Linux Audio

Check our new training course

Loading...
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/fs/hfs/bnode.c
  4 *
  5 * Copyright (C) 2001
  6 * Brad Boyer (flar@allandria.com)
  7 * (C) 2003 Ardis Technologies <roman@ardistech.com>
  8 *
  9 * Handle basic btree node operations
 10 */
 11
 12#include <linux/pagemap.h>
 13#include <linux/slab.h>
 14#include <linux/swap.h>
 15
 16#include "btree.h"
 17
 18void hfs_bnode_read(struct hfs_bnode *node, void *buf, int off, int len)
 19{
 20	struct page *page;
 21	int pagenum;
 22	int bytes_read;
 23	int bytes_to_read;
 24
 25	off += node->page_offset;
 26	pagenum = off >> PAGE_SHIFT;
 27	off &= ~PAGE_MASK; /* compute page offset for the first page */
 28
 29	for (bytes_read = 0; bytes_read < len; bytes_read += bytes_to_read) {
 30		if (pagenum >= node->tree->pages_per_bnode)
 31			break;
 32		page = node->page[pagenum];
 33		bytes_to_read = min_t(int, len - bytes_read, PAGE_SIZE - off);
 34
 35		memcpy_from_page(buf + bytes_read, page, off, bytes_to_read);
 36
 37		pagenum++;
 38		off = 0; /* page offset only applies to the first page */
 39	}
 40}
 41
 42u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
 43{
 44	__be16 data;
 45	// optimize later...
 46	hfs_bnode_read(node, &data, off, 2);
 47	return be16_to_cpu(data);
 48}
 49
 50u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
 51{
 52	u8 data;
 53	// optimize later...
 54	hfs_bnode_read(node, &data, off, 1);
 55	return data;
 56}
 57
 58void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
 59{
 60	struct hfs_btree *tree;
 61	int key_len;
 62
 63	tree = node->tree;
 64	if (node->type == HFS_NODE_LEAF ||
 65	    tree->attributes & HFS_TREE_VARIDXKEYS)
 66		key_len = hfs_bnode_read_u8(node, off) + 1;
 67	else
 68		key_len = tree->max_key_len + 1;
 69
 70	hfs_bnode_read(node, key, off, key_len);
 71}
 72
 73void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
 74{
 75	struct page *page;
 76
 77	off += node->page_offset;
 78	page = node->page[0];
 79
 80	memcpy_to_page(page, off, buf, len);
 81	set_page_dirty(page);
 82}
 83
 84void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
 85{
 86	__be16 v = cpu_to_be16(data);
 87	// optimize later...
 88	hfs_bnode_write(node, &v, off, 2);
 89}
 90
 91void hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data)
 92{
 93	// optimize later...
 94	hfs_bnode_write(node, &data, off, 1);
 95}
 96
 97void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
 98{
 99	struct page *page;
100
101	off += node->page_offset;
102	page = node->page[0];
103
104	memzero_page(page, off, len);
105	set_page_dirty(page);
106}
107
108void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
109		struct hfs_bnode *src_node, int src, int len)
110{
111	struct page *src_page, *dst_page;
112
113	hfs_dbg(BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
114	if (!len)
115		return;
116	src += src_node->page_offset;
117	dst += dst_node->page_offset;
118	src_page = src_node->page[0];
119	dst_page = dst_node->page[0];
120
121	memcpy_page(dst_page, dst, src_page, src, len);
122	set_page_dirty(dst_page);
123}
124
125void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
126{
127	struct page *page;
128	void *ptr;
129
130	hfs_dbg(BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
131	if (!len)
132		return;
133	src += node->page_offset;
134	dst += node->page_offset;
135	page = node->page[0];
136	ptr = kmap_local_page(page);
