Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.8.
   1/************************************************************************
   2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
   3 * Copyright(c) 2002-2010 Exar Corp.
   4 *
   5 * This software may be used and distributed according to the terms of
   6 * the GNU General Public License (GPL), incorporated herein by reference.
   7 * Drivers based on or derived from this code fall under the GPL and must
   8 * retain the authorship, copyright and license notice.  This file is not
   9 * a complete program and may only be used when the entire operating
  10 * system is licensed under the GPL.
  11 * See the file COPYING in this distribution for more information.
  12 *
  13 * Credits:
  14 * Jeff Garzik		: For pointing out the improper error condition
  15 *			  check in the s2io_xmit routine and also some
  16 *			  issues in the Tx watch dog function. Also for
  17 *			  patiently answering all those innumerable
  18 *			  questions regaring the 2.6 porting issues.
  19 * Stephen Hemminger	: Providing proper 2.6 porting mechanism for some
  20 *			  macros available only in 2.6 Kernel.
  21 * Francois Romieu	: For pointing out all code part that were
  22 *			  deprecated and also styling related comments.
  23 * Grant Grundler	: For helping me get rid of some Architecture
  24 *			  dependent code.
  25 * Christopher Hellwig	: Some more 2.6 specific issues in the driver.
  26 *
  27 * The module loadable parameters that are supported by the driver and a brief
  28 * explanation of all the variables.
  29 *
  30 * rx_ring_num : This can be used to program the number of receive rings used
  31 * in the driver.
  32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
  33 *     This is also an array of size 8.
  34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  35 *		values are 1, 2.
  36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
  38 * Tx descriptors that can be associated with each corresponding FIFO.
  39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  40 *     2(MSI_X). Default value is '2(MSI_X)'
  41 * lro_max_pkts: This parameter defines maximum number of packets can be
  42 *     aggregated as a single large packet
  43 * napi: This parameter used to enable/disable NAPI (polling Rx)
  44 *     Possible values '1' for enable and '0' for disable. Default is '1'
  45 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  46 *      Possible values '1' for enable and '0' for disable. Default is '0'
  47 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  48 *                 Possible values '1' for enable , '0' for disable.
  49 *                 Default is '2' - which means disable in promisc mode
  50 *                 and enable in non-promiscuous mode.
  51 * multiq: This parameter used to enable/disable MULTIQUEUE support.
  52 *      Possible values '1' for enable and '0' for disable. Default is '0'
  53 ************************************************************************/
  54
  55#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  56
  57#include <linux/module.h>
  58#include <linux/types.h>
  59#include <linux/errno.h>
  60#include <linux/ioport.h>
  61#include <linux/pci.h>
  62#include <linux/dma-mapping.h>
  63#include <linux/kernel.h>
  64#include <linux/netdevice.h>
  65#include <linux/etherdevice.h>
  66#include <linux/mdio.h>
  67#include <linux/skbuff.h>
  68#include <linux/init.h>
  69#include <linux/delay.h>
  70#include <linux/stddef.h>
  71#include <linux/ioctl.h>
  72#include <linux/timex.h>
  73#include <linux/ethtool.h>
  74#include <linux/workqueue.h>
  75#include <linux/if_vlan.h>
  76#include <linux/ip.h>
  77#include <linux/tcp.h>
  78#include <linux/uaccess.h>
  79#include <linux/io.h>
  80#include <linux/slab.h>
  81#include <linux/prefetch.h>
  82#include <net/tcp.h>
  83
  84#include <asm/system.h>
  85#include <asm/div64.h>
  86#include <asm/irq.h>
  87
  88/* local include */
  89#include "s2io.h"
  90#include "s2io-regs.h"
  91
  92#define DRV_VERSION "2.0.26.28"
  93
  94/* S2io Driver name & version. */
  95static const char s2io_driver_name[] = "Neterion";
  96static const char s2io_driver_version[] = DRV_VERSION;
  97
  98static const int rxd_size[2] = {32, 48};
  99static const int rxd_count[2] = {127, 85};
 100
 101static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
 102{
 103	int ret;
 104
 105	ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
 106	       (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
 107
 108	return ret;
 109}
 110
 111/*
 112 * Cards with following subsystem_id have a link state indication
 113 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
 114 * macro below identifies these cards given the subsystem_id.
 115 */
 116#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid)		\
 117	(dev_type == XFRAME_I_DEVICE) ?					\
 118	((((subid >= 0x600B) && (subid <= 0x600D)) ||			\
 119	  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
 120
 121#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
 122				      ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
 123
 124static inline int is_s2io_card_up(const struct s2io_nic *sp)
 125{
 126	return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
 127}
 128
 129/* Ethtool related variables and Macros. */
 130static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
 131	"Register test\t(offline)",
 132	"Eeprom test\t(offline)",
 133	"Link test\t(online)",
 134	"RLDRAM test\t(offline)",
 135	"BIST Test\t(offline)"
 136};
 137
 138static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
 139	{"tmac_frms"},
 140	{"tmac_data_octets"},
 141	{"tmac_drop_frms"},
 142	{"tmac_mcst_frms"},
 143	{"tmac_bcst_frms"},
 144	{"tmac_pause_ctrl_frms"},
 145	{"tmac_ttl_octets"},
 146	{"tmac_ucst_frms"},
 147	{"tmac_nucst_frms"},
 148	{"tmac_any_err_frms"},
 149	{"tmac_ttl_less_fb_octets"},
 150	{"tmac_vld_ip_octets"},
 151	{"tmac_vld_ip"},
 152	{"tmac_drop_ip"},
 153	{"tmac_icmp"},
 154	{"tmac_rst_tcp"},
 155	{"tmac_tcp"},
 156	{"tmac_udp"},
 157	{"rmac_vld_frms"},
 158	{"rmac_data_octets"},
 159	{"rmac_fcs_err_frms"},
 160	{"rmac_drop_frms"},
 161	{"rmac_vld_mcst_frms"},
 162	{"rmac_vld_bcst_frms"},
 163	{"rmac_in_rng_len_err_frms"},
 164	{"rmac_out_rng_len_err_frms"},
 165	{"rmac_long_frms"},
 166	{"rmac_pause_ctrl_frms"},
 167	{"rmac_unsup_ctrl_frms"},
 168	{"rmac_ttl_octets"},
 169	{"rmac_accepted_ucst_frms"},
 170	{"rmac_accepted_nucst_frms"},
 171	{"rmac_discarded_frms"},
 172	{"rmac_drop_events"},
 173	{"rmac_ttl_less_fb_octets"},
 174	{"rmac_ttl_frms"},
 175	{"rmac_usized_frms"},
 176	{"rmac_osized_frms"},
 177	{"rmac_frag_frms"},
 178	{"rmac_jabber_frms"},
 179	{"rmac_ttl_64_frms"},
 180	{"rmac_ttl_65_127_frms"},
 181	{"rmac_ttl_128_255_frms"},
 182	{"rmac_ttl_256_511_frms"},
 183	{"rmac_ttl_512_1023_frms"},
 184	{"rmac_ttl_1024_1518_frms"},
 185	{"rmac_ip"},
 186	{"rmac_ip_octets"},
 187	{"rmac_hdr_err_ip"},
 188	{"rmac_drop_ip"},
 189	{"rmac_icmp"},
 190	{"rmac_tcp"},
 191	{"rmac_udp"},
 192	{"rmac_err_drp_udp"},
 193	{"rmac_xgmii_err_sym"},
 194	{"rmac_frms_q0"},
 195	{"rmac_frms_q1"},
 196	{"rmac_frms_q2"},
 197	{"rmac_frms_q3"},
 198	{"rmac_frms_q4"},
 199	{"rmac_frms_q5"},
 200	{"rmac_frms_q6"},
 201	{"rmac_frms_q7"},
 202	{"rmac_full_q0"},
 203	{"rmac_full_q1"},
 204	{"rmac_full_q2"},
 205	{"rmac_full_q3"},
 206	{"rmac_full_q4"},
 207	{"rmac_full_q5"},
 208	{"rmac_full_q6"},
 209	{"rmac_full_q7"},
 210	{"rmac_pause_cnt"},
 211	{"rmac_xgmii_data_err_cnt"},
 212	{"rmac_xgmii_ctrl_err_cnt"},
 213	{"rmac_accepted_ip"},
 214	{"rmac_err_tcp"},
 215	{"rd_req_cnt"},
 216	{"new_rd_req_cnt"},
 217	{"new_rd_req_rtry_cnt"},
 218	{"rd_rtry_cnt"},
 219	{"wr_rtry_rd_ack_cnt"},
 220	{"wr_req_cnt"},
 221	{"new_wr_req_cnt"},
 222	{"new_wr_req_rtry_cnt"},
 223	{"wr_rtry_cnt"},
 224	{"wr_disc_cnt"},
 225	{"rd_rtry_wr_ack_cnt"},
 226	{"txp_wr_cnt"},
 227	{"txd_rd_cnt"},
 228	{"txd_wr_cnt"},
 229	{"rxd_rd_cnt"},
 230	{"rxd_wr_cnt"},
 231	{"txf_rd_cnt"},
 232	{"rxf_wr_cnt"}
 233};
 234
 235static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
 236	{"rmac_ttl_1519_4095_frms"},
 237	{"rmac_ttl_4096_8191_frms"},
 238	{"rmac_ttl_8192_max_frms"},
 239	{"rmac_ttl_gt_max_frms"},
 240	{"rmac_osized_alt_frms"},
 241	{"rmac_jabber_alt_frms"},
 242	{"rmac_gt_max_alt_frms"},
 243	{"rmac_vlan_frms"},
 244	{"rmac_len_discard"},
 245	{"rmac_fcs_discard"},
 246	{"rmac_pf_discard"},
 247	{"rmac_da_discard"},
 248	{"rmac_red_discard"},
 249	{"rmac_rts_discard"},
 250	{"rmac_ingm_full_discard"},
 251	{"link_fault_cnt"}
 252};
 253
 254static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
 255	{"\n DRIVER STATISTICS"},
 256	{"single_bit_ecc_errs"},
 257	{"double_bit_ecc_errs"},
 258	{"parity_err_cnt"},
 259	{"serious_err_cnt"},
 260	{"soft_reset_cnt"},
 261	{"fifo_full_cnt"},
 262	{"ring_0_full_cnt"},
 263	{"ring_1_full_cnt"},
 264	{"ring_2_full_cnt"},
 265	{"ring_3_full_cnt"},
 266	{"ring_4_full_cnt"},
 267	{"ring_5_full_cnt"},
 268	{"ring_6_full_cnt"},
 269	{"ring_7_full_cnt"},
 270	{"alarm_transceiver_temp_high"},
 271	{"alarm_transceiver_temp_low"},
 272	{"alarm_laser_bias_current_high"},
 273	{"alarm_laser_bias_current_low"},
 274	{"alarm_laser_output_power_high"},
 275	{"alarm_laser_output_power_low"},
 276	{"warn_transceiver_temp_high"},
 277	{"warn_transceiver_temp_low"},
 278	{"warn_laser_bias_current_high"},
 279	{"warn_laser_bias_current_low"},
 280	{"warn_laser_output_power_high"},
 281	{"warn_laser_output_power_low"},
 282	{"lro_aggregated_pkts"},
 283	{"lro_flush_both_count"},
 284	{"lro_out_of_sequence_pkts"},
 285	{"lro_flush_due_to_max_pkts"},
 286	{"lro_avg_aggr_pkts"},
 287	{"mem_alloc_fail_cnt"},
 288	{"pci_map_fail_cnt"},
 289	{"watchdog_timer_cnt"},
 290	{"mem_allocated"},
 291	{"mem_freed"},
 292	{"link_up_cnt"},
 293	{"link_down_cnt"},
 294	{"link_up_time"},
 295	{"link_down_time"},
 296	{"tx_tcode_buf_abort_cnt"},
 297	{"tx_tcode_desc_abort_cnt"},
 298	{"tx_tcode_parity_err_cnt"},
 299	{"tx_tcode_link_loss_cnt"},
 300	{"tx_tcode_list_proc_err_cnt"},
 301	{"rx_tcode_parity_err_cnt"},
 302	{"rx_tcode_abort_cnt"},
 303	{"rx_tcode_parity_abort_cnt"},
 304	{"rx_tcode_rda_fail_cnt"},
 305	{"rx_tcode_unkn_prot_cnt"},
 306	{"rx_tcode_fcs_err_cnt"},
 307	{"rx_tcode_buf_size_err_cnt"},
 308	{"rx_tcode_rxd_corrupt_cnt"},
 309	{"rx_tcode_unkn_err_cnt"},
 310	{"tda_err_cnt"},
 311	{"pfc_err_cnt"},
 312	{"pcc_err_cnt"},
 313	{"tti_err_cnt"},
 314	{"tpa_err_cnt"},
 315	{"sm_err_cnt"},
 316	{"lso_err_cnt"},
 317	{"mac_tmac_err_cnt"},
 318	{"mac_rmac_err_cnt"},
 319	{"xgxs_txgxs_err_cnt"},
 320	{"xgxs_rxgxs_err_cnt"},
 321	{"rc_err_cnt"},
 322	{"prc_pcix_err_cnt"},
 323	{"rpa_err_cnt"},
 324	{"rda_err_cnt"},
 325	{"rti_err_cnt"},
 326	{"mc_err_cnt"}
 327};
 328
 329#define S2IO_XENA_STAT_LEN	ARRAY_SIZE(ethtool_xena_stats_keys)
 330#define S2IO_ENHANCED_STAT_LEN	ARRAY_SIZE(ethtool_enhanced_stats_keys)
 331#define S2IO_DRIVER_STAT_LEN	ARRAY_SIZE(ethtool_driver_stats_keys)
 332
 333#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
 334#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
 335
 336#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
 337#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
 338
 339#define S2IO_TEST_LEN	ARRAY_SIZE(s2io_gstrings)
 340#define S2IO_STRINGS_LEN	(S2IO_TEST_LEN * ETH_GSTRING_LEN)
 341
 342#define S2IO_TIMER_CONF(timer, handle, arg, exp)	\
 343	init_timer(&timer);				\
 344	timer.function = handle;			\
 345	timer.data = (unsigned long)arg;		\
 346	mod_timer(&timer, (jiffies + exp))		\
 347
 348/* copy mac addr to def_mac_addr array */
 349static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
 350{
 351	sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
 352	sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
 353	sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
 354	sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
 355	sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
 356	sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
 357}
 358
 359/*
 360 * Constants to be programmed into the Xena's registers, to configure
 361 * the XAUI.
 362 */
 363
 364#define	END_SIGN	0x0
 365static const u64 herc_act_dtx_cfg[] = {
 366	/* Set address */
 367	0x8000051536750000ULL, 0x80000515367500E0ULL,
 368	/* Write data */
 369	0x8000051536750004ULL, 0x80000515367500E4ULL,
 370	/* Set address */
 371	0x80010515003F0000ULL, 0x80010515003F00E0ULL,
 372	/* Write data */
 373	0x80010515003F0004ULL, 0x80010515003F00E4ULL,
 374	/* Set address */
 375	0x801205150D440000ULL, 0x801205150D4400E0ULL,
 376	/* Write data */
 377	0x801205150D440004ULL, 0x801205150D4400E4ULL,
 378	/* Set address */
 379	0x80020515F2100000ULL, 0x80020515F21000E0ULL,
 380	/* Write data */
 381	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
 382	/* Done */
 383	END_SIGN
 384};
 385
 386static const u64 xena_dtx_cfg[] = {
 387	/* Set address */
 388	0x8000051500000000ULL, 0x80000515000000E0ULL,
 389	/* Write data */
 390	0x80000515D9350004ULL, 0x80000515D93500E4ULL,
 391	/* Set address */
 392	0x8001051500000000ULL, 0x80010515000000E0ULL,
 393	/* Write data */
 394	0x80010515001E0004ULL, 0x80010515001E00E4ULL,
 395	/* Set address */
 396	0x8002051500000000ULL, 0x80020515000000E0ULL,
 397	/* Write data */
 398	0x80020515F2100004ULL, 0x80020515F21000E4ULL,
 399	END_SIGN
 400};
 401
 402/*
 403 * Constants for Fixing the MacAddress problem seen mostly on
 404 * Alpha machines.
 405 */
 406static const u64 fix_mac[] = {
 407	0x0060000000000000ULL, 0x0060600000000000ULL,
 408	0x0040600000000000ULL, 0x0000600000000000ULL,
 409	0x0020600000000000ULL, 0x0060600000000000ULL,
 410	0x0020600000000000ULL, 0x0060600000000000ULL,
 411	0x0020600000000000ULL, 0x0060600000000000ULL,
 412	0x0020600000000000ULL, 0x0060600000000000ULL,
 413	0x0020600000000000ULL, 0x0060600000000000ULL,
 414	0x0020600000000000ULL, 0x0060600000000000ULL,
 415	0x0020600000000000ULL, 0x0060600000000000ULL,
 416	0x0020600000000000ULL, 0x0060600000000000ULL,
 417	0x0020600000000000ULL, 0x0060600000000000ULL,
 418	0x0020600000000000ULL, 0x0060600000000000ULL,
 419	0x0020600000000000ULL, 0x0000600000000000ULL,
 420	0x0040600000000000ULL, 0x0060600000000000ULL,
 421	END_SIGN
 422};
 423
 424MODULE_LICENSE("GPL");
 425MODULE_VERSION(DRV_VERSION);
 426
 427
 428/* Module Loadable parameters. */
 429S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
 430S2IO_PARM_INT(rx_ring_num, 1);
 431S2IO_PARM_INT(multiq, 0);
 432S2IO_PARM_INT(rx_ring_mode, 1);
 433S2IO_PARM_INT(use_continuous_tx_intrs, 1);
 434S2IO_PARM_INT(rmac_pause_time, 0x100);
 435S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
 436S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
 437S2IO_PARM_INT(shared_splits, 0);
 438S2IO_PARM_INT(tmac_util_period, 5);
 439S2IO_PARM_INT(rmac_util_period, 5);
 440S2IO_PARM_INT(l3l4hdr_size, 128);
 441/* 0 is no steering, 1 is Priority steering, 2 is Default steering */
 442S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
 443/* Frequency of Rx desc syncs expressed as power of 2 */
 444S2IO_PARM_INT(rxsync_frequency, 3);
 445/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
 446S2IO_PARM_INT(intr_type, 2);
 447/* Large receive offload feature */
 448
 449/* Max pkts to be aggregated by LRO at one time. If not specified,
 450 * aggregation happens until we hit max IP pkt size(64K)
 451 */
 452S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
 453S2IO_PARM_INT(indicate_max_pkts, 0);
 454
 455S2IO_PARM_INT(napi, 1);
 456S2IO_PARM_INT(ufo, 0);
 457S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
 458
 459static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
 460{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
 461static unsigned int rx_ring_sz[MAX_RX_RINGS] =
 462{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
 463static unsigned int rts_frm_len[MAX_RX_RINGS] =
 464{[0 ...(MAX_RX_RINGS - 1)] = 0 };
 465
 466module_param_array(tx_fifo_len, uint, NULL, 0);
 467module_param_array(rx_ring_sz, uint, NULL, 0);
 468module_param_array(rts_frm_len, uint, NULL, 0);
 469
 470/*
 471 * S2IO device table.
 472 * This table lists all the devices that this driver supports.
 473 */
 474static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
 475	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
 476	 PCI_ANY_ID, PCI_ANY_ID},
 477	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
 478	 PCI_ANY_ID, PCI_ANY_ID},
 479	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
 480	 PCI_ANY_ID, PCI_ANY_ID},
 481	{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
 482	 PCI_ANY_ID, PCI_ANY_ID},
 483	{0,}
 484};
 485
 486MODULE_DEVICE_TABLE(pci, s2io_tbl);
 487
 488static struct pci_error_handlers s2io_err_handler = {
 489	.error_detected = s2io_io_error_detected,
 490	.slot_reset = s2io_io_slot_reset,
 491	.resume = s2io_io_resume,
 492};
 493
 494static struct pci_driver s2io_driver = {
 495	.name = "S2IO",
 496	.id_table = s2io_tbl,
 497	.probe = s2io_init_nic,
 498	.remove = __devexit_p(s2io_rem_nic),
 499	.err_handler = &s2io_err_handler,
 500};
 501
 502/* A simplifier macro used both by init and free shared_mem Fns(). */
 503#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
 504
 505/* netqueue manipulation helper functions */
 506static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
 507{
 508	if (!sp->config.multiq) {
 509		int i;
 510
 511		for (i = 0; i < sp->config.tx_fifo_num; i++)
 512			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
 513	}
 514	netif_tx_stop_all_queues(sp->dev);
 515}
 516
 517static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
 518{
 519	if (!sp->config.multiq)
 520		sp->mac_control.fifos[fifo_no].queue_state =
 521			FIFO_QUEUE_STOP;
 522
 523	netif_tx_stop_all_queues(sp->dev);
 524}
 525
 526static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
 527{
 528	if (!sp->config.multiq) {
 529		int i;
 530
 531		for (i = 0; i < sp->config.tx_fifo_num; i++)
 532			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
 533	}
 534	netif_tx_start_all_queues(sp->dev);
 535}
 536
 537static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
 538{
 539	if (!sp->config.multiq)
 540		sp->mac_control.fifos[fifo_no].queue_state =
 541			FIFO_QUEUE_START;
 542
 543	netif_tx_start_all_queues(sp->dev);
 544}
 545
 546static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
 547{
 548	if (!sp->config.multiq) {
 549		int i;
 550
 551		for (i = 0; i < sp->config.tx_fifo_num; i++)
 552			sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
 553	}
 554	netif_tx_wake_all_queues(sp->dev);
 555}
 556
 557static inline void s2io_wake_tx_queue(
 558	struct fifo_info *fifo, int cnt, u8 multiq)
 559{
 560
 561	if (multiq) {
 562		if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
 563			netif_wake_subqueue(fifo->dev, fifo->fifo_no);
 564	} else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
 565		if (netif_queue_stopped(fifo->dev)) {
 566			fifo->queue_state = FIFO_QUEUE_START;
 567			netif_wake_queue(fifo->dev);
 568		}
 569	}
 570}
 571
 572/**
 573 * init_shared_mem - Allocation and Initialization of Memory
 574 * @nic: Device private variable.
 575 * Description: The function allocates all the memory areas shared
 576 * between the NIC and the driver. This includes Tx descriptors,
 577 * Rx descriptors and the statistics block.
 578 */
 579
 580static int init_shared_mem(struct s2io_nic *nic)
 581{
 582	u32 size;
 583	void *tmp_v_addr, *tmp_v_addr_next;
 584	dma_addr_t tmp_p_addr, tmp_p_addr_next;
 585	struct RxD_block *pre_rxd_blk = NULL;
 586	int i, j, blk_cnt;
 587	int lst_size, lst_per_page;
 588	struct net_device *dev = nic->dev;
 589	unsigned long tmp;
 590	struct buffAdd *ba;
 591	struct config_param *config = &nic->config;
 592	struct mac_info *mac_control = &nic->mac_control;
 593	unsigned long long mem_allocated = 0;
 594
 595	/* Allocation and initialization of TXDLs in FIFOs */
 596	size = 0;
 597	for (i = 0; i < config->tx_fifo_num; i++) {
 598		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 599
 600		size += tx_cfg->fifo_len;
 601	}
 602	if (size > MAX_AVAILABLE_TXDS) {
 603		DBG_PRINT(ERR_DBG,
 604			  "Too many TxDs requested: %d, max supported: %d\n",
 605			  size, MAX_AVAILABLE_TXDS);
 606		return -EINVAL;
 607	}
 608
 609	size = 0;
 610	for (i = 0; i < config->tx_fifo_num; i++) {
 611		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 612
 613		size = tx_cfg->fifo_len;
 614		/*
 615		 * Legal values are from 2 to 8192
 616		 */
 617		if (size < 2) {
 618			DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
 619				  "Valid lengths are 2 through 8192\n",
 620				  i, size);
 621			return -EINVAL;
 622		}
 623	}
 624
 625	lst_size = (sizeof(struct TxD) * config->max_txds);
 626	lst_per_page = PAGE_SIZE / lst_size;
 627
 628	for (i = 0; i < config->tx_fifo_num; i++) {
 629		struct fifo_info *fifo = &mac_control->fifos[i];
 630		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 631		int fifo_len = tx_cfg->fifo_len;
 632		int list_holder_size = fifo_len * sizeof(struct list_info_hold);
 633
 634		fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
 635		if (!fifo->list_info) {
 636			DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
 637			return -ENOMEM;
 638		}
 639		mem_allocated += list_holder_size;
 640	}
 641	for (i = 0; i < config->tx_fifo_num; i++) {
 642		int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
 643						lst_per_page);
 644		struct fifo_info *fifo = &mac_control->fifos[i];
 645		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 646
 647		fifo->tx_curr_put_info.offset = 0;
 648		fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
 649		fifo->tx_curr_get_info.offset = 0;
 650		fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
 651		fifo->fifo_no = i;
 652		fifo->nic = nic;
 653		fifo->max_txds = MAX_SKB_FRAGS + 2;
 654		fifo->dev = dev;
 655
 656		for (j = 0; j < page_num; j++) {
 657			int k = 0;
 658			dma_addr_t tmp_p;
 659			void *tmp_v;
 660			tmp_v = pci_alloc_consistent(nic->pdev,
 661						     PAGE_SIZE, &tmp_p);
 662			if (!tmp_v) {
 663				DBG_PRINT(INFO_DBG,
 664					  "pci_alloc_consistent failed for TxDL\n");
 665				return -ENOMEM;
 666			}
 667			/* If we got a zero DMA address(can happen on
 668			 * certain platforms like PPC), reallocate.
 669			 * Store virtual address of page we don't want,
 670			 * to be freed later.
 671			 */
 672			if (!tmp_p) {
 673				mac_control->zerodma_virt_addr = tmp_v;
 674				DBG_PRINT(INIT_DBG,
 675					  "%s: Zero DMA address for TxDL. "
 676					  "Virtual address %p\n",
 677					  dev->name, tmp_v);
 678				tmp_v = pci_alloc_consistent(nic->pdev,
 679							     PAGE_SIZE, &tmp_p);
 680				if (!tmp_v) {
 681					DBG_PRINT(INFO_DBG,
 682						  "pci_alloc_consistent failed for TxDL\n");
 683					return -ENOMEM;
 684				}
 685				mem_allocated += PAGE_SIZE;
 686			}
 687			while (k < lst_per_page) {
 688				int l = (j * lst_per_page) + k;
 689				if (l == tx_cfg->fifo_len)
 690					break;
 691				fifo->list_info[l].list_virt_addr =
 692					tmp_v + (k * lst_size);
 693				fifo->list_info[l].list_phy_addr =
 694					tmp_p + (k * lst_size);
 695				k++;
 696			}
 697		}
 698	}
 699
 700	for (i = 0; i < config->tx_fifo_num; i++) {
 701		struct fifo_info *fifo = &mac_control->fifos[i];
 702		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 703
 704		size = tx_cfg->fifo_len;
 705		fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
 706		if (!fifo->ufo_in_band_v)
 707			return -ENOMEM;
 708		mem_allocated += (size * sizeof(u64));
 709	}
 710
 711	/* Allocation and initialization of RXDs in Rings */
 712	size = 0;
 713	for (i = 0; i < config->rx_ring_num; i++) {
 714		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 715		struct ring_info *ring = &mac_control->rings[i];
 716
 717		if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
 718			DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
 719				  "multiple of RxDs per Block\n",
 720				  dev->name, i);
 721			return FAILURE;
 722		}
 723		size += rx_cfg->num_rxd;
 724		ring->block_count = rx_cfg->num_rxd /
 725			(rxd_count[nic->rxd_mode] + 1);
 726		ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
 727	}
 728	if (nic->rxd_mode == RXD_MODE_1)
 729		size = (size * (sizeof(struct RxD1)));
 730	else
 731		size = (size * (sizeof(struct RxD3)));
 732
 733	for (i = 0; i < config->rx_ring_num; i++) {
 734		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 735		struct ring_info *ring = &mac_control->rings[i];
 736
 737		ring->rx_curr_get_info.block_index = 0;
 738		ring->rx_curr_get_info.offset = 0;
 739		ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
 740		ring->rx_curr_put_info.block_index = 0;
 741		ring->rx_curr_put_info.offset = 0;
 742		ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
 743		ring->nic = nic;
 744		ring->ring_no = i;
 745
 746		blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
 747		/*  Allocating all the Rx blocks */
 748		for (j = 0; j < blk_cnt; j++) {
 749			struct rx_block_info *rx_blocks;
 750			int l;
 751
 752			rx_blocks = &ring->rx_blocks[j];
 753			size = SIZE_OF_BLOCK;	/* size is always page size */
 754			tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
 755							  &tmp_p_addr);
 756			if (tmp_v_addr == NULL) {
 757				/*
 758				 * In case of failure, free_shared_mem()
 759				 * is called, which should free any
 760				 * memory that was alloced till the
 761				 * failure happened.
 762				 */
 763				rx_blocks->block_virt_addr = tmp_v_addr;
 764				return -ENOMEM;
 765			}
 766			mem_allocated += size;
 767			memset(tmp_v_addr, 0, size);
 768
 769			size = sizeof(struct rxd_info) *
 770				rxd_count[nic->rxd_mode];
 771			rx_blocks->block_virt_addr = tmp_v_addr;
 772			rx_blocks->block_dma_addr = tmp_p_addr;
 773			rx_blocks->rxds = kmalloc(size,  GFP_KERNEL);
 774			if (!rx_blocks->rxds)
 775				return -ENOMEM;
 776			mem_allocated += size;
 777			for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
 778				rx_blocks->rxds[l].virt_addr =
 779					rx_blocks->block_virt_addr +
 780					(rxd_size[nic->rxd_mode] * l);
 781				rx_blocks->rxds[l].dma_addr =
 782					rx_blocks->block_dma_addr +
 783					(rxd_size[nic->rxd_mode] * l);
 784			}
 785		}
 786		/* Interlinking all Rx Blocks */
 787		for (j = 0; j < blk_cnt; j++) {
 788			int next = (j + 1) % blk_cnt;
 789			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
 790			tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
 791			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
 792			tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
 793
 794			pre_rxd_blk = tmp_v_addr;
 795			pre_rxd_blk->reserved_2_pNext_RxD_block =
 796				(unsigned long)tmp_v_addr_next;
 797			pre_rxd_blk->pNext_RxD_Blk_physical =
 798				(u64)tmp_p_addr_next;
 799		}
 800	}
 801	if (nic->rxd_mode == RXD_MODE_3B) {
 802		/*
 803		 * Allocation of Storages for buffer addresses in 2BUFF mode
 804		 * and the buffers as well.
 805		 */
 806		for (i = 0; i < config->rx_ring_num; i++) {
 807			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 808			struct ring_info *ring = &mac_control->rings[i];
 809
 810			blk_cnt = rx_cfg->num_rxd /
 811				(rxd_count[nic->rxd_mode] + 1);
 812			size = sizeof(struct buffAdd *) * blk_cnt;
 813			ring->ba = kmalloc(size, GFP_KERNEL);
 814			if (!ring->ba)
 815				return -ENOMEM;
 816			mem_allocated += size;
 817			for (j = 0; j < blk_cnt; j++) {
 818				int k = 0;
 819
 820				size = sizeof(struct buffAdd) *
 821					(rxd_count[nic->rxd_mode] + 1);
 822				ring->ba[j] = kmalloc(size, GFP_KERNEL);
 823				if (!ring->ba[j])
 824					return -ENOMEM;
 825				mem_allocated += size;
 826				while (k != rxd_count[nic->rxd_mode]) {
 827					ba = &ring->ba[j][k];
 828					size = BUF0_LEN + ALIGN_SIZE;
 829					ba->ba_0_org = kmalloc(size, GFP_KERNEL);
 830					if (!ba->ba_0_org)
 831						return -ENOMEM;
 832					mem_allocated += size;
 833					tmp = (unsigned long)ba->ba_0_org;
 834					tmp += ALIGN_SIZE;
 835					tmp &= ~((unsigned long)ALIGN_SIZE);
 836					ba->ba_0 = (void *)tmp;
 837
 838					size = BUF1_LEN + ALIGN_SIZE;
 839					ba->ba_1_org = kmalloc(size, GFP_KERNEL);
 840					if (!ba->ba_1_org)
 841						return -ENOMEM;
 842					mem_allocated += size;
 843					tmp = (unsigned long)ba->ba_1_org;
 844					tmp += ALIGN_SIZE;
 845					tmp &= ~((unsigned long)ALIGN_SIZE);
 846					ba->ba_1 = (void *)tmp;
 847					k++;
 848				}
 849			}
 850		}
 851	}
 852
 853	/* Allocation and initialization of Statistics block */
 854	size = sizeof(struct stat_block);
 855	mac_control->stats_mem =
 856		pci_alloc_consistent(nic->pdev, size,
 857				     &mac_control->stats_mem_phy);
 858
 859	if (!mac_control->stats_mem) {
 860		/*
 861		 * In case of failure, free_shared_mem() is called, which
 862		 * should free any memory that was alloced till the
 863		 * failure happened.
 864		 */
 865		return -ENOMEM;
 866	}
 867	mem_allocated += size;
 868	mac_control->stats_mem_sz = size;
 869
 870	tmp_v_addr = mac_control->stats_mem;
 871	mac_control->stats_info = tmp_v_addr;
 872	memset(tmp_v_addr, 0, size);
 873	DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
 874		dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
 875	mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
 876	return SUCCESS;
 877}
 878
 879/**
 880 * free_shared_mem - Free the allocated Memory
 881 * @nic:  Device private variable.
 882 * Description: This function is to free all memory locations allocated by
 883 * the init_shared_mem() function and return it to the kernel.
