Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * async.c: Asynchronous function calls for boot performance
  4 *
  5 * (C) Copyright 2009 Intel Corporation
  6 * Author: Arjan van de Ven <arjan@linux.intel.com>
 
 
 
 
 
  7 */
  8
  9
 10/*
 11
 12Goals and Theory of Operation
 13
 14The primary goal of this feature is to reduce the kernel boot time,
 15by doing various independent hardware delays and discovery operations
 16decoupled and not strictly serialized.
 17
 18More specifically, the asynchronous function call concept allows
 19certain operations (primarily during system boot) to happen
 20asynchronously, out of order, while these operations still
 21have their externally visible parts happen sequentially and in-order.
 22(not unlike how out-of-order CPUs retire their instructions in order)
 23
 24Key to the asynchronous function call implementation is the concept of
 25a "sequence cookie" (which, although it has an abstracted type, can be
 26thought of as a monotonically incrementing number).
 27
 28The async core will assign each scheduled event such a sequence cookie and
 29pass this to the called functions.
 30
 31The asynchronously called function should before doing a globally visible
 32operation, such as registering device numbers, call the
 33async_synchronize_cookie() function and pass in its own cookie. The
 34async_synchronize_cookie() function will make sure that all asynchronous
 35operations that were scheduled prior to the operation corresponding with the
 36cookie have completed.
 37
 38Subsystem/driver initialization code that scheduled asynchronous probe
 39functions, but which shares global resources with other drivers/subsystems
 40that do not use the asynchronous call feature, need to do a full
 41synchronization with the async_synchronize_full() function, before returning
 42from their init function. This is to maintain strict ordering between the
 43asynchronous and synchronous parts of the kernel.
 44
 45*/
 46
 47#include <linux/async.h>
 48#include <linux/atomic.h>
 49#include <linux/export.h>
 50#include <linux/ktime.h>
 51#include <linux/pid.h>
 
 52#include <linux/sched.h>
 53#include <linux/slab.h>
 54#include <linux/wait.h>
 55#include <linux/workqueue.h>
 56
 57#include "workqueue_internal.h"
 58
 59static async_cookie_t next_cookie = 1;
 60
 61#define MAX_WORK		32768
 62#define ASYNC_COOKIE_MAX	ULLONG_MAX	/* infinity cookie */
 63
 64static LIST_HEAD(async_global_pending);	/* pending from all registered doms */
 65static ASYNC_DOMAIN(async_dfl_domain);
 66static DEFINE_SPINLOCK(async_lock);
 67
 68struct async_entry {
 69	struct list_head	domain_list;
 70	struct list_head	global_list;
 71	struct work_struct	work;
 72	async_cookie_t		cookie;
 73	async_func_t		func;
 74	void			*data;
 75	struct async_domain	*domain;
 76};
 77
 78static DECLARE_WAIT_QUEUE_HEAD(async_done);
 79
 80static atomic_t entry_count;
 81
 82static long long microseconds_since(ktime_t start)
 
 
 
 
 
 
 83{
 84	ktime_t now = ktime_get();
 85	return ktime_to_ns(ktime_sub(now, start)) >> 10;
 
 
 
 
 
 
 
 
 
 
 
 86}
 87
 88static async_cookie_t lowest_in_progress(struct async_domain *domain)
 89{
 90	struct async_entry *first = NULL;
 91	async_cookie_t ret = ASYNC_COOKIE_MAX;
 92	unsigned long flags;
 
 93
 94	spin_lock_irqsave(&async_lock, flags);
 95
 96	if (domain) {
 97		if (!list_empty(&domain->pending))
 98			first = list_first_entry(&domain->pending,
 99					struct async_entry, domain_list);
100	} else {
101		if (!list_empty(&async_global_pending))
102			first = list_first_entry(&async_global_pending,
103					struct async_entry, global_list);
104	}
105
106	if (first)
107		ret = first->cookie;
108
109	spin_unlock_irqrestore(&async_lock, flags);
110	return ret;
111}
112
113/*
114 * pick the first pending entry and run it
115 */
116static void async_run_entry_fn(struct work_struct *work)
117{
118	struct async_entry *entry =
119		container_of(work, struct async_entry, work);
120	unsigned long flags;
121	ktime_t calltime;
122
123	/* 1) run (and print duration) */
124	pr_debug("calling  %lli_%pS @ %i\n", (long long)entry->cookie,
125		 entry->func, task_pid_nr(current));
126	calltime = ktime_get();
127
 
 
 
 
 
 
 
128	entry->func(entry->data, entry->cookie);
 
 
 
 
 
 
 