137	memmove(ptr + dst, ptr + src, len);
138	kunmap_local(ptr);
139	set_page_dirty(page);
140}
141
142void hfs_bnode_dump(struct hfs_bnode *node)
143{
144	struct hfs_bnode_desc desc;
145	__be32 cnid;
146	int i, off, key_off;
147
148	hfs_dbg(BNODE_MOD, "bnode: %d\n", node->this);
149	hfs_bnode_read(node, &desc, 0, sizeof(desc));
150	hfs_dbg(BNODE_MOD, "%d, %d, %d, %d, %d\n",
151		be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
152		desc.type, desc.height, be16_to_cpu(desc.num_recs));
153
154	off = node->tree->node_size - 2;
155	for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
156		key_off = hfs_bnode_read_u16(node, off);
157		hfs_dbg_cont(BNODE_MOD, " %d", key_off);
158		if (i && node->type == HFS_NODE_INDEX) {
159			int tmp;
160
161			if (node->tree->attributes & HFS_TREE_VARIDXKEYS)
162				tmp = (hfs_bnode_read_u8(node, key_off) | 1) + 1;
163			else
164				tmp = node->tree->max_key_len + 1;
165			hfs_dbg_cont(BNODE_MOD, " (%d,%d",
166				     tmp, hfs_bnode_read_u8(node, key_off));
167			hfs_bnode_read(node, &cnid, key_off + tmp, 4);
168			hfs_dbg_cont(BNODE_MOD, ",%d)", be32_to_cpu(cnid));
169		} else if (i && node->type == HFS_NODE_LEAF) {
170			int tmp;
171
172			tmp = hfs_bnode_read_u8(node, key_off);
173			hfs_dbg_cont(BNODE_MOD, " (%d)", tmp);
174		}
175	}
176	hfs_dbg_cont(BNODE_MOD, "\n");
177}
178
179void hfs_bnode_unlink(struct hfs_bnode *node)
180{
181	struct hfs_btree *tree;
182	struct hfs_bnode *tmp;
183	__be32 cnid;
184
185	tree = node->tree;
186	if (node->prev) {
187		tmp = hfs_bnode_find(tree, node->prev);
188		if (IS_ERR(tmp))
189			return;
190		tmp->next = node->next;
191		cnid = cpu_to_be32(tmp->next);
192		hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
193		hfs_bnode_put(tmp);
194	} else if (node->type == HFS_NODE_LEAF)
195		tree->leaf_head = node->next;
196
197	if (node->next) {
198		tmp = hfs_bnode_find(tree, node->next);
199		if (IS_ERR(tmp))
200			return;
201		tmp->prev = node->prev;
202		cnid = cpu_to_be32(tmp->prev);
203		hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4);
204		hfs_bnode_put(tmp);
205	} else if (node->type == HFS_NODE_LEAF)
206		tree->leaf_tail = node->prev;
207
208	// move down?
209	if (!node->prev && !node->next) {
210		printk(KERN_DEBUG "hfs_btree_del_level\n");
211	}
212	if (!node->parent) {
213		tree->root = 0;
214		tree->depth = 0;
215	}
216	set_bit(HFS_BNODE_DELETED, &node->flags);
217}
218
219static inline int hfs_bnode_hash(u32 num)
220{
221	num = (num >> 16) + num;
222	num += num >> 8;
223	return num & (NODE_HASH_SIZE - 1);
224}
225
226struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
227{
228	struct hfs_bnode *node;
229
230	if (cnid >= tree->node_count) {
231		pr_err("request for non-existent node %d in B*Tree\n", cnid);
232		return NULL;
233	}
234
235	for (node = tree->node_hash[hfs_bnode_hash(cnid)];
236	     node; node = node->next_hash) {
237		if (node->this == cnid) {
238			return node;
239		}
240	}
241	return NULL;
242}
243
244static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
245{
246	struct hfs_bnode *node, *node2;
247	struct address_space *mapping;
248	struct page *page;
249	int size, block, i, hash;
250	loff_t off;
251
252	if (cnid >= tree->node_count) {
253		pr_err("request for non-existent node %d in B*Tree\n", cnid);
254		return NULL;
255	}
256
257	size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
258		sizeof(struct page *);
259	node = kzalloc(size, GFP_KERNEL);
260	if (!node)
