Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/*
   2 * linux/mm/slab.c
   3 * Written by Mark Hemment, 1996/97.
   4 * (markhe@nextd.demon.co.uk)
   5 *
   6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
   7 *
   8 * Major cleanup, different bufctl logic, per-cpu arrays
   9 *	(c) 2000 Manfred Spraul
  10 *
  11 * Cleanup, make the head arrays unconditional, preparation for NUMA
  12 * 	(c) 2002 Manfred Spraul
  13 *
  14 * An implementation of the Slab Allocator as described in outline in;
  15 *	UNIX Internals: The New Frontiers by Uresh Vahalia
  16 *	Pub: Prentice Hall	ISBN 0-13-101908-2
  17 * or with a little more detail in;
  18 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19 *	Jeff Bonwick (Sun Microsystems).
  20 *	Presented at: USENIX Summer 1994 Technical Conference
  21 *
  22 * The memory is organized in caches, one cache for each object type.
  23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24 * Each cache consists out of many slabs (they are small (usually one
  25 * page long) and always contiguous), and each slab contains multiple
  26 * initialized objects.
  27 *
  28 * This means, that your constructor is used only for newly allocated
  29 * slabs and you must pass objects with the same initializations to
  30 * kmem_cache_free.
  31 *
  32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33 * normal). If you need a special memory type, then must create a new
  34 * cache for that memory type.
  35 *
  36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37 *   full slabs with 0 free objects
  38 *   partial slabs
  39 *   empty slabs with no allocated objects
  40 *
  41 * If partial slabs exist, then new allocations come from these slabs,
  42 * otherwise from empty slabs or new slabs are allocated.
  43 *
  44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46 *
  47 * Each cache has a short per-cpu head array, most allocs
  48 * and frees go into that array, and if that array overflows, then 1/2
  49 * of the entries in the array are given back into the global cache.
  50 * The head array is strictly LIFO and should improve the cache hit rates.
  51 * On SMP, it additionally reduces the spinlock operations.
  52 *
  53 * The c_cpuarray may not be read with enabled local interrupts -
  54 * it's changed with a smp_call_function().
  55 *
  56 * SMP synchronization:
  57 *  constructors and destructors are called without any locking.
  58 *  Several members in struct kmem_cache and struct slab never change, they
  59 *	are accessed without any locking.
  60 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61 *  	and local interrupts are disabled so slab code is preempt-safe.
  62 *  The non-constant members are protected with a per-cache irq spinlock.
  63 *
  64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65 * in 2000 - many ideas in the current implementation are derived from
  66 * his patch.
  67 *
  68 * Further notes from the original documentation:
  69 *
  70 * 11 April '97.  Started multi-threading - markhe
  71 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72 *	The sem is only needed when accessing/extending the cache-chain, which
  73 *	can never happen inside an interrupt (kmem_cache_create(),
  74 *	kmem_cache_shrink() and kmem_cache_reap()).
  75 *
  76 *	At present, each engine can be growing a cache.  This should be blocked.
  77 *
  78 * 15 March 2005. NUMA slab allocator.
  79 *	Shai Fultheim <shai@scalex86.org>.
  80 *	Shobhit Dayal <shobhit@calsoftinc.com>
  81 *	Alok N Kataria <alokk@calsoftinc.com>
  82 *	Christoph Lameter <christoph@lameter.com>
  83 *
  84 *	Modified the slab allocator to be node aware on NUMA systems.
  85 *	Each node has its own list of partial, free and full slabs.
  86 *	All object allocations for a node occur from node specific slab lists.
  87 */
  88
  89#include	<linux/__KEEPIDENTS__B.h>
  90#include	<linux/__KEEPIDENTS__C.h>
  91#include	<linux/__KEEPIDENTS__D.h>
  92#include	<linux/__KEEPIDENTS__E.h>
  93#include	<linux/__KEEPIDENTS__F.h>
  94#include	<linux/__KEEPIDENTS__G.h>
  95#include	<linux/__KEEPIDENTS__H.h>
  96#include	<linux/__KEEPIDENTS__I.h>
  97#include	<linux/__KEEPIDENTS__J.h>
  98#include	<linux/proc_fs.h>
  99#include	<linux/__KEEPIDENTS__BA.h>
 100#include	<linux/__KEEPIDENTS__BB.h>
 101#include	<linux/__KEEPIDENTS__BC.h>
 102#include	<linux/cpu.h>
 103#include	<linux/__KEEPIDENTS__BD.h>
 104#include	<linux/__KEEPIDENTS__BE.h>
 105#include	<linux/rcupdate.h>
 106#include	<linux/__KEEPIDENTS__BF.h>
 107#include	<linux/__KEEPIDENTS__BG.h>
 108#include	<linux/__KEEPIDENTS__BH.h>
 109#include	<linux/kmemleak.h>
 110#include	<linux/__KEEPIDENTS__BI.h>
 111#include	<linux/__KEEPIDENTS__BJ.h>
 112#include	<linux/__KEEPIDENTS__CA-__KEEPIDENTS__CB.h>
 113#include	<linux/__KEEPIDENTS__CC.h>
 114#include	<linux/reciprocal_div.h>
 115#include	<linux/debugobjects.h>
 116#include	<linux/kmemcheck.h>
 117#include	<linux/__KEEPIDENTS__CD.h>
 118#include	<linux/__KEEPIDENTS__CE.h>
 119
 120#include	<asm/cacheflush.h>
 121#include	<asm/tlbflush.h>
 122#include	<asm/page.h>
 123
 124/*
 125 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
 126 *		  0 for faster, smaller code (especially in the critical paths).
 127 *
 128 * STATS	- 1 to collect stats for /proc/slabinfo.
 129 *		  0 for faster, smaller code (especially in the critical paths).
 130 *
 131 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 132 */
 133
 134#ifdef CONFIG_DEBUG_SLAB
 135#define	DEBUG		1
 136#define	STATS		1
 137#define	FORCED_DEBUG	1
 138#else
 139#define	DEBUG		0
 140#define	STATS		0
 141#define	FORCED_DEBUG	0
 142#endif
 143
 144/* Shouldn't this be in a header file somewhere? */
 145#define	BYTES_PER_WORD		sizeof(void *)
 146#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
 147
 148#ifndef ARCH_KMALLOC_FLAGS
 149#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
 150#endif
 151
 152/* Legal flag mask for kmem_cache_create(). */
 153#if DEBUG
 154# define CREATE_MASK	(SLAB_RED_ZONE | \
 155			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
 156			 SLAB_CACHE_DMA | \
 157			 SLAB_STORE_USER | \
 158			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 159			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 160			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 161#else
 162# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
 163			 SLAB_CACHE_DMA | \
 164			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
 165			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
 166			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
 167#endif
 168
 169/*
 170 * kmem_bufctl_t:
 171 *
 172 * Bufctl's are used for linking objs within a slab
 173 * linked offsets.
 174 *
 175 * This implementation relies on "struct page" for locating the cache &
 176 * slab an object belongs to.
 177 * This allows the bufctl structure to be small (one int), but limits
 178 * the number of objects a slab (not a cache) can contain when off-slab
 179 * bufctls are used. The limit is the size of the largest general cache
 180 * that does not use off-slab slabs.
 181 * For 32bit archs with 4 kB pages, is this 56.
 182 * This is not serious, as it is only for large objects, when it is unwise
 183 * to have too many per slab.
 184 * Note: This limit can be raised by introducing a general cache whose size
 185 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 186 */
 187
 188typedef unsigned int kmem_bufctl_t;
 189#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
 190#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
 191#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
 192#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
 193
 194/*
 195 * struct slab_rcu
 196 *
 197 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 198 * arrange for kmem_freepages to be called via RCU.  This is useful if
 199 * we need to approach a kernel structure obliquely, from its address
 200 * obtained without the usual locking.  We can lock the structure to
 201 * stabilize it and check it's still at the given address, only if we
 202 * can be sure that the memory has not been meanwhile reused for some
 203 * other kind of object (which our subsystem's lock might corrupt).
 204 *
 205 * rcu_read_lock before reading the address, then rcu_read_unlock after
 206 * taking the spinlock within the structure expected at that address.
 207 */
 208struct slab_rcu {
 209	struct rcu_head head;
 210	struct kmem_cache *cachep;
 211	void *addr;
 212};
 213
 214/*
 215 * struct slab
 216 *
 217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 218 * for a slab, or allocated from an general cache.
 219 * Slabs are chained into three list: fully used, partial, fully free slabs.
 220 */
 221struct slab {
 222	union {
 223		struct {
 224			struct list_head list;
 225			unsigned long colouroff;
 226			void *s_mem;		/* including colour offset */
 227			unsigned int inuse;	/* num of objs active in slab */
 228			kmem_bufctl_t free;
 229			unsigned short nodeid;
 230		};
 231		struct slab_rcu __slab_cover_slab_rcu;
 232	};
 233};
 234
 235/*
 236 * struct array_cache
 237 *
 238 * Purpose:
 239 * - LIFO ordering, to hand out cache-warm objects from _alloc
 240 * - reduce the number of linked list operations
 241 * - reduce spinlock operations
 242 *
 243 * The limit is stored in the per-cpu structure to reduce the data cache
 244 * footprint.
 245 *
 246 */
 247struct array_cache {
 248	unsigned int avail;
 249	unsigned int limit;
 250	unsigned int batchcount;
 251	unsigned int touched;
 252	spinlock_t lock;
 253	void *entry[];	/*
 254			 * Must have this definition in here for the proper
 255			 * alignment of array_cache. Also simplifies accessing
 256			 * the entries.
 257			 */
 258};
 259
 260/*
 261 * bootstrap: The caches do not work without cpuarrays anymore, but the
 262 * cpuarrays are allocated from the generic caches...
 263 */
 264#define BOOT_CPUCACHE_ENTRIES	1
 265struct arraycache_init {
 266	struct array_cache cache;
 267	void *entries[BOOT_CPUCACHE_ENTRIES];
 268};
 269
 270/*
 271 * The slab lists for all objects.
 272 */
 273struct kmem_list3 {
 274	struct list_head slabs_partial;	/* partial list first, better asm code */
 275	struct list_head slabs_full;
 276	struct list_head slabs_free;
 277	unsigned long free_objects;
 278	unsigned int free_limit;
 279	unsigned int colour_next;	/* Per-node cache coloring */
 280	spinlock_t list_lock;
 281	struct array_cache *shared;	/* shared per node */
 282	struct array_cache **alien;	/* on other nodes */
 283	unsigned long next_reap;	/* updated without locking */
 284	int free_touched;		/* updated without locking */
 285};
 286
 287/*
 288 * Need this for bootstrapping a per node allocator.
 289 */
 290#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
 291static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
 292#define	CACHE_CACHE 0
 293#define	SIZE_AC MAX_NUMNODES
 294#define	SIZE_L3 (2 * MAX_NUMNODES)
 295
 296static int drain_freelist(struct kmem_cache *cache,
 297			struct kmem_list3 *l3, int tofree);
 298static void free_block(struct kmem_cache *cachep, void **objpp, int len,
 299			int node);
 300static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
 301static void cache_reap(struct work_struct *unused);
 302
 303/*
 304 * This function must be completely optimized away if a constant is passed to
 305 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
 306 */
 307static __always_inline int index_of(const size_t size)
 308{
 309	extern void __bad_size(void);
 310
 311	if (__builtin_constant_p(size)) {
 312		int i = 0;
 313
 314#define CACHE(x) \
 315	if (size <=x) \
 316		return i; \
 317	else \
 318		i++;
 319#include <linux/kmalloc_sizes.h>
 320#undef CACHE
 321		__bad_size();
 322	} else
 323		__bad_size();
 324	return 0;
 325}
 326
 327static int slab_early_init = 1;
 328
 329#define INDEX_AC index_of(sizeof(struct arraycache_init))
 330#define INDEX_L3 index_of(sizeof(struct kmem_list3))
 331
 332static void kmem_list3_init(struct kmem_list3 *parent)
 333{
 334	INIT_LIST_HEAD(&parent->slabs_full);
 335	INIT_LIST_HEAD(&parent->slabs_partial);
 336	INIT_LIST_HEAD(&parent->slabs_free);
 337	parent->shared = NULL;
 338	parent->alien = NULL;
 339	parent->colour_next = 0;
 340	spin_lock_init(&parent->list_lock);
 341	parent->free_objects = 0;
 342	parent->free_touched = 0;
 343}
 344
 345#define MAKE_LIST(cachep, listp, slab, nodeid)				\
 346	do {								\
 347		INIT_LIST_HEAD(listp);					\
 348		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
 349	} while (0)
 350
 351#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
 352	do {								\
 353	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
 354	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
 355	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
 356	} while (0)
 357
 358#define CFLGS_OFF_SLAB		(0x80000000UL)
 359#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
 360
 361#define BATCHREFILL_LIMIT	16
 362/*
 363 * Optimization question: fewer reaps means less probability for unnessary
 364 * cpucache drain/refill cycles.
 365 *
 366 * OTOH the cpuarrays can contain lots of objects,
 367 * which could lock up otherwise freeable slabs.
 368 */
 369#define REAPTIMEOUT_CPUC	(2*HZ)
 370#define REAPTIMEOUT_LIST3	(4*HZ)
 371
 372#if STATS
 373#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
 374#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
 375#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
 376#define	STATS_INC_GROWN(x)	((x)->grown++)
 377#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
 378#define	STATS_SET_HIGH(x)						\
 379	do {								\
 380		if ((x)->num_active > (x)->high_mark)			\
 381			(x)->high_mark = (x)->num_active;		\
 382	} while (0)
 383#define	STATS_INC_ERR(x)	((x)->errors++)
 384#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
 385#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
 386#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
 387#define	STATS_SET_FREEABLE(x, i)					\
 388	do {								\
 389		if ((x)->max_freeable < i)				\
 390			(x)->max_freeable = i;				\
 391	} while (0)
 392#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
 393#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
 394#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
 395#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
 396#else
 397#define	STATS_INC_ACTIVE(x)	do { } while (0)
 398#define	STATS_DEC_ACTIVE(x)	do { } while (0)
 399#define	STATS_INC_ALLOCED(x)	do { } while (0)
 400#define	STATS_INC_GROWN(x)	do { } while (0)
 401#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
 402#define	STATS_SET_HIGH(x)	do { } while (0)
 403#define	STATS_INC_ERR(x)	do { } while (0)
 404#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
 405#define	STATS_INC_NODEFREES(x)	do { } while (0)
 406#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
 407#define	STATS_SET_FREEABLE(x, i) do { } while (0)
 408#define STATS_INC_ALLOCHIT(x)	do { } while (0)
 409#define STATS_INC_ALLOCMISS(x)	do { } while (0)
 410#define STATS_INC_FREEHIT(x)	do { } while (0)
 411#define STATS_INC_FREEMISS(x)	do { } while (0)
 412#endif
 413
 414#if DEBUG
 415
 416/*
 417 * memory layout of objects:
 418 * 0		: objp
 419 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
 420 * 		the end of an object is aligned with the end of the real
 421 * 		allocation. Catches writes behind the end of the allocation.
 422 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
 423 * 		redzone word.
 424 * cachep->obj_offset: The real object.
 425 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 426 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 427 *					[BYTES_PER_WORD long]
 428 */
 429static int obj_offset(struct kmem_cache *cachep)
 430{
 431	return cachep->obj_offset;
 432}
 433
 434static int obj_size(struct kmem_cache *cachep)
 435{
 436	return cachep->obj_size;
 437}
 438
 439static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
 440{
 441	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 442	return (unsigned long long*) (objp + obj_offset(cachep) -
 443				      sizeof(unsigned long long));
 444}
 445
 446static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
 447{
 448	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
 449	if (cachep->flags & SLAB_STORE_USER)
 450		return (unsigned long long *)(objp + cachep->buffer_size -
 451					      sizeof(unsigned long long) -
 452					      REDZONE_ALIGN);
 453	return (unsigned long long *) (objp + cachep->buffer_size -
 454				       sizeof(unsigned long long));
 455}
 456
 457static void **dbg_userword(struct kmem_cache *cachep, void *objp)
 458{
 459	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
 460	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
 461}
 462
 463#else
 464
 465#define obj_offset(x)			0
 466#define obj_size(cachep)		(cachep->buffer_size)
 467#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 468#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
 469#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
 470
 471#endif
 472
 473#ifdef CONFIG_TRACING
 474size_t slab_buffer_size(struct kmem_cache *cachep)
 475{
 476	return cachep->buffer_size;
 477}
 478EXPORT_SYMBOL(slab_buffer_size);
 479#endif
 480
 481/*
 482 * Do not go above this order unless 0 objects fit into the slab.
 483 */
 484#define	BREAK_GFP_ORDER_HI	1
 485#define	BREAK_GFP_ORDER_LO	0
 486static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
 487
 488/*
 489 * Functions for storing/retrieving the cachep and or slab from the page
 490 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 491 * these are used to find the cache which an obj belongs to.
 492 */
 493static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
 494{
 495	page->lru.next = (struct list_head *)cache;
 496}
 497
 498static inline struct kmem_cache *page_get_cache(struct page *page)
 499{
 500	page = compound_head(page);
 501	BUG_ON(!PageSlab(page));
 502	return (struct kmem_cache *)page->lru.next;
 503}
 504
 505static inline void page_set_slab(struct page *page, struct slab *slab)
 506{
 507	page->lru.prev = (struct list_head *)slab;
 508}
 509
 510static inline struct slab *page_get_slab(struct page *page)
 511{
 512	BUG_ON(!PageSlab(page));
 513	return (struct slab *)page->lru.prev;
 514}
 515
 516static inline struct kmem_cache *virt_to_cache(const void *obj)
 517{
 518	struct page *page = virt_to_head_page(obj);
 519	return page_get_cache(page);
 520}
 521
 522static inline struct slab *virt_to_slab(const void *obj)
 523{
 524	struct page *page = virt_to_head_page(obj);
 525	return page_get_slab(page);
 526}
 527
 528static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
 529				 unsigned int idx)
 530{
 531	return slab->s_mem + cache->buffer_size * idx;
 532}
 533
 534/*
 535 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 536 *   Using the fact that buffer_size is a constant for a particular cache,
 537 *   we can replace (offset / cache->buffer_size) by
 538 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 539 */
 540static inline unsigned int obj_to_index(const struct kmem_cache *cache,
 541					const struct slab *slab, void *obj)
 542{
 543	u32 offset = (obj - slab->s_mem);
 544	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
 545}
 546
 547/*
 548 * These are the default caches for kmalloc. Custom caches can have other sizes.
