb->next;
3350		skb->next = NULL;
3351		napi_gro_complete(skb);
 
 
 
 
 
 
 
 
 
 
 
3352	}
3353
3354	napi->gro_count = 0;
3355	napi->gro_list = NULL;
 
 
 
3356}
3357EXPORT_SYMBOL(napi_gro_flush);
3358
3359enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3360{
3361	struct sk_buff **pp = NULL;
3362	struct packet_type *ptype;
3363	__be16 type = skb->protocol;
3364	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3365	int same_flow;
3366	int mac_len;
3367	enum gro_result ret;
3368
3369	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3370		goto normal;
 
 
 
3371
3372	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3373		goto normal;
 
 
 
 
 
 
3374
3375	rcu_read_lock();
3376	list_for_each_entry_rcu(ptype, head, list) {
3377		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3378			continue;
3379
3380		skb_set_network_header(skb, skb_gro_offset(skb));
3381		mac_len = skb->network_header - skb->mac_header;
3382		skb->mac_len = mac_len;
3383		NAPI_GRO_CB(skb)->same_flow = 0;
3384		NAPI_GRO_CB(skb)->flush = 0;
3385		NAPI_GRO_CB(skb)->free = 0;
3386
3387		pp = ptype->gro_receive(&napi->gro_list, skb);
3388		break;
3389	}
3390	rcu_read_unlock();
3391
3392	if (&ptype->list == head)
3393		goto normal;
3394
3395	same_flow = NAPI_GRO_CB(skb)->same_flow;
3396	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
 
3397
3398	if (pp) {
3399		struct sk_buff *nskb = *pp;
3400
3401		*pp = nskb->next;
3402		nskb->next = NULL;
3403		napi_gro_complete(nskb);
3404		napi->gro_count--;
3405	}
3406
3407	if (same_flow)
3408		goto ok;
 
 
 
3409
3410	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3411		goto normal;
3412
3413	napi->gro_count++;
3414	NAPI_GRO_CB(skb)->count = 1;
3415	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3416	skb->next = napi->gro_list;
3417	napi->gro_list = skb;
3418	ret = GRO_HELD;
3419
3420pull:
3421	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3422		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3423
3424		BUG_ON(skb->end - skb->tail < grow);
3425
3426		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3427
3428		skb->tail += grow;
3429		skb->data_len -= grow;
3430
3431		skb_shinfo(skb)->frags[0].page_offset += grow;
3432		skb_shinfo(skb)->frags[0].size -= grow;
3433
3434		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3435			put_page(skb_shinfo(skb)->frags[0].page);
3436			memmove(skb_shinfo(skb)->frags,
3437				skb_shinfo(skb)->frags + 1,
3438				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3439		}
3440	}
3441
3442ok:
 
3443	return ret;
3444
3445normal:
3446	ret = GRO_NORMAL;
3447	goto pull;
3448}
3449EXPORT_SYMBOL(dev_gro_receive);
3450
3451static inline gro_result_t
3452__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3453{
3454	struct sk_buff *p;
 
3455
3456	for (p = napi->gro_list; p; p = p->next) {
3457		unsigned long diffs;
 
 
 
 
 
 
3458
3459		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3460		diffs |= p->vlan_tci ^ skb->vlan_tci;
3461		diffs |= compare_ether_header(skb_mac_header(p),
3462					      skb_gro_mac_header(skb));
3463		NAPI_GRO_CB(p)->same_flow = !diffs;
3464		NAPI_GRO_CB(p)->flush = 0;
 
 
 
 
 
 
 
3465	}
3466
3467	return dev_gro_receive(napi, skb);
 
3468}
3469
3470gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3471{
3472	switch (ret) {
3473	case GRO_NORMAL:
3474		if (netif_receive_skb(skb))
3475			ret = GRO_DROP;
3476		break;
3477
3478	case GRO_DROP:
3479	case GRO_MERGED_FREE:
3480		kfree_skb(skb);
3481		break;
3482
3483	case GRO_HELD:
3484	case GRO_MERGED:
3485		break;
3486	}
3487
3488	return ret;
3489}
3490EXPORT_SYMBOL(napi_skb_finish);
3491
3492void skb_gro_reset_offset(struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
3493{
3494	NAPI_GRO_CB(skb)->data_offset = 0;
3495	NAPI_GRO_CB(skb)->frag0 = NULL;
3496	NAPI_GRO_CB(skb)->frag0_len = 0;
3497
3498	if (skb->mac_header == skb->tail &&
3499	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3500		NAPI_GRO_CB(skb)->frag0 =
3501			page_address(skb_shinfo(skb)->frags[0].page) +
3502			skb_shinfo(skb)->frags[0].page_offset;
3503		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3504	}
 
 
3505}
3506EXPORT_SYMBOL(skb_gro_reset_offset);
3507
3508gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3509{
3510	skb_gro_reset_offset(skb);
3511
3512	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3513}
3514EXPORT_SYMBOL(napi_gro_receive);
3515
3516static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
 
3517{
3518	__skb_pull(skb, skb_headlen(skb));
3519	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3520	skb->vlan_tci = 0;
3521	skb->dev = napi->dev;
3522	skb->skb_iif = 0;
3523
3524	napi->skb = skb;
3525}
3526
3527struct sk_buff *napi_get_frags(struct napi_struct *napi)
3528{
3529	struct sk_buff *skb = napi->skb;
 
 
 
 
 
 
3530
3531	if (!skb) {
3532		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3533		if (skb)
3534			napi->skb = skb;
 
 
3535	}
3536	return skb;
3537}
3538EXPORT_SYMBOL(napi_get_frags);
3539
3540gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3541			       gro_result_t ret)
3542{
3543	switch (ret) {
3544	case GRO_NORMAL:
3545	case GRO_HELD:
3546		skb->protocol = eth_type_trans(skb, skb->dev);
3547
3548		if (ret == GRO_HELD)
3549			skb_gro_pull(skb, -ETH_HLEN);
3550		else if (netif_receive_skb(skb))
3551			ret = GRO_DROP;
3552		break;
3553
3554	case GRO_DROP:
3555	case GRO_MERGED_FREE:
3556		napi_reuse_skb(napi, skb);
3557		break;
 
 
3558
3559	case GRO_MERGED:
3560		break;
3561	}
3562
3563	return ret;
 
 
 
3564}
3565EXPORT_SYMBOL(napi_frags_finish);
3566
3567struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3568{
3569	struct sk_buff *skb = napi->skb;
3570	struct ethhdr *eth;
3571	unsigned int hlen;
3572	unsigned int off;
3573
3574	napi->skb = NULL;
 
 
 
 
3575
3576	skb_reset_mac_header(skb);
3577	skb_gro_reset_offset(skb);
3578
3579	off = skb_gro_offset(skb);
3580	hlen = off + sizeof(*eth);
3581	eth = skb_gro_header_fast(skb, off);
3582	if (skb_gro_header_hard(skb, hlen)) {
3583		eth = skb_gro_header_slow(skb, hlen, off);
3584		if (unlikely(!eth)) {
3585			napi_reuse_skb(napi, skb);
3586			skb = NULL;
3587			goto out;
3588		}
3589	}
3590
3591	skb_gro_pull(skb, sizeof(*eth));
3592
3593	/*
3594	 * This works because the only protocols we care about don't require
3595	 * special handling.  We'll fix it up properly at the end.
3596	 */
3597	skb->protocol = eth->h_proto;
 
3598
3599out:
3600	return skb;
3601}
3602EXPORT_SYMBOL(napi_frags_skb);
3603
3604gro_result_t napi_gro_frags(struct napi_struct *napi)
3605{
3606	struct sk_buff *skb = napi_frags_skb(napi);
 
 
3607
3608	if (!skb)
3609		return GRO_DROP;
3610
3611	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
 
3612}
3613EXPORT_SYMBOL(napi_gro_frags);
3614
3615/*
3616 * net_rps_action sends any pending IPI's for rps.
3617 * Note: called with local irq disabled, but exits with local irq enabled.
3618 */
3619static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3620{
3621#ifdef CONFIG_RPS
3622	struct softnet_data *remsd = sd->rps_ipi_list;
3623
3624	if (remsd) {
3625		sd->rps_ipi_list = NULL;
3626
3627		local_irq_enable();
3628
3629		/* Send pending IPI's to kick RPS processing on remote cpus. */
3630		while (remsd) {
3631			struct softnet_data *next = remsd->rps_ipi_next;
3632
3633			if (cpu_online(remsd->cpu))
3634				__smp_call_function_single(remsd->cpu,
3635							   &remsd->csd, 0);
3636			remsd = next;
3637		}
3638	} else
3639#endif
3640		local_irq_enable();
3641}
3642
 
 
 
 
 
 
 
 
 
3643static int process_backlog(struct napi_struct *napi, int quota)
3644{
 
 
3645	int work = 0;
3646	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3647
3648#ifdef CONFIG_RPS
3649	/* Check if we have pending ipi, its better to send them now,
3650	 * not waiting net_rx_action() end.
3651	 */
3652	if (sd->rps_ipi_list) {
3653		local_irq_disable();
3654		net_rps_action_and_irq_enable(sd);
3655	}
3656#endif
3657	napi->weight = weight_p;
3658	local_irq_disable();
3659	while (work < quota) {
3660		struct sk_buff *skb;
3661		unsigned int qlen;
3662
3663		while ((skb = __skb_dequeue(&sd->process_queue))) {
3664			local_irq_enable();
3665			__netif_receive_skb(skb);
3666			local_irq_disable();
3667			input_queue_head_incr(sd);
3668			if (++work >= quota) {
3669				local_irq_enable();
3670				return work;
3671			}
3672		}
3673
3674		rps_lock(sd);
3675		qlen = skb_queue_len(&sd->input_pkt_queue);
3676		if (qlen)
3677			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3678						   &sd->process_queue);
3679
3680		if (qlen < quota - work) {
3681			/*
3682			 * Inline a custom version of __napi_complete().
3683			 * only current cpu owns and manipulates this napi,
3684			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3685			 * we can use a plain write instead of clear_bit(),
 
3686			 * and we dont need an smp_mb() memory barrier.
3687			 */
3688			list_del(&napi->poll_list);
3689			napi->state = 0;
3690
3691			quota = work + qlen;
 
 
3692		}
3693		rps_unlock(sd);
3694	}
3695	local_irq_enable();
3696
3697	return work;
3698}
3699
3700/**
3701 * __napi_schedule - schedule for receive
3702 * @n: entry to schedule
3703 *
3704 * The entry's receive function will be scheduled to run
 
3705 */
3706void __napi_schedule(struct napi_struct *n)
3707{
3708	unsigned long flags;
3709
3710	local_irq_save(flags);
3711	____napi_schedule(&__get_cpu_var(softnet_data), n);
3712	local_irq_restore(flags);
3713}
3714EXPORT_SYMBOL(__napi_schedule);
3715
3716void __napi_complete(struct napi_struct *n)
 
 
 
 
 
 
 
 
 
3717{
3718	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3719	BUG_ON(n->gro_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3720
3721	list_del(&n->poll_list);
3722	smp_mb__before_clear_bit();
3723	clear_bit(NAPI_STATE_SCHED, &n->state);
3724}
3725EXPORT_SYMBOL(__napi_complete);
3726
3727void napi_complete(struct napi_struct *n)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3728{
3729	unsigned long flags;
 
3730
3731	/*
3732	 * don't let napi dequeue from the cpu poll list
3733	 * just in case its running on a different cpu
 
 
3734	 */
3735	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3736		return;
3737
3738	napi_gro_flush(n);
3739	local_irq_save(flags);
3740	__napi_complete(n);
3741	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3742}
3743EXPORT_SYMBOL(napi_complete);
3744
3745void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3746		    int (*poll)(struct napi_struct *, int), int weight)
3747{
 
 
 
3748	INIT_LIST_HEAD(&napi->poll_list);
3749	napi->gro_count = 0;
3750	napi->gro_list = NULL;
 
 
3751	napi->skb = NULL;
 
 
3752	napi->poll = poll;
 
 
 
3753	napi->weight = weight;
3754	list_add(&napi->dev_list, &dev->napi_list);
3755	napi->dev = dev;
3756#ifdef CONFIG_NETPOLL
3757	spin_lock_init(&napi->poll_lock);
3758	napi->poll_owner = -1;
3759#endif
 
3760	set_bit(NAPI_STATE_SCHED, &napi->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3761}
3762EXPORT_SYMBOL(netif_napi_add);
3763
3764void netif_napi_del(struct napi_struct *napi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3765{
3766	struct sk_buff *skb, *next;
3767
3768	list_del_init(&napi->dev_list);
3769	napi_free_frags(napi);
 
 
 