261		return NULL;
262	node->tree = tree;
263	node->this = cnid;
264	set_bit(HFS_BNODE_NEW, &node->flags);
265	atomic_set(&node->refcnt, 1);
266	hfs_dbg(BNODE_REFS, "new_node(%d:%d): 1\n",
267		node->tree->cnid, node->this);
268	init_waitqueue_head(&node->lock_wq);
269	spin_lock(&tree->hash_lock);
270	node2 = hfs_bnode_findhash(tree, cnid);
271	if (!node2) {
272		hash = hfs_bnode_hash(cnid);
273		node->next_hash = tree->node_hash[hash];
274		tree->node_hash[hash] = node;
275		tree->node_hash_cnt++;
276	} else {
277		hfs_bnode_get(node2);
278		spin_unlock(&tree->hash_lock);
279		kfree(node);
280		wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags));
281		return node2;
282	}
283	spin_unlock(&tree->hash_lock);
284
285	mapping = tree->inode->i_mapping;
286	off = (loff_t)cnid * tree->node_size;
287	block = off >> PAGE_SHIFT;
288	node->page_offset = off & ~PAGE_MASK;
289	for (i = 0; i < tree->pages_per_bnode; i++) {
290		page = read_mapping_page(mapping, block++, NULL);
291		if (IS_ERR(page))
292			goto fail;
293		node->page[i] = page;
294	}
295
296	return node;
297fail:
298	set_bit(HFS_BNODE_ERROR, &node->flags);
299	return node;
300}
301
302void hfs_bnode_unhash(struct hfs_bnode *node)
303{
304	struct hfs_bnode **p;
305
306	hfs_dbg(BNODE_REFS, "remove_node(%d:%d): %d\n",
307		node->tree->cnid, node->this, atomic_read(&node->refcnt));
308	for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
309	     *p && *p != node; p = &(*p)->next_hash)
310		;
311	BUG_ON(!*p);
312	*p = node->next_hash;
313	node->tree->node_hash_cnt--;
314}
315
316/* Load a particular node out of a tree */
317struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
318{
319	struct hfs_bnode *node;
320	struct hfs_bnode_desc *desc;
321	int i, rec_off, off, next_off;
322	int entry_size, key_size;
323
324	spin_lock(&tree->hash_lock);
325	node = hfs_bnode_findhash(tree, num);
326	if (node) {
327		hfs_bnode_get(node);
328		spin_unlock(&tree->hash_lock);
329		wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags));
330		if (test_bit(HFS_BNODE_ERROR, &node->flags))
331			goto node_error;
332		return node;
333	}
334	spin_unlock(&tree->hash_lock);
335	node = __hfs_bnode_create(tree, num);
336	if (!node)
337		return ERR_PTR(-ENOMEM);
338	if (test_bit(HFS_BNODE_ERROR, &node->flags))
339		goto node_error;
340	if (!test_bit(HFS_BNODE_NEW, &node->flags))
341		return node;
342
343	desc = (struct hfs_bnode_desc *)(kmap_local_page(node->page[0]) +
344					 node->page_offset);
345	node->prev = be32_to_cpu(desc->prev);
346	node->next = be32_to_cpu(desc->next);
347	node->num_recs = be16_to_cpu(desc->num_recs);
348	node->type = desc->type;
349	node->height = desc->height;
350	kunmap_local(desc);
351
352	switch (node->type) {
353	case HFS_NODE_HEADER:
354	case HFS_NODE_MAP:
355		if (node->height != 0)
356			goto node_error;
357		break;
358	case HFS_NODE_LEAF:
359		if (node->height != 1)
360			goto node_error;
361		break;
362	case HFS_NODE_INDEX:
363		if (node->height <= 1 || node->height > tree->depth)
364			goto node_error;
365		break;
366	default:
367		goto node_error;
368	}
369
370	rec_off = tree->node_size - 2;
371	off = hfs_bnode_read_u16(node, rec_off);
372	if (off != sizeof(struct hfs_bnode_desc))
373		goto node_error;
374	for (i = 1; i <= node->num_recs; off = next_off, i++) {
375		rec_off -= 2;
376		next_off = hfs_bnode_read_u16(node, rec_off);
377		if (next_off <= off ||
378		    next_off > tree->node_size ||