 549 */
 550struct cache_sizes malloc_sizes[] = {
 551#define CACHE(x) { .cs_size = (x) },
 552#include <linux/kmalloc_sizes.h>
 553	CACHE(ULONG_MAX)
 554#undef CACHE
 555};
 556EXPORT_SYMBOL(malloc_sizes);
 557
 558/* Must match cache_sizes above. Out of line to keep cache footprint low. */
 559struct cache_names {
 560	char *name;
 561	char *name_dma;
 562};
 563
 564static struct cache_names __initdata cache_names[] = {
 565#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
 566#include <linux/kmalloc_sizes.h>
 567	{NULL,}
 568#undef CACHE
 569};
 570
 571static struct arraycache_init initarray_cache __initdata =
 572    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 573static struct arraycache_init initarray_generic =
 574    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
 575
 576/* internal cache of cache description objs */
 577static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
 578static struct kmem_cache cache_cache = {
 579	.nodelists = cache_cache_nodelists,
 580	.batchcount = 1,
 581	.limit = BOOT_CPUCACHE_ENTRIES,
 582	.shared = 1,
 583	.buffer_size = sizeof(struct kmem_cache),
 584	.name = "kmem_cache",
 585};
 586
 587#define BAD_ALIEN_MAGIC 0x01020304ul
 588
 589/*
 590 * chicken and egg problem: delay the per-cpu array allocation
 591 * until the general caches are up.
 592 */
 593static enum {
 594	NONE,
 595	PARTIAL_AC,
 596	PARTIAL_L3,
 597	EARLY,
 598	FULL
 599} g_cpucache_up;
 600
 601/*
 602 * used by boot code to determine if it can use slab based allocator
 603 */
 604int slab_is_available(void)
 605{
 606	return g_cpucache_up >= EARLY;
 607}
 608
 609#ifdef CONFIG_LOCKDEP
 610
 611/*
 612 * Slab sometimes uses the kmalloc slabs to store the slab headers
 613 * for other slabs "off slab".
 614 * The locking for this is tricky in that it nests within the locks
 615 * of all other slabs in a few places; to deal with this special
 616 * locking we put on-slab caches into a separate lock-class.
 617 *
 618 * We set lock class for alien array caches which are up during init.
 619 * The lock annotation will be lost if all cpus of a node goes down and
 620 * then comes back up during hotplug
 621 */
 622static struct lock_class_key on_slab_l3_key;
 623static struct lock_class_key on_slab_alc_key;
 624
 625static struct lock_class_key debugobj_l3_key;
 626static struct lock_class_key debugobj_alc_key;
 627
 628static void slab_set_lock_classes(struct kmem_cache *cachep,
 629		struct lock_class_key *l3_key, struct lock_class_key *alc_key,
 630		int q)
 631{
 632	struct array_cache **alc;
 633	struct kmem_list3 *l3;
 634	int r;
 635
 636	l3 = cachep->nodelists[q];
 637	if (!l3)
 638		return;
 639
 640	lockdep_set_class(&l3->list_lock, l3_key);
 641	alc = l3->alien;
 642	/*
 643	 * FIXME: This check for BAD_ALIEN_MAGIC
 644	 * should go away when common slab code is taught to
 645	 * work even without alien caches.
 646	 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
 647	 * for alloc_alien_cache,
 648	 */
 649	if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
 650		return;
 651	for_each_node(r) {
 652		if (alc[r])
 653			lockdep_set_class(&alc[r]->lock, alc_key);
 654	}
 655}
 656
 657static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 658{
 659	slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
 660}
 661
 662static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 663{
 664	int node;
 665
 666	for_each_online_node(node)
 667		slab_set_debugobj_lock_classes_node(cachep, node);
 668}
 669
 670static void init_node_lock_keys(int q)
 671{
 672	struct cache_sizes *s = malloc_sizes;
 673
 674	if (g_cpucache_up != FULL)
 675		return;
 676
 677	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
 678		struct kmem_list3 *l3;
 679
 680		l3 = s->cs_cachep->nodelists[q];
 681		if (!l3 || OFF_SLAB(s->cs_cachep))
 682			continue;
 683
 684		slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
 685				&on_slab_alc_key, q);
 686	}
 687}
 688
 689static inline void init_lock_keys(void)
 690{
 691	int node;
 692
 693	for_each_node(node)
 694		init_node_lock_keys(node);
 695}
 696#else
 697static void init_node_lock_keys(int q)
 698{
 699}
 700
 701static inline void init_lock_keys(void)
 702{
 703}
 704
 705static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
 706{
 707}
 708
 709static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
 710{
 711}
 712#endif
 713
 714/*
 715 * Guard access to the cache-chain.
 716 */
 717static DEFINE_MUTEX(cache_chain_mutex);
 718static struct list_head cache_chain;
 719
 720static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
 721
 722static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
 723{
 724	return cachep->array[smp_processor_id()];
 725}
 726
 727static inline struct kmem_cache *__find_general_cachep(size_t size,
 728							gfp_t gfpflags)
 729{
 730	struct cache_sizes *csizep = malloc_sizes;
 731
 732#if DEBUG
 733	/* This happens if someone tries to call
 734	 * kmem_cache_create(), or __kmalloc(), before
 735	 * the generic caches are initialized.
 736	 */
 737	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
 738#endif
 739	if (!size)
 740		return ZERO_SIZE_PTR;
 741
 742	while (size > csizep->cs_size)
 743		csizep++;
 744
 745	/*
 746	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
 747	 * has cs_{dma,}cachep==NULL. Thus no special case
 748	 * for large kmalloc calls required.
 749	 */
 750#ifdef CONFIG_ZONE_DMA
 751	if (unlikely(gfpflags & GFP_DMA))
 752		return csizep->cs_dmacachep;
 753#endif
 754	return csizep->cs_cachep;
 755}
 756
 757static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
 758{
 759	return __find_general_cachep(size, gfpflags);
 760}
 761
 762static size_t slab_mgmt_size(size_t nr_objs, size_t align)
 763{
 764	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
 765}
 766
 767/*
 768 * Calculate the number of objects and left-over bytes for a given buffer size.
 769 */
 770static void cache_estimate(unsigned long gfporder, size_t buffer_size,
 771			   size_t align, int flags, size_t *left_over,
 772			   unsigned int *num)
 773{
 774	int nr_objs;
 775	size_t mgmt_size;
 776	size_t slab_size = PAGE_SIZE << gfporder;
 777
 778	/*
 779	 * The slab management structure can be either off the slab or
 780	 * on it. For the latter case, the memory allocated for a
 781	 * slab is used for:
 782	 *
 783	 * - The struct slab
 784	 * - One kmem_bufctl_t for each object
 785	 * - Padding to respect alignment of @align
 786	 * - @buffer_size bytes for each object
 787	 *
 788	 * If the slab management structure is off the slab, then the
 789	 * alignment will already be calculated into the size. Because
 790	 * the slabs are all pages aligned, the objects will be at the
 791	 * correct alignment when allocated.
 792	 */
 793	if (flags & CFLGS_OFF_SLAB) {
 794		mgmt_size = 0;
 795		nr_objs = slab_size / buffer_size;
 796
 797		if (nr_objs > SLAB_LIMIT)
 798			nr_objs = SLAB_LIMIT;
 799	} else {
 800		/*
 801		 * Ignore padding for the initial guess. The padding
 802		 * is at most @align-1 bytes, and @buffer_size is at
 803		 * least @align. In the worst case, this result will
 804		 * be one greater than the number of objects that fit
 805		 * into the memory allocation when taking the padding
 806		 * into account.
 807		 */
 808		nr_objs = (slab_size - sizeof(struct slab)) /
 809			  (buffer_size + sizeof(kmem_bufctl_t));
 810
 811		/*
 812		 * This calculated number will be either the right
 813		 * amount, or one greater than what we want.
 814		 */
 815		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
 816		       > slab_size)
 817			nr_objs--;
 818
 819		if (nr_objs > SLAB_LIMIT)
 820			nr_objs = SLAB_LIMIT;
 821
 822		mgmt_size = slab_mgmt_size(nr_objs, align);
 823	}
 824	*num = nr_objs;
 825	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
 826}
 827
 828#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
 829
 830static void __slab_error(const char *function, struct kmem_cache *cachep,
 831			char *msg)
 832{
 833	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
 834	       function, cachep->name, msg);
 835	dump_stack();
 836}
 837
 838/*
 839 * By default on NUMA we use alien caches to stage the freeing of
 840 * objects allocated from other nodes. This causes massive memory
 841 * inefficiencies when using fake NUMA setup to split memory into a
 842 * large number of small nodes, so it can be disabled on the command
 843 * line
 844  */
 845
 846static int use_alien_caches __read_mostly = 1;
 847static int __init noaliencache_setup(char *s)
 848{
 849	use_alien_caches = 0;
 850	return 1;
 851}
 852__setup("noaliencache", noaliencache_setup);
 853
 854#ifdef CONFIG_NUMA
 855/*
 856 * Special reaping functions for NUMA systems called from cache_reap().
 857 * These take care of doing round robin flushing of alien caches (containing
 858 * objects freed on different nodes from which they were allocated) and the
 859 * flushing of remote pcps by calling drain_node_pages.
 860 */
 861static DEFINE_PER_CPU(unsigned long, slab_reap_node);
 862
 863static void init_reap_node(int cpu)
 864{
 865	int node;
 866
 867	node = next_node(cpu_to_mem(cpu), node_online_map);
 868	if (node == MAX_NUMNODES)
 869		node = first_node(node_online_map);
 870
 871	per_cpu(slab_reap_node, cpu) = node;
 872}
 873
 874static void next_reap_node(void)
 875{
 876	int node = __this_cpu_read(slab_reap_node);
 877
 878	node = next_node(node, node_online_map);
 879	if (unlikely(node >= MAX_NUMNODES))
 880		node = first_node(node_online_map);
 881	__this_cpu_write(slab_reap_node, node);
 882}
 883
 884#else
 885#define init_reap_node(cpu) do { } while (0)
 886#define next_reap_node(void) do { } while (0)
 887#endif
 888
 889/*
 890 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 891 * via the workqueue/eventd.
 892 * Add the CPU number into the expiration time to minimize the possibility of
 893 * the CPUs getting into lockstep and contending for the global cache chain
 894 * lock.
 895 */
 896static void __cpuinit start_cpu_timer(int cpu)
 897{
 898	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
 899
 900	/*
 901	 * When this gets called from do_initcalls via cpucache_init(),
 902	 * init_workqueues() has already run, so keventd will be setup
 903	 * at that time.
 904	 */
 905	if (keventd_up() && reap_work->work.func == NULL) {
 906		init_reap_node(cpu);
 907		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
 908		schedule_delayed_work_on(cpu, reap_work,
 909					__round_jiffies_relative(HZ, cpu));
 910	}
 911}
 912
 913static struct array_cache *alloc_arraycache(int node, int entries,
 914					    int batchcount, gfp_t gfp)
 915{
 916	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
 917	struct array_cache *nc = NULL;
 918
 919	nc = kmalloc_node(memsize, gfp, node);
 920	/*
 921	 * The array_cache structures contain pointers to free object.
 922	 * However, when such objects are allocated or transferred to another
 923	 * cache the pointers are not cleared and they could be counted as
 924	 * valid references during a kmemleak scan. Therefore, kmemleak must
 925	 * not scan such objects.
 926	 */
 927	kmemleak_no_scan(nc);
 928	if (nc) {
 929		nc->avail = 0;
 930		nc->limit = entries;
 931		nc->batchcount = batchcount;
 932		nc->touched = 0;
 933		spin_lock_init(&nc->lock);
 934	}
 935	return nc;
 936}
 937
 938/*
 939 * Transfer objects in one arraycache to another.
 940 * Locking must be handled by the caller.
 941 *
 942 * Return the number of entries transferred.
 943 */
 944static int transfer_objects(struct array_cache *to,
 945		struct array_cache *from, unsigned int max)
 946{
 947	/* Figure out how many entries to transfer */
 948	int nr = min3(from->avail, max, to->limit - to->avail);
 949
 950	if (!nr)
 951		return 0;
 952
 953	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
 954			sizeof(void *) *nr);
 955
 956	from->avail -= nr;
 957	to->avail += nr;
 958	return nr;
 959}
 960
 961#ifndef CONFIG_NUMA
 962
 963#define drain_alien_cache(cachep, alien) do { } while (0)
 964#define reap_alien(cachep, l3) do { } while (0)
 965
 966static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 967{
 968	return (struct array_cache **)BAD_ALIEN_MAGIC;
 969}
 970
 971static inline void free_alien_cache(struct array_cache **ac_ptr)
 972{
 973}
 974
 975static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
 976{
 977	return 0;
 978}
 979
 980static inline void *alternate_node_alloc(struct kmem_cache *cachep,
 981		gfp_t flags)
 982{
 983	return NULL;
 984}
 985
 986static inline void *____cache_alloc_node(struct kmem_cache *cachep,
 987		 gfp_t flags, int nodeid)
 988{
 989	return NULL;
 990}
 991
 992#else	/* CONFIG_NUMA */
 993
 994static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
 995static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
 996
 997static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
 998{
 999	struct array_cache **ac_ptr;
1000	int memsize = sizeof(void *) * nr_node_ids;
1001	int i;
1002
1003	if (limit > 1)
1004		limit = 12;
1005	ac_ptr = kzalloc_node(memsize, gfp, node);
1006	if (ac_ptr) {
1007		for_each_node(i) {
1008			if (i == node || !node_online(i))
1009				continue;
1010			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1011			if (!ac_ptr[i]) {
1012				for (i--; i >= 0; i--)
1013					kfree(ac_ptr[i]);
1014				kfree(ac_ptr);
1015				return NULL;
1016			}
1017		}
1018	}
1019	return ac_ptr;
1020}
1021
1022static void free_alien_cache(struct array_cache **ac_ptr)
1023{
1024	int i;
1025
1026	if (!ac_ptr)
1027		return;
1028	for_each_node(i)
1029	    kfree(ac_ptr[i]);
1030	kfree(ac_ptr);
1031}
1032
1033static void __drain_alien_cache(struct kmem_cache *cachep,
1034				struct array_cache *ac, int node)
1035{
1036	struct kmem_list3 *rl3 = cachep->nodelists[node];
1037
1038	if (ac->avail) {
1039		spin_lock(&rl3->list_lock);
1040		/*
1041		 * Stuff objects into the remote nodes shared array first.
1042		 * That way we could avoid the overhead of putting the objects
1043		 * into the free lists and getting them back later.
1044		 */
1045		if (rl3->shared)
1046			transfer_objects(rl3->shared, ac, ac->limit);
1047
1048		free_block(cachep, ac->entry, ac->avail, node);
1049		ac->avail = 0;
1050		spin_unlock(&rl3->list_lock);
1051	}
1052}
1053
1054/*
1055 * Called from cache_reap() to regularly drain alien caches round robin.
1056 */
1057static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1058{
1059	int node = __this_cpu_read(slab_reap_node);
1060
1061	if (l3->alien) {
1062		struct array_cache *ac = l3->alien[node];
1063
1064		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1065			__drain_alien_cache(cachep, ac, node);
1066			spin_unlock_irq(&ac->lock);
1067		}
1068	}
1069}
1070
1071static void drain_alien_cache(struct kmem_cache *cachep,
1072				struct array_cache **alien)
1073{
1074	int i = 0;
1075	struct array_cache *ac;
1076	unsigned long flags;
1077
1078	for_each_online_node(i) {
1079		ac = alien[i];
1080		if (ac) {
1081			spin_lock_irqsave(&ac->lock, flags);
1082			__drain_alien_cache(cachep, ac, i);
1083			spin_unlock_irqrestore(&ac->lock, flags);
1084		}
1085	}
1086}
1087
1088static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1089{
1090	struct slab *slabp = virt_to_slab(objp);
1091	int nodeid = slabp->nodeid;
1092	struct kmem_list3 *l3;
1093	struct array_cache *alien = NULL;
1094	int node;
1095
1096	node = numa_mem_id();
1097
1098	/*
1099	 * Make sure we are not freeing a object from another node to the array
1100	 * cache on this cpu.
1101	 */
1102	if (likely(slabp->nodeid == node))
1103		return 0;
1104
1105	l3 = cachep->nodelists[node];
1106	STATS_INC_NODEFREES(cachep);
1107	if (l3->alien && l3->alien[nodeid]) {
1108		alien = l3->alien[nodeid];
1109		spin_lock(&alien->lock);
1110		if (unlikely(alien->avail == alien->limit)) {
1111			STATS_INC_ACOVERFLOW(cachep);
1112			__drain_alien_cache(cachep, alien, nodeid);
1113		}
1114		alien->entry[alien->avail++] = objp;
1115		spin_unlock(&alien->lock);
1116	} else {
1117		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1118		free_block(cachep, &objp, 1, nodeid);
1119		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1120	}
1121	return 1;
1122}
1123#endif
1124
1125/*
1126 * Allocates and initializes nodelists for a node on each slab cache, used for
1127 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
1128 * will be allocated off-node since memory is not yet online for the new node.
1129 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1130 * already in use.
1131 *
1132 * Must hold cache_chain_mutex.