 884 */
 885
 886static void free_shared_mem(struct s2io_nic *nic)
 887{
 888	int i, j, blk_cnt, size;
 889	void *tmp_v_addr;
 890	dma_addr_t tmp_p_addr;
 891	int lst_size, lst_per_page;
 892	struct net_device *dev;
 893	int page_num = 0;
 894	struct config_param *config;
 895	struct mac_info *mac_control;
 896	struct stat_block *stats;
 897	struct swStat *swstats;
 898
 899	if (!nic)
 900		return;
 901
 902	dev = nic->dev;
 903
 904	config = &nic->config;
 905	mac_control = &nic->mac_control;
 906	stats = mac_control->stats_info;
 907	swstats = &stats->sw_stat;
 908
 909	lst_size = sizeof(struct TxD) * config->max_txds;
 910	lst_per_page = PAGE_SIZE / lst_size;
 911
 912	for (i = 0; i < config->tx_fifo_num; i++) {
 913		struct fifo_info *fifo = &mac_control->fifos[i];
 914		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
 915
 916		page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
 917		for (j = 0; j < page_num; j++) {
 918			int mem_blks = (j * lst_per_page);
 919			struct list_info_hold *fli;
 920
 921			if (!fifo->list_info)
 922				return;
 923
 924			fli = &fifo->list_info[mem_blks];
 925			if (!fli->list_virt_addr)
 926				break;
 927			pci_free_consistent(nic->pdev, PAGE_SIZE,
 928					    fli->list_virt_addr,
 929					    fli->list_phy_addr);
 930			swstats->mem_freed += PAGE_SIZE;
 931		}
 932		/* If we got a zero DMA address during allocation,
 933		 * free the page now
 934		 */
 935		if (mac_control->zerodma_virt_addr) {
 936			pci_free_consistent(nic->pdev, PAGE_SIZE,
 937					    mac_control->zerodma_virt_addr,
 938					    (dma_addr_t)0);
 939			DBG_PRINT(INIT_DBG,
 940				  "%s: Freeing TxDL with zero DMA address. "
 941				  "Virtual address %p\n",
 942				  dev->name, mac_control->zerodma_virt_addr);
 943			swstats->mem_freed += PAGE_SIZE;
 944		}
 945		kfree(fifo->list_info);
 946		swstats->mem_freed += tx_cfg->fifo_len *
 947			sizeof(struct list_info_hold);
 948	}
 949
 950	size = SIZE_OF_BLOCK;
 951	for (i = 0; i < config->rx_ring_num; i++) {
 952		struct ring_info *ring = &mac_control->rings[i];
 953
 954		blk_cnt = ring->block_count;
 955		for (j = 0; j < blk_cnt; j++) {
 956			tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
 957			tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
 958			if (tmp_v_addr == NULL)
 959				break;
 960			pci_free_consistent(nic->pdev, size,
 961					    tmp_v_addr, tmp_p_addr);
 962			swstats->mem_freed += size;
 963			kfree(ring->rx_blocks[j].rxds);
 964			swstats->mem_freed += sizeof(struct rxd_info) *
 965				rxd_count[nic->rxd_mode];
 966		}
 967	}
 968
 969	if (nic->rxd_mode == RXD_MODE_3B) {
 970		/* Freeing buffer storage addresses in 2BUFF mode. */
 971		for (i = 0; i < config->rx_ring_num; i++) {
 972			struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
 973			struct ring_info *ring = &mac_control->rings[i];
 974
 975			blk_cnt = rx_cfg->num_rxd /
 976				(rxd_count[nic->rxd_mode] + 1);
 977			for (j = 0; j < blk_cnt; j++) {
 978				int k = 0;
 979				if (!ring->ba[j])
 980					continue;
 981				while (k != rxd_count[nic->rxd_mode]) {
 982					struct buffAdd *ba = &ring->ba[j][k];
 983					kfree(ba->ba_0_org);
 984					swstats->mem_freed +=
 985						BUF0_LEN + ALIGN_SIZE;
 986					kfree(ba->ba_1_org);
 987					swstats->mem_freed +=
 988						BUF1_LEN + ALIGN_SIZE;
 989					k++;
 990				}
 991				kfree(ring->ba[j]);
 992				swstats->mem_freed += sizeof(struct buffAdd) *
 993					(rxd_count[nic->rxd_mode] + 1);
 994			}
 995			kfree(ring->ba);
 996			swstats->mem_freed += sizeof(struct buffAdd *) *
 997				blk_cnt;
 998		}
 999	}
1000
1001	for (i = 0; i < nic->config.tx_fifo_num; i++) {
1002		struct fifo_info *fifo = &mac_control->fifos[i];
1003		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1004
1005		if (fifo->ufo_in_band_v) {
1006			swstats->mem_freed += tx_cfg->fifo_len *
1007				sizeof(u64);
1008			kfree(fifo->ufo_in_band_v);
1009		}
1010	}
1011
1012	if (mac_control->stats_mem) {
1013		swstats->mem_freed += mac_control->stats_mem_sz;
1014		pci_free_consistent(nic->pdev,
1015				    mac_control->stats_mem_sz,
1016				    mac_control->stats_mem,
1017				    mac_control->stats_mem_phy);
1018	}
1019}
1020
1021/**
1022 * s2io_verify_pci_mode -
1023 */
1024
1025static int s2io_verify_pci_mode(struct s2io_nic *nic)
1026{
1027	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1028	register u64 val64 = 0;
1029	int     mode;
1030
1031	val64 = readq(&bar0->pci_mode);
1032	mode = (u8)GET_PCI_MODE(val64);
1033
1034	if (val64 & PCI_MODE_UNKNOWN_MODE)
1035		return -1;      /* Unknown PCI mode */
1036	return mode;
1037}
1038
1039#define NEC_VENID   0x1033
1040#define NEC_DEVID   0x0125
1041static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1042{
1043	struct pci_dev *tdev = NULL;
1044	while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1045		if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1046			if (tdev->bus == s2io_pdev->bus->parent) {
1047				pci_dev_put(tdev);
1048				return 1;
1049			}
1050		}
1051	}
1052	return 0;
1053}
1054
1055static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1056/**
1057 * s2io_print_pci_mode -
1058 */
1059static int s2io_print_pci_mode(struct s2io_nic *nic)
1060{
1061	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1062	register u64 val64 = 0;
1063	int	mode;
1064	struct config_param *config = &nic->config;
1065	const char *pcimode;
1066
1067	val64 = readq(&bar0->pci_mode);
1068	mode = (u8)GET_PCI_MODE(val64);
1069
1070	if (val64 & PCI_MODE_UNKNOWN_MODE)
1071		return -1;	/* Unknown PCI mode */
1072
1073	config->bus_speed = bus_speed[mode];
1074
1075	if (s2io_on_nec_bridge(nic->pdev)) {
1076		DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1077			  nic->dev->name);
1078		return mode;
1079	}
1080
1081	switch (mode) {
1082	case PCI_MODE_PCI_33:
1083		pcimode = "33MHz PCI bus";
1084		break;
1085	case PCI_MODE_PCI_66:
1086		pcimode = "66MHz PCI bus";
1087		break;
1088	case PCI_MODE_PCIX_M1_66:
1089		pcimode = "66MHz PCIX(M1) bus";
1090		break;
1091	case PCI_MODE_PCIX_M1_100:
1092		pcimode = "100MHz PCIX(M1) bus";
1093		break;
1094	case PCI_MODE_PCIX_M1_133:
1095		pcimode = "133MHz PCIX(M1) bus";
1096		break;
1097	case PCI_MODE_PCIX_M2_66:
1098		pcimode = "133MHz PCIX(M2) bus";
1099		break;
1100	case PCI_MODE_PCIX_M2_100:
1101		pcimode = "200MHz PCIX(M2) bus";
1102		break;
1103	case PCI_MODE_PCIX_M2_133:
1104		pcimode = "266MHz PCIX(M2) bus";
1105		break;
1106	default:
1107		pcimode = "unsupported bus!";
1108		mode = -1;
1109	}
1110
1111	DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
1112		  nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
1113
1114	return mode;
1115}
1116
1117/**
1118 *  init_tti - Initialization transmit traffic interrupt scheme
1119 *  @nic: device private variable
1120 *  @link: link status (UP/DOWN) used to enable/disable continuous
1121 *  transmit interrupts
1122 *  Description: The function configures transmit traffic interrupts
1123 *  Return Value:  SUCCESS on success and
1124 *  '-1' on failure
1125 */
1126
1127static int init_tti(struct s2io_nic *nic, int link)
1128{
1129	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1130	register u64 val64 = 0;
1131	int i;
1132	struct config_param *config = &nic->config;
1133
1134	for (i = 0; i < config->tx_fifo_num; i++) {
1135		/*
1136		 * TTI Initialization. Default Tx timer gets us about
1137		 * 250 interrupts per sec. Continuous interrupts are enabled
1138		 * by default.
1139		 */
1140		if (nic->device_type == XFRAME_II_DEVICE) {
1141			int count = (nic->config.bus_speed * 125)/2;
1142			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1143		} else
1144			val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1145
1146		val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1147			TTI_DATA1_MEM_TX_URNG_B(0x10) |
1148			TTI_DATA1_MEM_TX_URNG_C(0x30) |
1149			TTI_DATA1_MEM_TX_TIMER_AC_EN;
1150		if (i == 0)
1151			if (use_continuous_tx_intrs && (link == LINK_UP))
1152				val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1153		writeq(val64, &bar0->tti_data1_mem);
1154
1155		if (nic->config.intr_type == MSI_X) {
1156			val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1157				TTI_DATA2_MEM_TX_UFC_B(0x100) |
1158				TTI_DATA2_MEM_TX_UFC_C(0x200) |
1159				TTI_DATA2_MEM_TX_UFC_D(0x300);
1160		} else {
1161			if ((nic->config.tx_steering_type ==
1162			     TX_DEFAULT_STEERING) &&
1163			    (config->tx_fifo_num > 1) &&
1164			    (i >= nic->udp_fifo_idx) &&
1165			    (i < (nic->udp_fifo_idx +
1166				  nic->total_udp_fifos)))
1167				val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1168					TTI_DATA2_MEM_TX_UFC_B(0x80) |
1169					TTI_DATA2_MEM_TX_UFC_C(0x100) |
1170					TTI_DATA2_MEM_TX_UFC_D(0x120);
1171			else
1172				val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1173					TTI_DATA2_MEM_TX_UFC_B(0x20) |
1174					TTI_DATA2_MEM_TX_UFC_C(0x40) |
1175					TTI_DATA2_MEM_TX_UFC_D(0x80);
1176		}
1177
1178		writeq(val64, &bar0->tti_data2_mem);
1179
1180		val64 = TTI_CMD_MEM_WE |
1181			TTI_CMD_MEM_STROBE_NEW_CMD |
1182			TTI_CMD_MEM_OFFSET(i);
1183		writeq(val64, &bar0->tti_command_mem);
1184
1185		if (wait_for_cmd_complete(&bar0->tti_command_mem,
1186					  TTI_CMD_MEM_STROBE_NEW_CMD,
1187					  S2IO_BIT_RESET) != SUCCESS)
1188			return FAILURE;
1189	}
1190
1191	return SUCCESS;
1192}
1193
1194/**
1195 *  init_nic - Initialization of hardware
1196 *  @nic: device private variable
1197 *  Description: The function sequentially configures every block
1198 *  of the H/W from their reset values.
1199 *  Return Value:  SUCCESS on success and
1200 *  '-1' on failure (endian settings incorrect).
1201 */
1202
1203static int init_nic(struct s2io_nic *nic)
1204{
1205	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1206	struct net_device *dev = nic->dev;
1207	register u64 val64 = 0;
1208	void __iomem *add;
1209	u32 time;
1210	int i, j;
1211	int dtx_cnt = 0;
1212	unsigned long long mem_share;
1213	int mem_size;
1214	struct config_param *config = &nic->config;
1215	struct mac_info *mac_control = &nic->mac_control;
1216
1217	/* to set the swapper controle on the card */
1218	if (s2io_set_swapper(nic)) {
1219		DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
1220		return -EIO;
1221	}
1222
1223	/*
1224	 * Herc requires EOI to be removed from reset before XGXS, so..
1225	 */
1226	if (nic->device_type & XFRAME_II_DEVICE) {
1227		val64 = 0xA500000000ULL;
1228		writeq(val64, &bar0->sw_reset);
1229		msleep(500);
1230		val64 = readq(&bar0->sw_reset);
1231	}
1232
1233	/* Remove XGXS from reset state */
1234	val64 = 0;
1235	writeq(val64, &bar0->sw_reset);
1236	msleep(500);
1237	val64 = readq(&bar0->sw_reset);
1238
1239	/* Ensure that it's safe to access registers by checking
1240	 * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1241	 */
1242	if (nic->device_type == XFRAME_II_DEVICE) {
1243		for (i = 0; i < 50; i++) {
1244			val64 = readq(&bar0->adapter_status);
1245			if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1246				break;
1247			msleep(10);
1248		}
1249		if (i == 50)
1250			return -ENODEV;
1251	}
1252
1253	/*  Enable Receiving broadcasts */
1254	add = &bar0->mac_cfg;
1255	val64 = readq(&bar0->mac_cfg);
1256	val64 |= MAC_RMAC_BCAST_ENABLE;
1257	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1258	writel((u32)val64, add);
1259	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1260	writel((u32) (val64 >> 32), (add + 4));
1261
1262	/* Read registers in all blocks */
1263	val64 = readq(&bar0->mac_int_mask);
1264	val64 = readq(&bar0->mc_int_mask);
1265	val64 = readq(&bar0->xgxs_int_mask);
1266
1267	/*  Set MTU */
1268	val64 = dev->mtu;
1269	writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1270
1271	if (nic->device_type & XFRAME_II_DEVICE) {
1272		while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1273			SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1274					  &bar0->dtx_control, UF);
1275			if (dtx_cnt & 0x1)
1276				msleep(1); /* Necessary!! */
1277			dtx_cnt++;
1278		}
1279	} else {
1280		while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1281			SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1282					  &bar0->dtx_control, UF);
1283			val64 = readq(&bar0->dtx_control);
1284			dtx_cnt++;
1285		}
1286	}
1287
1288	/*  Tx DMA Initialization */
1289	val64 = 0;
1290	writeq(val64, &bar0->tx_fifo_partition_0);
1291	writeq(val64, &bar0->tx_fifo_partition_1);
1292	writeq(val64, &bar0->tx_fifo_partition_2);
1293	writeq(val64, &bar0->tx_fifo_partition_3);
1294
1295	for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1296		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
1297
1298		val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
1299			vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
1300
1301		if (i == (config->tx_fifo_num - 1)) {
1302			if (i % 2 == 0)
1303				i++;
1304		}
1305
1306		switch (i) {
1307		case 1:
1308			writeq(val64, &bar0->tx_fifo_partition_0);
1309			val64 = 0;
1310			j = 0;
1311			break;
1312		case 3:
1313			writeq(val64, &bar0->tx_fifo_partition_1);
1314			val64 = 0;
1315			j = 0;
1316			break;
1317		case 5:
1318			writeq(val64, &bar0->tx_fifo_partition_2);
1319			val64 = 0;
1320			j = 0;
1321			break;
1322		case 7:
1323			writeq(val64, &bar0->tx_fifo_partition_3);
1324			val64 = 0;
1325			j = 0;
1326			break;
1327		default:
1328			j++;
1329			break;
1330		}
1331	}
1332
1333	/*
1334	 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1335	 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1336	 */
1337	if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
1338		writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1339
1340	val64 = readq(&bar0->tx_fifo_partition_0);
1341	DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1342		  &bar0->tx_fifo_partition_0, (unsigned long long)val64);
1343
1344	/*
1345	 * Initialization of Tx_PA_CONFIG register to ignore packet
1346	 * integrity checking.
1347	 */
1348	val64 = readq(&bar0->tx_pa_cfg);
1349	val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
1350		TX_PA_CFG_IGNORE_SNAP_OUI |
1351		TX_PA_CFG_IGNORE_LLC_CTRL |
1352		TX_PA_CFG_IGNORE_L2_ERR;
1353	writeq(val64, &bar0->tx_pa_cfg);
1354
1355	/* Rx DMA intialization. */
1356	val64 = 0;
1357	for (i = 0; i < config->rx_ring_num; i++) {
1358		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
1359
1360		val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
1361	}
1362	writeq(val64, &bar0->rx_queue_priority);
1363
1364	/*
1365	 * Allocating equal share of memory to all the
1366	 * configured Rings.
1367	 */
1368	val64 = 0;
1369	if (nic->device_type & XFRAME_II_DEVICE)
1370		mem_size = 32;
1371	else
1372		mem_size = 64;
1373
1374	for (i = 0; i < config->rx_ring_num; i++) {
1375		switch (i) {
1376		case 0:
1377			mem_share = (mem_size / config->rx_ring_num +
1378				     mem_size % config->rx_ring_num);
1379			val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1380			continue;
1381		case 1:
1382			mem_share = (mem_size / config->rx_ring_num);
1383			val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1384			continue;
1385		case 2:
1386			mem_share = (mem_size / config->rx_ring_num);
1387			val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1388			continue;
1389		case 3:
1390			mem_share = (mem_size / config->rx_ring_num);
1391			val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1392			continue;
1393		case 4:
1394			mem_share = (mem_size / config->rx_ring_num);
1395			val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1396			continue;
1397		case 5:
1398			mem_share = (mem_size / config->rx_ring_num);
1399			val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1400			continue;
1401		case 6:
1402			mem_share = (mem_size / config->rx_ring_num);
1403			val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1404			continue;
1405		case 7:
1406			mem_share = (mem_size / config->rx_ring_num);
1407			val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1408			continue;
1409		}
1410	}
1411	writeq(val64, &bar0->rx_queue_cfg);
1412
1413	/*
1414	 * Filling Tx round robin registers
1415	 * as per the number of FIFOs for equal scheduling priority
1416	 */
1417	switch (config->tx_fifo_num) {
1418	case 1:
1419		val64 = 0x0;
1420		writeq(val64, &bar0->tx_w_round_robin_0);
1421		writeq(val64, &bar0->tx_w_round_robin_1);
1422		writeq(val64, &bar0->tx_w_round_robin_2);
1423		writeq(val64, &bar0->tx_w_round_robin_3);
1424		writeq(val64, &bar0->tx_w_round_robin_4);
1425		break;
1426	case 2:
1427		val64 = 0x0001000100010001ULL;
1428		writeq(val64, &bar0->tx_w_round_robin_0);
1429		writeq(val64, &bar0->tx_w_round_robin_1);
1430		writeq(val64, &bar0->tx_w_round_robin_2);
1431		writeq(val64, &bar0->tx_w_round_robin_3);
1432		val64 = 0x0001000100000000ULL;
1433		writeq(val64, &bar0->tx_w_round_robin_4);
1434		break;
1435	case 3:
1436		val64 = 0x0001020001020001ULL;
1437		writeq(val64, &bar0->tx_w_round_robin_0);
1438		val64 = 0x0200010200010200ULL;
1439		writeq(val64, &bar0->tx_w_round_robin_1);
1440		val64 = 0x0102000102000102ULL;
1441		writeq(val64, &bar0->tx_w_round_robin_2);
1442		val64 = 0x0001020001020001ULL;
1443		writeq(val64, &bar0->tx_w_round_robin_3);
1444		val64 = 0x0200010200000000ULL;
1445		writeq(val64, &bar0->tx_w_round_robin_4);
1446		break;
1447	case 4:
1448		val64 = 0x0001020300010203ULL;
1449		writeq(val64, &bar0->tx_w_round_robin_0);
1450		writeq(val64, &bar0->tx_w_round_robin_1);
1451		writeq(val64, &bar0->tx_w_round_robin_2);
1452		writeq(val64, &bar0->tx_w_round_robin_3);
1453		val64 = 0x0001020300000000ULL;
1454		writeq(val64, &bar0->tx_w_round_robin_4);
1455		break;
1456	case 5:
1457		val64 = 0x0001020304000102ULL;
1458		writeq(val64, &bar0->tx_w_round_robin_0);
1459		val64 = 0x0304000102030400ULL;
1460		writeq(val64, &bar0->tx_w_round_robin_1);
1461		val64 = 0x0102030400010203ULL;
1462		writeq(val64, &bar0->tx_w_round_robin_2);
1463		val64 = 0x0400010203040001ULL;
1464		writeq(val64, &bar0->tx_w_round_robin_3);
1465		val64 = 0x0203040000000000ULL;
1466		writeq(val64, &bar0->tx_w_round_robin_4);
1467		break;
1468	case 6:
1469		val64 = 0x0001020304050001ULL;
1470		writeq(val64, &bar0->tx_w_round_robin_0);
1471		val64 = 0x0203040500010203ULL;
1472		writeq(val64, &bar0->tx_w_round_robin_1);
1473		val64 = 0x0405000102030405ULL;
1474		writeq(val64, &bar0->tx_w_round_robin_2);
1475		val64 = 0x0001020304050001ULL;
1476		writeq(val64, &bar0->tx_w_round_robin_3);
1477		val64 = 0x0203040500000000ULL;
1478		writeq(val64, &bar0->tx_w_round_robin_4);
1479		break;
1480	case 7:
1481		val64 = 0x0001020304050600ULL;
1482		writeq(val64, &bar0->tx_w_round_robin_0);
1483		val64 = 0x0102030405060001ULL;
1484		writeq(val64, &bar0->tx_w_round_robin_1);
1485		val64 = 0x0203040506000102ULL;
1486		writeq(val64, &bar0->tx_w_round_robin_2);
1487		val64 = 0x0304050600010203ULL;
1488		writeq(val64, &bar0->tx_w_round_robin_3);
1489		val64 = 0x0405060000000000ULL;
1490		writeq(val64, &bar0->tx_w_round_robin_4);
1491		break;
1492	case 8:
1493		val64 = 0x0001020304050607ULL;
1494		writeq(val64, &bar0->tx_w_round_robin_0);
1495		writeq(val64, &bar0->tx_w_round_robin_1);
1496		writeq(val64, &bar0->tx_w_round_robin_2);
1497		writeq(val64, &bar0->tx_w_round_robin_3);
1498		val64 = 0x0001020300000000ULL;
1499		writeq(val64, &bar0->tx_w_round_robin_4);
1500		break;
1501	}
1502
1503	/* Enable all configured Tx FIFO partitions */
1504	val64 = readq(&bar0->tx_fifo_partition_0);
1505	val64 |= (TX_FIFO_PARTITION_EN);
1506	writeq(val64, &bar0->tx_fifo_partition_0);
1507
1508	/* Filling the Rx round robin registers as per the
1509	 * number of Rings and steering based on QoS with
1510	 * equal priority.
1511	 */
1512	switch (config->rx_ring_num) {
1513	case 1:
1514		val64 = 0x0;
1515		writeq(val64, &bar0->rx_w_round_robin_0);
1516		writeq(val64, &bar0->rx_w_round_robin_1);
1517		writeq(val64, &bar0->rx_w_round_robin_2);
1518		writeq(val64, &bar0->rx_w_round_robin_3);
1519		writeq(val64, &bar0->rx_w_round_robin_4);
1520
1521		val64 = 0x8080808080808080ULL;
1522		writeq(val64, &bar0->rts_qos_steering);
1523		break;
1524	case 2:
1525		val64 = 0x0001000100010001ULL;
1526		writeq(val64, &bar0->rx_w_round_robin_0);
1527		writeq(val64, &bar0->rx_w_round_robin_1);
1528		writeq(val64, &bar0->rx_w_round_robin_2);
1529		writeq(val64, &bar0->rx_w_round_robin_3);
1530		val64 = 0x0001000100000000ULL;
1531		writeq(val64, &bar0->rx_w_round_robin_4);
1532
1533		val64 = 0x8080808040404040ULL;
1534		writeq(val64, &bar0->rts_qos_steering);
1535		break;
1536	case 3:
1537		val64 = 0x0001020001020001ULL;
1538		writeq(val64, &bar0->rx_w_round_robin_0);
1539		val64 = 0x0200010200010200ULL;
1540		writeq(val64, &bar0->rx_w_round_robin_1);
1541		val64 = 0x0102000102000102ULL;
1542		writeq(val64, &bar0->rx_w_round_robin_2);
1543		val64 = 0x0001020001020001ULL;
1544		writeq(val64, &bar0->rx_w_round_robin_3);
1545		val64 = 0x0200010200000000ULL;
1546		writeq(val64, &bar0->rx_w_round_robin_4);
1547
1548		val64 = 0x8080804040402020ULL;
1549		writeq(val64, &bar0->rts_qos_steering);
1550		break;
1551	case 4:
1552		val64 = 0x0001020300010203ULL;
1553		writeq(val64, &bar0->rx_w_round_robin_0);
1554		writeq(val64, &bar0->rx_w_round_robin_1);
1555		writeq(val64, &bar0->rx_w_round_robin_2);
1556		writeq(val64, &bar0->rx_w_round_robin_3);
1557		val64 = 0x0001020300000000ULL;
1558		writeq(val64, &bar0->rx_w_round_robin_4);
1559
1560		val64 = 0x8080404020201010ULL;
1561		writeq(val64, &bar0->rts_qos_steering);
1562		break;
1563	case 5:
1564		val64 = 0x0001020304000102ULL;
1565		writeq(val64, &bar0->rx_w_round_robin_0);
1566		val64 = 0x0304000102030400ULL;
1567		writeq(val64, &bar0->rx_w_round_robin_1);
1568		val64 = 0x0102030400010203ULL;
1569		writeq(val64, &bar0->rx_w_round_robin_2);
1570		val64 = 0x0400010203040001ULL;
1571		writeq(val64, &bar0->rx_w_round_robin_3);
1572		val64 = 0x0203040000000000ULL;
1573		writeq(val64, &bar0->rx_w_round_robin_4);
1574
1575		val64 = 0x8080404020201008ULL;
1576		writeq(val64, &bar0->rts_qos_steering);
1577		break;
1578	case 6:
1579		val64 = 0x0001020304050001ULL;
1580		writeq(val64, &bar0->rx_w_round_robin_0);
1581		val64 = 0x0203040500010203ULL;
1582		writeq(val64, &bar0->rx_w_round_robin_1);
1583		val64 = 0x0405000102030405ULL;
1584		writeq(val64, &bar0->rx_w_round_robin_2);
1585		val64 = 0x0001020304050001ULL;
1586		writeq(val64, &bar0->rx_w_round_robin_3);
1587		val64 = 0x0203040500000000ULL;
1588		writeq(val64, &bar0->rx_w_round_robin_4);
1589
1590		val64 = 0x8080404020100804ULL;
1591		writeq(val64, &bar0->rts_qos_steering);
1592		break;
1593	case 7:
1594		val64 = 0x0001020304050600ULL;
1595		writeq(val64, &bar0->rx_w_round_robin_0);
1596		val64 = 0x0102030405060001ULL;
1597		writeq(val64, &bar0->rx_w_round_robin_1);
1598		val64 = 0x0203040506000102ULL;
1599		writeq(val64, &bar0->rx_w_round_robin_2);
1600		val64 = 0x0304050600010203ULL;
1601		writeq(val64, &bar0->rx_w_round_robin_3);
1602		val64 = 0x0405060000000000ULL;
1603		writeq(val64, &bar0->rx_w_round_robin_4);
1604
1605		val64 = 0x8080402010080402ULL;
1606		writeq(val64, &bar0->rts_qos_steering);
1607		break;
1608	case 8:
1609		val64 = 0x0001020304050607ULL;
1610		writeq(val64, &bar0->rx_w_round_robin_0);
1611		writeq(val64, &bar0->rx_w_round_robin_1);
1612		writeq(val64, &bar0->rx_w_round_robin_2);
1613		writeq(val64, &bar0->rx_w_round_robin_3);
1614		val64 = 0x0001020300000000ULL;
1615		writeq(val64, &bar0->rx_w_round_robin_4);
1616
1617		val64 = 0x8040201008040201ULL;
1618		writeq(val64, &bar0->rts_qos_steering);
1619		break;
1620	}
1621
1622	/* UDP Fix */
1623	val64 = 0;
1624	for (i = 0; i < 8; i++)
1625		writeq(val64, &bar0->rts_frm_len_n[i]);
1626
1627	/* Set the default rts frame length for the rings configured */
1628	val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1629	for (i = 0 ; i < config->rx_ring_num ; i++)
1630		writeq(val64, &bar0->rts_frm_len_n[i]);
1631
1632	/* Set the frame length for the configured rings
1633	 * desired by the user
1634	 */
1635	for (i = 0; i < config->rx_ring_num; i++) {
1636		/* If rts_frm_len[i] == 0 then it is assumed that user not
1637		 * specified frame length steering.
1638		 * If the user provides the frame length then program
1639		 * the rts_frm_len register for those values or else
1640		 * leave it as it is.
1641		 */
1642		if (rts_frm_len[i] != 0) {
1643			writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1644			       &bar0->rts_frm_len_n[i]);
1645		}
1646	}
1647
1648	/* Disable differentiated services steering logic */
1649	for (i = 0; i < 64; i++) {
1650		if (rts_ds_steer(nic, i, 0) == FAILURE) {
1651			DBG_PRINT(ERR_DBG,
1652				  "%s: rts_ds_steer failed on codepoint %d\n",
1653				  dev->name, i);
1654			return -ENODEV;
1655		}
1656	}
1657
1658	/* Program statistics memory */
1659	writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1660
1661	if (nic->device_type == XFRAME_II_DEVICE) {
1662		val64 = STAT_BC(0x320);
1663		writeq(val64, &bar0->stat_byte_cnt);
1664	}
1665
1666	/*
1667	 * Initializing the sampling rate for the device to calculate the
1668	 * bandwidth utilization.
1669	 */
1670	val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1671		MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1672	writeq(val64, &bar0->mac_link_util);
1673
1674	/*
1675	 * Initializing the Transmit and Receive Traffic Interrupt
1676	 * Scheme.
1677	 */
1678
1679	/* Initialize TTI */
1680	if (SUCCESS != init_tti(nic, nic->last_link_state))
1681		return -ENODEV;
1682
1683	/* RTI Initialization */
1684	if (nic->device_type == XFRAME_II_DEVICE) {
1685		/*
1686		 * Programmed to generate Apprx 500 Intrs per
1687		 * second
1688		 */
1689		int count = (nic->config.bus_speed * 125)/4;
1690		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1691	} else
1692		val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1693	val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1694		RTI_DATA1_MEM_RX_URNG_B(0x10) |
1695		RTI_DATA1_MEM_RX_URNG_C(0x30) |
1696		RTI_DATA1_MEM_RX_TIMER_AC_EN;
1697
1698	writeq(val64, &bar0->rti_data1_mem);
1699
1700	val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1701		RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1702	if (nic->config.intr_type == MSI_X)
1703		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
1704			  RTI_DATA2_MEM_RX_UFC_D(0x40));
1705	else
1706		val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
1707			  RTI_DATA2_MEM_RX_UFC_D(0x80));
1708	writeq(val64, &bar0->rti_data2_mem);
1709
1710	for (i = 0; i < config->rx_ring_num; i++) {
1711		val64 = RTI_CMD_MEM_WE |
1712			RTI_CMD_MEM_STROBE_NEW_CMD |
1713			RTI_CMD_MEM_OFFSET(i);
1714		writeq(val64, &bar0->rti_command_mem);
1715
1716		/*
1717		 * Once the operation completes, the Strobe bit of the
1718		 * command register will be reset. We poll for this
1719		 * particular condition. We wait for a maximum of 500ms
1720		 * for the operation to complete, if it's not complete
1721		 * by then we return error.
1722		 */
1723		time = 0;
1724		while (true) {
1725			val64 = readq(&bar0->rti_command_mem);
1726			if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1727				break;
1728
1729			if (time > 10) {
1730				DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
1731					  dev->name);
1732				return -ENODEV;
1733			}
1734			time++;
1735			msleep(50);
1736		}
1737	}
1738
1739	/*
1740	 * Initializing proper values as Pause threshold into all
1741	 * the 8 Queues on Rx side.
1742	 */
1743	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1744	writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1745
1746	/* Disable RMAC PAD STRIPPING */
1747	add = &bar0->mac_cfg;
1748	val64 = readq(&bar0->mac_cfg);
1749	val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1750	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1751	writel((u32) (val64), add);
1752	writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1753	writel((u32) (val64 >> 32), (add + 4));
1754	val64 = readq(&bar0->mac_cfg);
1755
1756	/* Enable FCS stripping by adapter */
1757	add = &bar0->mac_cfg;
1758	val64 = readq(&bar0->mac_cfg);
1759	val64 |= MAC_CFG_RMAC_STRIP_FCS;
1760	if (nic->device_type == XFRAME_II_DEVICE)
1761		writeq(val64, &bar0->mac_cfg);
1762	else {
1763		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1764		writel((u32) (val64), add);
1765		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1766		writel((u32) (val64 >> 32), (add + 4));
1767	}
1768
1769	/*
1770	 * Set the time value to be inserted in the pause frame
1771	 * generated by xena.
1772	 */
1773	val64 = readq(&bar0->rmac_pause_cfg);
1774	val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1775	val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1776	writeq(val64, &bar0->rmac_pause_cfg);
1777
1778	/*
1779	 * Set the Threshold Limit for Generating the pause frame
1780	 * If the amount of data in any Queue exceeds ratio of
1781	 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1782	 * pause frame is generated
1783	 */
1784	val64 = 0;
1785	for (i = 0; i < 4; i++) {
1786		val64 |= (((u64)0xFF00 |
1787			   nic->mac_control.mc_pause_threshold_q0q3)
1788			  << (i * 2 * 8));
1789	}
1790	writeq(val64, &bar0->mc_pause_thresh_q0q3);
1791
1792	val64 = 0;
1793	for (i = 0; i < 4; i++) {
1794		val64 |= (((u64)0xFF00 |
1795			   nic->mac_control.mc_pause_threshold_q4q7)
1796			  << (i * 2 * 8));
1797	}
1798	writeq(val64, &bar0->mc_pause_thresh_q4q7);
1799
1800	/*
1801	 * TxDMA will stop Read request if the number of read split has
1802	 * exceeded the limit pointed by shared_splits
1803	 */
1804	val64 = readq(&bar0->pic_control);
1805	val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1806	writeq(val64, &bar0->pic_control);
1807
1808	if (nic->config.bus_speed == 266) {
1809		writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1810		writeq(0x0, &bar0->read_retry_delay);
1811		writeq(0x0, &bar0->write_retry_delay);
1812	}
1813
1814	/*
1815	 * Programming the Herc to split every write transaction
1816	 * that does not start on an ADB to reduce disconnects.
1817	 */
1818	if (nic->device_type == XFRAME_II_DEVICE) {
1819		val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1820			MISC_LINK_STABILITY_PRD(3);
1821		writeq(val64, &bar0->misc_control);
1822		val64 = readq(&bar0->pic_control2);
1823		val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1824		writeq(val64, &bar0->pic_control2);
1825	}
1826	if (strstr(nic->product_name, "CX4")) {
1827		val64 = TMAC_AVG_IPG(0x17);
1828		writeq(val64, &bar0->tmac_avg_ipg);
1829	}
1830
1831	return SUCCESS;
1832}
1833#define LINK_UP_DOWN_INTERRUPT		1
1834#define MAC_RMAC_ERR_TIMER		2
1835
1836static int s2io_link_fault_indication(struct s2io_nic *nic)
1837{
1838	if (nic->device_type == XFRAME_II_DEVICE)
1839		return LINK_UP_DOWN_INTERRUPT;
1840	else
1841		return MAC_RMAC_ERR_TIMER;
1842}
1843
1844/**
1845 *  do_s2io_write_bits -  update alarm bits in alarm register
1846 *  @value: alarm bits
1847 *  @flag: interrupt status
1848 *  @addr: address value
1849 *  Description: update alarm bits in alarm register
1850 *  Return Value:
1851 *  NONE.
1852 */
1853static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1854{
1855	u64 temp64;
1856
1857	temp64 = readq(addr);
1858
1859	if (flag == ENABLE_INTRS)
1860		temp64 &= ~((u64)value);
1861	else
1862		temp64 |= ((u64)value);
1863	writeq(temp64, addr);
1864}
1865
1866static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1867{
1868	struct XENA_dev_config __iomem *bar0 = nic->bar0;
1869	register u64 gen_int_mask = 0;
1870	u64 interruptible;
1871
1872	writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1873	if (mask & TX_DMA_INTR) {
1874		gen_int_mask |= TXDMA_INT_M;
1875
1876		do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1877				   TXDMA_PCC_INT | TXDMA_TTI_INT |
1878				   TXDMA_LSO_INT | TXDMA_TPA_INT |
1879				   TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1880
1881		do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1882				   PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1883				   PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1884				   &bar0->pfc_err_mask);
1885
1886		do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1887				   TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1888				   TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1889
1890		do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1891				   PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1892				   PCC_N_SERR | PCC_6_COF_OV_ERR |
1893				   PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1894				   PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1895				   PCC_TXB_ECC_SG_ERR,
1896				   flag, &bar0->pcc_err_mask);
1897
1898		do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1899				   TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1900
1901		do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1902				   LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1903				   LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1904				   flag, &bar0->lso_err_mask);
1905
1906		do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1907				   flag, &bar0->tpa_err_mask);
1908
1909		do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1910	}
1911
1912	if (mask & TX_MAC_INTR) {
1913		gen_int_mask |= TXMAC_INT_M;
1914		do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1915				   &bar0->mac_int_mask);
1916		do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1917				   TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1918				   TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1919				   flag, &bar0->mac_tmac_err_mask);
1920	}
1921
1922	if (mask & TX_XGXS_INTR) {
1923		gen_int_mask |= TXXGXS_INT_M;
1924		do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1925				   &bar0->xgxs_int_mask);
1926		do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1927				   TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1928				   flag, &bar0->xgxs_txgxs_err_mask);
1929	}
1930
1931	if (mask & RX_DMA_INTR) {
1932		gen_int_mask |= RXDMA_INT_M;
1933		do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1934				   RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1935				   flag, &bar0->rxdma_int_mask);
1936		do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1937				   RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1938				   RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1939				   RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1940		do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1941				   PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1942				   PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1943				   &bar0->prc_pcix_err_mask);
1944		do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1945				   RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1946				   &bar0->rpa_err_mask);
1947		do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1948				   RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1949				   RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1950				   RDA_FRM_ECC_SG_ERR |
1951				   RDA_MISC_ERR|RDA_PCIX_ERR,
1952				   flag, &bar0->rda_err_mask);
1953		do_s2io_write_bits(RTI_SM_ERR_ALARM |
1954				   RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1955				   flag, &bar0->rti_err_mask);
1956	}
1957
1958	if (mask & RX_MAC_INTR) {
1959		gen_int_mask |= RXMAC_INT_M;
1960		do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1961				   &bar0->mac_int_mask);
1962		interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1963				 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1964				 RMAC_DOUBLE_ECC_ERR);
1965		if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
1966			interruptible |= RMAC_LINK_STATE_CHANGE_INT;
1967		do_s2io_write_bits(interruptible,
1968				   flag, &bar0->mac_rmac_err_mask);
1969	}
1970
1971	if (mask & RX_XGXS_INTR) {
1972		gen_int_mask |= RXXGXS_INT_M;
1973		do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1974				   &bar0->xgxs_int_mask);
1975		do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1976				   &bar0->xgxs_rxgxs_err_mask);
1977	}
1978
1979	if (mask & MC_INTR) {
1980		gen_int_mask |= MC_INT_M;
1981		do_s2io_write_bits(MC_INT_MASK_MC_INT,
1982				   flag, &bar0->mc_int_mask);
1983		do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1984				   MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1985				   &bar0->mc_err_mask);
1986	}
1987	nic->general_int_mask = gen_int_mask;
1988
1989	/* Remove this line when alarm interrupts are enabled */
1990	nic->general_int_mask = 0;
1991}
1992
1993/**
1994 *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1995 *  @nic: device private variable,
1996 *  @mask: A mask indicating which Intr block must be modified and,
1997 *  @flag: A flag indicating whether to enable or disable the Intrs.
1998 *  Description: This function will either disable or enable the interrupts
1999 *  depending on the flag argument. The mask argument can be used to
2000 *  enable/disable any Intr block.