379		    next_off & 1)
380			goto node_error;
381		entry_size = next_off - off;
382		if (node->type != HFS_NODE_INDEX &&
383		    node->type != HFS_NODE_LEAF)
384			continue;
385		key_size = hfs_bnode_read_u8(node, off) + 1;
386		if (key_size >= entry_size /*|| key_size & 1*/)
387			goto node_error;
388	}
389	clear_bit(HFS_BNODE_NEW, &node->flags);
390	wake_up(&node->lock_wq);
391	return node;
392
393node_error:
394	set_bit(HFS_BNODE_ERROR, &node->flags);
395	clear_bit(HFS_BNODE_NEW, &node->flags);
396	wake_up(&node->lock_wq);
397	hfs_bnode_put(node);
398	return ERR_PTR(-EIO);
399}
400
401void hfs_bnode_free(struct hfs_bnode *node)
402{
403	int i;
404
405	for (i = 0; i < node->tree->pages_per_bnode; i++)
406		if (node->page[i])
407			put_page(node->page[i]);
408	kfree(node);
409}
410
411struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
412{
413	struct hfs_bnode *node;
414	struct page **pagep;
415	int i;
416
417	spin_lock(&tree->hash_lock);
418	node = hfs_bnode_findhash(tree, num);
419	spin_unlock(&tree->hash_lock);
420	if (node) {
421		pr_crit("new node %u already hashed?\n", num);
422		WARN_ON(1);
423		return node;
424	}
425	node = __hfs_bnode_create(tree, num);
426	if (!node)
427		return ERR_PTR(-ENOMEM);
428	if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
429		hfs_bnode_put(node);
430		return ERR_PTR(-EIO);
431	}
432
433	pagep = node->page;
434	memzero_page(*pagep, node->page_offset,
435		     min((int)PAGE_SIZE, (int)tree->node_size));
436	set_page_dirty(*pagep);
437	for (i = 1; i < tree->pages_per_bnode; i++) {
438		memzero_page(*++pagep, 0, PAGE_SIZE);
439		set_page_dirty(*pagep);
440	}
441	clear_bit(HFS_BNODE_NEW, &node->flags);
442	wake_up(&node->lock_wq);
443
444	return node;
445}
446
447void hfs_bnode_get(struct hfs_bnode *node)
448{
449	if (node) {
450		atomic_inc(&node->refcnt);
451		hfs_dbg(BNODE_REFS, "get_node(%d:%d): %d\n",
452			node->tree->cnid, node->this,
453			atomic_read(&node->refcnt));
454	}
455}
456
457/* Dispose of resources used by a node */
458void hfs_bnode_put(struct hfs_bnode *node)
459{
460	if (node) {
461		struct hfs_btree *tree = node->tree;
462		int i;
463
464		hfs_dbg(BNODE_REFS, "put_node(%d:%d): %d\n",
465			node->tree->cnid, node->this,
466			atomic_read(&node->refcnt));
467		BUG_ON(!atomic_read(&node->refcnt));
468		if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
469			return;
470		for (i = 0; i < tree->pages_per_bnode; i++) {
471			if (!node->page[i])
472				continue;
473			mark_page_accessed(node->page[i]);
474		}
475
476		if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
477			hfs_bnode_unhash(node);
478			spin_unlock(&tree->hash_lock);
479			hfs_bmap_free(node);
480			hfs_bnode_free(node);
481			return;
482		}
483		spin_unlock(&tree->hash_lock);
484	}
485}
  1/*
  2 *  linux/fs/hfs/bnode.c
  3 *
  4 * Copyright (C) 2001
  5 * Brad Boyer (flar@allandria.com)
  6 * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7 *
  8 * Handle basic btree node operations
  9 */
 10
 11#include <linux/pagemap.h>
 12#include <linux/slab.h>
 13#include <linux/swap.h>
 14
 15#include "btree.h"
 16
 17void hfs_bnode_read(struct hfs_bnode *node, void *buf,
 18		int off, int len)
 19{
 20	struct page *page;
 21
 22	off += node->page_offset;
 23	page = node->page[0];
 24
 25	memcpy(buf, kmap(page) + off, len);
 26	kunmap(page);
 27}
 28
 29u16 hfs_bnode_read_u16(struct hfs_bnode *node, int off)
 30{
 31	__be16 data;
 32	// optimize later...