1133 */
1134static int init_cache_nodelists_node(int node)
1135{
1136	struct kmem_cache *cachep;
1137	struct kmem_list3 *l3;
1138	const int memsize = sizeof(struct kmem_list3);
1139
1140	list_for_each_entry(cachep, &cache_chain, next) {
1141		/*
1142		 * Set up the size64 kmemlist for cpu before we can
1143		 * begin anything. Make sure some other cpu on this
1144		 * node has not already allocated this
1145		 */
1146		if (!cachep->nodelists[node]) {
1147			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1148			if (!l3)
1149				return -ENOMEM;
1150			kmem_list3_init(l3);
1151			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1152			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1153
1154			/*
1155			 * The l3s don't come and go as CPUs come and
1156			 * go.  cache_chain_mutex is sufficient
1157			 * protection here.
1158			 */
1159			cachep->nodelists[node] = l3;
1160		}
1161
1162		spin_lock_irq(&cachep->nodelists[node]->list_lock);
1163		cachep->nodelists[node]->free_limit =
1164			(1 + nr_cpus_node(node)) *
1165			cachep->batchcount + cachep->num;
1166		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1167	}
1168	return 0;
1169}
1170
1171static void __cpuinit cpuup_canceled(long cpu)
1172{
1173	struct kmem_cache *cachep;
1174	struct kmem_list3 *l3 = NULL;
1175	int node = cpu_to_mem(cpu);
1176	const struct cpumask *mask = cpumask_of_node(node);
1177
1178	list_for_each_entry(cachep, &cache_chain, next) {
1179		struct array_cache *nc;
1180		struct array_cache *shared;
1181		struct array_cache **alien;
1182
1183		/* cpu is dead; no one can alloc from it. */
1184		nc = cachep->array[cpu];
1185		cachep->array[cpu] = NULL;
1186		l3 = cachep->nodelists[node];
1187
1188		if (!l3)
1189			goto free_array_cache;
1190
1191		spin_lock_irq(&l3->list_lock);
1192
1193		/* Free limit for this kmem_list3 */
1194		l3->free_limit -= cachep->batchcount;
1195		if (nc)
1196			free_block(cachep, nc->entry, nc->avail, node);
1197
1198		if (!cpumask_empty(mask)) {
1199			spin_unlock_irq(&l3->list_lock);
1200			goto free_array_cache;
1201		}
1202
1203		shared = l3->shared;
1204		if (shared) {
1205			free_block(cachep, shared->entry,
1206				   shared->avail, node);
1207			l3->shared = NULL;
1208		}
1209
1210		alien = l3->alien;
1211		l3->alien = NULL;
1212
1213		spin_unlock_irq(&l3->list_lock);
1214
1215		kfree(shared);
1216		if (alien) {
1217			drain_alien_cache(cachep, alien);
1218			free_alien_cache(alien);
1219		}
1220free_array_cache:
1221		kfree(nc);
1222	}
1223	/*
1224	 * In the previous loop, all the objects were freed to
1225	 * the respective cache's slabs,  now we can go ahead and
1226	 * shrink each nodelist to its limit.
1227	 */
1228	list_for_each_entry(cachep, &cache_chain, next) {
1229		l3 = cachep->nodelists[node];
1230		if (!l3)
1231			continue;
1232		drain_freelist(cachep, l3, l3->free_objects);
1233	}
1234}
1235
1236static int __cpuinit cpuup_prepare(long cpu)
1237{
1238	struct kmem_cache *cachep;
1239	struct kmem_list3 *l3 = NULL;
1240	int node = cpu_to_mem(cpu);
1241	int err;
1242
1243	/*
1244	 * We need to do this right in the beginning since
1245	 * alloc_arraycache's are going to use this list.
1246	 * kmalloc_node allows us to add the slab to the right
1247	 * kmem_list3 and not this cpu's kmem_list3
1248	 */
1249	err = init_cache_nodelists_node(node);
1250	if (err < 0)
1251		goto bad;
1252
1253	/*
1254	 * Now we can go ahead with allocating the shared arrays and
1255	 * array caches
1256	 */
1257	list_for_each_entry(cachep, &cache_chain, next) {
1258		struct array_cache *nc;
1259		struct array_cache *shared = NULL;
1260		struct array_cache **alien = NULL;
1261
1262		nc = alloc_arraycache(node, cachep->limit,
1263					cachep->batchcount, GFP_KERNEL);
1264		if (!nc)
1265			goto bad;
1266		if (cachep->shared) {
1267			shared = alloc_arraycache(node,
1268				cachep->shared * cachep->batchcount,
1269				0xbaadf00d, GFP_KERNEL);
1270			if (!shared) {
1271				kfree(nc);
1272				goto bad;
1273			}
1274		}
1275		if (use_alien_caches) {
1276			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1277			if (!alien) {
1278				kfree(shared);
1279				kfree(nc);
1280				goto bad;
1281			}
1282		}
1283		cachep->array[cpu] = nc;
1284		l3 = cachep->nodelists[node];
1285		BUG_ON(!l3);
1286
1287		spin_lock_irq(&l3->list_lock);
1288		if (!l3->shared) {
1289			/*
1290			 * We are serialised from CPU_DEAD or
1291			 * CPU_UP_CANCELLED by the cpucontrol lock
1292			 */
1293			l3->shared = shared;
1294			shared = NULL;
1295		}
1296#ifdef CONFIG_NUMA
1297		if (!l3->alien) {
1298			l3->alien = alien;
1299			alien = NULL;
1300		}
1301#endif
1302		spin_unlock_irq(&l3->list_lock);
1303		kfree(shared);
1304		free_alien_cache(alien);
1305		if (cachep->flags & SLAB_DEBUG_OBJECTS)
1306			slab_set_debugobj_lock_classes_node(cachep, node);
1307	}
1308	init_node_lock_keys(node);
1309
1310	return 0;
1311bad:
1312	cpuup_canceled(cpu);
1313	return -ENOMEM;
1314}
1315
1316static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1317				    unsigned long action, void *hcpu)
1318{
1319	long cpu = (long)hcpu;
1320	int err = 0;
1321
1322	switch (action) {
1323	case CPU_UP_PREPARE:
1324	case CPU_UP_PREPARE_FROZEN:
1325		mutex_lock(&cache_chain_mutex);
1326		err = cpuup_prepare(cpu);
1327		mutex_unlock(&cache_chain_mutex);
1328		break;
1329	case CPU_ONLINE:
1330	case CPU_ONLINE_FROZEN:
1331		start_cpu_timer(cpu);
1332		break;
1333#ifdef CONFIG_HOTPLUG_CPU
1334  	case CPU_DOWN_PREPARE:
1335  	case CPU_DOWN_PREPARE_FROZEN:
1336		/*
1337		 * Shutdown cache reaper. Note that the cache_chain_mutex is
1338		 * held so that if cache_reap() is invoked it cannot do
1339		 * anything expensive but will only modify reap_work
1340		 * and reschedule the timer.
1341		*/
1342		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1343		/* Now the cache_reaper is guaranteed to be not running. */
1344		per_cpu(slab_reap_work, cpu).work.func = NULL;
1345  		break;
1346  	case CPU_DOWN_FAILED:
1347  	case CPU_DOWN_FAILED_FROZEN:
1348		start_cpu_timer(cpu);
1349  		break;
1350	case CPU_DEAD:
1351	case CPU_DEAD_FROZEN:
1352		/*
1353		 * Even if all the cpus of a node are down, we don't free the
1354		 * kmem_list3 of any cache. This to avoid a race between
1355		 * cpu_down, and a kmalloc allocation from another cpu for
1356		 * memory from the node of the cpu going down.  The list3
1357		 * structure is usually allocated from kmem_cache_create() and
1358		 * gets destroyed at kmem_cache_destroy().
1359		 */
1360		/* fall through */
1361#endif
1362	case CPU_UP_CANCELED:
1363	case CPU_UP_CANCELED_FROZEN:
1364		mutex_lock(&cache_chain_mutex);
1365		cpuup_canceled(cpu);
1366		mutex_unlock(&cache_chain_mutex);
1367		break;
1368	}
1369	return notifier_from_errno(err);
1370}
1371
1372static struct notifier_block __cpuinitdata cpucache_notifier = {
1373	&cpuup_callback, NULL, 0
1374};
1375
1376#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1377/*
1378 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1379 * Returns -EBUSY if all objects cannot be drained so that the node is not
1380 * removed.
1381 *
1382 * Must hold cache_chain_mutex.
1383 */
1384static int __meminit drain_cache_nodelists_node(int node)
1385{
1386	struct kmem_cache *cachep;
1387	int ret = 0;
1388
1389	list_for_each_entry(cachep, &cache_chain, next) {
1390		struct kmem_list3 *l3;
1391
1392		l3 = cachep->nodelists[node];
1393		if (!l3)
1394			continue;
1395
1396		drain_freelist(cachep, l3, l3->free_objects);
1397
1398		if (!list_empty(&l3->slabs_full) ||
1399		    !list_empty(&l3->slabs_partial)) {
1400			ret = -EBUSY;
1401			break;
1402		}
1403	}
1404	return ret;
1405}
1406
1407static int __meminit slab_memory_callback(struct notifier_block *self,
1408					unsigned long action, void *arg)
1409{
1410	struct memory_notify *mnb = arg;
1411	int ret = 0;
1412	int nid;
1413
1414	nid = mnb->status_change_nid;
1415	if (nid < 0)
1416		goto out;
1417
1418	switch (action) {
1419	case MEM_GOING_ONLINE:
1420		mutex_lock(&cache_chain_mutex);
1421		ret = init_cache_nodelists_node(nid);
1422		mutex_unlock(&cache_chain_mutex);
1423		break;
1424	case MEM_GOING_OFFLINE:
1425		mutex_lock(&cache_chain_mutex);
1426		ret = drain_cache_nodelists_node(nid);
1427		mutex_unlock(&cache_chain_mutex);
1428		break;
1429	case MEM_ONLINE:
1430	case MEM_OFFLINE:
1431	case MEM_CANCEL_ONLINE:
1432	case MEM_CANCEL_OFFLINE:
1433		break;
1434	}
1435out:
1436	return notifier_from_errno(ret);
1437}
1438#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1439
1440/*
1441 * swap the static kmem_list3 with kmalloced memory
1442 */
1443static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1444				int nodeid)
1445{
1446	struct kmem_list3 *ptr;
1447
1448	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1449	BUG_ON(!ptr);
1450
1451	memcpy(ptr, list, sizeof(struct kmem_list3));
1452	/*
1453	 * Do not assume that spinlocks can be initialized via memcpy:
1454	 */
1455	spin_lock_init(&ptr->list_lock);
1456
1457	MAKE_ALL_LISTS(cachep, ptr, nodeid);
1458	cachep->nodelists[nodeid] = ptr;
1459}
1460
1461/*
1462 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1463 * size of kmem_list3.
1464 */
1465static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1466{
1467	int node;
1468
1469	for_each_online_node(node) {
1470		cachep->nodelists[node] = &initkmem_list3[index + node];
1471		cachep->nodelists[node]->next_reap = jiffies +
1472		    REAPTIMEOUT_LIST3 +
1473		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1474	}
1475}
1476
1477/*
1478 * Initialisation.  Called after the page allocator have been initialised and
1479 * before smp_init().
1480 */
1481void __init kmem_cache_init(void)
1482{
1483	size_t left_over;
1484	struct cache_sizes *sizes;
1485	struct cache_names *names;
1486	int i;
1487	int order;
1488	int node;
1489
1490	if (num_possible_nodes() == 1)
1491		use_alien_caches = 0;
1492
1493	for (i = 0; i < NUM_INIT_LISTS; i++) {
1494		kmem_list3_init(&initkmem_list3[i]);
1495		if (i < MAX_NUMNODES)
1496			cache_cache.nodelists[i] = NULL;
1497	}
1498	set_up_list3s(&cache_cache, CACHE_CACHE);
1499
1500	/*
1501	 * Fragmentation resistance on low memory - only use bigger
1502	 * page orders on machines with more than 32MB of memory.
1503	 */
1504	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1505		slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1506
1507	/* Bootstrap is tricky, because several objects are allocated
1508	 * from caches that do not exist yet:
1509	 * 1) initialize the cache_cache cache: it contains the struct
1510	 *    kmem_cache structures of all caches, except cache_cache itself:
1511	 *    cache_cache is statically allocated.
1512	 *    Initially an __init data area is used for the head array and the
1513	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
1514	 *    array at the end of the bootstrap.
1515	 * 2) Create the first kmalloc cache.
1516	 *    The struct kmem_cache for the new cache is allocated normally.
1517	 *    An __init data area is used for the head array.
1518	 * 3) Create the remaining kmalloc caches, with minimally sized
1519	 *    head arrays.
1520	 * 4) Replace the __init data head arrays for cache_cache and the first
1521	 *    kmalloc cache with kmalloc allocated arrays.
1522	 * 5) Replace the __init data for kmem_list3 for cache_cache and
1523	 *    the other cache's with kmalloc allocated memory.
1524	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1525	 */
1526
1527	node = numa_mem_id();
1528
1529	/* 1) create the cache_cache */
1530	INIT_LIST_HEAD(&cache_chain);
1531	list_add(&cache_cache.next, &cache_chain);
1532	cache_cache.colour_off = cache_line_size();
1533	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1534	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1535
1536	/*
1537	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1538	 */
1539	cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1540				  nr_node_ids * sizeof(struct kmem_list3 *);
1541#if DEBUG
1542	cache_cache.obj_size = cache_cache.buffer_size;
1543#endif
1544	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1545					cache_line_size());
1546	cache_cache.reciprocal_buffer_size =
1547		reciprocal_value(cache_cache.buffer_size);
1548
1549	for (order = 0; order < MAX_ORDER; order++) {
1550		cache_estimate(order, cache_cache.buffer_size,
1551			cache_line_size(), 0, &left_over, &cache_cache.num);
1552		if (cache_cache.num)
1553			break;
1554	}
1555	BUG_ON(!cache_cache.num);
1556	cache_cache.gfporder = order;
1557	cache_cache.colour = left_over / cache_cache.colour_off;
1558	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1559				      sizeof(struct slab), cache_line_size());
1560
1561	/* 2+3) create the kmalloc caches */
1562	sizes = malloc_sizes;
1563	names = cache_names;
1564
1565	/*
1566	 * Initialize the caches that provide memory for the array cache and the
1567	 * kmem_list3 structures first.  Without this, further allocations will
1568	 * bug.
1569	 */
1570
1571	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1572					sizes[INDEX_AC].cs_size,
1573					ARCH_KMALLOC_MINALIGN,
1574					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1575					NULL);
1576
1577	if (INDEX_AC != INDEX_L3) {
1578		sizes[INDEX_L3].cs_cachep =
1579			kmem_cache_create(names[INDEX_L3].name,
1580				sizes[INDEX_L3].cs_size,
1581				ARCH_KMALLOC_MINALIGN,
1582				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1583				NULL);
1584	}
1585
1586	slab_early_init = 0;
1587
1588	while (sizes->cs_size != ULONG_MAX) {
1589		/*
1590		 * For performance, all the general caches are L1 aligned.
1591		 * This should be particularly beneficial on SMP boxes, as it
1592		 * eliminates "false sharing".
1593		 * Note for systems short on memory removing the alignment will
1594		 * allow tighter packing of the smaller caches.
1595		 */
1596		if (!sizes->cs_cachep) {
1597			sizes->cs_cachep = kmem_cache_create(names->name,
1598					sizes->cs_size,
1599					ARCH_KMALLOC_MINALIGN,
1600					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1601					NULL);
1602		}
1603#ifdef CONFIG_ZONE_DMA
1604		sizes->cs_dmacachep = kmem_cache_create(
1605					names->name_dma,
1606					sizes->cs_size,
1607					ARCH_KMALLOC_MINALIGN,
1608					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1609						SLAB_PANIC,
1610					NULL);
1611#endif
1612		sizes++;
1613		names++;
1614	}
1615	/* 4) Replace the bootstrap head arrays */
1616	{
1617		struct array_cache *ptr;
1618
1619		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1620
1621		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1622		memcpy(ptr, cpu_cache_get(&cache_cache),
1623		       sizeof(struct arraycache_init));
1624		/*
1625		 * Do not assume that spinlocks can be initialized via memcpy:
1626		 */
1627		spin_lock_init(&ptr->lock);
1628
1629		cache_cache.array[smp_processor_id()] = ptr;
1630
1631		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1632
1633		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1634		       != &initarray_generic.cache);
1635		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1636		       sizeof(struct arraycache_init));
1637		/*
1638		 * Do not assume that spinlocks can be initialized via memcpy:
1639		 */
1640		spin_lock_init(&ptr->lock);
1641
1642		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1643		    ptr;
1644	}
1645	/* 5) Replace the bootstrap kmem_list3's */
1646	{
1647		int nid;
1648
1649		for_each_online_node(nid) {
1650			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1651
1652			init_list(malloc_sizes[INDEX_AC].cs_cachep,
1653				  &initkmem_list3[SIZE_AC + nid], nid);
1654
1655			if (INDEX_AC != INDEX_L3) {
1656				init_list(malloc_sizes[INDEX_L3].cs_cachep,
1657					  &initkmem_list3[SIZE_L3 + nid], nid);
1658			}
1659		}
1660	}
1661
1662	g_cpucache_up = EARLY;
1663}
1664
1665void __init kmem_cache_init_late(void)
1666{
1667	struct kmem_cache *cachep;
1668
1669	/* Annotate slab for lockdep -- annotate the malloc caches */
1670	init_lock_keys();
1671
1672	/* 6) resize the head arrays to their final sizes */
1673	mutex_lock(&cache_chain_mutex);
1674	list_for_each_entry(cachep, &cache_chain, next)
1675		if (enable_cpucache(cachep, GFP_NOWAIT))
1676			BUG();
1677	mutex_unlock(&cache_chain_mutex);
1678
1679	/* Done! */
1680	g_cpucache_up = FULL;
1681
1682	/*
1683	 * Register a cpu startup notifier callback that initializes
1684	 * cpu_cache_get for all new cpus
1685	 */
1686	register_cpu_notifier(&cpucache_notifier);
1687
1688#ifdef CONFIG_NUMA
1689	/*
1690	 * Register a memory hotplug callback that initializes and frees
1691	 * nodelists.