 
129
130	pr_debug("initcall %lli_%pS returned after %lld usecs\n",
131		 (long long)entry->cookie, entry->func,
132		 microseconds_since(calltime));
133
134	/* 2) remove self from the pending queues */
135	spin_lock_irqsave(&async_lock, flags);
136	list_del_init(&entry->domain_list);
137	list_del_init(&entry->global_list);
138
139	/* 3) free the entry */
140	kfree(entry);
141	atomic_dec(&entry_count);
142
143	spin_unlock_irqrestore(&async_lock, flags);
144
145	/* 4) wake up any waiters */
146	wake_up(&async_done);
147}
148
149static async_cookie_t __async_schedule_node_domain(async_func_t func,
150						   void *data, int node,
151						   struct async_domain *domain,
152						   struct async_entry *entry)
153{
154	async_cookie_t newcookie;
155	unsigned long flags;
156
157	INIT_LIST_HEAD(&entry->domain_list);
158	INIT_LIST_HEAD(&entry->global_list);
159	INIT_WORK(&entry->work, async_run_entry_fn);
160	entry->func = func;
161	entry->data = data;
162	entry->domain = domain;
163
164	spin_lock_irqsave(&async_lock, flags);
165
166	/* allocate cookie and queue */
167	newcookie = entry->cookie = next_cookie++;
168
169	list_add_tail(&entry->domain_list, &domain->pending);
170	if (domain->registered)
171		list_add_tail(&entry->global_list, &async_global_pending);
172
173	atomic_inc(&entry_count);
174	spin_unlock_irqrestore(&async_lock, flags);
175
176	/* schedule for execution */
177	queue_work_node(node, system_unbound_wq, &entry->work);
178
179	return newcookie;
180}
181
182/**
183 * async_schedule_node_domain - NUMA specific version of async_schedule_domain
184 * @func: function to execute asynchronously
185 * @data: data pointer to pass to the function
186 * @node: NUMA node that we want to schedule this on or close to
187 * @domain: the domain
188 *
189 * Returns an async_cookie_t that may be used for checkpointing later.
190 * @domain may be used in the async_synchronize_*_domain() functions to
191 * wait within a certain synchronization domain rather than globally.
192 *
193 * Note: This function may be called from atomic or non-atomic contexts.
194 *
195 * The node requested will be honored on a best effort basis. If the node
196 * has no CPUs associated with it then the work is distributed among all
197 * available CPUs.
198 */
199async_cookie_t async_schedule_node_domain(async_func_t func, void *data,
200					  int node, struct async_domain *domain)
201{
202	struct async_entry *entry;
203	unsigned long flags;
204	async_cookie_t newcookie;
205
206	/* allow irq-off callers */
207	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
208
209	/*
210	 * If we're out of memory or if there's too much work
211	 * pending already, we execute synchronously.
212	 */
213	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
214		kfree(entry);
215		spin_lock_irqsave(&async_lock, flags);
216		newcookie = next_cookie++;
217		spin_unlock_irqrestore(&async_lock, flags);
218
219		/* low on memory.. run synchronously */
220		func(data, newcookie);
221		return newcookie;
222	}
 
 
 
 
223
224	return __async_schedule_node_domain(func, data, node, domain, entry);
 
 
 
 
 
 
 
 
 
225}
226EXPORT_SYMBOL_GPL(async_schedule_node_domain);
227
228/**
229 * async_schedule_node - NUMA specific version of async_schedule
230 * @func: function to execute asynchronously
231 * @data: data pointer to pass to the function
232 * @node: NUMA node that we want to schedule this on or close to
233 *
234 * Returns an async_cookie_t that may be used for checkpointing later.
235 * Note: This function may be called from atomic or non-atomic contexts.
236 *
237 * The node requested will be honored on a best effort basis. If the node
238 * has no CPUs associated with it then the work is distributed among all
239 * available CPUs.
240 */
241async_cookie_t async_schedule_node(async_func_t func, void *data, int node)
242{
243	return async_schedule_node_domain(func, data, node, &async_dfl_domain);
244}
245EXPORT_SYMBOL_GPL(async_schedule_node);
246
247/**
248 * async_schedule_dev_nocall - A simplified variant of async_schedule_dev()
249 * @func: function to execute asynchronously
250 * @dev: device argument to be passed to function
251 *
252 * @dev is used as both the argument for the function and to provide NUMA
253 * context for where to run the function.
254 *
255 * If the asynchronous execution of @func is scheduled successfully, return
256 * true. Otherwise, do nothing and return false, unlike async_schedule_dev()
257 * that will run the function synchronously then.
 