 
 
 
 
3770
3771	for (skb = napi->gro_list; skb; skb = next) {
3772		next = skb->next;
3773		skb->next = NULL;
3774		kfree_skb(skb);
3775	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3776
3777	napi->gro_list = NULL;
3778	napi->gro_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
3779}
3780EXPORT_SYMBOL(netif_napi_del);
3781
3782static void net_rx_action(struct softirq_action *h)
3783{
3784	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3785	unsigned long time_limit = jiffies + 2;
3786	int budget = netdev_budget;
3787	void *have;
 
 
3788
 
 
3789	local_irq_disable();
 
 
3790
3791	while (!list_empty(&sd->poll_list)) {
3792		struct napi_struct *n;
3793		int work, weight;
3794
3795		/* If softirq window is exhuasted then punt.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3796		 * Allow this to run for 2 jiffies since which will allow
3797		 * an average latency of 1.5/HZ.
3798		 */
3799		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3800			goto softnet_break;
 
 
 
 
3801
3802		local_irq_enable();
 
 
 
 
 
 
 
 
3803
3804		/* Even though interrupts have been re-enabled, this
3805		 * access is safe because interrupts can only add new
3806		 * entries to the tail of this list, and only ->poll()
3807		 * calls can remove this head entry from the list.
3808		 */
3809		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3810
3811		have = netpoll_poll_lock(n);
 
 
3812
3813		weight = n->weight;
 
3814
3815		/* This NAPI_STATE_SCHED test is for avoiding a race
3816		 * with netpoll's poll_napi().  Only the entity which
3817		 * obtains the lock and sees NAPI_STATE_SCHED set will
3818		 * actually make the ->poll() call.  Therefore we avoid
3819		 * accidentally calling ->poll() when NAPI is not scheduled.
3820		 */
3821		work = 0;
3822		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3823			work = n->poll(n, weight);
3824			trace_napi_poll(n);
3825		}
3826
3827		WARN_ON_ONCE(work > weight);
 
3828
3829		budget -= work;
 
3830
3831		local_irq_disable();
 
 
3832
3833		/* Drivers must not modify the NAPI state if they
3834		 * consume the entire weight.  In such cases this code
3835		 * still "owns" the NAPI instance and therefore can
3836		 * move the instance around on the list at-will.
3837		 */
3838		if (unlikely(work == weight)) {
3839			if (unlikely(napi_disable_pending(n))) {
3840				local_irq_enable();
3841				napi_complete(n);
3842				local_irq_disable();
3843			} else
3844				list_move_tail(&n->poll_list, &sd->poll_list);
3845		}
3846
3847		netpoll_poll_unlock(have);
 
 
3848	}
3849out:
3850	net_rps_action_and_irq_enable(sd);
 
 
 
 
 
 
 
 
3851
3852#ifdef CONFIG_NET_DMA
3853	/*
3854	 * There may not be any more sk_buffs coming right now, so push
3855	 * any pending DMA copies to hardware
3856	 */
3857	dma_issue_pending_all();
3858#endif
 
 
 
 
 
 
 
 
3859
3860	return;
3861
3862softnet_break:
3863	sd->time_squeeze++;
3864	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3865	goto out;
3866}
 
 
 
 
 
 
 
 
 
 
 
3867
3868static gifconf_func_t *gifconf_list[NPROTO];
 
 
 
 
 
 
 
 
 
 
3869
3870/**
3871 *	register_gifconf	-	register a SIOCGIF handler
3872 *	@family: Address family
3873 *	@gifconf: Function handler
3874 *
3875 *	Register protocol dependent address dumping routines. The handler
3876 *	that is passed must not be freed or reused until it has been replaced
3877 *	by another handler.
3878 */
3879int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3880{
3881	if (family >= NPROTO)
3882		return -EINVAL;
3883	gifconf_list[family] = gifconf;
3884	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3885}
3886EXPORT_SYMBOL(register_gifconf);
 
 
 
 
 
 
 
 
 
3887
 
 
 
 
 
 
3888
3889/*
3890 *	Map an interface index to its name (SIOCGIFNAME)
 
 
 
 
3891 */
 
 
 
3892
3893/*
3894 *	We need this ioctl for efficient implementation of the
3895 *	if_indextoname() function required by the IPv6 API.  Without
3896 *	it, we would have to search all the interfaces to find a
3897 *	match.  --pb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3899
3900static int dev_ifname(struct net *net, struct ifreq __user *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
3901{
3902	struct net_device *dev;
3903	struct ifreq ifr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3904
3905	/*
3906	 *	Fetch the caller's info block.
3907	 */
 
 
 
3908
3909	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3910		return -EFAULT;
 
 
 
 
3911
3912	rcu_read_lock();
3913	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3914	if (!dev) {
3915		rcu_read_unlock();
3916		return -ENODEV;
3917	}
3918
3919	strcpy(ifr.ifr_name, dev->name);
3920	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3921
3922	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3923		return -EFAULT;
3924	return 0;
3925}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926
3927/*
3928 *	Perform a SIOCGIFCONF call. This structure will change
3929 *	size eventually, and there is nothing I can do about it.
3930 *	Thus we will need a 'compatibility mode'.
 
 
 
 
 
 
3931 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3932
3933static int dev_ifconf(struct net *net, char __user *arg)
 
 
 
 
 
 
3934{
3935	struct ifconf ifc;
3936	struct net_device *dev;
3937	char __user *pos;
3938	int len;
3939	int total;
3940	int i;
3941
3942	/*
3943	 *	Fetch the caller's info block.
3944	 */
3945
3946	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3947		return -EFAULT;
 
 
 
 
3948
3949	pos = ifc.ifc_buf;
3950	len = ifc.ifc_len;
 
 
 
3951
3952	/*
3953	 *	Loop over the interfaces, and write an info block for each.
3954	 */
 
 
 
3955
3956	total = 0;
3957	for_each_netdev(net, dev) {
3958		for (i = 0; i < NPROTO; i++) {
3959			if (gifconf_list[i]) {
3960				int done;
3961				if (!pos)
3962					done = gifconf_list[i](dev, NULL, 0);
3963				else
3964					done = gifconf_list[i](dev, pos + total,
3965							       len - total);
3966				if (done < 0)
3967					return -EFAULT;
3968				total += done;
3969			}
3970		}
 
 
 
3971	}
3972
3973	/*
3974	 *	All done.  Write the updated control block back to the caller.
3975	 */
3976	ifc.ifc_len = total;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3977
3978	/*
3979	 * 	Both BSD and Solaris return 0 here, so we do too.
3980	 */
3981	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3982}
3983
3984#ifdef CONFIG_PROC_FS
3985/*
3986 *	This is invoked by the /proc filesystem handler to display a device
3987 *	in detail.
3988 */
3989void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3990	__acquires(RCU)
3991{
3992	struct net *net = seq_file_net(seq);
3993	loff_t off;
3994	struct net_device *dev;
3995
3996	rcu_read_lock();
3997	if (!*pos)
3998		return SEQ_START_TOKEN;
3999
4000	off = 1;
4001	for_each_netdev_rcu(net, dev)
4002		if (off++ == *pos)
4003			return dev;
4004
4005	return NULL;
4006}
 
4007
4008void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4009{
4010	struct net_device *dev = v;
 
 
 
4011
4012	if (v == SEQ_START_TOKEN)
4013		dev = first_net_device_rcu(seq_file_net(seq));
4014	else
4015		dev = next_net_device_rcu(dev);
 
 
 
 
 
4016
4017	++*pos;
4018	return dev;
4019}
4020
4021void dev_seq_stop(struct seq_file *seq, void *v)
4022	__releases(RCU)
4023{
4024	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4025}
4026
4027static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
 
4028{
4029	struct rtnl_link_stats64 temp;
4030	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
 
4031
4032	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
4033		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
4034		   dev->name, stats->rx_bytes, stats->rx_packets,
4035		   stats->rx_errors,
4036		   stats->rx_dropped + stats->rx_missed_errors,
4037		   stats->rx_fifo_errors,
4038		   stats->rx_length_errors + stats->rx_over_errors +
4039		    stats->rx_crc_errors + stats->rx_frame_errors,
4040		   stats->rx_compressed, stats->multicast,
4041		   stats->tx_bytes, stats->tx_packets,
4042		   stats->tx_errors, stats->tx_dropped,
4043		   stats->tx_fifo_errors, stats->collisions,
4044		   stats->tx_carrier_errors +
4045		    stats->tx_aborted_errors +
4046		    stats->tx_window_errors +
4047		    stats->tx_heartbeat_errors,
4048		   stats->tx_compressed);
4049}
 
4050
4051/*
4052 *	Called from the PROCfs module. This now uses the new arbitrary sized
4053 *	/proc/net interface to create /proc/net/dev
4054 */
4055static int dev_seq_show(struct seq_file *seq, void *v)
4056{
4057	if (v == SEQ_START_TOKEN)
4058		seq_puts(seq, "Inter-|   Receive                            "
4059			      "                    |  Transmit\n"
4060			      " face |bytes    packets errs drop fifo frame "
4061			      "compressed multicast|bytes    packets errs "
4062			      "drop fifo colls carrier compressed\n");
4063	else
4064		dev_seq_printf_stats(seq, v);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4065	return 0;
4066}
 
4067
4068static struct softnet_data *softnet_get_online(loff_t *pos)
 
 
 
 
 
 
 
 
 
4069{
4070	struct softnet_data *sd = NULL;
4071
4072	while (*pos < nr_cpu_ids)
4073		if (cpu_online(*pos)) {
4074			sd = &per_cpu(softnet_data, *pos);
4075			break;
4076		} else
4077			++*pos;
4078	return sd;
4079}
 
4080
4081static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
 
 
 
 
 
 
 
4082{
4083	return softnet_get_online(pos);
 
 
 
 
 
 
4084}
 
 
 
 
 
 
 
4085
4086static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 
 
 
 
 
 
 
4087{
4088	++*pos;
4089	return softnet_get_online(pos);
 
 
 
4090}
4091
4092static void softnet_seq_stop(struct seq_file *seq, void *v)
 
 
4093{
 
 
 
4094}
4095
4096static int softnet_seq_show(struct seq_file *seq, void *v)
 
 
 
4097{
4098	struct softnet_data *sd = v;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4099
4100	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4101		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4102		   0, 0, 0, 0, /* was fastroute */
4103		   sd->cpu_collision, sd->received_rps);
4104	return 0;
 
 
 
 
 
 
 
 
 
4105}
4106
4107static const struct seq_operations dev_seq_ops = {
4108	.start = dev_seq_start,
4109	.next  = dev_seq_next,
4110	.stop  = dev_seq_stop,
4111	.show  = dev_seq_show,
4112};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4113
4114static int dev_seq_open(struct inode *inode, struct file *file)
 
 
 
 
 
 
 
 
 
4115{
4116	return seq_open_net(inode, file, &dev_seq_ops,
4117			    sizeof(struct seq_net_private));
 
 
 
 
4118}
 
4119
4120static const struct file_operations dev_seq_fops = {
4121	.owner	 = THIS_MODULE,
4122	.open    = dev_seq_open,
4123	.read    = seq_read,
4124	.llseek  = seq_lseek,
4125	.release = seq_release_net,
4126};
 
 
4127
4128static const struct seq_operations softnet_seq_ops = {
4129	.start = softnet_seq_start,
4130	.next  = softnet_seq_next,
4131	.stop  = softnet_seq_stop,
4132	.show  = softnet_seq_show,
4133};
4134
4135static int softnet_seq_open(struct inode *inode, struct file *file)
 
4136{
4137	return seq_open(file, &softnet_seq_ops);
4138}
4139
4140static const struct file_operations softnet_seq_fops = {
4141	.owner	 = THIS_MODULE,
4142	.open    = softnet_seq_open,
4143	.read    = seq_read,
4144	.llseek  = seq_lseek,
4145	.release = seq_release,
4146};
4147
4148static void *ptype_get_idx(loff_t pos)
 
 
 
4149{
4150	struct packet_type *pt = NULL;
4151	loff_t i = 0;
4152	int t;
4153
4154	list_for_each_entry_rcu(pt, &ptype_all, list) {
4155		if (i == pos)
4156			return pt;
4157		++i;
4158	}
4159
4160	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4161		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4162			if (i == pos)
4163				return pt;
4164			++i;
4165		}
 
4166	}
4167	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4168}
 
4169
4170static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4171	__acquires(RCU)
4172{
4173	rcu_read_lock();
4174	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4175}
4176
4177static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 
 