 33	hfs_bnode_read(node, &data, off, 2);
 34	return be16_to_cpu(data);
 35}
 36
 37u8 hfs_bnode_read_u8(struct hfs_bnode *node, int off)
 38{
 39	u8 data;
 40	// optimize later...
 41	hfs_bnode_read(node, &data, off, 1);
 42	return data;
 43}
 44
 45void hfs_bnode_read_key(struct hfs_bnode *node, void *key, int off)
 46{
 47	struct hfs_btree *tree;
 48	int key_len;
 49
 50	tree = node->tree;
 51	if (node->type == HFS_NODE_LEAF ||
 52	    tree->attributes & HFS_TREE_VARIDXKEYS)
 53		key_len = hfs_bnode_read_u8(node, off) + 1;
 54	else
 55		key_len = tree->max_key_len + 1;
 56
 57	hfs_bnode_read(node, key, off, key_len);
 58}
 59
 60void hfs_bnode_write(struct hfs_bnode *node, void *buf, int off, int len)
 61{
 62	struct page *page;
 63
 64	off += node->page_offset;
 65	page = node->page[0];
 66
 67	memcpy(kmap(page) + off, buf, len);
 68	kunmap(page);
 69	set_page_dirty(page);
 70}
 71
 72void hfs_bnode_write_u16(struct hfs_bnode *node, int off, u16 data)
 73{
 74	__be16 v = cpu_to_be16(data);
 75	// optimize later...
 76	hfs_bnode_write(node, &v, off, 2);
 77}
 78
 79void hfs_bnode_write_u8(struct hfs_bnode *node, int off, u8 data)
 80{
 81	// optimize later...
 82	hfs_bnode_write(node, &data, off, 1);
 83}
 84
 85void hfs_bnode_clear(struct hfs_bnode *node, int off, int len)
 86{
 87	struct page *page;
 88
 89	off += node->page_offset;
 90	page = node->page[0];
 91
 92	memset(kmap(page) + off, 0, len);
 93	kunmap(page);
 94	set_page_dirty(page);
 95}
 96
 97void hfs_bnode_copy(struct hfs_bnode *dst_node, int dst,
 98		struct hfs_bnode *src_node, int src, int len)
 99{
100	struct hfs_btree *tree;
101	struct page *src_page, *dst_page;
102
103	dprint(DBG_BNODE_MOD, "copybytes: %u,%u,%u\n", dst, src, len);
104	if (!len)
105		return;
106	tree = src_node->tree;
107	src += src_node->page_offset;
108	dst += dst_node->page_offset;
109	src_page = src_node->page[0];
110	dst_page = dst_node->page[0];
111
112	memcpy(kmap(dst_page) + dst, kmap(src_page) + src, len);
113	kunmap(src_page);
114	kunmap(dst_page);
115	set_page_dirty(dst_page);
116}
117
118void hfs_bnode_move(struct hfs_bnode *node, int dst, int src, int len)
119{
120	struct page *page;
121	void *ptr;
122
123	dprint(DBG_BNODE_MOD, "movebytes: %u,%u,%u\n", dst, src, len);
124	if (!len)
125		return;
126	src += node->page_offset;
127	dst += node->page_offset;
128	page = node->page[0];
129	ptr = kmap(page);
130	memmove(ptr + dst, ptr + src, len);
131	kunmap(page);
132	set_page_dirty(page);
133}
134
135void hfs_bnode_dump(struct hfs_bnode *node)
136{
137	struct hfs_bnode_desc desc;
138	__be32 cnid;
139	int i, off, key_off;
140
141	dprint(DBG_BNODE_MOD, "bnode: %d\n", node->this);
142	hfs_bnode_read(node, &desc, 0, sizeof(desc));
143	dprint(DBG_BNODE_MOD, "%d, %d, %d, %d, %d\n",
144		be32_to_cpu(desc.next), be32_to_cpu(desc.prev),
145		desc.type, desc.height, be16_to_cpu(desc.num_recs));
146
147	off = node->tree->node_size - 2;
148	for (i = be16_to_cpu(desc.num_recs); i >= 0; off -= 2, i--) {
149		key_off = hfs_bnode_read_u16(node, off);
150		dprint(DBG_BNODE_MOD, " %d", key_off);