2001 *  Return Value: NONE.
2002 */
2003
2004static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2005{
2006	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2007	register u64 temp64 = 0, intr_mask = 0;
2008
2009	intr_mask = nic->general_int_mask;
2010
2011	/*  Top level interrupt classification */
2012	/*  PIC Interrupts */
2013	if (mask & TX_PIC_INTR) {
2014		/*  Enable PIC Intrs in the general intr mask register */
2015		intr_mask |= TXPIC_INT_M;
2016		if (flag == ENABLE_INTRS) {
2017			/*
2018			 * If Hercules adapter enable GPIO otherwise
2019			 * disable all PCIX, Flash, MDIO, IIC and GPIO
2020			 * interrupts for now.
2021			 * TODO
2022			 */
2023			if (s2io_link_fault_indication(nic) ==
2024			    LINK_UP_DOWN_INTERRUPT) {
2025				do_s2io_write_bits(PIC_INT_GPIO, flag,
2026						   &bar0->pic_int_mask);
2027				do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2028						   &bar0->gpio_int_mask);
2029			} else
2030				writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2031		} else if (flag == DISABLE_INTRS) {
2032			/*
2033			 * Disable PIC Intrs in the general
2034			 * intr mask register
2035			 */
2036			writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2037		}
2038	}
2039
2040	/*  Tx traffic interrupts */
2041	if (mask & TX_TRAFFIC_INTR) {
2042		intr_mask |= TXTRAFFIC_INT_M;
2043		if (flag == ENABLE_INTRS) {
2044			/*
2045			 * Enable all the Tx side interrupts
2046			 * writing 0 Enables all 64 TX interrupt levels
2047			 */
2048			writeq(0x0, &bar0->tx_traffic_mask);
2049		} else if (flag == DISABLE_INTRS) {
2050			/*
2051			 * Disable Tx Traffic Intrs in the general intr mask
2052			 * register.
2053			 */
2054			writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2055		}
2056	}
2057
2058	/*  Rx traffic interrupts */
2059	if (mask & RX_TRAFFIC_INTR) {
2060		intr_mask |= RXTRAFFIC_INT_M;
2061		if (flag == ENABLE_INTRS) {
2062			/* writing 0 Enables all 8 RX interrupt levels */
2063			writeq(0x0, &bar0->rx_traffic_mask);
2064		} else if (flag == DISABLE_INTRS) {
2065			/*
2066			 * Disable Rx Traffic Intrs in the general intr mask
2067			 * register.
2068			 */
2069			writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2070		}
2071	}
2072
2073	temp64 = readq(&bar0->general_int_mask);
2074	if (flag == ENABLE_INTRS)
2075		temp64 &= ~((u64)intr_mask);
2076	else
2077		temp64 = DISABLE_ALL_INTRS;
2078	writeq(temp64, &bar0->general_int_mask);
2079
2080	nic->general_int_mask = readq(&bar0->general_int_mask);
2081}
2082
2083/**
2084 *  verify_pcc_quiescent- Checks for PCC quiescent state
2085 *  Return: 1 If PCC is quiescence
2086 *          0 If PCC is not quiescence
2087 */
2088static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2089{
2090	int ret = 0, herc;
2091	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2092	u64 val64 = readq(&bar0->adapter_status);
2093
2094	herc = (sp->device_type == XFRAME_II_DEVICE);
2095
2096	if (flag == false) {
2097		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2098			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2099				ret = 1;
2100		} else {
2101			if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2102				ret = 1;
2103		}
2104	} else {
2105		if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2106			if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2107			     ADAPTER_STATUS_RMAC_PCC_IDLE))
2108				ret = 1;
2109		} else {
2110			if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2111			     ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2112				ret = 1;
2113		}
2114	}
2115
2116	return ret;
2117}
2118/**
2119 *  verify_xena_quiescence - Checks whether the H/W is ready
2120 *  Description: Returns whether the H/W is ready to go or not. Depending
2121 *  on whether adapter enable bit was written or not the comparison
2122 *  differs and the calling function passes the input argument flag to
2123 *  indicate this.
2124 *  Return: 1 If xena is quiescence
2125 *          0 If Xena is not quiescence
2126 */
2127
2128static int verify_xena_quiescence(struct s2io_nic *sp)
2129{
2130	int  mode;
2131	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2132	u64 val64 = readq(&bar0->adapter_status);
2133	mode = s2io_verify_pci_mode(sp);
2134
2135	if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2136		DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
2137		return 0;
2138	}
2139	if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2140		DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
2141		return 0;
2142	}
2143	if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2144		DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
2145		return 0;
2146	}
2147	if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2148		DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
2149		return 0;
2150	}
2151	if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2152		DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
2153		return 0;
2154	}
2155	if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2156		DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
2157		return 0;
2158	}
2159	if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2160		DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
2161		return 0;
2162	}
2163	if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2164		DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
2165		return 0;
2166	}
2167
2168	/*
2169	 * In PCI 33 mode, the P_PLL is not used, and therefore,
2170	 * the the P_PLL_LOCK bit in the adapter_status register will
2171	 * not be asserted.
2172	 */
2173	if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2174	    sp->device_type == XFRAME_II_DEVICE &&
2175	    mode != PCI_MODE_PCI_33) {
2176		DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
2177		return 0;
2178	}
2179	if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2180	      ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2181		DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
2182		return 0;
2183	}
2184	return 1;
2185}
2186
2187/**
2188 * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2189 * @sp: Pointer to device specifc structure
2190 * Description :
2191 * New procedure to clear mac address reading  problems on Alpha platforms
2192 *
2193 */
2194
2195static void fix_mac_address(struct s2io_nic *sp)
2196{
2197	struct XENA_dev_config __iomem *bar0 = sp->bar0;
2198	int i = 0;
2199
2200	while (fix_mac[i] != END_SIGN) {
2201		writeq(fix_mac[i++], &bar0->gpio_control);
2202		udelay(10);
2203		(void) readq(&bar0->gpio_control);
2204	}
2205}
2206
2207/**
2208 *  start_nic - Turns the device on
2209 *  @nic : device private variable.
2210 *  Description:
2211 *  This function actually turns the device on. Before this  function is
2212 *  called,all Registers are configured from their reset states
2213 *  and shared memory is allocated but the NIC is still quiescent. On
2214 *  calling this function, the device interrupts are cleared and the NIC is
2215 *  literally switched on by writing into the adapter control register.
2216 *  Return Value:
2217 *  SUCCESS on success and -1 on failure.
2218 */
2219
2220static int start_nic(struct s2io_nic *nic)
2221{
2222	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2223	struct net_device *dev = nic->dev;
2224	register u64 val64 = 0;
2225	u16 subid, i;
2226	struct config_param *config = &nic->config;
2227	struct mac_info *mac_control = &nic->mac_control;
2228
2229	/*  PRC Initialization and configuration */
2230	for (i = 0; i < config->rx_ring_num; i++) {
2231		struct ring_info *ring = &mac_control->rings[i];
2232
2233		writeq((u64)ring->rx_blocks[0].block_dma_addr,
2234		       &bar0->prc_rxd0_n[i]);
2235
2236		val64 = readq(&bar0->prc_ctrl_n[i]);
2237		if (nic->rxd_mode == RXD_MODE_1)
2238			val64 |= PRC_CTRL_RC_ENABLED;
2239		else
2240			val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2241		if (nic->device_type == XFRAME_II_DEVICE)
2242			val64 |= PRC_CTRL_GROUP_READS;
2243		val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2244		val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2245		writeq(val64, &bar0->prc_ctrl_n[i]);
2246	}
2247
2248	if (nic->rxd_mode == RXD_MODE_3B) {
2249		/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2250		val64 = readq(&bar0->rx_pa_cfg);
2251		val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2252		writeq(val64, &bar0->rx_pa_cfg);
2253	}
2254
2255	if (vlan_tag_strip == 0) {
2256		val64 = readq(&bar0->rx_pa_cfg);
2257		val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2258		writeq(val64, &bar0->rx_pa_cfg);
2259		nic->vlan_strip_flag = 0;
2260	}
2261
2262	/*
2263	 * Enabling MC-RLDRAM. After enabling the device, we timeout
2264	 * for around 100ms, which is approximately the time required
2265	 * for the device to be ready for operation.
2266	 */
2267	val64 = readq(&bar0->mc_rldram_mrs);
2268	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2269	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2270	val64 = readq(&bar0->mc_rldram_mrs);
2271
2272	msleep(100);	/* Delay by around 100 ms. */
2273
2274	/* Enabling ECC Protection. */
2275	val64 = readq(&bar0->adapter_control);
2276	val64 &= ~ADAPTER_ECC_EN;
2277	writeq(val64, &bar0->adapter_control);
2278
2279	/*
2280	 * Verify if the device is ready to be enabled, if so enable
2281	 * it.
2282	 */
2283	val64 = readq(&bar0->adapter_status);
2284	if (!verify_xena_quiescence(nic)) {
2285		DBG_PRINT(ERR_DBG, "%s: device is not ready, "
2286			  "Adapter status reads: 0x%llx\n",
2287			  dev->name, (unsigned long long)val64);
2288		return FAILURE;
2289	}
2290
2291	/*
2292	 * With some switches, link might be already up at this point.
2293	 * Because of this weird behavior, when we enable laser,
2294	 * we may not get link. We need to handle this. We cannot
2295	 * figure out which switch is misbehaving. So we are forced to
2296	 * make a global change.
2297	 */
2298
2299	/* Enabling Laser. */
2300	val64 = readq(&bar0->adapter_control);
2301	val64 |= ADAPTER_EOI_TX_ON;
2302	writeq(val64, &bar0->adapter_control);
2303
2304	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2305		/*
2306		 * Dont see link state interrupts initially on some switches,
2307		 * so directly scheduling the link state task here.
2308		 */
2309		schedule_work(&nic->set_link_task);
2310	}
2311	/* SXE-002: Initialize link and activity LED */
2312	subid = nic->pdev->subsystem_device;
2313	if (((subid & 0xFF) >= 0x07) &&
2314	    (nic->device_type == XFRAME_I_DEVICE)) {
2315		val64 = readq(&bar0->gpio_control);
2316		val64 |= 0x0000800000000000ULL;
2317		writeq(val64, &bar0->gpio_control);
2318		val64 = 0x0411040400000000ULL;
2319		writeq(val64, (void __iomem *)bar0 + 0x2700);
2320	}
2321
2322	return SUCCESS;
2323}
2324/**
2325 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2326 */
2327static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
2328					struct TxD *txdlp, int get_off)
2329{
2330	struct s2io_nic *nic = fifo_data->nic;
2331	struct sk_buff *skb;
2332	struct TxD *txds;
2333	u16 j, frg_cnt;
2334
2335	txds = txdlp;
2336	if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2337		pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2338				 sizeof(u64), PCI_DMA_TODEVICE);
2339		txds++;
2340	}
2341
2342	skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
2343	if (!skb) {
2344		memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2345		return NULL;
2346	}
2347	pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
2348			 skb_headlen(skb), PCI_DMA_TODEVICE);
2349	frg_cnt = skb_shinfo(skb)->nr_frags;
2350	if (frg_cnt) {
2351		txds++;
2352		for (j = 0; j < frg_cnt; j++, txds++) {
2353			skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2354			if (!txds->Buffer_Pointer)
2355				break;
2356			pci_unmap_page(nic->pdev,
2357				       (dma_addr_t)txds->Buffer_Pointer,
2358				       frag->size, PCI_DMA_TODEVICE);
2359		}
2360	}
2361	memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2362	return skb;
2363}
2364
2365/**
2366 *  free_tx_buffers - Free all queued Tx buffers
2367 *  @nic : device private variable.
2368 *  Description:
2369 *  Free all queued Tx buffers.
2370 *  Return Value: void
2371 */
2372
2373static void free_tx_buffers(struct s2io_nic *nic)
2374{
2375	struct net_device *dev = nic->dev;
2376	struct sk_buff *skb;
2377	struct TxD *txdp;
2378	int i, j;
2379	int cnt = 0;
2380	struct config_param *config = &nic->config;
2381	struct mac_info *mac_control = &nic->mac_control;
2382	struct stat_block *stats = mac_control->stats_info;
2383	struct swStat *swstats = &stats->sw_stat;
2384
2385	for (i = 0; i < config->tx_fifo_num; i++) {
2386		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
2387		struct fifo_info *fifo = &mac_control->fifos[i];
2388		unsigned long flags;
2389
2390		spin_lock_irqsave(&fifo->tx_lock, flags);
2391		for (j = 0; j < tx_cfg->fifo_len; j++) {
2392			txdp = fifo->list_info[j].list_virt_addr;
2393			skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2394			if (skb) {
2395				swstats->mem_freed += skb->truesize;
2396				dev_kfree_skb(skb);
2397				cnt++;
2398			}
2399		}
2400		DBG_PRINT(INTR_DBG,
2401			  "%s: forcibly freeing %d skbs on FIFO%d\n",
2402			  dev->name, cnt, i);
2403		fifo->tx_curr_get_info.offset = 0;
2404		fifo->tx_curr_put_info.offset = 0;
2405		spin_unlock_irqrestore(&fifo->tx_lock, flags);
2406	}
2407}
2408
2409/**
2410 *   stop_nic -  To stop the nic
2411 *   @nic ; device private variable.
2412 *   Description:
2413 *   This function does exactly the opposite of what the start_nic()
2414 *   function does. This function is called to stop the device.
2415 *   Return Value:
2416 *   void.
2417 */
2418
2419static void stop_nic(struct s2io_nic *nic)
2420{
2421	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2422	register u64 val64 = 0;
2423	u16 interruptible;
2424
2425	/*  Disable all interrupts */
2426	en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2427	interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2428	interruptible |= TX_PIC_INTR;
2429	en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2430
2431	/* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2432	val64 = readq(&bar0->adapter_control);
2433	val64 &= ~(ADAPTER_CNTL_EN);
2434	writeq(val64, &bar0->adapter_control);
2435}
2436
2437/**
2438 *  fill_rx_buffers - Allocates the Rx side skbs
2439 *  @ring_info: per ring structure
2440 *  @from_card_up: If this is true, we will map the buffer to get
2441 *     the dma address for buf0 and buf1 to give it to the card.
2442 *     Else we will sync the already mapped buffer to give it to the card.
2443 *  Description:
2444 *  The function allocates Rx side skbs and puts the physical
2445 *  address of these buffers into the RxD buffer pointers, so that the NIC
2446 *  can DMA the received frame into these locations.
2447 *  The NIC supports 3 receive modes, viz
2448 *  1. single buffer,
2449 *  2. three buffer and
2450 *  3. Five buffer modes.
2451 *  Each mode defines how many fragments the received frame will be split
2452 *  up into by the NIC. The frame is split into L3 header, L4 Header,
2453 *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2454 *  is split into 3 fragments. As of now only single buffer mode is
2455 *  supported.
2456 *   Return Value:
2457 *  SUCCESS on success or an appropriate -ve value on failure.
2458 */
2459static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2460			   int from_card_up)
2461{
2462	struct sk_buff *skb;
2463	struct RxD_t *rxdp;
2464	int off, size, block_no, block_no1;
2465	u32 alloc_tab = 0;
2466	u32 alloc_cnt;
2467	u64 tmp;
2468	struct buffAdd *ba;
2469	struct RxD_t *first_rxdp = NULL;
2470	u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2471	int rxd_index = 0;
2472	struct RxD1 *rxdp1;
2473	struct RxD3 *rxdp3;
2474	struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
2475
2476	alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2477
2478	block_no1 = ring->rx_curr_get_info.block_index;
2479	while (alloc_tab < alloc_cnt) {
2480		block_no = ring->rx_curr_put_info.block_index;
2481
2482		off = ring->rx_curr_put_info.offset;
2483
2484		rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2485
2486		rxd_index = off + 1;
2487		if (block_no)
2488			rxd_index += (block_no * ring->rxd_count);
2489
2490		if ((block_no == block_no1) &&
2491		    (off == ring->rx_curr_get_info.offset) &&
2492		    (rxdp->Host_Control)) {
2493			DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
2494				  ring->dev->name);
2495			goto end;
2496		}
2497		if (off && (off == ring->rxd_count)) {
2498			ring->rx_curr_put_info.block_index++;
2499			if (ring->rx_curr_put_info.block_index ==
2500			    ring->block_count)
2501				ring->rx_curr_put_info.block_index = 0;
2502			block_no = ring->rx_curr_put_info.block_index;
2503			off = 0;
2504			ring->rx_curr_put_info.offset = off;
2505			rxdp = ring->rx_blocks[block_no].block_virt_addr;
2506			DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2507				  ring->dev->name, rxdp);
2508
2509		}
2510
2511		if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2512		    ((ring->rxd_mode == RXD_MODE_3B) &&
2513		     (rxdp->Control_2 & s2BIT(0)))) {
2514			ring->rx_curr_put_info.offset = off;
2515			goto end;
2516		}
2517		/* calculate size of skb based on ring mode */
2518		size = ring->mtu +
2519			HEADER_ETHERNET_II_802_3_SIZE +
2520			HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2521		if (ring->rxd_mode == RXD_MODE_1)
2522			size += NET_IP_ALIGN;
2523		else
2524			size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2525
2526		/* allocate skb */
2527		skb = dev_alloc_skb(size);
2528		if (!skb) {
2529			DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
2530				  ring->dev->name);
2531			if (first_rxdp) {
2532				wmb();
2533				first_rxdp->Control_1 |= RXD_OWN_XENA;
2534			}
2535			swstats->mem_alloc_fail_cnt++;
2536
2537			return -ENOMEM ;
2538		}
2539		swstats->mem_allocated += skb->truesize;
2540
2541		if (ring->rxd_mode == RXD_MODE_1) {
2542			/* 1 buffer mode - normal operation mode */
2543			rxdp1 = (struct RxD1 *)rxdp;
2544			memset(rxdp, 0, sizeof(struct RxD1));
2545			skb_reserve(skb, NET_IP_ALIGN);
2546			rxdp1->Buffer0_ptr =
2547				pci_map_single(ring->pdev, skb->data,
2548					       size - NET_IP_ALIGN,
2549					       PCI_DMA_FROMDEVICE);
2550			if (pci_dma_mapping_error(nic->pdev,
2551						  rxdp1->Buffer0_ptr))
2552				goto pci_map_failed;
2553
2554			rxdp->Control_2 =
2555				SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2556			rxdp->Host_Control = (unsigned long)skb;
2557		} else if (ring->rxd_mode == RXD_MODE_3B) {
2558			/*
2559			 * 2 buffer mode -
2560			 * 2 buffer mode provides 128
2561			 * byte aligned receive buffers.
2562			 */
2563
2564			rxdp3 = (struct RxD3 *)rxdp;
2565			/* save buffer pointers to avoid frequent dma mapping */
2566			Buffer0_ptr = rxdp3->Buffer0_ptr;
2567			Buffer1_ptr = rxdp3->Buffer1_ptr;
2568			memset(rxdp, 0, sizeof(struct RxD3));
2569			/* restore the buffer pointers for dma sync*/
2570			rxdp3->Buffer0_ptr = Buffer0_ptr;
2571			rxdp3->Buffer1_ptr = Buffer1_ptr;
2572
2573			ba = &ring->ba[block_no][off];
2574			skb_reserve(skb, BUF0_LEN);
2575			tmp = (u64)(unsigned long)skb->data;
2576			tmp += ALIGN_SIZE;
2577			tmp &= ~ALIGN_SIZE;
2578			skb->data = (void *) (unsigned long)tmp;
2579			skb_reset_tail_pointer(skb);
2580
2581			if (from_card_up) {
2582				rxdp3->Buffer0_ptr =
2583					pci_map_single(ring->pdev, ba->ba_0,
2584						       BUF0_LEN,
2585						       PCI_DMA_FROMDEVICE);
2586				if (pci_dma_mapping_error(nic->pdev,
2587							  rxdp3->Buffer0_ptr))
2588					goto pci_map_failed;
2589			} else
2590				pci_dma_sync_single_for_device(ring->pdev,
2591							       (dma_addr_t)rxdp3->Buffer0_ptr,
2592							       BUF0_LEN,
2593							       PCI_DMA_FROMDEVICE);
2594
2595			rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2596			if (ring->rxd_mode == RXD_MODE_3B) {
2597				/* Two buffer mode */
2598
2599				/*
2600				 * Buffer2 will have L3/L4 header plus
2601				 * L4 payload
2602				 */
2603				rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
2604								    skb->data,
2605								    ring->mtu + 4,
2606								    PCI_DMA_FROMDEVICE);
2607
2608				if (pci_dma_mapping_error(nic->pdev,
2609							  rxdp3->Buffer2_ptr))
2610					goto pci_map_failed;
2611
2612				if (from_card_up) {
2613					rxdp3->Buffer1_ptr =
2614						pci_map_single(ring->pdev,
2615							       ba->ba_1,
2616							       BUF1_LEN,
2617							       PCI_DMA_FROMDEVICE);
2618
2619					if (pci_dma_mapping_error(nic->pdev,
2620								  rxdp3->Buffer1_ptr)) {
2621						pci_unmap_single(ring->pdev,
2622								 (dma_addr_t)(unsigned long)
2623								 skb->data,
2624								 ring->mtu + 4,
2625								 PCI_DMA_FROMDEVICE);
2626						goto pci_map_failed;
2627					}
2628				}
2629				rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2630				rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2631					(ring->mtu + 4);
2632			}
2633			rxdp->Control_2 |= s2BIT(0);
2634			rxdp->Host_Control = (unsigned long) (skb);
2635		}
2636		if (alloc_tab & ((1 << rxsync_frequency) - 1))
2637			rxdp->Control_1 |= RXD_OWN_XENA;
2638		off++;
2639		if (off == (ring->rxd_count + 1))
2640			off = 0;
2641		ring->rx_curr_put_info.offset = off;
2642
2643		rxdp->Control_2 |= SET_RXD_MARKER;
2644		if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2645			if (first_rxdp) {
2646				wmb();
2647				first_rxdp->Control_1 |= RXD_OWN_XENA;
2648			}
2649			first_rxdp = rxdp;
2650		}
2651		ring->rx_bufs_left += 1;
2652		alloc_tab++;
2653	}
2654
2655end:
2656	/* Transfer ownership of first descriptor to adapter just before
2657	 * exiting. Before that, use memory barrier so that ownership
2658	 * and other fields are seen by adapter correctly.
2659	 */
2660	if (first_rxdp) {
2661		wmb();
2662		first_rxdp->Control_1 |= RXD_OWN_XENA;
2663	}
2664
2665	return SUCCESS;
2666
2667pci_map_failed:
2668	swstats->pci_map_fail_cnt++;
2669	swstats->mem_freed += skb->truesize;
2670	dev_kfree_skb_irq(skb);
2671	return -ENOMEM;
2672}
2673
2674static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2675{
2676	struct net_device *dev = sp->dev;
2677	int j;
2678	struct sk_buff *skb;
2679	struct RxD_t *rxdp;
2680	struct RxD1 *rxdp1;
2681	struct RxD3 *rxdp3;
2682	struct mac_info *mac_control = &sp->mac_control;
2683	struct stat_block *stats = mac_control->stats_info;
2684	struct swStat *swstats = &stats->sw_stat;
2685
2686	for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2687		rxdp = mac_control->rings[ring_no].
2688			rx_blocks[blk].rxds[j].virt_addr;
2689		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2690		if (!skb)
2691			continue;
2692		if (sp->rxd_mode == RXD_MODE_1) {
2693			rxdp1 = (struct RxD1 *)rxdp;
2694			pci_unmap_single(sp->pdev,
2695					 (dma_addr_t)rxdp1->Buffer0_ptr,
2696					 dev->mtu +
2697					 HEADER_ETHERNET_II_802_3_SIZE +
2698					 HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
2699					 PCI_DMA_FROMDEVICE);
2700			memset(rxdp, 0, sizeof(struct RxD1));
2701		} else if (sp->rxd_mode == RXD_MODE_3B) {
2702			rxdp3 = (struct RxD3 *)rxdp;
2703			pci_unmap_single(sp->pdev,
2704					 (dma_addr_t)rxdp3->Buffer0_ptr,
2705					 BUF0_LEN,
2706					 PCI_DMA_FROMDEVICE);
2707			pci_unmap_single(sp->pdev,
2708					 (dma_addr_t)rxdp3->Buffer1_ptr,
2709					 BUF1_LEN,
2710					 PCI_DMA_FROMDEVICE);
2711			pci_unmap_single(sp->pdev,
2712					 (dma_addr_t)rxdp3->Buffer2_ptr,
2713					 dev->mtu + 4,
2714					 PCI_DMA_FROMDEVICE);
2715			memset(rxdp, 0, sizeof(struct RxD3));
2716		}
2717		swstats->mem_freed += skb->truesize;
2718		dev_kfree_skb(skb);
2719		mac_control->rings[ring_no].rx_bufs_left -= 1;
2720	}
2721}
2722
2723/**
2724 *  free_rx_buffers - Frees all Rx buffers
2725 *  @sp: device private variable.
2726 *  Description:
2727 *  This function will free all Rx buffers allocated by host.
2728 *  Return Value:
2729 *  NONE.
2730 */
2731
2732static void free_rx_buffers(struct s2io_nic *sp)
2733{
2734	struct net_device *dev = sp->dev;
2735	int i, blk = 0, buf_cnt = 0;
2736	struct config_param *config = &sp->config;
2737	struct mac_info *mac_control = &sp->mac_control;
2738
2739	for (i = 0; i < config->rx_ring_num; i++) {
2740		struct ring_info *ring = &mac_control->rings[i];
2741
2742		for (blk = 0; blk < rx_ring_sz[i]; blk++)
2743			free_rxd_blk(sp, i, blk);
2744
2745		ring->rx_curr_put_info.block_index = 0;
2746		ring->rx_curr_get_info.block_index = 0;
2747		ring->rx_curr_put_info.offset = 0;
2748		ring->rx_curr_get_info.offset = 0;
2749		ring->rx_bufs_left = 0;
2750		DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
2751			  dev->name, buf_cnt, i);
2752	}
2753}
2754
2755static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2756{
2757	if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2758		DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
2759			  ring->dev->name);
2760	}
2761	return 0;
2762}
2763
2764/**
2765 * s2io_poll - Rx interrupt handler for NAPI support
2766 * @napi : pointer to the napi structure.
2767 * @budget : The number of packets that were budgeted to be processed
2768 * during  one pass through the 'Poll" function.
2769 * Description:
2770 * Comes into picture only if NAPI support has been incorporated. It does
2771 * the same thing that rx_intr_handler does, but not in a interrupt context
2772 * also It will process only a given number of packets.
2773 * Return value:
2774 * 0 on success and 1 if there are No Rx packets to be processed.
2775 */
2776
2777static int s2io_poll_msix(struct napi_struct *napi, int budget)
2778{
2779	struct ring_info *ring = container_of(napi, struct ring_info, napi);
2780	struct net_device *dev = ring->dev;
2781	int pkts_processed = 0;
2782	u8 __iomem *addr = NULL;
2783	u8 val8 = 0;
2784	struct s2io_nic *nic = netdev_priv(dev);
2785	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2786	int budget_org = budget;
2787
2788	if (unlikely(!is_s2io_card_up(nic)))
2789		return 0;
2790
2791	pkts_processed = rx_intr_handler(ring, budget);
2792	s2io_chk_rx_buffers(nic, ring);
2793
2794	if (pkts_processed < budget_org) {
2795		napi_complete(napi);
2796		/*Re Enable MSI-Rx Vector*/
2797		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2798		addr += 7 - ring->ring_no;
2799		val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2800		writeb(val8, addr);
2801		val8 = readb(addr);
2802	}
2803	return pkts_processed;
2804}
2805
2806static int s2io_poll_inta(struct napi_struct *napi, int budget)
2807{
2808	struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2809	int pkts_processed = 0;
2810	int ring_pkts_processed, i;
2811	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2812	int budget_org = budget;
2813	struct config_param *config = &nic->config;
2814	struct mac_info *mac_control = &nic->mac_control;
2815
2816	if (unlikely(!is_s2io_card_up(nic)))
2817		return 0;
2818
2819	for (i = 0; i < config->rx_ring_num; i++) {
2820		struct ring_info *ring = &mac_control->rings[i];
2821		ring_pkts_processed = rx_intr_handler(ring, budget);
2822		s2io_chk_rx_buffers(nic, ring);
2823		pkts_processed += ring_pkts_processed;
2824		budget -= ring_pkts_processed;
2825		if (budget <= 0)
2826			break;
2827	}
2828	if (pkts_processed < budget_org) {
2829		napi_complete(napi);
2830		/* Re enable the Rx interrupts for the ring */
2831		writeq(0, &bar0->rx_traffic_mask);
2832		readl(&bar0->rx_traffic_mask);
2833	}
2834	return pkts_processed;
2835}
2836
2837#ifdef CONFIG_NET_POLL_CONTROLLER
2838/**
2839 * s2io_netpoll - netpoll event handler entry point
2840 * @dev : pointer to the device structure.
2841 * Description:
2842 * 	This function will be called by upper layer to check for events on the
2843 * interface in situations where interrupts are disabled. It is used for
2844 * specific in-kernel networking tasks, such as remote consoles and kernel
2845 * debugging over the network (example netdump in RedHat).
2846 */
2847static void s2io_netpoll(struct net_device *dev)
2848{
2849	struct s2io_nic *nic = netdev_priv(dev);
2850	struct XENA_dev_config __iomem *bar0 = nic->bar0;
2851	u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2852	int i;
2853	struct config_param *config = &nic->config;
2854	struct mac_info *mac_control = &nic->mac_control;
2855
2856	if (pci_channel_offline(nic->pdev))
2857		return;
2858
2859	disable_irq(dev->irq);
2860
2861	writeq(val64, &bar0->rx_traffic_int);
2862	writeq(val64, &bar0->tx_traffic_int);
2863
2864	/* we need to free up the transmitted skbufs or else netpoll will
2865	 * run out of skbs and will fail and eventually netpoll application such
2866	 * as netdump will fail.
2867	 */
2868	for (i = 0; i < config->tx_fifo_num; i++)
2869		tx_intr_handler(&mac_control->fifos[i]);
2870
2871	/* check for received packet and indicate up to network */
2872	for (i = 0; i < config->rx_ring_num; i++) {
2873		struct ring_info *ring = &mac_control->rings[i];
2874
2875		rx_intr_handler(ring, 0);
2876	}
2877
2878	for (i = 0; i < config->rx_ring_num; i++) {
2879		struct ring_info *ring = &mac_control->rings[i];
2880
2881		if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2882			DBG_PRINT(INFO_DBG,
2883				  "%s: Out of memory in Rx Netpoll!!\n",
2884				  dev->name);
2885			break;
2886		}
2887	}
2888	enable_irq(dev->irq);
2889}
2890#endif
2891
2892/**
2893 *  rx_intr_handler - Rx interrupt handler
2894 *  @ring_info: per ring structure.
2895 *  @budget: budget for napi processing.
2896 *  Description:
2897 *  If the interrupt is because of a received frame or if the
2898 *  receive ring contains fresh as yet un-processed frames,this function is
2899 *  called. It picks out the RxD at which place the last Rx processing had
2900 *  stopped and sends the skb to the OSM's Rx handler and then increments
2901 *  the offset.
2902 *  Return Value:
2903 *  No. of napi packets processed.
2904 */
2905static int rx_intr_handler(struct ring_info *ring_data, int budget)
2906{
2907	int get_block, put_block;
2908	struct rx_curr_get_info get_info, put_info;
2909	struct RxD_t *rxdp;
2910	struct sk_buff *skb;
2911	int pkt_cnt = 0, napi_pkts = 0;
2912	int i;
2913	struct RxD1 *rxdp1;
2914	struct RxD3 *rxdp3;
2915
2916	get_info = ring_data->rx_curr_get_info;
2917	get_block = get_info.block_index;
2918	memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2919	put_block = put_info.block_index;
2920	rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2921
2922	while (RXD_IS_UP2DT(rxdp)) {
2923		/*
2924		 * If your are next to put index then it's
2925		 * FIFO full condition
2926		 */
2927		if ((get_block == put_block) &&
2928		    (get_info.offset + 1) == put_info.offset) {
2929			DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2930				  ring_data->dev->name);
2931			break;
2932		}
2933		skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
2934		if (skb == NULL) {
2935			DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
2936				  ring_data->dev->name);
2937			return 0;
2938		}
2939		if (ring_data->rxd_mode == RXD_MODE_1) {
2940			rxdp1 = (struct RxD1 *)rxdp;
2941			pci_unmap_single(ring_data->pdev, (dma_addr_t)
2942					 rxdp1->Buffer0_ptr,
2943					 ring_data->mtu +
2944					 HEADER_ETHERNET_II_802_3_SIZE +
2945					 HEADER_802_2_SIZE +
2946					 HEADER_SNAP_SIZE,
2947					 PCI_DMA_FROMDEVICE);
2948		} else if (ring_data->rxd_mode == RXD_MODE_3B) {
2949			rxdp3 = (struct RxD3 *)rxdp;
2950			pci_dma_sync_single_for_cpu(ring_data->pdev,
2951						    (dma_addr_t)rxdp3->Buffer0_ptr,
2952						    BUF0_LEN,
2953						    PCI_DMA_FROMDEVICE);
2954			pci_unmap_single(ring_data->pdev,
2955					 (dma_addr_t)rxdp3->Buffer2_ptr,
2956					 ring_data->mtu + 4,
2957					 PCI_DMA_FROMDEVICE);
2958		}
2959		prefetch(skb->data);
2960		rx_osm_handler(ring_data, rxdp);
2961		get_info.offset++;
2962		ring_data->rx_curr_get_info.offset = get_info.offset;
2963		rxdp = ring_data->rx_blocks[get_block].
2964			rxds[get_info.offset].virt_addr;
2965		if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
2966			get_info.offset = 0;
2967			ring_data->rx_curr_get_info.offset = get_info.offset;
2968			get_block++;
2969			if (get_block == ring_data->block_count)
2970				get_block = 0;
2971			ring_data->rx_curr_get_info.block_index = get_block;
2972			rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2973		}
2974
2975		if (ring_data->nic->config.napi) {
2976			budget--;
2977			napi_pkts++;
2978			if (!budget)
2979				break;
2980		}
2981		pkt_cnt++;
2982		if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2983			break;
2984	}
2985	if (ring_data->lro) {
2986		/* Clear all LRO sessions before exiting */
2987		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
2988			struct lro *lro = &ring_data->lro0_n[i];
2989			if (lro->in_use) {
2990				update_L3L4_header(ring_data->nic, lro);
2991				queue_rx_frame(lro->parent, lro->vlan_tag);
2992				clear_lro_session(lro);
2993			}
2994		}
2995	}
2996	return napi_pkts;
2997}
2998
2999/**
3000 *  tx_intr_handler - Transmit interrupt handler
3001 *  @nic : device private variable
3002 *  Description:
3003 *  If an interrupt was raised to indicate DMA complete of the
3004 *  Tx packet, this function is called. It identifies the last TxD
3005 *  whose buffer was freed and frees all skbs whose data have already
3006 *  DMA'ed into the NICs internal memory.