4178{
4179	struct packet_type *pt;
4180	struct list_head *nxt;
4181	int hash;
4182
4183	++*pos;
4184	if (v == SEQ_START_TOKEN)
4185		return ptype_get_idx(0);
4186
4187	pt = v;
4188	nxt = pt->list.next;
4189	if (pt->type == htons(ETH_P_ALL)) {
4190		if (nxt != &ptype_all)
4191			goto found;
4192		hash = 0;
4193		nxt = ptype_base[0].next;
4194	} else
4195		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4196
4197	while (nxt == &ptype_base[hash]) {
4198		if (++hash >= PTYPE_HASH_SIZE)
4199			return NULL;
4200		nxt = ptype_base[hash].next;
4201	}
4202found:
4203	return list_entry(nxt, struct packet_type, list);
 
4204}
 
4205
4206static void ptype_seq_stop(struct seq_file *seq, void *v)
4207	__releases(RCU)
4208{
4209	rcu_read_unlock();
 
 
 
 
 
 
 
 
4210}
4211
4212static int ptype_seq_show(struct seq_file *seq, void *v)
 
4213{
4214	struct packet_type *pt = v;
4215
4216	if (v == SEQ_START_TOKEN)
4217		seq_puts(seq, "Type Device      Function\n");
4218	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4219		if (pt->type == htons(ETH_P_ALL))
4220			seq_puts(seq, "ALL ");
4221		else
4222			seq_printf(seq, "%04x", ntohs(pt->type));
4223
4224		seq_printf(seq, " %-8s %pF\n",
4225			   pt->dev ? pt->dev->name : "", pt->func);
 
 
4226	}
4227
4228	return 0;
 
 
 
 
 
 
 
4229}
4230
4231static const struct seq_operations ptype_seq_ops = {
4232	.start = ptype_seq_start,
4233	.next  = ptype_seq_next,
4234	.stop  = ptype_seq_stop,
4235	.show  = ptype_seq_show,
4236};
 
 
 
 
 
 
4237
4238static int ptype_seq_open(struct inode *inode, struct file *file)
 
4239{
4240	return seq_open_net(inode, file, &ptype_seq_ops,
4241			sizeof(struct seq_net_private));
 
4242}
 
4243
4244static const struct file_operations ptype_seq_fops = {
4245	.owner	 = THIS_MODULE,
4246	.open    = ptype_seq_open,
4247	.read    = seq_read,
4248	.llseek  = seq_lseek,
4249	.release = seq_release_net,
4250};
4251
 
 
 
 
4252
4253static int __net_init dev_proc_net_init(struct net *net)
 
4254{
4255	int rc = -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4256
4257	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4258		goto out;
4259	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4260		goto out_dev;
4261	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4262		goto out_softnet;
4263
4264	if (wext_proc_init(net))
4265		goto out_ptype;
4266	rc = 0;
4267out:
4268	return rc;
4269out_ptype:
4270	proc_net_remove(net, "ptype");
4271out_softnet:
4272	proc_net_remove(net, "softnet_stat");
4273out_dev:
4274	proc_net_remove(net, "dev");
4275	goto out;
4276}
4277
4278static void __net_exit dev_proc_net_exit(struct net *net)
 
 
 
4279{
4280	wext_proc_exit(net);
4281
4282	proc_net_remove(net, "ptype");
4283	proc_net_remove(net, "softnet_stat");
4284	proc_net_remove(net, "dev");
 
 
 
4285}
 
4286
4287static struct pernet_operations __net_initdata dev_proc_ops = {
4288	.init = dev_proc_net_init,
4289	.exit = dev_proc_net_exit,
4290};
 
 
 
 
4291
4292static int __init dev_proc_init(void)
 
4293{
4294	return register_pernet_subsys(&dev_proc_ops);
4295}
4296#else
4297#define dev_proc_init() 0
4298#endif	/* CONFIG_PROC_FS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4299
 
 
 
 
4300
4301/**
4302 *	netdev_set_master	-	set up master pointer
4303 *	@slave: slave device
4304 *	@master: new master device
4305 *
4306 *	Changes the master device of the slave. Pass %NULL to break the
4307 *	bonding. The caller must hold the RTNL semaphore. On a failure
4308 *	a negative errno code is returned. On success the reference counts
4309 *	are adjusted and the function returns zero.
4310 */
4311int netdev_set_master(struct net_device *slave, struct net_device *master)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4312{
4313	struct net_device *old = slave->master;
4314
4315	ASSERT_RTNL();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4316
4317	if (master) {
4318		if (old)
4319			return -EBUSY;
4320		dev_hold(master);
 
 
 
4321	}
 
4322
4323	slave->master = master;
 
 
 
 
 
 
 
 
 
4324
4325	if (old)
4326		dev_put(old);
4327	return 0;
4328}
4329EXPORT_SYMBOL(netdev_set_master);
 
4330
4331/**
4332 *	netdev_set_bond_master	-	set up bonding master/slave pair
4333 *	@slave: slave device
4334 *	@master: new master device
4335 *
4336 *	Changes the master device of the slave. Pass %NULL to break the
4337 *	bonding. The caller must hold the RTNL semaphore. On a failure
4338 *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4339 *	to the routing socket and the function returns zero.
4340 */
4341int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
 
4342{
4343	int err;
 
 
4344
4345	ASSERT_RTNL();
4346
4347	err = netdev_set_master(slave, master);
4348	if (err)
4349		return err;
4350	if (master)
4351		slave->flags |= IFF_SLAVE;
4352	else
4353		slave->flags &= ~IFF_SLAVE;
4354
4355	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4356	return 0;
4357}
4358EXPORT_SYMBOL(netdev_set_bond_master);
4359
4360static void dev_change_rx_flags(struct net_device *dev, int flags)
4361{
4362	const struct net_device_ops *ops = dev->netdev_ops;
4363
4364	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4365		ops->ndo_change_rx_flags(dev, flags);
4366}
4367
4368static int __dev_set_promiscuity(struct net_device *dev, int inc)
4369{
4370	unsigned short old_flags = dev->flags;
4371	uid_t uid;
4372	gid_t gid;
4373
4374	ASSERT_RTNL();
4375
4376	dev->flags |= IFF_PROMISC;
4377	dev->promiscuity += inc;
4378	if (dev->promiscuity == 0) {
4379		/*
4380		 * Avoid overflow.
4381		 * If inc causes overflow, untouch promisc and return error.
4382		 */
4383		if (inc < 0)
4384			dev->flags &= ~IFF_PROMISC;
4385		else {
4386			dev->promiscuity -= inc;
4387			printk(KERN_WARNING "%s: promiscuity touches roof, "
4388				"set promiscuity failed, promiscuity feature "
4389				"of device might be broken.\n", dev->name);
4390			return -EOVERFLOW;
4391		}
4392	}
4393	if (dev->flags != old_flags) {
4394		printk(KERN_INFO "device %s %s promiscuous mode\n",
4395		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4396							       "left");
4397		if (audit_enabled) {
4398			current_uid_gid(&uid, &gid);
4399			audit_log(current->audit_context, GFP_ATOMIC,
4400				AUDIT_ANOM_PROMISCUOUS,
4401				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4402				dev->name, (dev->flags & IFF_PROMISC),
4403				(old_flags & IFF_PROMISC),
4404				audit_get_loginuid(current),
4405				uid, gid,
4406				audit_get_sessionid(current));
 
4407		}
4408
4409		dev_change_rx_flags(dev, IFF_PROMISC);
4410	}
 
 
4411	return 0;
4412}
4413
4414/**
4415 *	dev_set_promiscuity	- update promiscuity count on a device
4416 *	@dev: device
4417 *	@inc: modifier
4418 *
4419 *	Add or remove promiscuity from a device. While the count in the device
4420 *	remains above zero the interface remains promiscuous. Once it hits zero
4421 *	the device reverts back to normal filtering operation. A negative inc
4422 *	value is used to drop promiscuity on the device.
4423 *	Return 0 if successful or a negative errno code on error.
4424 */
4425int dev_set_promiscuity(struct net_device *dev, int inc)
4426{
4427	unsigned short old_flags = dev->flags;
4428	int err;
4429
4430	err = __dev_set_promiscuity(dev, inc);
4431	if (err < 0)
4432		return err;
4433	if (dev->flags != old_flags)
4434		dev_set_rx_mode(dev);
4435	return err;
4436}
4437EXPORT_SYMBOL(dev_set_promiscuity);
4438
4439/**
4440 *	dev_set_allmulti	- update allmulti count on a device
4441 *	@dev: device
4442 *	@inc: modifier
4443 *
4444 *	Add or remove reception of all multicast frames to a device. While the
4445 *	count in the device remains above zero the interface remains listening
4446 *	to all interfaces. Once it hits zero the device reverts back to normal
4447 *	filtering operation. A negative @inc value is used to drop the counter
4448 *	when releasing a resource needing all multicasts.
4449 *	Return 0 if successful or a negative errno code on error.
4450 */
4451
4452int dev_set_allmulti(struct net_device *dev, int inc)
4453{
4454	unsigned short old_flags = dev->flags;
4455
4456	ASSERT_RTNL();
4457
4458	dev->flags |= IFF_ALLMULTI;
4459	dev->allmulti += inc;
4460	if (dev->allmulti == 0) {
4461		/*
4462		 * Avoid overflow.
4463		 * If inc causes overflow, untouch allmulti and return error.
4464		 */
4465		if (inc < 0)
4466			dev->flags &= ~IFF_ALLMULTI;
4467		else {
4468			dev->allmulti -= inc;
4469			printk(KERN_WARNING "%s: allmulti touches roof, "
4470				"set allmulti failed, allmulti feature of "
4471				"device might be broken.\n", dev->name);
4472			return -EOVERFLOW;
4473		}
4474	}
4475	if (dev->flags ^ old_flags) {
 
 
4476		dev_change_rx_flags(dev, IFF_ALLMULTI);
4477		dev_set_rx_mode(dev);
 
 
 
4478	}
4479	return 0;
4480}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4481EXPORT_SYMBOL(dev_set_allmulti);
4482
4483/*
4484 *	Upload unicast and multicast address lists to device and
4485 *	configure RX filtering. When the device doesn't support unicast
4486 *	filtering it is put in promiscuous mode while unicast addresses
4487 *	are present.
4488 */
4489void __dev_set_rx_mode(struct net_device *dev)
4490{
4491	const struct net_device_ops *ops = dev->netdev_ops;
4492
4493	/* dev_open will call this function so the list will stay sane. */
4494	if (!(dev->flags&IFF_UP))
4495		return;
4496
4497	if (!netif_device_present(dev))
4498		return;
4499
4500	if (ops->ndo_set_rx_mode)
4501		ops->ndo_set_rx_mode(dev);
4502	else {
4503		/* Unicast addresses changes may only happen under the rtnl,
4504		 * therefore calling __dev_set_promiscuity here is safe.
4505		 */
4506		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4507			__dev_set_promiscuity(dev, 1);
4508			dev->uc_promisc = true;
4509		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4510			__dev_set_promiscuity(dev, -1);
4511			dev->uc_promisc = false;
4512		}
 
4513
4514		if (ops->ndo_set_multicast_list)
4515			ops->ndo_set_multicast_list(dev);
4516	}
4517}
4518
4519void dev_set_rx_mode(struct net_device *dev)
4520{
4521	netif_addr_lock_bh(dev);
4522	__dev_set_rx_mode(dev);
4523	netif_addr_unlock_bh(dev);
4524}
4525
4526/**
4527 *	dev_ethtool_get_settings - call device's ethtool_ops::get_settings()
4528 *	@dev: device
4529 *	@cmd: memory area for ethtool_ops::get_settings() result
4530 *
4531 *      The cmd arg is initialized properly (cleared and
4532 *      ethtool_cmd::cmd field set to ETHTOOL_GSET).
4533 *
4534 *	Return device's ethtool_ops::get_settings() result value or
4535 *	-EOPNOTSUPP when device doesn't expose
4536 *	ethtool_ops::get_settings() operation.
4537 */
4538int dev_ethtool_get_settings(struct net_device *dev,
4539			     struct ethtool_cmd *cmd)
4540{
4541	if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
4542		return -EOPNOTSUPP;
4543
4544	memset(cmd, 0, sizeof(struct ethtool_cmd));
4545	cmd->cmd = ETHTOOL_GSET;
4546	return dev->ethtool_ops->get_settings(dev, cmd);
4547}
4548EXPORT_SYMBOL(dev_ethtool_get_settings);
4549
4550/**
4551 *	dev_get_flags - get flags reported to userspace
4552 *	@dev: device
4553 *
4554 *	Get the combination of flag bits exported through APIs to userspace.
4555 */
4556unsigned dev_get_flags(const struct net_device *dev)
4557{
4558	unsigned flags;
4559
4560	flags = (dev->flags & ~(IFF_PROMISC |
4561				IFF_ALLMULTI |
4562				IFF_RUNNING |
4563				IFF_LOWER_UP |
4564				IFF_DORMANT)) |
4565		(dev->gflags & (IFF_PROMISC |
4566				IFF_ALLMULTI));
4567
4568	if (netif_running(dev)) {
4569		if (netif_oper_up(dev))
4570			flags |= IFF_RUNNING;
4571		if (netif_carrier_ok(dev))
4572			flags |= IFF_LOWER_UP;
4573		if (netif_dormant(dev))
4574			flags |= IFF_DORMANT;
4575	}
4576
4577	return flags;
4578}
4579EXPORT_SYMBOL(dev_get_flags);
4580
4581int __dev_change_flags(struct net_device *dev, unsigned int flags)
 
