Linux Audio

Check our new training course

Loading...
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/kernel/sys.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/mm_inline.h>
  11#include <linux/utsname.h>
  12#include <linux/mman.h>
  13#include <linux/reboot.h>
  14#include <linux/prctl.h>
  15#include <linux/highuid.h>
  16#include <linux/fs.h>
  17#include <linux/kmod.h>
  18#include <linux/ksm.h>
  19#include <linux/perf_event.h>
  20#include <linux/resource.h>
  21#include <linux/kernel.h>
 
  22#include <linux/workqueue.h>
  23#include <linux/capability.h>
  24#include <linux/device.h>
  25#include <linux/key.h>
  26#include <linux/times.h>
  27#include <linux/posix-timers.h>
  28#include <linux/security.h>
  29#include <linux/random.h>
  30#include <linux/suspend.h>
  31#include <linux/tty.h>
  32#include <linux/signal.h>
  33#include <linux/cn_proc.h>
  34#include <linux/getcpu.h>
  35#include <linux/task_io_accounting_ops.h>
  36#include <linux/seccomp.h>
  37#include <linux/cpu.h>
  38#include <linux/personality.h>
  39#include <linux/ptrace.h>
  40#include <linux/fs_struct.h>
  41#include <linux/file.h>
  42#include <linux/mount.h>
  43#include <linux/gfp.h>
  44#include <linux/syscore_ops.h>
  45#include <linux/version.h>
  46#include <linux/ctype.h>
  47#include <linux/syscall_user_dispatch.h>
  48
  49#include <linux/compat.h>
  50#include <linux/syscalls.h>
  51#include <linux/kprobes.h>
  52#include <linux/user_namespace.h>
  53#include <linux/time_namespace.h>
  54#include <linux/binfmts.h>
  55
  56#include <linux/sched.h>
  57#include <linux/sched/autogroup.h>
  58#include <linux/sched/loadavg.h>
  59#include <linux/sched/stat.h>
  60#include <linux/sched/mm.h>
  61#include <linux/sched/coredump.h>
  62#include <linux/sched/task.h>
  63#include <linux/sched/cputime.h>
  64#include <linux/rcupdate.h>
  65#include <linux/uidgid.h>
  66#include <linux/cred.h>
  67
  68#include <linux/nospec.h>
  69
  70#include <linux/kmsg_dump.h>
  71/* Move somewhere else to avoid recompiling? */
  72#include <generated/utsrelease.h>
  73
  74#include <linux/uaccess.h>
  75#include <asm/io.h>
  76#include <asm/unistd.h>
  77
  78#include "uid16.h"
  79
  80#ifndef SET_UNALIGN_CTL
  81# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
  82#endif
  83#ifndef GET_UNALIGN_CTL
  84# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
  85#endif
  86#ifndef SET_FPEMU_CTL
  87# define SET_FPEMU_CTL(a, b)	(-EINVAL)
  88#endif
  89#ifndef GET_FPEMU_CTL
  90# define GET_FPEMU_CTL(a, b)	(-EINVAL)
  91#endif
  92#ifndef SET_FPEXC_CTL
  93# define SET_FPEXC_CTL(a, b)	(-EINVAL)
  94#endif
  95#ifndef GET_FPEXC_CTL
  96# define GET_FPEXC_CTL(a, b)	(-EINVAL)
  97#endif
  98#ifndef GET_ENDIAN
  99# define GET_ENDIAN(a, b)	(-EINVAL)
 100#endif
 101#ifndef SET_ENDIAN
 102# define SET_ENDIAN(a, b)	(-EINVAL)
 103#endif
 104#ifndef GET_TSC_CTL
 105# define GET_TSC_CTL(a)		(-EINVAL)
 106#endif
 107#ifndef SET_TSC_CTL
 108# define SET_TSC_CTL(a)		(-EINVAL)
 109#endif
 110#ifndef GET_FP_MODE
 111# define GET_FP_MODE(a)		(-EINVAL)
 112#endif
 113#ifndef SET_FP_MODE
 114# define SET_FP_MODE(a,b)	(-EINVAL)
 115#endif
 116#ifndef SVE_SET_VL
 117# define SVE_SET_VL(a)		(-EINVAL)
 118#endif
 119#ifndef SVE_GET_VL
 120# define SVE_GET_VL()		(-EINVAL)
 121#endif
 122#ifndef SME_SET_VL
 123# define SME_SET_VL(a)		(-EINVAL)
 124#endif
 125#ifndef SME_GET_VL
 126# define SME_GET_VL()		(-EINVAL)
 127#endif
 128#ifndef PAC_RESET_KEYS
 129# define PAC_RESET_KEYS(a, b)	(-EINVAL)
 130#endif
 131#ifndef PAC_SET_ENABLED_KEYS
 132# define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
 133#endif
 134#ifndef PAC_GET_ENABLED_KEYS
 135# define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
 136#endif
 137#ifndef SET_TAGGED_ADDR_CTRL
 138# define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
 139#endif
 140#ifndef GET_TAGGED_ADDR_CTRL
 141# define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
 142#endif
 143#ifndef RISCV_V_SET_CONTROL
 144# define RISCV_V_SET_CONTROL(a)		(-EINVAL)
 145#endif
 146#ifndef RISCV_V_GET_CONTROL
 147# define RISCV_V_GET_CONTROL()		(-EINVAL)
 148#endif
 149
 150/*
 151 * this is where the system-wide overflow UID and GID are defined, for
 152 * architectures that now have 32-bit UID/GID but didn't in the past
 153 */
 154
 155int overflowuid = DEFAULT_OVERFLOWUID;
 156int overflowgid = DEFAULT_OVERFLOWGID;
 157
 
 158EXPORT_SYMBOL(overflowuid);
 159EXPORT_SYMBOL(overflowgid);
 
 160
 161/*
 162 * the same as above, but for filesystems which can only store a 16-bit
 163 * UID and GID. as such, this is needed on all architectures
 164 */
 165
 166int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 167int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
 168
 169EXPORT_SYMBOL(fs_overflowuid);
 170EXPORT_SYMBOL(fs_overflowgid);
 171
 172/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173 * Returns true if current's euid is same as p's uid or euid,
 174 * or has CAP_SYS_NICE to p's user_ns.
 175 *
 176 * Called with rcu_read_lock, creds are safe
 177 */
 178static bool set_one_prio_perm(struct task_struct *p)
 179{
 180	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 181
 182	if (uid_eq(pcred->uid,  cred->euid) ||
 183	    uid_eq(pcred->euid, cred->euid))
 
 184		return true;
 185	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 186		return true;
 187	return false;
 188}
 189
 190/*
 191 * set the priority of a task
 192 * - the caller must hold the RCU read lock
 193 */
 194static int set_one_prio(struct task_struct *p, int niceval, int error)
 195{
 196	int no_nice;
 197
 198	if (!set_one_prio_perm(p)) {
 199		error = -EPERM;
 200		goto out;
 201	}
 202	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 203		error = -EACCES;
 204		goto out;
 205	}
 206	no_nice = security_task_setnice(p, niceval);
 207	if (no_nice) {
 208		error = no_nice;
 209		goto out;
 210	}
 211	if (error == -ESRCH)
 212		error = 0;
 213	set_user_nice(p, niceval);
 214out:
 215	return error;
 216}
 217
 218SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 219{
 220	struct task_struct *g, *p;
 221	struct user_struct *user;
 222	const struct cred *cred = current_cred();
 223	int error = -EINVAL;
 224	struct pid *pgrp;
 225	kuid_t uid;
 226
 227	if (which > PRIO_USER || which < PRIO_PROCESS)
 228		goto out;
 229
 230	/* normalize: avoid signed division (rounding problems) */
 231	error = -ESRCH;
 232	if (niceval < MIN_NICE)
 233		niceval = MIN_NICE;
 234	if (niceval > MAX_NICE)
 235		niceval = MAX_NICE;
 236
 237	rcu_read_lock();
 
 238	switch (which) {
 239	case PRIO_PROCESS:
 240		if (who)
 241			p = find_task_by_vpid(who);
 242		else
 243			p = current;
 244		if (p)
 245			error = set_one_prio(p, niceval, error);
 246		break;
 247	case PRIO_PGRP:
 248		if (who)
 249			pgrp = find_vpid(who);
 250		else
 251			pgrp = task_pgrp(current);
 252		read_lock(&tasklist_lock);
 253		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 254			error = set_one_prio(p, niceval, error);
 255		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 256		read_unlock(&tasklist_lock);
 257		break;
 258	case PRIO_USER:
 259		uid = make_kuid(cred->user_ns, who);
 260		user = cred->user;
 261		if (!who)
 262			uid = cred->uid;
 263		else if (!uid_eq(uid, cred->uid)) {
 264			user = find_user(uid);
 265			if (!user)
 266				goto out_unlock;	/* No processes for this user */
 267		}
 268		for_each_process_thread(g, p) {
 269			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 270				error = set_one_prio(p, niceval, error);
 271		}
 272		if (!uid_eq(uid, cred->uid))
 273			free_uid(user);		/* For find_user() */
 274		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 276out_unlock:
 
 277	rcu_read_unlock();
 278out:
 279	return error;
 280}
 281
 282/*
 283 * Ugh. To avoid negative return values, "getpriority()" will
 284 * not return the normal nice-value, but a negated value that
 285 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 286 * to stay compatible.
 287 */
 288SYSCALL_DEFINE2(getpriority, int, which, int, who)
 289{
 290	struct task_struct *g, *p;
 291	struct user_struct *user;
 292	const struct cred *cred = current_cred();
 293	long niceval, retval = -ESRCH;
 294	struct pid *pgrp;
 295	kuid_t uid;
 296
 297	if (which > PRIO_USER || which < PRIO_PROCESS)
 298		return -EINVAL;
 299
 300	rcu_read_lock();
 
 301	switch (which) {
 302	case PRIO_PROCESS:
 303		if (who)
 304			p = find_task_by_vpid(who);
 305		else
 306			p = current;
 307		if (p) {
 308			niceval = nice_to_rlimit(task_nice(p));
 309			if (niceval > retval)
 310				retval = niceval;
 311		}
 312		break;
 313	case PRIO_PGRP:
 314		if (who)
 315			pgrp = find_vpid(who);
 316		else
 317			pgrp = task_pgrp(current);
 318		read_lock(&tasklist_lock);
 319		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 320			niceval = nice_to_rlimit(task_nice(p));
 321			if (niceval > retval)
 322				retval = niceval;
 323		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 324		read_unlock(&tasklist_lock);
 325		break;
 326	case PRIO_USER:
 327		uid = make_kuid(cred->user_ns, who);
 328		user = cred->user;
 329		if (!who)
 330			uid = cred->uid;
 331		else if (!uid_eq(uid, cred->uid)) {
 332			user = find_user(uid);
 333			if (!user)
 334				goto out_unlock;	/* No processes for this user */
 335		}
 336		for_each_process_thread(g, p) {
 337			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 338				niceval = nice_to_rlimit(task_nice(p));
 339				if (niceval > retval)
 340					retval = niceval;
 341			}
 342		}
 343		if (!uid_eq(uid, cred->uid))
 344			free_uid(user);		/* for find_user() */
 345		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346	}
 347out_unlock:
 
 348	rcu_read_unlock();
 349
 350	return retval;
 351}
 352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353/*
 354 * Unprivileged users may change the real gid to the effective gid
 355 * or vice versa.  (BSD-style)
 356 *
 357 * If you set the real gid at all, or set the effective gid to a value not
 358 * equal to the real gid, then the saved gid is set to the new effective gid.
 359 *
 360 * This makes it possible for a setgid program to completely drop its
 361 * privileges, which is often a useful assertion to make when you are doing
 362 * a security audit over a program.
 363 *
 364 * The general idea is that a program which uses just setregid() will be
 365 * 100% compatible with BSD.  A program which uses just setgid() will be
 366 * 100% compatible with POSIX with saved IDs.
 367 *
 368 * SMP: There are not races, the GIDs are checked only by filesystem
 369 *      operations (as far as semantic preservation is concerned).
 370 */
 371#ifdef CONFIG_MULTIUSER
 372long __sys_setregid(gid_t rgid, gid_t egid)
 373{
 374	struct user_namespace *ns = current_user_ns();
 375	const struct cred *old;
 376	struct cred *new;
 377	int retval;
 378	kgid_t krgid, kegid;
 379
 380	krgid = make_kgid(ns, rgid);
 381	kegid = make_kgid(ns, egid);
 382
 383	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 384		return -EINVAL;
 385	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 386		return -EINVAL;
 387
 388	new = prepare_creds();
 389	if (!new)
 390		return -ENOMEM;
 391	old = current_cred();
 392
 393	retval = -EPERM;
 394	if (rgid != (gid_t) -1) {
 395		if (gid_eq(old->gid, krgid) ||
 396		    gid_eq(old->egid, krgid) ||
 397		    ns_capable_setid(old->user_ns, CAP_SETGID))
 398			new->gid = krgid;
 399		else
 400			goto error;
 401	}
 402	if (egid != (gid_t) -1) {
 403		if (gid_eq(old->gid, kegid) ||
 404		    gid_eq(old->egid, kegid) ||
 405		    gid_eq(old->sgid, kegid) ||
 406		    ns_capable_setid(old->user_ns, CAP_SETGID))
 407			new->egid = kegid;
 408		else
 409			goto error;
 410	}
 411
 412	if (rgid != (gid_t) -1 ||
 413	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 414		new->sgid = new->egid;
 415	new->fsgid = new->egid;
 416
 417	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
 418	if (retval < 0)
 419		goto error;
 420
 421	return commit_creds(new);
 422
 423error:
 424	abort_creds(new);
 425	return retval;
 426}
 427
 428SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 429{
 430	return __sys_setregid(rgid, egid);
 431}
 432
 433/*
 434 * setgid() is implemented like SysV w/ SAVED_IDS
 435 *
 436 * SMP: Same implicit races as above.
 437 */
 438long __sys_setgid(gid_t gid)
 439{
 440	struct user_namespace *ns = current_user_ns();
 441	const struct cred *old;
 442	struct cred *new;
 443	int retval;
 444	kgid_t kgid;
 445
 446	kgid = make_kgid(ns, gid);
 447	if (!gid_valid(kgid))
 448		return -EINVAL;
 449
 450	new = prepare_creds();
 451	if (!new)
 452		return -ENOMEM;
 453	old = current_cred();
 454
 455	retval = -EPERM;
 456	if (ns_capable_setid(old->user_ns, CAP_SETGID))
 457		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 458	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 459		new->egid = new->fsgid = kgid;
 460	else
 461		goto error;
 462
 463	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
 464	if (retval < 0)
 465		goto error;
 466
 467	return commit_creds(new);
 468
 469error:
 470	abort_creds(new);
 471	return retval;
 472}
 473
 474SYSCALL_DEFINE1(setgid, gid_t, gid)
 475{
 476	return __sys_setgid(gid);
 477}
 478
 479/*
 480 * change the user struct in a credentials set to match the new UID
 481 */
 482static int set_user(struct cred *new)
 483{
 484	struct user_struct *new_user;
 485
 486	new_user = alloc_uid(new->uid);
 487	if (!new_user)
 488		return -EAGAIN;
 489
 490	free_uid(new->user);
 491	new->user = new_user;
 492	return 0;
 493}
 494
 495static void flag_nproc_exceeded(struct cred *new)
 496{
 497	if (new->ucounts == current_ucounts())
 498		return;
 499
 500	/*
 501	 * We don't fail in case of NPROC limit excess here because too many
 502	 * poorly written programs don't check set*uid() return code, assuming
 503	 * it never fails if called by root.  We may still enforce NPROC limit
 504	 * for programs doing set*uid()+execve() by harmlessly deferring the
 505	 * failure to the execve() stage.
 506	 */
 507	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
 508			new->user != INIT_USER)
 509		current->flags |= PF_NPROC_EXCEEDED;
 510	else
 511		current->flags &= ~PF_NPROC_EXCEEDED;
 
 
 