1692	 */
1693	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1694#endif
1695
1696	/*
1697	 * The reap timers are started later, with a module init call: That part
1698	 * of the kernel is not yet operational.
1699	 */
1700}
1701
1702static int __init cpucache_init(void)
1703{
1704	int cpu;
1705
1706	/*
1707	 * Register the timers that return unneeded pages to the page allocator
1708	 */
1709	for_each_online_cpu(cpu)
1710		start_cpu_timer(cpu);
1711	return 0;
1712}
1713__initcall(cpucache_init);
1714
1715/*
1716 * Interface to system's page allocator. No need to hold the cache-lock.
1717 *
1718 * If we requested dmaable memory, we will get it. Even if we
1719 * did not request dmaable memory, we might get it, but that
1720 * would be relatively rare and ignorable.
1721 */
1722static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1723{
1724	struct page *page;
1725	int nr_pages;
1726	int i;
1727
1728#ifndef CONFIG_MMU
1729	/*
1730	 * Nommu uses slab's for process anonymous memory allocations, and thus
1731	 * requires __GFP_COMP to properly refcount higher order allocations
1732	 */
1733	flags |= __GFP_COMP;
1734#endif
1735
1736	flags |= cachep->gfpflags;
1737	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1738		flags |= __GFP_RECLAIMABLE;
1739
1740	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1741	if (!page)
1742		return NULL;
1743
1744	nr_pages = (1 << cachep->gfporder);
1745	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1746		add_zone_page_state(page_zone(page),
1747			NR_SLAB_RECLAIMABLE, nr_pages);
1748	else
1749		add_zone_page_state(page_zone(page),
1750			NR_SLAB_UNRECLAIMABLE, nr_pages);
1751	for (i = 0; i < nr_pages; i++)
1752		__SetPageSlab(page + i);
1753
1754	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1755		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1756
1757		if (cachep->ctor)
1758			kmemcheck_mark_uninitialized_pages(page, nr_pages);
1759		else
1760			kmemcheck_mark_unallocated_pages(page, nr_pages);
1761	}
1762
1763	return page_address(page);
1764}
1765
1766/*
1767 * Interface to system's page release.
1768 */
1769static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1770{
1771	unsigned long i = (1 << cachep->gfporder);
1772	struct page *page = virt_to_page(addr);
1773	const unsigned long nr_freed = i;
1774
1775	kmemcheck_free_shadow(page, cachep->gfporder);
1776
1777	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1778		sub_zone_page_state(page_zone(page),
1779				NR_SLAB_RECLAIMABLE, nr_freed);
1780	else
1781		sub_zone_page_state(page_zone(page),
1782				NR_SLAB_UNRECLAIMABLE, nr_freed);
1783	while (i--) {
1784		BUG_ON(!PageSlab(page));
1785		__ClearPageSlab(page);
1786		page++;
1787	}
1788	if (current->reclaim_state)
1789		current->reclaim_state->reclaimed_slab += nr_freed;
1790	free_pages((unsigned long)addr, cachep->gfporder);
1791}
1792
1793static void kmem_rcu_free(struct rcu_head *head)
1794{
1795	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1796	struct kmem_cache *cachep = slab_rcu->cachep;
1797
1798	kmem_freepages(cachep, slab_rcu->addr);
1799	if (OFF_SLAB(cachep))
1800		kmem_cache_free(cachep->slabp_cache, slab_rcu);
1801}
1802
1803#if DEBUG
1804
1805#ifdef CONFIG_DEBUG_PAGEALLOC
1806static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1807			    unsigned long caller)
1808{
1809	int size = obj_size(cachep);
1810
1811	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1812
1813	if (size < 5 * sizeof(unsigned long))
1814		return;
1815
1816	*addr++ = 0x12345678;
1817	*addr++ = caller;
1818	*addr++ = smp_processor_id();
1819	size -= 3 * sizeof(unsigned long);
1820	{
1821		unsigned long *sptr = &caller;
1822		unsigned long svalue;
1823
1824		while (!kstack_end(sptr)) {
1825			svalue = *sptr++;
1826			if (kernel_text_address(svalue)) {
1827				*addr++ = svalue;
1828				size -= sizeof(unsigned long);
1829				if (size <= sizeof(unsigned long))
1830					break;
1831			}
1832		}
1833
1834	}
1835	*addr++ = 0x87654321;
1836}
1837#endif
1838
1839static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1840{
1841	int size = obj_size(cachep);
1842	addr = &((char *)addr)[obj_offset(cachep)];
1843
1844	memset(addr, val, size);
1845	*(unsigned char *)(addr + size - 1) = POISON_END;
1846}
1847
1848static void dump_line(char *data, int offset, int limit)
1849{
1850	int i;
1851	unsigned char error = 0;
1852	int bad_count = 0;
1853
1854	printk(KERN_ERR "%03x:", offset);
1855	for (i = 0; i < limit; i++) {
1856		if (data[offset + i] != POISON_FREE) {
1857			error = data[offset + i];
1858			bad_count++;
1859		}
1860		printk(" %02x", (unsigned char)data[offset + i]);
1861	}
1862	printk("\n");
1863
1864	if (bad_count == 1) {
1865		error ^= POISON_FREE;
1866		if (!(error & (error - 1))) {
1867			printk(KERN_ERR "Single bit error detected. Probably "
1868					"bad RAM.\n");
1869#ifdef CONFIG_X86
1870			printk(KERN_ERR "Run memtest86+ or a similar memory "
1871					"test tool.\n");
1872#else
1873			printk(KERN_ERR "Run a memory test tool.\n");
1874#endif
1875		}
1876	}
1877}
1878#endif
1879
1880#if DEBUG
1881
1882static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1883{
1884	int i, size;
1885	char *realobj;
1886
1887	if (cachep->flags & SLAB_RED_ZONE) {
1888		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
1889			*dbg_redzone1(cachep, objp),
1890			*dbg_redzone2(cachep, objp));
1891	}
1892
1893	if (cachep->flags & SLAB_STORE_USER) {
1894		printk(KERN_ERR "Last user: [<%p>]",
1895			*dbg_userword(cachep, objp));
1896		print_symbol("(%s)",
1897				(unsigned long)*dbg_userword(cachep, objp));
1898		printk("\n");
1899	}
1900	realobj = (char *)objp + obj_offset(cachep);
1901	size = obj_size(cachep);
1902	for (i = 0; i < size && lines; i += 16, lines--) {
1903		int limit;
1904		limit = 16;
1905		if (i + limit > size)
1906			limit = size - i;
1907		dump_line(realobj, i, limit);
1908	}
1909}
1910
1911static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1912{
1913	char *realobj;
1914	int size, i;
1915	int lines = 0;
1916
1917	realobj = (char *)objp + obj_offset(cachep);
1918	size = obj_size(cachep);
1919
1920	for (i = 0; i < size; i++) {
1921		char exp = POISON_FREE;
1922		if (i == size - 1)
1923			exp = POISON_END;
1924		if (realobj[i] != exp) {
1925			int limit;
1926			/* Mismatch ! */
1927			/* Print header */
1928			if (lines == 0) {
1929				printk(KERN_ERR
1930					"Slab corruption: %s start=%p, len=%d\n",
1931					cachep->name, realobj, size);
1932				print_objinfo(cachep, objp, 0);
1933			}
1934			/* Hexdump the affected line */
1935			i = (i / 16) * 16;
1936			limit = 16;
1937			if (i + limit > size)
1938				limit = size - i;
1939			dump_line(realobj, i, limit);
1940			i += 16;
1941			lines++;
1942			/* Limit to 5 lines */
1943			if (lines > 5)
1944				break;
1945		}
1946	}
1947	if (lines != 0) {
1948		/* Print some data about the neighboring objects, if they
1949		 * exist:
1950		 */
1951		struct slab *slabp = virt_to_slab(objp);
1952		unsigned int objnr;
1953
1954		objnr = obj_to_index(cachep, slabp, objp);
1955		if (objnr) {
1956			objp = index_to_obj(cachep, slabp, objnr - 1);
1957			realobj = (char *)objp + obj_offset(cachep);
1958			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1959			       realobj, size);
1960			print_objinfo(cachep, objp, 2);
1961		}
1962		if (objnr + 1 < cachep->num) {
1963			objp = index_to_obj(cachep, slabp, objnr + 1);
1964			realobj = (char *)objp + obj_offset(cachep);
1965			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1966			       realobj, size);
1967			print_objinfo(cachep, objp, 2);
1968		}
1969	}
1970}
1971#endif
1972
1973#if DEBUG
1974static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1975{
1976	int i;
1977	for (i = 0; i < cachep->num; i++) {
1978		void *objp = index_to_obj(cachep, slabp, i);
1979
1980		if (cachep->flags & SLAB_POISON) {
1981#ifdef CONFIG_DEBUG_PAGEALLOC
1982			if (cachep->buffer_size % PAGE_SIZE == 0 &&
1983					OFF_SLAB(cachep))
1984				kernel_map_pages(virt_to_page(objp),
1985					cachep->buffer_size / PAGE_SIZE, 1);
1986			else
1987				check_poison_obj(cachep, objp);
1988#else
1989			check_poison_obj(cachep, objp);
1990#endif
1991		}
1992		if (cachep->flags & SLAB_RED_ZONE) {
1993			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1994				slab_error(cachep, "start of a freed object "
1995					   "was overwritten");
1996			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1997				slab_error(cachep, "end of a freed object "
1998					   "was overwritten");
1999		}
2000	}
2001}
2002#else
2003static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2004{
2005}
2006#endif
2007
2008/**
2009 * slab_destroy - destroy and release all objects in a slab
2010 * @cachep: cache pointer being destroyed
2011 * @slabp: slab pointer being destroyed
2012 *
2013 * Destroy all the objs in a slab, and release the mem back to the system.
2014 * Before calling the slab must have been unlinked from the cache.  The
2015 * cache-lock is not held/needed.
2016 */
2017static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2018{
2019	void *addr = slabp->s_mem - slabp->colouroff;
2020
2021	slab_destroy_debugcheck(cachep, slabp);
2022	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2023		struct slab_rcu *slab_rcu;
2024
2025		slab_rcu = (struct slab_rcu *)slabp;
2026		slab_rcu->cachep = cachep;
2027		slab_rcu->addr = addr;
2028		call_rcu(&slab_rcu->head, kmem_rcu_free);
2029	} else {
2030		kmem_freepages(cachep, addr);
2031		if (OFF_SLAB(cachep))
2032			kmem_cache_free(cachep->slabp_cache, slabp);
2033	}
2034}
2035
2036static void __kmem_cache_destroy(struct kmem_cache *cachep)
2037{
2038	int i;
2039	struct kmem_list3 *l3;
2040
2041	for_each_online_cpu(i)
2042	    kfree(cachep->array[i]);
2043
2044	/* NUMA: free the list3 structures */
2045	for_each_online_node(i) {
2046		l3 = cachep->nodelists[i];
2047		if (l3) {
2048			kfree(l3->shared);
2049			free_alien_cache(l3->alien);
2050			kfree(l3);
2051		}
2052	}
2053	kmem_cache_free(&cache_cache, cachep);
2054}
2055
2056
2057/**
2058 * calculate_slab_order - calculate size (page order) of slabs
2059 * @cachep: pointer to the cache that is being created
2060 * @size: size of objects to be created in this cache.
2061 * @align: required alignment for the objects.
2062 * @flags: slab allocation flags
2063 *
2064 * Also calculates the number of objects per slab.
2065 *
2066 * This could be made much more intelligent.  For now, try to avoid using
2067 * high order pages for slabs.  When the gfp() functions are more friendly
2068 * towards high-order requests, this should be changed.
2069 */
2070static size_t calculate_slab_order(struct kmem_cache *cachep,
2071			size_t size, size_t align, unsigned long flags)
2072{
2073	unsigned long offslab_limit;
2074	size_t left_over = 0;
2075	int gfporder;
2076
2077	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2078		unsigned int num;
2079		size_t remainder;
2080
2081		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2082		if (!num)
2083			continue;
2084
2085		if (flags & CFLGS_OFF_SLAB) {
2086			/*
2087			 * Max number of objs-per-slab for caches which
2088			 * use off-slab slabs. Needed to avoid a possible
2089			 * looping condition in cache_grow().
2090			 */
2091			offslab_limit = size - sizeof(struct slab);
2092			offslab_limit /= sizeof(kmem_bufctl_t);
2093
2094 			if (num > offslab_limit)
2095				break;
2096		}
2097
2098		/* Found something acceptable - save it away */
2099		cachep->num = num;
2100		cachep->gfporder = gfporder;
2101		left_over = remainder;
2102
2103		/*
2104		 * A VFS-reclaimable slab tends to have most allocations
2105		 * as GFP_NOFS and we really don't want to have to be allocating
2106		 * higher-order pages when we are unable to shrink dcache.
2107		 */
2108		if (flags & SLAB_RECLAIM_ACCOUNT)
2109			break;
2110
2111		/*
2112		 * Large number of objects is good, but very large slabs are
2113		 * currently bad for the gfp()s.
2114		 */
2115		if (gfporder >= slab_break_gfp_order)
2116			break;
2117
2118		/*
2119		 * Acceptable internal fragmentation?
2120		 */
2121		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2122			break;
2123	}
2124	return left_over;
2125}
2126
2127static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2128{
2129	if (g_cpucache_up == FULL)
2130		return enable_cpucache(cachep, gfp);
2131
2132	if (g_cpucache_up == NONE) {
2133		/*
2134		 * Note: the first kmem_cache_create must create the cache
2135		 * that's used by kmalloc(24), otherwise the creation of
2136		 * further caches will BUG().
2137		 */
2138		cachep->array[smp_processor_id()] = &initarray_generic.cache;
2139
2140		/*
2141		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2142		 * the first cache, then we need to set up all its list3s,
2143		 * otherwise the creation of further caches will BUG().
2144		 */
2145		set_up_list3s(cachep, SIZE_AC);
2146		if (INDEX_AC == INDEX_L3)
2147			g_cpucache_up = PARTIAL_L3;
2148		else
2149			g_cpucache_up = PARTIAL_AC;
2150	} else {
2151		cachep->array[smp_processor_id()] =
2152			kmalloc(sizeof(struct arraycache_init), gfp);
2153
2154		if (g_cpucache_up == PARTIAL_AC) {
2155			set_up_list3s(cachep, SIZE_L3);
2156			g_cpucache_up = PARTIAL_L3;
2157		} else {
2158			int node;
2159			for_each_online_node(node) {
2160				cachep->nodelists[node] =
2161				    kmalloc_node(sizeof(struct kmem_list3),
2162						gfp, node);
2163				BUG_ON(!cachep->nodelists[node]);
2164				kmem_list3_init(cachep->nodelists[node]);
2165			}
2166		}
2167	}
2168	cachep->nodelists[numa_mem_id()]->next_reap =
2169			jiffies + REAPTIMEOUT_LIST3 +
2170			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2171
2172	cpu_cache_get(cachep)->avail = 0;
2173	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2174	cpu_cache_get(cachep)->batchcount = 1;
2175	cpu_cache_get(cachep)->touched = 0;
2176	cachep->batchcount = 1;
2177	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2178	return 0;
2179}
2180
2181/**
2182 * kmem_cache_create - Create a cache.
2183 * @name: A string which is used in /proc/slabinfo to identify this cache.
2184 * @size: The size of objects to be created in this cache.
2185 * @align: The required alignment for the objects.
2186 * @flags: SLAB flags
2187 * @ctor: A constructor for the objects.
2188 *
2189 * Returns a ptr to the cache on success, NULL on failure.
2190 * Cannot be called within a int, but can be interrupted.
2191 * The @ctor is run when new pages are allocated by the cache.
2192 *
2193 * @name must be valid until the cache is destroyed. This implies that
2194 * the module calling this has to destroy the cache before getting unloaded.
2195 *
2196 * The flags are
2197 *
2198 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2199 * to catch references to uninitialised memory.
2200 *
2201 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2202 * for buffer overruns.
2203 *
2204 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2205 * cacheline.  This can be beneficial if you're counting cycles as closely
2206 * as davem.
2207 */
2208struct kmem_cache *
2209kmem_cache_create (const char *name, size_t size, size_t align,
2210	unsigned long flags, void (*ctor)(void *))
2211{
2212	size_t left_over, slab_size, ralign;
2213	struct kmem_cache *cachep = NULL, *pc;
2214	gfp_t gfp;
2215
2216	/*
2217	 * Sanity checks... these are all serious usage bugs.
2218	 */
2219	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2220	    size > KMALLOC_MAX_SIZE) {
2221		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
2222				name);
2223		BUG();
2224	}
2225
2226	/*
2227	 * We use cache_chain_mutex to ensure a consistent view of
2228	 * cpu_online_mask as well.  Please see cpuup_callback
2229	 */
2230	if (slab_is_available()) {
2231		get_online_cpus();
2232		mutex_lock(&cache_chain_mutex);
2233	}
2234
2235	list_for_each_entry(pc, &cache_chain, next) {
2236		char tmp;
2237		int res;
2238
2239		/*
2240		 * This happens when the module gets unloaded and doesn't
2241		 * destroy its slab cache and no-one else reuses the vmalloc
2242		 * area of the module.  Print a warning.
2243		 */
2244		res = probe_kernel_address(pc->name, tmp);
2245		if (res) {
2246			printk(KERN_ERR
2247			       "SLAB: cache with size %d has lost its name\n",
2248			       pc->buffer_size);
2249			continue;
2250		}
2251
2252		if (!strcmp(pc->name, name)) {
2253			printk(KERN_ERR
2254			       "kmem_cache_create: duplicate cache %s\n", name);
2255			dump_stack();
2256			goto oops;
2257		}
2258	}
2259
2260#if DEBUG
2261	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
2262#if FORCED_DEBUG
2263	/*
2264	 * Enable redzoning and last user accounting, except for caches with
2265	 * large objects, if the increased size would increase the object size
2266	 * above the next power of two: caches with object sizes just above a
2267	 * power of two have a significant amount of internal fragmentation.