4582{
4583	int old_flags = dev->flags;
4584	int ret;
4585
4586	ASSERT_RTNL();
4587
4588	/*
4589	 *	Set the flags on our device.
4590	 */
4591
4592	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4593			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4594			       IFF_AUTOMEDIA)) |
4595		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4596				    IFF_ALLMULTI));
4597
4598	/*
4599	 *	Load in the correct multicast list now the flags have changed.
4600	 */
4601
4602	if ((old_flags ^ flags) & IFF_MULTICAST)
4603		dev_change_rx_flags(dev, IFF_MULTICAST);
4604
4605	dev_set_rx_mode(dev);
4606
4607	/*
4608	 *	Have we downed the interface. We handle IFF_UP ourselves
4609	 *	according to user attempts to set it, rather than blindly
4610	 *	setting it.
4611	 */
4612
4613	ret = 0;
4614	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4615		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4616
4617		if (!ret)
4618			dev_set_rx_mode(dev);
4619	}
4620
4621	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4622		int inc = (flags & IFF_PROMISC) ? 1 : -1;
 
4623
4624		dev->gflags ^= IFF_PROMISC;
4625		dev_set_promiscuity(dev, inc);
 
 
 
4626	}
4627
4628	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4629	   is important. Some (broken) drivers set IFF_PROMISC, when
4630	   IFF_ALLMULTI is requested not asking us and not reporting.
4631	 */
4632	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4633		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4634
4635		dev->gflags ^= IFF_ALLMULTI;
4636		dev_set_allmulti(dev, inc);
4637	}
4638
4639	return ret;
4640}
4641
4642void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
 
 
4643{
4644	unsigned int changes = dev->flags ^ old_flags;
4645
 
 
 
4646	if (changes & IFF_UP) {
4647		if (dev->flags & IFF_UP)
4648			call_netdevice_notifiers(NETDEV_UP, dev);
4649		else
4650			call_netdevice_notifiers(NETDEV_DOWN, dev);
4651	}
4652
4653	if (dev->flags & IFF_UP &&
4654	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4655		call_netdevice_notifiers(NETDEV_CHANGE, dev);
 
 
 
 
 
 
 
 
4656}
4657
4658/**
4659 *	dev_change_flags - change device settings
4660 *	@dev: device
4661 *	@flags: device state flags
 
4662 *
4663 *	Change settings on device based state flags. The flags are
4664 *	in the userspace exported format.
4665 */
4666int dev_change_flags(struct net_device *dev, unsigned flags)
 
4667{
4668	int ret, changes;
4669	int old_flags = dev->flags;
4670
4671	ret = __dev_change_flags(dev, flags);
4672	if (ret < 0)
4673		return ret;
4674
4675	changes = old_flags ^ dev->flags;
4676	if (changes)
4677		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4678
4679	__dev_notify_flags(dev, old_flags);
4680	return ret;
4681}
4682EXPORT_SYMBOL(dev_change_flags);
4683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4684/**
4685 *	dev_set_mtu - Change maximum transfer unit
4686 *	@dev: device
4687 *	@new_mtu: new transfer unit
 
4688 *
4689 *	Change the maximum transfer size of the network device.
4690 */
4691int dev_set_mtu(struct net_device *dev, int new_mtu)
 
4692{
4693	const struct net_device_ops *ops = dev->netdev_ops;
4694	int err;
4695
4696	if (new_mtu == dev->mtu)
4697		return 0;
4698
4699	/*	MTU must be positive.	 */
4700	if (new_mtu < 0)
4701		return -EINVAL;
4702
4703	if (!netif_device_present(dev))
4704		return -ENODEV;
4705
4706	err = 0;
4707	if (ops->ndo_change_mtu)
4708		err = ops->ndo_change_mtu(dev, new_mtu);
4709	else
4710		dev->mtu = new_mtu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4711
4712	if (!err && dev->flags & IFF_UP)
4713		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
 
 
4714	return err;
4715}
4716EXPORT_SYMBOL(dev_set_mtu);
4717
4718/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4719 *	dev_set_group - Change group this device belongs to
4720 *	@dev: device
4721 *	@new_group: group this device should belong to
4722 */
4723void dev_set_group(struct net_device *dev, int new_group)
4724{
4725	dev->group = new_group;
4726}
4727EXPORT_SYMBOL(dev_set_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4728
4729/**
4730 *	dev_set_mac_address - Change Media Access Control Address
4731 *	@dev: device
4732 *	@sa: new address
 
4733 *
4734 *	Change the hardware (MAC) address of the device
4735 */
4736int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
 
4737{
4738	const struct net_device_ops *ops = dev->netdev_ops;
4739	int err;
4740
4741	if (!ops->ndo_set_mac_address)
4742		return -EOPNOTSUPP;
4743	if (sa->sa_family != dev->type)
4744		return -EINVAL;
4745	if (!netif_device_present(dev))
4746		return -ENODEV;
4747	err = ops->ndo_set_mac_address(dev, sa);
4748	if (!err)
4749		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4750	return err;
 
 
 
 
 
 
 
 
4751}
4752EXPORT_SYMBOL(dev_set_mac_address);
4753
4754/*
4755 *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4756 */
4757static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4758{
4759	int err;
4760	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4761
4762	if (!dev)
 
 
4763		return -ENODEV;
 
 
4764
4765	switch (cmd) {
4766	case SIOCGIFFLAGS:	/* Get interface flags */
4767		ifr->ifr_flags = (short) dev_get_flags(dev);
4768		return 0;
 
 
 
 
 
 
 
4769
4770	case SIOCGIFMETRIC:	/* Get the metric on the interface
4771				   (currently unused) */
4772		ifr->ifr_metric = 0;
4773		return 0;
4774
4775	case SIOCGIFMTU:	/* Get the MTU of a device */
4776		ifr->ifr_mtu = dev->mtu;
4777		return 0;
 
 
 
 
 
 
 
 
 
 
4778
4779	case SIOCGIFHWADDR:
4780		if (!dev->addr_len)
4781			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4782		else
4783			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4784			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4785		ifr->ifr_hwaddr.sa_family = dev->type;
4786		return 0;
4787
4788	case SIOCGIFSLAVE:
4789		err = -EINVAL;
4790		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4791
4792	case SIOCGIFMAP:
4793		ifr->ifr_map.mem_start = dev->mem_start;
4794		ifr->ifr_map.mem_end   = dev->mem_end;
4795		ifr->ifr_map.base_addr = dev->base_addr;
4796		ifr->ifr_map.irq       = dev->irq;
4797		ifr->ifr_map.dma       = dev->dma;
4798		ifr->ifr_map.port      = dev->if_port;
4799		return 0;
4800
4801	case SIOCGIFINDEX:
4802		ifr->ifr_ifindex = dev->ifindex;
4803		return 0;
4804
4805	case SIOCGIFTXQLEN:
4806		ifr->ifr_qlen = dev->tx_queue_len;
4807		return 0;
4808
4809	default:
4810		/* dev_ioctl() should ensure this case
4811		 * is never reached
4812		 */
4813		WARN_ON(1);
4814		err = -ENOTTY;
4815		break;
4816
4817	}
4818	return err;
4819}
 
4820
4821/*
4822 *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
 
 
 
4823 */
4824static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4825{
4826	int err;
4827	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4828	const struct net_device_ops *ops;
 
 
 
 
 
 
 
4829
4830	if (!dev)
 
 
 
 
 
 
 
 
 
 
4831		return -ENODEV;
 
 
 
 
 
 
 
4832
4833	ops = dev->netdev_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4834
4835	switch (cmd) {
4836	case SIOCSIFFLAGS:	/* Set interface flags */
4837		return dev_change_flags(dev, ifr->ifr_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4838
4839	case SIOCSIFMETRIC:	/* Set the metric on the interface
4840				   (currently unused) */
4841		return -EOPNOTSUPP;
 
 
4842
4843	case SIOCSIFMTU:	/* Set the MTU of a device */
4844		return dev_set_mtu(dev, ifr->ifr_mtu);
 
 
4845
4846	case SIOCSIFHWADDR:
4847		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
 
 
4848
4849	case SIOCSIFHWBROADCAST:
4850		if (ifr->ifr_hwaddr.sa_family != dev->type)
4851			return -EINVAL;
4852		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4853		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4854		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4855		return 0;
4856
4857	case SIOCSIFMAP:
4858		if (ops->ndo_set_config) {
4859			if (!netif_device_present(dev))
4860				return -ENODEV;
4861			return ops->ndo_set_config(dev, &ifr->ifr_map);
4862		}
4863		return -EOPNOTSUPP;
4864
4865	case SIOCADDMULTI:
4866		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4867		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4868			return -EINVAL;
4869		if (!netif_device_present(dev))
4870			return -ENODEV;
4871		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4872
4873	case SIOCDELMULTI:
4874		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4875		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4876			return -EINVAL;
4877		if (!netif_device_present(dev))
4878			return -ENODEV;
4879		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4880
4881	case SIOCSIFTXQLEN:
4882		if (ifr->ifr_qlen < 0)
4883			return -EINVAL;
4884		dev->tx_queue_len = ifr->ifr_qlen;
4885		return 0;
 
4886
4887	case SIOCSIFNAME:
4888		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4889		return dev_change_name(dev, ifr->ifr_newname);
 
 
 
4890
4891	/*
4892	 *	Unknown or private ioctl
4893	 */
4894	default:
4895		if ((cmd >= SIOCDEVPRIVATE &&
4896		    cmd <= SIOCDEVPRIVATE + 15) ||
4897		    cmd == SIOCBONDENSLAVE ||
4898		    cmd == SIOCBONDRELEASE ||
4899		    cmd == SIOCBONDSETHWADDR ||
4900		    cmd == SIOCBONDSLAVEINFOQUERY ||
4901		    cmd == SIOCBONDINFOQUERY ||
4902		    cmd == SIOCBONDCHANGEACTIVE ||
4903		    cmd == SIOCGMIIPHY ||
4904		    cmd == SIOCGMIIREG ||
4905		    cmd == SIOCSMIIREG ||
4906		    cmd == SIOCBRADDIF ||
4907		    cmd == SIOCBRDELIF ||
4908		    cmd == SIOCSHWTSTAMP ||
4909		    cmd == SIOCWANDEV) {
4910			err = -EOPNOTSUPP;
4911			if (ops->ndo_do_ioctl) {
4912				if (netif_device_present(dev))
4913					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4914				else
4915					err = -ENODEV;
4916			}
4917		} else
4918			err = -EINVAL;
4919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4920	}
4921	return err;
 
 
 
 
4922}
4923
4924/*
4925 *	This function handles all "interface"-type I/O control requests. The actual
4926 *	'doing' part of this is dev_ifsioc above.
4927 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4928
4929/**
4930 *	dev_ioctl	-	network device ioctl
4931 *	@net: the applicable net namespace
4932 *	@cmd: command to issue
4933 *	@arg: pointer to a struct ifreq in user space
4934 *
4935 *	Issue ioctl functions to devices. This is normally called by the
4936 *	user space syscall interfaces but can sometimes be useful for
4937 *	other purposes. The return value is the return from the syscall if
4938 *	positive or a negative errno code on error.
4939 */
4940
4941int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
 
 
4942{
4943	struct ifreq ifr;
4944	int ret;
4945	char *colon;
 
 
 
 
4946
4947	/* One special case: SIOCGIFCONF takes ifconf argument
4948	   and requires shared lock, because it sleeps writing
4949	   to user space.
4950	 */
4951
4952	if (cmd == SIOCGIFCONF) {
4953		rtnl_lock();
4954		ret = dev_ifconf(net, (char __user *) arg);
4955		rtnl_unlock();
4956		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4957	}
4958	if (cmd == SIOCGIFNAME)
4959		return dev_ifname(net, (struct ifreq __user *)arg);
4960
4961	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4962		return -EFAULT;
 
 
 
 
4963
4964	ifr.ifr_name[IFNAMSIZ-1] = 0;
 
 
 
 
 