 
 512}
 513
 514/*
 515 * Unprivileged users may change the real uid to the effective uid
 516 * or vice versa.  (BSD-style)
 517 *
 518 * If you set the real uid at all, or set the effective uid to a value not
 519 * equal to the real uid, then the saved uid is set to the new effective uid.
 520 *
 521 * This makes it possible for a setuid program to completely drop its
 522 * privileges, which is often a useful assertion to make when you are doing
 523 * a security audit over a program.
 524 *
 525 * The general idea is that a program which uses just setreuid() will be
 526 * 100% compatible with BSD.  A program which uses just setuid() will be
 527 * 100% compatible with POSIX with saved IDs.
 528 */
 529long __sys_setreuid(uid_t ruid, uid_t euid)
 530{
 531	struct user_namespace *ns = current_user_ns();
 532	const struct cred *old;
 533	struct cred *new;
 534	int retval;
 535	kuid_t kruid, keuid;
 536
 537	kruid = make_kuid(ns, ruid);
 538	keuid = make_kuid(ns, euid);
 539
 540	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 541		return -EINVAL;
 542	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 543		return -EINVAL;
 544
 545	new = prepare_creds();
 546	if (!new)
 547		return -ENOMEM;
 548	old = current_cred();
 549
 550	retval = -EPERM;
 551	if (ruid != (uid_t) -1) {
 552		new->uid = kruid;
 553		if (!uid_eq(old->uid, kruid) &&
 554		    !uid_eq(old->euid, kruid) &&
 555		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 556			goto error;
 557	}
 558
 559	if (euid != (uid_t) -1) {
 560		new->euid = keuid;
 561		if (!uid_eq(old->uid, keuid) &&
 562		    !uid_eq(old->euid, keuid) &&
 563		    !uid_eq(old->suid, keuid) &&
 564		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 565			goto error;
 566	}
 567
 568	if (!uid_eq(new->uid, old->uid)) {
 569		retval = set_user(new);
 570		if (retval < 0)
 571			goto error;
 572	}
 573	if (ruid != (uid_t) -1 ||
 574	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 575		new->suid = new->euid;
 576	new->fsuid = new->euid;
 577
 578	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 579	if (retval < 0)
 580		goto error;
 581
 582	retval = set_cred_ucounts(new);
 583	if (retval < 0)
 584		goto error;
 585
 586	flag_nproc_exceeded(new);
 587	return commit_creds(new);
 588
 589error:
 590	abort_creds(new);
 591	return retval;
 592}
 593
 594SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 595{
 596	return __sys_setreuid(ruid, euid);
 597}
 598
 599/*
 600 * setuid() is implemented like SysV with SAVED_IDS
 601 *
 602 * Note that SAVED_ID's is deficient in that a setuid root program
 603 * like sendmail, for example, cannot set its uid to be a normal
 604 * user and then switch back, because if you're root, setuid() sets
 605 * the saved uid too.  If you don't like this, blame the bright people
 606 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 607 * will allow a root program to temporarily drop privileges and be able to
 608 * regain them by swapping the real and effective uid.
 609 */
 610long __sys_setuid(uid_t uid)
 611{
 612	struct user_namespace *ns = current_user_ns();
 613	const struct cred *old;
 614	struct cred *new;
 615	int retval;
 616	kuid_t kuid;
 617
 618	kuid = make_kuid(ns, uid);
 619	if (!uid_valid(kuid))
 620		return -EINVAL;
 621
 622	new = prepare_creds();
 623	if (!new)
 624		return -ENOMEM;
 625	old = current_cred();
 626
 627	retval = -EPERM;
 628	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
 629		new->suid = new->uid = kuid;
 630		if (!uid_eq(kuid, old->uid)) {
 631			retval = set_user(new);
 632			if (retval < 0)
 633				goto error;
 634		}
 635	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 636		goto error;
 637	}
 638
 639	new->fsuid = new->euid = kuid;
 640
 641	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 642	if (retval < 0)
 643		goto error;
 644
 645	retval = set_cred_ucounts(new);
 646	if (retval < 0)
 647		goto error;
 648
 649	flag_nproc_exceeded(new);
 650	return commit_creds(new);
 651
 652error:
 653	abort_creds(new);
 654	return retval;
 655}
 656
 657SYSCALL_DEFINE1(setuid, uid_t, uid)
 658{
 659	return __sys_setuid(uid);
 660}
 661
 662
 663/*
 664 * This function implements a generic ability to update ruid, euid,
 665 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 666 */
 667long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
 668{
 669	struct user_namespace *ns = current_user_ns();
 670	const struct cred *old;
 671	struct cred *new;
 672	int retval;
 673	kuid_t kruid, keuid, ksuid;
 674	bool ruid_new, euid_new, suid_new;
 675
 676	kruid = make_kuid(ns, ruid);
 677	keuid = make_kuid(ns, euid);
 678	ksuid = make_kuid(ns, suid);
 679
 680	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 681		return -EINVAL;
 682
 683	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 684		return -EINVAL;
 685
 686	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 687		return -EINVAL;
 688
 689	old = current_cred();
 690
 691	/* check for no-op */
 692	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
 693	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
 694				    uid_eq(keuid, old->fsuid))) &&
 695	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
 696		return 0;
 697
 698	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 699		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
 700	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 701		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
 702	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 703		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
 704	if ((ruid_new || euid_new || suid_new) &&
 705	    !ns_capable_setid(old->user_ns, CAP_SETUID))
 706		return -EPERM;
 707
 708	new = prepare_creds();
 709	if (!new)
 710		return -ENOMEM;
 711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712	if (ruid != (uid_t) -1) {
 713		new->uid = kruid;
 714		if (!uid_eq(kruid, old->uid)) {
 715			retval = set_user(new);
 716			if (retval < 0)
 717				goto error;
 718		}
 719	}
 720	if (euid != (uid_t) -1)
 721		new->euid = keuid;
 722	if (suid != (uid_t) -1)
 723		new->suid = ksuid;
 724	new->fsuid = new->euid;
 725
 726	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 727	if (retval < 0)
 728		goto error;
 729
 730	retval = set_cred_ucounts(new);
 731	if (retval < 0)
 732		goto error;
 733
 734	flag_nproc_exceeded(new);
 735	return commit_creds(new);
 736
 737error:
 738	abort_creds(new);
 739	return retval;
 740}
 741
 742SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 743{
 744	return __sys_setresuid(ruid, euid, suid);
 745}
 746
 747SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 748{
 749	const struct cred *cred = current_cred();
 750	int retval;
 751	uid_t ruid, euid, suid;
 752
 753	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 754	euid = from_kuid_munged(cred->user_ns, cred->euid);
 755	suid = from_kuid_munged(cred->user_ns, cred->suid);
 756
 757	retval = put_user(ruid, ruidp);
 758	if (!retval) {
 759		retval = put_user(euid, euidp);
 760		if (!retval)
 761			return put_user(suid, suidp);
 762	}
 763	return retval;
 764}
 765
 766/*
 767 * Same as above, but for rgid, egid, sgid.
 768 */
 769long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
 770{
 771	struct user_namespace *ns = current_user_ns();
 772	const struct cred *old;
 773	struct cred *new;
 774	int retval;
 775	kgid_t krgid, kegid, ksgid;
 776	bool rgid_new, egid_new, sgid_new;
 777
 778	krgid = make_kgid(ns, rgid);
 779	kegid = make_kgid(ns, egid);
 780	ksgid = make_kgid(ns, sgid);
 781
 782	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 783		return -EINVAL;
 784	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 785		return -EINVAL;
 786	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 787		return -EINVAL;
 788
 789	old = current_cred();
 790
 791	/* check for no-op */
 792	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
 793	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
 794				    gid_eq(kegid, old->fsgid))) &&
 795	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
 796		return 0;
 797
 798	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 799		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
 800	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 801		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
 802	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 803		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
 804	if ((rgid_new || egid_new || sgid_new) &&
 805	    !ns_capable_setid(old->user_ns, CAP_SETGID))
 806		return -EPERM;
 807
 808	new = prepare_creds();
 809	if (!new)
 810		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811
 812	if (rgid != (gid_t) -1)
 813		new->gid = krgid;
 814	if (egid != (gid_t) -1)
 815		new->egid = kegid;
 816	if (sgid != (gid_t) -1)
 817		new->sgid = ksgid;
 818	new->fsgid = new->egid;
 819
 820	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
 821	if (retval < 0)
 822		goto error;
 823
 824	return commit_creds(new);
 825
 826error:
 827	abort_creds(new);
 828	return retval;
 829}
 830
 831SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 832{
 833	return __sys_setresgid(rgid, egid, sgid);
 834}
 835
 836SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 837{
 838	const struct cred *cred = current_cred();
 839	int retval;
 840	gid_t rgid, egid, sgid;
 841
 842	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 843	egid = from_kgid_munged(cred->user_ns, cred->egid);
 844	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 845
 846	retval = put_user(rgid, rgidp);
 847	if (!retval) {
 848		retval = put_user(egid, egidp);
 849		if (!retval)
 850			retval = put_user(sgid, sgidp);
 851	}
 852
 853	return retval;
 854}
 855
 856
 857/*
 858 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 859 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 860 * whatever uid it wants to). It normally shadows "euid", except when
 861 * explicitly set by setfsuid() or for access..
 862 */
 863long __sys_setfsuid(uid_t uid)
 864{
 865	const struct cred *old;
 866	struct cred *new;
 867	uid_t old_fsuid;
 868	kuid_t kuid;
 869
 870	old = current_cred();
 871	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 872
 873	kuid = make_kuid(old->user_ns, uid);
 874	if (!uid_valid(kuid))
 875		return old_fsuid;
 876
 877	new = prepare_creds();
 878	if (!new)
 879		return old_fsuid;
 
 
 880
 881	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 882	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 883	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
 884		if (!uid_eq(kuid, old->fsuid)) {
 885			new->fsuid = kuid;
 886			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 887				goto change_okay;
 888		}
 889	}
 890
 891	abort_creds(new);
 892	return old_fsuid;
 893
 894change_okay:
 895	commit_creds(new);
 896	return old_fsuid;
 897}
 898
 899SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 900{
 901	return __sys_setfsuid(uid);
 902}
 903
 904/*
 905 * Samma på svenska..
 906 */
 907long __sys_setfsgid(gid_t gid)
 908{
 909	const struct cred *old;
 910	struct cred *new;
 911	gid_t old_fsgid;
 912	kgid_t kgid;
 913
 914	old = current_cred();
 915	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 916
 917	kgid = make_kgid(old->user_ns, gid);
 918	if (!gid_valid(kgid))
 919		return old_fsgid;
 920
 921	new = prepare_creds();
 922	if (!new)
 923		return old_fsgid;
 
 
 924
 925	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 926	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 927	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
 928		if (!gid_eq(kgid, old->fsgid)) {
 929			new->fsgid = kgid;
 930			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
 931				goto change_okay;
 932		}
 933	}
 934
 935	abort_creds(new);
 936	return old_fsgid;
 937
 938change_okay:
 939	commit_creds(new);
 940	return old_fsgid;
 941}
 942
 943SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 944{
 945	return __sys_setfsgid(gid);
 946}
 947#endif /* CONFIG_MULTIUSER */
 948
 949/**
 950 * sys_getpid - return the thread group id of the current process
 951 *
 952 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 953 * the pid are identical unless CLONE_THREAD was specified on clone() in
 954 * which case the tgid is the same in all threads of the same group.
 955 *
 956 * This is SMP safe as current->tgid does not change.
 957 */
 958SYSCALL_DEFINE0(getpid)
 959{
 960	return task_tgid_vnr(current);
 961}
 962
 963/* Thread ID - the internal kernel "pid" */
 964SYSCALL_DEFINE0(gettid)
 965{
 966	return task_pid_vnr(current);
 967}
 968
 969/*
 970 * Accessing ->real_parent is not SMP-safe, it could
 971 * change from under us. However, we can use a stale
 972 * value of ->real_parent under rcu_read_lock(), see
 973 * release_task()->call_rcu(delayed_put_task_struct).
 974 */
 975SYSCALL_DEFINE0(getppid)
 976{
 977	int pid;
 978
 979	rcu_read_lock();
 980	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 981	rcu_read_unlock();
 982
 983	return pid;
 984}
 985
 986SYSCALL_DEFINE0(getuid)
 987{
 988	/* Only we change this so SMP safe */
 989	return from_kuid_munged(current_user_ns(), current_uid());
 990}
 991
 992SYSCALL_DEFINE0(geteuid)
 993{
 994	/* Only we change this so SMP safe */
 995	return from_kuid_munged(current_user_ns(), current_euid());
 996}
 997
 998SYSCALL_DEFINE0(getgid)
 999{
1000	/* Only we change this so SMP safe */
1001	return from_kgid_munged(current_user_ns(), current_gid());
1002}
1003
1004SYSCALL_DEFINE0(getegid)
1005{
1006	/* Only we change this so SMP safe */
1007	return from_kgid_munged(current_user_ns(), current_egid());
1008}
1009
1010static void do_sys_times(struct tms *tms)
1011{
1012	u64 tgutime, tgstime, cutime, cstime;
1013
1014	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1015	cutime = current->signal->cutime;
1016	cstime = current->signal->cstime;
1017	tms->tms_utime = nsec_to_clock_t(tgutime);
1018	tms->tms_stime = nsec_to_clock_t(tgstime);
1019	tms->tms_cutime = nsec_to_clock_t(cutime);
1020	tms->tms_cstime = nsec_to_clock_t(cstime);
 
1021}
1022
1023SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1024{
1025	if (tbuf) {
1026		struct tms tmp;
1027
1028		do_sys_times(&tmp);
1029		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1030			return -EFAULT;
1031	}
1032	force_successful_syscall_return();
1033	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1034}
1035
1036#ifdef CONFIG_COMPAT
1037static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1038{
1039	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1040}
1041
1042COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1043{
1044	if (tbuf) {
1045		struct tms tms;
1046		struct compat_tms tmp;
1047
1048		do_sys_times(&tms);
1049		/* Convert our struct tms to the compat version. */
1050		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1051		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1052		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1053		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1054		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1055			return -EFAULT;
1056	}
1057	force_successful_syscall_return();
1058	return compat_jiffies_to_clock_t(jiffies);
1059}
1060#endif
1061
1062/*
1063 * This needs some heavy checking ...
1064 * I just haven't the stomach for it. I also don't fully
1065 * understand sessions/pgrp etc. Let somebody who does explain it.
1066 *
1067 * OK, I think I have the protection semantics right.... this is really
1068 * only important on a multi-user system anyway, to make sure one user
1069 * can't send a signal to a process owned by another.  -TYT, 12/12/91
1070 *
1071 * !PF_FORKNOEXEC check to conform completely to POSIX.
 
1072 */
1073SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1074{
1075	struct task_struct *p;
1076	struct task_struct *group_leader = current->group_leader;
1077	struct pid *pgrp;
1078	int err;
1079
1080	if (!pid)
1081		pid = task_pid_vnr(group_leader);
1082	if (!pgid)
1083		pgid = pid;
1084	if (pgid < 0)
1085		return -EINVAL;
1086	rcu_read_lock();
1087
1088	/* From this point forward we keep holding onto the tasklist lock
1089	 * so that our parent does not change from under us. -DaveM
1090	 */
1091	write_lock_irq(&tasklist_lock);
1092
1093	err = -ESRCH;
1094	p = find_task_by_vpid(pid);
1095	if (!p)
1096		goto out;
1097
1098	err = -EINVAL;
1099	if (!thread_group_leader(p))
1100		goto out;
1101
1102	if (same_thread_group(p->real_parent, group_leader)) {
1103		err = -EPERM;
1104		if (task_session(p) != task_session(group_leader))
1105			goto out;
1106		err = -EACCES;
1107		if (!(p->flags & PF_FORKNOEXEC))
1108			goto out;
1109	} else {
1110		err = -ESRCH;
1111		if (p != group_leader)
1112			goto out;
1113	}
1114
1115	err = -EPERM;
1116	if (p->signal->leader)
1117		goto out;
1118
1119	pgrp = task_pid(p);
1120	if (pgid != pid) {
1121		struct task_struct *g;
1122
1123		pgrp = find_vpid(pgid);
1124		g = pid_task(pgrp, PIDTYPE_PGID);
1125		if (!g || task_session(g) != task_session(group_leader))
1126			goto out;
1127	}
1128
1129	err = security_task_setpgid(p, pgid);
1130	if (err)
1131		goto out;
1132
1133	if (task_pgrp(p) != pgrp)
1134		change_pid(p, PIDTYPE_PGID, pgrp);
1135
1136	err = 0;
1137out:
1138	/* All paths lead to here, thus we are safe. -DaveM */
1139	write_unlock_irq(&tasklist_lock);
1140	rcu_read_unlock();
1141	return err;
1142}
1143
1144static int do_getpgid(pid_t pid)
1145{
1146	struct task_struct *p;
1147	struct pid *grp;
1148	int retval;
1149
1150	rcu_read_lock();
1151	if (!pid)
1152		grp = task_pgrp(current);
1153	else {
1154		retval = -ESRCH;
1155		p = find_task_by_vpid(pid);
1156		if (!p)
1157			goto out;
1158		grp = task_pgrp(p);
1159		if (!grp)
1160			goto out;
1161
1162		retval = security_task_getpgid(p);
1163		if (retval)
1164			goto out;
1165	}
1166	retval = pid_vnr(grp);
1167out:
1168	rcu_read_unlock();
1169	return retval;
1170}
1171
1172SYSCALL_DEFINE1(getpgid, pid_t, pid)
1173{
1174	return do_getpgid(pid);
1175}
1176
1177#ifdef __ARCH_WANT_SYS_GETPGRP
1178
1179SYSCALL_DEFINE0(getpgrp)
1180{
1181	return do_getpgid(0);
1182}
1183
1184#endif
1185
1186SYSCALL_DEFINE1(getsid, pid_t, pid)
1187{
1188	struct task_struct *p;
1189	struct pid *sid;
1190	int retval;
1191
1192	rcu_read_lock();
1193	if (!pid)
1194		sid = task_session(current);
1195	else {
1196		retval = -ESRCH;
1197		p = find_task_by_vpid(pid);
1198		if (!p)
1199			goto out;
1200		sid = task_session(p);
1201		if (!sid)
1202			goto out;
1203
1204		retval = security_task_getsid(p);
1205		if (retval)
1206			goto out;
1207	}
1208	retval = pid_vnr(sid);
1209out:
1210	rcu_read_unlock();
1211	return retval;
1212}
1213
1214static void set_special_pids(struct pid *pid)
1215{
1216	struct task_struct *curr = current->group_leader;
1217
1218	if (task_session(curr) != pid)
1219		change_pid(curr, PIDTYPE_SID, pid);
1220
1221	if (task_pgrp(curr) != pid)
1222		change_pid(curr, PIDTYPE_PGID, pid);
1223}
1224
1225int ksys_setsid(void)
1226{
1227	struct task_struct *group_leader = current->group_leader;
1228	struct pid *sid = task_pid(group_leader);
1229	pid_t session = pid_vnr(sid);
1230	int err = -EPERM;
1231
1232	write_lock_irq(&tasklist_lock);
1233	/* Fail if I am already a session leader */
1234	if (group_leader->signal->leader)
1235		goto out;
1236
1237	/* Fail if a process group id already exists that equals the
1238	 * proposed session id.
1239	 */
1240	if (pid_task(sid, PIDTYPE_PGID))
1241		goto out;
1242
1243	group_leader->signal->leader = 1;
1244	set_special_pids(sid);
1245
1246	proc_clear_tty(group_leader);
1247
1248	err = session;
1249out:
1250	write_unlock_irq(&tasklist_lock);
1251	if (err > 0) {
1252		proc_sid_connector(group_leader);
1253		sched_autogroup_create_attach(group_leader);
1254	}
1255	return err;
1256}
1257
1258SYSCALL_DEFINE0(setsid)
1259{
1260	return ksys_setsid();
1261}
1262
1263DECLARE_RWSEM(uts_sem);
1264
1265#ifdef COMPAT_UTS_MACHINE
1266#define override_architecture(name) \
1267	(personality(current->personality) == PER_LINUX32 && \
1268	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1269		      sizeof(COMPAT_UTS_MACHINE)))
1270#else
1271#define override_architecture(name)	0
1272#endif
1273
1274/*
1275 * Work around broken programs that cannot handle "Linux 3.0".
1276 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1277 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1278 * 2.6.60.
1279 */
1280static int override_release(char __user *release, size_t len)
1281{
1282	int ret = 0;
 