151		if (i && node->type == HFS_NODE_INDEX) {
152			int tmp;
153
154			if (node->tree->attributes & HFS_TREE_VARIDXKEYS)
155				tmp = (hfs_bnode_read_u8(node, key_off) | 1) + 1;
156			else
157				tmp = node->tree->max_key_len + 1;
158			dprint(DBG_BNODE_MOD, " (%d,%d", tmp, hfs_bnode_read_u8(node, key_off));
159			hfs_bnode_read(node, &cnid, key_off + tmp, 4);
160			dprint(DBG_BNODE_MOD, ",%d)", be32_to_cpu(cnid));
161		} else if (i && node->type == HFS_NODE_LEAF) {
162			int tmp;
163
164			tmp = hfs_bnode_read_u8(node, key_off);
165			dprint(DBG_BNODE_MOD, " (%d)", tmp);
166		}
167	}
168	dprint(DBG_BNODE_MOD, "\n");
169}
170
171void hfs_bnode_unlink(struct hfs_bnode *node)
172{
173	struct hfs_btree *tree;
174	struct hfs_bnode *tmp;
175	__be32 cnid;
176
177	tree = node->tree;
178	if (node->prev) {
179		tmp = hfs_bnode_find(tree, node->prev);
180		if (IS_ERR(tmp))
181			return;
182		tmp->next = node->next;
183		cnid = cpu_to_be32(tmp->next);
184		hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, next), 4);
185		hfs_bnode_put(tmp);
186	} else if (node->type == HFS_NODE_LEAF)
187		tree->leaf_head = node->next;
188
189	if (node->next) {
190		tmp = hfs_bnode_find(tree, node->next);
191		if (IS_ERR(tmp))
192			return;
193		tmp->prev = node->prev;
194		cnid = cpu_to_be32(tmp->prev);
195		hfs_bnode_write(tmp, &cnid, offsetof(struct hfs_bnode_desc, prev), 4);
196		hfs_bnode_put(tmp);
197	} else if (node->type == HFS_NODE_LEAF)
198		tree->leaf_tail = node->prev;
199
200	// move down?
201	if (!node->prev && !node->next) {
202		printk(KERN_DEBUG "hfs_btree_del_level\n");
203	}
204	if (!node->parent) {
205		tree->root = 0;
206		tree->depth = 0;
207	}
208	set_bit(HFS_BNODE_DELETED, &node->flags);
209}
210
211static inline int hfs_bnode_hash(u32 num)
212{
213	num = (num >> 16) + num;
214	num += num >> 8;
215	return num & (NODE_HASH_SIZE - 1);
216}
217
218struct hfs_bnode *hfs_bnode_findhash(struct hfs_btree *tree, u32 cnid)
219{
220	struct hfs_bnode *node;
221
222	if (cnid >= tree->node_count) {
223		printk(KERN_ERR "hfs: request for non-existent node %d in B*Tree\n", cnid);
224		return NULL;
225	}
226
227	for (node = tree->node_hash[hfs_bnode_hash(cnid)];
228	     node; node = node->next_hash) {
229		if (node->this == cnid) {
230			return node;
231		}
232	}
233	return NULL;
234}
235
236static struct hfs_bnode *__hfs_bnode_create(struct hfs_btree *tree, u32 cnid)
237{
238	struct super_block *sb;
239	struct hfs_bnode *node, *node2;
240	struct address_space *mapping;
241	struct page *page;
242	int size, block, i, hash;
243	loff_t off;
244
245	if (cnid >= tree->node_count) {
246		printk(KERN_ERR "hfs: request for non-existent node %d in B*Tree\n", cnid);
247		return NULL;
248	}
249
250	sb = tree->inode->i_sb;
251	size = sizeof(struct hfs_bnode) + tree->pages_per_bnode *
252		sizeof(struct page *);
253	node = kzalloc(size, GFP_KERNEL);
254	if (!node)
255		return NULL;
256	node->tree = tree;
257	node->this = cnid;
258	set_bit(HFS_BNODE_NEW, &node->flags);
259	atomic_set(&node->refcnt, 1);
260	dprint(DBG_BNODE_REFS, "new_node(%d:%d): 1\n",
