Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright (C) 2021 Sean Anderson <sean.anderson@seco.com>
  4 *
  5 * Limitations:
  6 * - When changing both duty cycle and period, we may end up with one cycle
  7 *   with the old duty cycle and the new period. This is because the counters
  8 *   may only be reloaded by first stopping them, or by letting them be
  9 *   automatically reloaded at the end of a cycle. If this automatic reload
 10 *   happens after we set TLR0 but before we set TLR1 then we will have a
 11 *   bad cycle. This could probably be fixed by reading TCR0 just before
 12 *   reprogramming, but I think it would add complexity for little gain.
 13 * - Cannot produce 100% duty cycle by configuring the TLRs. This might be
 14 *   possible by stopping the counters at an appropriate point in the cycle,
 15 *   but this is not (yet) implemented.
 16 * - Only produces "normal" output.
 17 * - Always produces low output if disabled.
 18 */
 19
 20#include <clocksource/timer-xilinx.h>
 21#include <linux/clk.h>
 22#include <linux/clk-provider.h>
 23#include <linux/device.h>
 24#include <linux/module.h>
 25#include <linux/of.h>
 26#include <linux/platform_device.h>
 27#include <linux/pwm.h>
 28#include <linux/regmap.h>
 29
 30/*
 31 * The following functions are "common" to drivers for this device, and may be
 32 * exported at a future date.
 33 */
 34u32 xilinx_timer_tlr_cycles(struct xilinx_timer_priv *priv, u32 tcsr,
 35			    u64 cycles)
 36{
 37	WARN_ON(cycles < 2 || cycles - 2 > priv->max);
 38
 39	if (tcsr & TCSR_UDT)
 40		return cycles - 2;
 41	return priv->max - cycles + 2;
 42}
 43
 44unsigned int xilinx_timer_get_period(struct xilinx_timer_priv *priv,
 45				     u32 tlr, u32 tcsr)
 46{
 47	u64 cycles;
 48
 49	if (tcsr & TCSR_UDT)
 50		cycles = tlr + 2;
 51	else
 52		cycles = (u64)priv->max - tlr + 2;
 53
 54	/* cycles has a max of 2^32 + 2, so we can't overflow */
 55	return DIV64_U64_ROUND_UP(cycles * NSEC_PER_SEC,
 56				  clk_get_rate(priv->clk));
 57}
 58
 59/*
 60 * The idea here is to capture whether the PWM is actually running (e.g.
 61 * because we or the bootloader set it up) and we need to be careful to ensure
 62 * we don't cause a glitch. According to the data sheet, to enable the PWM we
 63 * need to
 64 *
 65 * - Set both timers to generate mode (MDT=1)
 66 * - Set both timers to PWM mode (PWMA=1)
 67 * - Enable the generate out signals (GENT=1)
 68 *
 69 * In addition,
 70 *
 71 * - The timer must be running (ENT=1)
 72 * - The timer must auto-reload TLR into TCR (ARHT=1)
 73 * - We must not be in the process of loading TLR into TCR (LOAD=0)
 74 * - Cascade mode must be disabled (CASC=0)
 75 *
 76 * If any of these differ from usual, then the PWM is either disabled, or is
 77 * running in a mode that this driver does not support.
 78 */
 79#define TCSR_PWM_SET (TCSR_GENT | TCSR_ARHT | TCSR_ENT | TCSR_PWMA)
 80#define TCSR_PWM_CLEAR (TCSR_MDT | TCSR_LOAD)
 81#define TCSR_PWM_MASK (TCSR_PWM_SET | TCSR_PWM_CLEAR)
 82
 83struct xilinx_pwm_device {
 84	struct pwm_chip chip;
 85	struct xilinx_timer_priv priv;
 86};
 87
 88static inline struct xilinx_timer_priv
 89*xilinx_pwm_chip_to_priv(struct pwm_chip *chip)
 90{
 91	return &container_of(chip, struct xilinx_pwm_device, chip)->priv;
 92}
 93
 94static bool xilinx_timer_pwm_enabled(u32 tcsr0, u32 tcsr1)
 95{
 96	return ((TCSR_PWM_MASK | TCSR_CASC) & tcsr0) == TCSR_PWM_SET &&
 97		(TCSR_PWM_MASK & tcsr1) == TCSR_PWM_SET;
 98}
 99
100static int xilinx_pwm_apply(struct pwm_chip *chip, struct pwm_device *unused,
101			    const struct pwm_state *state)
102{
103	struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
104	u32 tlr0, tlr1, tcsr0, tcsr1;
105	u64 period_cycles, duty_cycles;
106	unsigned long rate;
107
108	if (state->polarity != PWM_POLARITY_NORMAL)
109		return -EINVAL;
110
111	/*
112	 * To be representable by TLR, cycles must be between 2 and
113	 * priv->max + 2. To enforce this we can reduce the cycles, but we may
114	 * not increase them. Caveat emptor: while this does result in more
115	 * predictable rounding, it may also result in a completely different
116	 * duty cycle (% high time) than what was requested.