3007 *  Return Value:
3008 *  NONE
3009 */
3010
3011static void tx_intr_handler(struct fifo_info *fifo_data)
3012{
3013	struct s2io_nic *nic = fifo_data->nic;
3014	struct tx_curr_get_info get_info, put_info;
3015	struct sk_buff *skb = NULL;
3016	struct TxD *txdlp;
3017	int pkt_cnt = 0;
3018	unsigned long flags = 0;
3019	u8 err_mask;
3020	struct stat_block *stats = nic->mac_control.stats_info;
3021	struct swStat *swstats = &stats->sw_stat;
3022
3023	if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3024		return;
3025
3026	get_info = fifo_data->tx_curr_get_info;
3027	memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3028	txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3029	while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3030	       (get_info.offset != put_info.offset) &&
3031	       (txdlp->Host_Control)) {
3032		/* Check for TxD errors */
3033		if (txdlp->Control_1 & TXD_T_CODE) {
3034			unsigned long long err;
3035			err = txdlp->Control_1 & TXD_T_CODE;
3036			if (err & 0x1) {
3037				swstats->parity_err_cnt++;
3038			}
3039
3040			/* update t_code statistics */
3041			err_mask = err >> 48;
3042			switch (err_mask) {
3043			case 2:
3044				swstats->tx_buf_abort_cnt++;
3045				break;
3046
3047			case 3:
3048				swstats->tx_desc_abort_cnt++;
3049				break;
3050
3051			case 7:
3052				swstats->tx_parity_err_cnt++;
3053				break;
3054
3055			case 10:
3056				swstats->tx_link_loss_cnt++;
3057				break;
3058
3059			case 15:
3060				swstats->tx_list_proc_err_cnt++;
3061				break;
3062			}
3063		}
3064
3065		skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3066		if (skb == NULL) {
3067			spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3068			DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
3069				  __func__);
3070			return;
3071		}
3072		pkt_cnt++;
3073
3074		/* Updating the statistics block */
3075		swstats->mem_freed += skb->truesize;
3076		dev_kfree_skb_irq(skb);
3077
3078		get_info.offset++;
3079		if (get_info.offset == get_info.fifo_len + 1)
3080			get_info.offset = 0;
3081		txdlp = fifo_data->list_info[get_info.offset].list_virt_addr;
3082		fifo_data->tx_curr_get_info.offset = get_info.offset;
3083	}
3084
3085	s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3086
3087	spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3088}
3089
3090/**
3091 *  s2io_mdio_write - Function to write in to MDIO registers
3092 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3093 *  @addr     : address value
3094 *  @value    : data value
3095 *  @dev      : pointer to net_device structure
3096 *  Description:
3097 *  This function is used to write values to the MDIO registers
3098 *  NONE
3099 */
3100static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
3101			    struct net_device *dev)
3102{
3103	u64 val64;
3104	struct s2io_nic *sp = netdev_priv(dev);
3105	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3106
3107	/* address transaction */
3108	val64 = MDIO_MMD_INDX_ADDR(addr) |
3109		MDIO_MMD_DEV_ADDR(mmd_type) |
3110		MDIO_MMS_PRT_ADDR(0x0);
3111	writeq(val64, &bar0->mdio_control);
3112	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3113	writeq(val64, &bar0->mdio_control);
3114	udelay(100);
3115
3116	/* Data transaction */
3117	val64 = MDIO_MMD_INDX_ADDR(addr) |
3118		MDIO_MMD_DEV_ADDR(mmd_type) |
3119		MDIO_MMS_PRT_ADDR(0x0) |
3120		MDIO_MDIO_DATA(value) |
3121		MDIO_OP(MDIO_OP_WRITE_TRANS);
3122	writeq(val64, &bar0->mdio_control);
3123	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3124	writeq(val64, &bar0->mdio_control);
3125	udelay(100);
3126
3127	val64 = MDIO_MMD_INDX_ADDR(addr) |
3128		MDIO_MMD_DEV_ADDR(mmd_type) |
3129		MDIO_MMS_PRT_ADDR(0x0) |
3130		MDIO_OP(MDIO_OP_READ_TRANS);
3131	writeq(val64, &bar0->mdio_control);
3132	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3133	writeq(val64, &bar0->mdio_control);
3134	udelay(100);
3135}
3136
3137/**
3138 *  s2io_mdio_read - Function to write in to MDIO registers
3139 *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3140 *  @addr     : address value
3141 *  @dev      : pointer to net_device structure
3142 *  Description:
3143 *  This function is used to read values to the MDIO registers
3144 *  NONE
3145 */
3146static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3147{
3148	u64 val64 = 0x0;
3149	u64 rval64 = 0x0;
3150	struct s2io_nic *sp = netdev_priv(dev);
3151	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3152
3153	/* address transaction */
3154	val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
3155			 | MDIO_MMD_DEV_ADDR(mmd_type)
3156			 | MDIO_MMS_PRT_ADDR(0x0));
3157	writeq(val64, &bar0->mdio_control);
3158	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3159	writeq(val64, &bar0->mdio_control);
3160	udelay(100);
3161
3162	/* Data transaction */
3163	val64 = MDIO_MMD_INDX_ADDR(addr) |
3164		MDIO_MMD_DEV_ADDR(mmd_type) |
3165		MDIO_MMS_PRT_ADDR(0x0) |
3166		MDIO_OP(MDIO_OP_READ_TRANS);
3167	writeq(val64, &bar0->mdio_control);
3168	val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3169	writeq(val64, &bar0->mdio_control);
3170	udelay(100);
3171
3172	/* Read the value from regs */
3173	rval64 = readq(&bar0->mdio_control);
3174	rval64 = rval64 & 0xFFFF0000;
3175	rval64 = rval64 >> 16;
3176	return rval64;
3177}
3178
3179/**
3180 *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3181 *  @counter      : counter value to be updated
3182 *  @flag         : flag to indicate the status
3183 *  @type         : counter type
3184 *  Description:
3185 *  This function is to check the status of the xpak counters value
3186 *  NONE
3187 */
3188
3189static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
3190				  u16 flag, u16 type)
3191{
3192	u64 mask = 0x3;
3193	u64 val64;
3194	int i;
3195	for (i = 0; i < index; i++)
3196		mask = mask << 0x2;
3197
3198	if (flag > 0) {
3199		*counter = *counter + 1;
3200		val64 = *regs_stat & mask;
3201		val64 = val64 >> (index * 0x2);
3202		val64 = val64 + 1;
3203		if (val64 == 3) {
3204			switch (type) {
3205			case 1:
3206				DBG_PRINT(ERR_DBG,
3207					  "Take Xframe NIC out of service.\n");
3208				DBG_PRINT(ERR_DBG,
3209"Excessive temperatures may result in premature transceiver failure.\n");
3210				break;
3211			case 2:
3212				DBG_PRINT(ERR_DBG,
3213					  "Take Xframe NIC out of service.\n");
3214				DBG_PRINT(ERR_DBG,
3215"Excessive bias currents may indicate imminent laser diode failure.\n");
3216				break;
3217			case 3:
3218				DBG_PRINT(ERR_DBG,
3219					  "Take Xframe NIC out of service.\n");
3220				DBG_PRINT(ERR_DBG,
3221"Excessive laser output power may saturate far-end receiver.\n");
3222				break;
3223			default:
3224				DBG_PRINT(ERR_DBG,
3225					  "Incorrect XPAK Alarm type\n");
3226			}
3227			val64 = 0x0;
3228		}
3229		val64 = val64 << (index * 0x2);
3230		*regs_stat = (*regs_stat & (~mask)) | (val64);
3231
3232	} else {
3233		*regs_stat = *regs_stat & (~mask);
3234	}
3235}
3236
3237/**
3238 *  s2io_updt_xpak_counter - Function to update the xpak counters
3239 *  @dev         : pointer to net_device struct
3240 *  Description:
3241 *  This function is to upate the status of the xpak counters value
3242 *  NONE
3243 */
3244static void s2io_updt_xpak_counter(struct net_device *dev)
3245{
3246	u16 flag  = 0x0;
3247	u16 type  = 0x0;
3248	u16 val16 = 0x0;
3249	u64 val64 = 0x0;
3250	u64 addr  = 0x0;
3251
3252	struct s2io_nic *sp = netdev_priv(dev);
3253	struct stat_block *stats = sp->mac_control.stats_info;
3254	struct xpakStat *xstats = &stats->xpak_stat;
3255
3256	/* Check the communication with the MDIO slave */
3257	addr = MDIO_CTRL1;
3258	val64 = 0x0;
3259	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3260	if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
3261		DBG_PRINT(ERR_DBG,
3262			  "ERR: MDIO slave access failed - Returned %llx\n",
3263			  (unsigned long long)val64);
3264		return;
3265	}
3266
3267	/* Check for the expected value of control reg 1 */
3268	if (val64 != MDIO_CTRL1_SPEED10G) {
3269		DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
3270			  "Returned: %llx- Expected: 0x%x\n",
3271			  (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
3272		return;
3273	}
3274
3275	/* Loading the DOM register to MDIO register */
3276	addr = 0xA100;
3277	s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
3278	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3279
3280	/* Reading the Alarm flags */
3281	addr = 0xA070;
3282	val64 = 0x0;
3283	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3284
3285	flag = CHECKBIT(val64, 0x7);
3286	type = 1;
3287	s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
3288			      &xstats->xpak_regs_stat,
3289			      0x0, flag, type);
3290
3291	if (CHECKBIT(val64, 0x6))
3292		xstats->alarm_transceiver_temp_low++;
3293
3294	flag = CHECKBIT(val64, 0x3);
3295	type = 2;
3296	s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
3297			      &xstats->xpak_regs_stat,
3298			      0x2, flag, type);
3299
3300	if (CHECKBIT(val64, 0x2))
3301		xstats->alarm_laser_bias_current_low++;
3302
3303	flag = CHECKBIT(val64, 0x1);
3304	type = 3;
3305	s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
3306			      &xstats->xpak_regs_stat,
3307			      0x4, flag, type);
3308
3309	if (CHECKBIT(val64, 0x0))
3310		xstats->alarm_laser_output_power_low++;
3311
3312	/* Reading the Warning flags */
3313	addr = 0xA074;
3314	val64 = 0x0;
3315	val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
3316
3317	if (CHECKBIT(val64, 0x7))
3318		xstats->warn_transceiver_temp_high++;
3319
3320	if (CHECKBIT(val64, 0x6))
3321		xstats->warn_transceiver_temp_low++;
3322
3323	if (CHECKBIT(val64, 0x3))
3324		xstats->warn_laser_bias_current_high++;
3325
3326	if (CHECKBIT(val64, 0x2))
3327		xstats->warn_laser_bias_current_low++;
3328
3329	if (CHECKBIT(val64, 0x1))
3330		xstats->warn_laser_output_power_high++;
3331
3332	if (CHECKBIT(val64, 0x0))
3333		xstats->warn_laser_output_power_low++;
3334}
3335
3336/**
3337 *  wait_for_cmd_complete - waits for a command to complete.
3338 *  @sp : private member of the device structure, which is a pointer to the
3339 *  s2io_nic structure.
3340 *  Description: Function that waits for a command to Write into RMAC
3341 *  ADDR DATA registers to be completed and returns either success or
3342 *  error depending on whether the command was complete or not.
3343 *  Return value:
3344 *   SUCCESS on success and FAILURE on failure.
3345 */
3346
3347static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3348				 int bit_state)
3349{
3350	int ret = FAILURE, cnt = 0, delay = 1;
3351	u64 val64;
3352
3353	if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3354		return FAILURE;
3355
3356	do {
3357		val64 = readq(addr);
3358		if (bit_state == S2IO_BIT_RESET) {
3359			if (!(val64 & busy_bit)) {
3360				ret = SUCCESS;
3361				break;
3362			}
3363		} else {
3364			if (val64 & busy_bit) {
3365				ret = SUCCESS;
3366				break;
3367			}
3368		}
3369
3370		if (in_interrupt())
3371			mdelay(delay);
3372		else
3373			msleep(delay);
3374
3375		if (++cnt >= 10)
3376			delay = 50;
3377	} while (cnt < 20);
3378	return ret;
3379}
3380/*
3381 * check_pci_device_id - Checks if the device id is supported
3382 * @id : device id
3383 * Description: Function to check if the pci device id is supported by driver.
3384 * Return value: Actual device id if supported else PCI_ANY_ID
3385 */
3386static u16 check_pci_device_id(u16 id)
3387{
3388	switch (id) {
3389	case PCI_DEVICE_ID_HERC_WIN:
3390	case PCI_DEVICE_ID_HERC_UNI:
3391		return XFRAME_II_DEVICE;
3392	case PCI_DEVICE_ID_S2IO_UNI:
3393	case PCI_DEVICE_ID_S2IO_WIN:
3394		return XFRAME_I_DEVICE;
3395	default:
3396		return PCI_ANY_ID;
3397	}
3398}
3399
3400/**
3401 *  s2io_reset - Resets the card.
3402 *  @sp : private member of the device structure.
3403 *  Description: Function to Reset the card. This function then also
3404 *  restores the previously saved PCI configuration space registers as
3405 *  the card reset also resets the configuration space.
3406 *  Return value:
3407 *  void.
3408 */
3409
3410static void s2io_reset(struct s2io_nic *sp)
3411{
3412	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3413	u64 val64;
3414	u16 subid, pci_cmd;
3415	int i;
3416	u16 val16;
3417	unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3418	unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3419	struct stat_block *stats;
3420	struct swStat *swstats;
3421
3422	DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
3423		  __func__, pci_name(sp->pdev));
3424
3425	/* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3426	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3427
3428	val64 = SW_RESET_ALL;
3429	writeq(val64, &bar0->sw_reset);
3430	if (strstr(sp->product_name, "CX4"))
3431		msleep(750);
3432	msleep(250);
3433	for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3434
3435		/* Restore the PCI state saved during initialization. */
3436		pci_restore_state(sp->pdev);
3437		pci_save_state(sp->pdev);
3438		pci_read_config_word(sp->pdev, 0x2, &val16);
3439		if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3440			break;
3441		msleep(200);
3442	}
3443
3444	if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
3445		DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
3446
3447	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3448
3449	s2io_init_pci(sp);
3450
3451	/* Set swapper to enable I/O register access */
3452	s2io_set_swapper(sp);
3453
3454	/* restore mac_addr entries */
3455	do_s2io_restore_unicast_mc(sp);
3456
3457	/* Restore the MSIX table entries from local variables */
3458	restore_xmsi_data(sp);
3459
3460	/* Clear certain PCI/PCI-X fields after reset */
3461	if (sp->device_type == XFRAME_II_DEVICE) {
3462		/* Clear "detected parity error" bit */
3463		pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3464
3465		/* Clearing PCIX Ecc status register */
3466		pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3467
3468		/* Clearing PCI_STATUS error reflected here */
3469		writeq(s2BIT(62), &bar0->txpic_int_reg);
3470	}
3471
3472	/* Reset device statistics maintained by OS */
3473	memset(&sp->stats, 0, sizeof(struct net_device_stats));
3474
3475	stats = sp->mac_control.stats_info;
3476	swstats = &stats->sw_stat;
3477
3478	/* save link up/down time/cnt, reset/memory/watchdog cnt */
3479	up_cnt = swstats->link_up_cnt;
3480	down_cnt = swstats->link_down_cnt;
3481	up_time = swstats->link_up_time;
3482	down_time = swstats->link_down_time;
3483	reset_cnt = swstats->soft_reset_cnt;
3484	mem_alloc_cnt = swstats->mem_allocated;
3485	mem_free_cnt = swstats->mem_freed;
3486	watchdog_cnt = swstats->watchdog_timer_cnt;
3487
3488	memset(stats, 0, sizeof(struct stat_block));
3489
3490	/* restore link up/down time/cnt, reset/memory/watchdog cnt */
3491	swstats->link_up_cnt = up_cnt;
3492	swstats->link_down_cnt = down_cnt;
3493	swstats->link_up_time = up_time;
3494	swstats->link_down_time = down_time;
3495	swstats->soft_reset_cnt = reset_cnt;
3496	swstats->mem_allocated = mem_alloc_cnt;
3497	swstats->mem_freed = mem_free_cnt;
3498	swstats->watchdog_timer_cnt = watchdog_cnt;
3499
3500	/* SXE-002: Configure link and activity LED to turn it off */
3501	subid = sp->pdev->subsystem_device;
3502	if (((subid & 0xFF) >= 0x07) &&
3503	    (sp->device_type == XFRAME_I_DEVICE)) {
3504		val64 = readq(&bar0->gpio_control);
3505		val64 |= 0x0000800000000000ULL;
3506		writeq(val64, &bar0->gpio_control);
3507		val64 = 0x0411040400000000ULL;
3508		writeq(val64, (void __iomem *)bar0 + 0x2700);
3509	}
3510
3511	/*
3512	 * Clear spurious ECC interrupts that would have occurred on
3513	 * XFRAME II cards after reset.
3514	 */
3515	if (sp->device_type == XFRAME_II_DEVICE) {
3516		val64 = readq(&bar0->pcc_err_reg);
3517		writeq(val64, &bar0->pcc_err_reg);
3518	}
3519
3520	sp->device_enabled_once = false;
3521}
3522
3523/**
3524 *  s2io_set_swapper - to set the swapper controle on the card
3525 *  @sp : private member of the device structure,
3526 *  pointer to the s2io_nic structure.
3527 *  Description: Function to set the swapper control on the card
3528 *  correctly depending on the 'endianness' of the system.
3529 *  Return value:
3530 *  SUCCESS on success and FAILURE on failure.
3531 */
3532
3533static int s2io_set_swapper(struct s2io_nic *sp)
3534{
3535	struct net_device *dev = sp->dev;
3536	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3537	u64 val64, valt, valr;
3538
3539	/*
3540	 * Set proper endian settings and verify the same by reading
3541	 * the PIF Feed-back register.
3542	 */
3543
3544	val64 = readq(&bar0->pif_rd_swapper_fb);
3545	if (val64 != 0x0123456789ABCDEFULL) {
3546		int i = 0;
3547		static const u64 value[] = {
3548			0xC30000C3C30000C3ULL,	/* FE=1, SE=1 */
3549			0x8100008181000081ULL,	/* FE=1, SE=0 */
3550			0x4200004242000042ULL,	/* FE=0, SE=1 */
3551			0			/* FE=0, SE=0 */
3552		};
3553
3554		while (i < 4) {
3555			writeq(value[i], &bar0->swapper_ctrl);
3556			val64 = readq(&bar0->pif_rd_swapper_fb);
3557			if (val64 == 0x0123456789ABCDEFULL)
3558				break;
3559			i++;
3560		}
3561		if (i == 4) {
3562			DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
3563				  "feedback read %llx\n",
3564				  dev->name, (unsigned long long)val64);
3565			return FAILURE;
3566		}
3567		valr = value[i];
3568	} else {
3569		valr = readq(&bar0->swapper_ctrl);
3570	}
3571
3572	valt = 0x0123456789ABCDEFULL;
3573	writeq(valt, &bar0->xmsi_address);
3574	val64 = readq(&bar0->xmsi_address);
3575
3576	if (val64 != valt) {
3577		int i = 0;
3578		static const u64 value[] = {
3579			0x00C3C30000C3C300ULL,	/* FE=1, SE=1 */
3580			0x0081810000818100ULL,	/* FE=1, SE=0 */
3581			0x0042420000424200ULL,	/* FE=0, SE=1 */
3582			0			/* FE=0, SE=0 */
3583		};
3584
3585		while (i < 4) {
3586			writeq((value[i] | valr), &bar0->swapper_ctrl);
3587			writeq(valt, &bar0->xmsi_address);
3588			val64 = readq(&bar0->xmsi_address);
3589			if (val64 == valt)
3590				break;
3591			i++;
3592		}
3593		if (i == 4) {
3594			unsigned long long x = val64;
3595			DBG_PRINT(ERR_DBG,
3596				  "Write failed, Xmsi_addr reads:0x%llx\n", x);
3597			return FAILURE;
3598		}
3599	}
3600	val64 = readq(&bar0->swapper_ctrl);
3601	val64 &= 0xFFFF000000000000ULL;
3602
3603#ifdef __BIG_ENDIAN
3604	/*
3605	 * The device by default set to a big endian format, so a
3606	 * big endian driver need not set anything.
3607	 */
3608	val64 |= (SWAPPER_CTRL_TXP_FE |
3609		  SWAPPER_CTRL_TXP_SE |
3610		  SWAPPER_CTRL_TXD_R_FE |
3611		  SWAPPER_CTRL_TXD_W_FE |
3612		  SWAPPER_CTRL_TXF_R_FE |
3613		  SWAPPER_CTRL_RXD_R_FE |
3614		  SWAPPER_CTRL_RXD_W_FE |
3615		  SWAPPER_CTRL_RXF_W_FE |
3616		  SWAPPER_CTRL_XMSI_FE |
3617		  SWAPPER_CTRL_STATS_FE |
3618		  SWAPPER_CTRL_STATS_SE);
3619	if (sp->config.intr_type == INTA)
3620		val64 |= SWAPPER_CTRL_XMSI_SE;
3621	writeq(val64, &bar0->swapper_ctrl);
3622#else
3623	/*
3624	 * Initially we enable all bits to make it accessible by the
3625	 * driver, then we selectively enable only those bits that
3626	 * we want to set.
3627	 */
3628	val64 |= (SWAPPER_CTRL_TXP_FE |
3629		  SWAPPER_CTRL_TXP_SE |
3630		  SWAPPER_CTRL_TXD_R_FE |
3631		  SWAPPER_CTRL_TXD_R_SE |
3632		  SWAPPER_CTRL_TXD_W_FE |
3633		  SWAPPER_CTRL_TXD_W_SE |
3634		  SWAPPER_CTRL_TXF_R_FE |
3635		  SWAPPER_CTRL_RXD_R_FE |
3636		  SWAPPER_CTRL_RXD_R_SE |
3637		  SWAPPER_CTRL_RXD_W_FE |
3638		  SWAPPER_CTRL_RXD_W_SE |
3639		  SWAPPER_CTRL_RXF_W_FE |
3640		  SWAPPER_CTRL_XMSI_FE |
3641		  SWAPPER_CTRL_STATS_FE |
3642		  SWAPPER_CTRL_STATS_SE);
3643	if (sp->config.intr_type == INTA)
3644		val64 |= SWAPPER_CTRL_XMSI_SE;
3645	writeq(val64, &bar0->swapper_ctrl);
3646#endif
3647	val64 = readq(&bar0->swapper_ctrl);
3648
3649	/*
3650	 * Verifying if endian settings are accurate by reading a
3651	 * feedback register.
3652	 */
3653	val64 = readq(&bar0->pif_rd_swapper_fb);
3654	if (val64 != 0x0123456789ABCDEFULL) {
3655		/* Endian settings are incorrect, calls for another dekko. */
3656		DBG_PRINT(ERR_DBG,
3657			  "%s: Endian settings are wrong, feedback read %llx\n",
3658			  dev->name, (unsigned long long)val64);
3659		return FAILURE;
3660	}
3661
3662	return SUCCESS;
3663}
3664
3665static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3666{
3667	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3668	u64 val64;
3669	int ret = 0, cnt = 0;
3670
3671	do {
3672		val64 = readq(&bar0->xmsi_access);
3673		if (!(val64 & s2BIT(15)))
3674			break;
3675		mdelay(1);
3676		cnt++;
3677	} while (cnt < 5);
3678	if (cnt == 5) {
3679		DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3680		ret = 1;
3681	}
3682
3683	return ret;
3684}
3685
3686static void restore_xmsi_data(struct s2io_nic *nic)
3687{
3688	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3689	u64 val64;
3690	int i, msix_index;
3691
3692	if (nic->device_type == XFRAME_I_DEVICE)
3693		return;
3694
3695	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3696		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3697		writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3698		writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3699		val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3700		writeq(val64, &bar0->xmsi_access);
3701		if (wait_for_msix_trans(nic, msix_index)) {
3702			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3703				  __func__, msix_index);
3704			continue;
3705		}
3706	}
3707}
3708
3709static void store_xmsi_data(struct s2io_nic *nic)
3710{
3711	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3712	u64 val64, addr, data;
3713	int i, msix_index;
3714
3715	if (nic->device_type == XFRAME_I_DEVICE)
3716		return;
3717
3718	/* Store and display */
3719	for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3720		msix_index = (i) ? ((i-1) * 8 + 1) : 0;
3721		val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3722		writeq(val64, &bar0->xmsi_access);
3723		if (wait_for_msix_trans(nic, msix_index)) {
3724			DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
3725				  __func__, msix_index);
3726			continue;
3727		}
3728		addr = readq(&bar0->xmsi_address);
3729		data = readq(&bar0->xmsi_data);
3730		if (addr && data) {
3731			nic->msix_info[i].addr = addr;
3732			nic->msix_info[i].data = data;
3733		}
3734	}
3735}
3736
3737static int s2io_enable_msi_x(struct s2io_nic *nic)
3738{
3739	struct XENA_dev_config __iomem *bar0 = nic->bar0;
3740	u64 rx_mat;
3741	u16 msi_control; /* Temp variable */
3742	int ret, i, j, msix_indx = 1;
3743	int size;
3744	struct stat_block *stats = nic->mac_control.stats_info;
3745	struct swStat *swstats = &stats->sw_stat;
3746
3747	size = nic->num_entries * sizeof(struct msix_entry);
3748	nic->entries = kzalloc(size, GFP_KERNEL);
3749	if (!nic->entries) {
3750		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3751			  __func__);
3752		swstats->mem_alloc_fail_cnt++;
3753		return -ENOMEM;
3754	}
3755	swstats->mem_allocated += size;
3756
3757	size = nic->num_entries * sizeof(struct s2io_msix_entry);
3758	nic->s2io_entries = kzalloc(size, GFP_KERNEL);
3759	if (!nic->s2io_entries) {
3760		DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3761			  __func__);
3762		swstats->mem_alloc_fail_cnt++;
3763		kfree(nic->entries);
3764		swstats->mem_freed
3765			+= (nic->num_entries * sizeof(struct msix_entry));
3766		return -ENOMEM;
3767	}
3768	swstats->mem_allocated += size;
3769
3770	nic->entries[0].entry = 0;
3771	nic->s2io_entries[0].entry = 0;
3772	nic->s2io_entries[0].in_use = MSIX_FLG;
3773	nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3774	nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3775
3776	for (i = 1; i < nic->num_entries; i++) {
3777		nic->entries[i].entry = ((i - 1) * 8) + 1;
3778		nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3779		nic->s2io_entries[i].arg = NULL;
3780		nic->s2io_entries[i].in_use = 0;
3781	}
3782
3783	rx_mat = readq(&bar0->rx_mat);
3784	for (j = 0; j < nic->config.rx_ring_num; j++) {
3785		rx_mat |= RX_MAT_SET(j, msix_indx);
3786		nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3787		nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3788		nic->s2io_entries[j+1].in_use = MSIX_FLG;
3789		msix_indx += 8;
3790	}
3791	writeq(rx_mat, &bar0->rx_mat);
3792	readq(&bar0->rx_mat);
3793
3794	ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3795	/* We fail init if error or we get less vectors than min required */
3796	if (ret) {
3797		DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
3798		kfree(nic->entries);
3799		swstats->mem_freed += nic->num_entries *
3800			sizeof(struct msix_entry);
3801		kfree(nic->s2io_entries);
3802		swstats->mem_freed += nic->num_entries *
3803			sizeof(struct s2io_msix_entry);
3804		nic->entries = NULL;
3805		nic->s2io_entries = NULL;
3806		return -ENOMEM;
3807	}
3808
3809	/*
3810	 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3811	 * in the herc NIC. (Temp change, needs to be removed later)
3812	 */
3813	pci_read_config_word(nic->pdev, 0x42, &msi_control);
3814	msi_control |= 0x1; /* Enable MSI */
3815	pci_write_config_word(nic->pdev, 0x42, msi_control);
3816
3817	return 0;
3818}
3819
3820/* Handle software interrupt used during MSI(X) test */
3821static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3822{
3823	struct s2io_nic *sp = dev_id;
3824
3825	sp->msi_detected = 1;
3826	wake_up(&sp->msi_wait);
3827
3828	return IRQ_HANDLED;
3829}
3830
3831/* Test interrupt path by forcing a a software IRQ */
3832static int s2io_test_msi(struct s2io_nic *sp)
3833{
3834	struct pci_dev *pdev = sp->pdev;
3835	struct XENA_dev_config __iomem *bar0 = sp->bar0;
3836	int err;
3837	u64 val64, saved64;
3838
3839	err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3840			  sp->name, sp);
3841	if (err) {
3842		DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3843			  sp->dev->name, pci_name(pdev), pdev->irq);
3844		return err;
3845	}
3846
3847	init_waitqueue_head(&sp->msi_wait);
3848	sp->msi_detected = 0;
3849
3850	saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3851	val64 |= SCHED_INT_CTRL_ONE_SHOT;
3852	val64 |= SCHED_INT_CTRL_TIMER_EN;
3853	val64 |= SCHED_INT_CTRL_INT2MSI(1);
3854	writeq(val64, &bar0->scheduled_int_ctrl);
3855
3856	wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3857
3858	if (!sp->msi_detected) {
3859		/* MSI(X) test failed, go back to INTx mode */
3860		DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3861			  "using MSI(X) during test\n",
3862			  sp->dev->name, pci_name(pdev));
3863
3864		err = -EOPNOTSUPP;
3865	}
3866
3867	free_irq(sp->entries[1].vector, sp);
3868
3869	writeq(saved64, &bar0->scheduled_int_ctrl);
3870
3871	return err;
3872}
3873
3874static void remove_msix_isr(struct s2io_nic *sp)
3875{
3876	int i;
3877	u16 msi_control;
3878
3879	for (i = 0; i < sp->num_entries; i++) {
3880		if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
3881			int vector = sp->entries[i].vector;
3882			void *arg = sp->s2io_entries[i].arg;
3883			free_irq(vector, arg);
3884		}
3885	}
3886
3887	kfree(sp->entries);
3888	kfree(sp->s2io_entries);
3889	sp->entries = NULL;
3890	sp->s2io_entries = NULL;
3891
3892	pci_read_config_word(sp->pdev, 0x42, &msi_control);
3893	msi_control &= 0xFFFE; /* Disable MSI */
3894	pci_write_config_word(sp->pdev, 0x42, msi_control);
3895
3896	pci_disable_msix(sp->pdev);
3897}
3898
3899static void remove_inta_isr(struct s2io_nic *sp)
3900{
3901	struct net_device *dev = sp->dev;
3902
3903	free_irq(sp->pdev->irq, dev);
3904}
3905
3906/* ********************************************************* *
3907 * Functions defined below concern the OS part of the driver *
3908 * ********************************************************* */
3909
3910/**
3911 *  s2io_open - open entry point of the driver
3912 *  @dev : pointer to the device structure.
3913 *  Description:
3914 *  This function is the open entry point of the driver. It mainly calls a
3915 *  function to allocate Rx buffers and inserts them into the buffer
3916 *  descriptors and then enables the Rx part of the NIC.
3917 *  Return value:
3918 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3919 *   file on failure.
3920 */
3921
3922static int s2io_open(struct net_device *dev)
3923{
3924	struct s2io_nic *sp = netdev_priv(dev);
3925	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
3926	int err = 0;
3927
3928	/*
3929	 * Make sure you have link off by default every time
3930	 * Nic is initialized
3931	 */
3932	netif_carrier_off(dev);
3933	sp->last_link_state = 0;
3934
3935	/* Initialize H/W and enable interrupts */
3936	err = s2io_card_up(sp);
3937	if (err) {
3938		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3939			  dev->name);
3940		goto hw_init_failed;
3941	}
3942
3943	if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3944		DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3945		s2io_card_down(sp);
3946		err = -ENODEV;
3947		goto hw_init_failed;
3948	}
3949	s2io_start_all_tx_queue(sp);
3950	return 0;
3951
3952hw_init_failed:
3953	if (sp->config.intr_type == MSI_X) {
3954		if (sp->entries) {
3955			kfree(sp->entries);
3956			swstats->mem_freed += sp->num_entries *
3957				sizeof(struct msix_entry);
3958		}
3959		if (sp->s2io_entries) {
3960			kfree(sp->s2io_entries);
3961			swstats->mem_freed += sp->num_entries *
3962				sizeof(struct s2io_msix_entry);
3963		}
3964	}
3965	return err;
3966}
3967
3968/**
3969 *  s2io_close -close entry point of the driver
3970 *  @dev : device pointer.
3971 *  Description:
3972 *  This is the stop entry point of the driver. It needs to undo exactly
3973 *  whatever was done by the open entry point,thus it's usually referred to
3974 *  as the close function.Among other things this function mainly stops the
3975 *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3976 *  Return value:
3977 *  0 on success and an appropriate (-)ve integer as defined in errno.h
3978 *  file on failure.
3979 */
3980
3981static int s2io_close(struct net_device *dev)
3982{
3983	struct s2io_nic *sp = netdev_priv(dev);
3984	struct config_param *config = &sp->config;
3985	u64 tmp64;
3986	int offset;
3987
3988	/* Return if the device is already closed               *
3989	 *  Can happen when s2io_card_up failed in change_mtu    *
3990	 */
3991	if (!is_s2io_card_up(sp))
3992		return 0;
3993
3994	s2io_stop_all_tx_queue(sp);
3995	/* delete all populated mac entries */
3996	for (offset = 1; offset < config->max_mc_addr; offset++) {
3997		tmp64 = do_s2io_read_unicast_mc(sp, offset);
3998		if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3999			do_s2io_delete_unicast_mc(sp, tmp64);
4000	}
4001
4002	s2io_card_down(sp);
4003
4004	return 0;
4005}
4006
4007/**
4008 *  s2io_xmit - Tx entry point of te driver
4009 *  @skb : the socket buffer containing the Tx data.
4010 *  @dev : device pointer.
4011 *  Description :
4012 *  This function is the Tx entry point of the driver. S2IO NIC supports
4013 *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4014 *  NOTE: when device can't queue the pkt,just the trans_start variable will
4015 *  not be upadted.
4016 *  Return value:
4017 *  0 on success & 1 on failure.
