Loading...
1/*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 * The entire API were re-written, and ported to use struct device
12 *
13 */
14
15#include <linux/ctype.h>
16#include <linux/slab.h>
17#include <linux/edac.h>
18#include <linux/bug.h>
19#include <linux/pm_runtime.h>
20#include <linux/uaccess.h>
21
22#include "edac_mc.h"
23#include "edac_module.h"
24
25/* MC EDAC Controls, setable by module parameter, and sysfs */
26static int edac_mc_log_ue = 1;
27static int edac_mc_log_ce = 1;
28static int edac_mc_panic_on_ue;
29static unsigned int edac_mc_poll_msec = 1000;
30
31/* Getter functions for above */
32int edac_mc_get_log_ue(void)
33{
34 return edac_mc_log_ue;
35}
36
37int edac_mc_get_log_ce(void)
38{
39 return edac_mc_log_ce;
40}
41
42int edac_mc_get_panic_on_ue(void)
43{
44 return edac_mc_panic_on_ue;
45}
46
47/* this is temporary */
48unsigned int edac_mc_get_poll_msec(void)
49{
50 return edac_mc_poll_msec;
51}
52
53static int edac_set_poll_msec(const char *val, const struct kernel_param *kp)
54{
55 unsigned int i;
56 int ret;
57
58 if (!val)
59 return -EINVAL;
60
61 ret = kstrtouint(val, 0, &i);
62 if (ret)
63 return ret;
64
65 if (i < 1000)
66 return -EINVAL;
67
68 *((unsigned int *)kp->arg) = i;
69
70 /* notify edac_mc engine to reset the poll period */
71 edac_mc_reset_delay_period(i);
72
73 return 0;
74}
75
76/* Parameter declarations for above */
77module_param(edac_mc_panic_on_ue, int, 0644);
78MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79module_param(edac_mc_log_ue, int, 0644);
80MODULE_PARM_DESC(edac_mc_log_ue,
81 "Log uncorrectable error to console: 0=off 1=on");
82module_param(edac_mc_log_ce, int, 0644);
83MODULE_PARM_DESC(edac_mc_log_ce,
84 "Log correctable error to console: 0=off 1=on");
85module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint,
86 &edac_mc_poll_msec, 0644);
87MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89static struct device *mci_pdev;
90
91/*
92 * various constants for Memory Controllers
93 */
94static const char * const dev_types[] = {
95 [DEV_UNKNOWN] = "Unknown",
96 [DEV_X1] = "x1",
97 [DEV_X2] = "x2",
98 [DEV_X4] = "x4",
99 [DEV_X8] = "x8",
100 [DEV_X16] = "x16",
101 [DEV_X32] = "x32",
102 [DEV_X64] = "x64"
103};
104
105static const char * const edac_caps[] = {
106 [EDAC_UNKNOWN] = "Unknown",
107 [EDAC_NONE] = "None",
108 [EDAC_RESERVED] = "Reserved",
109 [EDAC_PARITY] = "PARITY",
110 [EDAC_EC] = "EC",
111 [EDAC_SECDED] = "SECDED",
112 [EDAC_S2ECD2ED] = "S2ECD2ED",
113 [EDAC_S4ECD4ED] = "S4ECD4ED",
114 [EDAC_S8ECD8ED] = "S8ECD8ED",
115 [EDAC_S16ECD16ED] = "S16ECD16ED"
116};
117
118#ifdef CONFIG_EDAC_LEGACY_SYSFS
119/*
120 * EDAC sysfs CSROW data structures and methods
121 */
122
123#define to_csrow(k) container_of(k, struct csrow_info, dev)
124
125/*
126 * We need it to avoid namespace conflicts between the legacy API
127 * and the per-dimm/per-rank one
128 */
129#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
130 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
131
132struct dev_ch_attribute {
133 struct device_attribute attr;
134 unsigned int channel;
135};
136
137#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
138 static struct dev_ch_attribute dev_attr_legacy_##_name = \
139 { __ATTR(_name, _mode, _show, _store), (_var) }
140
141#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
142
143/* Set of more default csrow<id> attribute show/store functions */
144static ssize_t csrow_ue_count_show(struct device *dev,
145 struct device_attribute *mattr, char *data)
146{
147 struct csrow_info *csrow = to_csrow(dev);
148
149 return sprintf(data, "%u\n", csrow->ue_count);
150}
151
152static ssize_t csrow_ce_count_show(struct device *dev,
153 struct device_attribute *mattr, char *data)
154{
155 struct csrow_info *csrow = to_csrow(dev);
156
157 return sprintf(data, "%u\n", csrow->ce_count);
158}
159
160static ssize_t csrow_size_show(struct device *dev,
161 struct device_attribute *mattr, char *data)
162{
163 struct csrow_info *csrow = to_csrow(dev);
164 int i;
165 u32 nr_pages = 0;
166
167 for (i = 0; i < csrow->nr_channels; i++)
168 nr_pages += csrow->channels[i]->dimm->nr_pages;
169 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
170}
171
172static ssize_t csrow_mem_type_show(struct device *dev,
173 struct device_attribute *mattr, char *data)
174{
175 struct csrow_info *csrow = to_csrow(dev);
176
177 return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]);
178}
179
180static ssize_t csrow_dev_type_show(struct device *dev,
181 struct device_attribute *mattr, char *data)
182{
183 struct csrow_info *csrow = to_csrow(dev);
184
185 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
186}
187
188static ssize_t csrow_edac_mode_show(struct device *dev,
189 struct device_attribute *mattr,
190 char *data)
191{
192 struct csrow_info *csrow = to_csrow(dev);
193
194 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
195}
196
197/* show/store functions for DIMM Label attributes */
198static ssize_t channel_dimm_label_show(struct device *dev,
199 struct device_attribute *mattr,
200 char *data)
201{
202 struct csrow_info *csrow = to_csrow(dev);
203 unsigned int chan = to_channel(mattr);
204 struct rank_info *rank = csrow->channels[chan];
205
206 /* if field has not been initialized, there is nothing to send */
207 if (!rank->dimm->label[0])
208 return 0;
209
210 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
211 rank->dimm->label);
212}
213
214static ssize_t channel_dimm_label_store(struct device *dev,
215 struct device_attribute *mattr,
216 const char *data, size_t count)
217{
218 struct csrow_info *csrow = to_csrow(dev);
219 unsigned int chan = to_channel(mattr);
220 struct rank_info *rank = csrow->channels[chan];
221 size_t copy_count = count;
222
223 if (count == 0)
224 return -EINVAL;
225
226 if (data[count - 1] == '\0' || data[count - 1] == '\n')
227 copy_count -= 1;
228
229 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
230 return -EINVAL;
231
232 memcpy(rank->dimm->label, data, copy_count);
233 rank->dimm->label[copy_count] = '\0';
234
235 return count;
236}
237
238/* show function for dynamic chX_ce_count attribute */
239static ssize_t channel_ce_count_show(struct device *dev,
240 struct device_attribute *mattr, char *data)
241{
242 struct csrow_info *csrow = to_csrow(dev);