117	 */
118	rate = clk_get_rate(priv->clk);
119	/* Avoid overflow */
120	period_cycles = min_t(u64, state->period, U32_MAX * NSEC_PER_SEC);
121	period_cycles = mul_u64_u32_div(period_cycles, rate, NSEC_PER_SEC);
122	period_cycles = min_t(u64, period_cycles, priv->max + 2);
123	if (period_cycles < 2)
124		return -ERANGE;
125
126	/* Same thing for duty cycles */
127	duty_cycles = min_t(u64, state->duty_cycle, U32_MAX * NSEC_PER_SEC);
128	duty_cycles = mul_u64_u32_div(duty_cycles, rate, NSEC_PER_SEC);
129	duty_cycles = min_t(u64, duty_cycles, priv->max + 2);
130
131	/*
132	 * If we specify 100% duty cycle, we will get 0% instead, so decrease
133	 * the duty cycle count by one.
134	 */
135	if (duty_cycles >= period_cycles)
136		duty_cycles = period_cycles - 1;
137
138	/* Round down to 0% duty cycle for unrepresentable duty cycles */
139	if (duty_cycles < 2)
140		duty_cycles = period_cycles;
141
142	regmap_read(priv->map, TCSR0, &tcsr0);
143	regmap_read(priv->map, TCSR1, &tcsr1);
144	tlr0 = xilinx_timer_tlr_cycles(priv, tcsr0, period_cycles);
145	tlr1 = xilinx_timer_tlr_cycles(priv, tcsr1, duty_cycles);
146	regmap_write(priv->map, TLR0, tlr0);
147	regmap_write(priv->map, TLR1, tlr1);
148
149	if (state->enabled) {
150		/*
151		 * If the PWM is already running, then the counters will be
152		 * reloaded at the end of the current cycle.
153		 */
154		if (!xilinx_timer_pwm_enabled(tcsr0, tcsr1)) {
155			/* Load TLR into TCR */
156			regmap_write(priv->map, TCSR0, tcsr0 | TCSR_LOAD);
157			regmap_write(priv->map, TCSR1, tcsr1 | TCSR_LOAD);
158			/* Enable timers all at once with ENALL */
159			tcsr0 = (TCSR_PWM_SET & ~TCSR_ENT) | (tcsr0 & TCSR_UDT);
160			tcsr1 = TCSR_PWM_SET | TCSR_ENALL | (tcsr1 & TCSR_UDT);
161			regmap_write(priv->map, TCSR0, tcsr0);
162			regmap_write(priv->map, TCSR1, tcsr1);
163		}
164	} else {
165		regmap_write(priv->map, TCSR0, 0);
166		regmap_write(priv->map, TCSR1, 0);
167	}
168
169	return 0;
170}
171
172static int xilinx_pwm_get_state(struct pwm_chip *chip,
173				struct pwm_device *unused,
174				struct pwm_state *state)
175{
176	struct xilinx_timer_priv *priv = xilinx_pwm_chip_to_priv(chip);
177	u32 tlr0, tlr1, tcsr0, tcsr1;
178
179	regmap_read(priv->map, TLR0, &tlr0);
180	regmap_read(priv->map, TLR1, &tlr1);
181	regmap_read(priv->map, TCSR0, &tcsr0);
182	regmap_read(priv->map, TCSR1, &tcsr1);
183	state->period = xilinx_timer_get_period(priv, tlr0, tcsr0);
184	state->duty_cycle = xilinx_timer_get_period(priv, tlr1, tcsr1);
185	state->enabled = xilinx_timer_pwm_enabled(tcsr0, tcsr1);
186	state->polarity = PWM_POLARITY_NORMAL;
187
188	/*
189	 * 100% duty cycle results in constant low output. This may be (very)
190	 * wrong if rate > 1 GHz, so fix this if you have such hardware :)
191	 */
192	if (state->period == state->duty_cycle)
193		state->duty_cycle = 0;
194
195	return 0;
196}
197
198static const struct pwm_ops xilinx_pwm_ops = {
199	.apply = xilinx_pwm_apply,
200	.get_state = xilinx_pwm_get_state,
201};
202
203static const struct regmap_config xilinx_pwm_regmap_config = {
204	.reg_bits = 32,
205	.reg_stride = 4,
206	.val_bits = 32,
207	.val_format_endian = REGMAP_ENDIAN_LITTLE,
208	.max_register = TCR1,
209};
210
211static int xilinx_pwm_probe(struct platform_device *pdev)
212{
213	int ret;
214	struct device *dev = &pdev->dev;
215	struct device_node *np = dev->of_node;