1283
1284	if (current->personality & UNAME26) {
1285		const char *rest = UTS_RELEASE;
1286		char buf[65] = { 0 };
1287		int ndots = 0;
1288		unsigned v;
1289		size_t copy;
1290
1291		while (*rest) {
1292			if (*rest == '.' && ++ndots >= 3)
1293				break;
1294			if (!isdigit(*rest) && *rest != '.')
1295				break;
1296			rest++;
1297		}
1298		v = LINUX_VERSION_PATCHLEVEL + 60;
1299		copy = clamp_t(size_t, len, 1, sizeof(buf));
1300		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1301		ret = copy_to_user(release, buf, copy + 1);
1302	}
1303	return ret;
1304}
1305
1306SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1307{
1308	struct new_utsname tmp;
1309
1310	down_read(&uts_sem);
1311	memcpy(&tmp, utsname(), sizeof(tmp));
 
1312	up_read(&uts_sem);
1313	if (copy_to_user(name, &tmp, sizeof(tmp)))
1314		return -EFAULT;
1315
1316	if (override_release(name->release, sizeof(name->release)))
1317		return -EFAULT;
1318	if (override_architecture(name))
1319		return -EFAULT;
1320	return 0;
1321}
1322
1323#ifdef __ARCH_WANT_SYS_OLD_UNAME
1324/*
1325 * Old cruft
1326 */
1327SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1328{
1329	struct old_utsname tmp;
1330
1331	if (!name)
1332		return -EFAULT;
1333
1334	down_read(&uts_sem);
1335	memcpy(&tmp, utsname(), sizeof(tmp));
 
1336	up_read(&uts_sem);
1337	if (copy_to_user(name, &tmp, sizeof(tmp)))
1338		return -EFAULT;
1339
1340	if (override_release(name->release, sizeof(name->release)))
1341		return -EFAULT;
1342	if (override_architecture(name))
1343		return -EFAULT;
1344	return 0;
1345}
1346
1347SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1348{
1349	struct oldold_utsname tmp;
1350
1351	if (!name)
1352		return -EFAULT;
1353
1354	memset(&tmp, 0, sizeof(tmp));
1355
1356	down_read(&uts_sem);
1357	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1358	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1359	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1360	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1361	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
 
 
 
 
 
 
 
 
 
 
1362	up_read(&uts_sem);
1363	if (copy_to_user(name, &tmp, sizeof(tmp)))
1364		return -EFAULT;
1365
1366	if (override_architecture(name))
1367		return -EFAULT;
1368	if (override_release(name->release, sizeof(name->release)))
1369		return -EFAULT;
1370	return 0;
1371}
1372#endif
1373
1374SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1375{
1376	int errno;
1377	char tmp[__NEW_UTS_LEN];
1378
1379	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380		return -EPERM;
1381
1382	if (len < 0 || len > __NEW_UTS_LEN)
1383		return -EINVAL;
 
1384	errno = -EFAULT;
1385	if (!copy_from_user(tmp, name, len)) {
1386		struct new_utsname *u;
1387
1388		add_device_randomness(tmp, len);
1389		down_write(&uts_sem);
1390		u = utsname();
1391		memcpy(u->nodename, tmp, len);
1392		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1393		errno = 0;
1394		uts_proc_notify(UTS_PROC_HOSTNAME);
1395		up_write(&uts_sem);
1396	}
 
1397	return errno;
1398}
1399
1400#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1401
1402SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1403{
1404	int i;
1405	struct new_utsname *u;
1406	char tmp[__NEW_UTS_LEN + 1];
1407
1408	if (len < 0)
1409		return -EINVAL;
1410	down_read(&uts_sem);
1411	u = utsname();
1412	i = 1 + strlen(u->nodename);
1413	if (i > len)
1414		i = len;
1415	memcpy(tmp, u->nodename, i);
 
 
1416	up_read(&uts_sem);
1417	if (copy_to_user(name, tmp, i))
1418		return -EFAULT;
1419	return 0;
1420}
1421
1422#endif
1423
1424/*
1425 * Only setdomainname; getdomainname can be implemented by calling
1426 * uname()
1427 */
1428SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1429{
1430	int errno;
1431	char tmp[__NEW_UTS_LEN];
1432
1433	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1434		return -EPERM;
1435	if (len < 0 || len > __NEW_UTS_LEN)
1436		return -EINVAL;
1437
 
1438	errno = -EFAULT;
1439	if (!copy_from_user(tmp, name, len)) {
1440		struct new_utsname *u;
1441
1442		add_device_randomness(tmp, len);
1443		down_write(&uts_sem);
1444		u = utsname();
1445		memcpy(u->domainname, tmp, len);
1446		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1447		errno = 0;
1448		uts_proc_notify(UTS_PROC_DOMAINNAME);
1449		up_write(&uts_sem);
1450	}
 
1451	return errno;
1452}
1453
1454/* make sure you are allowed to change @tsk limits before calling this */
1455static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1456		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1457{
1458	struct rlimit *rlim;
1459	int retval = 0;
1460
1461	if (resource >= RLIM_NLIMITS)
1462		return -EINVAL;
1463	resource = array_index_nospec(resource, RLIM_NLIMITS);
1464
1465	if (new_rlim) {
1466		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1467			return -EINVAL;
1468		if (resource == RLIMIT_NOFILE &&
1469				new_rlim->rlim_max > sysctl_nr_open)
1470			return -EPERM;
1471	}
1472
1473	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1474	rlim = tsk->signal->rlim + resource;
1475	task_lock(tsk->group_leader);
1476	if (new_rlim) {
1477		/*
1478		 * Keep the capable check against init_user_ns until cgroups can
1479		 * contain all limits.
1480		 */
1481		if (new_rlim->rlim_max > rlim->rlim_max &&
1482				!capable(CAP_SYS_RESOURCE))
1483			retval = -EPERM;
1484		if (!retval)
1485			retval = security_task_setrlimit(tsk, resource, new_rlim);
1486	}
1487	if (!retval) {
1488		if (old_rlim)
1489			*old_rlim = *rlim;
1490		if (new_rlim)
1491			*rlim = *new_rlim;
1492	}
1493	task_unlock(tsk->group_leader);
1494
1495	/*
1496	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1497	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1498	 * ignores the rlimit.
1499	 */
1500	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1501	    new_rlim->rlim_cur != RLIM_INFINITY &&
1502	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1503		/*
1504		 * update_rlimit_cpu can fail if the task is exiting, but there
1505		 * may be other tasks in the thread group that are not exiting,
1506		 * and they need their cpu timers adjusted.
1507		 *
1508		 * The group_leader is the last task to be released, so if we
1509		 * cannot update_rlimit_cpu on it, then the entire process is
1510		 * exiting and we do not need to update at all.
1511		 */
1512		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1513	}
1514
1515	return retval;
1516}
1517
1518SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1519{
1520	struct rlimit value;
1521	int ret;
1522
1523	ret = do_prlimit(current, resource, NULL, &value);
1524	if (!ret)
1525		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1526
1527	return ret;
1528}
1529
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1533		       struct compat_rlimit __user *, rlim)
1534{
1535	struct rlimit r;
1536	struct compat_rlimit r32;
1537
1538	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1539		return -EFAULT;
1540
1541	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1542		r.rlim_cur = RLIM_INFINITY;
1543	else
1544		r.rlim_cur = r32.rlim_cur;
1545	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1546		r.rlim_max = RLIM_INFINITY;
1547	else
1548		r.rlim_max = r32.rlim_max;
1549	return do_prlimit(current, resource, &r, NULL);
1550}
1551
1552COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1553		       struct compat_rlimit __user *, rlim)
1554{
1555	struct rlimit r;
1556	int ret;
1557
1558	ret = do_prlimit(current, resource, NULL, &r);
1559	if (!ret) {
1560		struct compat_rlimit r32;
1561		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1562			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1563		else
1564			r32.rlim_cur = r.rlim_cur;
1565		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1566			r32.rlim_max = COMPAT_RLIM_INFINITY;
1567		else
1568			r32.rlim_max = r.rlim_max;
1569
1570		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1571			return -EFAULT;
1572	}
1573	return ret;
1574}
1575
1576#endif
1577
1578#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1579
1580/*
1581 *	Back compatibility for getrlimit. Needed for some apps.
1582 */
 
1583SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1584		struct rlimit __user *, rlim)
1585{
1586	struct rlimit x;
1587	if (resource >= RLIM_NLIMITS)
1588		return -EINVAL;
1589
1590	resource = array_index_nospec(resource, RLIM_NLIMITS);
1591	task_lock(current->group_leader);
1592	x = current->signal->rlim[resource];
1593	task_unlock(current->group_leader);
1594	if (x.rlim_cur > 0x7FFFFFFF)
1595		x.rlim_cur = 0x7FFFFFFF;
1596	if (x.rlim_max > 0x7FFFFFFF)
1597		x.rlim_max = 0x7FFFFFFF;
1598	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1599}
1600
1601#ifdef CONFIG_COMPAT
1602COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1603		       struct compat_rlimit __user *, rlim)
1604{
1605	struct rlimit r;
1606
1607	if (resource >= RLIM_NLIMITS)
1608		return -EINVAL;
1609
1610	resource = array_index_nospec(resource, RLIM_NLIMITS);
1611	task_lock(current->group_leader);
1612	r = current->signal->rlim[resource];
1613	task_unlock(current->group_leader);
1614	if (r.rlim_cur > 0x7FFFFFFF)
1615		r.rlim_cur = 0x7FFFFFFF;
1616	if (r.rlim_max > 0x7FFFFFFF)
1617		r.rlim_max = 0x7FFFFFFF;
1618
1619	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1620	    put_user(r.rlim_max, &rlim->rlim_max))
1621		return -EFAULT;
1622	return 0;
1623}
1624#endif
1625
1626#endif
1627
1628static inline bool rlim64_is_infinity(__u64 rlim64)
1629{
1630#if BITS_PER_LONG < 64
1631	return rlim64 >= ULONG_MAX;
1632#else
1633	return rlim64 == RLIM64_INFINITY;
1634#endif
1635}
1636
1637static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1638{
1639	if (rlim->rlim_cur == RLIM_INFINITY)
1640		rlim64->rlim_cur = RLIM64_INFINITY;
1641	else
1642		rlim64->rlim_cur = rlim->rlim_cur;
1643	if (rlim->rlim_max == RLIM_INFINITY)
1644		rlim64->rlim_max = RLIM64_INFINITY;
1645	else
1646		rlim64->rlim_max = rlim->rlim_max;
1647}
1648
1649static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1650{
1651	if (rlim64_is_infinity(rlim64->rlim_cur))
1652		rlim->rlim_cur = RLIM_INFINITY;
1653	else
1654		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1655	if (rlim64_is_infinity(rlim64->rlim_max))
1656		rlim->rlim_max = RLIM_INFINITY;
1657	else
1658		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1659}
1660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1661/* rcu lock must be held */
1662static int check_prlimit_permission(struct task_struct *task,
1663				    unsigned int flags)
1664{
1665	const struct cred *cred = current_cred(), *tcred;
1666	bool id_match;
1667
1668	if (current == task)
1669		return 0;
1670
1671	tcred = __task_cred(task);
1672	id_match = (uid_eq(cred->uid, tcred->euid) &&
1673		    uid_eq(cred->uid, tcred->suid) &&
1674		    uid_eq(cred->uid, tcred->uid)  &&
1675		    gid_eq(cred->gid, tcred->egid) &&
1676		    gid_eq(cred->gid, tcred->sgid) &&
1677		    gid_eq(cred->gid, tcred->gid));
1678	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1679		return -EPERM;
 
 
1680
1681	return security_task_prlimit(cred, tcred, flags);
1682}
1683
1684SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1685		const struct rlimit64 __user *, new_rlim,
1686		struct rlimit64 __user *, old_rlim)
1687{
1688	struct rlimit64 old64, new64;
1689	struct rlimit old, new;
1690	struct task_struct *tsk;
1691	unsigned int checkflags = 0;
1692	int ret;
1693
1694	if (old_rlim)
1695		checkflags |= LSM_PRLIMIT_READ;
1696
1697	if (new_rlim) {
1698		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1699			return -EFAULT;
1700		rlim64_to_rlim(&new64, &new);
1701		checkflags |= LSM_PRLIMIT_WRITE;
1702	}
1703
1704	rcu_read_lock();
1705	tsk = pid ? find_task_by_vpid(pid) : current;
1706	if (!tsk) {
1707		rcu_read_unlock();
1708		return -ESRCH;
1709	}
1710	ret = check_prlimit_permission(tsk, checkflags);
1711	if (ret) {
1712		rcu_read_unlock();
1713		return ret;
1714	}
1715	get_task_struct(tsk);
1716	rcu_read_unlock();
1717
1718	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1719			old_rlim ? &old : NULL);
1720
1721	if (!ret && old_rlim) {
1722		rlim_to_rlim64(&old, &old64);
1723		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1724			ret = -EFAULT;
1725	}
1726
1727	put_task_struct(tsk);
1728	return ret;
1729}
1730
1731SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1732{
1733	struct rlimit new_rlim;
1734
1735	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1736		return -EFAULT;
1737	return do_prlimit(current, resource, &new_rlim, NULL);
1738}
1739
1740/*
1741 * It would make sense to put struct rusage in the task_struct,
1742 * except that would make the task_struct be *really big*.  After
1743 * task_struct gets moved into malloc'ed memory, it would
1744 * make sense to do this.  It will make moving the rest of the information
1745 * a lot simpler!  (Which we're not doing right now because we're not
1746 * measuring them yet).
1747 *
1748 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1749 * races with threads incrementing their own counters.  But since word
1750 * reads are atomic, we either get new values or old values and we don't
1751 * care which for the sums.  We always take the siglock to protect reading
1752 * the c* fields from p->signal from races with exit.c updating those
1753 * fields when reaping, so a sample either gets all the additions of a
1754 * given child after it's reaped, or none so this sample is before reaping.
1755 *
1756 * Locking:
1757 * We need to take the siglock for CHILDEREN, SELF and BOTH
1758 * for  the cases current multithreaded, non-current single threaded
1759 * non-current multithreaded.  Thread traversal is now safe with
1760 * the siglock held.
1761 * Strictly speaking, we donot need to take the siglock if we are current and
1762 * single threaded,  as no one else can take our signal_struct away, no one
1763 * else can  reap the  children to update signal->c* counters, and no one else
1764 * can race with the signal-> fields. If we do not take any lock, the
1765 * signal-> fields could be read out of order while another thread was just
1766 * exiting. So we should  place a read memory barrier when we avoid the lock.
1767 * On the writer side,  write memory barrier is implied in  __exit_signal
1768 * as __exit_signal releases  the siglock spinlock after updating the signal->
1769 * fields. But we don't do this yet to keep things simple.
1770 *
1771 */
1772
1773static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1774{
1775	r->ru_nvcsw += t->nvcsw;
1776	r->ru_nivcsw += t->nivcsw;
1777	r->ru_minflt += t->min_flt;
1778	r->ru_majflt += t->maj_flt;
1779	r->ru_inblock += task_io_get_inblock(t);
1780	r->ru_oublock += task_io_get_oublock(t);
1781}
1782
1783void getrusage(struct task_struct *p, int who, struct rusage *r)
1784{
1785	struct task_struct *t;
1786	unsigned long flags;
1787	u64 tgutime, tgstime, utime, stime;
1788	unsigned long maxrss;
1789	struct mm_struct *mm;
1790	struct signal_struct *sig = p->signal;
1791	unsigned int seq = 0;
1792
1793retry:
1794	memset(r, 0, sizeof(*r));
1795	utime = stime = 0;
1796	maxrss = 0;
1797
1798	if (who == RUSAGE_THREAD) {
1799		task_cputime_adjusted(current, &utime, &stime);
1800		accumulate_thread_rusage(p, r);
1801		maxrss = sig->maxrss;
1802		goto out_thread;
1803	}
1804
1805	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 
1806
1807	switch (who) {
1808	case RUSAGE_BOTH:
1809	case RUSAGE_CHILDREN:
1810		utime = sig->cutime;
1811		stime = sig->cstime;
1812		r->ru_nvcsw = sig->cnvcsw;
1813		r->ru_nivcsw = sig->cnivcsw;
1814		r->ru_minflt = sig->cmin_flt;
1815		r->ru_majflt = sig->cmaj_flt;
1816		r->ru_inblock = sig->cinblock;
1817		r->ru_oublock = sig->coublock;
1818		maxrss = sig->cmaxrss;
1819
1820		if (who == RUSAGE_CHILDREN)
1821			break;
1822		fallthrough;
1823
1824	case RUSAGE_SELF:
1825		r->ru_nvcsw += sig->nvcsw;
1826		r->ru_nivcsw += sig->nivcsw;
1827		r->ru_minflt += sig->min_flt;
1828		r->ru_majflt += sig->maj_flt;
1829		r->ru_inblock += sig->inblock;
1830		r->ru_oublock += sig->oublock;
1831		if (maxrss < sig->maxrss)
1832			maxrss = sig->maxrss;
1833
1834		rcu_read_lock();
1835		__for_each_thread(sig, t)
1836			accumulate_thread_rusage(t, r);
1837		rcu_read_unlock();
1838
1839		break;
 
1840
1841	default:
1842		BUG();
1843	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845	if (need_seqretry(&sig->stats_lock, seq)) {
1846		seq = 1;
1847		goto retry;
1848	}
1849	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1850
1851	if (who == RUSAGE_CHILDREN)
1852		goto out_children;
1853
1854	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1855	utime += tgutime;
1856	stime += tgstime;
1857
1858out_thread:
1859	mm = get_task_mm(p);
1860	if (mm) {
1861		setmax_mm_hiwater_rss(&maxrss, mm);
1862		mmput(mm);
 