243 unsigned int chan = to_channel(mattr);
244 struct rank_info *rank = csrow->channels[chan];
245
246 return sprintf(data, "%u\n", rank->ce_count);
247}
248
249/* cwrow<id>/attribute files */
250DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
251DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
252DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
253DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
254DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
255DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
256
257/* default attributes of the CSROW<id> object */
258static struct attribute *csrow_attrs[] = {
259 &dev_attr_legacy_dev_type.attr,
260 &dev_attr_legacy_mem_type.attr,
261 &dev_attr_legacy_edac_mode.attr,
262 &dev_attr_legacy_size_mb.attr,
263 &dev_attr_legacy_ue_count.attr,
264 &dev_attr_legacy_ce_count.attr,
265 NULL,
266};
267
268static const struct attribute_group csrow_attr_grp = {
269 .attrs = csrow_attrs,
270};
271
272static const struct attribute_group *csrow_attr_groups[] = {
273 &csrow_attr_grp,
274 NULL
275};
276
277static const struct device_type csrow_attr_type = {
278 .groups = csrow_attr_groups,
279};
280
281/*
282 * possible dynamic channel DIMM Label attribute files
283 *
284 */
285DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
286 channel_dimm_label_show, channel_dimm_label_store, 0);
287DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
288 channel_dimm_label_show, channel_dimm_label_store, 1);
289DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
290 channel_dimm_label_show, channel_dimm_label_store, 2);
291DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
292 channel_dimm_label_show, channel_dimm_label_store, 3);
293DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
294 channel_dimm_label_show, channel_dimm_label_store, 4);
295DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
296 channel_dimm_label_show, channel_dimm_label_store, 5);
297DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
298 channel_dimm_label_show, channel_dimm_label_store, 6);
299DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
300 channel_dimm_label_show, channel_dimm_label_store, 7);
301DEVICE_CHANNEL(ch8_dimm_label, S_IRUGO | S_IWUSR,
302 channel_dimm_label_show, channel_dimm_label_store, 8);
303DEVICE_CHANNEL(ch9_dimm_label, S_IRUGO | S_IWUSR,
304 channel_dimm_label_show, channel_dimm_label_store, 9);
305DEVICE_CHANNEL(ch10_dimm_label, S_IRUGO | S_IWUSR,
306 channel_dimm_label_show, channel_dimm_label_store, 10);
307DEVICE_CHANNEL(ch11_dimm_label, S_IRUGO | S_IWUSR,
308 channel_dimm_label_show, channel_dimm_label_store, 11);
309
310/* Total possible dynamic DIMM Label attribute file table */
311static struct attribute *dynamic_csrow_dimm_attr[] = {
312 &dev_attr_legacy_ch0_dimm_label.attr.attr,
313 &dev_attr_legacy_ch1_dimm_label.attr.attr,
314 &dev_attr_legacy_ch2_dimm_label.attr.attr,
315 &dev_attr_legacy_ch3_dimm_label.attr.attr,
316 &dev_attr_legacy_ch4_dimm_label.attr.attr,
317 &dev_attr_legacy_ch5_dimm_label.attr.attr,
318 &dev_attr_legacy_ch6_dimm_label.attr.attr,
319 &dev_attr_legacy_ch7_dimm_label.attr.attr,
320 &dev_attr_legacy_ch8_dimm_label.attr.attr,
321 &dev_attr_legacy_ch9_dimm_label.attr.attr,
322 &dev_attr_legacy_ch10_dimm_label.attr.attr,
323 &dev_attr_legacy_ch11_dimm_label.attr.attr,
324 NULL
325};
326
327/* possible dynamic channel ce_count attribute files */
328DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
329 channel_ce_count_show, NULL, 0);
330DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
331 channel_ce_count_show, NULL, 1);
332DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
333 channel_ce_count_show, NULL, 2);
334DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
335 channel_ce_count_show, NULL, 3);
336DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
337 channel_ce_count_show, NULL, 4);
338DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
339 channel_ce_count_show, NULL, 5);
340DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
341 channel_ce_count_show, NULL, 6);
342DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
343 channel_ce_count_show, NULL, 7);
344DEVICE_CHANNEL(ch8_ce_count, S_IRUGO,
345 channel_ce_count_show, NULL, 8);
346DEVICE_CHANNEL(ch9_ce_count, S_IRUGO,
347 channel_ce_count_show, NULL, 9);
348DEVICE_CHANNEL(ch10_ce_count, S_IRUGO,
349 channel_ce_count_show, NULL, 10);
350DEVICE_CHANNEL(ch11_ce_count, S_IRUGO,
351 channel_ce_count_show, NULL, 11);
352
353/* Total possible dynamic ce_count attribute file table */
354static struct attribute *dynamic_csrow_ce_count_attr[] = {
355 &dev_attr_legacy_ch0_ce_count.attr.attr,
356 &dev_attr_legacy_ch1_ce_count.attr.attr,
357 &dev_attr_legacy_ch2_ce_count.attr.attr,
358 &dev_attr_legacy_ch3_ce_count.attr.attr,
359 &dev_attr_legacy_ch4_ce_count.attr.attr,
360 &dev_attr_legacy_ch5_ce_count.attr.attr,
361 &dev_attr_legacy_ch6_ce_count.attr.attr,
362 &dev_attr_legacy_ch7_ce_count.attr.attr,
363 &dev_attr_legacy_ch8_ce_count.attr.attr,
364 &dev_attr_legacy_ch9_ce_count.attr.attr,
365 &dev_attr_legacy_ch10_ce_count.attr.attr,
366 &dev_attr_legacy_ch11_ce_count.attr.attr,
367 NULL
368};
369
370static umode_t csrow_dev_is_visible(struct kobject *kobj,
371 struct attribute *attr, int idx)
372{
373 struct device *dev = kobj_to_dev(kobj);
374 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
375
376 if (idx >= csrow->nr_channels)
377 return 0;
378
379 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
380 WARN_ONCE(1, "idx: %d\n", idx);
381 return 0;
382 }
383
384 /* Only expose populated DIMMs */
385 if (!csrow->channels[idx]->dimm->nr_pages)
386 return 0;
387
388 return attr->mode;
389}
390
391
392static const struct attribute_group csrow_dev_dimm_group = {
393 .attrs = dynamic_csrow_dimm_attr,
394 .is_visible = csrow_dev_is_visible,
395};
396
397static const struct attribute_group csrow_dev_ce_count_group = {
398 .attrs = dynamic_csrow_ce_count_attr,
399 .is_visible = csrow_dev_is_visible,
400};
401
402static const struct attribute_group *csrow_dev_groups[] = {
403 &csrow_dev_dimm_group,
404 &csrow_dev_ce_count_group,
405 NULL
406};
407
408static void csrow_release(struct device *dev)
409{
410 /*
411 * Nothing to do, just unregister sysfs here. The mci
412 * device owns the data and will also release it.