 
258 */
259bool async_schedule_dev_nocall(async_func_t func, struct device *dev)
 
260{
261	struct async_entry *entry;
262
263	entry = kzalloc(sizeof(struct async_entry), GFP_KERNEL);
264
265	/* Give up if there is no memory or too much work. */
266	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
267		kfree(entry);
268		return false;
269	}
270
271	__async_schedule_node_domain(func, dev, dev_to_node(dev),
272				     &async_dfl_domain, entry);
273	return true;
274}
 
275
276/**
277 * async_synchronize_full - synchronize all asynchronous function calls
278 *
279 * This function waits until all asynchronous function calls have been done.
280 */
281void async_synchronize_full(void)
282{
283	async_synchronize_full_domain(NULL);
 
 
284}
285EXPORT_SYMBOL_GPL(async_synchronize_full);
286
287/**
288 * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain
289 * @domain: the domain to synchronize
290 *
291 * This function waits until all asynchronous function calls for the
292 * synchronization domain specified by @domain have been done.
293 */
294void async_synchronize_full_domain(struct async_domain *domain)
295{
296	async_synchronize_cookie_domain(ASYNC_COOKIE_MAX, domain);
297}
298EXPORT_SYMBOL_GPL(async_synchronize_full_domain);
299
300/**
301 * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing
302 * @cookie: async_cookie_t to use as checkpoint
303 * @domain: the domain to synchronize (%NULL for all registered domains)
304 *
305 * This function waits until all asynchronous function calls for the
306 * synchronization domain specified by @domain submitted prior to @cookie
307 * have been done.
308 */
309void async_synchronize_cookie_domain(async_cookie_t cookie, struct async_domain *domain)
 
310{
311	ktime_t starttime;
312
313	pr_debug("async_waiting @ %i\n", task_pid_nr(current));
314	starttime = ktime_get();
 
 
315
316	wait_event(async_done, lowest_in_progress(domain) >= cookie);
317
318	pr_debug("async_continuing @ %i after %lli usec\n", task_pid_nr(current),
319		 microseconds_since(starttime));
 
 
 
 
 
 
320}
321EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain);
322
323/**
324 * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
325 * @cookie: async_cookie_t to use as checkpoint
326 *
327 * This function waits until all asynchronous function calls prior to @cookie
328 * have been done.
329 */
330void async_synchronize_cookie(async_cookie_t cookie)
331{
332	async_synchronize_cookie_domain(cookie, &async_dfl_domain);
333}
334EXPORT_SYMBOL_GPL(async_synchronize_cookie);
335
336/**
337 * current_is_async - is %current an async worker task?
338 *
339 * Returns %true if %current is an async worker task.
340 */
341bool current_is_async(void)
342{
343	struct worker *worker = current_wq_worker();
344
345	return worker && worker->current_func == async_run_entry_fn;
346}
347EXPORT_SYMBOL_GPL(current_is_async);
v3.1
 
  1/*
  2 * async.c: Asynchronous function calls for boot performance
  3 *
  4 * (C) Copyright 2009 Intel Corporation
  5 * Author: Arjan van de Ven <arjan@linux.intel.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License
  9 * as published by the Free Software Foundation; version 2
 10 * of the License.
 11 */
 12
 13
 14/*
 15
 16Goals and Theory of Operation
 17
 18The primary goal of this feature is to reduce the kernel boot time,
 19by doing various independent hardware delays and discovery operations
 20decoupled and not strictly serialized.
 21
 22More specifically, the asynchronous function call concept allows
 23certain operations (primarily during system boot) to happen
 24asynchronously, out of order, while these operations still
 25have their externally visible parts happen sequentially and in-order.
 26(not unlike how out-of-order CPUs retire their instructions in order)
 27
 28Key to the asynchronous function call implementation is the concept of
 29a "sequence cookie" (which, although it has an abstracted type, can be
 30thought of as a monotonically incrementing number).
 31
 32The async core will assign each scheduled event such a sequence cookie and
 33pass this to the called functions.
 34
 35The asynchronously called function should before doing a globally visible
 36operation, such as registering device numbers, call the
 37async_synchronize_cookie() function and pass in its own cookie. The
 38async_synchronize_cookie() function will make sure that all asynchronous
 39operations that were scheduled prior to the operation corresponding with the
 40cookie have completed.
 41
 42Subsystem/driver initialization code that scheduled asynchronous probe
 43functions, but which shares global resources with other drivers/subsystems
 44that do not use the asynchronous call feature, need to do a full
 45synchronization with the async_synchronize_full() function, before returning
 46from their init function. This is to maintain strict ordering between the
 47asynchronous and synchronous parts of the kernel.
 48
 49*/
 50
 51#include <linux/async.h>
 52#include <linux/atomic.h>
 