1863	}
1864
1865out_children:
1866	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1867	r->ru_utime = ns_to_kernel_old_timeval(utime);
1868	r->ru_stime = ns_to_kernel_old_timeval(stime);
1869}
1870
1871SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1872{
1873	struct rusage r;
1874
1875	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1876	    who != RUSAGE_THREAD)
1877		return -EINVAL;
1878
1879	getrusage(current, who, &r);
1880	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1881}
1882
1883#ifdef CONFIG_COMPAT
1884COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1885{
1886	struct rusage r;
1887
1888	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1889	    who != RUSAGE_THREAD)
1890		return -EINVAL;
1891
1892	getrusage(current, who, &r);
1893	return put_compat_rusage(&r, ru);
1894}
1895#endif
1896
1897SYSCALL_DEFINE1(umask, int, mask)
1898{
1899	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1900	return mask;
1901}
1902
1903static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1904{
1905	struct fd exe;
1906	struct inode *inode;
1907	int err;
1908
1909	exe = fdget(fd);
1910	if (!exe.file)
1911		return -EBADF;
1912
1913	inode = file_inode(exe.file);
1914
1915	/*
1916	 * Because the original mm->exe_file points to executable file, make
1917	 * sure that this one is executable as well, to avoid breaking an
1918	 * overall picture.
1919	 */
1920	err = -EACCES;
1921	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1922		goto exit;
1923
1924	err = file_permission(exe.file, MAY_EXEC);
1925	if (err)
1926		goto exit;
1927
1928	err = replace_mm_exe_file(mm, exe.file);
1929exit:
1930	fdput(exe);
1931	return err;
1932}
1933
1934/*
1935 * Check arithmetic relations of passed addresses.
1936 *
1937 * WARNING: we don't require any capability here so be very careful
1938 * in what is allowed for modification from userspace.
1939 */
1940static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1941{
1942	unsigned long mmap_max_addr = TASK_SIZE;
1943	int error = -EINVAL, i;
1944
1945	static const unsigned char offsets[] = {
1946		offsetof(struct prctl_mm_map, start_code),
1947		offsetof(struct prctl_mm_map, end_code),
1948		offsetof(struct prctl_mm_map, start_data),
1949		offsetof(struct prctl_mm_map, end_data),
1950		offsetof(struct prctl_mm_map, start_brk),
1951		offsetof(struct prctl_mm_map, brk),
1952		offsetof(struct prctl_mm_map, start_stack),
1953		offsetof(struct prctl_mm_map, arg_start),
1954		offsetof(struct prctl_mm_map, arg_end),
1955		offsetof(struct prctl_mm_map, env_start),
1956		offsetof(struct prctl_mm_map, env_end),
1957	};
1958
1959	/*
1960	 * Make sure the members are not somewhere outside
1961	 * of allowed address space.
1962	 */
1963	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1964		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1965
1966		if ((unsigned long)val >= mmap_max_addr ||
1967		    (unsigned long)val < mmap_min_addr)
1968			goto out;
1969	}
1970
1971	/*
1972	 * Make sure the pairs are ordered.
1973	 */
1974#define __prctl_check_order(__m1, __op, __m2)				\
1975	((unsigned long)prctl_map->__m1 __op				\
1976	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1977	error  = __prctl_check_order(start_code, <, end_code);
1978	error |= __prctl_check_order(start_data,<=, end_data);
1979	error |= __prctl_check_order(start_brk, <=, brk);
1980	error |= __prctl_check_order(arg_start, <=, arg_end);
1981	error |= __prctl_check_order(env_start, <=, env_end);
1982	if (error)
1983		goto out;
1984#undef __prctl_check_order
1985
1986	error = -EINVAL;
1987
1988	/*
1989	 * Neither we should allow to override limits if they set.
1990	 */
1991	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1992			      prctl_map->start_brk, prctl_map->end_data,
1993			      prctl_map->start_data))
1994			goto out;
1995
1996	error = 0;
1997out:
1998	return error;
1999}
2000
2001#ifdef CONFIG_CHECKPOINT_RESTORE
2002static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2003{
2004	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2005	unsigned long user_auxv[AT_VECTOR_SIZE];
2006	struct mm_struct *mm = current->mm;
2007	int error;
2008
2009	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2010	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2011
2012	if (opt == PR_SET_MM_MAP_SIZE)
2013		return put_user((unsigned int)sizeof(prctl_map),
2014				(unsigned int __user *)addr);
2015
2016	if (data_size != sizeof(prctl_map))
2017		return -EINVAL;
2018
2019	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2020		return -EFAULT;
2021
2022	error = validate_prctl_map_addr(&prctl_map);
2023	if (error)
2024		return error;
2025
2026	if (prctl_map.auxv_size) {
2027		/*
2028		 * Someone is trying to cheat the auxv vector.
2029		 */
2030		if (!prctl_map.auxv ||
2031				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2032			return -EINVAL;
2033
2034		memset(user_auxv, 0, sizeof(user_auxv));
2035		if (copy_from_user(user_auxv,
2036				   (const void __user *)prctl_map.auxv,
2037				   prctl_map.auxv_size))
2038			return -EFAULT;
2039
2040		/* Last entry must be AT_NULL as specification requires */
2041		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2042		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2043	}
2044
2045	if (prctl_map.exe_fd != (u32)-1) {
2046		/*
2047		 * Check if the current user is checkpoint/restore capable.
2048		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2049		 * or CAP_CHECKPOINT_RESTORE.
2050		 * Note that a user with access to ptrace can masquerade an
2051		 * arbitrary program as any executable, even setuid ones.
2052		 * This may have implications in the tomoyo subsystem.
2053		 */
2054		if (!checkpoint_restore_ns_capable(current_user_ns()))
2055			return -EPERM;
2056
2057		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2058		if (error)
2059			return error;
2060	}
2061
2062	/*
2063	 * arg_lock protects concurrent updates but we still need mmap_lock for
2064	 * read to exclude races with sys_brk.
2065	 */
2066	mmap_read_lock(mm);
2067
2068	/*
2069	 * We don't validate if these members are pointing to
2070	 * real present VMAs because application may have correspond
2071	 * VMAs already unmapped and kernel uses these members for statistics
2072	 * output in procfs mostly, except
2073	 *
2074	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2075	 *    for VMAs when updating these members so anything wrong written
2076	 *    here cause kernel to swear at userspace program but won't lead
2077	 *    to any problem in kernel itself
2078	 */
2079
2080	spin_lock(&mm->arg_lock);
2081	mm->start_code	= prctl_map.start_code;
2082	mm->end_code	= prctl_map.end_code;
2083	mm->start_data	= prctl_map.start_data;
2084	mm->end_data	= prctl_map.end_data;
2085	mm->start_brk	= prctl_map.start_brk;
2086	mm->brk		= prctl_map.brk;
2087	mm->start_stack	= prctl_map.start_stack;
2088	mm->arg_start	= prctl_map.arg_start;
2089	mm->arg_end	= prctl_map.arg_end;
2090	mm->env_start	= prctl_map.env_start;
2091	mm->env_end	= prctl_map.env_end;
2092	spin_unlock(&mm->arg_lock);
2093
2094	/*
2095	 * Note this update of @saved_auxv is lockless thus
2096	 * if someone reads this member in procfs while we're
2097	 * updating -- it may get partly updated results. It's
2098	 * known and acceptable trade off: we leave it as is to
2099	 * not introduce additional locks here making the kernel
2100	 * more complex.
2101	 */
2102	if (prctl_map.auxv_size)
2103		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2104
2105	mmap_read_unlock(mm);
2106	return 0;
2107}
2108#endif /* CONFIG_CHECKPOINT_RESTORE */
2109
2110static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2111			  unsigned long len)
2112{
2113	/*
2114	 * This doesn't move the auxiliary vector itself since it's pinned to
2115	 * mm_struct, but it permits filling the vector with new values.  It's
2116	 * up to the caller to provide sane values here, otherwise userspace
2117	 * tools which use this vector might be unhappy.
2118	 */
2119	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2120
2121	if (len > sizeof(user_auxv))
2122		return -EINVAL;
2123
2124	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2125		return -EFAULT;
2126
2127	/* Make sure the last entry is always AT_NULL */
2128	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2129	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2130
2131	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2132
2133	task_lock(current);
2134	memcpy(mm->saved_auxv, user_auxv, len);
2135	task_unlock(current);
2136
2137	return 0;
2138}
2139
2140static int prctl_set_mm(int opt, unsigned long addr,
2141			unsigned long arg4, unsigned long arg5)
2142{
2143	struct mm_struct *mm = current->mm;
2144	struct prctl_mm_map prctl_map = {
2145		.auxv = NULL,
2146		.auxv_size = 0,
2147		.exe_fd = -1,
2148	};
2149	struct vm_area_struct *vma;
2150	int error;
2151
2152	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2153			      opt != PR_SET_MM_MAP &&
2154			      opt != PR_SET_MM_MAP_SIZE)))
2155		return -EINVAL;
2156
2157#ifdef CONFIG_CHECKPOINT_RESTORE
2158	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2159		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2160#endif
2161
2162	if (!capable(CAP_SYS_RESOURCE))
2163		return -EPERM;
2164
2165	if (opt == PR_SET_MM_EXE_FILE)
2166		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2167
2168	if (opt == PR_SET_MM_AUXV)
2169		return prctl_set_auxv(mm, addr, arg4);
2170
2171	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2172		return -EINVAL;
2173
2174	error = -EINVAL;
2175
2176	/*
2177	 * arg_lock protects concurrent updates of arg boundaries, we need
2178	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2179	 * validation.
2180	 */
2181	mmap_read_lock(mm);
2182	vma = find_vma(mm, addr);
2183
2184	spin_lock(&mm->arg_lock);
2185	prctl_map.start_code	= mm->start_code;
2186	prctl_map.end_code	= mm->end_code;
2187	prctl_map.start_data	= mm->start_data;
2188	prctl_map.end_data	= mm->end_data;
2189	prctl_map.start_brk	= mm->start_brk;
2190	prctl_map.brk		= mm->brk;
2191	prctl_map.start_stack	= mm->start_stack;
2192	prctl_map.arg_start	= mm->arg_start;
2193	prctl_map.arg_end	= mm->arg_end;
2194	prctl_map.env_start	= mm->env_start;
2195	prctl_map.env_end	= mm->env_end;
2196
2197	switch (opt) {
2198	case PR_SET_MM_START_CODE:
2199		prctl_map.start_code = addr;
2200		break;
2201	case PR_SET_MM_END_CODE:
2202		prctl_map.end_code = addr;
2203		break;
2204	case PR_SET_MM_START_DATA:
2205		prctl_map.start_data = addr;
2206		break;
2207	case PR_SET_MM_END_DATA:
2208		prctl_map.end_data = addr;
2209		break;
2210	case PR_SET_MM_START_STACK:
2211		prctl_map.start_stack = addr;
2212		break;
2213	case PR_SET_MM_START_BRK:
2214		prctl_map.start_brk = addr;
2215		break;
2216	case PR_SET_MM_BRK:
2217		prctl_map.brk = addr;
2218		break;
2219	case PR_SET_MM_ARG_START:
2220		prctl_map.arg_start = addr;
2221		break;
2222	case PR_SET_MM_ARG_END:
2223		prctl_map.arg_end = addr;
2224		break;
2225	case PR_SET_MM_ENV_START:
2226		prctl_map.env_start = addr;
2227		break;
2228	case PR_SET_MM_ENV_END:
2229		prctl_map.env_end = addr;
2230		break;
2231	default:
2232		goto out;
2233	}
2234
2235	error = validate_prctl_map_addr(&prctl_map);
2236	if (error)
2237		goto out;
2238
2239	switch (opt) {
2240	/*
2241	 * If command line arguments and environment
2242	 * are placed somewhere else on stack, we can
2243	 * set them up here, ARG_START/END to setup
2244	 * command line arguments and ENV_START/END
2245	 * for environment.
2246	 */
2247	case PR_SET_MM_START_STACK:
2248	case PR_SET_MM_ARG_START:
2249	case PR_SET_MM_ARG_END:
2250	case PR_SET_MM_ENV_START:
2251	case PR_SET_MM_ENV_END:
2252		if (!vma) {
2253			error = -EFAULT;
2254			goto out;
2255		}
2256	}
2257
2258	mm->start_code	= prctl_map.start_code;
2259	mm->end_code	= prctl_map.end_code;
2260	mm->start_data	= prctl_map.start_data;
2261	mm->end_data	= prctl_map.end_data;
2262	mm->start_brk	= prctl_map.start_brk;
2263	mm->brk		= prctl_map.brk;
2264	mm->start_stack	= prctl_map.start_stack;
2265	mm->arg_start	= prctl_map.arg_start;
2266	mm->arg_end	= prctl_map.arg_end;
2267	mm->env_start	= prctl_map.env_start;
2268	mm->env_end	= prctl_map.env_end;
2269
2270	error = 0;
2271out:
2272	spin_unlock(&mm->arg_lock);
2273	mmap_read_unlock(mm);
2274	return error;
2275}
2276
2277#ifdef CONFIG_CHECKPOINT_RESTORE
2278static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2279{
2280	return put_user(me->clear_child_tid, tid_addr);
2281}
2282#else
2283static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2284{
2285	return -EINVAL;
2286}
2287#endif
2288
2289static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2290{
2291	/*
2292	 * If task has has_child_subreaper - all its descendants
2293	 * already have these flag too and new descendants will
2294	 * inherit it on fork, skip them.
2295	 *
2296	 * If we've found child_reaper - skip descendants in
2297	 * it's subtree as they will never get out pidns.
2298	 */
2299	if (p->signal->has_child_subreaper ||
2300	    is_child_reaper(task_pid(p)))
2301		return 0;
2302
2303	p->signal->has_child_subreaper = 1;
2304	return 1;
2305}
2306
2307int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2308{
2309	return -EINVAL;
2310}
2311
2312int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2313				    unsigned long ctrl)
2314{
2315	return -EINVAL;
2316}
2317
2318#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2319
2320#ifdef CONFIG_ANON_VMA_NAME
2321
2322#define ANON_VMA_NAME_MAX_LEN		80
2323#define ANON_VMA_NAME_INVALID_CHARS	"\\`$[]"
2324
2325static inline bool is_valid_name_char(char ch)
2326{
2327	/* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2328	return ch > 0x1f && ch < 0x7f &&
2329		!strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2330}
2331
2332static int prctl_set_vma(unsigned long opt, unsigned long addr,
2333			 unsigned long size, unsigned long arg)
2334{
2335	struct mm_struct *mm = current->mm;
2336	const char __user *uname;
2337	struct anon_vma_name *anon_name = NULL;
2338	int error;
2339
2340	switch (opt) {
2341	case PR_SET_VMA_ANON_NAME:
2342		uname = (const char __user *)arg;
2343		if (uname) {
2344			char *name, *pch;
2345
2346			name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2347			if (IS_ERR(name))
2348				return PTR_ERR(name);
2349
2350			for (pch = name; *pch != '\0'; pch++) {
2351				if (!is_valid_name_char(*pch)) {
2352					kfree(name);
2353					return -EINVAL;
2354				}
2355			}
2356			/* anon_vma has its own copy */
2357			anon_name = anon_vma_name_alloc(name);
2358			kfree(name);
2359			if (!anon_name)
2360				return -ENOMEM;
2361
2362		}
2363
2364		mmap_write_lock(mm);
2365		error = madvise_set_anon_name(mm, addr, size, anon_name);
2366		mmap_write_unlock(mm);
2367		anon_vma_name_put(anon_name);
2368		break;
2369	default:
2370		error = -EINVAL;
2371	}
2372
2373	return error;
2374}
2375
2376#else /* CONFIG_ANON_VMA_NAME */
2377static int prctl_set_vma(unsigned long opt, unsigned long start,
2378			 unsigned long size, unsigned long arg)
2379{
2380	return -EINVAL;
2381}
2382#endif /* CONFIG_ANON_VMA_NAME */
2383
2384static inline unsigned long get_current_mdwe(void)
2385{
2386	unsigned long ret = 0;
2387
2388	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2389		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2390	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2391		ret |= PR_MDWE_NO_INHERIT;
2392
2393	return ret;
2394}
2395
2396static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2397				 unsigned long arg4, unsigned long arg5)
2398{
2399	unsigned long current_bits;
2400
2401	if (arg3 || arg4 || arg5)
2402		return -EINVAL;
2403
2404	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2405		return -EINVAL;
2406
2407	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2408	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2409		return -EINVAL;
2410
2411	/* PARISC cannot allow mdwe as it needs writable stacks */
2412	if (IS_ENABLED(CONFIG_PARISC))
2413		return -EINVAL;
2414
2415	current_bits = get_current_mdwe();
2416	if (current_bits && current_bits != bits)
2417		return -EPERM; /* Cannot unset the flags */
2418
2419	if (bits & PR_MDWE_NO_INHERIT)
2420		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2421	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2422		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2423
2424	return 0;
2425}
2426
2427static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2428				 unsigned long arg4, unsigned long arg5)
2429{
2430	if (arg2 || arg3 || arg4 || arg5)
2431		return -EINVAL;
2432	return get_current_mdwe();
2433}
2434
2435static int prctl_get_auxv(void __user *addr, unsigned long len)
2436{
2437	struct mm_struct *mm = current->mm;
2438	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2439
2440	if (size && copy_to_user(addr, mm->saved_auxv, size))
2441		return -EFAULT;
2442	return sizeof(mm->saved_auxv);
2443}
2444
2445SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2446		unsigned long, arg4, unsigned long, arg5)
2447{
2448	struct task_struct *me = current;
2449	unsigned char comm[sizeof(me->comm)];
2450	long error;
2451
2452	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2453	if (error != -ENOSYS)
2454		return error;
2455
2456	error = 0;
2457	switch (option) {
2458	case PR_SET_PDEATHSIG:
2459		if (!valid_signal(arg2)) {
2460			error = -EINVAL;
 
 
 
 
2461			break;
2462		}
2463		me->pdeath_signal = arg2;
2464		break;
2465	case PR_GET_PDEATHSIG:
2466		error = put_user(me->pdeath_signal, (int __user *)arg2);
2467		break;
2468	case PR_GET_DUMPABLE:
2469		error = get_dumpable(me->mm);
2470		break;
2471	case PR_SET_DUMPABLE:
2472		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2473			error = -EINVAL;
 