2268	 */
2269	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2270						2 * sizeof(unsigned long long)))
2271		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2272	if (!(flags & SLAB_DESTROY_BY_RCU))
2273		flags |= SLAB_POISON;
2274#endif
2275	if (flags & SLAB_DESTROY_BY_RCU)
2276		BUG_ON(flags & SLAB_POISON);
2277#endif
2278	/*
2279	 * Always checks flags, a caller might be expecting debug support which
2280	 * isn't available.
2281	 */
2282	BUG_ON(flags & ~CREATE_MASK);
2283
2284	/*
2285	 * Check that size is in terms of words.  This is needed to avoid
2286	 * unaligned accesses for some archs when redzoning is used, and makes
2287	 * sure any on-slab bufctl's are also correctly aligned.
2288	 */
2289	if (size & (BYTES_PER_WORD - 1)) {
2290		size += (BYTES_PER_WORD - 1);
2291		size &= ~(BYTES_PER_WORD - 1);
2292	}
2293
2294	/* calculate the final buffer alignment: */
2295
2296	/* 1) arch recommendation: can be overridden for debug */
2297	if (flags & SLAB_HWCACHE_ALIGN) {
2298		/*
2299		 * Default alignment: as specified by the arch code.  Except if
2300		 * an object is really small, then squeeze multiple objects into
2301		 * one cacheline.
2302		 */
2303		ralign = cache_line_size();
2304		while (size <= ralign / 2)
2305			ralign /= 2;
2306	} else {
2307		ralign = BYTES_PER_WORD;
2308	}
2309
2310	/*
2311	 * Redzoning and user store require word alignment or possibly larger.
2312	 * Note this will be overridden by architecture or caller mandated
2313	 * alignment if either is greater than BYTES_PER_WORD.
2314	 */
2315	if (flags & SLAB_STORE_USER)
2316		ralign = BYTES_PER_WORD;
2317
2318	if (flags & SLAB_RED_ZONE) {
2319		ralign = REDZONE_ALIGN;
2320		/* If redzoning, ensure that the second redzone is suitably
2321		 * aligned, by adjusting the object size accordingly. */
2322		size += REDZONE_ALIGN - 1;
2323		size &= ~(REDZONE_ALIGN - 1);
2324	}
2325
2326	/* 2) arch mandated alignment */
2327	if (ralign < ARCH_SLAB_MINALIGN) {
2328		ralign = ARCH_SLAB_MINALIGN;
2329	}
2330	/* 3) caller mandated alignment */
2331	if (ralign < align) {
2332		ralign = align;
2333	}
2334	/* disable debug if necessary */
2335	if (ralign > __alignof__(unsigned long long))
2336		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2337	/*
2338	 * 4) Store it.
2339	 */
2340	align = ralign;
2341
2342	if (slab_is_available())
2343		gfp = GFP_KERNEL;
2344	else
2345		gfp = GFP_NOWAIT;
2346
2347	/* Get cache's description obj. */
2348	cachep = kmem_cache_zalloc(&cache_cache, gfp);
2349	if (!cachep)
2350		goto oops;
2351
2352	cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
2353#if DEBUG
2354	cachep->obj_size = size;
2355
2356	/*
2357	 * Both debugging options require word-alignment which is calculated
2358	 * into align above.
2359	 */
2360	if (flags & SLAB_RED_ZONE) {
2361		/* add space for red zone words */
2362		cachep->obj_offset += sizeof(unsigned long long);
2363		size += 2 * sizeof(unsigned long long);
2364	}
2365	if (flags & SLAB_STORE_USER) {
2366		/* user store requires one word storage behind the end of
2367		 * the real object. But if the second red zone needs to be
2368		 * aligned to 64 bits, we must allow that much space.
2369		 */
2370		if (flags & SLAB_RED_ZONE)
2371			size += REDZONE_ALIGN;
2372		else
2373			size += BYTES_PER_WORD;
2374	}
2375#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2376	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2377	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2378		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
2379		size = PAGE_SIZE;
2380	}
2381#endif
2382#endif
2383
2384	/*
2385	 * Determine if the slab management is 'on' or 'off' slab.
2386	 * (bootstrapping cannot cope with offslab caches so don't do
2387	 * it too early on. Always use on-slab management when
2388	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2389	 */
2390	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2391	    !(flags & SLAB_NOLEAKTRACE))
2392		/*
2393		 * Size is large, assume best to place the slab management obj
2394		 * off-slab (should allow better packing of objs).
2395		 */
2396		flags |= CFLGS_OFF_SLAB;
2397
2398	size = ALIGN(size, align);
2399
2400	left_over = calculate_slab_order(cachep, size, align, flags);
2401
2402	if (!cachep->num) {
2403		printk(KERN_ERR
2404		       "kmem_cache_create: couldn't create cache %s.\n", name);
2405		kmem_cache_free(&cache_cache, cachep);
2406		cachep = NULL;
2407		goto oops;
2408	}
2409	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2410			  + sizeof(struct slab), align);
2411
2412	/*
2413	 * If the slab has been placed off-slab, and we have enough space then
2414	 * move it on-slab. This is at the expense of any extra colouring.
2415	 */
2416	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2417		flags &= ~CFLGS_OFF_SLAB;
2418		left_over -= slab_size;
2419	}
2420
2421	if (flags & CFLGS_OFF_SLAB) {
2422		/* really off slab. No need for manual alignment */
2423		slab_size =
2424		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2425
2426#ifdef CONFIG_PAGE_POISONING
2427		/* If we're going to use the generic kernel_map_pages()
2428		 * poisoning, then it's going to smash the contents of
2429		 * the redzone and userword anyhow, so switch them off.
2430		 */
2431		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2432			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2433#endif
2434	}
2435
2436	cachep->colour_off = cache_line_size();
2437	/* Offset must be a multiple of the alignment. */
2438	if (cachep->colour_off < align)
2439		cachep->colour_off = align;
2440	cachep->colour = left_over / cachep->colour_off;
2441	cachep->slab_size = slab_size;
2442	cachep->flags = flags;
2443	cachep->gfpflags = 0;
2444	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2445		cachep->gfpflags |= GFP_DMA;
2446	cachep->buffer_size = size;
2447	cachep->reciprocal_buffer_size = reciprocal_value(size);
2448
2449	if (flags & CFLGS_OFF_SLAB) {
2450		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2451		/*
2452		 * This is a possibility for one of the malloc_sizes caches.
2453		 * But since we go off slab only for object size greater than
2454		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2455		 * this should not happen at all.
2456		 * But leave a BUG_ON for some lucky dude.
2457		 */
2458		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2459	}
2460	cachep->ctor = ctor;
2461	cachep->name = name;
2462
2463	if (setup_cpu_cache(cachep, gfp)) {
2464		__kmem_cache_destroy(cachep);
2465		cachep = NULL;
2466		goto oops;
2467	}
2468
2469	if (flags & SLAB_DEBUG_OBJECTS) {
2470		/*
2471		 * Would deadlock through slab_destroy()->call_rcu()->
2472		 * debug_object_activate()->kmem_cache_alloc().
2473		 */
2474		WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2475
2476		slab_set_debugobj_lock_classes(cachep);
2477	}
2478
2479	/* cache setup completed, link it into the list */
2480	list_add(&cachep->next, &cache_chain);
2481oops:
2482	if (!cachep && (flags & SLAB_PANIC))
2483		panic("kmem_cache_create(): failed to create slab `%s'\n",
2484		      name);
2485	if (slab_is_available()) {
2486		mutex_unlock(&cache_chain_mutex);
2487		put_online_cpus();
2488	}
2489	return cachep;
2490}
2491EXPORT_SYMBOL(kmem_cache_create);
2492
2493#if DEBUG
2494static void check_irq_off(void)
2495{
2496	BUG_ON(!irqs_disabled());
2497}
2498
2499static void check_irq_on(void)
2500{
2501	BUG_ON(irqs_disabled());
2502}
2503
2504static void check_spinlock_acquired(struct kmem_cache *cachep)
2505{
2506#ifdef CONFIG_SMP
2507	check_irq_off();
2508	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2509#endif
2510}
2511
2512static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2513{
2514#ifdef CONFIG_SMP
2515	check_irq_off();
2516	assert_spin_locked(&cachep->nodelists[node]->list_lock);
2517#endif
2518}
2519
2520#else
2521#define check_irq_off()	do { } while(0)
2522#define check_irq_on()	do { } while(0)
2523#define check_spinlock_acquired(x) do { } while(0)
2524#define check_spinlock_acquired_node(x, y) do { } while(0)
2525#endif
2526
2527static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2528			struct array_cache *ac,
2529			int force, int node);
2530
2531static void do_drain(void *arg)
2532{
2533	struct kmem_cache *cachep = arg;
2534	struct array_cache *ac;
2535	int node = numa_mem_id();
2536
2537	check_irq_off();
2538	ac = cpu_cache_get(cachep);
2539	spin_lock(&cachep->nodelists[node]->list_lock);
2540	free_block(cachep, ac->entry, ac->avail, node);
2541	spin_unlock(&cachep->nodelists[node]->list_lock);
2542	ac->avail = 0;
2543}
2544
2545static void drain_cpu_caches(struct kmem_cache *cachep)
2546{
2547	struct kmem_list3 *l3;
2548	int node;
2549
2550	on_each_cpu(do_drain, cachep, 1);
2551	check_irq_on();
2552	for_each_online_node(node) {
2553		l3 = cachep->nodelists[node];
2554		if (l3 && l3->alien)
2555			drain_alien_cache(cachep, l3->alien);
2556	}
2557
2558	for_each_online_node(node) {
2559		l3 = cachep->nodelists[node];
2560		if (l3)
2561			drain_array(cachep, l3, l3->shared, 1, node);
2562	}
2563}
2564
2565/*
2566 * Remove slabs from the list of free slabs.
2567 * Specify the number of slabs to drain in tofree.
2568 *
2569 * Returns the actual number of slabs released.
2570 */
2571static int drain_freelist(struct kmem_cache *cache,
2572			struct kmem_list3 *l3, int tofree)
2573{
2574	struct list_head *p;
2575	int nr_freed;
2576	struct slab *slabp;
2577
2578	nr_freed = 0;
2579	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2580
2581		spin_lock_irq(&l3->list_lock);
2582		p = l3->slabs_free.prev;
2583		if (p == &l3->slabs_free) {
2584			spin_unlock_irq(&l3->list_lock);
2585			goto out;
2586		}
2587
2588		slabp = list_entry(p, struct slab, list);
2589#if DEBUG
2590		BUG_ON(slabp->inuse);
2591#endif
2592		list_del(&slabp->list);
2593		/*
2594		 * Safe to drop the lock. The slab is no longer linked
2595		 * to the cache.
2596		 */
2597		l3->free_objects -= cache->num;
2598		spin_unlock_irq(&l3->list_lock);
2599		slab_destroy(cache, slabp);
2600		nr_freed++;
2601	}
2602out:
2603	return nr_freed;
2604}
2605
2606/* Called with cache_chain_mutex held to protect against cpu hotplug */
2607static int __cache_shrink(struct kmem_cache *cachep)
2608{
2609	int ret = 0, i = 0;
2610	struct kmem_list3 *l3;
2611
2612	drain_cpu_caches(cachep);
2613
2614	check_irq_on();
2615	for_each_online_node(i) {
2616		l3 = cachep->nodelists[i];
2617		if (!l3)
2618			continue;
2619
2620		drain_freelist(cachep, l3, l3->free_objects);
2621
2622		ret += !list_empty(&l3->slabs_full) ||
2623			!list_empty(&l3->slabs_partial);
2624	}
2625	return (ret ? 1 : 0);
2626}
2627
2628/**
2629 * kmem_cache_shrink - Shrink a cache.
2630 * @cachep: The cache to shrink.
2631 *
2632 * Releases as many slabs as possible for a cache.
2633 * To help debugging, a zero exit status indicates all slabs were released.
2634 */
2635int kmem_cache_shrink(struct kmem_cache *cachep)
2636{
2637	int ret;
2638	BUG_ON(!cachep || in_interrupt());
2639
2640	get_online_cpus();
2641	mutex_lock(&cache_chain_mutex);
2642	ret = __cache_shrink(cachep);
2643	mutex_unlock(&cache_chain_mutex);
2644	put_online_cpus();
2645	return ret;
2646}
2647EXPORT_SYMBOL(kmem_cache_shrink);
2648
2649/**
2650 * kmem_cache_destroy - delete a cache
2651 * @cachep: the cache to destroy
2652 *
2653 * Remove a &struct kmem_cache object from the slab cache.
2654 *
2655 * It is expected this function will be called by a module when it is
2656 * unloaded.  This will remove the cache completely, and avoid a duplicate
2657 * cache being allocated each time a module is loaded and unloaded, if the
2658 * module doesn't have persistent in-kernel storage across loads and unloads.
2659 *
2660 * The cache must be empty before calling this function.
2661 *
2662 * The caller must guarantee that no one will allocate memory from the cache
2663 * during the kmem_cache_destroy().
2664 */
2665void kmem_cache_destroy(struct kmem_cache *cachep)
2666{
2667	BUG_ON(!cachep || in_interrupt());
2668
2669	/* Find the cache in the chain of caches. */
2670	get_online_cpus();
2671	mutex_lock(&cache_chain_mutex);
2672	/*
2673	 * the chain is never empty, cache_cache is never destroyed
2674	 */
2675	list_del(&cachep->next);
2676	if (__cache_shrink(cachep)) {
2677		slab_error(cachep, "Can't free all objects");
2678		list_add(&cachep->next, &cache_chain);
2679		mutex_unlock(&cache_chain_mutex);
2680		put_online_cpus();
2681		return;
2682	}
2683
2684	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2685		rcu_barrier();
2686
2687	__kmem_cache_destroy(cachep);
2688	mutex_unlock(&cache_chain_mutex);
2689	put_online_cpus();
2690}
2691EXPORT_SYMBOL(kmem_cache_destroy);
2692
2693/*
2694 * Get the memory for a slab management obj.
2695 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2696 * always come from malloc_sizes caches.  The slab descriptor cannot
2697 * come from the same cache which is getting created because,
2698 * when we are searching for an appropriate cache for these
2699 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2700 * If we are creating a malloc_sizes cache here it would not be visible to
2701 * kmem_find_general_cachep till the initialization is complete.
2702 * Hence we cannot have slabp_cache same as the original cache.
2703 */
2704static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2705				   int colour_off, gfp_t local_flags,
2706				   int nodeid)
2707{
2708	struct slab *slabp;
2709
2710	if (OFF_SLAB(cachep)) {
2711		/* Slab management obj is off-slab. */
2712		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2713					      local_flags, nodeid);
2714		/*
2715		 * If the first object in the slab is leaked (it's allocated
2716		 * but no one has a reference to it), we want to make sure
2717		 * kmemleak does not treat the ->s_mem pointer as a reference
2718		 * to the object. Otherwise we will not report the leak.
2719		 */
2720		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2721				   local_flags);
2722		if (!slabp)
2723			return NULL;
2724	} else {
2725		slabp = objp + colour_off;
2726		colour_off += cachep->slab_size;
2727	}
2728	slabp->inuse = 0;
2729	slabp->colouroff = colour_off;
2730	slabp->s_mem = objp + colour_off;
2731	slabp->nodeid = nodeid;
2732	slabp->free = 0;
2733	return slabp;
2734}
2735
2736static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2737{
2738	return (kmem_bufctl_t *) (slabp + 1);
2739}
2740
2741static void cache_init_objs(struct kmem_cache *cachep,
2742			    struct slab *slabp)
2743{
2744	int i;
2745
2746	for (i = 0; i < cachep->num; i++) {
2747		void *objp = index_to_obj(cachep, slabp, i);
2748#if DEBUG
2749		/* need to poison the objs? */
2750		if (cachep->flags & SLAB_POISON)
2751			poison_obj(cachep, objp, POISON_FREE);
2752		if (cachep->flags & SLAB_STORE_USER)
2753			*dbg_userword(cachep, objp) = NULL;
2754
2755		if (cachep->flags & SLAB_RED_ZONE) {
2756			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2757			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2758		}
2759		/*
2760		 * Constructors are not allowed to allocate memory from the same
2761		 * cache which they are a constructor for.  Otherwise, deadlock.
2762		 * They must also be threaded.
2763		 */
2764		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2765			cachep->ctor(objp + obj_offset(cachep));
2766
2767		if (cachep->flags & SLAB_RED_ZONE) {
2768			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2769				slab_error(cachep, "constructor overwrote the"
2770					   " end of an object");
2771			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2772				slab_error(cachep, "constructor overwrote the"
2773					   " start of an object");
2774		}
2775		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2776			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2777			kernel_map_pages(virt_to_page(objp),
2778					 cachep->buffer_size / PAGE_SIZE, 0);
2779#else
2780		if (cachep->ctor)
2781			cachep->ctor(objp);
2782#endif
2783		slab_bufctl(slabp)[i] = i + 1;
2784	}
2785	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2786}
2787
2788static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2789{
2790	if (CONFIG_ZONE_DMA_FLAG) {
2791		if (flags & GFP_DMA)
2792			BUG_ON(!(cachep->gfpflags & GFP_DMA));
2793		else
2794			BUG_ON(cachep->gfpflags & GFP_DMA);
2795	}
2796}
2797
2798static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2799				int nodeid)
2800{
2801	void *objp = index_to_obj(cachep, slabp, slabp->free);
2802	kmem_bufctl_t next;
2803
2804	slabp->inuse++;
2805	next = slab_bufctl(slabp)[slabp->free];
2806#if DEBUG
2807	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2808	WARN_ON(slabp->nodeid != nodeid);
2809#endif
2810	slabp->free = next;
2811
2812	return objp;
2813}
2814
2815static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2816				void *objp, int nodeid)
2817{
2818	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2819
2820#if DEBUG
2821	/* Verify that the slab belongs to the intended node */
2822	WARN_ON(slabp->nodeid != nodeid);
2823
2824	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2825		printk(KERN_ERR "slab: double free detected in cache "
2826				"'%s', objp %p\n", cachep->name, objp);
2827		BUG();
2828	}
2829#endif
2830	slab_bufctl(slabp)[objnr] = slabp->free;
2831	slabp->free = objnr;
2832	slabp->inuse--;
2833}
2834
2835/*
2836 * Map pages beginning at addr to the given cache and slab. This is required
2837 * for the slab allocator to be able to lookup the cache and slab of a
2838 * virtual address for kfree, ksize, and slab debugging.