 53#include <linux/ktime.h>
 54#include <linux/module.h>
 55#include <linux/wait.h>
 56#include <linux/sched.h>
 57#include <linux/slab.h>
 
 58#include <linux/workqueue.h>
 59
 
 
 60static async_cookie_t next_cookie = 1;
 61
 62#define MAX_WORK	32768
 
 63
 64static LIST_HEAD(async_pending);
 65static LIST_HEAD(async_running);
 66static DEFINE_SPINLOCK(async_lock);
 67
 68struct async_entry {
 69	struct list_head	list;
 
 70	struct work_struct	work;
 71	async_cookie_t		cookie;
 72	async_func_ptr		*func;
 73	void			*data;
 74	struct list_head	*running;
 75};
 76
 77static DECLARE_WAIT_QUEUE_HEAD(async_done);
 78
 79static atomic_t entry_count;
 80
 81extern int initcall_debug;
 82
 83
 84/*
 85 * MUST be called with the lock held!
 86 */
 87static async_cookie_t  __lowest_in_progress(struct list_head *running)
 88{
 89	struct async_entry *entry;
 90
 91	if (!list_empty(running)) {
 92		entry = list_first_entry(running,
 93			struct async_entry, list);
 94		return entry->cookie;
 95	}
 96
 97	list_for_each_entry(entry, &async_pending, list)
 98		if (entry->running == running)
 99			return entry->cookie;
100
101	return next_cookie;	/* "infinity" value */
102}
103
104static async_cookie_t  lowest_in_progress(struct list_head *running)
105{
 
 
106	unsigned long flags;
107	async_cookie_t ret;
108
109	spin_lock_irqsave(&async_lock, flags);
110	ret = __lowest_in_progress(running);
 
 
 
 
 
 
 
 
 
 
 
 
 
111	spin_unlock_irqrestore(&async_lock, flags);
112	return ret;
113}
114
115/*
116 * pick the first pending entry and run it
117 */
118static void async_run_entry_fn(struct work_struct *work)
119{
120	struct async_entry *entry =
121		container_of(work, struct async_entry, work);
122	unsigned long flags;
123	ktime_t calltime, delta, rettime;
124
125	/* 1) move self to the running queue */
126	spin_lock_irqsave(&async_lock, flags);
127	list_move_tail(&entry->list, entry->running);
128	spin_unlock_irqrestore(&async_lock, flags);
129
130	/* 2) run (and print duration) */
131	if (initcall_debug && system_state == SYSTEM_BOOTING) {
132		printk(KERN_DEBUG "calling  %lli_%pF @ %i\n",
133			(long long)entry->cookie,
134			entry->func, task_pid_nr(current));
135		calltime = ktime_get();
136	}
137	entry->func(entry->data, entry->cookie);
138	if (initcall_debug && system_state == SYSTEM_BOOTING) {
139		rettime = ktime_get();
140		delta = ktime_sub(rettime, calltime);
141		printk(KERN_DEBUG "initcall %lli_%pF returned 0 after %lld usecs\n",
142			(long long)entry->cookie,
143			entry->func,
144			(long long)ktime_to_ns(delta) >> 10);
145	}
146
147	/* 3) remove self from the running queue */
 
 
 
 
148	spin_lock_irqsave(&async_lock, flags);
149	list_del(&entry->list);
 
150
151	/* 4) free the entry */
152	kfree(entry);
153	atomic_dec(&entry_count);
154
155	spin_unlock_irqrestore(&async_lock, flags);
156
157	/* 5) wake up any waiters */
158	wake_up(&async_done);
159}
160
161static async_cookie_t __async_schedule(async_func_ptr *ptr, void *data, struct list_head *running)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162{
163	struct async_entry *entry;
164	unsigned long flags;
165	async_cookie_t newcookie;
166
167	/* allow irq-off callers */
168	entry = kzalloc(sizeof(struct async_entry), GFP_ATOMIC);
169
170	/*
171	 * If we're out of memory or if there's too much work
172	 * pending already, we execute synchronously.
173	 */
174	if (!entry || atomic_read(&entry_count) > MAX_WORK) {
175		kfree(entry);
176		spin_lock_irqsave(&async_lock, flags);
177		newcookie = next_cookie++;
178		spin_unlock_irqrestore(&async_lock, flags);
179
180		/* low on memory.. run synchronously */
181		ptr(data, newcookie);
182		return newcookie;
183	}
184	INIT_WORK(&entry->work, async_run_entry_fn);
185	entry->func = ptr;
186	entry->data = data;
187	entry->running = running;
188
189	spin_lock_irqsave(&async_lock, flags);
190	newcookie = entry->cookie = next_cookie++;
191	list_add_tail(&entry->list, &async_pending);
192	atomic_inc(&entry_count);
193	spin_unlock_irqrestore(&async_lock, flags);
194
195	/* schedule for execution */
196	queue_work(system_unbound_wq, &entry->work);
197
198	return newcookie;
199}
 