2474			break;
2475		}
2476		set_dumpable(me->mm, arg2);
2477		break;
2478
2479	case PR_SET_UNALIGN:
2480		error = SET_UNALIGN_CTL(me, arg2);
2481		break;
2482	case PR_GET_UNALIGN:
2483		error = GET_UNALIGN_CTL(me, arg2);
2484		break;
2485	case PR_SET_FPEMU:
2486		error = SET_FPEMU_CTL(me, arg2);
2487		break;
2488	case PR_GET_FPEMU:
2489		error = GET_FPEMU_CTL(me, arg2);
2490		break;
2491	case PR_SET_FPEXC:
2492		error = SET_FPEXC_CTL(me, arg2);
2493		break;
2494	case PR_GET_FPEXC:
2495		error = GET_FPEXC_CTL(me, arg2);
2496		break;
2497	case PR_GET_TIMING:
2498		error = PR_TIMING_STATISTICAL;
2499		break;
2500	case PR_SET_TIMING:
2501		if (arg2 != PR_TIMING_STATISTICAL)
2502			error = -EINVAL;
2503		break;
2504	case PR_SET_NAME:
2505		comm[sizeof(me->comm) - 1] = 0;
2506		if (strncpy_from_user(comm, (char __user *)arg2,
2507				      sizeof(me->comm) - 1) < 0)
2508			return -EFAULT;
2509		set_task_comm(me, comm);
2510		proc_comm_connector(me);
2511		break;
2512	case PR_GET_NAME:
2513		get_task_comm(comm, me);
2514		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2515			return -EFAULT;
2516		break;
2517	case PR_GET_ENDIAN:
2518		error = GET_ENDIAN(me, arg2);
2519		break;
2520	case PR_SET_ENDIAN:
2521		error = SET_ENDIAN(me, arg2);
2522		break;
2523	case PR_GET_SECCOMP:
2524		error = prctl_get_seccomp();
2525		break;
2526	case PR_SET_SECCOMP:
2527		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2528		break;
2529	case PR_GET_TSC:
2530		error = GET_TSC_CTL(arg2);
2531		break;
2532	case PR_SET_TSC:
2533		error = SET_TSC_CTL(arg2);
2534		break;
2535	case PR_TASK_PERF_EVENTS_DISABLE:
2536		error = perf_event_task_disable();
2537		break;
2538	case PR_TASK_PERF_EVENTS_ENABLE:
2539		error = perf_event_task_enable();
2540		break;
2541	case PR_GET_TIMERSLACK:
2542		if (current->timer_slack_ns > ULONG_MAX)
2543			error = ULONG_MAX;
2544		else
 
2545			error = current->timer_slack_ns;
2546		break;
2547	case PR_SET_TIMERSLACK:
2548		if (arg2 <= 0)
2549			current->timer_slack_ns =
2550					current->default_timer_slack_ns;
2551		else
2552			current->timer_slack_ns = arg2;
2553		break;
2554	case PR_MCE_KILL:
2555		if (arg4 | arg5)
2556			return -EINVAL;
2557		switch (arg2) {
2558		case PR_MCE_KILL_CLEAR:
2559			if (arg3 != 0)
2560				return -EINVAL;
2561			current->flags &= ~PF_MCE_PROCESS;
2562			break;
2563		case PR_MCE_KILL_SET:
2564			current->flags |= PF_MCE_PROCESS;
2565			if (arg3 == PR_MCE_KILL_EARLY)
2566				current->flags |= PF_MCE_EARLY;
2567			else if (arg3 == PR_MCE_KILL_LATE)
2568				current->flags &= ~PF_MCE_EARLY;
2569			else if (arg3 == PR_MCE_KILL_DEFAULT)
2570				current->flags &=
 
 
 
 
 
 
 
 
 
2571						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2572			else
 
 
 
2573				return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
2574			break;
2575		default:
2576			return -EINVAL;
2577		}
2578		break;
2579	case PR_MCE_KILL_GET:
2580		if (arg2 | arg3 | arg4 | arg5)
2581			return -EINVAL;
2582		if (current->flags & PF_MCE_PROCESS)
2583			error = (current->flags & PF_MCE_EARLY) ?
2584				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2585		else
2586			error = PR_MCE_KILL_DEFAULT;
2587		break;
2588	case PR_SET_MM:
2589		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2590		break;
2591	case PR_GET_TID_ADDRESS:
2592		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2593		break;
2594	case PR_SET_CHILD_SUBREAPER:
2595		me->signal->is_child_subreaper = !!arg2;
2596		if (!arg2)
2597			break;
2598
2599		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2600		break;
2601	case PR_GET_CHILD_SUBREAPER:
2602		error = put_user(me->signal->is_child_subreaper,
2603				 (int __user *)arg2);
2604		break;
2605	case PR_SET_NO_NEW_PRIVS:
2606		if (arg2 != 1 || arg3 || arg4 || arg5)
2607			return -EINVAL;
2608
2609		task_set_no_new_privs(current);
2610		break;
2611	case PR_GET_NO_NEW_PRIVS:
2612		if (arg2 || arg3 || arg4 || arg5)
2613			return -EINVAL;
2614		return task_no_new_privs(current) ? 1 : 0;
2615	case PR_GET_THP_DISABLE:
2616		if (arg2 || arg3 || arg4 || arg5)
2617			return -EINVAL;
2618		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2619		break;
2620	case PR_SET_THP_DISABLE:
2621		if (arg3 || arg4 || arg5)
2622			return -EINVAL;
2623		if (mmap_write_lock_killable(me->mm))
2624			return -EINTR;
2625		if (arg2)
2626			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2627		else
2628			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2629		mmap_write_unlock(me->mm);
2630		break;
2631	case PR_MPX_ENABLE_MANAGEMENT:
2632	case PR_MPX_DISABLE_MANAGEMENT:
2633		/* No longer implemented: */
2634		return -EINVAL;
2635	case PR_SET_FP_MODE:
2636		error = SET_FP_MODE(me, arg2);
2637		break;
2638	case PR_GET_FP_MODE:
2639		error = GET_FP_MODE(me);
2640		break;
2641	case PR_SVE_SET_VL:
2642		error = SVE_SET_VL(arg2);
2643		break;
2644	case PR_SVE_GET_VL:
2645		error = SVE_GET_VL();
2646		break;
2647	case PR_SME_SET_VL:
2648		error = SME_SET_VL(arg2);
2649		break;
2650	case PR_SME_GET_VL:
2651		error = SME_GET_VL();
2652		break;
2653	case PR_GET_SPECULATION_CTRL:
2654		if (arg3 || arg4 || arg5)
2655			return -EINVAL;
2656		error = arch_prctl_spec_ctrl_get(me, arg2);
2657		break;
2658	case PR_SET_SPECULATION_CTRL:
2659		if (arg4 || arg5)
2660			return -EINVAL;
2661		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2662		break;
2663	case PR_PAC_RESET_KEYS:
2664		if (arg3 || arg4 || arg5)
2665			return -EINVAL;
2666		error = PAC_RESET_KEYS(me, arg2);
2667		break;
2668	case PR_PAC_SET_ENABLED_KEYS:
2669		if (arg4 || arg5)
2670			return -EINVAL;
2671		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2672		break;
2673	case PR_PAC_GET_ENABLED_KEYS:
2674		if (arg2 || arg3 || arg4 || arg5)
2675			return -EINVAL;
2676		error = PAC_GET_ENABLED_KEYS(me);
2677		break;
2678	case PR_SET_TAGGED_ADDR_CTRL:
2679		if (arg3 || arg4 || arg5)
2680			return -EINVAL;
2681		error = SET_TAGGED_ADDR_CTRL(arg2);
2682		break;
2683	case PR_GET_TAGGED_ADDR_CTRL:
2684		if (arg2 || arg3 || arg4 || arg5)
2685			return -EINVAL;
2686		error = GET_TAGGED_ADDR_CTRL();
2687		break;
2688	case PR_SET_IO_FLUSHER:
2689		if (!capable(CAP_SYS_RESOURCE))
2690			return -EPERM;
2691
2692		if (arg3 || arg4 || arg5)
2693			return -EINVAL;
2694
2695		if (arg2 == 1)
2696			current->flags |= PR_IO_FLUSHER;
2697		else if (!arg2)
2698			current->flags &= ~PR_IO_FLUSHER;
2699		else
2700			return -EINVAL;
2701		break;
2702	case PR_GET_IO_FLUSHER:
2703		if (!capable(CAP_SYS_RESOURCE))
2704			return -EPERM;
2705
2706		if (arg2 || arg3 || arg4 || arg5)
2707			return -EINVAL;
2708
2709		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2710		break;
2711	case PR_SET_SYSCALL_USER_DISPATCH:
2712		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2713						  (char __user *) arg5);
2714		break;
2715#ifdef CONFIG_SCHED_CORE
2716	case PR_SCHED_CORE:
2717		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2718		break;
2719#endif
2720	case PR_SET_MDWE:
2721		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2722		break;
2723	case PR_GET_MDWE:
2724		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2725		break;
2726	case PR_SET_VMA:
2727		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2728		break;
2729	case PR_GET_AUXV:
2730		if (arg4 || arg5)
2731			return -EINVAL;
2732		error = prctl_get_auxv((void __user *)arg2, arg3);
2733		break;
2734#ifdef CONFIG_KSM
2735	case PR_SET_MEMORY_MERGE:
2736		if (arg3 || arg4 || arg5)
2737			return -EINVAL;
2738		if (mmap_write_lock_killable(me->mm))
2739			return -EINTR;
2740
2741		if (arg2)
2742			error = ksm_enable_merge_any(me->mm);
2743		else
2744			error = ksm_disable_merge_any(me->mm);
2745		mmap_write_unlock(me->mm);
2746		break;
2747	case PR_GET_MEMORY_MERGE:
2748		if (arg2 || arg3 || arg4 || arg5)
2749			return -EINVAL;
2750
2751		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2752		break;
2753#endif
2754	case PR_RISCV_V_SET_CONTROL:
2755		error = RISCV_V_SET_CONTROL(arg2);
2756		break;
2757	case PR_RISCV_V_GET_CONTROL:
2758		error = RISCV_V_GET_CONTROL();
2759		break;
2760	default:
2761		error = -EINVAL;
2762		break;
2763	}
2764	return error;
2765}
2766
2767SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2768		struct getcpu_cache __user *, unused)
2769{
2770	int err = 0;
2771	int cpu = raw_smp_processor_id();
2772
2773	if (cpup)
2774		err |= put_user(cpu, cpup);
2775	if (nodep)
2776		err |= put_user(cpu_to_node(cpu), nodep);
2777	return err ? -EFAULT : 0;
2778}
2779
 
 
 
 
 
 
 
2780/**
2781 * do_sysinfo - fill in sysinfo struct
2782 * @info: pointer to buffer to fill
 
 
 
2783 */
2784static int do_sysinfo(struct sysinfo *info)
2785{
2786	unsigned long mem_total, sav_total;
2787	unsigned int mem_unit, bitcount;
2788	struct timespec64 tp;
2789
2790	memset(info, 0, sizeof(struct sysinfo));
2791
2792	ktime_get_boottime_ts64(&tp);
2793	timens_add_boottime(&tp);
2794	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2795
2796	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2797
2798	info->procs = nr_threads;
2799
2800	si_meminfo(info);
2801	si_swapinfo(info);
2802
2803	/*
2804	 * If the sum of all the available memory (i.e. ram + swap)
2805	 * is less than can be stored in a 32 bit unsigned long then
2806	 * we can be binary compatible with 2.2.x kernels.  If not,
2807	 * well, in that case 2.2.x was broken anyways...
2808	 *
2809	 *  -Erik Andersen <andersee@debian.org>
2810	 */
2811
2812	mem_total = info->totalram + info->totalswap;
2813	if (mem_total < info->totalram || mem_total < info->totalswap)
 
2814		goto out;
2815	bitcount = 0;
2816	mem_unit = info->mem_unit;
2817	while (mem_unit > 1) {
2818		bitcount++;
2819		mem_unit >>= 1;
2820		sav_total = mem_total;
2821		mem_total <<= 1;
2822		if (mem_total < sav_total)
2823			goto out;
2824	}
2825
2826	/*
2827	 * If mem_total did not overflow, multiply all memory values by
2828	 * info->mem_unit and set it to 1.  This leaves things compatible
2829	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2830	 * kernels...
2831	 */
2832
2833	info->mem_unit = 1;
2834	info->totalram <<= bitcount;
2835	info->freeram <<= bitcount;
2836	info->sharedram <<= bitcount;
2837	info->bufferram <<= bitcount;
2838	info->totalswap <<= bitcount;
2839	info->freeswap <<= bitcount;
2840	info->totalhigh <<= bitcount;
2841	info->freehigh <<= bitcount;
2842
2843out:
2844	return 0;
2845}
2846
2847SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2848{
2849	struct sysinfo val;
2850
2851	do_sysinfo(&val);
2852
2853	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2854		return -EFAULT;
2855
2856	return 0;
2857}
2858
2859#ifdef CONFIG_COMPAT
2860struct compat_sysinfo {
2861	s32 uptime;
2862	u32 loads[3];
2863	u32 totalram;
2864	u32 freeram;
2865	u32 sharedram;
2866	u32 bufferram;
2867	u32 totalswap;
2868	u32 freeswap;
2869	u16 procs;
2870	u16 pad;
2871	u32 totalhigh;
2872	u32 freehigh;
2873	u32 mem_unit;
2874	char _f[20-2*sizeof(u32)-sizeof(int)];
2875};
2876
2877COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2878{
2879	struct sysinfo s;
2880	struct compat_sysinfo s_32;
2881
2882	do_sysinfo(&s);
2883
2884	/* Check to see if any memory value is too large for 32-bit and scale
2885	 *  down if needed
2886	 */
2887	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2888		int bitcount = 0;
2889
2890		while (s.mem_unit < PAGE_SIZE) {
2891			s.mem_unit <<= 1;
2892			bitcount++;
2893		}
 
 
 
 
 
 
 
2894
2895		s.totalram >>= bitcount;
2896		s.freeram >>= bitcount;
2897		s.sharedram >>= bitcount;
2898		s.bufferram >>= bitcount;
2899		s.totalswap >>= bitcount;
2900		s.freeswap >>= bitcount;
2901		s.totalhigh >>= bitcount;
2902		s.freehigh >>= bitcount;
2903	}
2904
2905	memset(&s_32, 0, sizeof(s_32));
2906	s_32.uptime = s.uptime;
2907	s_32.loads[0] = s.loads[0];
2908	s_32.loads[1] = s.loads[1];
2909	s_32.loads[2] = s.loads[2];
2910	s_32.totalram = s.totalram;
2911	s_32.freeram = s.freeram;
2912	s_32.sharedram = s.sharedram;
2913	s_32.bufferram = s.bufferram;
2914	s_32.totalswap = s.totalswap;
2915	s_32.freeswap = s.freeswap;
2916	s_32.procs = s.procs;
2917	s_32.totalhigh = s.totalhigh;
2918	s_32.freehigh = s.freehigh;
2919	s_32.mem_unit = s.mem_unit;
2920	if (copy_to_user(info, &s_32, sizeof(s_32)))
2921		return -EFAULT;
2922	return 0;
2923}
2924#endif /* CONFIG_COMPAT */
v3.1
 
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/mm.h>
 
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
 
 
  15#include <linux/perf_event.h>
  16#include <linux/resource.h>
  17#include <linux/kernel.h>
  18#include <linux/kexec.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
 
 
  38#include <linux/gfp.h>
  39#include <linux/syscore_ops.h>
  40#include <linux/version.h>
  41#include <linux/ctype.h>
 
  42
  43#include <linux/compat.h>
  44#include <linux/syscalls.h>
  45#include <linux/kprobes.h>
  46#include <linux/user_namespace.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  47
  48#include <linux/kmsg_dump.h>
  49/* Move somewhere else to avoid recompiling? */
  50#include <generated/utsrelease.h>
  51
  52#include <asm/uaccess.h>
  53#include <asm/io.h>
  54#include <asm/unistd.h>
  55
 
 
  56#ifndef SET_UNALIGN_CTL
  57# define SET_UNALIGN_CTL(a,b)	(-EINVAL)
  58#endif
  59#ifndef GET_UNALIGN_CTL
  60# define GET_UNALIGN_CTL(a,b)	(-EINVAL)
  61#endif
  62#ifndef SET_FPEMU_CTL
  63# define SET_FPEMU_CTL(a,b)	(-EINVAL)
  64#endif
  65#ifndef GET_FPEMU_CTL
  66# define GET_FPEMU_CTL(a,b)	(-EINVAL)
  67#endif
  68#ifndef SET_FPEXC_CTL
  69# define SET_FPEXC_CTL(a,b)	(-EINVAL)
  70#endif
  71#ifndef GET_FPEXC_CTL
  72# define GET_FPEXC_CTL(a,b)	(-EINVAL)
  73#endif
  74#ifndef GET_ENDIAN
  75# define GET_ENDIAN(a,b)	(-EINVAL)
  76#endif
  77#ifndef SET_ENDIAN
  78# define SET_ENDIAN(a,b)	(-EINVAL)
  79#endif
  80#ifndef GET_TSC_CTL
  81# define GET_TSC_CTL(a)		(-EINVAL)
  82#endif
  83#ifndef SET_TSC_CTL
  84# define SET_TSC_CTL(a)		(-EINVAL)
  85#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86
  87/*
  88 * this is where the system-wide overflow UID and GID are defined, for
  89 * architectures that now have 32-bit UID/GID but didn't in the past
  90 */
  91
  92int overflowuid = DEFAULT_OVERFLOWUID;
  93int overflowgid = DEFAULT_OVERFLOWGID;
  94
  95#ifdef CONFIG_UID16
  96EXPORT_SYMBOL(overflowuid);
  97EXPORT_SYMBOL(overflowgid);
  98#endif
  99
 100/*
 101 * the same as above, but for filesystems which can only store a 16-bit
 102 * UID and GID. as such, this is needed on all architectures
 103 */
 104
 105int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 106int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 107
 108EXPORT_SYMBOL(fs_overflowuid);
 109EXPORT_SYMBOL(fs_overflowgid);
 110
 111/*
 112 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
 113 */
 114
 115int C_A_D = 1;
 116struct pid *cad_pid;
 117EXPORT_SYMBOL(cad_pid);
 118
 119/*
 120 * If set, this is used for preparing the system to power off.
 121 */
 122
 123void (*pm_power_off_prepare)(void);
 124
 125/*
 126 * Returns true if current's euid is same as p's uid or euid,
 127 * or has CAP_SYS_NICE to p's user_ns.
 128 *
 129 * Called with rcu_read_lock, creds are safe
 130 */
 131static bool set_one_prio_perm(struct task_struct *p)
 132{
 133	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 134
 135	if (pcred->user->user_ns == cred->user->user_ns &&
 136	    (pcred->uid  == cred->euid ||
 137	     pcred->euid == cred->euid))
 138		return true;
 139	if (ns_capable(pcred->user->user_ns, CAP_SYS_NICE))
 140		return true;
 141	return false;
 142}
 143
 144/*
 145 * set the priority of a task
 146 * - the caller must hold the RCU read lock
 147 */
 148static int set_one_prio(struct task_struct *p, int niceval, int error)
 149{
 150	int no_nice;
 151
 152	if (!set_one_prio_perm(p)) {
 153		error = -EPERM;
 154		goto out;
 155	}
 156	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 157		error = -EACCES;
 158		goto out;
 159	}
 160	no_nice = security_task_setnice(p, niceval);
 161	if (no_nice) {
 162		error = no_nice;
 163		goto out;
 164	}
 165	if (error == -ESRCH)
 166		error = 0;
 167	set_user_nice(p, niceval);
 168out:
 169	return error;
 170}
 171
 172SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 173{
 174	struct task_struct *g, *p;
 175	struct user_struct *user;
 176	const struct cred *cred = current_cred();
 177	int error = -EINVAL;
 178	struct pid *pgrp;
 