261	       node->tree->cnid, node->this);
262	init_waitqueue_head(&node->lock_wq);
263	spin_lock(&tree->hash_lock);
264	node2 = hfs_bnode_findhash(tree, cnid);
265	if (!node2) {
266		hash = hfs_bnode_hash(cnid);
267		node->next_hash = tree->node_hash[hash];
268		tree->node_hash[hash] = node;
269		tree->node_hash_cnt++;
270	} else {
271		spin_unlock(&tree->hash_lock);
272		kfree(node);
273		wait_event(node2->lock_wq, !test_bit(HFS_BNODE_NEW, &node2->flags));
274		return node2;
275	}
276	spin_unlock(&tree->hash_lock);
277
278	mapping = tree->inode->i_mapping;
279	off = (loff_t)cnid * tree->node_size;
280	block = off >> PAGE_CACHE_SHIFT;
281	node->page_offset = off & ~PAGE_CACHE_MASK;
282	for (i = 0; i < tree->pages_per_bnode; i++) {
283		page = read_mapping_page(mapping, block++, NULL);
284		if (IS_ERR(page))
285			goto fail;
286		if (PageError(page)) {
287			page_cache_release(page);
288			goto fail;
289		}
290		page_cache_release(page);
291		node->page[i] = page;
292	}
293
294	return node;
295fail:
296	set_bit(HFS_BNODE_ERROR, &node->flags);
297	return node;
298}
299
300void hfs_bnode_unhash(struct hfs_bnode *node)
301{
302	struct hfs_bnode **p;
303
304	dprint(DBG_BNODE_REFS, "remove_node(%d:%d): %d\n",
305		node->tree->cnid, node->this, atomic_read(&node->refcnt));
306	for (p = &node->tree->node_hash[hfs_bnode_hash(node->this)];
307	     *p && *p != node; p = &(*p)->next_hash)
308		;
309	BUG_ON(!*p);
310	*p = node->next_hash;
311	node->tree->node_hash_cnt--;
312}
313
314/* Load a particular node out of a tree */
315struct hfs_bnode *hfs_bnode_find(struct hfs_btree *tree, u32 num)
316{
317	struct hfs_bnode *node;
318	struct hfs_bnode_desc *desc;
319	int i, rec_off, off, next_off;
320	int entry_size, key_size;
321
322	spin_lock(&tree->hash_lock);
323	node = hfs_bnode_findhash(tree, num);
324	if (node) {
325		hfs_bnode_get(node);
326		spin_unlock(&tree->hash_lock);
327		wait_event(node->lock_wq, !test_bit(HFS_BNODE_NEW, &node->flags));
328		if (test_bit(HFS_BNODE_ERROR, &node->flags))
329			goto node_error;
330		return node;
331	}
332	spin_unlock(&tree->hash_lock);
333	node = __hfs_bnode_create(tree, num);
334	if (!node)
335		return ERR_PTR(-ENOMEM);
336	if (test_bit(HFS_BNODE_ERROR, &node->flags))
337		goto node_error;
338	if (!test_bit(HFS_BNODE_NEW, &node->flags))
339		return node;
340
341	desc = (struct hfs_bnode_desc *)(kmap(node->page[0]) + node->page_offset);
342	node->prev = be32_to_cpu(desc->prev);
343	node->next = be32_to_cpu(desc->next);
344	node->num_recs = be16_to_cpu(desc->num_recs);
345	node->type = desc->type;
346	node->height = desc->height;
347	kunmap(node->page[0]);
348
349	switch (node->type) {
350	case HFS_NODE_HEADER:
351	case HFS_NODE_MAP:
352		if (node->height != 0)
353			goto node_error;
354		break;
355	case HFS_NODE_LEAF:
356		if (node->height != 1)
357			goto node_error;
358		break;
359	case HFS_NODE_INDEX:
360		if (node->height <= 1 || node->height > tree->depth)
361			goto node_error;
362		break;
363	default:
364		goto node_error;
365	}
366
367	rec_off = tree->node_size - 2;