 
4965
4966	colon = strchr(ifr.ifr_name, ':');
4967	if (colon)
4968		*colon = 0;
 
 
 
 
 
 
 
4969
4970	/*
4971	 *	See which interface the caller is talking about.
4972	 */
 
 
 
 
 
4973
4974	switch (cmd) {
4975	/*
4976	 *	These ioctl calls:
4977	 *	- can be done by all.
4978	 *	- atomic and do not require locking.
4979	 *	- return a value
4980	 */
4981	case SIOCGIFFLAGS:
4982	case SIOCGIFMETRIC:
4983	case SIOCGIFMTU:
4984	case SIOCGIFHWADDR:
4985	case SIOCGIFSLAVE:
4986	case SIOCGIFMAP:
4987	case SIOCGIFINDEX:
4988	case SIOCGIFTXQLEN:
4989		dev_load(net, ifr.ifr_name);
4990		rcu_read_lock();
4991		ret = dev_ifsioc_locked(net, &ifr, cmd);
4992		rcu_read_unlock();
4993		if (!ret) {
4994			if (colon)
4995				*colon = ':';
4996			if (copy_to_user(arg, &ifr,
4997					 sizeof(struct ifreq)))
4998				ret = -EFAULT;
4999		}
5000		return ret;
5001
5002	case SIOCETHTOOL:
5003		dev_load(net, ifr.ifr_name);
5004		rtnl_lock();
5005		ret = dev_ethtool(net, &ifr);
5006		rtnl_unlock();
5007		if (!ret) {
5008			if (colon)
5009				*colon = ':';
5010			if (copy_to_user(arg, &ifr,
5011					 sizeof(struct ifreq)))
5012				ret = -EFAULT;
5013		}
5014		return ret;
5015
5016	/*
5017	 *	These ioctl calls:
5018	 *	- require superuser power.
5019	 *	- require strict serialization.
5020	 *	- return a value
5021	 */
5022	case SIOCGMIIPHY:
5023	case SIOCGMIIREG:
5024	case SIOCSIFNAME:
5025		if (!capable(CAP_NET_ADMIN))
5026			return -EPERM;
5027		dev_load(net, ifr.ifr_name);
5028		rtnl_lock();
5029		ret = dev_ifsioc(net, &ifr, cmd);
5030		rtnl_unlock();
5031		if (!ret) {
5032			if (colon)
5033				*colon = ':';
5034			if (copy_to_user(arg, &ifr,
5035					 sizeof(struct ifreq)))
5036				ret = -EFAULT;
5037		}
5038		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5039
5040	/*
5041	 *	These ioctl calls:
5042	 *	- require superuser power.
5043	 *	- require strict serialization.
5044	 *	- do not return a value
5045	 */
5046	case SIOCSIFFLAGS:
5047	case SIOCSIFMETRIC:
5048	case SIOCSIFMTU:
5049	case SIOCSIFMAP:
5050	case SIOCSIFHWADDR:
5051	case SIOCSIFSLAVE:
5052	case SIOCADDMULTI:
5053	case SIOCDELMULTI:
5054	case SIOCSIFHWBROADCAST:
5055	case SIOCSIFTXQLEN:
5056	case SIOCSMIIREG:
5057	case SIOCBONDENSLAVE:
5058	case SIOCBONDRELEASE:
5059	case SIOCBONDSETHWADDR:
5060	case SIOCBONDCHANGEACTIVE:
5061	case SIOCBRADDIF:
5062	case SIOCBRDELIF:
5063	case SIOCSHWTSTAMP:
5064		if (!capable(CAP_NET_ADMIN))
5065			return -EPERM;
5066		/* fall through */
5067	case SIOCBONDSLAVEINFOQUERY:
5068	case SIOCBONDINFOQUERY:
5069		dev_load(net, ifr.ifr_name);
5070		rtnl_lock();
5071		ret = dev_ifsioc(net, &ifr, cmd);
5072		rtnl_unlock();
5073		return ret;
5074
5075	case SIOCGIFMEM:
5076		/* Get the per device memory space. We can add this but
5077		 * currently do not support it */
5078	case SIOCSIFMEM:
5079		/* Set the per device memory buffer space.
5080		 * Not applicable in our case */
5081	case SIOCSIFLINK:
5082		return -ENOTTY;
5083
5084	/*
5085	 *	Unknown or private ioctl.
5086	 */
5087	default:
5088		if (cmd == SIOCWANDEV ||
5089		    (cmd >= SIOCDEVPRIVATE &&
5090		     cmd <= SIOCDEVPRIVATE + 15)) {
5091			dev_load(net, ifr.ifr_name);
5092			rtnl_lock();
5093			ret = dev_ifsioc(net, &ifr, cmd);
5094			rtnl_unlock();
5095			if (!ret && copy_to_user(arg, &ifr,
5096						 sizeof(struct ifreq)))
5097				ret = -EFAULT;
5098			return ret;
5099		}
5100		/* Take care of Wireless Extensions */
5101		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5102			return wext_handle_ioctl(net, &ifr, cmd, arg);
5103		return -ENOTTY;
5104	}
 
 
5105}
5106
 
 
 
 
 
5107
5108/**
5109 *	dev_new_index	-	allocate an ifindex
5110 *	@net: the applicable net namespace
5111 *
5112 *	Returns a suitable unique value for a new device interface
5113 *	number.  The caller must hold the rtnl semaphore or the
5114 *	dev_base_lock to be sure it remains unique.
5115 */
5116static int dev_new_index(struct net *net)
5117{
5118	static int ifindex;
5119	for (;;) {
5120		if (++ifindex <= 0)
5121			ifindex = 1;
5122		if (!__dev_get_by_index(net, ifindex))
5123			return ifindex;
5124	}
5125}
5126
5127/* Delayed registration/unregisteration */
5128static LIST_HEAD(net_todo_list);
 
 
 
 
 
 
 
 
 
 
 
5129
5130static void net_set_todo(struct net_device *dev)
 
5131{
5132	list_add_tail(&dev->todo_list, &net_todo_list);
 
 
 
 
 
 
 
 
 
5133}
5134
5135static void rollback_registered_many(struct list_head *head)
 
5136{
5137	struct net_device *dev, *tmp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5138
5139	BUG_ON(dev_boot_phase);
5140	ASSERT_RTNL();
 
 
 
 
 
 
5141
5142	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5143		/* Some devices call without registering
5144		 * for initialization unwind. Remove those
5145		 * devices and proceed with the remaining.
5146		 */
5147		if (dev->reg_state == NETREG_UNINITIALIZED) {
5148			pr_debug("unregister_netdevice: device %s/%p never "
5149				 "was registered\n", dev->name, dev);
5150
5151			WARN_ON(1);
5152			list_del(&dev->unreg_list);
5153			continue;
5154		}
5155		dev->dismantle = true;
5156		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5157	}
5158
5159	/* If device is running, close it first. */
5160	dev_close_many(head);
 
 
 
 
 
 
 
5161
5162	list_for_each_entry(dev, head, unreg_list) {
5163		/* And unlink it from device chain. */
5164		unlist_netdevice(dev);
5165
5166		dev->reg_state = NETREG_UNREGISTERING;
 
 
 
 
5167	}
5168
5169	synchronize_net();
 
 
 
5170
5171	list_for_each_entry(dev, head, unreg_list) {
5172		/* Shutdown queueing discipline. */
5173		dev_shutdown(dev);
5174
 
 
 
 
5175
5176		/* Notify protocols, that we are about to destroy
5177		   this device. They should clean all the things.
5178		*/
5179		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
 
 
 
 
 
 
 
 
 
 
 
 
5180
5181		if (!dev->rtnl_link_ops ||
5182		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5183			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5184
5185		/*
5186		 *	Flush the unicast and multicast chains
5187		 */
5188		dev_uc_flush(dev);
5189		dev_mc_flush(dev);
 
 
 
 
 
 
 
 
 
 
 
5190
5191		if (dev->netdev_ops->ndo_uninit)
5192			dev->netdev_ops->ndo_uninit(dev);
 
 
 
 
 
 
 
5193
5194		/* Notifier chain MUST detach us from master device. */
5195		WARN_ON(dev->master);
 
 
 
 
 
 
 
 
 
 
 
 
5196
5197		/* Remove entries from kobject tree */
5198		netdev_unregister_kobject(dev);
 
5199	}
5200
5201	/* Process any work delayed until the end of the batch */
5202	dev = list_first_entry(head, struct net_device, unreg_list);
5203	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
5204
5205	rcu_barrier();
 
 
5206
5207	list_for_each_entry(dev, head, unreg_list)
5208		dev_put(dev);
 
 
5209}
5210
5211static void rollback_registered(struct net_device *dev)
 
5212{
5213	LIST_HEAD(single);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5214
5215	list_add(&dev->unreg_list, &single);
5216	rollback_registered_many(&single);
5217	list_del(&single);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5218}
5219
5220static u32 netdev_fix_features(struct net_device *dev, u32 features)
 
5221{
5222	/* Fix illegal checksum combinations */
5223	if ((features & NETIF_F_HW_CSUM) &&
5224	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5225		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5226		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5227	}
5228
5229	if ((features & NETIF_F_NO_CSUM) &&
5230	    (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5231		netdev_warn(dev, "mixed no checksumming and other settings.\n");
5232		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5233	}
5234
5235	/* Fix illegal SG+CSUM combinations. */
5236	if ((features & NETIF_F_SG) &&
5237	    !(features & NETIF_F_ALL_CSUM)) {
5238		netdev_dbg(dev,
5239			"Dropping NETIF_F_SG since no checksum feature.\n");
5240		features &= ~NETIF_F_SG;
5241	}
5242
5243	/* TSO requires that SG is present as well. */
5244	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5245		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5246		features &= ~NETIF_F_ALL_TSO;
5247	}
5248
 
 
 
 
5249	/* TSO ECN requires that TSO is present as well. */
5250	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5251		features &= ~NETIF_F_TSO_ECN;
5252
5253	/* Software GSO depends on SG. */
5254	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5255		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5256		features &= ~NETIF_F_GSO;
5257	}
5258
5259	/* UFO needs SG and checksumming */
5260	if (features & NETIF_F_UFO) {
5261		/* maybe split UFO into V4 and V6? */
5262		if (!((features & NETIF_F_GEN_CSUM) ||
5263		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5264			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5265			netdev_dbg(dev,
5266				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5267			features &= ~NETIF_F_UFO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5268		}
5269
5270		if (!(features & NETIF_F_SG)) {
5271			netdev_dbg(dev,
5272				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5273			features &= ~NETIF_F_UFO;
5274		}
5275	}
5276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5277	return features;
5278}
5279
5280int __netdev_update_features(struct net_device *dev)
5281{
5282	u32 features;
5283	int err = 0;
 
 
5284
5285	ASSERT_RTNL();
5286
5287	features = netdev_get_wanted_features(dev);
5288
5289	if (dev->netdev_ops->ndo_fix_features)
5290		features = dev->netdev_ops->ndo_fix_features(dev, features);
5291
5292	/* driver might be less strict about feature dependencies */
5293	features = netdev_fix_features(dev, features);
5294
 
 
 
 
5295	if (dev->features == features)
5296		return 0;
5297
5298	netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n",
5299		dev->features, features);
5300
5301	if (dev->netdev_ops->ndo_set_features)
5302		err = dev->netdev_ops->ndo_set_features(dev, features);
 
 
5303
5304	if (unlikely(err < 0)) {
5305		netdev_err(dev,
5306			"set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5307			err, features, dev->features);
 
 
 
5308		return -1;
5309	}
5310
5311	if (!err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5312		dev->features = features;
 
5313
5314	return 1;
5315}
5316
5317/**
5318 *	netdev_update_features - recalculate device features
5319 *	@dev: the device to check
5320 *
5321 *	Recalculate dev->features set and send notifications if it
5322 *	has changed. Should be called after driver or hardware dependent
5323 *	conditions might have changed that influence the features.
5324 */
5325void netdev_update_features(struct net_device *dev)
5326{
5327	if (__netdev_update_features(dev))
5328		netdev_features_change(dev);
5329}
5330EXPORT_SYMBOL(netdev_update_features);
5331
5332/**
5333 *	netdev_change_features - recalculate device features
5334 *	@dev: the device to check
5335 *
5336 *	Recalculate dev->features set and send notifications even
5337 *	if they have not changed. Should be called instead of
5338 *	netdev_update_features() if also dev->vlan_features might
5339 *	have changed to allow the changes to be propagated to stacked
5340 *	VLAN devices.
5341 */
5342void netdev_change_features(struct net_device *dev)
5343{
5344	__netdev_update_features(dev);
5345	netdev_features_change(dev);
5346}
5347EXPORT_SYMBOL(netdev_change_features);
5348
5349/**
5350 *	netif_stacked_transfer_operstate -	transfer operstate
5351 *	@rootdev: the root or lower level device to transfer state from
5352 *	@dev: the device to transfer operstate to
5353 *
5354 *	Transfer operational state from root to device. This is normally
5355 *	called when a stacking relationship exists between the root
5356 *	device and the device(a leaf device).
5357 */
5358void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5359					struct net_device *dev)
5360{
5361	if (rootdev->operstate == IF_OPER_DORMANT)
5362		netif_dormant_on(dev);
5363	else
5364		netif_dormant_off(dev);
5365
5366	if (netif_carrier_ok(rootdev)) {
5367		if (!netif_carrier_ok(dev))
5368			netif_carrier_on(dev);
5369	} else {
5370		if (netif_carrier_ok(dev))
5371			netif_carrier_off(dev);
5372	}
 