200
201/**
202 * async_schedule - schedule a function for asynchronous execution
203 * @ptr: function to execute asynchronously
204 * @data: data pointer to pass to the function
 
205 *
206 * Returns an async_cookie_t that may be used for checkpointing later.
207 * Note: This function may be called from atomic or non-atomic contexts.
 
 
 
 
208 */
209async_cookie_t async_schedule(async_func_ptr *ptr, void *data)
210{
211	return __async_schedule(ptr, data, &async_running);
212}
213EXPORT_SYMBOL_GPL(async_schedule);
214
215/**
216 * async_schedule_domain - schedule a function for asynchronous execution within a certain domain
217 * @ptr: function to execute asynchronously
218 * @data: data pointer to pass to the function
219 * @running: running list for the domain
 
 
220 *
221 * Returns an async_cookie_t that may be used for checkpointing later.
222 * @running may be used in the async_synchronize_*_domain() functions
223 * to wait within a certain synchronization domain rather than globally.
224 * A synchronization domain is specified via the running queue @running to use.
225 * Note: This function may be called from atomic or non-atomic contexts.
226 */
227async_cookie_t async_schedule_domain(async_func_ptr *ptr, void *data,
228				     struct list_head *running)
229{
230	return __async_schedule(ptr, data, running);
 
 
 
 
 
 
 
 
 
 
 
 
231}
232EXPORT_SYMBOL_GPL(async_schedule_domain);
233
234/**
235 * async_synchronize_full - synchronize all asynchronous function calls
236 *
237 * This function waits until all asynchronous function calls have been done.
238 */
239void async_synchronize_full(void)
240{
241	do {
242		async_synchronize_cookie(next_cookie);
243	} while (!list_empty(&async_running) || !list_empty(&async_pending));
244}
245EXPORT_SYMBOL_GPL(async_synchronize_full);
246
247/**
248 * async_synchronize_full_domain - synchronize all asynchronous function within a certain domain
249 * @list: running list to synchronize on
250 *
251 * This function waits until all asynchronous function calls for the
252 * synchronization domain specified by the running list @list have been done.
253 */
254void async_synchronize_full_domain(struct list_head *list)
255{
256	async_synchronize_cookie_domain(next_cookie, list);
257}
258EXPORT_SYMBOL_GPL(async_synchronize_full_domain);
259
260/**
261 * async_synchronize_cookie_domain - synchronize asynchronous function calls within a certain domain with cookie checkpointing
262 * @cookie: async_cookie_t to use as checkpoint
263 * @running: running list to synchronize on
264 *
265 * This function waits until all asynchronous function calls for the
266 * synchronization domain specified by the running list @list submitted
267 * prior to @cookie have been done.
268 */
269void async_synchronize_cookie_domain(async_cookie_t cookie,
270				     struct list_head *running)
271{
272	ktime_t starttime, delta, endtime;
273
274	if (initcall_debug && system_state == SYSTEM_BOOTING) {
275		printk(KERN_DEBUG "async_waiting @ %i\n", task_pid_nr(current));
276		starttime = ktime_get();
277	}
278
279	wait_event(async_done, lowest_in_progress(running) >= cookie);
280
281	if (initcall_debug && system_state == SYSTEM_BOOTING) {
282		endtime = ktime_get();
283		delta = ktime_sub(endtime, starttime);
284
285		printk(KERN_DEBUG "async_continuing @ %i after %lli usec\n",
286			task_pid_nr(current),
287			(long long)ktime_to_ns(delta) >> 10);
288	}
289}
290EXPORT_SYMBOL_GPL(async_synchronize_cookie_domain);
291
292/**
293 * async_synchronize_cookie - synchronize asynchronous function calls with cookie checkpointing
294 * @cookie: async_cookie_t to use as checkpoint
295 *
296 * This function waits until all asynchronous function calls prior to @cookie
297 * have been done.
298 */
299void async_synchronize_cookie(async_cookie_t cookie)
300{
301	async_synchronize_cookie_domain(cookie, &async_running);
302}
303EXPORT_SYMBOL_GPL(async_synchronize_cookie);