 179
 180	if (which > PRIO_USER || which < PRIO_PROCESS)
 181		goto out;
 182
 183	/* normalize: avoid signed division (rounding problems) */
 184	error = -ESRCH;
 185	if (niceval < -20)
 186		niceval = -20;
 187	if (niceval > 19)
 188		niceval = 19;
 189
 190	rcu_read_lock();
 191	read_lock(&tasklist_lock);
 192	switch (which) {
 193		case PRIO_PROCESS:
 194			if (who)
 195				p = find_task_by_vpid(who);
 196			else
 197				p = current;
 198			if (p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199				error = set_one_prio(p, niceval, error);
 200			break;
 201		case PRIO_PGRP:
 202			if (who)
 203				pgrp = find_vpid(who);
 204			else
 205				pgrp = task_pgrp(current);
 206			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 207				error = set_one_prio(p, niceval, error);
 208			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 209			break;
 210		case PRIO_USER:
 211			user = (struct user_struct *) cred->user;
 212			if (!who)
 213				who = cred->uid;
 214			else if ((who != cred->uid) &&
 215				 !(user = find_user(who)))
 216				goto out_unlock;	/* No processes for this user */
 217
 218			do_each_thread(g, p) {
 219				if (__task_cred(p)->uid == who)
 220					error = set_one_prio(p, niceval, error);
 221			} while_each_thread(g, p);
 222			if (who != cred->uid)
 223				free_uid(user);		/* For find_user() */
 224			break;
 225	}
 226out_unlock:
 227	read_unlock(&tasklist_lock);
 228	rcu_read_unlock();
 229out:
 230	return error;
 231}
 232
 233/*
 234 * Ugh. To avoid negative return values, "getpriority()" will
 235 * not return the normal nice-value, but a negated value that
 236 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 237 * to stay compatible.
 238 */
 239SYSCALL_DEFINE2(getpriority, int, which, int, who)
 240{
 241	struct task_struct *g, *p;
 242	struct user_struct *user;
 243	const struct cred *cred = current_cred();
 244	long niceval, retval = -ESRCH;
 245	struct pid *pgrp;
 
 246
 247	if (which > PRIO_USER || which < PRIO_PROCESS)
 248		return -EINVAL;
 249
 250	rcu_read_lock();
 251	read_lock(&tasklist_lock);
 252	switch (which) {
 253		case PRIO_PROCESS:
 254			if (who)
 255				p = find_task_by_vpid(who);
 256			else
 257				p = current;
 258			if (p) {
 259				niceval = 20 - task_nice(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260				if (niceval > retval)
 261					retval = niceval;
 262			}
 263			break;
 264		case PRIO_PGRP:
 265			if (who)
 266				pgrp = find_vpid(who);
 267			else
 268				pgrp = task_pgrp(current);
 269			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 270				niceval = 20 - task_nice(p);
 271				if (niceval > retval)
 272					retval = niceval;
 273			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 274			break;
 275		case PRIO_USER:
 276			user = (struct user_struct *) cred->user;
 277			if (!who)
 278				who = cred->uid;
 279			else if ((who != cred->uid) &&
 280				 !(user = find_user(who)))
 281				goto out_unlock;	/* No processes for this user */
 282
 283			do_each_thread(g, p) {
 284				if (__task_cred(p)->uid == who) {
 285					niceval = 20 - task_nice(p);
 286					if (niceval > retval)
 287						retval = niceval;
 288				}
 289			} while_each_thread(g, p);
 290			if (who != cred->uid)
 291				free_uid(user);		/* for find_user() */
 292			break;
 293	}
 294out_unlock:
 295	read_unlock(&tasklist_lock);
 296	rcu_read_unlock();
 297
 298	return retval;
 299}
 300
 301/**
 302 *	emergency_restart - reboot the system
 303 *
 304 *	Without shutting down any hardware or taking any locks
 305 *	reboot the system.  This is called when we know we are in
 306 *	trouble so this is our best effort to reboot.  This is
 307 *	safe to call in interrupt context.
 308 */
 309void emergency_restart(void)
 310{
 311	kmsg_dump(KMSG_DUMP_EMERG);
 312	machine_emergency_restart();
 313}
 314EXPORT_SYMBOL_GPL(emergency_restart);
 315
 316void kernel_restart_prepare(char *cmd)
 317{
 318	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
 319	system_state = SYSTEM_RESTART;
 320	usermodehelper_disable();
 321	device_shutdown();
 322	syscore_shutdown();
 323}
 324
 325/**
 326 *	register_reboot_notifier - Register function to be called at reboot time
 327 *	@nb: Info about notifier function to be called
 328 *
 329 *	Registers a function with the list of functions
 330 *	to be called at reboot time.
 331 *
 332 *	Currently always returns zero, as blocking_notifier_chain_register()
 333 *	always returns zero.
 334 */
 335int register_reboot_notifier(struct notifier_block *nb)
 336{
 337	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
 338}
 339EXPORT_SYMBOL(register_reboot_notifier);
 340
 341/**
 342 *	unregister_reboot_notifier - Unregister previously registered reboot notifier
 343 *	@nb: Hook to be unregistered
 344 *
 345 *	Unregisters a previously registered reboot
 346 *	notifier function.
 347 *
 348 *	Returns zero on success, or %-ENOENT on failure.
 349 */
 350int unregister_reboot_notifier(struct notifier_block *nb)
 351{
 352	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
 353}
 354EXPORT_SYMBOL(unregister_reboot_notifier);
 355
 356/**
 357 *	kernel_restart - reboot the system
 358 *	@cmd: pointer to buffer containing command to execute for restart
 359 *		or %NULL
 360 *
 361 *	Shutdown everything and perform a clean reboot.
 362 *	This is not safe to call in interrupt context.
 363 */
 364void kernel_restart(char *cmd)
 365{
 366	kernel_restart_prepare(cmd);
 367	if (!cmd)
 368		printk(KERN_EMERG "Restarting system.\n");
 369	else
 370		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
 371	kmsg_dump(KMSG_DUMP_RESTART);
 372	machine_restart(cmd);
 373}
 374EXPORT_SYMBOL_GPL(kernel_restart);
 375
 376static void kernel_shutdown_prepare(enum system_states state)
 377{
 378	blocking_notifier_call_chain(&reboot_notifier_list,
 379		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
 380	system_state = state;
 381	usermodehelper_disable();
 382	device_shutdown();
 383}
 384/**
 385 *	kernel_halt - halt the system
 386 *
 387 *	Shutdown everything and perform a clean system halt.
 388 */
 389void kernel_halt(void)
 390{
 391	kernel_shutdown_prepare(SYSTEM_HALT);
 392	syscore_shutdown();
 393	printk(KERN_EMERG "System halted.\n");
 394	kmsg_dump(KMSG_DUMP_HALT);
 395	machine_halt();
 396}
 397
 398EXPORT_SYMBOL_GPL(kernel_halt);
 399
 400/**
 401 *	kernel_power_off - power_off the system
 402 *
 403 *	Shutdown everything and perform a clean system power_off.
 404 */
 405void kernel_power_off(void)
 406{
 407	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
 408	if (pm_power_off_prepare)
 409		pm_power_off_prepare();
 410	disable_nonboot_cpus();
 411	syscore_shutdown();
 412	printk(KERN_EMERG "Power down.\n");
 413	kmsg_dump(KMSG_DUMP_POWEROFF);
 414	machine_power_off();
 415}
 416EXPORT_SYMBOL_GPL(kernel_power_off);
 417
 418static DEFINE_MUTEX(reboot_mutex);
 419
 420/*
 421 * Reboot system call: for obvious reasons only root may call it,
 422 * and even root needs to set up some magic numbers in the registers
 423 * so that some mistake won't make this reboot the whole machine.
 424 * You can also set the meaning of the ctrl-alt-del-key here.
 425 *
 426 * reboot doesn't sync: do that yourself before calling this.
 427 */
 428SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
 429		void __user *, arg)
 430{
 431	char buffer[256];
 432	int ret = 0;
 433
 434	/* We only trust the superuser with rebooting the system. */
 435	if (!capable(CAP_SYS_BOOT))
 436		return -EPERM;
 437
 438	/* For safety, we require "magic" arguments. */
 439	if (magic1 != LINUX_REBOOT_MAGIC1 ||
 440	    (magic2 != LINUX_REBOOT_MAGIC2 &&
 441	                magic2 != LINUX_REBOOT_MAGIC2A &&
 442			magic2 != LINUX_REBOOT_MAGIC2B &&
 443	                magic2 != LINUX_REBOOT_MAGIC2C))
 444		return -EINVAL;
 445
 446	/* Instead of trying to make the power_off code look like
 447	 * halt when pm_power_off is not set do it the easy way.
 448	 */
 449	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
 450		cmd = LINUX_REBOOT_CMD_HALT;
 451
 452	mutex_lock(&reboot_mutex);
 453	switch (cmd) {
 454	case LINUX_REBOOT_CMD_RESTART:
 455		kernel_restart(NULL);
 456		break;
 457
 458	case LINUX_REBOOT_CMD_CAD_ON:
 459		C_A_D = 1;
 460		break;
 461
 462	case LINUX_REBOOT_CMD_CAD_OFF:
 463		C_A_D = 0;
 464		break;
 465
 466	case LINUX_REBOOT_CMD_HALT:
 467		kernel_halt();
 468		do_exit(0);
 469		panic("cannot halt");
 470
 471	case LINUX_REBOOT_CMD_POWER_OFF:
 472		kernel_power_off();
 473		do_exit(0);
 474		break;
 475
 476	case LINUX_REBOOT_CMD_RESTART2:
 477		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
 478			ret = -EFAULT;
 479			break;
 480		}
 481		buffer[sizeof(buffer) - 1] = '\0';
 482
 483		kernel_restart(buffer);
 484		break;
 485
 486#ifdef CONFIG_KEXEC
 487	case LINUX_REBOOT_CMD_KEXEC:
 488		ret = kernel_kexec();
 489		break;
 490#endif
 491
 492#ifdef CONFIG_HIBERNATION
 493	case LINUX_REBOOT_CMD_SW_SUSPEND:
 494		ret = hibernate();
 495		break;
 496#endif
 497
 498	default:
 499		ret = -EINVAL;
 500		break;
 501	}
 502	mutex_unlock(&reboot_mutex);
 503	return ret;
 504}
 505
 506static void deferred_cad(struct work_struct *dummy)
 507{
 508	kernel_restart(NULL);
 509}
 510
 511/*
 512 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
 513 * As it's called within an interrupt, it may NOT sync: the only choice
 514 * is whether to reboot at once, or just ignore the ctrl-alt-del.
 515 */
 516void ctrl_alt_del(void)
 517{
 518	static DECLARE_WORK(cad_work, deferred_cad);
 519
 520	if (C_A_D)
 521		schedule_work(&cad_work);
 522	else
 523		kill_cad_pid(SIGINT, 1);
 524}
 525	
 526/*
 527 * Unprivileged users may change the real gid to the effective gid
 528 * or vice versa.  (BSD-style)
 529 *
 530 * If you set the real gid at all, or set the effective gid to a value not
 531 * equal to the real gid, then the saved gid is set to the new effective gid.
 532 *
 533 * This makes it possible for a setgid program to completely drop its
 534 * privileges, which is often a useful assertion to make when you are doing
 535 * a security audit over a program.
 536 *
 537 * The general idea is that a program which uses just setregid() will be
 538 * 100% compatible with BSD.  A program which uses just setgid() will be
 539 * 100% compatible with POSIX with saved IDs. 
 540 *
 541 * SMP: There are not races, the GIDs are checked only by filesystem
 542 *      operations (as far as semantic preservation is concerned).
 543 */
 544SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 
 545{
 
 546	const struct cred *old;
 547	struct cred *new;
 548	int retval;
 
 
 
 
 
 
 
 
 
 549
 550	new = prepare_creds();
 551	if (!new)
 552		return -ENOMEM;
 553	old = current_cred();
 554
 555	retval = -EPERM;
 556	if (rgid != (gid_t) -1) {
 557		if (old->gid == rgid ||
 558		    old->egid == rgid ||
 559		    nsown_capable(CAP_SETGID))
 560			new->gid = rgid;
 561		else
 562			goto error;
 563	}
 564	if (egid != (gid_t) -1) {
 565		if (old->gid == egid ||
 566		    old->egid == egid ||
 567		    old->sgid == egid ||
 568		    nsown_capable(CAP_SETGID))
 569			new->egid = egid;
 570		else
 571			goto error;
 572	}
 573
 574	if (rgid != (gid_t) -1 ||
 575	    (egid != (gid_t) -1 && egid != old->gid))
 576		new->sgid = new->egid;
 577	new->fsgid = new->egid;
 578
 
 
 
 
 579	return commit_creds(new);
 580
 581error:
 582	abort_creds(new);
 583	return retval;
 584}
 585
 
 
 
 
 
 586/*
 587 * setgid() is implemented like SysV w/ SAVED_IDS 
 588 *
 589 * SMP: Same implicit races as above.
 590 */
 591SYSCALL_DEFINE1(setgid, gid_t, gid)
 592{
 
 593	const struct cred *old;
 594	struct cred *new;
 595	int retval;
 
 
 
 
 
 596
 597	new = prepare_creds();
 598	if (!new)
 599		return -ENOMEM;
 600	old = current_cred();
 601
 602	retval = -EPERM;
 603	if (nsown_capable(CAP_SETGID))
 604		new->gid = new->egid = new->sgid = new->fsgid = gid;
 605	else if (gid == old->gid || gid == old->sgid)
 606		new->egid = new->fsgid = gid;
 607	else
 608		goto error;
 609
 
 
 
 
 610	return commit_creds(new);
 611
 612error:
 613	abort_creds(new);
 614	return retval;
 615}
 616
 
 
 
 
 
 617/*
 618 * change the user struct in a credentials set to match the new UID
 619 */
 620static int set_user(struct cred *new)
 621{
 622	struct user_struct *new_user;
 623
 624	new_user = alloc_uid(current_user_ns(), new->uid);
 625	if (!new_user)
 626		return -EAGAIN;
 627
 
 
 
 
 
 
 
 
 
 
 628	/*
 629	 * We don't fail in case of NPROC limit excess here because too many
 630	 * poorly written programs don't check set*uid() return code, assuming
 631	 * it never fails if called by root.  We may still enforce NPROC limit
 632	 * for programs doing set*uid()+execve() by harmlessly deferring the
 633	 * failure to the execve() stage.
 634	 */
 635	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 636			new_user != INIT_USER)
 637		current->flags |= PF_NPROC_EXCEEDED;
 638	else
 639		current->flags &= ~PF_NPROC_EXCEEDED;
 640
 641	free_uid(new->user);
 642	new->user = new_user;
 643	return 0;
 644}
 645
 646/*
 647 * Unprivileged users may change the real uid to the effective uid
 648 * or vice versa.  (BSD-style)
 649 *
 650 * If you set the real uid at all, or set the effective uid to a value not
 651 * equal to the real uid, then the saved uid is set to the new effective uid.
 652 *
 653 * This makes it possible for a setuid program to completely drop its
 654 * privileges, which is often a useful assertion to make when you are doing
 655 * a security audit over a program.
 656 *
 657 * The general idea is that a program which uses just setreuid() will be
 658 * 100% compatible with BSD.  A program which uses just setuid() will be
 659 * 100% compatible with POSIX with saved IDs. 
 660 */
 661SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 662{
 
 663	const struct cred *old;
 664	struct cred *new;
 665	int retval;
 
 
 
 
 
 
 
 
 
 666
 667	new = prepare_creds();
 668	if (!new)
 669		return -ENOMEM;
 670	old = current_cred();
 671
 672	retval = -EPERM;
 673	if (ruid != (uid_t) -1) {
 674		new->uid = ruid;
 675		if (old->uid != ruid &&
 676		    old->euid != ruid &&
 677		    !nsown_capable(CAP_SETUID))
 678			goto error;
 679	}
 680
 681	if (euid != (uid_t) -1) {
 682		new->euid = euid;
 683		if (old->uid != euid &&
 684		    old->euid != euid &&
 685		    old->suid != euid &&
 686		    !nsown_capable(CAP_SETUID))
 687			goto error;
 688	}
 689
 690	if (new->uid != old->uid) {
 691		retval = set_user(new);
 692		if (retval < 0)
 693			goto error;
 694	}
 695	if (ruid != (uid_t) -1 ||
 696	    (euid != (uid_t) -1 && euid != old->uid))
 697		new->suid = new->euid;
 698	new->fsuid = new->euid;
 699
 700	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 701	if (retval < 0)
 702		goto error;
 703
 
 
 
 
 
 704	return commit_creds(new);
 705
 706error:
 707	abort_creds(new);
 708	return retval;
 709}
 710		
 
 
 
 
 