368	off = hfs_bnode_read_u16(node, rec_off);
369	if (off != sizeof(struct hfs_bnode_desc))
370		goto node_error;
371	for (i = 1; i <= node->num_recs; off = next_off, i++) {
372		rec_off -= 2;
373		next_off = hfs_bnode_read_u16(node, rec_off);
374		if (next_off <= off ||
375		    next_off > tree->node_size ||
376		    next_off & 1)
377			goto node_error;
378		entry_size = next_off - off;
379		if (node->type != HFS_NODE_INDEX &&
380		    node->type != HFS_NODE_LEAF)
381			continue;
382		key_size = hfs_bnode_read_u8(node, off) + 1;
383		if (key_size >= entry_size /*|| key_size & 1*/)
384			goto node_error;
385	}
386	clear_bit(HFS_BNODE_NEW, &node->flags);
387	wake_up(&node->lock_wq);
388	return node;
389
390node_error:
391	set_bit(HFS_BNODE_ERROR, &node->flags);
392	clear_bit(HFS_BNODE_NEW, &node->flags);
393	wake_up(&node->lock_wq);
394	hfs_bnode_put(node);
395	return ERR_PTR(-EIO);
396}
397
398void hfs_bnode_free(struct hfs_bnode *node)
399{
400	//int i;
401
402	//for (i = 0; i < node->tree->pages_per_bnode; i++)
403	//	if (node->page[i])
404	//		page_cache_release(node->page[i]);
405	kfree(node);
406}
407
408struct hfs_bnode *hfs_bnode_create(struct hfs_btree *tree, u32 num)
409{
410	struct hfs_bnode *node;
411	struct page **pagep;
412	int i;
413
414	spin_lock(&tree->hash_lock);
415	node = hfs_bnode_findhash(tree, num);
416	spin_unlock(&tree->hash_lock);
417	BUG_ON(node);
418	node = __hfs_bnode_create(tree, num);
419	if (!node)
420		return ERR_PTR(-ENOMEM);
421	if (test_bit(HFS_BNODE_ERROR, &node->flags)) {
422		hfs_bnode_put(node);
423		return ERR_PTR(-EIO);
424	}
425
426	pagep = node->page;
427	memset(kmap(*pagep) + node->page_offset, 0,
428	       min((int)PAGE_CACHE_SIZE, (int)tree->node_size));
429	set_page_dirty(*pagep);
430	kunmap(*pagep);
431	for (i = 1; i < tree->pages_per_bnode; i++) {
432		memset(kmap(*++pagep), 0, PAGE_CACHE_SIZE);
433		set_page_dirty(*pagep);
434		kunmap(*pagep);
435	}
436	clear_bit(HFS_BNODE_NEW, &node->flags);
437	wake_up(&node->lock_wq);
438
439	return node;
440}
441
442void hfs_bnode_get(struct hfs_bnode *node)
443{
444	if (node) {
445		atomic_inc(&node->refcnt);
446		dprint(DBG_BNODE_REFS, "get_node(%d:%d): %d\n",
447		       node->tree->cnid, node->this, atomic_read(&node->refcnt));
448	}
449}
450
451/* Dispose of resources used by a node */
452void hfs_bnode_put(struct hfs_bnode *node)
453{
454	if (node) {
455		struct hfs_btree *tree = node->tree;
456		int i;
457
458		dprint(DBG_BNODE_REFS, "put_node(%d:%d): %d\n",
459		       node->tree->cnid, node->this, atomic_read(&node->refcnt));
460		BUG_ON(!atomic_read(&node->refcnt));
461		if (!atomic_dec_and_lock(&node->refcnt, &tree->hash_lock))
462			return;
463		for (i = 0; i < tree->pages_per_bnode; i++) {
464			if (!node->page[i])
465				continue;
466			mark_page_accessed(node->page[i]);
467		}
468
469		if (test_bit(HFS_BNODE_DELETED, &node->flags)) {
470			hfs_bnode_unhash(node);
471			spin_unlock(&tree->hash_lock);
472			hfs_bmap_free(node);
473			hfs_bnode_free(node);
474			return;
475		}
476		spin_unlock(&tree->hash_lock);
477	}
478}