2839 */
2840static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2841			   void *addr)
2842{
2843	int nr_pages;
2844	struct page *page;
2845
2846	page = virt_to_page(addr);
2847
2848	nr_pages = 1;
2849	if (likely(!PageCompound(page)))
2850		nr_pages <<= cache->gfporder;
2851
2852	do {
2853		page_set_cache(page, cache);
2854		page_set_slab(page, slab);
2855		page++;
2856	} while (--nr_pages);
2857}
2858
2859/*
2860 * Grow (by 1) the number of slabs within a cache.  This is called by
2861 * kmem_cache_alloc() when there are no active objs left in a cache.
2862 */
2863static int cache_grow(struct kmem_cache *cachep,
2864		gfp_t flags, int nodeid, void *objp)
2865{
2866	struct slab *slabp;
2867	size_t offset;
2868	gfp_t local_flags;
2869	struct kmem_list3 *l3;
2870
2871	/*
2872	 * Be lazy and only check for valid flags here,  keeping it out of the
2873	 * critical path in kmem_cache_alloc().
2874	 */
2875	BUG_ON(flags & GFP_SLAB_BUG_MASK);
2876	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2877
2878	/* Take the l3 list lock to change the colour_next on this node */
2879	check_irq_off();
2880	l3 = cachep->nodelists[nodeid];
2881	spin_lock(&l3->list_lock);
2882
2883	/* Get colour for the slab, and cal the next value. */
2884	offset = l3->colour_next;
2885	l3->colour_next++;
2886	if (l3->colour_next >= cachep->colour)
2887		l3->colour_next = 0;
2888	spin_unlock(&l3->list_lock);
2889
2890	offset *= cachep->colour_off;
2891
2892	if (local_flags & __GFP_WAIT)
2893		local_irq_enable();
2894
2895	/*
2896	 * The test for missing atomic flag is performed here, rather than
2897	 * the more obvious place, simply to reduce the critical path length
2898	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2899	 * will eventually be caught here (where it matters).
2900	 */
2901	kmem_flagcheck(cachep, flags);
2902
2903	/*
2904	 * Get mem for the objs.  Attempt to allocate a physical page from
2905	 * 'nodeid'.
2906	 */
2907	if (!objp)
2908		objp = kmem_getpages(cachep, local_flags, nodeid);
2909	if (!objp)
2910		goto failed;
2911
2912	/* Get slab management. */
2913	slabp = alloc_slabmgmt(cachep, objp, offset,
2914			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2915	if (!slabp)
2916		goto opps1;
2917
2918	slab_map_pages(cachep, slabp, objp);
2919
2920	cache_init_objs(cachep, slabp);
2921
2922	if (local_flags & __GFP_WAIT)
2923		local_irq_disable();
2924	check_irq_off();
2925	spin_lock(&l3->list_lock);
2926
2927	/* Make slab active. */
2928	list_add_tail(&slabp->list, &(l3->slabs_free));
2929	STATS_INC_GROWN(cachep);
2930	l3->free_objects += cachep->num;
2931	spin_unlock(&l3->list_lock);
2932	return 1;
2933opps1:
2934	kmem_freepages(cachep, objp);
2935failed:
2936	if (local_flags & __GFP_WAIT)
2937		local_irq_disable();
2938	return 0;
2939}
2940
2941#if DEBUG
2942
2943/*
2944 * Perform extra freeing checks:
2945 * - detect bad pointers.
2946 * - POISON/RED_ZONE checking
2947 */
2948static void kfree_debugcheck(const void *objp)
2949{
2950	if (!virt_addr_valid(objp)) {
2951		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2952		       (unsigned long)objp);
2953		BUG();
2954	}
2955}
2956
2957static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2958{
2959	unsigned long long redzone1, redzone2;
2960
2961	redzone1 = *dbg_redzone1(cache, obj);
2962	redzone2 = *dbg_redzone2(cache, obj);
2963
2964	/*
2965	 * Redzone is ok.
2966	 */
2967	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2968		return;
2969
2970	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2971		slab_error(cache, "double free detected");
2972	else
2973		slab_error(cache, "memory outside object was overwritten");
2974
2975	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2976			obj, redzone1, redzone2);
2977}
2978
2979static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2980				   void *caller)
2981{
2982	struct page *page;
2983	unsigned int objnr;
2984	struct slab *slabp;
2985
2986	BUG_ON(virt_to_cache(objp) != cachep);
2987
2988	objp -= obj_offset(cachep);
2989	kfree_debugcheck(objp);
2990	page = virt_to_head_page(objp);
2991
2992	slabp = page_get_slab(page);
2993
2994	if (cachep->flags & SLAB_RED_ZONE) {
2995		verify_redzone_free(cachep, objp);
2996		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
2997		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
2998	}
2999	if (cachep->flags & SLAB_STORE_USER)
3000		*dbg_userword(cachep, objp) = caller;
3001
3002	objnr = obj_to_index(cachep, slabp, objp);
3003
3004	BUG_ON(objnr >= cachep->num);
3005	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3006
3007#ifdef CONFIG_DEBUG_SLAB_LEAK
3008	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3009#endif
3010	if (cachep->flags & SLAB_POISON) {
3011#ifdef CONFIG_DEBUG_PAGEALLOC
3012		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3013			store_stackinfo(cachep, objp, (unsigned long)caller);
3014			kernel_map_pages(virt_to_page(objp),
3015					 cachep->buffer_size / PAGE_SIZE, 0);
3016		} else {
3017			poison_obj(cachep, objp, POISON_FREE);
3018		}
3019#else
3020		poison_obj(cachep, objp, POISON_FREE);
3021#endif
3022	}
3023	return objp;
3024}
3025
3026static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3027{
3028	kmem_bufctl_t i;
3029	int entries = 0;
3030
3031	/* Check slab's freelist to see if this obj is there. */
3032	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3033		entries++;
3034		if (entries > cachep->num || i >= cachep->num)
3035			goto bad;
3036	}
3037	if (entries != cachep->num - slabp->inuse) {
3038bad:
3039		printk(KERN_ERR "slab: Internal list corruption detected in "
3040				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
3041			cachep->name, cachep->num, slabp, slabp->inuse);
3042		for (i = 0;
3043		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
3044		     i++) {
3045			if (i % 16 == 0)
3046				printk("\n%03x:", i);
3047			printk(" %02x", ((unsigned char *)slabp)[i]);
3048		}
3049		printk("\n");
3050		BUG();
3051	}
3052}
3053#else
3054#define kfree_debugcheck(x) do { } while(0)
3055#define cache_free_debugcheck(x,objp,z) (objp)
3056#define check_slabp(x,y) do { } while(0)
3057#endif
3058
3059static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
3060{
3061	int batchcount;
3062	struct kmem_list3 *l3;
3063	struct array_cache *ac;
3064	int node;
3065
3066retry:
3067	check_irq_off();
3068	node = numa_mem_id();
3069	ac = cpu_cache_get(cachep);
3070	batchcount = ac->batchcount;
3071	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3072		/*
3073		 * If there was little recent activity on this cache, then
3074		 * perform only a partial refill.  Otherwise we could generate
3075		 * refill bouncing.
3076		 */
3077		batchcount = BATCHREFILL_LIMIT;
3078	}
3079	l3 = cachep->nodelists[node];
3080
3081	BUG_ON(ac->avail > 0 || !l3);
3082	spin_lock(&l3->list_lock);
3083
3084	/* See if we can refill from the shared array */
3085	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3086		l3->shared->touched = 1;
3087		goto alloc_done;
3088	}
3089
3090	while (batchcount > 0) {
3091		struct list_head *entry;
3092		struct slab *slabp;
3093		/* Get slab alloc is to come from. */
3094		entry = l3->slabs_partial.next;
3095		if (entry == &l3->slabs_partial) {
3096			l3->free_touched = 1;
3097			entry = l3->slabs_free.next;
3098			if (entry == &l3->slabs_free)
3099				goto must_grow;
3100		}
3101
3102		slabp = list_entry(entry, struct slab, list);
3103		check_slabp(cachep, slabp);
3104		check_spinlock_acquired(cachep);
3105
3106		/*
3107		 * The slab was either on partial or free list so
3108		 * there must be at least one object available for
3109		 * allocation.
3110		 */
3111		BUG_ON(slabp->inuse >= cachep->num);
3112
3113		while (slabp->inuse < cachep->num && batchcount--) {
3114			STATS_INC_ALLOCED(cachep);
3115			STATS_INC_ACTIVE(cachep);
3116			STATS_SET_HIGH(cachep);
3117
3118			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
3119							    node);
3120		}
3121		check_slabp(cachep, slabp);
3122
3123		/* move slabp to correct slabp list: */
3124		list_del(&slabp->list);
3125		if (slabp->free == BUFCTL_END)
3126			list_add(&slabp->list, &l3->slabs_full);
3127		else
3128			list_add(&slabp->list, &l3->slabs_partial);
3129	}
3130
3131must_grow:
3132	l3->free_objects -= ac->avail;
3133alloc_done:
3134	spin_unlock(&l3->list_lock);
3135
3136	if (unlikely(!ac->avail)) {
3137		int x;
3138		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3139
3140		/* cache_grow can reenable interrupts, then ac could change. */
3141		ac = cpu_cache_get(cachep);
3142		if (!x && ac->avail == 0)	/* no objects in sight? abort */
3143			return NULL;
3144
3145		if (!ac->avail)		/* objects refilled by interrupt? */
3146			goto retry;
3147	}
3148	ac->touched = 1;
3149	return ac->entry[--ac->avail];
3150}
3151
3152static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3153						gfp_t flags)
3154{
3155	might_sleep_if(flags & __GFP_WAIT);
3156#if DEBUG
3157	kmem_flagcheck(cachep, flags);
3158#endif
3159}
3160
3161#if DEBUG
3162static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3163				gfp_t flags, void *objp, void *caller)
3164{
3165	if (!objp)
3166		return objp;
3167	if (cachep->flags & SLAB_POISON) {
3168#ifdef CONFIG_DEBUG_PAGEALLOC
3169		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3170			kernel_map_pages(virt_to_page(objp),
3171					 cachep->buffer_size / PAGE_SIZE, 1);
3172		else
3173			check_poison_obj(cachep, objp);
3174#else
3175		check_poison_obj(cachep, objp);
3176#endif
3177		poison_obj(cachep, objp, POISON_INUSE);
3178	}
3179	if (cachep->flags & SLAB_STORE_USER)
3180		*dbg_userword(cachep, objp) = caller;
3181
3182	if (cachep->flags & SLAB_RED_ZONE) {
3183		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3184				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3185			slab_error(cachep, "double free, or memory outside"
3186						" object was overwritten");
3187			printk(KERN_ERR
3188				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3189				objp, *dbg_redzone1(cachep, objp),
3190				*dbg_redzone2(cachep, objp));
3191		}
3192		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
3193		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
3194	}
3195#ifdef CONFIG_DEBUG_SLAB_LEAK
3196	{
3197		struct slab *slabp;
3198		unsigned objnr;
3199
3200		slabp = page_get_slab(virt_to_head_page(objp));
3201		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3202		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3203	}
3204#endif
3205	objp += obj_offset(cachep);
3206	if (cachep->ctor && cachep->flags & SLAB_POISON)
3207		cachep->ctor(objp);
3208	if (ARCH_SLAB_MINALIGN &&
3209	    ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3210		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3211		       objp, (int)ARCH_SLAB_MINALIGN);
3212	}
3213	return objp;
3214}
3215#else
3216#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3217#endif
3218
3219static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3220{
3221	if (cachep == &cache_cache)
3222		return false;
3223
3224	return should_failslab(obj_size(cachep), flags, cachep->flags);
3225}
3226
3227static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3228{
3229	void *objp;
3230	struct array_cache *ac;
3231
3232	check_irq_off();
3233
3234	ac = cpu_cache_get(cachep);
3235	if (likely(ac->avail)) {
3236		STATS_INC_ALLOCHIT(cachep);
3237		ac->touched = 1;
3238		objp = ac->entry[--ac->avail];
3239	} else {
3240		STATS_INC_ALLOCMISS(cachep);
3241		objp = cache_alloc_refill(cachep, flags);
3242		/*
3243		 * the 'ac' may be updated by cache_alloc_refill(),
3244		 * and kmemleak_erase() requires its correct value.
3245		 */
3246		ac = cpu_cache_get(cachep);
3247	}
3248	/*
3249	 * To avoid a false negative, if an object that is in one of the
3250	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3251	 * treat the array pointers as a reference to the object.
3252	 */
3253	if (objp)
3254		kmemleak_erase(&ac->entry[ac->avail]);
3255	return objp;
3256}
3257
3258#ifdef CONFIG_NUMA
3259/*
3260 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3261 *
3262 * If we are in_interrupt, then process context, including cpusets and
3263 * mempolicy, may not apply and should not be used for allocation policy.
3264 */
3265static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3266{
3267	int nid_alloc, nid_here;
3268
3269	if (in_interrupt() || (flags & __GFP_THISNODE))
3270		return NULL;
3271	nid_alloc = nid_here = numa_mem_id();
3272	get_mems_allowed();
3273	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3274		nid_alloc = cpuset_slab_spread_node();
3275	else if (current->mempolicy)
3276		nid_alloc = slab_node(current->mempolicy);
3277	put_mems_allowed();
3278	if (nid_alloc != nid_here)
3279		return ____cache_alloc_node(cachep, flags, nid_alloc);
3280	return NULL;
3281}
3282
3283/*
3284 * Fallback function if there was no memory available and no objects on a
3285 * certain node and fall back is permitted. First we scan all the
3286 * available nodelists for available objects. If that fails then we
3287 * perform an allocation without specifying a node. This allows the page
3288 * allocator to do its reclaim / fallback magic. We then insert the
3289 * slab into the proper nodelist and then allocate from it.
3290 */
3291static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3292{
3293	struct zonelist *zonelist;
3294	gfp_t local_flags;
3295	struct zoneref *z;
3296	struct zone *zone;
3297	enum zone_type high_zoneidx = gfp_zone(flags);
3298	void *obj = NULL;
3299	int nid;
3300
3301	if (flags & __GFP_THISNODE)
3302		return NULL;
3303
3304	get_mems_allowed();
3305	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3306	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3307
3308retry:
3309	/*
3310	 * Look through allowed nodes for objects available
3311	 * from existing per node queues.
3312	 */
3313	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3314		nid = zone_to_nid(zone);
3315
3316		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3317			cache->nodelists[nid] &&
3318			cache->nodelists[nid]->free_objects) {
3319				obj = ____cache_alloc_node(cache,
3320					flags | GFP_THISNODE, nid);
3321				if (obj)
3322					break;
3323		}
3324	}
3325
3326	if (!obj) {
3327		/*
3328		 * This allocation will be performed within the constraints
3329		 * of the current cpuset / memory policy requirements.
3330		 * We may trigger various forms of reclaim on the allowed
3331		 * set and go into memory reserves if necessary.
3332		 */
3333		if (local_flags & __GFP_WAIT)
3334			local_irq_enable();
3335		kmem_flagcheck(cache, flags);
3336		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3337		if (local_flags & __GFP_WAIT)
3338			local_irq_disable();
3339		if (obj) {
3340			/*
3341			 * Insert into the appropriate per node queues
3342			 */
3343			nid = page_to_nid(virt_to_page(obj));
3344			if (cache_grow(cache, flags, nid, obj)) {
3345				obj = ____cache_alloc_node(cache,
3346					flags | GFP_THISNODE, nid);
3347				if (!obj)
3348					/*
3349					 * Another processor may allocate the
3350					 * objects in the slab since we are
3351					 * not holding any locks.
3352					 */
3353					goto retry;
3354			} else {
3355				/* cache_grow already freed obj */
3356				obj = NULL;
3357			}
3358		}
3359	}
3360	put_mems_allowed();
3361	return obj;
3362}
3363
3364/*
3365 * A interface to enable slab creation on nodeid
3366 */
3367static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3368				int nodeid)
3369{
3370	struct list_head *entry;
3371	struct slab *slabp;
3372	struct kmem_list3 *l3;
3373	void *obj;
3374	int x;
3375
3376	l3 = cachep->nodelists[nodeid];
3377	BUG_ON(!l3);
3378
3379retry:
3380	check_irq_off();
3381	spin_lock(&l3->list_lock);
3382	entry = l3->slabs_partial.next;
3383	if (entry == &l3->slabs_partial) {
3384		l3->free_touched = 1;
3385		entry = l3->slabs_free.next;
3386		if (entry == &l3->slabs_free)
3387			goto must_grow;
3388	}
3389
3390	slabp = list_entry(entry, struct slab, list);
3391	check_spinlock_acquired_node(cachep, nodeid);
3392	check_slabp(cachep, slabp);
3393
3394	STATS_INC_NODEALLOCS(cachep);
3395	STATS_INC_ACTIVE(cachep);
3396	STATS_SET_HIGH(cachep);
3397
3398	BUG_ON(slabp->inuse == cachep->num);
3399
3400	obj = slab_get_obj(cachep, slabp, nodeid);
3401	check_slabp(cachep, slabp);
3402	l3->free_objects--;
3403	/* move slabp to correct slabp list: */
3404	list_del(&slabp->list);
3405
3406	if (slabp->free == BUFCTL_END)
3407		list_add(&slabp->list, &l3->slabs_full);
3408	else
3409		list_add(&slabp->list, &l3->slabs_partial);
3410
3411	spin_unlock(&l3->list_lock);
3412	goto done;
3413
3414must_grow:
3415	spin_unlock(&l3->list_lock);
3416	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3417	if (x)
3418		goto retry;
3419
3420	return fallback_alloc(cachep, flags);
3421
3422done:
3423	return obj;
3424}
3425
3426/**
3427 * kmem_cache_alloc_node - Allocate an object on the specified node
3428 * @cachep: The cache to allocate from.