 711/*
 712 * setuid() is implemented like SysV with SAVED_IDS 
 713 * 
 714 * Note that SAVED_ID's is deficient in that a setuid root program
 715 * like sendmail, for example, cannot set its uid to be a normal 
 716 * user and then switch back, because if you're root, setuid() sets
 717 * the saved uid too.  If you don't like this, blame the bright people
 718 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 719 * will allow a root program to temporarily drop privileges and be able to
 720 * regain them by swapping the real and effective uid.  
 721 */
 722SYSCALL_DEFINE1(setuid, uid_t, uid)
 723{
 
 724	const struct cred *old;
 725	struct cred *new;
 726	int retval;
 
 
 
 
 
 727
 728	new = prepare_creds();
 729	if (!new)
 730		return -ENOMEM;
 731	old = current_cred();
 732
 733	retval = -EPERM;
 734	if (nsown_capable(CAP_SETUID)) {
 735		new->suid = new->uid = uid;
 736		if (uid != old->uid) {
 737			retval = set_user(new);
 738			if (retval < 0)
 739				goto error;
 740		}
 741	} else if (uid != old->uid && uid != new->suid) {
 742		goto error;
 743	}
 744
 745	new->fsuid = new->euid = uid;
 746
 747	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 748	if (retval < 0)
 749		goto error;
 750
 
 
 
 
 
 751	return commit_creds(new);
 752
 753error:
 754	abort_creds(new);
 755	return retval;
 756}
 757
 
 
 
 
 
 758
 759/*
 760 * This function implements a generic ability to update ruid, euid,
 761 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 762 */
 763SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 764{
 
 765	const struct cred *old;
 766	struct cred *new;
 767	int retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768
 769	new = prepare_creds();
 770	if (!new)
 771		return -ENOMEM;
 772
 773	old = current_cred();
 774
 775	retval = -EPERM;
 776	if (!nsown_capable(CAP_SETUID)) {
 777		if (ruid != (uid_t) -1 && ruid != old->uid &&
 778		    ruid != old->euid  && ruid != old->suid)
 779			goto error;
 780		if (euid != (uid_t) -1 && euid != old->uid &&
 781		    euid != old->euid  && euid != old->suid)
 782			goto error;
 783		if (suid != (uid_t) -1 && suid != old->uid &&
 784		    suid != old->euid  && suid != old->suid)
 785			goto error;
 786	}
 787
 788	if (ruid != (uid_t) -1) {
 789		new->uid = ruid;
 790		if (ruid != old->uid) {
 791			retval = set_user(new);
 792			if (retval < 0)
 793				goto error;
 794		}
 795	}
 796	if (euid != (uid_t) -1)
 797		new->euid = euid;
 798	if (suid != (uid_t) -1)
 799		new->suid = suid;
 800	new->fsuid = new->euid;
 801
 802	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 803	if (retval < 0)
 804		goto error;
 805
 
 
 
 
 
 806	return commit_creds(new);
 807
 808error:
 809	abort_creds(new);
 810	return retval;
 811}
 812
 813SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
 
 
 
 
 
 814{
 815	const struct cred *cred = current_cred();
 816	int retval;
 
 817
 818	if (!(retval   = put_user(cred->uid,  ruid)) &&
 819	    !(retval   = put_user(cred->euid, euid)))
 820		retval = put_user(cred->suid, suid);
 821
 
 
 
 
 
 
 822	return retval;
 823}
 824
 825/*
 826 * Same as above, but for rgid, egid, sgid.
 827 */
 828SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 829{
 
 830	const struct cred *old;
 831	struct cred *new;
 832	int retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834	new = prepare_creds();
 835	if (!new)
 836		return -ENOMEM;
 837	old = current_cred();
 838
 839	retval = -EPERM;
 840	if (!nsown_capable(CAP_SETGID)) {
 841		if (rgid != (gid_t) -1 && rgid != old->gid &&
 842		    rgid != old->egid  && rgid != old->sgid)
 843			goto error;
 844		if (egid != (gid_t) -1 && egid != old->gid &&
 845		    egid != old->egid  && egid != old->sgid)
 846			goto error;
 847		if (sgid != (gid_t) -1 && sgid != old->gid &&
 848		    sgid != old->egid  && sgid != old->sgid)
 849			goto error;
 850	}
 851
 852	if (rgid != (gid_t) -1)
 853		new->gid = rgid;
 854	if (egid != (gid_t) -1)
 855		new->egid = egid;
 856	if (sgid != (gid_t) -1)
 857		new->sgid = sgid;
 858	new->fsgid = new->egid;
 859
 
 
 
 
 860	return commit_creds(new);
 861
 862error:
 863	abort_creds(new);
 864	return retval;
 865}
 866
 867SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
 
 
 
 
 
 868{
 869	const struct cred *cred = current_cred();
 870	int retval;
 
 871
 872	if (!(retval   = put_user(cred->gid,  rgid)) &&
 873	    !(retval   = put_user(cred->egid, egid)))
 874		retval = put_user(cred->sgid, sgid);
 
 
 
 
 
 
 
 875
 876	return retval;
 877}
 878
 879
 880/*
 881 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 882 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 883 * whatever uid it wants to). It normally shadows "euid", except when
 884 * explicitly set by setfsuid() or for access..
 885 */
 886SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 887{
 888	const struct cred *old;
 889	struct cred *new;
 890	uid_t old_fsuid;
 
 
 
 
 
 
 
 
 891
 892	new = prepare_creds();
 893	if (!new)
 894		return current_fsuid();
 895	old = current_cred();
 896	old_fsuid = old->fsuid;
 897
 898	if (uid == old->uid  || uid == old->euid  ||
 899	    uid == old->suid || uid == old->fsuid ||
 900	    nsown_capable(CAP_SETUID)) {
 901		if (uid != old_fsuid) {
 902			new->fsuid = uid;
 903			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 904				goto change_okay;
 905		}
 906	}
 907
 908	abort_creds(new);
 909	return old_fsuid;
 910
 911change_okay:
 912	commit_creds(new);
 913	return old_fsuid;
 914}
 915
 
 
 
 
 
 916/*
 917 * Samma på svenska..
 918 */
 919SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 920{
 921	const struct cred *old;
 922	struct cred *new;
 923	gid_t old_fsgid;
 
 
 
 
 
 
 
 
 924
 925	new = prepare_creds();
 926	if (!new)
 927		return current_fsgid();
 928	old = current_cred();
 929	old_fsgid = old->fsgid;
 930
 931	if (gid == old->gid  || gid == old->egid  ||
 932	    gid == old->sgid || gid == old->fsgid ||
 933	    nsown_capable(CAP_SETGID)) {
 934		if (gid != old_fsgid) {
 935			new->fsgid = gid;
 936			goto change_okay;
 
 937		}
 938	}
 939
 940	abort_creds(new);
 941	return old_fsgid;
 942
 943change_okay:
 944	commit_creds(new);
 945	return old_fsgid;
 946}
 947
 948void do_sys_times(struct tms *tms)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949{
 950	cputime_t tgutime, tgstime, cutime, cstime;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 951
 952	spin_lock_irq(&current->sighand->siglock);
 953	thread_group_times(current, &tgutime, &tgstime);
 
 
 
 954	cutime = current->signal->cutime;
 955	cstime = current->signal->cstime;
 956	spin_unlock_irq(&current->sighand->siglock);
 957	tms->tms_utime = cputime_to_clock_t(tgutime);
 958	tms->tms_stime = cputime_to_clock_t(tgstime);
 959	tms->tms_cutime = cputime_to_clock_t(cutime);
 960	tms->tms_cstime = cputime_to_clock_t(cstime);
 961}
 962
 963SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 964{
 965	if (tbuf) {
 966		struct tms tmp;
 967
 968		do_sys_times(&tmp);
 969		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 970			return -EFAULT;
 971	}
 972	force_successful_syscall_return();
 973	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 974}
 975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976/*
 977 * This needs some heavy checking ...
 978 * I just haven't the stomach for it. I also don't fully
 979 * understand sessions/pgrp etc. Let somebody who does explain it.
 980 *
 981 * OK, I think I have the protection semantics right.... this is really
 982 * only important on a multi-user system anyway, to make sure one user
 983 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 984 *
 985 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
 986 * LBT 04.03.94
 987 */
 988SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 989{
 990	struct task_struct *p;
 991	struct task_struct *group_leader = current->group_leader;
 992	struct pid *pgrp;
 993	int err;
 994
 995	if (!pid)
 996		pid = task_pid_vnr(group_leader);
 997	if (!pgid)
 998		pgid = pid;
 999	if (pgid < 0)
1000		return -EINVAL;
1001	rcu_read_lock();
1002
1003	/* From this point forward we keep holding onto the tasklist lock
1004	 * so that our parent does not change from under us. -DaveM
1005	 */
1006	write_lock_irq(&tasklist_lock);
1007
1008	err = -ESRCH;
1009	p = find_task_by_vpid(pid);
1010	if (!p)
1011		goto out;
1012
1013	err = -EINVAL;
1014	if (!thread_group_leader(p))
1015		goto out;
1016
1017	if (same_thread_group(p->real_parent, group_leader)) {
1018		err = -EPERM;
1019		if (task_session(p) != task_session(group_leader))
1020			goto out;
1021		err = -EACCES;
1022		if (p->did_exec)
1023			goto out;
1024	} else {
1025		err = -ESRCH;
1026		if (p != group_leader)
1027			goto out;
1028	}
1029
1030	err = -EPERM;
1031	if (p->signal->leader)
1032		goto out;
1033
1034	pgrp = task_pid(p);
1035	if (pgid != pid) {
1036		struct task_struct *g;
1037
1038		pgrp = find_vpid(pgid);
1039		g = pid_task(pgrp, PIDTYPE_PGID);
1040		if (!g || task_session(g) != task_session(group_leader))
1041			goto out;
1042	}
1043
1044	err = security_task_setpgid(p, pgid);
1045	if (err)
1046		goto out;
1047
1048	if (task_pgrp(p) != pgrp)
1049		change_pid(p, PIDTYPE_PGID, pgrp);
1050
1051	err = 0;
1052out:
1053	/* All paths lead to here, thus we are safe. -DaveM */
1054	write_unlock_irq(&tasklist_lock);
1055	rcu_read_unlock();
1056	return err;
1057}
1058
1059SYSCALL_DEFINE1(getpgid, pid_t, pid)
1060{
1061	struct task_struct *p;
1062	struct pid *grp;
1063	int retval;
1064
1065	rcu_read_lock();
1066	if (!pid)
1067		grp = task_pgrp(current);
1068	else {
1069		retval = -ESRCH;
1070		p = find_task_by_vpid(pid);
1071		if (!p)
1072			goto out;
1073		grp = task_pgrp(p);
1074		if (!grp)
1075			goto out;
1076
1077		retval = security_task_getpgid(p);
1078		if (retval)
1079			goto out;
1080	}
1081	retval = pid_vnr(grp);
1082out:
1083	rcu_read_unlock();
1084	return retval;
1085}
1086
 
 
 
 
 
1087#ifdef __ARCH_WANT_SYS_GETPGRP
1088
1089SYSCALL_DEFINE0(getpgrp)
1090{
1091	return sys_getpgid(0);
1092}
1093
1094#endif
1095
1096SYSCALL_DEFINE1(getsid, pid_t, pid)
1097{
1098	struct task_struct *p;
1099	struct pid *sid;
1100	int retval;
1101
1102	rcu_read_lock();
1103	if (!pid)
1104		sid = task_session(current);
1105	else {
1106		retval = -ESRCH;
1107		p = find_task_by_vpid(pid);
1108		if (!p)
1109			goto out;
1110		sid = task_session(p);
1111		if (!sid)
1112			goto out;
1113
1114		retval = security_task_getsid(p);
1115		if (retval)
1116			goto out;
1117	}
1118	retval = pid_vnr(sid);
1119out:
1120	rcu_read_unlock();
1121	return retval;
1122}
1123
1124SYSCALL_DEFINE0(setsid)
 
 
 
 
 
 
 
 
 
 
 
1125{
1126	struct task_struct *group_leader = current->group_leader;
1127	struct pid *sid = task_pid(group_leader);
1128	pid_t session = pid_vnr(sid);
1129	int err = -EPERM;
1130
1131	write_lock_irq(&tasklist_lock);
1132	/* Fail if I am already a session leader */
1133	if (group_leader->signal->leader)
1134		goto out;
1135
1136	/* Fail if a process group id already exists that equals the
1137	 * proposed session id.
1138	 */
1139	if (pid_task(sid, PIDTYPE_PGID))
1140		goto out;
1141
1142	group_leader->signal->leader = 1;
1143	__set_special_pids(sid);
1144
1145	proc_clear_tty(group_leader);
1146
1147	err = session;
1148out:
1149	write_unlock_irq(&tasklist_lock);
1150	if (err > 0) {
1151		proc_sid_connector(group_leader);
1152		sched_autogroup_create_attach(group_leader);
1153	}
1154	return err;
1155}
1156
 
 
 
 
 
1157DECLARE_RWSEM(uts_sem);
1158
1159#ifdef COMPAT_UTS_MACHINE
1160#define override_architecture(name) \
1161	(personality(current->personality) == PER_LINUX32 && \
1162	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1163		      sizeof(COMPAT_UTS_MACHINE)))
1164#else
1165#define override_architecture(name)	0
1166#endif
1167
1168/*
1169 * Work around broken programs that cannot handle "Linux 3.0".
1170 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
 
 
1171 */
1172static int override_release(char __user *release, int len)
1173{
1174	int ret = 0;
1175	char buf[65];
1176
1177	if (current->personality & UNAME26) {
1178		char *rest = UTS_RELEASE;
 
1179		int ndots = 0;
1180		unsigned v;
 
1181
1182		while (*rest) {
1183			if (*rest == '.' && ++ndots >= 3)
1184				break;
1185			if (!isdigit(*rest) && *rest != '.')
1186				break;
1187			rest++;
1188		}
1189		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 40;
1190		snprintf(buf, len, "2.6.%u%s", v, rest);
1191		ret = copy_to_user(release, buf, len);
 
1192	}
1193	return ret;
1194}
1195
1196SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1197{
1198	int errno = 0;
1199
1200	down_read(&uts_sem);
1201	if (copy_to_user(name, utsname(), sizeof *name))
1202		errno = -EFAULT;
1203	up_read(&uts_sem);
 
 
1204
1205	if (!errno && override_release(name->release, sizeof(name->release)))
1206		errno = -EFAULT;
1207	if (!errno && override_architecture(name))
1208		errno = -EFAULT;
1209	return errno;
1210}
1211
1212#ifdef __ARCH_WANT_SYS_OLD_UNAME
1213/*
1214 * Old cruft
1215 */
1216SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1217{
1218	int error = 0;
1219
1220	if (!name)
1221		return -EFAULT;
1222
1223	down_read(&uts_sem);
1224	if (copy_to_user(name, utsname(), sizeof(*name)))
1225		error = -EFAULT;
1226	up_read(&uts_sem);
 
 
1227
1228	if (!error && override_release(name->release, sizeof(name->release)))
1229		error = -EFAULT;
1230	if (!error && override_architecture(name))
1231		error = -EFAULT;
1232	return error;
1233}
1234
1235SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1236{
1237	int error;
1238
1239	if (!name)
1240		return -EFAULT;
1241	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1242		return -EFAULT;
1243
1244	down_read(&uts_sem);
1245	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1246			       __OLD_UTS_LEN);
1247	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1248	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1249				__OLD_UTS_LEN);
1250	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1251	error |= __copy_to_user(&name->release, &utsname()->release,
1252				__OLD_UTS_LEN);
1253	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1254	error |= __copy_to_user(&name->version, &utsname()->version,
1255				__OLD_UTS_LEN);
1256	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1257	error |= __copy_to_user(&name->machine, &utsname()->machine,
1258				__OLD_UTS_LEN);
1259	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1260	up_read(&uts_sem);
 
 
1261
1262	if (!error && override_architecture(name))
1263		error = -EFAULT;
1264	if (!error && override_release(name->release, sizeof(name->release)))
1265		error = -EFAULT;
1266	return error ? -EFAULT : 0;
1267}
1268#endif
1269
1270SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1271{
1272	int errno;
1273	char tmp[__NEW_UTS_LEN];
1274
1275	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1276		return -EPERM;
1277
1278	if (len < 0 || len > __NEW_UTS_LEN)
1279		return -EINVAL;
1280	down_write(&uts_sem);
1281	errno = -EFAULT;
1282	if (!copy_from_user(tmp, name, len)) {
1283		struct new_utsname *u = utsname();
1284
 
 
 
1285		memcpy(u->nodename, tmp, len);
1286		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1287		errno = 0;
 
 
1288	}
1289	up_write(&uts_sem);
1290	return errno;
1291}
1292
1293#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1294
1295SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1296{
1297	int i, errno;
1298	struct new_utsname *u;
 
1299
1300	if (len < 0)
1301		return -EINVAL;
1302	down_read(&uts_sem);
1303	u = utsname();
1304	i = 1 + strlen(u->nodename);
1305	if (i > len)
1306		i = len;
1307	errno = 0;
1308	if (copy_to_user(name, u->nodename, i))
1309		errno = -EFAULT;
1310	up_read(&uts_sem);
1311	return errno;
 
 
1312}
1313
1314#endif
1315
1316/*
1317 * Only setdomainname; getdomainname can be implemented by calling
1318 * uname()
1319 */
1320SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1321{
1322	int errno;
1323	char tmp[__NEW_UTS_LEN];
1324
1325	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1326		return -EPERM;
1327	if (len < 0 || len > __NEW_UTS_LEN)
1328		return -EINVAL;
1329
1330	down_write(&uts_sem);
1331	errno = -EFAULT;
1332	if (!copy_from_user(tmp, name, len)) {
1333		struct new_utsname *u = utsname();
1334
 
 
 
1335		memcpy(u->domainname, tmp, len);
1336		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1337		errno = 0;
 
 
1338	}
1339	up_write(&uts_sem);
1340	return errno;
1341}
1342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1343SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1344{
1345	struct rlimit value;
1346	int ret;
1347
1348	ret = do_prlimit(current, resource, NULL, &value);
1349	if (!ret)
1350		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1351
1352	return ret;
1353}
1354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1356
1357/*
1358 *	Back compatibility for getrlimit. Needed for some apps.
1359 */
1360 
1361SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1362		struct rlimit __user *, rlim)
1363{
1364	struct rlimit x;
1365	if (resource >= RLIM_NLIMITS)
1366		return -EINVAL;
1367
 