4018 */
4019
4020static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4021{
4022	struct s2io_nic *sp = netdev_priv(dev);
4023	u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4024	register u64 val64;
4025	struct TxD *txdp;
4026	struct TxFIFO_element __iomem *tx_fifo;
4027	unsigned long flags = 0;
4028	u16 vlan_tag = 0;
4029	struct fifo_info *fifo = NULL;
4030	int do_spin_lock = 1;
4031	int offload_type;
4032	int enable_per_list_interrupt = 0;
4033	struct config_param *config = &sp->config;
4034	struct mac_info *mac_control = &sp->mac_control;
4035	struct stat_block *stats = mac_control->stats_info;
4036	struct swStat *swstats = &stats->sw_stat;
4037
4038	DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4039
4040	if (unlikely(skb->len <= 0)) {
4041		DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
4042		dev_kfree_skb_any(skb);
4043		return NETDEV_TX_OK;
4044	}
4045
4046	if (!is_s2io_card_up(sp)) {
4047		DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4048			  dev->name);
4049		dev_kfree_skb(skb);
4050		return NETDEV_TX_OK;
4051	}
4052
4053	queue = 0;
4054	if (vlan_tx_tag_present(skb))
4055		vlan_tag = vlan_tx_tag_get(skb);
4056	if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4057		if (skb->protocol == htons(ETH_P_IP)) {
4058			struct iphdr *ip;
4059			struct tcphdr *th;
4060			ip = ip_hdr(skb);
4061
4062			if (!ip_is_fragment(ip)) {
4063				th = (struct tcphdr *)(((unsigned char *)ip) +
4064						       ip->ihl*4);
4065
4066				if (ip->protocol == IPPROTO_TCP) {
4067					queue_len = sp->total_tcp_fifos;
4068					queue = (ntohs(th->source) +
4069						 ntohs(th->dest)) &
4070						sp->fifo_selector[queue_len - 1];
4071					if (queue >= queue_len)
4072						queue = queue_len - 1;
4073				} else if (ip->protocol == IPPROTO_UDP) {
4074					queue_len = sp->total_udp_fifos;
4075					queue = (ntohs(th->source) +
4076						 ntohs(th->dest)) &
4077						sp->fifo_selector[queue_len - 1];
4078					if (queue >= queue_len)
4079						queue = queue_len - 1;
4080					queue += sp->udp_fifo_idx;
4081					if (skb->len > 1024)
4082						enable_per_list_interrupt = 1;
4083					do_spin_lock = 0;
4084				}
4085			}
4086		}
4087	} else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4088		/* get fifo number based on skb->priority value */
4089		queue = config->fifo_mapping
4090			[skb->priority & (MAX_TX_FIFOS - 1)];
4091	fifo = &mac_control->fifos[queue];
4092
4093	if (do_spin_lock)
4094		spin_lock_irqsave(&fifo->tx_lock, flags);
4095	else {
4096		if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4097			return NETDEV_TX_LOCKED;
4098	}
4099
4100	if (sp->config.multiq) {
4101		if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4102			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4103			return NETDEV_TX_BUSY;
4104		}
4105	} else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4106		if (netif_queue_stopped(dev)) {
4107			spin_unlock_irqrestore(&fifo->tx_lock, flags);
4108			return NETDEV_TX_BUSY;
4109		}
4110	}
4111
4112	put_off = (u16)fifo->tx_curr_put_info.offset;
4113	get_off = (u16)fifo->tx_curr_get_info.offset;
4114	txdp = fifo->list_info[put_off].list_virt_addr;
4115
4116	queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4117	/* Avoid "put" pointer going beyond "get" pointer */
4118	if (txdp->Host_Control ||
4119	    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4120		DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4121		s2io_stop_tx_queue(sp, fifo->fifo_no);
4122		dev_kfree_skb(skb);
4123		spin_unlock_irqrestore(&fifo->tx_lock, flags);
4124		return NETDEV_TX_OK;
4125	}
4126
4127	offload_type = s2io_offload_type(skb);
4128	if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4129		txdp->Control_1 |= TXD_TCP_LSO_EN;
4130		txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4131	}
4132	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4133		txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
4134				    TXD_TX_CKO_TCP_EN |
4135				    TXD_TX_CKO_UDP_EN);
4136	}
4137	txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4138	txdp->Control_1 |= TXD_LIST_OWN_XENA;
4139	txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4140	if (enable_per_list_interrupt)
4141		if (put_off & (queue_len >> 5))
4142			txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4143	if (vlan_tag) {
4144		txdp->Control_2 |= TXD_VLAN_ENABLE;
4145		txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4146	}
4147
4148	frg_len = skb_headlen(skb);
4149	if (offload_type == SKB_GSO_UDP) {
4150		int ufo_size;
4151
4152		ufo_size = s2io_udp_mss(skb);
4153		ufo_size &= ~7;
4154		txdp->Control_1 |= TXD_UFO_EN;
4155		txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4156		txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4157#ifdef __BIG_ENDIAN
4158		/* both variants do cpu_to_be64(be32_to_cpu(...)) */
4159		fifo->ufo_in_band_v[put_off] =
4160			(__force u64)skb_shinfo(skb)->ip6_frag_id;
4161#else
4162		fifo->ufo_in_band_v[put_off] =
4163			(__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4164#endif
4165		txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4166		txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4167						      fifo->ufo_in_band_v,
4168						      sizeof(u64),
4169						      PCI_DMA_TODEVICE);
4170		if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4171			goto pci_map_failed;
4172		txdp++;
4173	}
4174
4175	txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
4176					      frg_len, PCI_DMA_TODEVICE);
4177	if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4178		goto pci_map_failed;
4179
4180	txdp->Host_Control = (unsigned long)skb;
4181	txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4182	if (offload_type == SKB_GSO_UDP)
4183		txdp->Control_1 |= TXD_UFO_EN;
4184
4185	frg_cnt = skb_shinfo(skb)->nr_frags;
4186	/* For fragmented SKB. */
4187	for (i = 0; i < frg_cnt; i++) {
4188		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4189		/* A '0' length fragment will be ignored */
4190		if (!frag->size)
4191			continue;
4192		txdp++;
4193		txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
4194							 frag->page_offset,
4195							 frag->size,
4196							 PCI_DMA_TODEVICE);
4197		txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4198		if (offload_type == SKB_GSO_UDP)
4199			txdp->Control_1 |= TXD_UFO_EN;
4200	}
4201	txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4202
4203	if (offload_type == SKB_GSO_UDP)
4204		frg_cnt++; /* as Txd0 was used for inband header */
4205
4206	tx_fifo = mac_control->tx_FIFO_start[queue];
4207	val64 = fifo->list_info[put_off].list_phy_addr;
4208	writeq(val64, &tx_fifo->TxDL_Pointer);
4209
4210	val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4211		 TX_FIFO_LAST_LIST);
4212	if (offload_type)
4213		val64 |= TX_FIFO_SPECIAL_FUNC;
4214
4215	writeq(val64, &tx_fifo->List_Control);
4216
4217	mmiowb();
4218
4219	put_off++;
4220	if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4221		put_off = 0;
4222	fifo->tx_curr_put_info.offset = put_off;
4223
4224	/* Avoid "put" pointer going beyond "get" pointer */
4225	if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4226		swstats->fifo_full_cnt++;
4227		DBG_PRINT(TX_DBG,
4228			  "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4229			  put_off, get_off);
4230		s2io_stop_tx_queue(sp, fifo->fifo_no);
4231	}
4232	swstats->mem_allocated += skb->truesize;
4233	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4234
4235	if (sp->config.intr_type == MSI_X)
4236		tx_intr_handler(fifo);
4237
4238	return NETDEV_TX_OK;
4239
4240pci_map_failed:
4241	swstats->pci_map_fail_cnt++;
4242	s2io_stop_tx_queue(sp, fifo->fifo_no);
4243	swstats->mem_freed += skb->truesize;
4244	dev_kfree_skb(skb);
4245	spin_unlock_irqrestore(&fifo->tx_lock, flags);
4246	return NETDEV_TX_OK;
4247}
4248
4249static void
4250s2io_alarm_handle(unsigned long data)
4251{
4252	struct s2io_nic *sp = (struct s2io_nic *)data;
4253	struct net_device *dev = sp->dev;
4254
4255	s2io_handle_errors(dev);
4256	mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4257}
4258
4259static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4260{
4261	struct ring_info *ring = (struct ring_info *)dev_id;
4262	struct s2io_nic *sp = ring->nic;
4263	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4264
4265	if (unlikely(!is_s2io_card_up(sp)))
4266		return IRQ_HANDLED;
4267
4268	if (sp->config.napi) {
4269		u8 __iomem *addr = NULL;
4270		u8 val8 = 0;
4271
4272		addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4273		addr += (7 - ring->ring_no);
4274		val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4275		writeb(val8, addr);
4276		val8 = readb(addr);
4277		napi_schedule(&ring->napi);
4278	} else {
4279		rx_intr_handler(ring, 0);
4280		s2io_chk_rx_buffers(sp, ring);
4281	}
4282
4283	return IRQ_HANDLED;
4284}
4285
4286static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4287{
4288	int i;
4289	struct fifo_info *fifos = (struct fifo_info *)dev_id;
4290	struct s2io_nic *sp = fifos->nic;
4291	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4292	struct config_param *config  = &sp->config;
4293	u64 reason;
4294
4295	if (unlikely(!is_s2io_card_up(sp)))
4296		return IRQ_NONE;
4297
4298	reason = readq(&bar0->general_int_status);
4299	if (unlikely(reason == S2IO_MINUS_ONE))
4300		/* Nothing much can be done. Get out */
4301		return IRQ_HANDLED;
4302
4303	if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4304		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4305
4306		if (reason & GEN_INTR_TXPIC)
4307			s2io_txpic_intr_handle(sp);
4308
4309		if (reason & GEN_INTR_TXTRAFFIC)
4310			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4311
4312		for (i = 0; i < config->tx_fifo_num; i++)
4313			tx_intr_handler(&fifos[i]);
4314
4315		writeq(sp->general_int_mask, &bar0->general_int_mask);
4316		readl(&bar0->general_int_status);
4317		return IRQ_HANDLED;
4318	}
4319	/* The interrupt was not raised by us */
4320	return IRQ_NONE;
4321}
4322
4323static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4324{
4325	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4326	u64 val64;
4327
4328	val64 = readq(&bar0->pic_int_status);
4329	if (val64 & PIC_INT_GPIO) {
4330		val64 = readq(&bar0->gpio_int_reg);
4331		if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4332		    (val64 & GPIO_INT_REG_LINK_UP)) {
4333			/*
4334			 * This is unstable state so clear both up/down
4335			 * interrupt and adapter to re-evaluate the link state.
4336			 */
4337			val64 |= GPIO_INT_REG_LINK_DOWN;
4338			val64 |= GPIO_INT_REG_LINK_UP;
4339			writeq(val64, &bar0->gpio_int_reg);
4340			val64 = readq(&bar0->gpio_int_mask);
4341			val64 &= ~(GPIO_INT_MASK_LINK_UP |
4342				   GPIO_INT_MASK_LINK_DOWN);
4343			writeq(val64, &bar0->gpio_int_mask);
4344		} else if (val64 & GPIO_INT_REG_LINK_UP) {
4345			val64 = readq(&bar0->adapter_status);
4346			/* Enable Adapter */
4347			val64 = readq(&bar0->adapter_control);
4348			val64 |= ADAPTER_CNTL_EN;
4349			writeq(val64, &bar0->adapter_control);
4350			val64 |= ADAPTER_LED_ON;
4351			writeq(val64, &bar0->adapter_control);
4352			if (!sp->device_enabled_once)
4353				sp->device_enabled_once = 1;
4354
4355			s2io_link(sp, LINK_UP);
4356			/*
4357			 * unmask link down interrupt and mask link-up
4358			 * intr
4359			 */
4360			val64 = readq(&bar0->gpio_int_mask);
4361			val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4362			val64 |= GPIO_INT_MASK_LINK_UP;
4363			writeq(val64, &bar0->gpio_int_mask);
4364
4365		} else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4366			val64 = readq(&bar0->adapter_status);
4367			s2io_link(sp, LINK_DOWN);
4368			/* Link is down so unmaks link up interrupt */
4369			val64 = readq(&bar0->gpio_int_mask);
4370			val64 &= ~GPIO_INT_MASK_LINK_UP;
4371			val64 |= GPIO_INT_MASK_LINK_DOWN;
4372			writeq(val64, &bar0->gpio_int_mask);
4373
4374			/* turn off LED */
4375			val64 = readq(&bar0->adapter_control);
4376			val64 = val64 & (~ADAPTER_LED_ON);
4377			writeq(val64, &bar0->adapter_control);
4378		}
4379	}
4380	val64 = readq(&bar0->gpio_int_mask);
4381}
4382
4383/**
4384 *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4385 *  @value: alarm bits
4386 *  @addr: address value
4387 *  @cnt: counter variable
4388 *  Description: Check for alarm and increment the counter
4389 *  Return Value:
4390 *  1 - if alarm bit set
4391 *  0 - if alarm bit is not set
4392 */
4393static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
4394				 unsigned long long *cnt)
4395{
4396	u64 val64;
4397	val64 = readq(addr);
4398	if (val64 & value) {
4399		writeq(val64, addr);
4400		(*cnt)++;
4401		return 1;
4402	}
4403	return 0;
4404
4405}
4406
4407/**
4408 *  s2io_handle_errors - Xframe error indication handler
4409 *  @nic: device private variable
4410 *  Description: Handle alarms such as loss of link, single or
4411 *  double ECC errors, critical and serious errors.
4412 *  Return Value:
4413 *  NONE
4414 */
4415static void s2io_handle_errors(void *dev_id)
4416{
4417	struct net_device *dev = (struct net_device *)dev_id;
4418	struct s2io_nic *sp = netdev_priv(dev);
4419	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4420	u64 temp64 = 0, val64 = 0;
4421	int i = 0;
4422
4423	struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4424	struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4425
4426	if (!is_s2io_card_up(sp))
4427		return;
4428
4429	if (pci_channel_offline(sp->pdev))
4430		return;
4431
4432	memset(&sw_stat->ring_full_cnt, 0,
4433	       sizeof(sw_stat->ring_full_cnt));
4434
4435	/* Handling the XPAK counters update */
4436	if (stats->xpak_timer_count < 72000) {
4437		/* waiting for an hour */
4438		stats->xpak_timer_count++;
4439	} else {
4440		s2io_updt_xpak_counter(dev);
4441		/* reset the count to zero */
4442		stats->xpak_timer_count = 0;
4443	}
4444
4445	/* Handling link status change error Intr */
4446	if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4447		val64 = readq(&bar0->mac_rmac_err_reg);
4448		writeq(val64, &bar0->mac_rmac_err_reg);
4449		if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4450			schedule_work(&sp->set_link_task);
4451	}
4452
4453	/* In case of a serious error, the device will be Reset. */
4454	if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4455				  &sw_stat->serious_err_cnt))
4456		goto reset;
4457
4458	/* Check for data parity error */
4459	if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4460				  &sw_stat->parity_err_cnt))
4461		goto reset;
4462
4463	/* Check for ring full counter */
4464	if (sp->device_type == XFRAME_II_DEVICE) {
4465		val64 = readq(&bar0->ring_bump_counter1);
4466		for (i = 0; i < 4; i++) {
4467			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4468			temp64 >>= 64 - ((i+1)*16);
4469			sw_stat->ring_full_cnt[i] += temp64;
4470		}
4471
4472		val64 = readq(&bar0->ring_bump_counter2);
4473		for (i = 0; i < 4; i++) {
4474			temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
4475			temp64 >>= 64 - ((i+1)*16);
4476			sw_stat->ring_full_cnt[i+4] += temp64;
4477		}
4478	}
4479
4480	val64 = readq(&bar0->txdma_int_status);
4481	/*check for pfc_err*/
4482	if (val64 & TXDMA_PFC_INT) {
4483		if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
4484					  PFC_MISC_0_ERR | PFC_MISC_1_ERR |
4485					  PFC_PCIX_ERR,
4486					  &bar0->pfc_err_reg,
4487					  &sw_stat->pfc_err_cnt))
4488			goto reset;
4489		do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
4490				      &bar0->pfc_err_reg,
4491				      &sw_stat->pfc_err_cnt);
4492	}
4493
4494	/*check for tda_err*/
4495	if (val64 & TXDMA_TDA_INT) {
4496		if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
4497					  TDA_SM0_ERR_ALARM |
4498					  TDA_SM1_ERR_ALARM,
4499					  &bar0->tda_err_reg,
4500					  &sw_stat->tda_err_cnt))
4501			goto reset;
4502		do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4503				      &bar0->tda_err_reg,
4504				      &sw_stat->tda_err_cnt);
4505	}
4506	/*check for pcc_err*/
4507	if (val64 & TXDMA_PCC_INT) {
4508		if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
4509					  PCC_N_SERR | PCC_6_COF_OV_ERR |
4510					  PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
4511					  PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
4512					  PCC_TXB_ECC_DB_ERR,
4513					  &bar0->pcc_err_reg,
4514					  &sw_stat->pcc_err_cnt))
4515			goto reset;
4516		do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4517				      &bar0->pcc_err_reg,
4518				      &sw_stat->pcc_err_cnt);
4519	}
4520
4521	/*check for tti_err*/
4522	if (val64 & TXDMA_TTI_INT) {
4523		if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
4524					  &bar0->tti_err_reg,
4525					  &sw_stat->tti_err_cnt))
4526			goto reset;
4527		do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4528				      &bar0->tti_err_reg,
4529				      &sw_stat->tti_err_cnt);
4530	}
4531
4532	/*check for lso_err*/
4533	if (val64 & TXDMA_LSO_INT) {
4534		if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
4535					  LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4536					  &bar0->lso_err_reg,
4537					  &sw_stat->lso_err_cnt))
4538			goto reset;
4539		do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4540				      &bar0->lso_err_reg,
4541				      &sw_stat->lso_err_cnt);
4542	}
4543
4544	/*check for tpa_err*/
4545	if (val64 & TXDMA_TPA_INT) {
4546		if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
4547					  &bar0->tpa_err_reg,
4548					  &sw_stat->tpa_err_cnt))
4549			goto reset;
4550		do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
4551				      &bar0->tpa_err_reg,
4552				      &sw_stat->tpa_err_cnt);
4553	}
4554
4555	/*check for sm_err*/
4556	if (val64 & TXDMA_SM_INT) {
4557		if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
4558					  &bar0->sm_err_reg,
4559					  &sw_stat->sm_err_cnt))
4560			goto reset;
4561	}
4562
4563	val64 = readq(&bar0->mac_int_status);
4564	if (val64 & MAC_INT_STATUS_TMAC_INT) {
4565		if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4566					  &bar0->mac_tmac_err_reg,
4567					  &sw_stat->mac_tmac_err_cnt))
4568			goto reset;
4569		do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
4570				      TMAC_DESC_ECC_SG_ERR |
4571				      TMAC_DESC_ECC_DB_ERR,
4572				      &bar0->mac_tmac_err_reg,
4573				      &sw_stat->mac_tmac_err_cnt);
4574	}
4575
4576	val64 = readq(&bar0->xgxs_int_status);
4577	if (val64 & XGXS_INT_STATUS_TXGXS) {
4578		if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4579					  &bar0->xgxs_txgxs_err_reg,
4580					  &sw_stat->xgxs_txgxs_err_cnt))
4581			goto reset;
4582		do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4583				      &bar0->xgxs_txgxs_err_reg,
4584				      &sw_stat->xgxs_txgxs_err_cnt);
4585	}
4586
4587	val64 = readq(&bar0->rxdma_int_status);
4588	if (val64 & RXDMA_INT_RC_INT_M) {
4589		if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
4590					  RC_FTC_ECC_DB_ERR |
4591					  RC_PRCn_SM_ERR_ALARM |
4592					  RC_FTC_SM_ERR_ALARM,
4593					  &bar0->rc_err_reg,
4594					  &sw_stat->rc_err_cnt))
4595			goto reset;
4596		do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
4597				      RC_FTC_ECC_SG_ERR |
4598				      RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4599				      &sw_stat->rc_err_cnt);
4600		if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
4601					  PRC_PCI_AB_WR_Rn |
4602					  PRC_PCI_AB_F_WR_Rn,
4603					  &bar0->prc_pcix_err_reg,
4604					  &sw_stat->prc_pcix_err_cnt))
4605			goto reset;
4606		do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
4607				      PRC_PCI_DP_WR_Rn |
4608				      PRC_PCI_DP_F_WR_Rn,
4609				      &bar0->prc_pcix_err_reg,
4610				      &sw_stat->prc_pcix_err_cnt);
4611	}
4612
4613	if (val64 & RXDMA_INT_RPA_INT_M) {
4614		if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4615					  &bar0->rpa_err_reg,
4616					  &sw_stat->rpa_err_cnt))
4617			goto reset;
4618		do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4619				      &bar0->rpa_err_reg,
4620				      &sw_stat->rpa_err_cnt);
4621	}
4622
4623	if (val64 & RXDMA_INT_RDA_INT_M) {
4624		if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
4625					  RDA_FRM_ECC_DB_N_AERR |
4626					  RDA_SM1_ERR_ALARM |
4627					  RDA_SM0_ERR_ALARM |
4628					  RDA_RXD_ECC_DB_SERR,
4629					  &bar0->rda_err_reg,
4630					  &sw_stat->rda_err_cnt))
4631			goto reset;
4632		do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
4633				      RDA_FRM_ECC_SG_ERR |
4634				      RDA_MISC_ERR |
4635				      RDA_PCIX_ERR,
4636				      &bar0->rda_err_reg,
4637				      &sw_stat->rda_err_cnt);
4638	}
4639
4640	if (val64 & RXDMA_INT_RTI_INT_M) {
4641		if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
4642					  &bar0->rti_err_reg,
4643					  &sw_stat->rti_err_cnt))
4644			goto reset;
4645		do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4646				      &bar0->rti_err_reg,
4647				      &sw_stat->rti_err_cnt);
4648	}
4649
4650	val64 = readq(&bar0->mac_int_status);
4651	if (val64 & MAC_INT_STATUS_RMAC_INT) {
4652		if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4653					  &bar0->mac_rmac_err_reg,
4654					  &sw_stat->mac_rmac_err_cnt))
4655			goto reset;
4656		do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
4657				      RMAC_SINGLE_ECC_ERR |
4658				      RMAC_DOUBLE_ECC_ERR,
4659				      &bar0->mac_rmac_err_reg,
4660				      &sw_stat->mac_rmac_err_cnt);
4661	}
4662
4663	val64 = readq(&bar0->xgxs_int_status);
4664	if (val64 & XGXS_INT_STATUS_RXGXS) {
4665		if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4666					  &bar0->xgxs_rxgxs_err_reg,
4667					  &sw_stat->xgxs_rxgxs_err_cnt))
4668			goto reset;
4669	}
4670
4671	val64 = readq(&bar0->mc_int_status);
4672	if (val64 & MC_INT_STATUS_MC_INT) {
4673		if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
4674					  &bar0->mc_err_reg,
4675					  &sw_stat->mc_err_cnt))
4676			goto reset;
4677
4678		/* Handling Ecc errors */
4679		if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4680			writeq(val64, &bar0->mc_err_reg);
4681			if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4682				sw_stat->double_ecc_errs++;
4683				if (sp->device_type != XFRAME_II_DEVICE) {
4684					/*
4685					 * Reset XframeI only if critical error
4686					 */
4687					if (val64 &
4688					    (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4689					     MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4690						goto reset;
4691				}
4692			} else
4693				sw_stat->single_ecc_errs++;
4694		}
4695	}
4696	return;
4697
4698reset:
4699	s2io_stop_all_tx_queue(sp);
4700	schedule_work(&sp->rst_timer_task);
4701	sw_stat->soft_reset_cnt++;
4702}
4703
4704/**
4705 *  s2io_isr - ISR handler of the device .
4706 *  @irq: the irq of the device.
4707 *  @dev_id: a void pointer to the dev structure of the NIC.
4708 *  Description:  This function is the ISR handler of the device. It
4709 *  identifies the reason for the interrupt and calls the relevant
4710 *  service routines. As a contongency measure, this ISR allocates the
4711 *  recv buffers, if their numbers are below the panic value which is
4712 *  presently set to 25% of the original number of rcv buffers allocated.
4713 *  Return value:
4714 *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4715 *   IRQ_NONE: will be returned if interrupt is not from our device
4716 */
4717static irqreturn_t s2io_isr(int irq, void *dev_id)
4718{
4719	struct net_device *dev = (struct net_device *)dev_id;
4720	struct s2io_nic *sp = netdev_priv(dev);
4721	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4722	int i;
4723	u64 reason = 0;
4724	struct mac_info *mac_control;
4725	struct config_param *config;
4726
4727	/* Pretend we handled any irq's from a disconnected card */
4728	if (pci_channel_offline(sp->pdev))
4729		return IRQ_NONE;
4730
4731	if (!is_s2io_card_up(sp))
4732		return IRQ_NONE;
4733
4734	config = &sp->config;
4735	mac_control = &sp->mac_control;
4736
4737	/*
4738	 * Identify the cause for interrupt and call the appropriate
4739	 * interrupt handler. Causes for the interrupt could be;
4740	 * 1. Rx of packet.
4741	 * 2. Tx complete.
4742	 * 3. Link down.
4743	 */
4744	reason = readq(&bar0->general_int_status);
4745
4746	if (unlikely(reason == S2IO_MINUS_ONE))
4747		return IRQ_HANDLED;	/* Nothing much can be done. Get out */
4748
4749	if (reason &
4750	    (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
4751		writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4752
4753		if (config->napi) {
4754			if (reason & GEN_INTR_RXTRAFFIC) {
4755				napi_schedule(&sp->napi);
4756				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4757				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4758				readl(&bar0->rx_traffic_int);
4759			}
4760		} else {
4761			/*
4762			 * rx_traffic_int reg is an R1 register, writing all 1's
4763			 * will ensure that the actual interrupt causing bit
4764			 * get's cleared and hence a read can be avoided.
4765			 */
4766			if (reason & GEN_INTR_RXTRAFFIC)
4767				writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4768
4769			for (i = 0; i < config->rx_ring_num; i++) {
4770				struct ring_info *ring = &mac_control->rings[i];
4771
4772				rx_intr_handler(ring, 0);
4773			}
4774		}
4775
4776		/*
4777		 * tx_traffic_int reg is an R1 register, writing all 1's
4778		 * will ensure that the actual interrupt causing bit get's
4779		 * cleared and hence a read can be avoided.
4780		 */
4781		if (reason & GEN_INTR_TXTRAFFIC)
4782			writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4783
4784		for (i = 0; i < config->tx_fifo_num; i++)
4785			tx_intr_handler(&mac_control->fifos[i]);
4786
4787		if (reason & GEN_INTR_TXPIC)
4788			s2io_txpic_intr_handle(sp);
4789
4790		/*
4791		 * Reallocate the buffers from the interrupt handler itself.
4792		 */
4793		if (!config->napi) {
4794			for (i = 0; i < config->rx_ring_num; i++) {
4795				struct ring_info *ring = &mac_control->rings[i];
4796
4797				s2io_chk_rx_buffers(sp, ring);
4798			}
4799		}
4800		writeq(sp->general_int_mask, &bar0->general_int_mask);
4801		readl(&bar0->general_int_status);
4802
4803		return IRQ_HANDLED;
4804
4805	} else if (!reason) {
4806		/* The interrupt was not raised by us */
4807		return IRQ_NONE;
4808	}
4809
4810	return IRQ_HANDLED;
4811}
4812
4813/**
4814 * s2io_updt_stats -
4815 */
4816static void s2io_updt_stats(struct s2io_nic *sp)
4817{
4818	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4819	u64 val64;
4820	int cnt = 0;
4821
4822	if (is_s2io_card_up(sp)) {
4823		/* Apprx 30us on a 133 MHz bus */
4824		val64 = SET_UPDT_CLICKS(10) |
4825			STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4826		writeq(val64, &bar0->stat_cfg);
4827		do {
4828			udelay(100);
4829			val64 = readq(&bar0->stat_cfg);
4830			if (!(val64 & s2BIT(0)))
4831				break;
4832			cnt++;
4833			if (cnt == 5)
4834				break; /* Updt failed */
4835		} while (1);
4836	}
4837}
4838
4839/**
4840 *  s2io_get_stats - Updates the device statistics structure.
4841 *  @dev : pointer to the device structure.
4842 *  Description:
4843 *  This function updates the device statistics structure in the s2io_nic
4844 *  structure and returns a pointer to the same.
4845 *  Return value:
4846 *  pointer to the updated net_device_stats structure.
4847 */
4848static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4849{
4850	struct s2io_nic *sp = netdev_priv(dev);
4851	struct mac_info *mac_control = &sp->mac_control;
4852	struct stat_block *stats = mac_control->stats_info;
4853	u64 delta;
4854
4855	/* Configure Stats for immediate updt */
4856	s2io_updt_stats(sp);
4857
4858	/* A device reset will cause the on-adapter statistics to be zero'ed.
4859	 * This can be done while running by changing the MTU.  To prevent the
4860	 * system from having the stats zero'ed, the driver keeps a copy of the
4861	 * last update to the system (which is also zero'ed on reset).  This
4862	 * enables the driver to accurately know the delta between the last
4863	 * update and the current update.
4864	 */
4865	delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
4866		le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets;
4867	sp->stats.rx_packets += delta;
4868	dev->stats.rx_packets += delta;
4869
4870	delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 |
4871		le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets;
4872	sp->stats.tx_packets += delta;
4873	dev->stats.tx_packets += delta;
4874
4875	delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
4876		le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes;
4877	sp->stats.rx_bytes += delta;
4878	dev->stats.rx_bytes += delta;
4879
4880	delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
4881		le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes;
4882	sp->stats.tx_bytes += delta;
4883	dev->stats.tx_bytes += delta;
4884
4885	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors;
4886	sp->stats.rx_errors += delta;
4887	dev->stats.rx_errors += delta;
4888
4889	delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
4890		le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors;
4891	sp->stats.tx_errors += delta;
4892	dev->stats.tx_errors += delta;
4893
4894	delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped;
4895	sp->stats.rx_dropped += delta;
4896	dev->stats.rx_dropped += delta;
4897
4898	delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped;
4899	sp->stats.tx_dropped += delta;
4900	dev->stats.tx_dropped += delta;
4901
4902	/* The adapter MAC interprets pause frames as multicast packets, but
4903	 * does not pass them up.  This erroneously increases the multicast
4904	 * packet count and needs to be deducted when the multicast frame count
4905	 * is queried.
4906	 */
4907	delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
4908		le32_to_cpu(stats->rmac_vld_mcst_frms);
4909	delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms);
4910	delta -= sp->stats.multicast;
4911	sp->stats.multicast += delta;
4912	dev->stats.multicast += delta;
4913
4914	delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
4915		le32_to_cpu(stats->rmac_usized_frms)) +
4916		le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors;
4917	sp->stats.rx_length_errors += delta;
4918	dev->stats.rx_length_errors += delta;
4919
4920	delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors;
4921	sp->stats.rx_crc_errors += delta;
4922	dev->stats.rx_crc_errors += delta;
4923
4924	return &dev->stats;
4925}
4926
4927/**
4928 *  s2io_set_multicast - entry point for multicast address enable/disable.
4929 *  @dev : pointer to the device structure
4930 *  Description:
4931 *  This function is a driver entry point which gets called by the kernel
4932 *  whenever multicast addresses must be enabled/disabled. This also gets
4933 *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4934 *  determine, if multicast address must be enabled or if promiscuous mode
4935 *  is to be disabled etc.
4936 *  Return value:
4937 *  void.
4938 */
4939
4940static void s2io_set_multicast(struct net_device *dev)
4941{
4942	int i, j, prev_cnt;
4943	struct netdev_hw_addr *ha;
4944	struct s2io_nic *sp = netdev_priv(dev);
4945	struct XENA_dev_config __iomem *bar0 = sp->bar0;
4946	u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4947		0xfeffffffffffULL;
4948	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4949	void __iomem *add;
4950	struct config_param *config = &sp->config;
4951
4952	if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4953		/*  Enable all Multicast addresses */
4954		writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4955		       &bar0->rmac_addr_data0_mem);
4956		writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4957		       &bar0->rmac_addr_data1_mem);
4958		val64 = RMAC_ADDR_CMD_MEM_WE |
4959			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4960			RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4961		writeq(val64, &bar0->rmac_addr_cmd_mem);
4962		/* Wait till command completes */
4963		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4964				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4965				      S2IO_BIT_RESET);
4966
4967		sp->m_cast_flg = 1;
4968		sp->all_multi_pos = config->max_mc_addr - 1;
4969	} else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4970		/*  Disable all Multicast addresses */
4971		writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4972		       &bar0->rmac_addr_data0_mem);
4973		writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4974		       &bar0->rmac_addr_data1_mem);
4975		val64 = RMAC_ADDR_CMD_MEM_WE |
4976			RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4977			RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4978		writeq(val64, &bar0->rmac_addr_cmd_mem);
4979		/* Wait till command completes */
4980		wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4981				      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4982				      S2IO_BIT_RESET);
4983
4984		sp->m_cast_flg = 0;
4985		sp->all_multi_pos = 0;
4986	}
4987
4988	if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4989		/*  Put the NIC into promiscuous mode */
4990		add = &bar0->mac_cfg;
4991		val64 = readq(&bar0->mac_cfg);
4992		val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4993
4994		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4995		writel((u32)val64, add);
4996		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4997		writel((u32) (val64 >> 32), (add + 4));
4998
4999		if (vlan_tag_strip != 1) {
5000			val64 = readq(&bar0->rx_pa_cfg);
5001			val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5002			writeq(val64, &bar0->rx_pa_cfg);
5003			sp->vlan_strip_flag = 0;
5004		}
5005
5006		val64 = readq(&bar0->mac_cfg);
5007		sp->promisc_flg = 1;
5008		DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5009			  dev->name);
5010	} else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5011		/*  Remove the NIC from promiscuous mode */
5012		add = &bar0->mac_cfg;
5013		val64 = readq(&bar0->mac_cfg);
5014		val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5015
5016		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5017		writel((u32)val64, add);
5018		writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5019		writel((u32) (val64 >> 32), (add + 4));
5020
5021		if (vlan_tag_strip != 0) {
5022			val64 = readq(&bar0->rx_pa_cfg);
5023			val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5024			writeq(val64, &bar0->rx_pa_cfg);
5025			sp->vlan_strip_flag = 1;
5026		}
5027
5028		val64 = readq(&bar0->mac_cfg);
5029		sp->promisc_flg = 0;
5030		DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
5031	}
5032
5033	/*  Update individual M_CAST address list */
5034	if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
5035		if (netdev_mc_count(dev) >
5036		    (config->max_mc_addr - config->max_mac_addr)) {
5037			DBG_PRINT(ERR_DBG,
5038				  "%s: No more Rx filters can be added - "
5039				  "please enable ALL_MULTI instead\n",
5040				  dev->name);
5041			return;
5042		}
5043
5044		prev_cnt = sp->mc_addr_count;
5045		sp->mc_addr_count = netdev_mc_count(dev);
5046
5047		/* Clear out the previous list of Mc in the H/W. */
5048		for (i = 0; i < prev_cnt; i++) {
5049			writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5050			       &bar0->rmac_addr_data0_mem);
5051			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5052			       &bar0->rmac_addr_data1_mem);
5053			val64 = RMAC_ADDR_CMD_MEM_WE |
5054				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5055				RMAC_ADDR_CMD_MEM_OFFSET
5056				(config->mc_start_offset + i);
5057			writeq(val64, &bar0->rmac_addr_cmd_mem);
5058
5059			/* Wait for command completes */
5060			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5061						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5062						  S2IO_BIT_RESET)) {
5063				DBG_PRINT(ERR_DBG,
5064					  "%s: Adding Multicasts failed\n",
5065					  dev->name);
5066				return;
5067			}
5068		}
5069
5070		/* Create the new Rx filter list and update the same in H/W. */
5071		i = 0;
5072		netdev_for_each_mc_addr(ha, dev) {
5073			mac_addr = 0;
5074			for (j = 0; j < ETH_ALEN; j++) {
5075				mac_addr |= ha->addr[j];
5076				mac_addr <<= 8;
5077			}
5078			mac_addr >>= 8;
5079			writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5080			       &bar0->rmac_addr_data0_mem);
5081			writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5082			       &bar0->rmac_addr_data1_mem);
5083			val64 = RMAC_ADDR_CMD_MEM_WE |
5084				RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5085				RMAC_ADDR_CMD_MEM_OFFSET
5086				(i + config->mc_start_offset);
5087			writeq(val64, &bar0->rmac_addr_cmd_mem);
5088
5089			/* Wait for command completes */
5090			if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5091						  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5092						  S2IO_BIT_RESET)) {
5093				DBG_PRINT(ERR_DBG,
5094					  "%s: Adding Multicasts failed\n",
5095					  dev->name);
5096				return;
5097			}
5098			i++;
5099		}
5100	}
5101}
5102
5103/* read from CAM unicast & multicast addresses and store it in
5104 * def_mac_addr structure
5105 */
5106static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5107{
5108	int offset;
5109	u64 mac_addr = 0x0;
5110	struct config_param *config = &sp->config;
5111
5112	/* store unicast & multicast mac addresses */
5113	for (offset = 0; offset < config->max_mc_addr; offset++) {
5114		mac_addr = do_s2io_read_unicast_mc(sp, offset);
5115		/* if read fails disable the entry */
5116		if (mac_addr == FAILURE)
5117			mac_addr = S2IO_DISABLE_MAC_ENTRY;
5118		do_s2io_copy_mac_addr(sp, offset, mac_addr);
5119	}
5120}
5121
5122/* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5123static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5124{
5125	int offset;
5126	struct config_param *config = &sp->config;
5127	/* restore unicast mac address */
5128	for (offset = 0; offset < config->max_mac_addr; offset++)
5129		do_s2io_prog_unicast(sp->dev,
5130				     sp->def_mac_addr[offset].mac_addr);
5131
5132	/* restore multicast mac address */
5133	for (offset = config->mc_start_offset;
5134	     offset < config->max_mc_addr; offset++)
5135		do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5136}
5137
5138/* add a multicast MAC address to CAM */
5139static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5140{
5141	int i;
5142	u64 mac_addr = 0;
5143	struct config_param *config = &sp->config;
5144
5145	for (i = 0; i < ETH_ALEN; i++) {
5146		mac_addr <<= 8;
5147		mac_addr |= addr[i];
5148	}
5149	if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5150		return SUCCESS;
5151
5152	/* check if the multicast mac already preset in CAM */
5153	for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5154		u64 tmp64;
5155		tmp64 = do_s2io_read_unicast_mc(sp, i);
5156		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5157			break;
5158
5159		if (tmp64 == mac_addr)
5160			return SUCCESS;
5161	}
5162	if (i == config->max_mc_addr) {
5163		DBG_PRINT(ERR_DBG,
5164			  "CAM full no space left for multicast MAC\n");
5165		return FAILURE;
5166	}
5167	/* Update the internal structure with this new mac address */
5168	do_s2io_copy_mac_addr(sp, i, mac_addr);
5169
5170	return do_s2io_add_mac(sp, mac_addr, i);
5171}
5172
5173/* add MAC address to CAM */
5174static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5175{
5176	u64 val64;
5177	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5178
5179	writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5180	       &bar0->rmac_addr_data0_mem);
5181
5182	val64 =	RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5183		RMAC_ADDR_CMD_MEM_OFFSET(off);
5184	writeq(val64, &bar0->rmac_addr_cmd_mem);
5185
5186	/* Wait till command completes */
5187	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5188				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5189				  S2IO_BIT_RESET)) {
5190		DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5191		return FAILURE;
5192	}
5193	return SUCCESS;
5194}
5195/* deletes a specified unicast/multicast mac entry from CAM */
5196static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5197{
5198	int offset;
5199	u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5200	struct config_param *config = &sp->config;
5201
5202	for (offset = 1;
5203	     offset < config->max_mc_addr; offset++) {
5204		tmp64 = do_s2io_read_unicast_mc(sp, offset);
5205		if (tmp64 == addr) {
5206			/* disable the entry by writing  0xffffffffffffULL */
5207			if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5208				return FAILURE;
5209			/* store the new mac list from CAM */
5210			do_s2io_store_unicast_mc(sp);
5211			return SUCCESS;
5212		}
5213	}
5214	DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5215		  (unsigned long long)addr);
5216	return FAILURE;
5217}
5218
5219/* read mac entries from CAM */
5220static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5221{
5222	u64 tmp64 = 0xffffffffffff0000ULL, val64;
5223	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5224
5225	/* read mac addr */
5226	val64 =	RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5227		RMAC_ADDR_CMD_MEM_OFFSET(offset);
5228	writeq(val64, &bar0->rmac_addr_cmd_mem);
5229
5230	/* Wait till command completes */
5231	if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5232				  RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5233				  S2IO_BIT_RESET)) {
5234		DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5235		return FAILURE;
5236	}
5237	tmp64 = readq(&bar0->rmac_addr_data0_mem);
5238
5239	return tmp64 >> 16;
5240}
5241
5242/**
5243 * s2io_set_mac_addr driver entry point
5244 */
5245
5246static int s2io_set_mac_addr(struct net_device *dev, void *p)
5247{
5248	struct sockaddr *addr = p;
5249
5250	if (!is_valid_ether_addr(addr->sa_data))
5251		return -EINVAL;
5252
5253	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5254
5255	/* store the MAC address in CAM */
5256	return do_s2io_prog_unicast(dev, dev->dev_addr);
5257}
5258/**
5259 *  do_s2io_prog_unicast - Programs the Xframe mac address
5260 *  @dev : pointer to the device structure.