413 */
414}
415
416static inline int nr_pages_per_csrow(struct csrow_info *csrow)
417{
418 int chan, nr_pages = 0;
419
420 for (chan = 0; chan < csrow->nr_channels; chan++)
421 nr_pages += csrow->channels[chan]->dimm->nr_pages;
422
423 return nr_pages;
424}
425
426/* Create a CSROW object under specifed edac_mc_device */
427static int edac_create_csrow_object(struct mem_ctl_info *mci,
428 struct csrow_info *csrow, int index)
429{
430 int err;
431
432 csrow->dev.type = &csrow_attr_type;
433 csrow->dev.groups = csrow_dev_groups;
434 csrow->dev.release = csrow_release;
435 device_initialize(&csrow->dev);
436 csrow->dev.parent = &mci->dev;
437 csrow->mci = mci;
438 dev_set_name(&csrow->dev, "csrow%d", index);
439 dev_set_drvdata(&csrow->dev, csrow);
440
441 err = device_add(&csrow->dev);
442 if (err) {
443 edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev));
444 put_device(&csrow->dev);
445 return err;
446 }
447
448 edac_dbg(0, "device %s created\n", dev_name(&csrow->dev));
449
450 return 0;
451}
452
453/* Create a CSROW object under specifed edac_mc_device */
454static int edac_create_csrow_objects(struct mem_ctl_info *mci)
455{
456 int err, i;
457 struct csrow_info *csrow;
458
459 for (i = 0; i < mci->nr_csrows; i++) {
460 csrow = mci->csrows[i];
461 if (!nr_pages_per_csrow(csrow))
462 continue;
463 err = edac_create_csrow_object(mci, mci->csrows[i], i);
464 if (err < 0)
465 goto error;
466 }
467 return 0;
468
469error:
470 for (--i; i >= 0; i--) {
471 if (device_is_registered(&mci->csrows[i]->dev))
472 device_unregister(&mci->csrows[i]->dev);
473 }
474
475 return err;
476}
477
478static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
479{
480 int i;
481
482 for (i = 0; i < mci->nr_csrows; i++) {
483 if (device_is_registered(&mci->csrows[i]->dev))
484 device_unregister(&mci->csrows[i]->dev);
485 }
486}
487
488#endif
489
490/*
491 * Per-dimm (or per-rank) devices
492 */
493
494#define to_dimm(k) container_of(k, struct dimm_info, dev)
495
496/* show/store functions for DIMM Label attributes */
497static ssize_t dimmdev_location_show(struct device *dev,
498 struct device_attribute *mattr, char *data)
499{
500 struct dimm_info *dimm = to_dimm(dev);
501 ssize_t count;
502
503 count = edac_dimm_info_location(dimm, data, PAGE_SIZE);
504 count += scnprintf(data + count, PAGE_SIZE - count, "\n");
505
506 return count;
507}
508
509static ssize_t dimmdev_label_show(struct device *dev,
510 struct device_attribute *mattr, char *data)
511{
512 struct dimm_info *dimm = to_dimm(dev);
513
514 /* if field has not been initialized, there is nothing to send */
515 if (!dimm->label[0])
516 return 0;
517
518 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
519}
520
521static ssize_t dimmdev_label_store(struct device *dev,
522 struct device_attribute *mattr,
523 const char *data,
524 size_t count)
525{
526 struct dimm_info *dimm = to_dimm(dev);
527 size_t copy_count = count;
528
529 if (count == 0)
530 return -EINVAL;
531
532 if (data[count - 1] == '\0' || data[count - 1] == '\n')
533 copy_count -= 1;
534
535 if (copy_count == 0 || copy_count >= sizeof(dimm->label))
536 return -EINVAL;
537
538 memcpy(dimm->label, data, copy_count);
539 dimm->label[copy_count] = '\0';
540
541 return count;
542}
543
544static ssize_t dimmdev_size_show(struct device *dev,
545 struct device_attribute *mattr, char *data)
546{
547 struct dimm_info *dimm = to_dimm(dev);
548
549 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
550}
551
552static ssize_t dimmdev_mem_type_show(struct device *dev,
553 struct device_attribute *mattr, char *data)
554{
555 struct dimm_info *dimm = to_dimm(dev);
556
557 return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]);
558}
559
560static ssize_t dimmdev_dev_type_show(struct device *dev,
561 struct device_attribute *mattr, char *data)
562{
563 struct dimm_info *dimm = to_dimm(dev);
564
565 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
566}
567
568static ssize_t dimmdev_edac_mode_show(struct device *dev,
569 struct device_attribute *mattr,
570 char *data)
571{
572 struct dimm_info *dimm = to_dimm(dev);
573
574 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
575}
576
577static ssize_t dimmdev_ce_count_show(struct device *dev,
578 struct device_attribute *mattr,
579 char *data)
580{
581 struct dimm_info *dimm = to_dimm(dev);
582
583 return sprintf(data, "%u\n", dimm->ce_count);
584}
585
586static ssize_t dimmdev_ue_count_show(struct device *dev,
587 struct device_attribute *mattr,
588 char *data)
589{
590 struct dimm_info *dimm = to_dimm(dev);
591
592 return sprintf(data, "%u\n", dimm->ue_count);
593}
594
595/* dimm/rank attribute files */
596static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
597 dimmdev_label_show, dimmdev_label_store);
598static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
599static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
600static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
601static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
602static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
603static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
604static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
605
606/* attributes of the dimm<id>/rank<id> object */
607static struct attribute *dimm_attrs[] = {
608 &dev_attr_dimm_label.attr,
609 &dev_attr_dimm_location.attr,
610 &dev_attr_size.attr,
611 &dev_attr_dimm_mem_type.attr,
612 &dev_attr_dimm_dev_type.attr,
613 &dev_attr_dimm_edac_mode.attr,
614 &dev_attr_dimm_ce_count.attr,
615 &dev_attr_dimm_ue_count.attr,
616 NULL,
617};
618
619static const struct attribute_group dimm_attr_grp = {
620 .attrs = dimm_attrs,
621};
622
623static const struct attribute_group *dimm_attr_groups[] = {
624 &dimm_attr_grp,
625 NULL
626};
627
628static const struct device_type dimm_attr_type = {
629 .groups = dimm_attr_groups,
630};
631
632static void dimm_release(struct device *dev)
633{
634 /*
635 * Nothing to do, just unregister sysfs here. The mci
636 * device owns the data and will also release it.
637 */
638}
639
640/* Create a DIMM object under specifed memory controller device */
641static int edac_create_dimm_object(struct mem_ctl_info *mci,
642 struct dimm_info *dimm)
643{
644 int err;
645 dimm->mci = mci;
646
647 dimm->dev.type = &dimm_attr_type;
648 dimm->dev.release = dimm_release;
649 device_initialize(&dimm->dev);
650
651 dimm->dev.parent = &mci->dev;
652 if (mci->csbased)
653 dev_set_name(&dimm->dev, "rank%d", dimm->idx);
654 else
655 dev_set_name(&dimm->dev, "dimm%d", dimm->idx);
656 dev_set_drvdata(&dimm->dev, dimm);
657 pm_runtime_forbid(&mci->dev);
658
659 err = device_add(&dimm->dev);
660 if (err) {
661 edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev));
662 put_device(&dimm->dev);
663 return err;
664 }
665
666 if (IS_ENABLED(CONFIG_EDAC_DEBUG)) {
667 char location[80];
668
669 edac_dimm_info_location(dimm, location, sizeof(location));
670 edac_dbg(0, "device %s created at location %s\n",
671 dev_name(&dimm->dev), location);
672 }
673
674 return 0;
675}
676
677/*
678 * Memory controller device
679 */
680
681#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
682
683static ssize_t mci_reset_counters_store(struct device *dev,
684 struct device_attribute *mattr,
685 const char *data, size_t count)
686{
687 struct mem_ctl_info *mci = to_mci(dev);
688 struct dimm_info *dimm;
689 int row, chan;
690
691 mci->ue_mc = 0;
692 mci->ce_mc = 0;
693 mci->ue_noinfo_count = 0;
694 mci->ce_noinfo_count = 0;
695
696 for (row = 0; row < mci->nr_csrows; row++) {
697 struct csrow_info *ri = mci->csrows[row];
698
699 ri->ue_count = 0;
700 ri->ce_count = 0;
701
702 for (chan = 0; chan < ri->nr_channels; chan++)
703 ri->channels[chan]->ce_count = 0;
704 }
705
706 mci_for_each_dimm(mci, dimm) {
707 dimm->ue_count = 0;
708 dimm->ce_count = 0;
709 }
710
711 mci->start_time = jiffies;
712 return count;
713}
714
715/* Memory scrubbing interface:
716 *
717 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
718 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
719 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
720 *
721 * Negative value still means that an error has occurred while setting
722 * the scrub rate.