 
5373}
5374EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5375
5376#ifdef CONFIG_RPS
5377static int netif_alloc_rx_queues(struct net_device *dev)
5378{
5379	unsigned int i, count = dev->num_rx_queues;
5380	struct netdev_rx_queue *rx;
 
 
5381
5382	BUG_ON(count < 1);
5383
5384	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5385	if (!rx) {
5386		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5387		return -ENOMEM;
5388	}
5389	dev->_rx = rx;
5390
5391	for (i = 0; i < count; i++)
5392		rx[i].dev = dev;
 
 
 
 
 
 
5393	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5394}
5395#endif
5396
5397static void netdev_init_one_queue(struct net_device *dev,
5398				  struct netdev_queue *queue, void *_unused)
5399{
5400	/* Initialize queue lock */
5401	spin_lock_init(&queue->_xmit_lock);
5402	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5403	queue->xmit_lock_owner = -1;
5404	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5405	queue->dev = dev;
 
 
 
 
 
 
 
 
5406}
5407
5408static int netif_alloc_netdev_queues(struct net_device *dev)
5409{
5410	unsigned int count = dev->num_tx_queues;
5411	struct netdev_queue *tx;
 
5412
5413	BUG_ON(count < 1);
 
5414
5415	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5416	if (!tx) {
5417		pr_err("netdev: Unable to allocate %u tx queues.\n",
5418		       count);
5419		return -ENOMEM;
5420	}
5421	dev->_tx = tx;
5422
5423	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5424	spin_lock_init(&dev->tx_global_lock);
5425
5426	return 0;
5427}
5428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5429/**
5430 *	register_netdevice	- register a network device
5431 *	@dev: device to register
5432 *
5433 *	Take a completed network device structure and add it to the kernel
5434 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5435 *	chain. 0 is returned on success. A negative errno code is returned
5436 *	on a failure to set up the device, or if the name is a duplicate.
5437 *
5438 *	Callers must hold the rtnl semaphore. You may want
5439 *	register_netdev() instead of this.
5440 *
5441 *	BUGS:
5442 *	The locking appears insufficient to guarantee two parallel registers
5443 *	will not get the same name.
5444 */
5445
5446int register_netdevice(struct net_device *dev)
5447{
5448	int ret;
5449	struct net *net = dev_net(dev);
5450
 
 
5451	BUG_ON(dev_boot_phase);
5452	ASSERT_RTNL();
5453
5454	might_sleep();
5455
5456	/* When net_device's are persistent, this will be fatal. */
5457	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5458	BUG_ON(!net);
5459
 
 
 
 
5460	spin_lock_init(&dev->addr_list_lock);
5461	netdev_set_addr_lockdep_class(dev);
5462
5463	dev->iflink = -1;
 
 
5464
5465	ret = dev_get_valid_name(dev, dev->name);
5466	if (ret < 0)
 
5467		goto out;
5468
5469	/* Init, if this function is available */
5470	if (dev->netdev_ops->ndo_init) {
5471		ret = dev->netdev_ops->ndo_init(dev);
5472		if (ret) {
5473			if (ret > 0)
5474				ret = -EIO;
5475			goto out;
5476		}
5477	}
5478
5479	dev->ifindex = dev_new_index(net);
5480	if (dev->iflink == -1)
5481		dev->iflink = dev->ifindex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5482
5483	/* Transfer changeable features to wanted_features and enable
5484	 * software offloads (GSO and GRO).
5485	 */
5486	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5487	dev->features |= NETIF_F_SOFT_FEATURES;
 
 
 
 
 
 
5488	dev->wanted_features = dev->features & dev->hw_features;
5489
5490	/* Turn on no cache copy if HW is doing checksum */
5491	dev->hw_features |= NETIF_F_NOCACHE_COPY;
5492	if ((dev->features & NETIF_F_ALL_CSUM) &&
5493	    !(dev->features & NETIF_F_NO_CSUM)) {
5494		dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5495		dev->features |= NETIF_F_NOCACHE_COPY;
5496	}
 
 
 
 
 
 
 
 
 
5497
5498	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5499	 */
5500	dev->vlan_features |= NETIF_F_HIGHDMA;
5501
 
 
 
 
 
 
 
 
5502	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5503	ret = notifier_to_errno(ret);
5504	if (ret)
5505		goto err_uninit;
5506
5507	ret = netdev_register_kobject(dev);
 
 
 
5508	if (ret)
5509		goto err_uninit;
5510	dev->reg_state = NETREG_REGISTERED;
5511
5512	__netdev_update_features(dev);
5513
5514	/*
5515	 *	Default initial state at registry is that the
5516	 *	device is present.
5517	 */
5518
5519	set_bit(__LINK_STATE_PRESENT, &dev->state);
5520
 
 
5521	dev_init_scheduler(dev);
5522	dev_hold(dev);
 
5523	list_netdevice(dev);
5524
 
 
 
 
 
 
 
 
 
5525	/* Notify protocols, that a new device appeared. */
5526	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5527	ret = notifier_to_errno(ret);
5528	if (ret) {
5529		rollback_registered(dev);
5530		dev->reg_state = NETREG_UNREGISTERED;
 
 
5531	}
5532	/*
5533	 *	Prevent userspace races by waiting until the network
5534	 *	device is fully setup before sending notifications.
5535	 */
5536	if (!dev->rtnl_link_ops ||
5537	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5538		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5539
5540out:
5541	return ret;
5542
 
 
 
 
 
 
5543err_uninit:
5544	if (dev->netdev_ops->ndo_uninit)
5545		dev->netdev_ops->ndo_uninit(dev);
 
 
 
 
5546	goto out;
5547}
5548EXPORT_SYMBOL(register_netdevice);
5549
5550/**
5551 *	init_dummy_netdev	- init a dummy network device for NAPI
5552 *	@dev: device to init
5553 *
5554 *	This takes a network device structure and initialize the minimum
5555 *	amount of fields so it can be used to schedule NAPI polls without
5556 *	registering a full blown interface. This is to be used by drivers
5557 *	that need to tie several hardware interfaces to a single NAPI
5558 *	poll scheduler due to HW limitations.
5559 */
5560int init_dummy_netdev(struct net_device *dev)
5561{
5562	/* Clear everything. Note we don't initialize spinlocks
5563	 * are they aren't supposed to be taken by any of the
5564	 * NAPI code and this dummy netdev is supposed to be
5565	 * only ever used for NAPI polls
5566	 */
5567	memset(dev, 0, sizeof(struct net_device));
5568
5569	/* make sure we BUG if trying to hit standard
5570	 * register/unregister code path
5571	 */
5572	dev->reg_state = NETREG_DUMMY;
5573
5574	/* NAPI wants this */
5575	INIT_LIST_HEAD(&dev->napi_list);
5576
5577	/* a dummy interface is started by default */
5578	set_bit(__LINK_STATE_PRESENT, &dev->state);
5579	set_bit(__LINK_STATE_START, &dev->state);
5580
 
 
 
5581	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5582	 * because users of this 'device' dont need to change
5583	 * its refcount.
5584	 */
5585
5586	return 0;
5587}
5588EXPORT_SYMBOL_GPL(init_dummy_netdev);
5589
5590
5591/**
5592 *	register_netdev	- register a network device
5593 *	@dev: device to register
5594 *
5595 *	Take a completed network device structure and add it to the kernel
5596 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5597 *	chain. 0 is returned on success. A negative errno code is returned
5598 *	on a failure to set up the device, or if the name is a duplicate.
5599 *
5600 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5601 *	and expands the device name if you passed a format string to
5602 *	alloc_netdev.
5603 */
5604int register_netdev(struct net_device *dev)
5605{
5606	int err;
5607
5608	rtnl_lock();
 
5609	err = register_netdevice(dev);
5610	rtnl_unlock();
5611	return err;
5612}
5613EXPORT_SYMBOL(register_netdev);
5614
5615int netdev_refcnt_read(const struct net_device *dev)
5616{
 
5617	int i, refcnt = 0;
5618
5619	for_each_possible_cpu(i)
5620		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5621	return refcnt;
 
 
 
5622}
5623EXPORT_SYMBOL(netdev_refcnt_read);
5624
5625/*
5626 * netdev_wait_allrefs - wait until all references are gone.
 
 
 
 
 
5627 *
5628 * This is called when unregistering network devices.
5629 *
5630 * Any protocol or device that holds a reference should register
5631 * for netdevice notification, and cleanup and put back the
5632 * reference if they receive an UNREGISTER event.
5633 * We can get stuck here if buggy protocols don't correctly
5634 * call dev_put.
5635 */
5636static void netdev_wait_allrefs(struct net_device *dev)
5637{
5638	unsigned long rebroadcast_time, warning_time;
5639	int refcnt;
 
5640
5641	linkwatch_forget_dev(dev);
5642
5643	rebroadcast_time = warning_time = jiffies;
5644	refcnt = netdev_refcnt_read(dev);
 
5645
5646	while (refcnt != 0) {
5647		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5648			rtnl_lock();
5649
5650			/* Rebroadcast unregister notification */
5651			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5652			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5653			 * should have already handle it the first time */
5654
5655			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5656				     &dev->state)) {
5657				/* We must not have linkwatch events
5658				 * pending on unregister. If this
5659				 * happens, we simply run the queue
5660				 * unscheduled, resulting in a noop
5661				 * for this device.
5662				 */
5663				linkwatch_run_queue();
5664			}
 
 
 
 
 
5665
5666			__rtnl_unlock();
5667
5668			rebroadcast_time = jiffies;
5669		}
5670
5671		msleep(250);
 
 
 
 
 
 
5672
5673		refcnt = netdev_refcnt_read(dev);
 
 
 
 
 
 
 
 
 
 
5674
5675		if (time_after(jiffies, warning_time + 10 * HZ)) {
5676			printk(KERN_EMERG "unregister_netdevice: "
5677			       "waiting for %s to become free. Usage "
5678			       "count = %d\n",
5679			       dev->name, refcnt);
5680			warning_time = jiffies;
5681		}
5682	}
5683}
5684
5685/* The sequence is:
5686 *
5687 *	rtnl_lock();
5688 *	...
5689 *	register_netdevice(x1);
5690 *	register_netdevice(x2);
5691 *	...
5692 *	unregister_netdevice(y1);
5693 *	unregister_netdevice(y2);
5694 *      ...
5695 *	rtnl_unlock();
5696 *	free_netdev(y1);
5697 *	free_netdev(y2);
5698 *
5699 * We are invoked by rtnl_unlock().
5700 * This allows us to deal with problems:
5701 * 1) We can delete sysfs objects which invoke hotplug
5702 *    without deadlocking with linkwatch via keventd.
5703 * 2) Since we run with the RTNL semaphore not held, we can sleep
5704 *    safely in order to wait for the netdev refcnt to drop to zero.
5705 *
5706 * We must not return until all unregister events added during
5707 * the interval the lock was held have been completed.
5708 */
5709void netdev_run_todo(void)
5710{
 
5711	struct list_head list;
 
 
 
 
 
 
 
 
 
 
 
 
 
5712
5713	/* Snapshot list, allow later requests */
5714	list_replace_init(&net_todo_list, &list);
5715
5716	__rtnl_unlock();
5717
5718	while (!list_empty(&list)) {
5719		struct net_device *dev
5720			= list_first_entry(&list, struct net_device, todo_list);
5721		list_del(&dev->todo_list);
5722
 
5723		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5724			printk(KERN_ERR "network todo '%s' but state %d\n",
5725			       dev->name, dev->reg_state);
5726			dump_stack();
5727			continue;
5728		}
5729
 
5730		dev->reg_state = NETREG_UNREGISTERED;
 
 
 
5731
5732		on_each_cpu(flush_backlog, dev, 1);
5733
5734		netdev_wait_allrefs(dev);
5735
5736		/* paranoia */
5737		BUG_ON(netdev_refcnt_read(dev));
5738		WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5739		WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5740		WARN_ON(dev->dn_ptr);
 
 
 
 
 
 
 
5741
5742		if (dev->destructor)
5743			dev->destructor(dev);
5744
5745		/* Free network device */
5746		kobject_put(&dev->dev.kobj);
5747	}
5748}
5749
5750/* Convert net_device_stats to rtnl_link_stats64.  They have the same
5751 * fields in the same order, with only the type differing.
 