5261 *  @addr: a uchar pointer to the new mac address which is to be set.
5262 *  Description : This procedure will program the Xframe to receive
5263 *  frames with new Mac Address
5264 *  Return value: SUCCESS on success and an appropriate (-)ve integer
5265 *  as defined in errno.h file on failure.
5266 */
5267
5268static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5269{
5270	struct s2io_nic *sp = netdev_priv(dev);
5271	register u64 mac_addr = 0, perm_addr = 0;
5272	int i;
5273	u64 tmp64;
5274	struct config_param *config = &sp->config;
5275
5276	/*
5277	 * Set the new MAC address as the new unicast filter and reflect this
5278	 * change on the device address registered with the OS. It will be
5279	 * at offset 0.
5280	 */
5281	for (i = 0; i < ETH_ALEN; i++) {
5282		mac_addr <<= 8;
5283		mac_addr |= addr[i];
5284		perm_addr <<= 8;
5285		perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5286	}
5287
5288	/* check if the dev_addr is different than perm_addr */
5289	if (mac_addr == perm_addr)
5290		return SUCCESS;
5291
5292	/* check if the mac already preset in CAM */
5293	for (i = 1; i < config->max_mac_addr; i++) {
5294		tmp64 = do_s2io_read_unicast_mc(sp, i);
5295		if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5296			break;
5297
5298		if (tmp64 == mac_addr) {
5299			DBG_PRINT(INFO_DBG,
5300				  "MAC addr:0x%llx already present in CAM\n",
5301				  (unsigned long long)mac_addr);
5302			return SUCCESS;
5303		}
5304	}
5305	if (i == config->max_mac_addr) {
5306		DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5307		return FAILURE;
5308	}
5309	/* Update the internal structure with this new mac address */
5310	do_s2io_copy_mac_addr(sp, i, mac_addr);
5311
5312	return do_s2io_add_mac(sp, mac_addr, i);
5313}
5314
5315/**
5316 * s2io_ethtool_sset - Sets different link parameters.
5317 * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5318 * @info: pointer to the structure with parameters given by ethtool to set
5319 * link information.
5320 * Description:
5321 * The function sets different link parameters provided by the user onto
5322 * the NIC.
5323 * Return value:
5324 * 0 on success.
5325 */
5326
5327static int s2io_ethtool_sset(struct net_device *dev,
5328			     struct ethtool_cmd *info)
5329{
5330	struct s2io_nic *sp = netdev_priv(dev);
5331	if ((info->autoneg == AUTONEG_ENABLE) ||
5332	    (ethtool_cmd_speed(info) != SPEED_10000) ||
5333	    (info->duplex != DUPLEX_FULL))
5334		return -EINVAL;
5335	else {
5336		s2io_close(sp->dev);
5337		s2io_open(sp->dev);
5338	}
5339
5340	return 0;
5341}
5342
5343/**
5344 * s2io_ethtol_gset - Return link specific information.
5345 * @sp : private member of the device structure, pointer to the
5346 *      s2io_nic structure.
5347 * @info : pointer to the structure with parameters given by ethtool
5348 * to return link information.
5349 * Description:
5350 * Returns link specific information like speed, duplex etc.. to ethtool.
5351 * Return value :
5352 * return 0 on success.
5353 */
5354
5355static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5356{
5357	struct s2io_nic *sp = netdev_priv(dev);
5358	info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5359	info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5360	info->port = PORT_FIBRE;
5361
5362	/* info->transceiver */
5363	info->transceiver = XCVR_EXTERNAL;
5364
5365	if (netif_carrier_ok(sp->dev)) {
5366		ethtool_cmd_speed_set(info, SPEED_10000);
5367		info->duplex = DUPLEX_FULL;
5368	} else {
5369		ethtool_cmd_speed_set(info, -1);
5370		info->duplex = -1;
5371	}
5372
5373	info->autoneg = AUTONEG_DISABLE;
5374	return 0;
5375}
5376
5377/**
5378 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5379 * @sp : private member of the device structure, which is a pointer to the
5380 * s2io_nic structure.
5381 * @info : pointer to the structure with parameters given by ethtool to
5382 * return driver information.
5383 * Description:
5384 * Returns driver specefic information like name, version etc.. to ethtool.
5385 * Return value:
5386 *  void
5387 */
5388
5389static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5390				  struct ethtool_drvinfo *info)
5391{
5392	struct s2io_nic *sp = netdev_priv(dev);
5393
5394	strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5395	strncpy(info->version, s2io_driver_version, sizeof(info->version));
5396	strncpy(info->fw_version, "", sizeof(info->fw_version));
5397	strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5398	info->regdump_len = XENA_REG_SPACE;
5399	info->eedump_len = XENA_EEPROM_SPACE;
5400}
5401
5402/**
5403 *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5404 *  @sp: private member of the device structure, which is a pointer to the
5405 *  s2io_nic structure.
5406 *  @regs : pointer to the structure with parameters given by ethtool for
5407 *  dumping the registers.
5408 *  @reg_space: The input argumnet into which all the registers are dumped.
5409 *  Description:
5410 *  Dumps the entire register space of xFrame NIC into the user given
5411 *  buffer area.
5412 * Return value :
5413 * void .
5414 */
5415
5416static void s2io_ethtool_gregs(struct net_device *dev,
5417			       struct ethtool_regs *regs, void *space)
5418{
5419	int i;
5420	u64 reg;
5421	u8 *reg_space = (u8 *)space;
5422	struct s2io_nic *sp = netdev_priv(dev);
5423
5424	regs->len = XENA_REG_SPACE;
5425	regs->version = sp->pdev->subsystem_device;
5426
5427	for (i = 0; i < regs->len; i += 8) {
5428		reg = readq(sp->bar0 + i);
5429		memcpy((reg_space + i), &reg, 8);
5430	}
5431}
5432
5433/*
5434 *  s2io_set_led - control NIC led
5435 */
5436static void s2io_set_led(struct s2io_nic *sp, bool on)
5437{
5438	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5439	u16 subid = sp->pdev->subsystem_device;
5440	u64 val64;
5441
5442	if ((sp->device_type == XFRAME_II_DEVICE) ||
5443	    ((subid & 0xFF) >= 0x07)) {
5444		val64 = readq(&bar0->gpio_control);
5445		if (on)
5446			val64 |= GPIO_CTRL_GPIO_0;
5447		else
5448			val64 &= ~GPIO_CTRL_GPIO_0;
5449
5450		writeq(val64, &bar0->gpio_control);
5451	} else {
5452		val64 = readq(&bar0->adapter_control);
5453		if (on)
5454			val64 |= ADAPTER_LED_ON;
5455		else
5456			val64 &= ~ADAPTER_LED_ON;
5457
5458		writeq(val64, &bar0->adapter_control);
5459	}
5460
5461}
5462
5463/**
5464 * s2io_ethtool_set_led - To physically identify the nic on the system.
5465 * @dev : network device
5466 * @state: led setting
5467 *
5468 * Description: Used to physically identify the NIC on the system.
5469 * The Link LED will blink for a time specified by the user for
5470 * identification.
5471 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5472 * identification is possible only if it's link is up.
5473 */
5474
5475static int s2io_ethtool_set_led(struct net_device *dev,
5476				enum ethtool_phys_id_state state)
5477{
5478	struct s2io_nic *sp = netdev_priv(dev);
5479	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5480	u16 subid = sp->pdev->subsystem_device;
5481
5482	if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
5483		u64 val64 = readq(&bar0->adapter_control);
5484		if (!(val64 & ADAPTER_CNTL_EN)) {
5485			pr_err("Adapter Link down, cannot blink LED\n");
5486			return -EAGAIN;
5487		}
5488	}
5489
5490	switch (state) {
5491	case ETHTOOL_ID_ACTIVE:
5492		sp->adapt_ctrl_org = readq(&bar0->gpio_control);
5493		return 1;	/* cycle on/off once per second */
5494
5495	case ETHTOOL_ID_ON:
5496		s2io_set_led(sp, true);
5497		break;
5498
5499	case ETHTOOL_ID_OFF:
5500		s2io_set_led(sp, false);
5501		break;
5502
5503	case ETHTOOL_ID_INACTIVE:
5504		if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid))
5505			writeq(sp->adapt_ctrl_org, &bar0->gpio_control);
5506	}
5507
5508	return 0;
5509}
5510
5511static void s2io_ethtool_gringparam(struct net_device *dev,
5512				    struct ethtool_ringparam *ering)
5513{
5514	struct s2io_nic *sp = netdev_priv(dev);
5515	int i, tx_desc_count = 0, rx_desc_count = 0;
5516
5517	if (sp->rxd_mode == RXD_MODE_1) {
5518		ering->rx_max_pending = MAX_RX_DESC_1;
5519		ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5520	} else {
5521		ering->rx_max_pending = MAX_RX_DESC_2;
5522		ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5523	}
5524
5525	ering->rx_mini_max_pending = 0;
5526	ering->tx_max_pending = MAX_TX_DESC;
5527
5528	for (i = 0; i < sp->config.rx_ring_num; i++)
5529		rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5530	ering->rx_pending = rx_desc_count;
5531	ering->rx_jumbo_pending = rx_desc_count;
5532	ering->rx_mini_pending = 0;
5533
5534	for (i = 0; i < sp->config.tx_fifo_num; i++)
5535		tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5536	ering->tx_pending = tx_desc_count;
5537	DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
5538}
5539
5540/**
5541 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5542 * @sp : private member of the device structure, which is a pointer to the
5543 *	s2io_nic structure.
5544 * @ep : pointer to the structure with pause parameters given by ethtool.
5545 * Description:
5546 * Returns the Pause frame generation and reception capability of the NIC.
5547 * Return value:
5548 *  void
5549 */
5550static void s2io_ethtool_getpause_data(struct net_device *dev,
5551				       struct ethtool_pauseparam *ep)
5552{
5553	u64 val64;
5554	struct s2io_nic *sp = netdev_priv(dev);
5555	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5556
5557	val64 = readq(&bar0->rmac_pause_cfg);
5558	if (val64 & RMAC_PAUSE_GEN_ENABLE)
5559		ep->tx_pause = true;
5560	if (val64 & RMAC_PAUSE_RX_ENABLE)
5561		ep->rx_pause = true;
5562	ep->autoneg = false;
5563}
5564
5565/**
5566 * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5567 * @sp : private member of the device structure, which is a pointer to the
5568 *      s2io_nic structure.
5569 * @ep : pointer to the structure with pause parameters given by ethtool.
5570 * Description:
5571 * It can be used to set or reset Pause frame generation or reception
5572 * support of the NIC.
5573 * Return value:
5574 * int, returns 0 on Success
5575 */
5576
5577static int s2io_ethtool_setpause_data(struct net_device *dev,
5578				      struct ethtool_pauseparam *ep)
5579{
5580	u64 val64;
5581	struct s2io_nic *sp = netdev_priv(dev);
5582	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5583
5584	val64 = readq(&bar0->rmac_pause_cfg);
5585	if (ep->tx_pause)
5586		val64 |= RMAC_PAUSE_GEN_ENABLE;
5587	else
5588		val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5589	if (ep->rx_pause)
5590		val64 |= RMAC_PAUSE_RX_ENABLE;
5591	else
5592		val64 &= ~RMAC_PAUSE_RX_ENABLE;
5593	writeq(val64, &bar0->rmac_pause_cfg);
5594	return 0;
5595}
5596
5597/**
5598 * read_eeprom - reads 4 bytes of data from user given offset.
5599 * @sp : private member of the device structure, which is a pointer to the
5600 *      s2io_nic structure.
5601 * @off : offset at which the data must be written
5602 * @data : Its an output parameter where the data read at the given
5603 *	offset is stored.
5604 * Description:
5605 * Will read 4 bytes of data from the user given offset and return the
5606 * read data.
5607 * NOTE: Will allow to read only part of the EEPROM visible through the
5608 *   I2C bus.
5609 * Return value:
5610 *  -1 on failure and 0 on success.
5611 */
5612
5613#define S2IO_DEV_ID		5
5614static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
5615{
5616	int ret = -1;
5617	u32 exit_cnt = 0;
5618	u64 val64;
5619	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5620
5621	if (sp->device_type == XFRAME_I_DEVICE) {
5622		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5623			I2C_CONTROL_ADDR(off) |
5624			I2C_CONTROL_BYTE_CNT(0x3) |
5625			I2C_CONTROL_READ |
5626			I2C_CONTROL_CNTL_START;
5627		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5628
5629		while (exit_cnt < 5) {
5630			val64 = readq(&bar0->i2c_control);
5631			if (I2C_CONTROL_CNTL_END(val64)) {
5632				*data = I2C_CONTROL_GET_DATA(val64);
5633				ret = 0;
5634				break;
5635			}
5636			msleep(50);
5637			exit_cnt++;
5638		}
5639	}
5640
5641	if (sp->device_type == XFRAME_II_DEVICE) {
5642		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5643			SPI_CONTROL_BYTECNT(0x3) |
5644			SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5645		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5646		val64 |= SPI_CONTROL_REQ;
5647		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5648		while (exit_cnt < 5) {
5649			val64 = readq(&bar0->spi_control);
5650			if (val64 & SPI_CONTROL_NACK) {
5651				ret = 1;
5652				break;
5653			} else if (val64 & SPI_CONTROL_DONE) {
5654				*data = readq(&bar0->spi_data);
5655				*data &= 0xffffff;
5656				ret = 0;
5657				break;
5658			}
5659			msleep(50);
5660			exit_cnt++;
5661		}
5662	}
5663	return ret;
5664}
5665
5666/**
5667 *  write_eeprom - actually writes the relevant part of the data value.
5668 *  @sp : private member of the device structure, which is a pointer to the
5669 *       s2io_nic structure.
5670 *  @off : offset at which the data must be written
5671 *  @data : The data that is to be written
5672 *  @cnt : Number of bytes of the data that are actually to be written into
5673 *  the Eeprom. (max of 3)
5674 * Description:
5675 *  Actually writes the relevant part of the data value into the Eeprom
5676 *  through the I2C bus.
5677 * Return value:
5678 *  0 on success, -1 on failure.
5679 */
5680
5681static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
5682{
5683	int exit_cnt = 0, ret = -1;
5684	u64 val64;
5685	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5686
5687	if (sp->device_type == XFRAME_I_DEVICE) {
5688		val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
5689			I2C_CONTROL_ADDR(off) |
5690			I2C_CONTROL_BYTE_CNT(cnt) |
5691			I2C_CONTROL_SET_DATA((u32)data) |
5692			I2C_CONTROL_CNTL_START;
5693		SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5694
5695		while (exit_cnt < 5) {
5696			val64 = readq(&bar0->i2c_control);
5697			if (I2C_CONTROL_CNTL_END(val64)) {
5698				if (!(val64 & I2C_CONTROL_NACK))
5699					ret = 0;
5700				break;
5701			}
5702			msleep(50);
5703			exit_cnt++;
5704		}
5705	}
5706
5707	if (sp->device_type == XFRAME_II_DEVICE) {
5708		int write_cnt = (cnt == 8) ? 0 : cnt;
5709		writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
5710
5711		val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5712			SPI_CONTROL_BYTECNT(write_cnt) |
5713			SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5714		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5715		val64 |= SPI_CONTROL_REQ;
5716		SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5717		while (exit_cnt < 5) {
5718			val64 = readq(&bar0->spi_control);
5719			if (val64 & SPI_CONTROL_NACK) {
5720				ret = 1;
5721				break;
5722			} else if (val64 & SPI_CONTROL_DONE) {
5723				ret = 0;
5724				break;
5725			}
5726			msleep(50);
5727			exit_cnt++;
5728		}
5729	}
5730	return ret;
5731}
5732static void s2io_vpd_read(struct s2io_nic *nic)
5733{
5734	u8 *vpd_data;
5735	u8 data;
5736	int i = 0, cnt, len, fail = 0;
5737	int vpd_addr = 0x80;
5738	struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
5739
5740	if (nic->device_type == XFRAME_II_DEVICE) {
5741		strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5742		vpd_addr = 0x80;
5743	} else {
5744		strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5745		vpd_addr = 0x50;
5746	}
5747	strcpy(nic->serial_num, "NOT AVAILABLE");
5748
5749	vpd_data = kmalloc(256, GFP_KERNEL);
5750	if (!vpd_data) {
5751		swstats->mem_alloc_fail_cnt++;
5752		return;
5753	}
5754	swstats->mem_allocated += 256;
5755
5756	for (i = 0; i < 256; i += 4) {
5757		pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5758		pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5759		pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5760		for (cnt = 0; cnt < 5; cnt++) {
5761			msleep(2);
5762			pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5763			if (data == 0x80)
5764				break;
5765		}
5766		if (cnt >= 5) {
5767			DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5768			fail = 1;
5769			break;
5770		}
5771		pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5772				      (u32 *)&vpd_data[i]);
5773	}
5774
5775	if (!fail) {
5776		/* read serial number of adapter */
5777		for (cnt = 0; cnt < 252; cnt++) {
5778			if ((vpd_data[cnt] == 'S') &&
5779			    (vpd_data[cnt+1] == 'N')) {
5780				len = vpd_data[cnt+2];
5781				if (len < min(VPD_STRING_LEN, 256-cnt-2)) {
5782					memcpy(nic->serial_num,
5783					       &vpd_data[cnt + 3],
5784					       len);
5785					memset(nic->serial_num+len,
5786					       0,
5787					       VPD_STRING_LEN-len);
5788					break;
5789				}
5790			}
5791		}
5792	}
5793
5794	if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5795		len = vpd_data[1];
5796		memcpy(nic->product_name, &vpd_data[3], len);
5797		nic->product_name[len] = 0;
5798	}
5799	kfree(vpd_data);
5800	swstats->mem_freed += 256;
5801}
5802
5803/**
5804 *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5805 *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5806 *  @eeprom : pointer to the user level structure provided by ethtool,
5807 *  containing all relevant information.
5808 *  @data_buf : user defined value to be written into Eeprom.
5809 *  Description: Reads the values stored in the Eeprom at given offset
5810 *  for a given length. Stores these values int the input argument data
5811 *  buffer 'data_buf' and returns these to the caller (ethtool.)
5812 *  Return value:
5813 *  int  0 on success
5814 */
5815
5816static int s2io_ethtool_geeprom(struct net_device *dev,
5817				struct ethtool_eeprom *eeprom, u8 * data_buf)
5818{
5819	u32 i, valid;
5820	u64 data;
5821	struct s2io_nic *sp = netdev_priv(dev);
5822
5823	eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5824
5825	if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5826		eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5827
5828	for (i = 0; i < eeprom->len; i += 4) {
5829		if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5830			DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5831			return -EFAULT;
5832		}
5833		valid = INV(data);
5834		memcpy((data_buf + i), &valid, 4);
5835	}
5836	return 0;
5837}
5838
5839/**
5840 *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5841 *  @sp : private member of the device structure, which is a pointer to the
5842 *  s2io_nic structure.
5843 *  @eeprom : pointer to the user level structure provided by ethtool,
5844 *  containing all relevant information.
5845 *  @data_buf ; user defined value to be written into Eeprom.
5846 *  Description:
5847 *  Tries to write the user provided value in the Eeprom, at the offset
5848 *  given by the user.
5849 *  Return value:
5850 *  0 on success, -EFAULT on failure.
5851 */
5852
5853static int s2io_ethtool_seeprom(struct net_device *dev,
5854				struct ethtool_eeprom *eeprom,
5855				u8 *data_buf)
5856{
5857	int len = eeprom->len, cnt = 0;
5858	u64 valid = 0, data;
5859	struct s2io_nic *sp = netdev_priv(dev);
5860
5861	if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5862		DBG_PRINT(ERR_DBG,
5863			  "ETHTOOL_WRITE_EEPROM Err: "
5864			  "Magic value is wrong, it is 0x%x should be 0x%x\n",
5865			  (sp->pdev->vendor | (sp->pdev->device << 16)),
5866			  eeprom->magic);
5867		return -EFAULT;
5868	}
5869
5870	while (len) {
5871		data = (u32)data_buf[cnt] & 0x000000FF;
5872		if (data)
5873			valid = (u32)(data << 24);
5874		else
5875			valid = data;
5876
5877		if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5878			DBG_PRINT(ERR_DBG,
5879				  "ETHTOOL_WRITE_EEPROM Err: "
5880				  "Cannot write into the specified offset\n");
5881			return -EFAULT;
5882		}
5883		cnt++;
5884		len--;
5885	}
5886
5887	return 0;
5888}
5889
5890/**
5891 * s2io_register_test - reads and writes into all clock domains.
5892 * @sp : private member of the device structure, which is a pointer to the
5893 * s2io_nic structure.
5894 * @data : variable that returns the result of each of the test conducted b
5895 * by the driver.
5896 * Description:
5897 * Read and write into all clock domains. The NIC has 3 clock domains,
5898 * see that registers in all the three regions are accessible.
5899 * Return value:
5900 * 0 on success.
5901 */
5902
5903static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
5904{
5905	struct XENA_dev_config __iomem *bar0 = sp->bar0;
5906	u64 val64 = 0, exp_val;
5907	int fail = 0;
5908
5909	val64 = readq(&bar0->pif_rd_swapper_fb);
5910	if (val64 != 0x123456789abcdefULL) {
5911		fail = 1;
5912		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
5913	}
5914
5915	val64 = readq(&bar0->rmac_pause_cfg);
5916	if (val64 != 0xc000ffff00000000ULL) {
5917		fail = 1;
5918		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
5919	}
5920
5921	val64 = readq(&bar0->rx_queue_cfg);
5922	if (sp->device_type == XFRAME_II_DEVICE)
5923		exp_val = 0x0404040404040404ULL;
5924	else
5925		exp_val = 0x0808080808080808ULL;
5926	if (val64 != exp_val) {
5927		fail = 1;
5928		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
5929	}
5930
5931	val64 = readq(&bar0->xgxs_efifo_cfg);
5932	if (val64 != 0x000000001923141EULL) {
5933		fail = 1;
5934		DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
5935	}
5936
5937	val64 = 0x5A5A5A5A5A5A5A5AULL;
5938	writeq(val64, &bar0->xmsi_data);
5939	val64 = readq(&bar0->xmsi_data);
5940	if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5941		fail = 1;
5942		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
5943	}
5944
5945	val64 = 0xA5A5A5A5A5A5A5A5ULL;
5946	writeq(val64, &bar0->xmsi_data);
5947	val64 = readq(&bar0->xmsi_data);
5948	if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5949		fail = 1;
5950		DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
5951	}
5952
5953	*data = fail;
5954	return fail;
5955}
5956
5957/**
5958 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5959 * @sp : private member of the device structure, which is a pointer to the
5960 * s2io_nic structure.
5961 * @data:variable that returns the result of each of the test conducted by
5962 * the driver.
5963 * Description:
5964 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5965 * register.
5966 * Return value:
5967 * 0 on success.
5968 */
5969
5970static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
5971{
5972	int fail = 0;
5973	u64 ret_data, org_4F0, org_7F0;
5974	u8 saved_4F0 = 0, saved_7F0 = 0;
5975	struct net_device *dev = sp->dev;
5976
5977	/* Test Write Error at offset 0 */
5978	/* Note that SPI interface allows write access to all areas
5979	 * of EEPROM. Hence doing all negative testing only for Xframe I.
5980	 */
5981	if (sp->device_type == XFRAME_I_DEVICE)
5982		if (!write_eeprom(sp, 0, 0, 3))
5983			fail = 1;
5984
5985	/* Save current values at offsets 0x4F0 and 0x7F0 */
5986	if (!read_eeprom(sp, 0x4F0, &org_4F0))
5987		saved_4F0 = 1;
5988	if (!read_eeprom(sp, 0x7F0, &org_7F0))
5989		saved_7F0 = 1;
5990
5991	/* Test Write at offset 4f0 */
5992	if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5993		fail = 1;
5994	if (read_eeprom(sp, 0x4F0, &ret_data))
5995		fail = 1;
5996
5997	if (ret_data != 0x012345) {
5998		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5999			  "Data written %llx Data read %llx\n",
6000			  dev->name, (unsigned long long)0x12345,
6001			  (unsigned long long)ret_data);
6002		fail = 1;
6003	}
6004
6005	/* Reset the EEPROM data go FFFF */
6006	write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6007
6008	/* Test Write Request Error at offset 0x7c */
6009	if (sp->device_type == XFRAME_I_DEVICE)
6010		if (!write_eeprom(sp, 0x07C, 0, 3))
6011			fail = 1;
6012
6013	/* Test Write Request at offset 0x7f0 */
6014	if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6015		fail = 1;
6016	if (read_eeprom(sp, 0x7F0, &ret_data))
6017		fail = 1;
6018
6019	if (ret_data != 0x012345) {
6020		DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6021			  "Data written %llx Data read %llx\n",
6022			  dev->name, (unsigned long long)0x12345,
6023			  (unsigned long long)ret_data);
6024		fail = 1;
6025	}
6026
6027	/* Reset the EEPROM data go FFFF */
6028	write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6029
6030	if (sp->device_type == XFRAME_I_DEVICE) {
6031		/* Test Write Error at offset 0x80 */
6032		if (!write_eeprom(sp, 0x080, 0, 3))
6033			fail = 1;
6034
6035		/* Test Write Error at offset 0xfc */
6036		if (!write_eeprom(sp, 0x0FC, 0, 3))
6037			fail = 1;
6038
6039		/* Test Write Error at offset 0x100 */
6040		if (!write_eeprom(sp, 0x100, 0, 3))
6041			fail = 1;
6042
6043		/* Test Write Error at offset 4ec */
6044		if (!write_eeprom(sp, 0x4EC, 0, 3))
6045			fail = 1;
6046	}
6047
6048	/* Restore values at offsets 0x4F0 and 0x7F0 */
6049	if (saved_4F0)
6050		write_eeprom(sp, 0x4F0, org_4F0, 3);
6051	if (saved_7F0)
6052		write_eeprom(sp, 0x7F0, org_7F0, 3);
6053
6054	*data = fail;
6055	return fail;
6056}
6057
6058/**
6059 * s2io_bist_test - invokes the MemBist test of the card .
6060 * @sp : private member of the device structure, which is a pointer to the
6061 * s2io_nic structure.
6062 * @data:variable that returns the result of each of the test conducted by
6063 * the driver.
6064 * Description:
6065 * This invokes the MemBist test of the card. We give around
6066 * 2 secs time for the Test to complete. If it's still not complete
6067 * within this peiod, we consider that the test failed.
6068 * Return value:
6069 * 0 on success and -1 on failure.
6070 */
6071
6072static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
6073{
6074	u8 bist = 0;
6075	int cnt = 0, ret = -1;
6076
6077	pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6078	bist |= PCI_BIST_START;
6079	pci_write_config_word(sp->pdev, PCI_BIST, bist);
6080
6081	while (cnt < 20) {
6082		pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6083		if (!(bist & PCI_BIST_START)) {
6084			*data = (bist & PCI_BIST_CODE_MASK);
6085			ret = 0;
6086			break;
6087		}
6088		msleep(100);
6089		cnt++;
6090	}
6091
6092	return ret;
6093}
6094
6095/**
6096 * s2io-link_test - verifies the link state of the nic
6097 * @sp ; private member of the device structure, which is a pointer to the
6098 * s2io_nic structure.
6099 * @data: variable that returns the result of each of the test conducted by
6100 * the driver.
6101 * Description:
6102 * The function verifies the link state of the NIC and updates the input
6103 * argument 'data' appropriately.
6104 * Return value:
6105 * 0 on success.
6106 */
6107
6108static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
6109{
6110	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6111	u64 val64;
6112
6113	val64 = readq(&bar0->adapter_status);
6114	if (!(LINK_IS_UP(val64)))
6115		*data = 1;
6116	else
6117		*data = 0;
6118
6119	return *data;
6120}
6121
6122/**
6123 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6124 * @sp - private member of the device structure, which is a pointer to the
6125 * s2io_nic structure.
6126 * @data - variable that returns the result of each of the test
6127 * conducted by the driver.
6128 * Description:
6129 *  This is one of the offline test that tests the read and write
6130 *  access to the RldRam chip on the NIC.
6131 * Return value:
6132 *  0 on success.
6133 */
6134
6135static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
6136{
6137	struct XENA_dev_config __iomem *bar0 = sp->bar0;
6138	u64 val64;
6139	int cnt, iteration = 0, test_fail = 0;
6140
6141	val64 = readq(&bar0->adapter_control);
6142	val64 &= ~ADAPTER_ECC_EN;
6143	writeq(val64, &bar0->adapter_control);
6144
6145	val64 = readq(&bar0->mc_rldram_test_ctrl);
6146	val64 |= MC_RLDRAM_TEST_MODE;
6147	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6148
6149	val64 = readq(&bar0->mc_rldram_mrs);
6150	val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6151	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6152
6153	val64 |= MC_RLDRAM_MRS_ENABLE;
6154	SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6155
6156	while (iteration < 2) {
6157		val64 = 0x55555555aaaa0000ULL;
6158		if (iteration == 1)
6159			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6160		writeq(val64, &bar0->mc_rldram_test_d0);
6161
6162		val64 = 0xaaaa5a5555550000ULL;
6163		if (iteration == 1)
6164			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6165		writeq(val64, &bar0->mc_rldram_test_d1);
6166
6167		val64 = 0x55aaaaaaaa5a0000ULL;
6168		if (iteration == 1)
6169			val64 ^= 0xFFFFFFFFFFFF0000ULL;
6170		writeq(val64, &bar0->mc_rldram_test_d2);
6171
6172		val64 = (u64) (0x0000003ffffe0100ULL);
6173		writeq(val64, &bar0->mc_rldram_test_add);
6174
6175		val64 = MC_RLDRAM_TEST_MODE |
6176			MC_RLDRAM_TEST_WRITE |
6177			MC_RLDRAM_TEST_GO;
6178		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6179
6180		for (cnt = 0; cnt < 5; cnt++) {
6181			val64 = readq(&bar0->mc_rldram_test_ctrl);
6182			if (val64 & MC_RLDRAM_TEST_DONE)
6183				break;
6184			msleep(200);
6185		}
6186
6187		if (cnt == 5)
6188			break;
6189
6190		val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6191		SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6192
6193		for (cnt = 0; cnt < 5; cnt++) {
6194			val64 = readq(&bar0->mc_rldram_test_ctrl);
6195			if (val64 & MC_RLDRAM_TEST_DONE)
6196				break;
6197			msleep(500);
6198		}
6199
6200		if (cnt == 5)
6201			break;
6202
6203		val64 = readq(&bar0->mc_rldram_test_ctrl);
6204		if (!(val64 & MC_RLDRAM_TEST_PASS))
6205			test_fail = 1;
6206
6207		iteration++;
6208	}
6209
6210	*data = test_fail;
6211
6212	/* Bring the adapter out of test mode */
6213	SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6214
6215	return test_fail;
6216}
6217
6218/**
6219 *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6220 *  @sp : private member of the device structure, which is a pointer to the
6221 *  s2io_nic structure.
6222 *  @ethtest : pointer to a ethtool command specific structure that will be
6223 *  returned to the user.
6224 *  @data : variable that returns the result of each of the test
6225 * conducted by the driver.
6226 * Description:
6227 *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6228 *  the health of the card.
6229 * Return value:
6230 *  void
6231 */
6232
6233static void s2io_ethtool_test(struct net_device *dev,
6234			      struct ethtool_test *ethtest,
6235			      uint64_t *data)
6236{
6237	struct s2io_nic *sp = netdev_priv(dev);
6238	int orig_state = netif_running(sp->dev);
6239
6240	if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6241		/* Offline Tests. */
6242		if (orig_state)
6243			s2io_close(sp->dev);
6244
6245		if (s2io_register_test(sp, &data[0]))
6246			ethtest->flags |= ETH_TEST_FL_FAILED;
6247
6248		s2io_reset(sp);
6249
6250		if (s2io_rldram_test(sp, &data[3]))
6251			ethtest->flags |= ETH_TEST_FL_FAILED;
6252
6253		s2io_reset(sp);
6254
6255		if (s2io_eeprom_test(sp, &data[1]))
6256			ethtest->flags |= ETH_TEST_FL_FAILED;
6257
6258		if (s2io_bist_test(sp, &data[4]))
6259			ethtest->flags |= ETH_TEST_FL_FAILED;
6260
6261		if (orig_state)
6262			s2io_open(sp->dev);
6263
6264		data[2] = 0;
6265	} else {
6266		/* Online Tests. */
6267		if (!orig_state) {
6268			DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
6269				  dev->name);
6270			data[0] = -1;
6271			data[1] = -1;
6272			data[2] = -1;
6273			data[3] = -1;
6274			data[4] = -1;
6275		}
6276
6277		if (s2io_link_test(sp, &data[2]))
6278			ethtest->flags |= ETH_TEST_FL_FAILED;
6279
6280		data[0] = 0;
6281		data[1] = 0;
6282		data[3] = 0;
6283		data[4] = 0;
6284	}
6285}
6286
6287static void s2io_get_ethtool_stats(struct net_device *dev,
6288				   struct ethtool_stats *estats,
6289				   u64 *tmp_stats)
6290{
6291	int i = 0, k;
6292	struct s2io_nic *sp = netdev_priv(dev);
6293	struct stat_block *stats = sp->mac_control.stats_info;
6294	struct swStat *swstats = &stats->sw_stat;
6295	struct xpakStat *xstats = &stats->xpak_stat;
6296
6297	s2io_updt_stats(sp);
6298	tmp_stats[i++] =
6299		(u64)le32_to_cpu(stats->tmac_frms_oflow) << 32  |
6300		le32_to_cpu(stats->tmac_frms);
6301	tmp_stats[i++] =
6302		(u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
6303		le32_to_cpu(stats->tmac_data_octets);
6304	tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
6305	tmp_stats[i++] =
6306		(u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
6307		le32_to_cpu(stats->tmac_mcst_frms);
6308	tmp_stats[i++] =
6309		(u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
6310		le32_to_cpu(stats->tmac_bcst_frms);
6311	tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
6312	tmp_stats[i++] =
6313		(u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
6314		le32_to_cpu(stats->tmac_ttl_octets);
6315	tmp_stats[i++] =
6316		(u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
6317		le32_to_cpu(stats->tmac_ucst_frms);
6318	tmp_stats[i++] =
6319		(u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
6320		le32_to_cpu(stats->tmac_nucst_frms);
6321	tmp_stats[i++] =
6322		(u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
6323		le32_to_cpu(stats->tmac_any_err_frms);
6324	tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
6325	tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
6326	tmp_stats[i++] =
6327		(u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
6328		le32_to_cpu(stats->tmac_vld_ip);
6329	tmp_stats[i++] =
6330		(u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
6331		le32_to_cpu(stats->tmac_drop_ip);
6332	tmp_stats[i++] =
6333		(u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
6334		le32_to_cpu(stats->tmac_icmp);
6335	tmp_stats[i++] =
6336		(u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
6337		le32_to_cpu(stats->tmac_rst_tcp);
6338	tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
6339	tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
6340		le32_to_cpu(stats->tmac_udp);
6341	tmp_stats[i++] =
6342		(u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
6343		le32_to_cpu(stats->rmac_vld_frms);
6344	tmp_stats[i++] =
6345		(u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
6346		le32_to_cpu(stats->rmac_data_octets);
6347	tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
6348	tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
6349	tmp_stats[i++] =
6350		(u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
6351		le32_to_cpu(stats->rmac_vld_mcst_frms);
6352	tmp_stats[i++] =
6353		(u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
6354		le32_to_cpu(stats->rmac_vld_bcst_frms);
6355	tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
6356	tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
6357	tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
6358	tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
6359	tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
6360	tmp_stats[i++] =
6361		(u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
6362		le32_to_cpu(stats->rmac_ttl_octets);
6363	tmp_stats[i++] =
6364		(u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
6365		| le32_to_cpu(stats->rmac_accepted_ucst_frms);
6366	tmp_stats[i++] =
6367		(u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
6368		<< 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
6369	tmp_stats[i++] =
6370		(u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
6371		le32_to_cpu(stats->rmac_discarded_frms);
6372	tmp_stats[i++] =
6373		(u64)le32_to_cpu(stats->rmac_drop_events_oflow)
6374		<< 32 | le32_to_cpu(stats->rmac_drop_events);
6375	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
6376	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
6377	tmp_stats[i++] =
6378		(u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
6379		le32_to_cpu(stats->rmac_usized_frms);
6380	tmp_stats[i++] =
6381		(u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
6382		le32_to_cpu(stats->rmac_osized_frms);
6383	tmp_stats[i++] =
6384		(u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
6385		le32_to_cpu(stats->rmac_frag_frms);
6386	tmp_stats[i++] =
6387		(u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
6388		le32_to_cpu(stats->rmac_jabber_frms);
6389	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
6390	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
6391	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
6392	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
6393	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
6394	tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
6395	tmp_stats[i++] =
6396		(u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
6397		le32_to_cpu(stats->rmac_ip);
6398	tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
6399	tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
6400	tmp_stats[i++] =
6401		(u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
6402		le32_to_cpu(stats->rmac_drop_ip);
6403	tmp_stats[i++] =
6404		(u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
6405		le32_to_cpu(stats->rmac_icmp);
6406	tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
6407	tmp_stats[i++] =
6408		(u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
6409		le32_to_cpu(stats->rmac_udp);
6410	tmp_stats[i++] =
6411		(u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
6412		le32_to_cpu(stats->rmac_err_drp_udp);
6413	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
6414	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
6415	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
6416	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
6417	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
6418	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
6419	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
6420	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
6421	tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
6422	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
6423	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
6424	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
6425	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
6426	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
6427	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
6428	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
6429	tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
6430	tmp_stats[i++] =
6431		(u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
6432		le32_to_cpu(stats->rmac_pause_cnt);
6433	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
6434	tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
6435	tmp_stats[i++] =
6436		(u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
6437		le32_to_cpu(stats->rmac_accepted_ip);
6438	tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
6439	tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
6440	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
6441	tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
6442	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
6443	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
6444	tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
6445	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
6446	tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
6447	tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
6448	tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
6449	tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
6450	tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
6451	tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
6452	tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
6453	tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
6454	tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
6455	tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
6456	tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
6457
6458	/* Enhanced statistics exist only for Hercules */
6459	if (sp->device_type == XFRAME_II_DEVICE) {
6460		tmp_stats[i++] =
6461			le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
6462		tmp_stats[i++] =
6463			le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
6464		tmp_stats[i++] =
6465			le64_to_cpu(stats->rmac_ttl_8192_max_frms);
6466		tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
6467		tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
6468		tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
6469		tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
6470		tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
6471		tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
6472		tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
6473		tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
6474		tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
6475		tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
6476		tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
6477		tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
6478		tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
6479	}
6480
6481	tmp_stats[i++] = 0;
6482	tmp_stats[i++] = swstats->single_ecc_errs;
6483	tmp_stats[i++] = swstats->double_ecc_errs;
6484	tmp_stats[i++] = swstats->parity_err_cnt;
6485	tmp_stats[i++] = swstats->serious_err_cnt;
6486	tmp_stats[i++] = swstats->soft_reset_cnt;
6487	tmp_stats[i++] = swstats->fifo_full_cnt;
6488	for (k = 0; k < MAX_RX_RINGS; k++)
6489		tmp_stats[i++] = swstats->ring_full_cnt[k];
6490	tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
6491	tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
6492	tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
6493	tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
6494	tmp_stats[i++] = xstats->alarm_laser_output_power_high;
6495	tmp_stats[i++] = xstats->alarm_laser_output_power_low;
6496	tmp_stats[i++] = xstats->warn_transceiver_temp_high;
6497	tmp_stats[i++] = xstats->warn_transceiver_temp_low;
6498	tmp_stats[i++] = xstats->warn_laser_bias_current_high;
6499	tmp_stats[i++] = xstats->warn_laser_bias_current_low;
6500	tmp_stats[i++] = xstats->warn_laser_output_power_high;
6501	tmp_stats[i++] = xstats->warn_laser_output_power_low;
6502	tmp_stats[i++] = swstats->clubbed_frms_cnt;
6503	tmp_stats[i++] = swstats->sending_both;
6504	tmp_stats[i++] = swstats->outof_sequence_pkts;
6505	tmp_stats[i++] = swstats->flush_max_pkts;
6506	if (swstats->num_aggregations) {
6507		u64 tmp = swstats->sum_avg_pkts_aggregated;
6508		int count = 0;
6509		/*
6510		 * Since 64-bit divide does not work on all platforms,
6511		 * do repeated subtraction.