3429 * @flags: See kmalloc().
3430 * @nodeid: node number of the target node.
3431 * @caller: return address of caller, used for debug information
3432 *
3433 * Identical to kmem_cache_alloc but it will allocate memory on the given
3434 * node, which can improve the performance for cpu bound structures.
3435 *
3436 * Fallback to other node is possible if __GFP_THISNODE is not set.
3437 */
3438static __always_inline void *
3439__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3440		   void *caller)
3441{
3442	unsigned long save_flags;
3443	void *ptr;
3444	int slab_node = numa_mem_id();
3445
3446	flags &= gfp_allowed_mask;
3447
3448	lockdep_trace_alloc(flags);
3449
3450	if (slab_should_failslab(cachep, flags))
3451		return NULL;
3452
3453	cache_alloc_debugcheck_before(cachep, flags);
3454	local_irq_save(save_flags);
3455
3456	if (nodeid == NUMA_NO_NODE)
3457		nodeid = slab_node;
3458
3459	if (unlikely(!cachep->nodelists[nodeid])) {
3460		/* Node not bootstrapped yet */
3461		ptr = fallback_alloc(cachep, flags);
3462		goto out;
3463	}
3464
3465	if (nodeid == slab_node) {
3466		/*
3467		 * Use the locally cached objects if possible.
3468		 * However ____cache_alloc does not allow fallback
3469		 * to other nodes. It may fail while we still have
3470		 * objects on other nodes available.
3471		 */
3472		ptr = ____cache_alloc(cachep, flags);
3473		if (ptr)
3474			goto out;
3475	}
3476	/* ___cache_alloc_node can fall back to other nodes */
3477	ptr = ____cache_alloc_node(cachep, flags, nodeid);
3478  out:
3479	local_irq_restore(save_flags);
3480	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3481	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3482				 flags);
3483
3484	if (likely(ptr))
3485		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3486
3487	if (unlikely((flags & __GFP_ZERO) && ptr))
3488		memset(ptr, 0, obj_size(cachep));
3489
3490	return ptr;
3491}
3492
3493static __always_inline void *
3494__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3495{
3496	void *objp;
3497
3498	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3499		objp = alternate_node_alloc(cache, flags);
3500		if (objp)
3501			goto out;
3502	}
3503	objp = ____cache_alloc(cache, flags);
3504
3505	/*
3506	 * We may just have run out of memory on the local node.
3507	 * ____cache_alloc_node() knows how to locate memory on other nodes
3508	 */
3509	if (!objp)
3510		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3511
3512  out:
3513	return objp;
3514}
3515#else
3516
3517static __always_inline void *
3518__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3519{
3520	return ____cache_alloc(cachep, flags);
3521}
3522
3523#endif /* CONFIG_NUMA */
3524
3525static __always_inline void *
3526__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3527{
3528	unsigned long save_flags;
3529	void *objp;
3530
3531	flags &= gfp_allowed_mask;
3532
3533	lockdep_trace_alloc(flags);
3534
3535	if (slab_should_failslab(cachep, flags))
3536		return NULL;
3537
3538	cache_alloc_debugcheck_before(cachep, flags);
3539	local_irq_save(save_flags);
3540	objp = __do_cache_alloc(cachep, flags);
3541	local_irq_restore(save_flags);
3542	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3543	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3544				 flags);
3545	prefetchw(objp);
3546
3547	if (likely(objp))
3548		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3549
3550	if (unlikely((flags & __GFP_ZERO) && objp))
3551		memset(objp, 0, obj_size(cachep));
3552
3553	return objp;
3554}
3555
3556/*
3557 * Caller needs to acquire correct kmem_list's list_lock
3558 */
3559static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3560		       int node)
3561{
3562	int i;
3563	struct kmem_list3 *l3;
3564
3565	for (i = 0; i < nr_objects; i++) {
3566		void *objp = objpp[i];
3567		struct slab *slabp;
3568
3569		slabp = virt_to_slab(objp);
3570		l3 = cachep->nodelists[node];
3571		list_del(&slabp->list);
3572		check_spinlock_acquired_node(cachep, node);
3573		check_slabp(cachep, slabp);
3574		slab_put_obj(cachep, slabp, objp, node);
3575		STATS_DEC_ACTIVE(cachep);
3576		l3->free_objects++;
3577		check_slabp(cachep, slabp);
3578
3579		/* fixup slab chains */
3580		if (slabp->inuse == 0) {
3581			if (l3->free_objects > l3->free_limit) {
3582				l3->free_objects -= cachep->num;
3583				/* No need to drop any previously held
3584				 * lock here, even if we have a off-slab slab
3585				 * descriptor it is guaranteed to come from
3586				 * a different cache, refer to comments before
3587				 * alloc_slabmgmt.
3588				 */
3589				slab_destroy(cachep, slabp);
3590			} else {
3591				list_add(&slabp->list, &l3->slabs_free);
3592			}
3593		} else {
3594			/* Unconditionally move a slab to the end of the
3595			 * partial list on free - maximum time for the
3596			 * other objects to be freed, too.
3597			 */
3598			list_add_tail(&slabp->list, &l3->slabs_partial);
3599		}
3600	}
3601}
3602
3603static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3604{
3605	int batchcount;
3606	struct kmem_list3 *l3;
3607	int node = numa_mem_id();
3608
3609	batchcount = ac->batchcount;
3610#if DEBUG
3611	BUG_ON(!batchcount || batchcount > ac->avail);
3612#endif
3613	check_irq_off();
3614	l3 = cachep->nodelists[node];
3615	spin_lock(&l3->list_lock);
3616	if (l3->shared) {
3617		struct array_cache *shared_array = l3->shared;
3618		int max = shared_array->limit - shared_array->avail;
3619		if (max) {
3620			if (batchcount > max)
3621				batchcount = max;
3622			memcpy(&(shared_array->entry[shared_array->avail]),
3623			       ac->entry, sizeof(void *) * batchcount);
3624			shared_array->avail += batchcount;
3625			goto free_done;
3626		}
3627	}
3628
3629	free_block(cachep, ac->entry, batchcount, node);
3630free_done:
3631#if STATS
3632	{
3633		int i = 0;
3634		struct list_head *p;
3635
3636		p = l3->slabs_free.next;
3637		while (p != &(l3->slabs_free)) {
3638			struct slab *slabp;
3639
3640			slabp = list_entry(p, struct slab, list);
3641			BUG_ON(slabp->inuse);
3642
3643			i++;
3644			p = p->next;
3645		}
3646		STATS_SET_FREEABLE(cachep, i);
3647	}
3648#endif
3649	spin_unlock(&l3->list_lock);
3650	ac->avail -= batchcount;
3651	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3652}
3653
3654/*
3655 * Release an obj back to its cache. If the obj has a constructed state, it must
3656 * be in this state _before_ it is released.  Called with disabled ints.
3657 */
3658static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3659    void *caller)
3660{
3661	struct array_cache *ac = cpu_cache_get(cachep);
3662
3663	check_irq_off();
3664	kmemleak_free_recursive(objp, cachep->flags);
3665	objp = cache_free_debugcheck(cachep, objp, caller);
3666
3667	kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3668
3669	/*
3670	 * Skip calling cache_free_alien() when the platform is not numa.
3671	 * This will avoid cache misses that happen while accessing slabp (which
3672	 * is per page memory  reference) to get nodeid. Instead use a global
3673	 * variable to skip the call, which is mostly likely to be present in
3674	 * the cache.
3675	 */
3676	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3677		return;
3678
3679	if (likely(ac->avail < ac->limit)) {
3680		STATS_INC_FREEHIT(cachep);
3681		ac->entry[ac->avail++] = objp;
3682		return;
3683	} else {
3684		STATS_INC_FREEMISS(cachep);
3685		cache_flusharray(cachep, ac);
3686		ac->entry[ac->avail++] = objp;
3687	}
3688}
3689
3690/**
3691 * kmem_cache_alloc - Allocate an object
3692 * @cachep: The cache to allocate from.
3693 * @flags: See kmalloc().
3694 *
3695 * Allocate an object from this cache.  The flags are only relevant
3696 * if the cache has no available objects.
3697 */
3698void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3699{
3700	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3701
3702	trace_kmem_cache_alloc(_RET_IP_, ret,
3703			       obj_size(cachep), cachep->buffer_size, flags);
3704
3705	return ret;
3706}
3707EXPORT_SYMBOL(kmem_cache_alloc);
3708
3709#ifdef CONFIG_TRACING
3710void *
3711kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
3712{
3713	void *ret;
3714
3715	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3716
3717	trace_kmalloc(_RET_IP_, ret,
3718		      size, slab_buffer_size(cachep), flags);
3719	return ret;
3720}
3721EXPORT_SYMBOL(kmem_cache_alloc_trace);
3722#endif
3723
3724#ifdef CONFIG_NUMA
3725void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3726{
3727	void *ret = __cache_alloc_node(cachep, flags, nodeid,
3728				       __builtin_return_address(0));
3729
3730	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3731				    obj_size(cachep), cachep->buffer_size,
3732				    flags, nodeid);
3733
3734	return ret;
3735}
3736EXPORT_SYMBOL(kmem_cache_alloc_node);
3737
3738#ifdef CONFIG_TRACING
3739void *kmem_cache_alloc_node_trace(size_t size,
3740				  struct kmem_cache *cachep,
3741				  gfp_t flags,
3742				  int nodeid)
3743{
3744	void *ret;
3745
3746	ret = __cache_alloc_node(cachep, flags, nodeid,
3747				  __builtin_return_address(0));
3748	trace_kmalloc_node(_RET_IP_, ret,
3749			   size, slab_buffer_size(cachep),
3750			   flags, nodeid);
3751	return ret;
3752}
3753EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3754#endif
3755
3756static __always_inline void *
3757__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3758{
3759	struct kmem_cache *cachep;
3760
3761	cachep = kmem_find_general_cachep(size, flags);
3762	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3763		return cachep;
3764	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3765}
3766
3767#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3768void *__kmalloc_node(size_t size, gfp_t flags, int node)
3769{
3770	return __do_kmalloc_node(size, flags, node,
3771			__builtin_return_address(0));
3772}
3773EXPORT_SYMBOL(__kmalloc_node);
3774
3775void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3776		int node, unsigned long caller)
3777{
3778	return __do_kmalloc_node(size, flags, node, (void *)caller);
3779}
3780EXPORT_SYMBOL(__kmalloc_node_track_caller);
3781#else
3782void *__kmalloc_node(size_t size, gfp_t flags, int node)
3783{
3784	return __do_kmalloc_node(size, flags, node, NULL);
3785}
3786EXPORT_SYMBOL(__kmalloc_node);
3787#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3788#endif /* CONFIG_NUMA */
3789
3790/**
3791 * __do_kmalloc - allocate memory
3792 * @size: how many bytes of memory are required.
3793 * @flags: the type of memory to allocate (see kmalloc).
3794 * @caller: function caller for debug tracking of the caller
3795 */
3796static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3797					  void *caller)
3798{
3799	struct kmem_cache *cachep;
3800	void *ret;
3801
3802	/* If you want to save a few bytes .text space: replace
3803	 * __ with kmem_.
3804	 * Then kmalloc uses the uninlined functions instead of the inline
3805	 * functions.
3806	 */
3807	cachep = __find_general_cachep(size, flags);
3808	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3809		return cachep;
3810	ret = __cache_alloc(cachep, flags, caller);
3811
3812	trace_kmalloc((unsigned long) caller, ret,
3813		      size, cachep->buffer_size, flags);
3814
3815	return ret;
3816}
3817
3818
3819#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3820void *__kmalloc(size_t size, gfp_t flags)
3821{
3822	return __do_kmalloc(size, flags, __builtin_return_address(0));
3823}
3824EXPORT_SYMBOL(__kmalloc);
3825
3826void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3827{
3828	return __do_kmalloc(size, flags, (void *)caller);
3829}
3830EXPORT_SYMBOL(__kmalloc_track_caller);
3831
3832#else
3833void *__kmalloc(size_t size, gfp_t flags)
3834{
3835	return __do_kmalloc(size, flags, NULL);
3836}
3837EXPORT_SYMBOL(__kmalloc);
3838#endif
3839
3840/**
3841 * kmem_cache_free - Deallocate an object
3842 * @cachep: The cache the allocation was from.
3843 * @objp: The previously allocated object.
3844 *
3845 * Free an object which was previously allocated from this
3846 * cache.
3847 */
3848void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3849{
3850	unsigned long flags;
3851
3852	local_irq_save(flags);
3853	debug_check_no_locks_freed(objp, obj_size(cachep));
3854	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3855		debug_check_no_obj_freed(objp, obj_size(cachep));
3856	__cache_free(cachep, objp, __builtin_return_address(0));
3857	local_irq_restore(flags);
3858
3859	trace_kmem_cache_free(_RET_IP_, objp);
3860}
3861EXPORT_SYMBOL(kmem_cache_free);
3862
3863/**
3864 * kfree - free previously allocated memory
3865 * @objp: pointer returned by kmalloc.
3866 *
3867 * If @objp is NULL, no operation is performed.
3868 *
3869 * Don't free memory not originally allocated by kmalloc()
3870 * or you will run into trouble.
3871 */
3872void kfree(const void *objp)
3873{
3874	struct kmem_cache *c;
3875	unsigned long flags;
3876
3877	trace_kfree(_RET_IP_, objp);
3878
3879	if (unlikely(ZERO_OR_NULL_PTR(objp)))
3880		return;
3881	local_irq_save(flags);
3882	kfree_debugcheck(objp);
3883	c = virt_to_cache(objp);
3884	debug_check_no_locks_freed(objp, obj_size(c));
3885	debug_check_no_obj_freed(objp, obj_size(c));
3886	__cache_free(c, (void *)objp, __builtin_return_address(0));
3887	local_irq_restore(flags);
3888}
3889EXPORT_SYMBOL(kfree);
3890
3891unsigned int kmem_cache_size(struct kmem_cache *cachep)
3892{
3893	return obj_size(cachep);
3894}
3895EXPORT_SYMBOL(kmem_cache_size);
3896
3897/*
3898 * This initializes kmem_list3 or resizes various caches for all nodes.
3899 */
3900static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3901{
3902	int node;
3903	struct kmem_list3 *l3;
3904	struct array_cache *new_shared;
3905	struct array_cache **new_alien = NULL;
3906
3907	for_each_online_node(node) {
3908
3909                if (use_alien_caches) {
3910                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3911                        if (!new_alien)
3912                                goto fail;
3913                }
3914
3915		new_shared = NULL;
3916		if (cachep->shared) {
3917			new_shared = alloc_arraycache(node,
3918				cachep->shared*cachep->batchcount,
3919					0xbaadf00d, gfp);
3920			if (!new_shared) {
3921				free_alien_cache(new_alien);
3922				goto fail;
3923			}
3924		}
3925
3926		l3 = cachep->nodelists[node];
3927		if (l3) {
3928			struct array_cache *shared = l3->shared;
3929
3930			spin_lock_irq(&l3->list_lock);
3931
3932			if (shared)
3933				free_block(cachep, shared->entry,
3934						shared->avail, node);
3935
3936			l3->shared = new_shared;
3937			if (!l3->alien) {
3938				l3->alien = new_alien;
3939				new_alien = NULL;
3940			}
3941			l3->free_limit = (1 + nr_cpus_node(node)) *
3942					cachep->batchcount + cachep->num;
3943			spin_unlock_irq(&l3->list_lock);
3944			kfree(shared);
3945			free_alien_cache(new_alien);
3946			continue;
3947		}
3948		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3949		if (!l3) {
3950			free_alien_cache(new_alien);
3951			kfree(new_shared);
3952			goto fail;
3953		}
3954
3955		kmem_list3_init(l3);
3956		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3957				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3958		l3->shared = new_shared;
3959		l3->alien = new_alien;
3960		l3->free_limit = (1 + nr_cpus_node(node)) *
3961					cachep->batchcount + cachep->num;
3962		cachep->nodelists[node] = l3;
3963	}
3964	return 0;
3965
3966fail:
3967	if (!cachep->next.next) {
3968		/* Cache is not active yet. Roll back what we did */
3969		node--;
3970		while (node >= 0) {
3971			if (cachep->nodelists[node]) {
3972				l3 = cachep->nodelists[node];
3973
3974				kfree(l3->shared);
3975				free_alien_cache(l3->alien);
3976				kfree(l3);
3977				cachep->nodelists[node] = NULL;
3978			}
3979			node--;
3980		}
3981	}
3982	return -ENOMEM;
3983}
3984
3985struct ccupdate_struct {
3986	struct kmem_cache *cachep;
3987	struct array_cache *new[0];
3988};
3989
3990static void do_ccupdate_local(void *info)
3991{
3992	struct ccupdate_struct *new = info;
3993	struct array_cache *old;
3994
3995	check_irq_off();
3996	old = cpu_cache_get(new->cachep);
3997
3998	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3999	new->new[smp_processor_id()] = old;
4000}
4001
4002/* Always called with the cache_chain_mutex held */
4003static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4004				int batchcount, int shared, gfp_t gfp)
4005{
4006	struct ccupdate_struct *new;
4007	int i;
4008
4009	new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4010		      gfp);
4011	if (!new)
4012		return -ENOMEM;
4013
4014	for_each_online_cpu(i) {
4015		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4016						batchcount, gfp);
4017		if (!new->new[i]) {
4018			for (i--; i >= 0; i--)
4019				kfree(new->new[i]);
4020			kfree(new);
4021			return -ENOMEM;
4022		}
4023	}
4024	new->cachep = cachep;
4025
4026	on_each_cpu(do_ccupdate_local, (void *)new, 1);
4027
4028	check_irq_on();
4029	cachep->batchcount = batchcount;
4030	cachep->limit = limit;
4031	cachep->shared = shared;
4032
4033	for_each_online_cpu(i) {
4034		struct array_cache *ccold = new->new[i];
4035		if (!ccold)
4036			continue;
4037		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4038		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4039		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4040		kfree(ccold);
4041	}
4042	kfree(new);
4043	return alloc_kmemlist(cachep, gfp);
4044}
4045
4046/* Called with cache_chain_mutex held always */
4047static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4048{
4049	int err;
4050	int limit, shared;
4051
4052	/*
4053	 * The head array serves three purposes:
4054	 * - create a LIFO ordering, i.e. return objects that are cache-warm
4055	 * - reduce the number of spinlock operations.