 
5752 */
5753static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5754				    const struct net_device_stats *netdev_stats)
5755{
5756#if BITS_PER_LONG == 64
5757        BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5758        memcpy(stats64, netdev_stats, sizeof(*stats64));
5759#else
5760	size_t i, n = sizeof(*stats64) / sizeof(u64);
5761	const unsigned long *src = (const unsigned long *)netdev_stats;
5762	u64 *dst = (u64 *)stats64;
5763
5764	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5765		     sizeof(*stats64) / sizeof(u64));
5766	for (i = 0; i < n; i++)
5767		dst[i] = src[i];
5768#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5769}
 
5770
5771/**
5772 *	dev_get_stats	- get network device statistics
5773 *	@dev: device to get statistics from
5774 *	@storage: place to store stats
5775 *
5776 *	Get network statistics from device. Return @storage.
5777 *	The device driver may provide its own method by setting
5778 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5779 *	otherwise the internal statistics structure is used.
5780 */
5781struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5782					struct rtnl_link_stats64 *storage)
5783{
5784	const struct net_device_ops *ops = dev->netdev_ops;
 
5785
5786	if (ops->ndo_get_stats64) {
5787		memset(storage, 0, sizeof(*storage));
5788		ops->ndo_get_stats64(dev, storage);
5789	} else if (ops->ndo_get_stats) {
5790		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5791	} else {
5792		netdev_stats_to_stats64(storage, &dev->stats);
5793	}
5794	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5795	return storage;
5796}
5797EXPORT_SYMBOL(dev_get_stats);
5798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5799struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5800{
5801	struct netdev_queue *queue = dev_ingress_queue(dev);
5802
5803#ifdef CONFIG_NET_CLS_ACT
5804	if (queue)
5805		return queue;
5806	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5807	if (!queue)
5808		return NULL;
5809	netdev_init_one_queue(dev, queue, NULL);
5810	queue->qdisc = &noop_qdisc;
5811	queue->qdisc_sleeping = &noop_qdisc;
5812	rcu_assign_pointer(dev->ingress_queue, queue);
5813#endif
5814	return queue;
5815}
5816
 
 
 
 
 
 
 
 
 
 
5817/**
5818 *	alloc_netdev_mqs - allocate network device
5819 *	@sizeof_priv:	size of private data to allocate space for
5820 *	@name:		device name format string
5821 *	@setup:		callback to initialize device
5822 *	@txqs:		the number of TX subqueues to allocate
5823 *	@rxqs:		the number of RX subqueues to allocate
5824 *
5825 *	Allocates a struct net_device with private data area for driver use
5826 *	and performs basic initialization.  Also allocates subquue structs
5827 *	for each queue on the device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5828 */
5829struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
 
5830		void (*setup)(struct net_device *),
5831		unsigned int txqs, unsigned int rxqs)
5832{
5833	struct net_device *dev;
5834	size_t alloc_size;
5835	struct net_device *p;
5836
5837	BUG_ON(strlen(name) >= sizeof(dev->name));
5838
5839	if (txqs < 1) {
5840		pr_err("alloc_netdev: Unable to allocate device "
5841		       "with zero queues.\n");
5842		return NULL;
5843	}
5844
5845#ifdef CONFIG_RPS
5846	if (rxqs < 1) {
5847		pr_err("alloc_netdev: Unable to allocate device "
5848		       "with zero RX queues.\n");
5849		return NULL;
5850	}
5851#endif
5852
5853	alloc_size = sizeof(struct net_device);
5854	if (sizeof_priv) {
5855		/* ensure 32-byte alignment of private area */
5856		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5857		alloc_size += sizeof_priv;
5858	}
5859	/* ensure 32-byte alignment of whole construct */
5860	alloc_size += NETDEV_ALIGN - 1;
5861
5862	p = kzalloc(alloc_size, GFP_KERNEL);
5863	if (!p) {
5864		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5865		return NULL;
5866	}
5867
5868	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5869	dev->padded = (char *)dev - (char *)p;
5870
 
 
5871	dev->pcpu_refcnt = alloc_percpu(int);
5872	if (!dev->pcpu_refcnt)
5873		goto free_p;
 
 
 
 
5874
5875	if (dev_addr_init(dev))
5876		goto free_pcpu;
5877
5878	dev_mc_init(dev);
5879	dev_uc_init(dev);
5880
5881	dev_net_set(dev, &init_net);
5882
5883	dev->gso_max_size = GSO_MAX_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
5884
5885	INIT_LIST_HEAD(&dev->napi_list);
5886	INIT_LIST_HEAD(&dev->unreg_list);
 
5887	INIT_LIST_HEAD(&dev->link_watch_list);
5888	dev->priv_flags = IFF_XMIT_DST_RELEASE;
 
 
 
 
 
 
 
 
5889	setup(dev);
5890
 
 
 
 
 
5891	dev->num_tx_queues = txqs;
5892	dev->real_num_tx_queues = txqs;
5893	if (netif_alloc_netdev_queues(dev))
5894		goto free_all;
5895
5896#ifdef CONFIG_RPS
5897	dev->num_rx_queues = rxqs;
5898	dev->real_num_rx_queues = rxqs;
5899	if (netif_alloc_rx_queues(dev))
5900		goto free_all;
5901#endif
5902
5903	strcpy(dev->name, name);
 
5904	dev->group = INIT_NETDEV_GROUP;
 
 
 
 
 
5905	return dev;
5906
5907free_all:
5908	free_netdev(dev);
5909	return NULL;
5910
5911free_pcpu:
 
5912	free_percpu(dev->pcpu_refcnt);
5913	kfree(dev->_tx);
5914#ifdef CONFIG_RPS
5915	kfree(dev->_rx);
5916#endif
5917
5918free_p:
5919	kfree(p);
5920	return NULL;
5921}
5922EXPORT_SYMBOL(alloc_netdev_mqs);
5923
5924/**
5925 *	free_netdev - free network device
5926 *	@dev: device
5927 *
5928 *	This function does the last stage of destroying an allocated device
5929 * 	interface. The reference to the device object is released.
5930 *	If this is the last reference then it will be freed.
 
5931 */
5932void free_netdev(struct net_device *dev)
5933{
5934	struct napi_struct *p, *n;
5935
5936	release_net(dev_net(dev));
5937
5938	kfree(dev->_tx);
5939#ifdef CONFIG_RPS
5940	kfree(dev->_rx);
5941#endif
 
 
 
 
 
 
 
 
5942
5943	kfree(rcu_dereference_raw(dev->ingress_queue));
5944
5945	/* Flush device addresses */
5946	dev_addr_flush(dev);
5947
5948	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5949		netif_napi_del(p);
5950
 
 
5951	free_percpu(dev->pcpu_refcnt);
5952	dev->pcpu_refcnt = NULL;
 
 
 
 
 
5953
5954	/*  Compatibility with error handling in drivers */
5955	if (dev->reg_state == NETREG_UNINITIALIZED) {
5956		kfree((char *)dev - dev->padded);
5957		return;
5958	}
5959
5960	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5961	dev->reg_state = NETREG_RELEASED;
5962
5963	/* will free via device release */
5964	put_device(&dev->dev);
5965}
5966EXPORT_SYMBOL(free_netdev);
5967
5968/**
5969 *	synchronize_net -  Synchronize with packet receive processing
5970 *
5971 *	Wait for packets currently being received to be done.
5972 *	Does not block later packets from starting.
5973 */
5974void synchronize_net(void)
5975{
5976	might_sleep();
5977	if (rtnl_is_locked())
5978		synchronize_rcu_expedited();
5979	else
5980		synchronize_rcu();
5981}
5982EXPORT_SYMBOL(synchronize_net);
5983
5984/**
5985 *	unregister_netdevice_queue - remove device from the kernel
5986 *	@dev: device
5987 *	@head: list
5988 *
5989 *	This function shuts down a device interface and removes it
5990 *	from the kernel tables.
5991 *	If head not NULL, device is queued to be unregistered later.
5992 *
5993 *	Callers must hold the rtnl semaphore.  You may want
5994 *	unregister_netdev() instead of this.
5995 */
5996
5997void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5998{
5999	ASSERT_RTNL();
6000
6001	if (head) {
6002		list_move_tail(&dev->unreg_list, head);
6003	} else {
6004		rollback_registered(dev);
6005		/* Finish processing unregister after unlock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6006		net_set_todo(dev);
6007	}
 
 
6008}
6009EXPORT_SYMBOL(unregister_netdevice_queue);
6010
6011/**
6012 *	unregister_netdevice_many - unregister many devices
6013 *	@head: list of devices
 
 
 
6014 */
6015void unregister_netdevice_many(struct list_head *head)
6016{
6017	struct net_device *dev;
6018
6019	if (!list_empty(head)) {
6020		rollback_registered_many(head);
6021		list_for_each_entry(dev, head, unreg_list)
6022			net_set_todo(dev);
6023	}
6024}
6025EXPORT_SYMBOL(unregister_netdevice_many);
6026
6027/**
6028 *	unregister_netdev - remove device from the kernel
6029 *	@dev: device
6030 *
6031 *	This function shuts down a device interface and removes it
6032 *	from the kernel tables.
6033 *
6034 *	This is just a wrapper for unregister_netdevice that takes
6035 *	the rtnl semaphore.  In general you want to use this and not
6036 *	unregister_netdevice.
6037 */
6038void unregister_netdev(struct net_device *dev)
6039{
6040	rtnl_lock();
6041	unregister_netdevice(dev);
6042	rtnl_unlock();
6043}
6044EXPORT_SYMBOL(unregister_netdev);
6045
6046/**
6047 *	dev_change_net_namespace - move device to different nethost namespace
6048 *	@dev: device
6049 *	@net: network namespace
6050 *	@pat: If not NULL name pattern to try if the current device name
6051 *	      is already taken in the destination network namespace.
 
 
6052 *
6053 *	This function shuts down a device interface and moves it
6054 *	to a new network namespace. On success 0 is returned, on
6055 *	a failure a netagive errno code is returned.
6056 *
6057 *	Callers must hold the rtnl semaphore.
6058 */
6059
6060int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
 
6061{
6062	int err;
 
 
 
6063
6064	ASSERT_RTNL();
6065
6066	/* Don't allow namespace local devices to be moved. */
6067	err = -EINVAL;
6068	if (dev->features & NETIF_F_NETNS_LOCAL)
6069		goto out;
6070
6071	/* Ensure the device has been registrered */
6072	err = -EINVAL;
6073	if (dev->reg_state != NETREG_REGISTERED)
6074		goto out;
6075
6076	/* Get out if there is nothing todo */
6077	err = 0;
6078	if (net_eq(dev_net(dev), net))
6079		goto out;
6080
6081	/* Pick the destination device name, and ensure
6082	 * we can use it in the destination network namespace.
6083	 */
6084	err = -EEXIST;
6085	if (__dev_get_by_name(net, dev->name)) {
6086		/* We get here if we can't use the current device name */
6087		if (!pat)
6088			goto out;
6089		if (dev_get_valid_name(dev, pat) < 0)
 
6090			goto out;
6091	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6092
6093	/*
6094	 * And now a mini version of register_netdevice unregister_netdevice.
6095	 */
6096
6097	/* If device is running close it first. */
6098	dev_close(dev);
6099
6100	/* And unlink it from device chain */
6101	err = -ENODEV;
6102	unlist_netdevice(dev);
6103
6104	synchronize_net();
6105
6106	/* Shutdown queueing discipline. */
6107	dev_shutdown(dev);
6108
6109	/* Notify protocols, that we are about to destroy
6110	   this device. They should clean all the things.
 