6512		 */
6513		while (tmp >= swstats->num_aggregations) {
6514			tmp -= swstats->num_aggregations;
6515			count++;
6516		}
6517		tmp_stats[i++] = count;
6518	} else
6519		tmp_stats[i++] = 0;
6520	tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
6521	tmp_stats[i++] = swstats->pci_map_fail_cnt;
6522	tmp_stats[i++] = swstats->watchdog_timer_cnt;
6523	tmp_stats[i++] = swstats->mem_allocated;
6524	tmp_stats[i++] = swstats->mem_freed;
6525	tmp_stats[i++] = swstats->link_up_cnt;
6526	tmp_stats[i++] = swstats->link_down_cnt;
6527	tmp_stats[i++] = swstats->link_up_time;
6528	tmp_stats[i++] = swstats->link_down_time;
6529
6530	tmp_stats[i++] = swstats->tx_buf_abort_cnt;
6531	tmp_stats[i++] = swstats->tx_desc_abort_cnt;
6532	tmp_stats[i++] = swstats->tx_parity_err_cnt;
6533	tmp_stats[i++] = swstats->tx_link_loss_cnt;
6534	tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
6535
6536	tmp_stats[i++] = swstats->rx_parity_err_cnt;
6537	tmp_stats[i++] = swstats->rx_abort_cnt;
6538	tmp_stats[i++] = swstats->rx_parity_abort_cnt;
6539	tmp_stats[i++] = swstats->rx_rda_fail_cnt;
6540	tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
6541	tmp_stats[i++] = swstats->rx_fcs_err_cnt;
6542	tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
6543	tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
6544	tmp_stats[i++] = swstats->rx_unkn_err_cnt;
6545	tmp_stats[i++] = swstats->tda_err_cnt;
6546	tmp_stats[i++] = swstats->pfc_err_cnt;
6547	tmp_stats[i++] = swstats->pcc_err_cnt;
6548	tmp_stats[i++] = swstats->tti_err_cnt;
6549	tmp_stats[i++] = swstats->tpa_err_cnt;
6550	tmp_stats[i++] = swstats->sm_err_cnt;
6551	tmp_stats[i++] = swstats->lso_err_cnt;
6552	tmp_stats[i++] = swstats->mac_tmac_err_cnt;
6553	tmp_stats[i++] = swstats->mac_rmac_err_cnt;
6554	tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
6555	tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
6556	tmp_stats[i++] = swstats->rc_err_cnt;
6557	tmp_stats[i++] = swstats->prc_pcix_err_cnt;
6558	tmp_stats[i++] = swstats->rpa_err_cnt;
6559	tmp_stats[i++] = swstats->rda_err_cnt;
6560	tmp_stats[i++] = swstats->rti_err_cnt;
6561	tmp_stats[i++] = swstats->mc_err_cnt;
6562}
6563
6564static int s2io_ethtool_get_regs_len(struct net_device *dev)
6565{
6566	return XENA_REG_SPACE;
6567}
6568
6569
6570static int s2io_get_eeprom_len(struct net_device *dev)
6571{
6572	return XENA_EEPROM_SPACE;
6573}
6574
6575static int s2io_get_sset_count(struct net_device *dev, int sset)
6576{
6577	struct s2io_nic *sp = netdev_priv(dev);
6578
6579	switch (sset) {
6580	case ETH_SS_TEST:
6581		return S2IO_TEST_LEN;
6582	case ETH_SS_STATS:
6583		switch (sp->device_type) {
6584		case XFRAME_I_DEVICE:
6585			return XFRAME_I_STAT_LEN;
6586		case XFRAME_II_DEVICE:
6587			return XFRAME_II_STAT_LEN;
6588		default:
6589			return 0;
6590		}
6591	default:
6592		return -EOPNOTSUPP;
6593	}
6594}
6595
6596static void s2io_ethtool_get_strings(struct net_device *dev,
6597				     u32 stringset, u8 *data)
6598{
6599	int stat_size = 0;
6600	struct s2io_nic *sp = netdev_priv(dev);
6601
6602	switch (stringset) {
6603	case ETH_SS_TEST:
6604		memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6605		break;
6606	case ETH_SS_STATS:
6607		stat_size = sizeof(ethtool_xena_stats_keys);
6608		memcpy(data, &ethtool_xena_stats_keys, stat_size);
6609		if (sp->device_type == XFRAME_II_DEVICE) {
6610			memcpy(data + stat_size,
6611			       &ethtool_enhanced_stats_keys,
6612			       sizeof(ethtool_enhanced_stats_keys));
6613			stat_size += sizeof(ethtool_enhanced_stats_keys);
6614		}
6615
6616		memcpy(data + stat_size, &ethtool_driver_stats_keys,
6617		       sizeof(ethtool_driver_stats_keys));
6618	}
6619}
6620
6621static int s2io_set_features(struct net_device *dev, u32 features)
6622{
6623	struct s2io_nic *sp = netdev_priv(dev);
6624	u32 changed = (features ^ dev->features) & NETIF_F_LRO;
6625
6626	if (changed && netif_running(dev)) {
6627		int rc;
6628
6629		s2io_stop_all_tx_queue(sp);
6630		s2io_card_down(sp);
6631		dev->features = features;
6632		rc = s2io_card_up(sp);
6633		if (rc)
6634			s2io_reset(sp);
6635		else
6636			s2io_start_all_tx_queue(sp);
6637
6638		return rc ? rc : 1;
6639	}
6640
6641	return 0;
6642}
6643
6644static const struct ethtool_ops netdev_ethtool_ops = {
6645	.get_settings = s2io_ethtool_gset,
6646	.set_settings = s2io_ethtool_sset,
6647	.get_drvinfo = s2io_ethtool_gdrvinfo,
6648	.get_regs_len = s2io_ethtool_get_regs_len,
6649	.get_regs = s2io_ethtool_gregs,
6650	.get_link = ethtool_op_get_link,
6651	.get_eeprom_len = s2io_get_eeprom_len,
6652	.get_eeprom = s2io_ethtool_geeprom,
6653	.set_eeprom = s2io_ethtool_seeprom,
6654	.get_ringparam = s2io_ethtool_gringparam,
6655	.get_pauseparam = s2io_ethtool_getpause_data,
6656	.set_pauseparam = s2io_ethtool_setpause_data,
6657	.self_test = s2io_ethtool_test,
6658	.get_strings = s2io_ethtool_get_strings,
6659	.set_phys_id = s2io_ethtool_set_led,
6660	.get_ethtool_stats = s2io_get_ethtool_stats,
6661	.get_sset_count = s2io_get_sset_count,
6662};
6663
6664/**
6665 *  s2io_ioctl - Entry point for the Ioctl
6666 *  @dev :  Device pointer.
6667 *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6668 *  a proprietary structure used to pass information to the driver.
6669 *  @cmd :  This is used to distinguish between the different commands that
6670 *  can be passed to the IOCTL functions.
6671 *  Description:
6672 *  Currently there are no special functionality supported in IOCTL, hence
6673 *  function always return EOPNOTSUPPORTED
6674 */
6675
6676static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6677{
6678	return -EOPNOTSUPP;
6679}
6680
6681/**
6682 *  s2io_change_mtu - entry point to change MTU size for the device.
6683 *   @dev : device pointer.
6684 *   @new_mtu : the new MTU size for the device.
6685 *   Description: A driver entry point to change MTU size for the device.
6686 *   Before changing the MTU the device must be stopped.
6687 *  Return value:
6688 *   0 on success and an appropriate (-)ve integer as defined in errno.h
6689 *   file on failure.
6690 */
6691
6692static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6693{
6694	struct s2io_nic *sp = netdev_priv(dev);
6695	int ret = 0;
6696
6697	if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6698		DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
6699		return -EPERM;
6700	}
6701
6702	dev->mtu = new_mtu;
6703	if (netif_running(dev)) {
6704		s2io_stop_all_tx_queue(sp);
6705		s2io_card_down(sp);
6706		ret = s2io_card_up(sp);
6707		if (ret) {
6708			DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6709				  __func__);
6710			return ret;
6711		}
6712		s2io_wake_all_tx_queue(sp);
6713	} else { /* Device is down */
6714		struct XENA_dev_config __iomem *bar0 = sp->bar0;
6715		u64 val64 = new_mtu;
6716
6717		writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6718	}
6719
6720	return ret;
6721}
6722
6723/**
6724 * s2io_set_link - Set the LInk status
6725 * @data: long pointer to device private structue
6726 * Description: Sets the link status for the adapter
6727 */
6728
6729static void s2io_set_link(struct work_struct *work)
6730{
6731	struct s2io_nic *nic = container_of(work, struct s2io_nic,
6732					    set_link_task);
6733	struct net_device *dev = nic->dev;
6734	struct XENA_dev_config __iomem *bar0 = nic->bar0;
6735	register u64 val64;
6736	u16 subid;
6737
6738	rtnl_lock();
6739
6740	if (!netif_running(dev))
6741		goto out_unlock;
6742
6743	if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6744		/* The card is being reset, no point doing anything */
6745		goto out_unlock;
6746	}
6747
6748	subid = nic->pdev->subsystem_device;
6749	if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6750		/*
6751		 * Allow a small delay for the NICs self initiated
6752		 * cleanup to complete.
6753		 */
6754		msleep(100);
6755	}
6756
6757	val64 = readq(&bar0->adapter_status);
6758	if (LINK_IS_UP(val64)) {
6759		if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6760			if (verify_xena_quiescence(nic)) {
6761				val64 = readq(&bar0->adapter_control);
6762				val64 |= ADAPTER_CNTL_EN;
6763				writeq(val64, &bar0->adapter_control);
6764				if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6765					    nic->device_type, subid)) {
6766					val64 = readq(&bar0->gpio_control);
6767					val64 |= GPIO_CTRL_GPIO_0;
6768					writeq(val64, &bar0->gpio_control);
6769					val64 = readq(&bar0->gpio_control);
6770				} else {
6771					val64 |= ADAPTER_LED_ON;
6772					writeq(val64, &bar0->adapter_control);
6773				}
6774				nic->device_enabled_once = true;
6775			} else {
6776				DBG_PRINT(ERR_DBG,
6777					  "%s: Error: device is not Quiescent\n",
6778					  dev->name);
6779				s2io_stop_all_tx_queue(nic);
6780			}
6781		}
6782		val64 = readq(&bar0->adapter_control);
6783		val64 |= ADAPTER_LED_ON;
6784		writeq(val64, &bar0->adapter_control);
6785		s2io_link(nic, LINK_UP);
6786	} else {
6787		if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6788						      subid)) {
6789			val64 = readq(&bar0->gpio_control);
6790			val64 &= ~GPIO_CTRL_GPIO_0;
6791			writeq(val64, &bar0->gpio_control);
6792			val64 = readq(&bar0->gpio_control);
6793		}
6794		/* turn off LED */
6795		val64 = readq(&bar0->adapter_control);
6796		val64 = val64 & (~ADAPTER_LED_ON);
6797		writeq(val64, &bar0->adapter_control);
6798		s2io_link(nic, LINK_DOWN);
6799	}
6800	clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6801
6802out_unlock:
6803	rtnl_unlock();
6804}
6805
6806static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6807				  struct buffAdd *ba,
6808				  struct sk_buff **skb, u64 *temp0, u64 *temp1,
6809				  u64 *temp2, int size)
6810{
6811	struct net_device *dev = sp->dev;
6812	struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6813
6814	if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6815		struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6816		/* allocate skb */
6817		if (*skb) {
6818			DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6819			/*
6820			 * As Rx frame are not going to be processed,
6821			 * using same mapped address for the Rxd
6822			 * buffer pointer
6823			 */
6824			rxdp1->Buffer0_ptr = *temp0;
6825		} else {
6826			*skb = dev_alloc_skb(size);
6827			if (!(*skb)) {
6828				DBG_PRINT(INFO_DBG,
6829					  "%s: Out of memory to allocate %s\n",
6830					  dev->name, "1 buf mode SKBs");
6831				stats->mem_alloc_fail_cnt++;
6832				return -ENOMEM ;
6833			}
6834			stats->mem_allocated += (*skb)->truesize;
6835			/* storing the mapped addr in a temp variable
6836			 * such it will be used for next rxd whose
6837			 * Host Control is NULL
6838			 */
6839			rxdp1->Buffer0_ptr = *temp0 =
6840				pci_map_single(sp->pdev, (*skb)->data,
6841					       size - NET_IP_ALIGN,
6842					       PCI_DMA_FROMDEVICE);
6843			if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6844				goto memalloc_failed;
6845			rxdp->Host_Control = (unsigned long) (*skb);
6846		}
6847	} else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6848		struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6849		/* Two buffer Mode */
6850		if (*skb) {
6851			rxdp3->Buffer2_ptr = *temp2;
6852			rxdp3->Buffer0_ptr = *temp0;
6853			rxdp3->Buffer1_ptr = *temp1;
6854		} else {
6855			*skb = dev_alloc_skb(size);
6856			if (!(*skb)) {
6857				DBG_PRINT(INFO_DBG,
6858					  "%s: Out of memory to allocate %s\n",
6859					  dev->name,
6860					  "2 buf mode SKBs");
6861				stats->mem_alloc_fail_cnt++;
6862				return -ENOMEM;
6863			}
6864			stats->mem_allocated += (*skb)->truesize;
6865			rxdp3->Buffer2_ptr = *temp2 =
6866				pci_map_single(sp->pdev, (*skb)->data,
6867					       dev->mtu + 4,
6868					       PCI_DMA_FROMDEVICE);
6869			if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6870				goto memalloc_failed;
6871			rxdp3->Buffer0_ptr = *temp0 =
6872				pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
6873					       PCI_DMA_FROMDEVICE);
6874			if (pci_dma_mapping_error(sp->pdev,
6875						  rxdp3->Buffer0_ptr)) {
6876				pci_unmap_single(sp->pdev,
6877						 (dma_addr_t)rxdp3->Buffer2_ptr,
6878						 dev->mtu + 4,
6879						 PCI_DMA_FROMDEVICE);
6880				goto memalloc_failed;
6881			}
6882			rxdp->Host_Control = (unsigned long) (*skb);
6883
6884			/* Buffer-1 will be dummy buffer not used */
6885			rxdp3->Buffer1_ptr = *temp1 =
6886				pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6887					       PCI_DMA_FROMDEVICE);
6888			if (pci_dma_mapping_error(sp->pdev,
6889						  rxdp3->Buffer1_ptr)) {
6890				pci_unmap_single(sp->pdev,
6891						 (dma_addr_t)rxdp3->Buffer0_ptr,
6892						 BUF0_LEN, PCI_DMA_FROMDEVICE);
6893				pci_unmap_single(sp->pdev,
6894						 (dma_addr_t)rxdp3->Buffer2_ptr,
6895						 dev->mtu + 4,
6896						 PCI_DMA_FROMDEVICE);
6897				goto memalloc_failed;
6898			}
6899		}
6900	}
6901	return 0;
6902
6903memalloc_failed:
6904	stats->pci_map_fail_cnt++;
6905	stats->mem_freed += (*skb)->truesize;
6906	dev_kfree_skb(*skb);
6907	return -ENOMEM;
6908}
6909
6910static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6911				int size)
6912{
6913	struct net_device *dev = sp->dev;
6914	if (sp->rxd_mode == RXD_MODE_1) {
6915		rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
6916	} else if (sp->rxd_mode == RXD_MODE_3B) {
6917		rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6918		rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6919		rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
6920	}
6921}
6922
6923static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6924{
6925	int i, j, k, blk_cnt = 0, size;
6926	struct config_param *config = &sp->config;
6927	struct mac_info *mac_control = &sp->mac_control;
6928	struct net_device *dev = sp->dev;
6929	struct RxD_t *rxdp = NULL;
6930	struct sk_buff *skb = NULL;
6931	struct buffAdd *ba = NULL;
6932	u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6933
6934	/* Calculate the size based on ring mode */
6935	size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6936		HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6937	if (sp->rxd_mode == RXD_MODE_1)
6938		size += NET_IP_ALIGN;
6939	else if (sp->rxd_mode == RXD_MODE_3B)
6940		size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6941
6942	for (i = 0; i < config->rx_ring_num; i++) {
6943		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
6944		struct ring_info *ring = &mac_control->rings[i];
6945
6946		blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
6947
6948		for (j = 0; j < blk_cnt; j++) {
6949			for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6950				rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
6951				if (sp->rxd_mode == RXD_MODE_3B)
6952					ba = &ring->ba[j][k];
6953				if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
6954							   (u64 *)&temp0_64,
6955							   (u64 *)&temp1_64,
6956							   (u64 *)&temp2_64,
6957							   size) == -ENOMEM) {
6958					return 0;
6959				}
6960
6961				set_rxd_buffer_size(sp, rxdp, size);
6962				wmb();
6963				/* flip the Ownership bit to Hardware */
6964				rxdp->Control_1 |= RXD_OWN_XENA;
6965			}
6966		}
6967	}
6968	return 0;
6969
6970}
6971
6972static int s2io_add_isr(struct s2io_nic *sp)
6973{
6974	int ret = 0;
6975	struct net_device *dev = sp->dev;
6976	int err = 0;
6977
6978	if (sp->config.intr_type == MSI_X)
6979		ret = s2io_enable_msi_x(sp);
6980	if (ret) {
6981		DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6982		sp->config.intr_type = INTA;
6983	}
6984
6985	/*
6986	 * Store the values of the MSIX table in
6987	 * the struct s2io_nic structure
6988	 */
6989	store_xmsi_data(sp);
6990
6991	/* After proper initialization of H/W, register ISR */
6992	if (sp->config.intr_type == MSI_X) {
6993		int i, msix_rx_cnt = 0;
6994
6995		for (i = 0; i < sp->num_entries; i++) {
6996			if (sp->s2io_entries[i].in_use == MSIX_FLG) {
6997				if (sp->s2io_entries[i].type ==
6998				    MSIX_RING_TYPE) {
6999					sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7000						dev->name, i);
7001					err = request_irq(sp->entries[i].vector,
7002							  s2io_msix_ring_handle,
7003							  0,
7004							  sp->desc[i],
7005							  sp->s2io_entries[i].arg);
7006				} else if (sp->s2io_entries[i].type ==
7007					   MSIX_ALARM_TYPE) {
7008					sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7009						dev->name, i);
7010					err = request_irq(sp->entries[i].vector,
7011							  s2io_msix_fifo_handle,
7012							  0,
7013							  sp->desc[i],
7014							  sp->s2io_entries[i].arg);
7015
7016				}
7017				/* if either data or addr is zero print it. */
7018				if (!(sp->msix_info[i].addr &&
7019				      sp->msix_info[i].data)) {
7020					DBG_PRINT(ERR_DBG,
7021						  "%s @Addr:0x%llx Data:0x%llx\n",
7022						  sp->desc[i],
7023						  (unsigned long long)
7024						  sp->msix_info[i].addr,
7025						  (unsigned long long)
7026						  ntohl(sp->msix_info[i].data));
7027				} else
7028					msix_rx_cnt++;
7029				if (err) {
7030					remove_msix_isr(sp);
7031
7032					DBG_PRINT(ERR_DBG,
7033						  "%s:MSI-X-%d registration "
7034						  "failed\n", dev->name, i);
7035
7036					DBG_PRINT(ERR_DBG,
7037						  "%s: Defaulting to INTA\n",
7038						  dev->name);
7039					sp->config.intr_type = INTA;
7040					break;
7041				}
7042				sp->s2io_entries[i].in_use =
7043					MSIX_REGISTERED_SUCCESS;
7044			}
7045		}
7046		if (!err) {
7047			pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
7048			DBG_PRINT(INFO_DBG,
7049				  "MSI-X-TX entries enabled through alarm vector\n");
7050		}
7051	}
7052	if (sp->config.intr_type == INTA) {
7053		err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
7054				  sp->name, dev);
7055		if (err) {
7056			DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7057				  dev->name);
7058			return -1;
7059		}
7060	}
7061	return 0;
7062}
7063
7064static void s2io_rem_isr(struct s2io_nic *sp)
7065{
7066	if (sp->config.intr_type == MSI_X)
7067		remove_msix_isr(sp);
7068	else
7069		remove_inta_isr(sp);
7070}
7071
7072static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
7073{
7074	int cnt = 0;
7075	struct XENA_dev_config __iomem *bar0 = sp->bar0;
7076	register u64 val64 = 0;
7077	struct config_param *config;
7078	config = &sp->config;
7079
7080	if (!is_s2io_card_up(sp))
7081		return;
7082
7083	del_timer_sync(&sp->alarm_timer);
7084	/* If s2io_set_link task is executing, wait till it completes. */
7085	while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
7086		msleep(50);
7087	clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7088
7089	/* Disable napi */
7090	if (sp->config.napi) {
7091		int off = 0;
7092		if (config->intr_type ==  MSI_X) {
7093			for (; off < sp->config.rx_ring_num; off++)
7094				napi_disable(&sp->mac_control.rings[off].napi);
7095		}
7096		else
7097			napi_disable(&sp->napi);
7098	}
7099
7100	/* disable Tx and Rx traffic on the NIC */
7101	if (do_io)
7102		stop_nic(sp);
7103
7104	s2io_rem_isr(sp);
7105
7106	/* stop the tx queue, indicate link down */
7107	s2io_link(sp, LINK_DOWN);
7108
7109	/* Check if the device is Quiescent and then Reset the NIC */
7110	while (do_io) {
7111		/* As per the HW requirement we need to replenish the
7112		 * receive buffer to avoid the ring bump. Since there is
7113		 * no intention of processing the Rx frame at this pointwe are
7114		 * just setting the ownership bit of rxd in Each Rx
7115		 * ring to HW and set the appropriate buffer size
7116		 * based on the ring mode
7117		 */
7118		rxd_owner_bit_reset(sp);
7119
7120		val64 = readq(&bar0->adapter_status);
7121		if (verify_xena_quiescence(sp)) {
7122			if (verify_pcc_quiescent(sp, sp->device_enabled_once))
7123				break;
7124		}
7125
7126		msleep(50);
7127		cnt++;
7128		if (cnt == 10) {
7129			DBG_PRINT(ERR_DBG, "Device not Quiescent - "
7130				  "adapter status reads 0x%llx\n",
7131				  (unsigned long long)val64);
7132			break;
7133		}
7134	}
7135	if (do_io)
7136		s2io_reset(sp);
7137
7138	/* Free all Tx buffers */
7139	free_tx_buffers(sp);
7140
7141	/* Free all Rx buffers */
7142	free_rx_buffers(sp);
7143
7144	clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7145}
7146
7147static void s2io_card_down(struct s2io_nic *sp)
7148{
7149	do_s2io_card_down(sp, 1);
7150}
7151
7152static int s2io_card_up(struct s2io_nic *sp)
7153{
7154	int i, ret = 0;
7155	struct config_param *config;
7156	struct mac_info *mac_control;
7157	struct net_device *dev = (struct net_device *)sp->dev;
7158	u16 interruptible;
7159
7160	/* Initialize the H/W I/O registers */
7161	ret = init_nic(sp);
7162	if (ret != 0) {
7163		DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7164			  dev->name);
7165		if (ret != -EIO)
7166			s2io_reset(sp);
7167		return ret;
7168	}
7169
7170	/*
7171	 * Initializing the Rx buffers. For now we are considering only 1
7172	 * Rx ring and initializing buffers into 30 Rx blocks
7173	 */
7174	config = &sp->config;
7175	mac_control = &sp->mac_control;
7176
7177	for (i = 0; i < config->rx_ring_num; i++) {
7178		struct ring_info *ring = &mac_control->rings[i];
7179
7180		ring->mtu = dev->mtu;
7181		ring->lro = !!(dev->features & NETIF_F_LRO);
7182		ret = fill_rx_buffers(sp, ring, 1);
7183		if (ret) {
7184			DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7185				  dev->name);
7186			s2io_reset(sp);
7187			free_rx_buffers(sp);
7188			return -ENOMEM;
7189		}
7190		DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7191			  ring->rx_bufs_left);
7192	}
7193
7194	/* Initialise napi */
7195	if (config->napi) {
7196		if (config->intr_type ==  MSI_X) {
7197			for (i = 0; i < sp->config.rx_ring_num; i++)
7198				napi_enable(&sp->mac_control.rings[i].napi);
7199		} else {
7200			napi_enable(&sp->napi);
7201		}
7202	}
7203
7204	/* Maintain the state prior to the open */
7205	if (sp->promisc_flg)
7206		sp->promisc_flg = 0;
7207	if (sp->m_cast_flg) {
7208		sp->m_cast_flg = 0;
7209		sp->all_multi_pos = 0;
7210	}
7211
7212	/* Setting its receive mode */
7213	s2io_set_multicast(dev);
7214
7215	if (dev->features & NETIF_F_LRO) {
7216		/* Initialize max aggregatable pkts per session based on MTU */
7217		sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7218		/* Check if we can use (if specified) user provided value */
7219		if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7220			sp->lro_max_aggr_per_sess = lro_max_pkts;
7221	}
7222
7223	/* Enable Rx Traffic and interrupts on the NIC */
7224	if (start_nic(sp)) {
7225		DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7226		s2io_reset(sp);
7227		free_rx_buffers(sp);
7228		return -ENODEV;
7229	}
7230
7231	/* Add interrupt service routine */
7232	if (s2io_add_isr(sp) != 0) {
7233		if (sp->config.intr_type == MSI_X)
7234			s2io_rem_isr(sp);
7235		s2io_reset(sp);
7236		free_rx_buffers(sp);
7237		return -ENODEV;
7238	}
7239
7240	S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7241
7242	set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7243
7244	/*  Enable select interrupts */
7245	en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7246	if (sp->config.intr_type != INTA) {
7247		interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7248		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7249	} else {
7250		interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7251		interruptible |= TX_PIC_INTR;
7252		en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7253	}
7254
7255	return 0;
7256}
7257
7258/**
7259 * s2io_restart_nic - Resets the NIC.
7260 * @data : long pointer to the device private structure
7261 * Description:
7262 * This function is scheduled to be run by the s2io_tx_watchdog
7263 * function after 0.5 secs to reset the NIC. The idea is to reduce
7264 * the run time of the watch dog routine which is run holding a
7265 * spin lock.
7266 */
7267
7268static void s2io_restart_nic(struct work_struct *work)
7269{
7270	struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7271	struct net_device *dev = sp->dev;
7272
7273	rtnl_lock();
7274
7275	if (!netif_running(dev))
7276		goto out_unlock;
7277
7278	s2io_card_down(sp);
7279	if (s2io_card_up(sp)) {
7280		DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
7281	}
7282	s2io_wake_all_tx_queue(sp);
7283	DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
7284out_unlock:
7285	rtnl_unlock();
7286}
7287
7288/**
7289 *  s2io_tx_watchdog - Watchdog for transmit side.
7290 *  @dev : Pointer to net device structure
7291 *  Description:
7292 *  This function is triggered if the Tx Queue is stopped
7293 *  for a pre-defined amount of time when the Interface is still up.
7294 *  If the Interface is jammed in such a situation, the hardware is
7295 *  reset (by s2io_close) and restarted again (by s2io_open) to
7296 *  overcome any problem that might have been caused in the hardware.
7297 *  Return value:
7298 *  void
7299 */
7300
7301static void s2io_tx_watchdog(struct net_device *dev)
7302{
7303	struct s2io_nic *sp = netdev_priv(dev);
7304	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7305
7306	if (netif_carrier_ok(dev)) {
7307		swstats->watchdog_timer_cnt++;
7308		schedule_work(&sp->rst_timer_task);
7309		swstats->soft_reset_cnt++;
7310	}
7311}
7312
7313/**
7314 *   rx_osm_handler - To perform some OS related operations on SKB.
7315 *   @sp: private member of the device structure,pointer to s2io_nic structure.
7316 *   @skb : the socket buffer pointer.
7317 *   @len : length of the packet
7318 *   @cksum : FCS checksum of the frame.
7319 *   @ring_no : the ring from which this RxD was extracted.
7320 *   Description:
7321 *   This function is called by the Rx interrupt serivce routine to perform
7322 *   some OS related operations on the SKB before passing it to the upper
7323 *   layers. It mainly checks if the checksum is OK, if so adds it to the
7324 *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7325 *   to the upper layer. If the checksum is wrong, it increments the Rx
7326 *   packet error count, frees the SKB and returns error.
7327 *   Return value:
7328 *   SUCCESS on success and -1 on failure.
7329 */
7330static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7331{
7332	struct s2io_nic *sp = ring_data->nic;
7333	struct net_device *dev = (struct net_device *)ring_data->dev;
7334	struct sk_buff *skb = (struct sk_buff *)
7335		((unsigned long)rxdp->Host_Control);
7336	int ring_no = ring_data->ring_no;
7337	u16 l3_csum, l4_csum;
7338	unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7339	struct lro *uninitialized_var(lro);
7340	u8 err_mask;
7341	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7342
7343	skb->dev = dev;
7344
7345	if (err) {
7346		/* Check for parity error */
7347		if (err & 0x1)
7348			swstats->parity_err_cnt++;
7349
7350		err_mask = err >> 48;
7351		switch (err_mask) {
7352		case 1:
7353			swstats->rx_parity_err_cnt++;
7354			break;
7355
7356		case 2:
7357			swstats->rx_abort_cnt++;
7358			break;
7359
7360		case 3:
7361			swstats->rx_parity_abort_cnt++;
7362			break;
7363
7364		case 4:
7365			swstats->rx_rda_fail_cnt++;
7366			break;
7367
7368		case 5:
7369			swstats->rx_unkn_prot_cnt++;
7370			break;
7371
7372		case 6:
7373			swstats->rx_fcs_err_cnt++;
7374			break;
7375
7376		case 7:
7377			swstats->rx_buf_size_err_cnt++;
7378			break;
7379
7380		case 8:
7381			swstats->rx_rxd_corrupt_cnt++;
7382			break;
7383
7384		case 15:
7385			swstats->rx_unkn_err_cnt++;
7386			break;
7387		}
7388		/*
7389		 * Drop the packet if bad transfer code. Exception being
7390		 * 0x5, which could be due to unsupported IPv6 extension header.
7391		 * In this case, we let stack handle the packet.
7392		 * Note that in this case, since checksum will be incorrect,
7393		 * stack will validate the same.
7394		 */
7395		if (err_mask != 0x5) {
7396			DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7397				  dev->name, err_mask);
7398			dev->stats.rx_crc_errors++;
7399			swstats->mem_freed
7400				+= skb->truesize;
7401			dev_kfree_skb(skb);
7402			ring_data->rx_bufs_left -= 1;
7403			rxdp->Host_Control = 0;
7404			return 0;
7405		}
7406	}
7407
7408	rxdp->Host_Control = 0;
7409	if (sp->rxd_mode == RXD_MODE_1) {
7410		int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7411
7412		skb_put(skb, len);
7413	} else if (sp->rxd_mode == RXD_MODE_3B) {
7414		int get_block = ring_data->rx_curr_get_info.block_index;
7415		int get_off = ring_data->rx_curr_get_info.offset;
7416		int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7417		int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7418		unsigned char *buff = skb_push(skb, buf0_len);
7419
7420		struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7421		memcpy(buff, ba->ba_0, buf0_len);
7422		skb_put(skb, buf2_len);
7423	}
7424
7425	if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
7426	    ((!ring_data->lro) ||
7427	     (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7428	    (dev->features & NETIF_F_RXCSUM)) {
7429		l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7430		l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7431		if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7432			/*
7433			 * NIC verifies if the Checksum of the received
7434			 * frame is Ok or not and accordingly returns
7435			 * a flag in the RxD.
7436			 */
7437			skb->ip_summed = CHECKSUM_UNNECESSARY;
7438			if (ring_data->lro) {
7439				u32 tcp_len = 0;
7440				u8 *tcp;
7441				int ret = 0;
7442
7443				ret = s2io_club_tcp_session(ring_data,
7444							    skb->data, &tcp,
7445							    &tcp_len, &lro,
7446							    rxdp, sp);
7447				switch (ret) {
7448				case 3: /* Begin anew */
7449					lro->parent = skb;
7450					goto aggregate;
7451				case 1: /* Aggregate */
7452					lro_append_pkt(sp, lro, skb, tcp_len);
7453					goto aggregate;
7454				case 4: /* Flush session */
7455					lro_append_pkt(sp, lro, skb, tcp_len);
7456					queue_rx_frame(lro->parent,
7457						       lro->vlan_tag);
7458					clear_lro_session(lro);
7459					swstats->flush_max_pkts++;
7460					goto aggregate;
7461				case 2: /* Flush both */
7462					lro->parent->data_len = lro->frags_len;
7463					swstats->sending_both++;
7464					queue_rx_frame(lro->parent,
7465						       lro->vlan_tag);
7466					clear_lro_session(lro);
7467					goto send_up;
7468				case 0: /* sessions exceeded */
7469				case -1: /* non-TCP or not L2 aggregatable */
7470				case 5: /*
7471					 * First pkt in session not
7472					 * L3/L4 aggregatable
7473					 */
7474					break;
7475				default:
7476					DBG_PRINT(ERR_DBG,
7477						  "%s: Samadhana!!\n",
7478						  __func__);
7479					BUG();
7480				}
7481			}
7482		} else {
7483			/*
7484			 * Packet with erroneous checksum, let the
7485			 * upper layers deal with it.