723 */
724static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
725 struct device_attribute *mattr,
726 const char *data, size_t count)
727{
728 struct mem_ctl_info *mci = to_mci(dev);
729 unsigned long bandwidth = 0;
730 int new_bw = 0;
731
732 if (kstrtoul(data, 10, &bandwidth) < 0)
733 return -EINVAL;
734
735 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
736 if (new_bw < 0) {
737 edac_printk(KERN_WARNING, EDAC_MC,
738 "Error setting scrub rate to: %lu\n", bandwidth);
739 return -EINVAL;
740 }
741
742 return count;
743}
744
745/*
746 * ->get_sdram_scrub_rate() return value semantics same as above.
747 */
748static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
749 struct device_attribute *mattr,
750 char *data)
751{
752 struct mem_ctl_info *mci = to_mci(dev);
753 int bandwidth = 0;
754
755 bandwidth = mci->get_sdram_scrub_rate(mci);
756 if (bandwidth < 0) {
757 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
758 return bandwidth;
759 }
760
761 return sprintf(data, "%d\n", bandwidth);
762}
763
764/* default attribute files for the MCI object */
765static ssize_t mci_ue_count_show(struct device *dev,
766 struct device_attribute *mattr,
767 char *data)
768{
769 struct mem_ctl_info *mci = to_mci(dev);
770
771 return sprintf(data, "%u\n", mci->ue_mc);
772}
773
774static ssize_t mci_ce_count_show(struct device *dev,
775 struct device_attribute *mattr,
776 char *data)
777{
778 struct mem_ctl_info *mci = to_mci(dev);
779
780 return sprintf(data, "%u\n", mci->ce_mc);
781}
782
783static ssize_t mci_ce_noinfo_show(struct device *dev,
784 struct device_attribute *mattr,
785 char *data)
786{
787 struct mem_ctl_info *mci = to_mci(dev);
788
789 return sprintf(data, "%u\n", mci->ce_noinfo_count);
790}
791
792static ssize_t mci_ue_noinfo_show(struct device *dev,
793 struct device_attribute *mattr,
794 char *data)
795{
796 struct mem_ctl_info *mci = to_mci(dev);
797
798 return sprintf(data, "%u\n", mci->ue_noinfo_count);
799}
800
801static ssize_t mci_seconds_show(struct device *dev,
802 struct device_attribute *mattr,
803 char *data)
804{
805 struct mem_ctl_info *mci = to_mci(dev);
806
807 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
808}
809
810static ssize_t mci_ctl_name_show(struct device *dev,
811 struct device_attribute *mattr,
812 char *data)
813{
814 struct mem_ctl_info *mci = to_mci(dev);
815
816 return sprintf(data, "%s\n", mci->ctl_name);
817}
818
819static ssize_t mci_size_mb_show(struct device *dev,
820 struct device_attribute *mattr,
821 char *data)
822{
823 struct mem_ctl_info *mci = to_mci(dev);
824 int total_pages = 0, csrow_idx, j;
825
826 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
827 struct csrow_info *csrow = mci->csrows[csrow_idx];
828
829 for (j = 0; j < csrow->nr_channels; j++) {
830 struct dimm_info *dimm = csrow->channels[j]->dimm;
831
832 total_pages += dimm->nr_pages;
833 }
834 }
835
836 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
837}
838
839static ssize_t mci_max_location_show(struct device *dev,
840 struct device_attribute *mattr,
841 char *data)
842{
843 struct mem_ctl_info *mci = to_mci(dev);
844 int len = PAGE_SIZE;
845 char *p = data;
846 int i, n;
847
848 for (i = 0; i < mci->n_layers; i++) {
849 n = scnprintf(p, len, "%s %d ",
850 edac_layer_name[mci->layers[i].type],
851 mci->layers[i].size - 1);
852 len -= n;
853 if (len <= 0)
854 goto out;
855
856 p += n;
857 }
858
859 p += scnprintf(p, len, "\n");
860out:
861 return p - data;
862}
863
864/* default Control file */
865static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
866
867/* default Attribute files */
868static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
869static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
870static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
871static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
872static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
873static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
874static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
875static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
876
877/* memory scrubber attribute file */
878static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
879 mci_sdram_scrub_rate_store); /* umode set later in is_visible */
880
881static struct attribute *mci_attrs[] = {
882 &dev_attr_reset_counters.attr,
883 &dev_attr_mc_name.attr,
884 &dev_attr_size_mb.attr,
885 &dev_attr_seconds_since_reset.attr,
886 &dev_attr_ue_noinfo_count.attr,
887 &dev_attr_ce_noinfo_count.attr,
888 &dev_attr_ue_count.attr,
889 &dev_attr_ce_count.attr,
890 &dev_attr_max_location.attr,
891 &dev_attr_sdram_scrub_rate.attr,
892 NULL
893};
894
895static umode_t mci_attr_is_visible(struct kobject *kobj,
896 struct attribute *attr, int idx)
897{
898 struct device *dev = kobj_to_dev(kobj);
899 struct mem_ctl_info *mci = to_mci(dev);
900 umode_t mode = 0;
901
902 if (attr != &dev_attr_sdram_scrub_rate.attr)
903 return attr->mode;
904 if (mci->get_sdram_scrub_rate)
905 mode |= S_IRUGO;
906 if (mci->set_sdram_scrub_rate)
907 mode |= S_IWUSR;
908 return mode;
909}
910
911static const struct attribute_group mci_attr_grp = {
912 .attrs = mci_attrs,
913 .is_visible = mci_attr_is_visible,
914};
915
916static const struct attribute_group *mci_attr_groups[] = {
917 &mci_attr_grp,
918 NULL
919};
920
921static const struct device_type mci_attr_type = {
922 .groups = mci_attr_groups,
923};
924
925/*
926 * Create a new Memory Controller kobject instance,
927 * mc<id> under the 'mc' directory
928 *
929 * Return:
930 * 0 Success
931 * !0 Failure
932 */
933int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
934 const struct attribute_group **groups)
935{
936 struct dimm_info *dimm;
937 int err;
938
939 /* get the /sys/devices/system/edac subsys reference */
940 mci->dev.type = &mci_attr_type;
941 mci->dev.parent = mci_pdev;
942 mci->dev.groups = groups;
943 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
944 dev_set_drvdata(&mci->dev, mci);
945 pm_runtime_forbid(&mci->dev);
946
947 err = device_add(&mci->dev);
948 if (err < 0) {
949 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
950 /* no put_device() here, free mci with _edac_mc_free() */
951 return err;
952 }
953
954 edac_dbg(0, "device %s created\n", dev_name(&mci->dev));
955
956 /*
957 * Create the dimm/rank devices
958 */
959 mci_for_each_dimm(mci, dimm) {
960 /* Only expose populated DIMMs */
961 if (!dimm->nr_pages)
962 continue;
963
964 err = edac_create_dimm_object(mci, dimm);
965 if (err)
966 goto fail;
967 }
968
969#ifdef CONFIG_EDAC_LEGACY_SYSFS
970 err = edac_create_csrow_objects(mci);
971 if (err < 0)
972 goto fail;
973#endif
974
975 edac_create_debugfs_nodes(mci);
976 return 0;
977
978fail:
979 edac_remove_sysfs_mci_device(mci);
980
981 return err;
982}
983
984/*
985 * remove a Memory Controller instance
986 */
987void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
988{
989 struct dimm_info *dimm;
990
991 if (!device_is_registered(&mci->dev))
992 return;
993
994 edac_dbg(0, "\n");
995
996#ifdef CONFIG_EDAC_DEBUG
997 edac_debugfs_remove_recursive(mci->debugfs);
998#endif
999#ifdef CONFIG_EDAC_LEGACY_SYSFS
1000 edac_delete_csrow_objects(mci);
1001#endif
1002
1003 mci_for_each_dimm(mci, dimm) {
1004 if (!device_is_registered(&dimm->dev))
1005 continue;
1006 edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev));
1007 device_unregister(&dimm->dev);
1008 }
1009
1010 /* only remove the device, but keep mci */
1011 device_del(&mci->dev);
1012}
1013
1014static void mc_attr_release(struct device *dev)
1015{
1016 /*
1017 * There's no container structure here, as this is just the mci
1018 * parent device, used to create the /sys/devices/mc sysfs node.