4056	 * - reduce the number of linked list operations on the slab and
4057	 *   bufctl chains: array operations are cheaper.
4058	 * The numbers are guessed, we should auto-tune as described by
4059	 * Bonwick.
4060	 */
4061	if (cachep->buffer_size > 131072)
4062		limit = 1;
4063	else if (cachep->buffer_size > PAGE_SIZE)
4064		limit = 8;
4065	else if (cachep->buffer_size > 1024)
4066		limit = 24;
4067	else if (cachep->buffer_size > 256)
4068		limit = 54;
4069	else
4070		limit = 120;
4071
4072	/*
4073	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4074	 * allocation behaviour: Most allocs on one cpu, most free operations
4075	 * on another cpu. For these cases, an efficient object passing between
4076	 * cpus is necessary. This is provided by a shared array. The array
4077	 * replaces Bonwick's magazine layer.
4078	 * On uniprocessor, it's functionally equivalent (but less efficient)
4079	 * to a larger limit. Thus disabled by default.
4080	 */
4081	shared = 0;
4082	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
4083		shared = 8;
4084
4085#if DEBUG
4086	/*
4087	 * With debugging enabled, large batchcount lead to excessively long
4088	 * periods with disabled local interrupts. Limit the batchcount
4089	 */
4090	if (limit > 32)
4091		limit = 32;
4092#endif
4093	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4094	if (err)
4095		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4096		       cachep->name, -err);
4097	return err;
4098}
4099
4100/*
4101 * Drain an array if it contains any elements taking the l3 lock only if
4102 * necessary. Note that the l3 listlock also protects the array_cache
4103 * if drain_array() is used on the shared array.
4104 */
4105static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4106			 struct array_cache *ac, int force, int node)
4107{
4108	int tofree;
4109
4110	if (!ac || !ac->avail)
4111		return;
4112	if (ac->touched && !force) {
4113		ac->touched = 0;
4114	} else {
4115		spin_lock_irq(&l3->list_lock);
4116		if (ac->avail) {
4117			tofree = force ? ac->avail : (ac->limit + 4) / 5;
4118			if (tofree > ac->avail)
4119				tofree = (ac->avail + 1) / 2;
4120			free_block(cachep, ac->entry, tofree, node);
4121			ac->avail -= tofree;
4122			memmove(ac->entry, &(ac->entry[tofree]),
4123				sizeof(void *) * ac->avail);
4124		}
4125		spin_unlock_irq(&l3->list_lock);
4126	}
4127}
4128
4129/**
4130 * cache_reap - Reclaim memory from caches.
4131 * @w: work descriptor
4132 *
4133 * Called from workqueue/eventd every few seconds.
4134 * Purpose:
4135 * - clear the per-cpu caches for this CPU.
4136 * - return freeable pages to the main free memory pool.
4137 *
4138 * If we cannot acquire the cache chain mutex then just give up - we'll try
4139 * again on the next iteration.
4140 */
4141static void cache_reap(struct work_struct *w)
4142{
4143	struct kmem_cache *searchp;
4144	struct kmem_list3 *l3;
4145	int node = numa_mem_id();
4146	struct delayed_work *work = to_delayed_work(w);
4147
4148	if (!mutex_trylock(&cache_chain_mutex))
4149		/* Give up. Setup the next iteration. */
4150		goto out;
4151
4152	list_for_each_entry(searchp, &cache_chain, next) {
4153		check_irq_on();
4154
4155		/*
4156		 * We only take the l3 lock if absolutely necessary and we
4157		 * have established with reasonable certainty that
4158		 * we can do some work if the lock was obtained.
4159		 */
4160		l3 = searchp->nodelists[node];
4161
4162		reap_alien(searchp, l3);
4163
4164		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4165
4166		/*
4167		 * These are racy checks but it does not matter
4168		 * if we skip one check or scan twice.
4169		 */
4170		if (time_after(l3->next_reap, jiffies))
4171			goto next;
4172
4173		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4174
4175		drain_array(searchp, l3, l3->shared, 0, node);
4176
4177		if (l3->free_touched)
4178			l3->free_touched = 0;
4179		else {
4180			int freed;
4181
4182			freed = drain_freelist(searchp, l3, (l3->free_limit +
4183				5 * searchp->num - 1) / (5 * searchp->num));
4184			STATS_ADD_REAPED(searchp, freed);
4185		}
4186next:
4187		cond_resched();
4188	}
4189	check_irq_on();
4190	mutex_unlock(&cache_chain_mutex);
4191	next_reap_node();
4192out:
4193	/* Set up the next iteration */
4194	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4195}
4196
4197#ifdef CONFIG_SLABINFO
4198
4199static void print_slabinfo_header(struct seq_file *m)
4200{
4201	/*
4202	 * Output format version, so at least we can change it
4203	 * without _too_ many complaints.
4204	 */
4205#if STATS
4206	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
4207#else
4208	seq_puts(m, "slabinfo - version: 2.1\n");
4209#endif
4210	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4211		 "<objperslab> <pagesperslab>");
4212	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4213	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4214#if STATS
4215	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4216		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4217	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
4218#endif
4219	seq_putc(m, '\n');
4220}
4221
4222static void *s_start(struct seq_file *m, loff_t *pos)
4223{
4224	loff_t n = *pos;
4225
4226	mutex_lock(&cache_chain_mutex);
4227	if (!n)
4228		print_slabinfo_header(m);
4229
4230	return seq_list_start(&cache_chain, *pos);
4231}
4232
4233static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4234{
4235	return seq_list_next(p, &cache_chain, pos);
4236}
4237
4238static void s_stop(struct seq_file *m, void *p)
4239{
4240	mutex_unlock(&cache_chain_mutex);
4241}
4242
4243static int s_show(struct seq_file *m, void *p)
4244{
4245	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4246	struct slab *slabp;
4247	unsigned long active_objs;
4248	unsigned long num_objs;
4249	unsigned long active_slabs = 0;
4250	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4251	const char *name;
4252	char *error = NULL;
4253	int node;
4254	struct kmem_list3 *l3;
4255
4256	active_objs = 0;
4257	num_slabs = 0;
4258	for_each_online_node(node) {
4259		l3 = cachep->nodelists[node];
4260		if (!l3)
4261			continue;
4262
4263		check_irq_on();
4264		spin_lock_irq(&l3->list_lock);
4265
4266		list_for_each_entry(slabp, &l3->slabs_full, list) {
4267			if (slabp->inuse != cachep->num && !error)
4268				error = "slabs_full accounting error";
4269			active_objs += cachep->num;
4270			active_slabs++;
4271		}
4272		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4273			if (slabp->inuse == cachep->num && !error)
4274				error = "slabs_partial inuse accounting error";
4275			if (!slabp->inuse && !error)
4276				error = "slabs_partial/inuse accounting error";
4277			active_objs += slabp->inuse;
4278			active_slabs++;
4279		}
4280		list_for_each_entry(slabp, &l3->slabs_free, list) {
4281			if (slabp->inuse && !error)
4282				error = "slabs_free/inuse accounting error";
4283			num_slabs++;
4284		}
4285		free_objects += l3->free_objects;
4286		if (l3->shared)
4287			shared_avail += l3->shared->avail;
4288
4289		spin_unlock_irq(&l3->list_lock);
4290	}
4291	num_slabs += active_slabs;
4292	num_objs = num_slabs * cachep->num;
4293	if (num_objs - active_objs != free_objects && !error)
4294		error = "free_objects accounting error";
4295
4296	name = cachep->name;
4297	if (error)
4298		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4299
4300	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4301		   name, active_objs, num_objs, cachep->buffer_size,
4302		   cachep->num, (1 << cachep->gfporder));
4303	seq_printf(m, " : tunables %4u %4u %4u",
4304		   cachep->limit, cachep->batchcount, cachep->shared);
4305	seq_printf(m, " : slabdata %6lu %6lu %6lu",
4306		   active_slabs, num_slabs, shared_avail);
4307#if STATS
4308	{			/* list3 stats */
4309		unsigned long high = cachep->high_mark;
4310		unsigned long allocs = cachep->num_allocations;
4311		unsigned long grown = cachep->grown;
4312		unsigned long reaped = cachep->reaped;
4313		unsigned long errors = cachep->errors;
4314		unsigned long max_freeable = cachep->max_freeable;
4315		unsigned long node_allocs = cachep->node_allocs;
4316		unsigned long node_frees = cachep->node_frees;
4317		unsigned long overflows = cachep->node_overflow;
4318
4319		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4320			   "%4lu %4lu %4lu %4lu %4lu",
4321			   allocs, high, grown,
4322			   reaped, errors, max_freeable, node_allocs,
4323			   node_frees, overflows);
4324	}
4325	/* cpu stats */
4326	{
4327		unsigned long allochit = atomic_read(&cachep->allochit);
4328		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4329		unsigned long freehit = atomic_read(&cachep->freehit);
4330		unsigned long freemiss = atomic_read(&cachep->freemiss);
4331
4332		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4333			   allochit, allocmiss, freehit, freemiss);
4334	}
4335#endif
4336	seq_putc(m, '\n');
4337	return 0;
4338}
4339
4340/*
4341 * slabinfo_op - iterator that generates /proc/slabinfo
4342 *
4343 * Output layout:
4344 * cache-name
4345 * num-active-objs
4346 * total-objs
4347 * object size
4348 * num-active-slabs
4349 * total-slabs
4350 * num-pages-per-slab
4351 * + further values on SMP and with statistics enabled
4352 */
4353
4354static const struct seq_operations slabinfo_op = {
4355	.start = s_start,
4356	.next = s_next,
4357	.stop = s_stop,
4358	.show = s_show,
4359};
4360
4361#define MAX_SLABINFO_WRITE 128
4362/**
4363 * slabinfo_write - Tuning for the slab allocator
4364 * @file: unused
4365 * @buffer: user buffer
4366 * @count: data length
4367 * @ppos: unused
4368 */
4369static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4370		       size_t count, loff_t *ppos)
4371{
4372	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4373	int limit, batchcount, shared, res;
4374	struct kmem_cache *cachep;
4375
4376	if (count > MAX_SLABINFO_WRITE)
4377		return -EINVAL;
4378	if (copy_from_user(&kbuf, buffer, count))
4379		return -EFAULT;
4380	kbuf[MAX_SLABINFO_WRITE] = '\0';
4381
4382	tmp = strchr(kbuf, ' ');
4383	if (!tmp)
4384		return -EINVAL;
4385	*tmp = '\0';
4386	tmp++;
4387	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4388		return -EINVAL;
4389
4390	/* Find the cache in the chain of caches. */
4391	mutex_lock(&cache_chain_mutex);
4392	res = -EINVAL;
4393	list_for_each_entry(cachep, &cache_chain, next) {
4394		if (!strcmp(cachep->name, kbuf)) {
4395			if (limit < 1 || batchcount < 1 ||
4396					batchcount > limit || shared < 0) {
4397				res = 0;
4398			} else {
4399				res = do_tune_cpucache(cachep, limit,
4400						       batchcount, shared,
4401						       GFP_KERNEL);
4402			}
4403			break;
4404		}
4405	}
4406	mutex_unlock(&cache_chain_mutex);
4407	if (res >= 0)
4408		res = count;
4409	return res;
4410}
4411
4412static int slabinfo_open(struct inode *inode, struct file *file)
4413{
4414	return seq_open(file, &slabinfo_op);
4415}
4416
4417static const struct file_operations proc_slabinfo_operations = {
4418	.open		= slabinfo_open,
4419	.read		= seq_read,
4420	.write		= slabinfo_write,
4421	.llseek		= seq_lseek,
4422	.release	= seq_release,
4423};
4424
4425#ifdef CONFIG_DEBUG_SLAB_LEAK
4426
4427static void *leaks_start(struct seq_file *m, loff_t *pos)
4428{
4429	mutex_lock(&cache_chain_mutex);
4430	return seq_list_start(&cache_chain, *pos);
4431}
4432
4433static inline int add_caller(unsigned long *n, unsigned long v)
4434{
4435	unsigned long *p;
4436	int l;
4437	if (!v)
4438		return 1;
4439	l = n[1];
4440	p = n + 2;
4441	while (l) {
4442		int i = l/2;
4443		unsigned long *q = p + 2 * i;
4444		if (*q == v) {
4445			q[1]++;
4446			return 1;
4447		}
4448		if (*q > v) {
4449			l = i;
4450		} else {
4451			p = q + 2;
4452			l -= i + 1;
4453		}
4454	}
4455	if (++n[1] == n[0])
4456		return 0;
4457	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4458	p[0] = v;
4459	p[1] = 1;
4460	return 1;
4461}
4462
4463static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4464{
4465	void *p;
4466	int i;
4467	if (n[0] == n[1])
4468		return;
4469	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4470		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4471			continue;
4472		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4473			return;
4474	}
4475}
4476
4477static void show_symbol(struct seq_file *m, unsigned long address)
4478{
4479#ifdef CONFIG_KALLSYMS
4480	unsigned long offset, size;
4481	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4482
4483	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4484		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4485		if (modname[0])
4486			seq_printf(m, " [%s]", modname);
4487		return;
4488	}
4489#endif
4490	seq_printf(m, "%p", (void *)address);
4491}
4492
4493static int leaks_show(struct seq_file *m, void *p)
4494{
4495	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4496	struct slab *slabp;
4497	struct kmem_list3 *l3;
4498	const char *name;
4499	unsigned long *n = m->private;
4500	int node;
4501	int i;
4502
4503	if (!(cachep->flags & SLAB_STORE_USER))
4504		return 0;
4505	if (!(cachep->flags & SLAB_RED_ZONE))
4506		return 0;
4507
4508	/* OK, we can do it */
4509
4510	n[1] = 0;
4511
4512	for_each_online_node(node) {
4513		l3 = cachep->nodelists[node];
4514		if (!l3)
4515			continue;
4516
4517		check_irq_on();
4518		spin_lock_irq(&l3->list_lock);
4519
4520		list_for_each_entry(slabp, &l3->slabs_full, list)
4521			handle_slab(n, cachep, slabp);
4522		list_for_each_entry(slabp, &l3->slabs_partial, list)
4523			handle_slab(n, cachep, slabp);
4524		spin_unlock_irq(&l3->list_lock);
4525	}
4526	name = cachep->name;
4527	if (n[0] == n[1]) {
4528		/* Increase the buffer size */
4529		mutex_unlock(&cache_chain_mutex);
4530		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4531		if (!m->private) {
4532			/* Too bad, we are really out */
4533			m->private = n;
4534			mutex_lock(&cache_chain_mutex);
4535			return -ENOMEM;
4536		}
4537		*(unsigned long *)m->private = n[0] * 2;
4538		kfree(n);
4539		mutex_lock(&cache_chain_mutex);
4540		/* Now make sure this entry will be retried */
4541		m->count = m->size;
4542		return 0;
4543	}
4544	for (i = 0; i < n[1]; i++) {
4545		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4546		show_symbol(m, n[2*i+2]);
4547		seq_putc(m, '\n');
4548	}
4549
4550	return 0;
4551}
4552
4553static const struct seq_operations slabstats_op = {
4554	.start = leaks_start,
4555	.next = s_next,
4556	.stop = s_stop,
4557	.show = leaks_show,
4558};
4559
4560static int slabstats_open(struct inode *inode, struct file *file)
4561{
4562	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4563	int ret = -ENOMEM;
4564	if (n) {
4565		ret = seq_open(file, &slabstats_op);
4566		if (!ret) {
4567			struct seq_file *m = file->private_data;
4568			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
4569			m->private = n;
4570			n = NULL;
4571		}
4572		kfree(n);
4573	}
4574	return ret;
4575}
4576
4577static const struct file_operations proc_slabstats_operations = {
4578	.open		= slabstats_open,
4579	.read		= seq_read,
4580	.llseek		= seq_lseek,
4581	.release	= seq_release_private,
4582};
4583#endif
4584
4585static int __init slab_proc_init(void)
4586{
4587	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4588#ifdef CONFIG_DEBUG_SLAB_LEAK
4589	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4590#endif
4591	return 0;
4592}
4593module_init(slab_proc_init);
4594#endif
4595
4596/**
4597 * ksize - get the actual amount of memory allocated for a given object
4598 * @objp: Pointer to the object
4599 *
4600 * kmalloc may internally round up allocations and return more memory
4601 * than requested. ksize() can be used to determine the actual amount of
4602 * memory allocated. The caller may use this additional memory, even though
4603 * a smaller amount of memory was initially specified with the kmalloc call.
4604 * The caller must guarantee that objp points to a valid object previously
4605 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4606 * must not be freed during the duration of the call.
4607 */
4608size_t ksize(const void *objp)
4609{
4610	BUG_ON(!objp);
4611	if (unlikely(objp == ZERO_SIZE_PTR))
4612		return 0;
4613
4614	return obj_size(virt_to_cache(objp));
4615}
4616EXPORT_SYMBOL(ksize);