 
 
 
 
 
 
6111
6112	   Note that dev->reg_state stays at NETREG_REGISTERED.
6113	   This is wanted because this way 8021q and macvlan know
6114	   the device is just moving and can keep their slaves up.
6115	*/
6116	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6117	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6118
6119	/*
6120	 *	Flush the unicast and multicast chains
6121	 */
6122	dev_uc_flush(dev);
6123	dev_mc_flush(dev);
6124
 
 
 
 
 
 
 
6125	/* Actually switch the network namespace */
6126	dev_net_set(dev, net);
 
6127
6128	/* If there is an ifindex conflict assign a new one */
6129	if (__dev_get_by_index(net, dev->ifindex)) {
6130		int iflink = (dev->iflink == dev->ifindex);
6131		dev->ifindex = dev_new_index(net);
6132		if (iflink)
6133			dev->iflink = dev->ifindex;
6134	}
6135
6136	/* Fixup kobjects */
 
6137	err = device_rename(&dev->dev, dev->name);
 
 
 
 
 
 
 
 
 
 
 
6138	WARN_ON(err);
6139
6140	/* Add the device back in the hashes */
6141	list_netdevice(dev);
6142
6143	/* Notify protocols, that a new device appeared. */
6144	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6145
6146	/*
6147	 *	Prevent userspace races by waiting until the network
6148	 *	device is fully setup before sending notifications.
6149	 */
6150	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6151
6152	synchronize_net();
6153	err = 0;
6154out:
6155	return err;
6156}
6157EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6158
6159static int dev_cpu_callback(struct notifier_block *nfb,
6160			    unsigned long action,
6161			    void *ocpu)
6162{
6163	struct sk_buff **list_skb;
6164	struct sk_buff *skb;
6165	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6166	struct softnet_data *sd, *oldsd;
6167
6168	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6169		return NOTIFY_OK;
6170
6171	local_irq_disable();
6172	cpu = smp_processor_id();
6173	sd = &per_cpu(softnet_data, cpu);
6174	oldsd = &per_cpu(softnet_data, oldcpu);
6175
6176	/* Find end of our completion_queue. */
6177	list_skb = &sd->completion_queue;
6178	while (*list_skb)
6179		list_skb = &(*list_skb)->next;
6180	/* Append completion queue from offline CPU. */
6181	*list_skb = oldsd->completion_queue;
6182	oldsd->completion_queue = NULL;
6183
6184	/* Append output queue from offline CPU. */
6185	if (oldsd->output_queue) {
6186		*sd->output_queue_tailp = oldsd->output_queue;
6187		sd->output_queue_tailp = oldsd->output_queue_tailp;
6188		oldsd->output_queue = NULL;
6189		oldsd->output_queue_tailp = &oldsd->output_queue;
6190	}
6191	/* Append NAPI poll list from offline CPU. */
6192	if (!list_empty(&oldsd->poll_list)) {
6193		list_splice_init(&oldsd->poll_list, &sd->poll_list);
6194		raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
 
 
 
 
 
 
 
 
6195	}
6196
6197	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6198	local_irq_enable();
6199
 
 
 
 
 
 
 
6200	/* Process offline CPU's input_pkt_queue */
6201	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6202		netif_rx(skb);
6203		input_queue_head_incr(oldsd);
6204	}
6205	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6206		netif_rx(skb);
6207		input_queue_head_incr(oldsd);
6208	}
6209
6210	return NOTIFY_OK;
6211}
6212
6213
6214/**
6215 *	netdev_increment_features - increment feature set by one
6216 *	@all: current feature set
6217 *	@one: new feature set
6218 *	@mask: mask feature set
6219 *
6220 *	Computes a new feature set after adding a device with feature set
6221 *	@one to the master device with current feature set @all.  Will not
6222 *	enable anything that is off in @mask. Returns the new feature set.
6223 */
6224u32 netdev_increment_features(u32 all, u32 one, u32 mask)
 
6225{
6226	if (mask & NETIF_F_GEN_CSUM)
6227		mask |= NETIF_F_ALL_CSUM;
6228	mask |= NETIF_F_VLAN_CHALLENGED;
6229
6230	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6231	all &= one | ~NETIF_F_ALL_FOR_ALL;
6232
6233	/* If device needs checksumming, downgrade to it. */
6234	if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM))
6235		all &= ~NETIF_F_NO_CSUM;
6236
6237	/* If one device supports hw checksumming, set for all. */
6238	if (all & NETIF_F_GEN_CSUM)
6239		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6240
6241	return all;
6242}
6243EXPORT_SYMBOL(netdev_increment_features);
6244
6245static struct hlist_head *netdev_create_hash(void)
6246{
6247	int i;
6248	struct hlist_head *hash;
6249
6250	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6251	if (hash != NULL)
6252		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6253			INIT_HLIST_HEAD(&hash[i]);
6254
6255	return hash;
6256}
6257
6258/* Initialize per network namespace state */
6259static int __net_init netdev_init(struct net *net)
6260{
 
 
 
6261	INIT_LIST_HEAD(&net->dev_base_head);
6262
6263	net->dev_name_head = netdev_create_hash();
6264	if (net->dev_name_head == NULL)
6265		goto err_name;
6266
6267	net->dev_index_head = netdev_create_hash();
6268	if (net->dev_index_head == NULL)
6269		goto err_idx;
6270
 
 
 
 
6271	return 0;
6272
6273err_idx:
6274	kfree(net->dev_name_head);
6275err_name:
6276	return -ENOMEM;
6277}
6278
6279/**
6280 *	netdev_drivername - network driver for the device
6281 *	@dev: network device
6282 *
6283 *	Determine network driver for device.
6284 */
6285const char *netdev_drivername(const struct net_device *dev)
6286{
6287	const struct device_driver *driver;
6288	const struct device *parent;
6289	const char *empty = "";
6290
6291	parent = dev->dev.parent;
6292	if (!parent)
6293		return empty;
6294
6295	driver = parent->driver;
6296	if (driver && driver->name)
6297		return driver->name;
6298	return empty;
6299}
6300
6301static int __netdev_printk(const char *level, const struct net_device *dev,
6302			   struct va_format *vaf)
6303{
6304	int r;
6305
6306	if (dev && dev->dev.parent)
6307		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6308			       netdev_name(dev), vaf);
6309	else if (dev)
6310		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6311	else
6312		r = printk("%s(NULL net_device): %pV", level, vaf);
6313
6314	return r;
 
 
 
6315}
6316
6317int netdev_printk(const char *level, const struct net_device *dev,
6318		  const char *format, ...)
6319{
6320	struct va_format vaf;
6321	va_list args;
6322	int r;
6323
6324	va_start(args, format);
6325
6326	vaf.fmt = format;
6327	vaf.va = &args;
6328
6329	r = __netdev_printk(level, dev, &vaf);
 
6330	va_end(args);
6331
6332	return r;
6333}
6334EXPORT_SYMBOL(netdev_printk);
6335
6336#define define_netdev_printk_level(func, level)			\
6337int func(const struct net_device *dev, const char *fmt, ...)	\
6338{								\
6339	int r;							\
6340	struct va_format vaf;					\
6341	va_list args;						\
6342								\
6343	va_start(args, fmt);					\
6344								\
6345	vaf.fmt = fmt;						\
6346	vaf.va = &args;						\
6347								\
6348	r = __netdev_printk(level, dev, &vaf);			\
 
6349	va_end(args);						\
6350								\
6351	return r;						\
6352}								\
6353EXPORT_SYMBOL(func);
6354
6355define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6356define_netdev_printk_level(netdev_alert, KERN_ALERT);
6357define_netdev_printk_level(netdev_crit, KERN_CRIT);
6358define_netdev_printk_level(netdev_err, KERN_ERR);
6359define_netdev_printk_level(netdev_warn, KERN_WARNING);
6360define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6361define_netdev_printk_level(netdev_info, KERN_INFO);
6362
6363static void __net_exit netdev_exit(struct net *net)
6364{
6365	kfree(net->dev_name_head);
6366	kfree(net->dev_index_head);
 
 
 
6367}
6368
6369static struct pernet_operations __net_initdata netdev_net_ops = {
6370	.init = netdev_init,
6371	.exit = netdev_exit,
6372};
6373
6374static void __net_exit default_device_exit(struct net *net)
6375{
 
6376	struct net_device *dev, *aux;
6377	/*
6378	 * Push all migratable network devices back to the
6379	 * initial network namespace
6380	 */
6381	rtnl_lock();
6382	for_each_netdev_safe(net, dev, aux) {
6383		int err;
6384		char fb_name[IFNAMSIZ];
6385
6386		/* Ignore unmoveable devices (i.e. loopback) */
6387		if (dev->features & NETIF_F_NETNS_LOCAL)
6388			continue;
6389
6390		/* Leave virtual devices for the generic cleanup */
6391		if (dev->rtnl_link_ops)
6392			continue;
6393
6394		/* Push remaining network devices to init_net */
6395		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
 
 
 
 
 
 
 
 
 
 
6396		err = dev_change_net_namespace(dev, &init_net, fb_name);
6397		if (err) {
6398			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6399				__func__, dev->name, err);
6400			BUG();
6401		}
6402	}
6403	rtnl_unlock();
6404}
6405
6406static void __net_exit default_device_exit_batch(struct list_head *net_list)
6407{
6408	/* At exit all network devices most be removed from a network
6409	 * namespace.  Do this in the reverse order of registration.
6410	 * Do this across as many network namespaces as possible to
6411	 * improve batching efficiency.
6412	 */
6413	struct net_device *dev;
6414	struct net *net;
6415	LIST_HEAD(dev_kill_list);
6416
6417	rtnl_lock();
6418	list_for_each_entry(net, net_list, exit_list) {
 
 
 
 
 
6419		for_each_netdev_reverse(net, dev) {
6420			if (dev->rtnl_link_ops)
6421				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6422			else
6423				unregister_netdevice_queue(dev, &dev_kill_list);
6424		}
6425	}
6426	unregister_netdevice_many(&dev_kill_list);
6427	list_del(&dev_kill_list);
6428	rtnl_unlock();
6429}
6430
6431static struct pernet_operations __net_initdata default_device_ops = {
6432	.exit = default_device_exit,
6433	.exit_batch = default_device_exit_batch,
6434};
6435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6436/*
6437 *	Initialize the DEV module. At boot time this walks the device list and
6438 *	unhooks any devices that fail to initialise (normally hardware not
6439 *	present) and leaves us with a valid list of present and active devices.
6440 *
6441 */
6442
6443/*
6444 *       This is called single threaded during boot, so no need
6445 *       to take the rtnl semaphore.
6446 */
6447static int __init net_dev_init(void)
6448{
6449	int i, rc = -ENOMEM;
6450
6451	BUG_ON(!dev_boot_phase);
6452
 
 
6453	if (dev_proc_init())
6454		goto out;
6455
6456	if (netdev_kobject_init())
6457		goto out;
6458
6459	INIT_LIST_HEAD(&ptype_all);
6460	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6461		INIT_LIST_HEAD(&ptype_base[i]);
6462
6463	if (register_pernet_subsys(&netdev_net_ops))
6464		goto out;
6465
6466	/*
6467	 *	Initialise the packet receive queues.
6468	 */
6469
6470	for_each_possible_cpu(i) {
 
6471		struct softnet_data *sd = &per_cpu(softnet_data, i);
6472
6473		memset(sd, 0, sizeof(*sd));
 
6474		skb_queue_head_init(&sd->input_pkt_queue);
6475		skb_queue_head_init(&sd->process_queue);
6476		sd->completion_queue = NULL;
 
 
6477		INIT_LIST_HEAD(&sd->poll_list);
6478		sd->output_queue = NULL;
6479		sd->output_queue_tailp = &sd->output_queue;
6480#ifdef CONFIG_RPS
6481		sd->csd.func = rps_trigger_softirq;
6482		sd->csd.info = sd;
6483		sd->csd.flags = 0;
6484		sd->cpu = i;
6485#endif
 
 
6486
 
6487		sd->backlog.poll = process_backlog;
6488		sd->backlog.weight = weight_p;
6489		sd->backlog.gro_list = NULL;
6490		sd->backlog.gro_count = 0;
6491	}
6492
6493	dev_boot_phase = 0;
6494
6495	/* The loopback device is special if any other network devices
6496	 * is present in a network namespace the loopback device must
6497	 * be present. Since we now dynamically allocate and free the
6498	 * loopback device ensure this invariant is maintained by
6499	 * keeping the loopback device as the first device on the
6500	 * list of network devices.  Ensuring the loopback devices
6501	 * is the first device that appears and the last network device
6502	 * that disappears.
6503	 */
6504	if (register_pernet_device(&loopback_net_ops))
6505		goto out;
6506
6507	if (register_pernet_device(&default_device_ops))
6508		goto out;
6509
6510	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6511	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6512
6513	hotcpu_notifier(dev_cpu_callback, 0);
6514	dst_init();
6515	dev_mcast_init();
6516	rc = 0;
6517out:
6518	return rc;
6519}
6520
6521subsys_initcall(net_dev_init);
6522
6523static int __init initialize_hashrnd(void)
6524{
6525	get_random_bytes(&hashrnd, sizeof(hashrnd));
6526	return 0;
6527}
6528
6529late_initcall_sync(initialize_hashrnd);
6530