1019 * So, there are no attributes on it.
1020 */
1021 edac_dbg(1, "device %s released\n", dev_name(dev));
1022 kfree(dev);
1023}
1024
1025/*
1026 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1027 */
1028int __init edac_mc_sysfs_init(void)
1029{
1030 int err;
1031
1032 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1033 if (!mci_pdev)
1034 return -ENOMEM;
1035
1036 mci_pdev->bus = edac_get_sysfs_subsys();
1037 mci_pdev->release = mc_attr_release;
1038 mci_pdev->init_name = "mc";
1039
1040 err = device_register(mci_pdev);
1041 if (err < 0) {
1042 edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev));
1043 put_device(mci_pdev);
1044 return err;
1045 }
1046
1047 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1048
1049 return 0;
1050}
1051
1052void edac_mc_sysfs_exit(void)
1053{
1054 device_unregister(mci_pdev);
1055}
1/*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 */
11
12#include <linux/ctype.h>
13#include <linux/slab.h>
14#include <linux/edac.h>
15#include <linux/bug.h>
16
17#include "edac_core.h"
18#include "edac_module.h"
19
20
21/* MC EDAC Controls, setable by module parameter, and sysfs */
22static int edac_mc_log_ue = 1;
23static int edac_mc_log_ce = 1;
24static int edac_mc_panic_on_ue;
25static int edac_mc_poll_msec = 1000;
26
27/* Getter functions for above */
28int edac_mc_get_log_ue(void)
29{
30 return edac_mc_log_ue;
31}
32
33int edac_mc_get_log_ce(void)
34{
35 return edac_mc_log_ce;
36}
37
38int edac_mc_get_panic_on_ue(void)
39{
40 return edac_mc_panic_on_ue;
41}
42
43/* this is temporary */
44int edac_mc_get_poll_msec(void)
45{
46 return edac_mc_poll_msec;
47}
48
49static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
50{
51 long l;
52 int ret;
53
54 if (!val)
55 return -EINVAL;
56
57 ret = strict_strtol(val, 0, &l);
58 if (ret == -EINVAL || ((int)l != l))
59 return -EINVAL;
60 *((int *)kp->arg) = l;
61
62 /* notify edac_mc engine to reset the poll period */
63 edac_mc_reset_delay_period(l);
64
65 return 0;
66}
67
68/* Parameter declarations for above */
69module_param(edac_mc_panic_on_ue, int, 0644);
70MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
71module_param(edac_mc_log_ue, int, 0644);
72MODULE_PARM_DESC(edac_mc_log_ue,
73 "Log uncorrectable error to console: 0=off 1=on");
74module_param(edac_mc_log_ce, int, 0644);
75MODULE_PARM_DESC(edac_mc_log_ce,
76 "Log correctable error to console: 0=off 1=on");
77module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
78 &edac_mc_poll_msec, 0644);
79MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
80
81/*
82 * various constants for Memory Controllers
83 */
84static const char *mem_types[] = {
85 [MEM_EMPTY] = "Empty",
86 [MEM_RESERVED] = "Reserved",
87 [MEM_UNKNOWN] = "Unknown",
88 [MEM_FPM] = "FPM",
89 [MEM_EDO] = "EDO",
90 [MEM_BEDO] = "BEDO",
91 [MEM_SDR] = "Unbuffered-SDR",
92 [MEM_RDR] = "Registered-SDR",
93 [MEM_DDR] = "Unbuffered-DDR",
94 [MEM_RDDR] = "Registered-DDR",
95 [MEM_RMBS] = "RMBS",
96 [MEM_DDR2] = "Unbuffered-DDR2",
97 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
98 [MEM_RDDR2] = "Registered-DDR2",
99 [MEM_XDR] = "XDR",
100 [MEM_DDR3] = "Unbuffered-DDR3",
101 [MEM_RDDR3] = "Registered-DDR3"
102};
103
104static const char *dev_types[] = {
105 [DEV_UNKNOWN] = "Unknown",
106 [DEV_X1] = "x1",
107 [DEV_X2] = "x2",
108 [DEV_X4] = "x4",
109 [DEV_X8] = "x8",
110 [DEV_X16] = "x16",
111 [DEV_X32] = "x32",
112 [DEV_X64] = "x64"
113};
114
115static const char *edac_caps[] = {
116 [EDAC_UNKNOWN] = "Unknown",
117 [EDAC_NONE] = "None",
118 [EDAC_RESERVED] = "Reserved",
119 [EDAC_PARITY] = "PARITY",
120 [EDAC_EC] = "EC",
121 [EDAC_SECDED] = "SECDED",
122 [EDAC_S2ECD2ED] = "S2ECD2ED",
123 [EDAC_S4ECD4ED] = "S4ECD4ED",
124 [EDAC_S8ECD8ED] = "S8ECD8ED",
125 [EDAC_S16ECD16ED] = "S16ECD16ED"
126};
127
128/* EDAC sysfs CSROW data structures and methods
129 */
130
131/* Set of more default csrow<id> attribute show/store functions */
132static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data,
133 int private)
134{
135 return sprintf(data, "%u\n", csrow->ue_count);
136}
137
138static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data,
139 int private)
140{
141 return sprintf(data, "%u\n", csrow->ce_count);
142}
143
144static ssize_t csrow_size_show(struct csrow_info *csrow, char *data,
145 int private)
146{
147 return sprintf(data, "%u\n", PAGES_TO_MiB(csrow->nr_pages));
148}
149
150static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data,
151 int private)
152{
153 return sprintf(data, "%s\n", mem_types[csrow->mtype]);
154}
155
156static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data,
157 int private)
158{
159 return sprintf(data, "%s\n", dev_types[csrow->dtype]);
160}
161
162static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data,
163 int private)
164{
165 return sprintf(data, "%s\n", edac_caps[csrow->edac_mode]);
166}
167
168/* show/store functions for DIMM Label attributes */
169static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
170 char *data, int channel)
171{
172 /* if field has not been initialized, there is nothing to send */
173 if (!csrow->channels[channel].label[0])
174 return 0;
175
176 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
177 csrow->channels[channel].label);
178}
179
180static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
181 const char *data,
182 size_t count, int channel)
183{
184 ssize_t max_size = 0;
185
186 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
187 strncpy(csrow->channels[channel].label, data, max_size);
188 csrow->channels[channel].label[max_size] = '\0';
189
190 return max_size;
191}
192
193/* show function for dynamic chX_ce_count attribute */
194static ssize_t channel_ce_count_show(struct csrow_info *csrow,
195 char *data, int channel)
196{
197 return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
198}
199
200/* csrow specific attribute structure */
201struct csrowdev_attribute {
202 struct attribute attr;
203 ssize_t(*show) (struct csrow_info *, char *, int);