216	struct xilinx_timer_priv *priv;
217	struct xilinx_pwm_device *xilinx_pwm;
218	u32 pwm_cells, one_timer, width;
219	void __iomem *regs;
220
221	/* If there are no PWM cells, this binding is for a timer */
222	ret = of_property_read_u32(np, "#pwm-cells", &pwm_cells);
223	if (ret == -EINVAL)
224		return -ENODEV;
225	if (ret)
226		return dev_err_probe(dev, ret, "could not read #pwm-cells\n");
227
228	xilinx_pwm = devm_kzalloc(dev, sizeof(*xilinx_pwm), GFP_KERNEL);
229	if (!xilinx_pwm)
230		return -ENOMEM;
231	platform_set_drvdata(pdev, xilinx_pwm);
232	priv = &xilinx_pwm->priv;
233
234	regs = devm_platform_ioremap_resource(pdev, 0);
235	if (IS_ERR(regs))
236		return PTR_ERR(regs);
237
238	priv->map = devm_regmap_init_mmio(dev, regs,
239					  &xilinx_pwm_regmap_config);
240	if (IS_ERR(priv->map))
241		return dev_err_probe(dev, PTR_ERR(priv->map),
242				     "Could not create regmap\n");
243
244	ret = of_property_read_u32(np, "xlnx,one-timer-only", &one_timer);
245	if (ret)
246		return dev_err_probe(dev, ret,
247				     "Could not read xlnx,one-timer-only\n");
248
249	if (one_timer)
250		return dev_err_probe(dev, -EINVAL,
251				     "Two timers required for PWM mode\n");
252
253	ret = of_property_read_u32(np, "xlnx,count-width", &width);
254	if (ret == -EINVAL)
255		width = 32;
256	else if (ret)
257		return dev_err_probe(dev, ret,
258				     "Could not read xlnx,count-width\n");
259
260	if (width != 8 && width != 16 && width != 32)
261		return dev_err_probe(dev, -EINVAL,
262				     "Invalid counter width %d\n", width);
263	priv->max = BIT_ULL(width) - 1;
264
265	/*
266	 * The polarity of the Generate Out signals must be active high for PWM
267	 * mode to work. We could determine this from the device tree, but
268	 * alas, such properties are not allowed to be used.
269	 */
270
271	priv->clk = devm_clk_get(dev, "s_axi_aclk");
272	if (IS_ERR(priv->clk))
273		return dev_err_probe(dev, PTR_ERR(priv->clk),
274				     "Could not get clock\n");
275
276	ret = clk_prepare_enable(priv->clk);
277	if (ret)
278		return dev_err_probe(dev, ret, "Clock enable failed\n");
279	clk_rate_exclusive_get(priv->clk);
280
281	xilinx_pwm->chip.dev = dev;
282	xilinx_pwm->chip.ops = &xilinx_pwm_ops;
283	xilinx_pwm->chip.npwm = 1;
284	ret = pwmchip_add(&xilinx_pwm->chip);
285	if (ret) {
286		clk_rate_exclusive_put(priv->clk);
287		clk_disable_unprepare(priv->clk);
288		return dev_err_probe(dev, ret, "Could not register PWM chip\n");
289	}
290
291	return 0;
292}
293
294static void xilinx_pwm_remove(struct platform_device *pdev)
295{
296	struct xilinx_pwm_device *xilinx_pwm = platform_get_drvdata(pdev);
297
298	pwmchip_remove(&xilinx_pwm->chip);
299	clk_rate_exclusive_put(xilinx_pwm->priv.clk);
300	clk_disable_unprepare(xilinx_pwm->priv.clk);
301}
302
303static const struct of_device_id xilinx_pwm_of_match[] = {
304	{ .compatible = "xlnx,xps-timer-1.00.a", },
305	{},
306};
307MODULE_DEVICE_TABLE(of, xilinx_pwm_of_match);
308
309static struct platform_driver xilinx_pwm_driver = {
310	.probe = xilinx_pwm_probe,
311	.remove_new = xilinx_pwm_remove,
312	.driver = {
313		.name = "xilinx-pwm",
314		.of_match_table = of_match_ptr(xilinx_pwm_of_match),
315	},
316};
317module_platform_driver(xilinx_pwm_driver);
318
319MODULE_ALIAS("platform:xilinx-pwm");
320MODULE_DESCRIPTION("PWM driver for Xilinx LogiCORE IP AXI Timer");
321MODULE_LICENSE("GPL");