1368	task_lock(current->group_leader);
1369	x = current->signal->rlim[resource];
1370	task_unlock(current->group_leader);
1371	if (x.rlim_cur > 0x7FFFFFFF)
1372		x.rlim_cur = 0x7FFFFFFF;
1373	if (x.rlim_max > 0x7FFFFFFF)
1374		x.rlim_max = 0x7FFFFFFF;
1375	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1376}
 
1377
1378#endif
1379
1380static inline bool rlim64_is_infinity(__u64 rlim64)
1381{
1382#if BITS_PER_LONG < 64
1383	return rlim64 >= ULONG_MAX;
1384#else
1385	return rlim64 == RLIM64_INFINITY;
1386#endif
1387}
1388
1389static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1390{
1391	if (rlim->rlim_cur == RLIM_INFINITY)
1392		rlim64->rlim_cur = RLIM64_INFINITY;
1393	else
1394		rlim64->rlim_cur = rlim->rlim_cur;
1395	if (rlim->rlim_max == RLIM_INFINITY)
1396		rlim64->rlim_max = RLIM64_INFINITY;
1397	else
1398		rlim64->rlim_max = rlim->rlim_max;
1399}
1400
1401static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1402{
1403	if (rlim64_is_infinity(rlim64->rlim_cur))
1404		rlim->rlim_cur = RLIM_INFINITY;
1405	else
1406		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1407	if (rlim64_is_infinity(rlim64->rlim_max))
1408		rlim->rlim_max = RLIM_INFINITY;
1409	else
1410		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1411}
1412
1413/* make sure you are allowed to change @tsk limits before calling this */
1414int do_prlimit(struct task_struct *tsk, unsigned int resource,
1415		struct rlimit *new_rlim, struct rlimit *old_rlim)
1416{
1417	struct rlimit *rlim;
1418	int retval = 0;
1419
1420	if (resource >= RLIM_NLIMITS)
1421		return -EINVAL;
1422	if (new_rlim) {
1423		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1424			return -EINVAL;
1425		if (resource == RLIMIT_NOFILE &&
1426				new_rlim->rlim_max > sysctl_nr_open)
1427			return -EPERM;
1428	}
1429
1430	/* protect tsk->signal and tsk->sighand from disappearing */
1431	read_lock(&tasklist_lock);
1432	if (!tsk->sighand) {
1433		retval = -ESRCH;
1434		goto out;
1435	}
1436
1437	rlim = tsk->signal->rlim + resource;
1438	task_lock(tsk->group_leader);
1439	if (new_rlim) {
1440		/* Keep the capable check against init_user_ns until
1441		   cgroups can contain all limits */
1442		if (new_rlim->rlim_max > rlim->rlim_max &&
1443				!capable(CAP_SYS_RESOURCE))
1444			retval = -EPERM;
1445		if (!retval)
1446			retval = security_task_setrlimit(tsk->group_leader,
1447					resource, new_rlim);
1448		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1449			/*
1450			 * The caller is asking for an immediate RLIMIT_CPU
1451			 * expiry.  But we use the zero value to mean "it was
1452			 * never set".  So let's cheat and make it one second
1453			 * instead
1454			 */
1455			new_rlim->rlim_cur = 1;
1456		}
1457	}
1458	if (!retval) {
1459		if (old_rlim)
1460			*old_rlim = *rlim;
1461		if (new_rlim)
1462			*rlim = *new_rlim;
1463	}
1464	task_unlock(tsk->group_leader);
1465
1466	/*
1467	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1468	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1469	 * very long-standing error, and fixing it now risks breakage of
1470	 * applications, so we live with it
1471	 */
1472	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1473			 new_rlim->rlim_cur != RLIM_INFINITY)
1474		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1475out:
1476	read_unlock(&tasklist_lock);
1477	return retval;
1478}
1479
1480/* rcu lock must be held */
1481static int check_prlimit_permission(struct task_struct *task)
 
1482{
1483	const struct cred *cred = current_cred(), *tcred;
 
1484
1485	if (current == task)
1486		return 0;
1487
1488	tcred = __task_cred(task);
1489	if (cred->user->user_ns == tcred->user->user_ns &&
1490	    (cred->uid == tcred->euid &&
1491	     cred->uid == tcred->suid &&
1492	     cred->uid == tcred->uid  &&
1493	     cred->gid == tcred->egid &&
1494	     cred->gid == tcred->sgid &&
1495	     cred->gid == tcred->gid))
1496		return 0;
1497	if (ns_capable(tcred->user->user_ns, CAP_SYS_RESOURCE))
1498		return 0;
1499
1500	return -EPERM;
1501}
1502
1503SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1504		const struct rlimit64 __user *, new_rlim,
1505		struct rlimit64 __user *, old_rlim)
1506{
1507	struct rlimit64 old64, new64;
1508	struct rlimit old, new;
1509	struct task_struct *tsk;
 
1510	int ret;
1511
 
 
 
1512	if (new_rlim) {
1513		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1514			return -EFAULT;
1515		rlim64_to_rlim(&new64, &new);
 
1516	}
1517
1518	rcu_read_lock();
1519	tsk = pid ? find_task_by_vpid(pid) : current;
1520	if (!tsk) {
1521		rcu_read_unlock();
1522		return -ESRCH;
1523	}
1524	ret = check_prlimit_permission(tsk);
1525	if (ret) {
1526		rcu_read_unlock();
1527		return ret;
1528	}
1529	get_task_struct(tsk);
1530	rcu_read_unlock();
1531
1532	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1533			old_rlim ? &old : NULL);
1534
1535	if (!ret && old_rlim) {
1536		rlim_to_rlim64(&old, &old64);
1537		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1538			ret = -EFAULT;
1539	}
1540
1541	put_task_struct(tsk);
1542	return ret;
1543}
1544
1545SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1546{
1547	struct rlimit new_rlim;
1548
1549	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1550		return -EFAULT;
1551	return do_prlimit(current, resource, &new_rlim, NULL);
1552}
1553
1554/*
1555 * It would make sense to put struct rusage in the task_struct,
1556 * except that would make the task_struct be *really big*.  After
1557 * task_struct gets moved into malloc'ed memory, it would
1558 * make sense to do this.  It will make moving the rest of the information
1559 * a lot simpler!  (Which we're not doing right now because we're not
1560 * measuring them yet).
1561 *
1562 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1563 * races with threads incrementing their own counters.  But since word
1564 * reads are atomic, we either get new values or old values and we don't
1565 * care which for the sums.  We always take the siglock to protect reading
1566 * the c* fields from p->signal from races with exit.c updating those
1567 * fields when reaping, so a sample either gets all the additions of a
1568 * given child after it's reaped, or none so this sample is before reaping.
1569 *
1570 * Locking:
1571 * We need to take the siglock for CHILDEREN, SELF and BOTH
1572 * for  the cases current multithreaded, non-current single threaded
1573 * non-current multithreaded.  Thread traversal is now safe with
1574 * the siglock held.
1575 * Strictly speaking, we donot need to take the siglock if we are current and
1576 * single threaded,  as no one else can take our signal_struct away, no one
1577 * else can  reap the  children to update signal->c* counters, and no one else
1578 * can race with the signal-> fields. If we do not take any lock, the
1579 * signal-> fields could be read out of order while another thread was just
1580 * exiting. So we should  place a read memory barrier when we avoid the lock.
1581 * On the writer side,  write memory barrier is implied in  __exit_signal
1582 * as __exit_signal releases  the siglock spinlock after updating the signal->
1583 * fields. But we don't do this yet to keep things simple.
1584 *
1585 */
1586
1587static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1588{
1589	r->ru_nvcsw += t->nvcsw;
1590	r->ru_nivcsw += t->nivcsw;
1591	r->ru_minflt += t->min_flt;
1592	r->ru_majflt += t->maj_flt;
1593	r->ru_inblock += task_io_get_inblock(t);
1594	r->ru_oublock += task_io_get_oublock(t);
1595}
1596
1597static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1598{
1599	struct task_struct *t;
1600	unsigned long flags;
1601	cputime_t tgutime, tgstime, utime, stime;
1602	unsigned long maxrss = 0;
1603
1604	memset((char *) r, 0, sizeof *r);
1605	utime = stime = cputime_zero;
 
 
 
 
 
1606
1607	if (who == RUSAGE_THREAD) {
1608		task_times(current, &utime, &stime);
1609		accumulate_thread_rusage(p, r);
1610		maxrss = p->signal->maxrss;
1611		goto out;
1612	}
1613
1614	if (!lock_task_sighand(p, &flags))
1615		return;
1616
1617	switch (who) {
1618		case RUSAGE_BOTH:
1619		case RUSAGE_CHILDREN:
1620			utime = p->signal->cutime;
1621			stime = p->signal->cstime;
1622			r->ru_nvcsw = p->signal->cnvcsw;
1623			r->ru_nivcsw = p->signal->cnivcsw;
1624			r->ru_minflt = p->signal->cmin_flt;
1625			r->ru_majflt = p->signal->cmaj_flt;
1626			r->ru_inblock = p->signal->cinblock;
1627			r->ru_oublock = p->signal->coublock;
1628			maxrss = p->signal->cmaxrss;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629
1630			if (who == RUSAGE_CHILDREN)
1631				break;
1632
1633		case RUSAGE_SELF:
1634			thread_group_times(p, &tgutime, &tgstime);
1635			utime = cputime_add(utime, tgutime);
1636			stime = cputime_add(stime, tgstime);
1637			r->ru_nvcsw += p->signal->nvcsw;
1638			r->ru_nivcsw += p->signal->nivcsw;
1639			r->ru_minflt += p->signal->min_flt;
1640			r->ru_majflt += p->signal->maj_flt;
1641			r->ru_inblock += p->signal->inblock;
1642			r->ru_oublock += p->signal->oublock;
1643			if (maxrss < p->signal->maxrss)
1644				maxrss = p->signal->maxrss;
1645			t = p;
1646			do {
1647				accumulate_thread_rusage(t, r);
1648				t = next_thread(t);
1649			} while (t != p);
1650			break;
1651
1652		default:
1653			BUG();
 
1654	}
1655	unlock_task_sighand(p, &flags);
1656
1657out:
1658	cputime_to_timeval(utime, &r->ru_utime);
1659	cputime_to_timeval(stime, &r->ru_stime);
 
 
 
1660
1661	if (who != RUSAGE_CHILDREN) {
1662		struct mm_struct *mm = get_task_mm(p);
1663		if (mm) {
1664			setmax_mm_hiwater_rss(&maxrss, mm);
1665			mmput(mm);
1666		}
1667	}
 
 
1668	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
 
 
1669}
1670
1671int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1672{
1673	struct rusage r;
1674	k_getrusage(p, who, &r);
 
 
 
 
 
1675	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1676}
1677
1678SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
 
1679{
 
 
1680	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1681	    who != RUSAGE_THREAD)
1682		return -EINVAL;
1683	return getrusage(current, who, ru);
 
 
1684}
 
1685
1686SYSCALL_DEFINE1(umask, int, mask)
1687{
1688	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1689	return mask;
1690}
1691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1693		unsigned long, arg4, unsigned long, arg5)
1694{
1695	struct task_struct *me = current;
1696	unsigned char comm[sizeof(me->comm)];
1697	long error;
1698
1699	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1700	if (error != -ENOSYS)
1701		return error;
1702
1703	error = 0;
1704	switch (option) {
1705		case PR_SET_PDEATHSIG:
1706			if (!valid_signal(arg2)) {
1707				error = -EINVAL;
1708				break;
1709			}
1710			me->pdeath_signal = arg2;
1711			error = 0;
1712			break;
1713		case PR_GET_PDEATHSIG:
1714			error = put_user(me->pdeath_signal, (int __user *)arg2);
1715			break;
1716		case PR_GET_DUMPABLE:
1717			error = get_dumpable(me->mm);
1718			break;
1719		case PR_SET_DUMPABLE:
1720			if (arg2 < 0 || arg2 > 1) {
1721				error = -EINVAL;
1722				break;
1723			}
1724			set_dumpable(me->mm, arg2);
1725			error = 0;
1726			break;
 
 
 
1727
1728		case PR_SET_UNALIGN:
1729			error = SET_UNALIGN_CTL(me, arg2);
1730			break;
1731		case PR_GET_UNALIGN:
1732			error = GET_UNALIGN_CTL(me, arg2);
1733			break;
1734		case PR_SET_FPEMU:
1735			error = SET_FPEMU_CTL(me, arg2);
1736			break;
1737		case PR_GET_FPEMU:
1738			error = GET_FPEMU_CTL(me, arg2);
1739			break;
1740		case PR_SET_FPEXC:
1741			error = SET_FPEXC_CTL(me, arg2);
1742			break;
1743		case PR_GET_FPEXC:
1744			error = GET_FPEXC_CTL(me, arg2);
1745			break;
1746		case PR_GET_TIMING:
1747			error = PR_TIMING_STATISTICAL;
1748			break;
1749		case PR_SET_TIMING:
1750			if (arg2 != PR_TIMING_STATISTICAL)
1751				error = -EINVAL;
1752			else
1753				error = 0;
1754			break;
1755
1756		case PR_SET_NAME:
1757			comm[sizeof(me->comm)-1] = 0;
1758			if (strncpy_from_user(comm, (char __user *)arg2,
1759					      sizeof(me->comm) - 1) < 0)
1760				return -EFAULT;
1761			set_task_comm(me, comm);
1762			return 0;
1763		case PR_GET_NAME:
1764			get_task_comm(comm, me);
1765			if (copy_to_user((char __user *)arg2, comm,
1766					 sizeof(comm)))
1767				return -EFAULT;
1768			return 0;
1769		case PR_GET_ENDIAN:
1770			error = GET_ENDIAN(me, arg2);
1771			break;
1772		case PR_SET_ENDIAN:
1773			error = SET_ENDIAN(me, arg2);
1774			break;
1775
1776		case PR_GET_SECCOMP:
1777			error = prctl_get_seccomp();
1778			break;
1779		case PR_SET_SECCOMP:
1780			error = prctl_set_seccomp(arg2);
1781			break;
1782		case PR_GET_TSC:
1783			error = GET_TSC_CTL(arg2);
1784			break;
1785		case PR_SET_TSC:
1786			error = SET_TSC_CTL(arg2);
1787			break;
1788		case PR_TASK_PERF_EVENTS_DISABLE:
1789			error = perf_event_task_disable();
1790			break;
1791		case PR_TASK_PERF_EVENTS_ENABLE:
1792			error = perf_event_task_enable();
1793			break;
1794		case PR_GET_TIMERSLACK:
1795			error = current->timer_slack_ns;
1796			break;
1797		case PR_SET_TIMERSLACK:
1798			if (arg2 <= 0)
1799				current->timer_slack_ns =
1800					current->default_timer_slack_ns;
1801			else
1802				current->timer_slack_ns = arg2;
1803			error = 0;
 
 
 
 
 
 
 
 
1804			break;
1805		case PR_MCE_KILL:
1806			if (arg4 | arg5)
1807				return -EINVAL;
1808			switch (arg2) {
1809			case PR_MCE_KILL_CLEAR:
1810				if (arg3 != 0)
1811					return -EINVAL;
1812				current->flags &= ~PF_MCE_PROCESS;
1813				break;
1814			case PR_MCE_KILL_SET:
1815				current->flags |= PF_MCE_PROCESS;
1816				if (arg3 == PR_MCE_KILL_EARLY)
1817					current->flags |= PF_MCE_EARLY;
1818				else if (arg3 == PR_MCE_KILL_LATE)
1819					current->flags &= ~PF_MCE_EARLY;
1820				else if (arg3 == PR_MCE_KILL_DEFAULT)
1821					current->flags &=
1822						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1823				else
1824					return -EINVAL;
1825				break;
1826			default:
1827				return -EINVAL;
1828			}
1829			error = 0;
1830			break;
1831		case PR_MCE_KILL_GET:
1832			if (arg2 | arg3 | arg4 | arg5)
1833				return -EINVAL;
1834			if (current->flags & PF_MCE_PROCESS)
1835				error = (current->flags & PF_MCE_EARLY) ?
1836					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1837			else
1838				error = PR_MCE_KILL_DEFAULT;
1839			break;
1840		default:
1841			error = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843	}
1844	return error;
1845}
1846
1847SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1848		struct getcpu_cache __user *, unused)
1849{
1850	int err = 0;
1851	int cpu = raw_smp_processor_id();
 
1852	if (cpup)
1853		err |= put_user(cpu, cpup);
1854	if (nodep)
1855		err |= put_user(cpu_to_node(cpu), nodep);
1856	return err ? -EFAULT : 0;
1857}
1858
1859char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1860
1861static void argv_cleanup(struct subprocess_info *info)
1862{
1863	argv_free(info->argv);
1864}
1865
1866/**
1867 * orderly_poweroff - Trigger an orderly system poweroff
1868 * @force: force poweroff if command execution fails
1869 *
1870 * This may be called from any context to trigger a system shutdown.
1871 * If the orderly shutdown fails, it will force an immediate shutdown.
1872 */
1873int orderly_poweroff(bool force)
1874{
1875	int argc;
1876	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1877	static char *envp[] = {
1878		"HOME=/",
1879		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1880		NULL
1881	};
1882	int ret = -ENOMEM;
1883	struct subprocess_info *info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1884
1885	if (argv == NULL) {
1886		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1887		       __func__, poweroff_cmd);
1888		goto out;
 
 
 
 
 
 
 
 
 
1889	}
1890
1891	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1892	if (info == NULL) {
1893		argv_free(argv);
1894		goto out;
1895	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1896
1897	call_usermodehelper_setfns(info, NULL, argv_cleanup, NULL);
1898
1899	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
 
 
 
 
1900
1901  out:
1902	if (ret && force) {
1903		printk(KERN_WARNING "Failed to start orderly shutdown: "
1904		       "forcing the issue\n");
1905
1906		/* I guess this should try to kick off some daemon to
1907		   sync and poweroff asap.  Or not even bother syncing
1908		   if we're doing an emergency shutdown? */
1909		emergency_sync();
1910		kernel_power_off();
1911	}
1912
1913	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1914}
1915EXPORT_SYMBOL_GPL(orderly_poweroff);