204 ssize_t(*store) (struct csrow_info *, const char *, size_t, int);
205 int private;
206};
207
208#define to_csrow(k) container_of(k, struct csrow_info, kobj)
209#define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
210
211/* Set of show/store higher level functions for default csrow attributes */
212static ssize_t csrowdev_show(struct kobject *kobj,
213 struct attribute *attr, char *buffer)
214{
215 struct csrow_info *csrow = to_csrow(kobj);
216 struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
217
218 if (csrowdev_attr->show)
219 return csrowdev_attr->show(csrow,
220 buffer, csrowdev_attr->private);
221 return -EIO;
222}
223
224static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
225 const char *buffer, size_t count)
226{
227 struct csrow_info *csrow = to_csrow(kobj);
228 struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
229
230 if (csrowdev_attr->store)
231 return csrowdev_attr->store(csrow,
232 buffer,
233 count, csrowdev_attr->private);
234 return -EIO;
235}
236
237static const struct sysfs_ops csrowfs_ops = {
238 .show = csrowdev_show,
239 .store = csrowdev_store
240};
241
242#define CSROWDEV_ATTR(_name,_mode,_show,_store,_private) \
243static struct csrowdev_attribute attr_##_name = { \
244 .attr = {.name = __stringify(_name), .mode = _mode }, \
245 .show = _show, \
246 .store = _store, \
247 .private = _private, \
248};
249
250/* default cwrow<id>/attribute files */
251CSROWDEV_ATTR(size_mb, S_IRUGO, csrow_size_show, NULL, 0);
252CSROWDEV_ATTR(dev_type, S_IRUGO, csrow_dev_type_show, NULL, 0);
253CSROWDEV_ATTR(mem_type, S_IRUGO, csrow_mem_type_show, NULL, 0);
254CSROWDEV_ATTR(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL, 0);
255CSROWDEV_ATTR(ue_count, S_IRUGO, csrow_ue_count_show, NULL, 0);
256CSROWDEV_ATTR(ce_count, S_IRUGO, csrow_ce_count_show, NULL, 0);
257
258/* default attributes of the CSROW<id> object */
259static struct csrowdev_attribute *default_csrow_attr[] = {
260 &attr_dev_type,
261 &attr_mem_type,
262 &attr_edac_mode,
263 &attr_size_mb,
264 &attr_ue_count,
265 &attr_ce_count,
266 NULL,
267};
268
269/* possible dynamic channel DIMM Label attribute files */
270CSROWDEV_ATTR(ch0_dimm_label, S_IRUGO | S_IWUSR,
271 channel_dimm_label_show, channel_dimm_label_store, 0);
272CSROWDEV_ATTR(ch1_dimm_label, S_IRUGO | S_IWUSR,
273 channel_dimm_label_show, channel_dimm_label_store, 1);
274CSROWDEV_ATTR(ch2_dimm_label, S_IRUGO | S_IWUSR,
275 channel_dimm_label_show, channel_dimm_label_store, 2);
276CSROWDEV_ATTR(ch3_dimm_label, S_IRUGO | S_IWUSR,
277 channel_dimm_label_show, channel_dimm_label_store, 3);
278CSROWDEV_ATTR(ch4_dimm_label, S_IRUGO | S_IWUSR,
279 channel_dimm_label_show, channel_dimm_label_store, 4);
280CSROWDEV_ATTR(ch5_dimm_label, S_IRUGO | S_IWUSR,
281 channel_dimm_label_show, channel_dimm_label_store, 5);
282
283/* Total possible dynamic DIMM Label attribute file table */
284static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
285 &attr_ch0_dimm_label,
286 &attr_ch1_dimm_label,
287 &attr_ch2_dimm_label,
288 &attr_ch3_dimm_label,
289 &attr_ch4_dimm_label,
290 &attr_ch5_dimm_label
291};
292
293/* possible dynamic channel ce_count attribute files */
294CSROWDEV_ATTR(ch0_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 0);
295CSROWDEV_ATTR(ch1_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 1);
296CSROWDEV_ATTR(ch2_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 2);
297CSROWDEV_ATTR(ch3_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 3);
298CSROWDEV_ATTR(ch4_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 4);
299CSROWDEV_ATTR(ch5_ce_count, S_IRUGO | S_IWUSR, channel_ce_count_show, NULL, 5);
300
301/* Total possible dynamic ce_count attribute file table */
302static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
303 &attr_ch0_ce_count,
304 &attr_ch1_ce_count,
305 &attr_ch2_ce_count,
306 &attr_ch3_ce_count,
307 &attr_ch4_ce_count,
308 &attr_ch5_ce_count
309};
310
311#define EDAC_NR_CHANNELS 6
312
313/* Create dynamic CHANNEL files, indexed by 'chan', under specifed CSROW */
314static int edac_create_channel_files(struct kobject *kobj, int chan)
315{
316 int err = -ENODEV;
317
318 if (chan >= EDAC_NR_CHANNELS)
319 return err;
320
321 /* create the DIMM label attribute file */
322 err = sysfs_create_file(kobj,
323 (struct attribute *)
324 dynamic_csrow_dimm_attr[chan]);
325
326 if (!err) {
327 /* create the CE Count attribute file */
328 err = sysfs_create_file(kobj,
329 (struct attribute *)
330 dynamic_csrow_ce_count_attr[chan]);
331 } else {
332 debugf1("%s() dimm labels and ce_count files created",
333 __func__);
334 }
335
336 return err;
337}
338
339/* No memory to release for this kobj */
340static void edac_csrow_instance_release(struct kobject *kobj)
341{
342 struct mem_ctl_info *mci;
343 struct csrow_info *cs;
344
345 debugf1("%s()\n", __func__);
346
347 cs = container_of(kobj, struct csrow_info, kobj);
348 mci = cs->mci;
349
350 kobject_put(&mci->edac_mci_kobj);
351}
352
353/* the kobj_type instance for a CSROW */
354static struct kobj_type ktype_csrow = {
355 .release = edac_csrow_instance_release,
356 .sysfs_ops = &csrowfs_ops,
357 .default_attrs = (struct attribute **)default_csrow_attr,
358};
359
360/* Create a CSROW object under specifed edac_mc_device */
361static int edac_create_csrow_object(struct mem_ctl_info *mci,
362 struct csrow_info *csrow, int index)
363{
364 struct kobject *kobj_mci = &mci->edac_mci_kobj;
365 struct kobject *kobj;
366 int chan;
367 int err;
368
369 /* generate ..../edac/mc/mc<id>/csrow<index> */
370 memset(&csrow->kobj, 0, sizeof(csrow->kobj));
371 csrow->mci = mci; /* include container up link */
372
373 /* bump the mci instance's kobject's ref count */
374 kobj = kobject_get(&mci->edac_mci_kobj);
375 if (!kobj) {
376 err = -ENODEV;
377 goto err_out;
378 }
379
380 /* Instanstiate the csrow object */
381 err = kobject_init_and_add(&csrow->kobj, &ktype_csrow, kobj_mci,
382 "csrow%d", index);
383 if (err)
384 goto err_release_top_kobj;
385
386 /* At this point, to release a csrow kobj, one must