7486			 */
7487			skb_checksum_none_assert(skb);
7488		}
7489	} else
7490		skb_checksum_none_assert(skb);
7491
7492	swstats->mem_freed += skb->truesize;
7493send_up:
7494	skb_record_rx_queue(skb, ring_no);
7495	queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7496aggregate:
7497	sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7498	return SUCCESS;
7499}
7500
7501/**
7502 *  s2io_link - stops/starts the Tx queue.
7503 *  @sp : private member of the device structure, which is a pointer to the
7504 *  s2io_nic structure.
7505 *  @link : inidicates whether link is UP/DOWN.
7506 *  Description:
7507 *  This function stops/starts the Tx queue depending on whether the link
7508 *  status of the NIC is is down or up. This is called by the Alarm
7509 *  interrupt handler whenever a link change interrupt comes up.
7510 *  Return value:
7511 *  void.
7512 */
7513
7514static void s2io_link(struct s2io_nic *sp, int link)
7515{
7516	struct net_device *dev = (struct net_device *)sp->dev;
7517	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
7518
7519	if (link != sp->last_link_state) {
7520		init_tti(sp, link);
7521		if (link == LINK_DOWN) {
7522			DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7523			s2io_stop_all_tx_queue(sp);
7524			netif_carrier_off(dev);
7525			if (swstats->link_up_cnt)
7526				swstats->link_up_time =
7527					jiffies - sp->start_time;
7528			swstats->link_down_cnt++;
7529		} else {
7530			DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7531			if (swstats->link_down_cnt)
7532				swstats->link_down_time =
7533					jiffies - sp->start_time;
7534			swstats->link_up_cnt++;
7535			netif_carrier_on(dev);
7536			s2io_wake_all_tx_queue(sp);
7537		}
7538	}
7539	sp->last_link_state = link;
7540	sp->start_time = jiffies;
7541}
7542
7543/**
7544 *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7545 *  @sp : private member of the device structure, which is a pointer to the
7546 *  s2io_nic structure.
7547 *  Description:
7548 *  This function initializes a few of the PCI and PCI-X configuration registers
7549 *  with recommended values.
7550 *  Return value:
7551 *  void
7552 */
7553
7554static void s2io_init_pci(struct s2io_nic *sp)
7555{
7556	u16 pci_cmd = 0, pcix_cmd = 0;
7557
7558	/* Enable Data Parity Error Recovery in PCI-X command register. */
7559	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7560			     &(pcix_cmd));
7561	pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7562			      (pcix_cmd | 1));
7563	pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7564			     &(pcix_cmd));
7565
7566	/* Set the PErr Response bit in PCI command register. */
7567	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7568	pci_write_config_word(sp->pdev, PCI_COMMAND,
7569			      (pci_cmd | PCI_COMMAND_PARITY));
7570	pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7571}
7572
7573static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7574			    u8 *dev_multiq)
7575{
7576	int i;
7577
7578	if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
7579		DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
7580			  "(%d) not supported\n", tx_fifo_num);
7581
7582		if (tx_fifo_num < 1)
7583			tx_fifo_num = 1;
7584		else
7585			tx_fifo_num = MAX_TX_FIFOS;
7586
7587		DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
7588	}
7589
7590	if (multiq)
7591		*dev_multiq = multiq;
7592
7593	if (tx_steering_type && (1 == tx_fifo_num)) {
7594		if (tx_steering_type != TX_DEFAULT_STEERING)
7595			DBG_PRINT(ERR_DBG,
7596				  "Tx steering is not supported with "
7597				  "one fifo. Disabling Tx steering.\n");
7598		tx_steering_type = NO_STEERING;
7599	}
7600
7601	if ((tx_steering_type < NO_STEERING) ||
7602	    (tx_steering_type > TX_DEFAULT_STEERING)) {
7603		DBG_PRINT(ERR_DBG,
7604			  "Requested transmit steering not supported\n");
7605		DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
7606		tx_steering_type = NO_STEERING;
7607	}
7608
7609	if (rx_ring_num > MAX_RX_RINGS) {
7610		DBG_PRINT(ERR_DBG,
7611			  "Requested number of rx rings not supported\n");
7612		DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
7613			  MAX_RX_RINGS);
7614		rx_ring_num = MAX_RX_RINGS;
7615	}
7616
7617	if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7618		DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
7619			  "Defaulting to INTA\n");
7620		*dev_intr_type = INTA;
7621	}
7622
7623	if ((*dev_intr_type == MSI_X) &&
7624	    ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7625	     (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7626		DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
7627			  "Defaulting to INTA\n");
7628		*dev_intr_type = INTA;
7629	}
7630
7631	if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7632		DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
7633		DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
7634		rx_ring_mode = 1;
7635	}
7636
7637	for (i = 0; i < MAX_RX_RINGS; i++)
7638		if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) {
7639			DBG_PRINT(ERR_DBG, "Requested rx ring size not "
7640				  "supported\nDefaulting to %d\n",
7641				  MAX_RX_BLOCKS_PER_RING);
7642			rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING;
7643		}
7644
7645	return SUCCESS;
7646}
7647
7648/**
7649 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7650 * or Traffic class respectively.
7651 * @nic: device private variable
7652 * Description: The function configures the receive steering to
7653 * desired receive ring.
7654 * Return Value:  SUCCESS on success and
7655 * '-1' on failure (endian settings incorrect).
7656 */
7657static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7658{
7659	struct XENA_dev_config __iomem *bar0 = nic->bar0;
7660	register u64 val64 = 0;
7661
7662	if (ds_codepoint > 63)
7663		return FAILURE;
7664
7665	val64 = RTS_DS_MEM_DATA(ring);
7666	writeq(val64, &bar0->rts_ds_mem_data);
7667
7668	val64 = RTS_DS_MEM_CTRL_WE |
7669		RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7670		RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7671
7672	writeq(val64, &bar0->rts_ds_mem_ctrl);
7673
7674	return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7675				     RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7676				     S2IO_BIT_RESET);
7677}
7678
7679static const struct net_device_ops s2io_netdev_ops = {
7680	.ndo_open	        = s2io_open,
7681	.ndo_stop	        = s2io_close,
7682	.ndo_get_stats	        = s2io_get_stats,
7683	.ndo_start_xmit    	= s2io_xmit,
7684	.ndo_validate_addr	= eth_validate_addr,
7685	.ndo_set_multicast_list = s2io_set_multicast,
7686	.ndo_do_ioctl	   	= s2io_ioctl,
7687	.ndo_set_mac_address    = s2io_set_mac_addr,
7688	.ndo_change_mtu	   	= s2io_change_mtu,
7689	.ndo_set_features	= s2io_set_features,
7690	.ndo_tx_timeout	   	= s2io_tx_watchdog,
7691#ifdef CONFIG_NET_POLL_CONTROLLER
7692	.ndo_poll_controller    = s2io_netpoll,
7693#endif
7694};
7695
7696/**
7697 *  s2io_init_nic - Initialization of the adapter .
7698 *  @pdev : structure containing the PCI related information of the device.
7699 *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7700 *  Description:
7701 *  The function initializes an adapter identified by the pci_dec structure.
7702 *  All OS related initialization including memory and device structure and
7703 *  initlaization of the device private variable is done. Also the swapper
7704 *  control register is initialized to enable read and write into the I/O
7705 *  registers of the device.
7706 *  Return value:
7707 *  returns 0 on success and negative on failure.
7708 */
7709
7710static int __devinit
7711s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7712{
7713	struct s2io_nic *sp;
7714	struct net_device *dev;
7715	int i, j, ret;
7716	int dma_flag = false;
7717	u32 mac_up, mac_down;
7718	u64 val64 = 0, tmp64 = 0;
7719	struct XENA_dev_config __iomem *bar0 = NULL;
7720	u16 subid;
7721	struct config_param *config;
7722	struct mac_info *mac_control;
7723	int mode;
7724	u8 dev_intr_type = intr_type;
7725	u8 dev_multiq = 0;
7726
7727	ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7728	if (ret)
7729		return ret;
7730
7731	ret = pci_enable_device(pdev);
7732	if (ret) {
7733		DBG_PRINT(ERR_DBG,
7734			  "%s: pci_enable_device failed\n", __func__);
7735		return ret;
7736	}
7737
7738	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
7739		DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
7740		dma_flag = true;
7741		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
7742			DBG_PRINT(ERR_DBG,
7743				  "Unable to obtain 64bit DMA "
7744				  "for consistent allocations\n");
7745			pci_disable_device(pdev);
7746			return -ENOMEM;
7747		}
7748	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
7749		DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
7750	} else {
7751		pci_disable_device(pdev);
7752		return -ENOMEM;
7753	}
7754	ret = pci_request_regions(pdev, s2io_driver_name);
7755	if (ret) {
7756		DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
7757			  __func__, ret);
7758		pci_disable_device(pdev);
7759		return -ENODEV;
7760	}
7761	if (dev_multiq)
7762		dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7763	else
7764		dev = alloc_etherdev(sizeof(struct s2io_nic));
7765	if (dev == NULL) {
7766		DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7767		pci_disable_device(pdev);
7768		pci_release_regions(pdev);
7769		return -ENODEV;
7770	}
7771
7772	pci_set_master(pdev);
7773	pci_set_drvdata(pdev, dev);
7774	SET_NETDEV_DEV(dev, &pdev->dev);
7775
7776	/*  Private member variable initialized to s2io NIC structure */
7777	sp = netdev_priv(dev);
7778	sp->dev = dev;
7779	sp->pdev = pdev;
7780	sp->high_dma_flag = dma_flag;
7781	sp->device_enabled_once = false;
7782	if (rx_ring_mode == 1)
7783		sp->rxd_mode = RXD_MODE_1;
7784	if (rx_ring_mode == 2)
7785		sp->rxd_mode = RXD_MODE_3B;
7786
7787	sp->config.intr_type = dev_intr_type;
7788
7789	if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7790	    (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7791		sp->device_type = XFRAME_II_DEVICE;
7792	else
7793		sp->device_type = XFRAME_I_DEVICE;
7794
7795
7796	/* Initialize some PCI/PCI-X fields of the NIC. */
7797	s2io_init_pci(sp);
7798
7799	/*
7800	 * Setting the device configuration parameters.
7801	 * Most of these parameters can be specified by the user during
7802	 * module insertion as they are module loadable parameters. If
7803	 * these parameters are not not specified during load time, they
7804	 * are initialized with default values.
7805	 */
7806	config = &sp->config;
7807	mac_control = &sp->mac_control;
7808
7809	config->napi = napi;
7810	config->tx_steering_type = tx_steering_type;
7811
7812	/* Tx side parameters. */
7813	if (config->tx_steering_type == TX_PRIORITY_STEERING)
7814		config->tx_fifo_num = MAX_TX_FIFOS;
7815	else
7816		config->tx_fifo_num = tx_fifo_num;
7817
7818	/* Initialize the fifos used for tx steering */
7819	if (config->tx_fifo_num < 5) {
7820		if (config->tx_fifo_num  == 1)
7821			sp->total_tcp_fifos = 1;
7822		else
7823			sp->total_tcp_fifos = config->tx_fifo_num - 1;
7824		sp->udp_fifo_idx = config->tx_fifo_num - 1;
7825		sp->total_udp_fifos = 1;
7826		sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7827	} else {
7828		sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7829				       FIFO_OTHER_MAX_NUM);
7830		sp->udp_fifo_idx = sp->total_tcp_fifos;
7831		sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7832		sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7833	}
7834
7835	config->multiq = dev_multiq;
7836	for (i = 0; i < config->tx_fifo_num; i++) {
7837		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7838
7839		tx_cfg->fifo_len = tx_fifo_len[i];
7840		tx_cfg->fifo_priority = i;
7841	}
7842
7843	/* mapping the QoS priority to the configured fifos */
7844	for (i = 0; i < MAX_TX_FIFOS; i++)
7845		config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7846
7847	/* map the hashing selector table to the configured fifos */
7848	for (i = 0; i < config->tx_fifo_num; i++)
7849		sp->fifo_selector[i] = fifo_selector[i];
7850
7851
7852	config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7853	for (i = 0; i < config->tx_fifo_num; i++) {
7854		struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
7855
7856		tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7857		if (tx_cfg->fifo_len < 65) {
7858			config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7859			break;
7860		}
7861	}
7862	/* + 2 because one Txd for skb->data and one Txd for UFO */
7863	config->max_txds = MAX_SKB_FRAGS + 2;
7864
7865	/* Rx side parameters. */
7866	config->rx_ring_num = rx_ring_num;
7867	for (i = 0; i < config->rx_ring_num; i++) {
7868		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7869		struct ring_info *ring = &mac_control->rings[i];
7870
7871		rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
7872		rx_cfg->ring_priority = i;
7873		ring->rx_bufs_left = 0;
7874		ring->rxd_mode = sp->rxd_mode;
7875		ring->rxd_count = rxd_count[sp->rxd_mode];
7876		ring->pdev = sp->pdev;
7877		ring->dev = sp->dev;
7878	}
7879
7880	for (i = 0; i < rx_ring_num; i++) {
7881		struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
7882
7883		rx_cfg->ring_org = RING_ORG_BUFF1;
7884		rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7885	}
7886
7887	/*  Setting Mac Control parameters */
7888	mac_control->rmac_pause_time = rmac_pause_time;
7889	mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7890	mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7891
7892
7893	/*  initialize the shared memory used by the NIC and the host */
7894	if (init_shared_mem(sp)) {
7895		DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
7896		ret = -ENOMEM;
7897		goto mem_alloc_failed;
7898	}
7899
7900	sp->bar0 = pci_ioremap_bar(pdev, 0);
7901	if (!sp->bar0) {
7902		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7903			  dev->name);
7904		ret = -ENOMEM;
7905		goto bar0_remap_failed;
7906	}
7907
7908	sp->bar1 = pci_ioremap_bar(pdev, 2);
7909	if (!sp->bar1) {
7910		DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7911			  dev->name);
7912		ret = -ENOMEM;
7913		goto bar1_remap_failed;
7914	}
7915
7916	dev->irq = pdev->irq;
7917	dev->base_addr = (unsigned long)sp->bar0;
7918
7919	/* Initializing the BAR1 address as the start of the FIFO pointer. */
7920	for (j = 0; j < MAX_TX_FIFOS; j++) {
7921		mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000);
7922	}
7923
7924	/*  Driver entry points */
7925	dev->netdev_ops = &s2io_netdev_ops;
7926	SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7927	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
7928		NETIF_F_TSO | NETIF_F_TSO6 |
7929		NETIF_F_RXCSUM | NETIF_F_LRO;
7930	dev->features |= dev->hw_features |
7931		NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7932	if (sp->device_type & XFRAME_II_DEVICE) {
7933		dev->hw_features |= NETIF_F_UFO;
7934		if (ufo)
7935			dev->features |= NETIF_F_UFO;
7936	}
7937	if (sp->high_dma_flag == true)
7938		dev->features |= NETIF_F_HIGHDMA;
7939	dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7940	INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7941	INIT_WORK(&sp->set_link_task, s2io_set_link);
7942
7943	pci_save_state(sp->pdev);
7944
7945	/* Setting swapper control on the NIC, for proper reset operation */
7946	if (s2io_set_swapper(sp)) {
7947		DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
7948			  dev->name);
7949		ret = -EAGAIN;
7950		goto set_swap_failed;
7951	}
7952
7953	/* Verify if the Herc works on the slot its placed into */
7954	if (sp->device_type & XFRAME_II_DEVICE) {
7955		mode = s2io_verify_pci_mode(sp);
7956		if (mode < 0) {
7957			DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
7958				  __func__);
7959			ret = -EBADSLT;
7960			goto set_swap_failed;
7961		}
7962	}
7963
7964	if (sp->config.intr_type == MSI_X) {
7965		sp->num_entries = config->rx_ring_num + 1;
7966		ret = s2io_enable_msi_x(sp);
7967
7968		if (!ret) {
7969			ret = s2io_test_msi(sp);
7970			/* rollback MSI-X, will re-enable during add_isr() */
7971			remove_msix_isr(sp);
7972		}
7973		if (ret) {
7974
7975			DBG_PRINT(ERR_DBG,
7976				  "MSI-X requested but failed to enable\n");
7977			sp->config.intr_type = INTA;
7978		}
7979	}
7980
7981	if (config->intr_type ==  MSI_X) {
7982		for (i = 0; i < config->rx_ring_num ; i++) {
7983			struct ring_info *ring = &mac_control->rings[i];
7984
7985			netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
7986		}
7987	} else {
7988		netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
7989	}
7990
7991	/* Not needed for Herc */
7992	if (sp->device_type & XFRAME_I_DEVICE) {
7993		/*
7994		 * Fix for all "FFs" MAC address problems observed on
7995		 * Alpha platforms
7996		 */
7997		fix_mac_address(sp);
7998		s2io_reset(sp);
7999	}
8000
8001	/*
8002	 * MAC address initialization.
8003	 * For now only one mac address will be read and used.
8004	 */
8005	bar0 = sp->bar0;
8006	val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8007		RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8008	writeq(val64, &bar0->rmac_addr_cmd_mem);
8009	wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8010			      RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
8011			      S2IO_BIT_RESET);
8012	tmp64 = readq(&bar0->rmac_addr_data0_mem);
8013	mac_down = (u32)tmp64;
8014	mac_up = (u32) (tmp64 >> 32);
8015
8016	sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8017	sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8018	sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8019	sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8020	sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8021	sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8022
8023	/*  Set the factory defined MAC address initially   */
8024	dev->addr_len = ETH_ALEN;
8025	memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8026	memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8027
8028	/* initialize number of multicast & unicast MAC entries variables */
8029	if (sp->device_type == XFRAME_I_DEVICE) {
8030		config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8031		config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8032		config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8033	} else if (sp->device_type == XFRAME_II_DEVICE) {
8034		config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8035		config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8036		config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8037	}
8038
8039	/* store mac addresses from CAM to s2io_nic structure */
8040	do_s2io_store_unicast_mc(sp);
8041
8042	/* Configure MSIX vector for number of rings configured plus one */
8043	if ((sp->device_type == XFRAME_II_DEVICE) &&
8044	    (config->intr_type == MSI_X))
8045		sp->num_entries = config->rx_ring_num + 1;
8046
8047	/* Store the values of the MSIX table in the s2io_nic structure */
8048	store_xmsi_data(sp);
8049	/* reset Nic and bring it to known state */
8050	s2io_reset(sp);
8051
8052	/*
8053	 * Initialize link state flags
8054	 * and the card state parameter
8055	 */
8056	sp->state = 0;
8057
8058	/* Initialize spinlocks */
8059	for (i = 0; i < sp->config.tx_fifo_num; i++) {
8060		struct fifo_info *fifo = &mac_control->fifos[i];
8061
8062		spin_lock_init(&fifo->tx_lock);
8063	}
8064
8065	/*
8066	 * SXE-002: Configure link and activity LED to init state
8067	 * on driver load.
8068	 */
8069	subid = sp->pdev->subsystem_device;
8070	if ((subid & 0xFF) >= 0x07) {
8071		val64 = readq(&bar0->gpio_control);
8072		val64 |= 0x0000800000000000ULL;
8073		writeq(val64, &bar0->gpio_control);
8074		val64 = 0x0411040400000000ULL;
8075		writeq(val64, (void __iomem *)bar0 + 0x2700);
8076		val64 = readq(&bar0->gpio_control);
8077	}
8078
8079	sp->rx_csum = 1;	/* Rx chksum verify enabled by default */
8080
8081	if (register_netdev(dev)) {
8082		DBG_PRINT(ERR_DBG, "Device registration failed\n");
8083		ret = -ENODEV;
8084		goto register_failed;
8085	}
8086	s2io_vpd_read(sp);
8087	DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n");
8088	DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
8089		  sp->product_name, pdev->revision);
8090	DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8091		  s2io_driver_version);
8092	DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
8093	DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
8094	if (sp->device_type & XFRAME_II_DEVICE) {
8095		mode = s2io_print_pci_mode(sp);
8096		if (mode < 0) {
8097			ret = -EBADSLT;
8098			unregister_netdev(dev);
8099			goto set_swap_failed;
8100		}
8101	}
8102	switch (sp->rxd_mode) {
8103	case RXD_MODE_1:
8104		DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8105			  dev->name);
8106		break;
8107	case RXD_MODE_3B:
8108		DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8109			  dev->name);
8110		break;
8111	}
8112
8113	switch (sp->config.napi) {
8114	case 0:
8115		DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8116		break;
8117	case 1:
8118		DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8119		break;
8120	}
8121
8122	DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8123		  sp->config.tx_fifo_num);
8124
8125	DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8126		  sp->config.rx_ring_num);
8127
8128	switch (sp->config.intr_type) {
8129	case INTA:
8130		DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8131		break;
8132	case MSI_X:
8133		DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8134		break;
8135	}
8136	if (sp->config.multiq) {
8137		for (i = 0; i < sp->config.tx_fifo_num; i++) {
8138			struct fifo_info *fifo = &mac_control->fifos[i];
8139
8140			fifo->multiq = config->multiq;
8141		}
8142		DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8143			  dev->name);
8144	} else
8145		DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8146			  dev->name);
8147
8148	switch (sp->config.tx_steering_type) {
8149	case NO_STEERING:
8150		DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
8151			  dev->name);
8152		break;
8153	case TX_PRIORITY_STEERING:
8154		DBG_PRINT(ERR_DBG,
8155			  "%s: Priority steering enabled for transmit\n",
8156			  dev->name);
8157		break;
8158	case TX_DEFAULT_STEERING:
8159		DBG_PRINT(ERR_DBG,
8160			  "%s: Default steering enabled for transmit\n",
8161			  dev->name);
8162	}
8163
8164	DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8165		  dev->name);
8166	if (ufo)
8167		DBG_PRINT(ERR_DBG,
8168			  "%s: UDP Fragmentation Offload(UFO) enabled\n",
8169			  dev->name);
8170	/* Initialize device name */
8171	sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8172
8173	if (vlan_tag_strip)
8174		sp->vlan_strip_flag = 1;
8175	else
8176		sp->vlan_strip_flag = 0;
8177
8178	/*
8179	 * Make Link state as off at this point, when the Link change
8180	 * interrupt comes the state will be automatically changed to
8181	 * the right state.
8182	 */
8183	netif_carrier_off(dev);
8184
8185	return 0;
8186
8187register_failed:
8188set_swap_failed:
8189	iounmap(sp->bar1);
8190bar1_remap_failed:
8191	iounmap(sp->bar0);
8192bar0_remap_failed:
8193mem_alloc_failed:
8194	free_shared_mem(sp);
8195	pci_disable_device(pdev);
8196	pci_release_regions(pdev);
8197	pci_set_drvdata(pdev, NULL);
8198	free_netdev(dev);
8199
8200	return ret;
8201}
8202
8203/**
8204 * s2io_rem_nic - Free the PCI device
8205 * @pdev: structure containing the PCI related information of the device.
8206 * Description: This function is called by the Pci subsystem to release a
8207 * PCI device and free up all resource held up by the device. This could
8208 * be in response to a Hot plug event or when the driver is to be removed
8209 * from memory.
8210 */
8211
8212static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8213{
8214	struct net_device *dev = pci_get_drvdata(pdev);
8215	struct s2io_nic *sp;
8216
8217	if (dev == NULL) {
8218		DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8219		return;
8220	}
8221
8222	sp = netdev_priv(dev);
8223
8224	cancel_work_sync(&sp->rst_timer_task);
8225	cancel_work_sync(&sp->set_link_task);
8226
8227	unregister_netdev(dev);
8228
8229	free_shared_mem(sp);
8230	iounmap(sp->bar0);
8231	iounmap(sp->bar1);
8232	pci_release_regions(pdev);
8233	pci_set_drvdata(pdev, NULL);
8234	free_netdev(dev);
8235	pci_disable_device(pdev);
8236}
8237
8238/**
8239 * s2io_starter - Entry point for the driver
8240 * Description: This function is the entry point for the driver. It verifies
8241 * the module loadable parameters and initializes PCI configuration space.
8242 */
8243
8244static int __init s2io_starter(void)
8245{
8246	return pci_register_driver(&s2io_driver);
8247}
8248
8249/**
8250 * s2io_closer - Cleanup routine for the driver
8251 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8252 */
8253
8254static __exit void s2io_closer(void)
8255{
8256	pci_unregister_driver(&s2io_driver);
8257	DBG_PRINT(INIT_DBG, "cleanup done\n");
8258}
8259
8260module_init(s2io_starter);
8261module_exit(s2io_closer);
8262
8263static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8264				struct tcphdr **tcp, struct RxD_t *rxdp,
8265				struct s2io_nic *sp)
8266{
8267	int ip_off;
8268	u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8269
8270	if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8271		DBG_PRINT(INIT_DBG,
8272			  "%s: Non-TCP frames not supported for LRO\n",
8273			  __func__);
8274		return -1;
8275	}
8276
8277	/* Checking for DIX type or DIX type with VLAN */
8278	if ((l2_type == 0) || (l2_type == 4)) {
8279		ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8280		/*
8281		 * If vlan stripping is disabled and the frame is VLAN tagged,
8282		 * shift the offset by the VLAN header size bytes.
8283		 */
8284		if ((!sp->vlan_strip_flag) &&
8285		    (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8286			ip_off += HEADER_VLAN_SIZE;
8287	} else {
8288		/* LLC, SNAP etc are considered non-mergeable */
8289		return -1;
8290	}
8291
8292	*ip = (struct iphdr *)((u8 *)buffer + ip_off);
8293	ip_len = (u8)((*ip)->ihl);
8294	ip_len <<= 2;
8295	*tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8296
8297	return 0;
8298}
8299
8300static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8301				  struct tcphdr *tcp)
8302{
8303	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8304	if ((lro->iph->saddr != ip->saddr) ||
8305	    (lro->iph->daddr != ip->daddr) ||
8306	    (lro->tcph->source != tcp->source) ||
8307	    (lro->tcph->dest != tcp->dest))
8308		return -1;
8309	return 0;
8310}
8311
8312static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8313{
8314	return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
8315}
8316
8317static void initiate_new_session(struct lro *lro, u8 *l2h,
8318				 struct iphdr *ip, struct tcphdr *tcp,
8319				 u32 tcp_pyld_len, u16 vlan_tag)
8320{
8321	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8322	lro->l2h = l2h;
8323	lro->iph = ip;
8324	lro->tcph = tcp;
8325	lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8326	lro->tcp_ack = tcp->ack_seq;
8327	lro->sg_num = 1;
8328	lro->total_len = ntohs(ip->tot_len);
8329	lro->frags_len = 0;
8330	lro->vlan_tag = vlan_tag;
8331	/*
8332	 * Check if we saw TCP timestamp.
8333	 * Other consistency checks have already been done.
8334	 */
8335	if (tcp->doff == 8) {
8336		__be32 *ptr;
8337		ptr = (__be32 *)(tcp+1);
8338		lro->saw_ts = 1;
8339		lro->cur_tsval = ntohl(*(ptr+1));
8340		lro->cur_tsecr = *(ptr+2);
8341	}
8342	lro->in_use = 1;
8343}
8344
8345static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8346{
8347	struct iphdr *ip = lro->iph;
8348	struct tcphdr *tcp = lro->tcph;
8349	__sum16 nchk;
8350	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8351
8352	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8353
8354	/* Update L3 header */
8355	ip->tot_len = htons(lro->total_len);
8356	ip->check = 0;
8357	nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8358	ip->check = nchk;
8359
8360	/* Update L4 header */
8361	tcp->ack_seq = lro->tcp_ack;
8362	tcp->window = lro->window;
8363
8364	/* Update tsecr field if this session has timestamps enabled */
8365	if (lro->saw_ts) {
8366		__be32 *ptr = (__be32 *)(tcp + 1);
8367		*(ptr+2) = lro->cur_tsecr;
8368	}
8369
8370	/* Update counters required for calculation of
8371	 * average no. of packets aggregated.
8372	 */
8373	swstats->sum_avg_pkts_aggregated += lro->sg_num;
8374	swstats->num_aggregations++;
8375}
8376
8377static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8378			     struct tcphdr *tcp, u32 l4_pyld)
8379{
8380	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8381	lro->total_len += l4_pyld;
8382	lro->frags_len += l4_pyld;
8383	lro->tcp_next_seq += l4_pyld;
8384	lro->sg_num++;
8385
8386	/* Update ack seq no. and window ad(from this pkt) in LRO object */
8387	lro->tcp_ack = tcp->ack_seq;
8388	lro->window = tcp->window;
8389
8390	if (lro->saw_ts) {
8391		__be32 *ptr;
8392		/* Update tsecr and tsval from this packet */
8393		ptr = (__be32 *)(tcp+1);
8394		lro->cur_tsval = ntohl(*(ptr+1));
8395		lro->cur_tsecr = *(ptr + 2);
8396	}
8397}
8398
8399static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8400				    struct tcphdr *tcp, u32 tcp_pyld_len)
8401{
8402	u8 *ptr;
8403
8404	DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
8405
8406	if (!tcp_pyld_len) {
8407		/* Runt frame or a pure ack */
8408		return -1;
8409	}
8410
8411	if (ip->ihl != 5) /* IP has options */
8412		return -1;
8413
8414	/* If we see CE codepoint in IP header, packet is not mergeable */
8415	if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8416		return -1;
8417
8418	/* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8419	if (tcp->urg || tcp->psh || tcp->rst ||
8420	    tcp->syn || tcp->fin ||
8421	    tcp->ece || tcp->cwr || !tcp->ack) {
8422		/*
8423		 * Currently recognize only the ack control word and
8424		 * any other control field being set would result in
8425		 * flushing the LRO session
8426		 */
8427		return -1;
8428	}
8429
8430	/*
8431	 * Allow only one TCP timestamp option. Don't aggregate if
8432	 * any other options are detected.
8433	 */
8434	if (tcp->doff != 5 && tcp->doff != 8)
8435		return -1;
8436
8437	if (tcp->doff == 8) {
8438		ptr = (u8 *)(tcp + 1);
8439		while (*ptr == TCPOPT_NOP)
8440			ptr++;
8441		if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8442			return -1;
8443
8444		/* Ensure timestamp value increases monotonically */
8445		if (l_lro)
8446			if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8447				return -1;
8448
8449		/* timestamp echo reply should be non-zero */
8450		if (*((__be32 *)(ptr+6)) == 0)
8451			return -1;
8452	}
8453
8454	return 0;
8455}
8456
8457static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
8458				 u8 **tcp, u32 *tcp_len, struct lro **lro,
8459				 struct RxD_t *rxdp, struct s2io_nic *sp)
8460{
8461	struct iphdr *ip;
8462	struct tcphdr *tcph;
8463	int ret = 0, i;
8464	u16 vlan_tag = 0;
8465	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8466
8467	ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8468				   rxdp, sp);
8469	if (ret)
8470		return ret;
8471
8472	DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
8473
8474	vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8475	tcph = (struct tcphdr *)*tcp;
8476	*tcp_len = get_l4_pyld_length(ip, tcph);
8477	for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8478		struct lro *l_lro = &ring_data->lro0_n[i];
8479		if (l_lro->in_use) {
8480			if (check_for_socket_match(l_lro, ip, tcph))
8481				continue;
8482			/* Sock pair matched */
8483			*lro = l_lro;
8484
8485			if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8486				DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
8487					  "expected 0x%x, actual 0x%x\n",
8488					  __func__,
8489					  (*lro)->tcp_next_seq,
8490					  ntohl(tcph->seq));
8491
8492				swstats->outof_sequence_pkts++;
8493				ret = 2;
8494				break;
8495			}
8496
8497			if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
8498						      *tcp_len))
8499				ret = 1; /* Aggregate */
8500			else
8501				ret = 2; /* Flush both */
8502			break;
8503		}
8504	}
8505
8506	if (ret == 0) {
8507		/* Before searching for available LRO objects,
8508		 * check if the pkt is L3/L4 aggregatable. If not
8509		 * don't create new LRO session. Just send this
8510		 * packet up.
8511		 */
8512		if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
8513			return 5;
8514
8515		for (i = 0; i < MAX_LRO_SESSIONS; i++) {
8516			struct lro *l_lro = &ring_data->lro0_n[i];
8517			if (!(l_lro->in_use)) {
8518				*lro = l_lro;
8519				ret = 3; /* Begin anew */
8520				break;
8521			}
8522		}
8523	}
8524
8525	if (ret == 0) { /* sessions exceeded */
8526		DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
8527			  __func__);
8528		*lro = NULL;
8529		return ret;
8530	}
8531
8532	switch (ret) {
8533	case 3:
8534		initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8535				     vlan_tag);
8536		break;
8537	case 2:
8538		update_L3L4_header(sp, *lro);
8539		break;
8540	case 1:
8541		aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8542		if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8543			update_L3L4_header(sp, *lro);
8544			ret = 4; /* Flush the LRO */
8545		}
8546		break;
8547	default:
8548		DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
8549		break;
8550	}
8551
8552	return ret;
8553}
8554
8555static void clear_lro_session(struct lro *lro)
8556{
8557	static u16 lro_struct_size = sizeof(struct lro);
8558
8559	memset(lro, 0, lro_struct_size);
8560}
8561
8562static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8563{
8564	struct net_device *dev = skb->dev;
8565	struct s2io_nic *sp = netdev_priv(dev);
8566
8567	skb->protocol = eth_type_trans(skb, dev);
8568	if (vlan_tag && sp->vlan_strip_flag)
8569		__vlan_hwaccel_put_tag(skb, vlan_tag);
8570	if (sp->config.napi)
8571		netif_receive_skb(skb);
8572	else
8573		netif_rx(skb);
8574}
8575
8576static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8577			   struct sk_buff *skb, u32 tcp_len)
8578{
8579	struct sk_buff *first = lro->parent;
8580	struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
8581
8582	first->len += tcp_len;
8583	first->data_len = lro->frags_len;
8584	skb_pull(skb, (skb->len - tcp_len));
8585	if (skb_shinfo(first)->frag_list)
8586		lro->last_frag->next = skb;
8587	else
8588		skb_shinfo(first)->frag_list = skb;
8589	first->truesize += skb->truesize;
8590	lro->last_frag = skb;
8591	swstats->clubbed_frms_cnt++;
8592}
8593
8594/**
8595 * s2io_io_error_detected - called when PCI error is detected
8596 * @pdev: Pointer to PCI device
8597 * @state: The current pci connection state
8598 *
8599 * This function is called after a PCI bus error affecting
8600 * this device has been detected.
8601 */
8602static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8603					       pci_channel_state_t state)
8604{
8605	struct net_device *netdev = pci_get_drvdata(pdev);
8606	struct s2io_nic *sp = netdev_priv(netdev);
8607
8608	netif_device_detach(netdev);
8609
8610	if (state == pci_channel_io_perm_failure)
8611		return PCI_ERS_RESULT_DISCONNECT;
8612
8613	if (netif_running(netdev)) {
8614		/* Bring down the card, while avoiding PCI I/O */
8615		do_s2io_card_down(sp, 0);
8616	}
8617	pci_disable_device(pdev);
8618
8619	return PCI_ERS_RESULT_NEED_RESET;
8620}
8621
8622/**
8623 * s2io_io_slot_reset - called after the pci bus has been reset.
8624 * @pdev: Pointer to PCI device
8625 *
8626 * Restart the card from scratch, as if from a cold-boot.
8627 * At this point, the card has exprienced a hard reset,
8628 * followed by fixups by BIOS, and has its config space
8629 * set up identically to what it was at cold boot.
8630 */
8631static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8632{
8633	struct net_device *netdev = pci_get_drvdata(pdev);
8634	struct s2io_nic *sp = netdev_priv(netdev);
8635
8636	if (pci_enable_device(pdev)) {
8637		pr_err("Cannot re-enable PCI device after reset.\n");
8638		return PCI_ERS_RESULT_DISCONNECT;
8639	}
8640
8641	pci_set_master(pdev);
8642	s2io_reset(sp);
8643
8644	return PCI_ERS_RESULT_RECOVERED;
8645}
8646
8647/**
8648 * s2io_io_resume - called when traffic can start flowing again.
8649 * @pdev: Pointer to PCI device
8650 *
8651 * This callback is called when the error recovery driver tells
8652 * us that its OK to resume normal operation.
8653 */
8654static void s2io_io_resume(struct pci_dev *pdev)
8655{
8656	struct net_device *netdev = pci_get_drvdata(pdev);
8657	struct s2io_nic *sp = netdev_priv(netdev);
8658
8659	if (netif_running(netdev)) {
8660		if (s2io_card_up(sp)) {
8661			pr_err("Can't bring device back up after reset.\n");
8662			return;
8663		}
8664
8665		if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8666			s2io_card_down(sp);
8667			pr_err("Can't restore mac addr after reset.\n");
8668			return;
8669		}
8670	}
8671
8672	netif_device_attach(netdev);
8673	netif_tx_wake_all_queues(netdev);
8674}