387 * call the kobject_put and allow that tear down
388 * to work the releasing
389 */
390
391 /* Create the dyanmic attribute files on this csrow,
392 * namely, the DIMM labels and the channel ce_count
393 */
394 for (chan = 0; chan < csrow->nr_channels; chan++) {
395 err = edac_create_channel_files(&csrow->kobj, chan);
396 if (err) {
397 /* special case the unregister here */
398 kobject_put(&csrow->kobj);
399 goto err_out;
400 }
401 }
402 kobject_uevent(&csrow->kobj, KOBJ_ADD);
403 return 0;
404
405 /* error unwind stack */
406err_release_top_kobj:
407 kobject_put(&mci->edac_mci_kobj);
408
409err_out:
410 return err;
411}
412
413/* default sysfs methods and data structures for the main MCI kobject */
414
415static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
416 const char *data, size_t count)
417{
418 int row, chan;
419
420 mci->ue_noinfo_count = 0;
421 mci->ce_noinfo_count = 0;
422 mci->ue_count = 0;
423 mci->ce_count = 0;
424
425 for (row = 0; row < mci->nr_csrows; row++) {
426 struct csrow_info *ri = &mci->csrows[row];
427
428 ri->ue_count = 0;
429 ri->ce_count = 0;
430
431 for (chan = 0; chan < ri->nr_channels; chan++)
432 ri->channels[chan].ce_count = 0;
433 }
434
435 mci->start_time = jiffies;
436 return count;
437}
438
439/* Memory scrubbing interface:
440 *
441 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
442 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
443 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
444 *
445 * Negative value still means that an error has occurred while setting
446 * the scrub rate.
447 */
448static ssize_t mci_sdram_scrub_rate_store(struct mem_ctl_info *mci,
449 const char *data, size_t count)
450{
451 unsigned long bandwidth = 0;
452 int new_bw = 0;
453
454 if (!mci->set_sdram_scrub_rate)
455 return -EINVAL;
456
457 if (strict_strtoul(data, 10, &bandwidth) < 0)
458 return -EINVAL;
459
460 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
461 if (new_bw < 0) {
462 edac_printk(KERN_WARNING, EDAC_MC,
463 "Error setting scrub rate to: %lu\n", bandwidth);
464 return -EINVAL;
465 }
466
467 return count;
468}
469
470/*
471 * ->get_sdram_scrub_rate() return value semantics same as above.
472 */
473static ssize_t mci_sdram_scrub_rate_show(struct mem_ctl_info *mci, char *data)
474{
475 int bandwidth = 0;
476
477 if (!mci->get_sdram_scrub_rate)
478 return -EINVAL;
479
480 bandwidth = mci->get_sdram_scrub_rate(mci);
481 if (bandwidth < 0) {
482 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
483 return bandwidth;
484 }
485
486 return sprintf(data, "%d\n", bandwidth);
487}
488
489/* default attribute files for the MCI object */
490static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
491{
492 return sprintf(data, "%d\n", mci->ue_count);
493}
494
495static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
496{
497 return sprintf(data, "%d\n", mci->ce_count);
498}
499
500static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
501{
502 return sprintf(data, "%d\n", mci->ce_noinfo_count);
503}
504
505static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
506{
507 return sprintf(data, "%d\n", mci->ue_noinfo_count);
508}
509
510static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
511{
512 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
513}
514
515static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
516{
517 return sprintf(data, "%s\n", mci->ctl_name);
518}
519
520static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
521{
522 int total_pages, csrow_idx;
523
524 for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
525 csrow_idx++) {
526 struct csrow_info *csrow = &mci->csrows[csrow_idx];
527
528 if (!csrow->nr_pages)
529 continue;
530
531 total_pages += csrow->nr_pages;
532 }
533
534 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
535}
536
537#define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
538#define to_mcidev_attr(a) container_of(a,struct mcidev_sysfs_attribute,attr)
539
540/* MCI show/store functions for top most object */
541static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
542 char *buffer)
543{
544 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
545 struct mcidev_sysfs_attribute *mcidev_attr = to_mcidev_attr(attr);
546
547 debugf1("%s() mem_ctl_info %p\n", __func__, mem_ctl_info);
548
549 if (mcidev_attr->show)
550 return mcidev_attr->show(mem_ctl_info, buffer);
551
552 return -EIO;
553}
554
555static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
556 const char *buffer, size_t count)
557{
558 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
559 struct mcidev_sysfs_attribute *mcidev_attr = to_mcidev_attr(attr);
560
561 debugf1("%s() mem_ctl_info %p\n", __func__, mem_ctl_info);
562
563 if (mcidev_attr->store)
564 return mcidev_attr->store(mem_ctl_info, buffer, count);
565
566 return -EIO;
567}
568
569/* Intermediate show/store table */
570static const struct sysfs_ops mci_ops = {
571 .show = mcidev_show,
572 .store = mcidev_store
573};
574
575#define MCIDEV_ATTR(_name,_mode,_show,_store) \
576static struct mcidev_sysfs_attribute mci_attr_##_name = { \
577 .attr = {.name = __stringify(_name), .mode = _mode }, \
578 .show = _show, \
579 .store = _store, \
580};
581
582/* default Control file */
583MCIDEV_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
584
585/* default Attribute files */
586MCIDEV_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
587MCIDEV_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
588MCIDEV_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
589MCIDEV_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
590MCIDEV_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
591MCIDEV_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
592MCIDEV_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
593
594/* memory scrubber attribute file */
595MCIDEV_ATTR(sdram_scrub_rate, S_IRUGO | S_IWUSR, mci_sdram_scrub_rate_show,
596 mci_sdram_scrub_rate_store);
597
598static struct mcidev_sysfs_attribute *mci_attr[] = {
599 &mci_attr_reset_counters,
600 &mci_attr_mc_name,
601 &mci_attr_size_mb,
602 &mci_attr_seconds_since_reset,
603 &mci_attr_ue_noinfo_count,
604 &mci_attr_ce_noinfo_count,
605 &mci_attr_ue_count,
606 &mci_attr_ce_count,
607 &mci_attr_sdram_scrub_rate,
608 NULL
609};
610
611
612/*
613 * Release of a MC controlling instance
614 *
615 * each MC control instance has the following resources upon entry:
616 * a) a ref count on the top memctl kobj
617 * b) a ref count on this module
618 *
619 * this function must decrement those ref counts and then
620 * issue a free on the instance's memory
621 */
622static void edac_mci_control_release(struct kobject *kobj)
623{
624 struct mem_ctl_info *mci;
625
626 mci = to_mci(kobj);
627
628 debugf0("%s() mci instance idx=%d releasing\n", __func__, mci->mc_idx);
629
630 /* decrement the module ref count */
631 module_put(mci->owner);
632}
633
634static struct kobj_type ktype_mci = {
635 .release = edac_mci_control_release,
636 .sysfs_ops = &mci_ops,
637 .default_attrs = (struct attribute **)mci_attr,
638};
639
640/* EDAC memory controller sysfs kset:
641 * /sys/devices/system/edac/mc
642 */
643static struct kset *mc_kset;
644
645/*
646 * edac_mc_register_sysfs_main_kobj
647 *
648 * setups and registers the main kobject for each mci
649 */
650int edac_mc_register_sysfs_main_kobj(struct mem_ctl_info *mci)
651{
652 struct kobject *kobj_mci;
653 int err;
654
655 debugf1("%s()\n", __func__);
656
657 kobj_mci = &mci->edac_mci_kobj;
658
659 /* Init the mci's kobject */
660 memset(kobj_mci, 0, sizeof(*kobj_mci));
661
662 /* Record which module 'owns' this control structure
663 * and bump the ref count of the module
664 */
665 mci->owner = THIS_MODULE;
666
667 /* bump ref count on this module */
668 if (!try_module_get(mci->owner)) {
669 err = -ENODEV;
670 goto fail_out;
671 }
672
673 /* this instance become part of the mc_kset */
674 kobj_mci->kset = mc_kset;
675
676 /* register the mc<id> kobject to the mc_kset */
677 err = kobject_init_and_add(kobj_mci, &ktype_mci, NULL,
678 "mc%d", mci->mc_idx);
679 if (err) {
680 debugf1("%s()Failed to register '.../edac/mc%d'\n",
681 __func__, mci->mc_idx);
682 goto kobj_reg_fail;
683 }
684 kobject_uevent(kobj_mci, KOBJ_ADD);
685
686 /* At this point, to 'free' the control struct,
687 * edac_mc_unregister_sysfs_main_kobj() must be used
688 */
689
690 debugf1("%s() Registered '.../edac/mc%d' kobject\n",
691 __func__, mci->mc_idx);
692
693 return 0;
694
695 /* Error exit stack */
696
697kobj_reg_fail:
698 module_put(mci->owner);
699
700fail_out:
701 return err;
702}
703
704/*
705 * edac_mc_register_sysfs_main_kobj
706 *
707 * tears down and the main mci kobject from the mc_kset
708 */
709void edac_mc_unregister_sysfs_main_kobj(struct mem_ctl_info *mci)
710{
711 debugf1("%s()\n", __func__);
712
713 /* delete the kobj from the mc_kset */
714 kobject_put(&mci->edac_mci_kobj);
715}
716
717#define EDAC_DEVICE_SYMLINK "device"
718
719#define grp_to_mci(k) (container_of(k, struct mcidev_sysfs_group_kobj, kobj)->mci)
720
721/* MCI show/store functions for top most object */
722static ssize_t inst_grp_show(struct kobject *kobj, struct attribute *attr,
723 char *buffer)
724{
725 struct mem_ctl_info *mem_ctl_info = grp_to_mci(kobj);
726 struct mcidev_sysfs_attribute *mcidev_attr = to_mcidev_attr(attr);
727
728 debugf1("%s() mem_ctl_info %p\n", __func__, mem_ctl_info);
729
730 if (mcidev_attr->show)
731 return mcidev_attr->show(mem_ctl_info, buffer);
732
733 return -EIO;
734}
735
736static ssize_t inst_grp_store(struct kobject *kobj, struct attribute *attr,
737 const char *buffer, size_t count)
738{
739 struct mem_ctl_info *mem_ctl_info = grp_to_mci(kobj);
740 struct mcidev_sysfs_attribute *mcidev_attr = to_mcidev_attr(attr);
741
742 debugf1("%s() mem_ctl_info %p\n", __func__, mem_ctl_info);
743
744 if (mcidev_attr->store)
745 return mcidev_attr->store(mem_ctl_info, buffer, count);
746
747 return -EIO;
748}
749
750/* No memory to release for this kobj */
751static void edac_inst_grp_release(struct kobject *kobj)
752{
753 struct mcidev_sysfs_group_kobj *grp;
754 struct mem_ctl_info *mci;
755
756 debugf1("%s()\n", __func__);
757
758 grp = container_of(kobj, struct mcidev_sysfs_group_kobj, kobj);
759 mci = grp->mci;
760}
761
762/* Intermediate show/store table */
763static struct sysfs_ops inst_grp_ops = {
764 .show = inst_grp_show,
765 .store = inst_grp_store
766};
767
768/* the kobj_type instance for a instance group */
769static struct kobj_type ktype_inst_grp = {
770 .release = edac_inst_grp_release,
771 .sysfs_ops = &inst_grp_ops,
772};
773
774
775/*
776 * edac_create_mci_instance_attributes
777 * create MC driver specific attributes bellow an specified kobj
778 * This routine calls itself recursively, in order to create an entire
779 * object tree.
780 */
781static int edac_create_mci_instance_attributes(struct mem_ctl_info *mci,
782 const struct mcidev_sysfs_attribute *sysfs_attrib,
783 struct kobject *kobj)
784{
785 int err;
786
787 debugf4("%s()\n", __func__);
788
789 while (sysfs_attrib) {
790 debugf4("%s() sysfs_attrib = %p\n",__func__, sysfs_attrib);
791 if (sysfs_attrib->grp) {
792 struct mcidev_sysfs_group_kobj *grp_kobj;
793
794 grp_kobj = kzalloc(sizeof(*grp_kobj), GFP_KERNEL);
795 if (!grp_kobj)
796 return -ENOMEM;
797
798 grp_kobj->grp = sysfs_attrib->grp;
799 grp_kobj->mci = mci;
800 list_add_tail(&grp_kobj->list, &mci->grp_kobj_list);
801
802 debugf0("%s() grp %s, mci %p\n", __func__,
803 sysfs_attrib->grp->name, mci);
804
805 err = kobject_init_and_add(&grp_kobj->kobj,
806 &ktype_inst_grp,
807 &mci->edac_mci_kobj,
808 sysfs_attrib->grp->name);
809 if (err < 0) {
810 printk(KERN_ERR "kobject_init_and_add failed: %d\n", err);
811 return err;
812 }
813 err = edac_create_mci_instance_attributes(mci,
814 grp_kobj->grp->mcidev_attr,
815 &grp_kobj->kobj);
816
817 if (err < 0)
818 return err;
819 } else if (sysfs_attrib->attr.name) {
820 debugf4("%s() file %s\n", __func__,
821 sysfs_attrib->attr.name);
822
823 err = sysfs_create_file(kobj, &sysfs_attrib->attr);
824 if (err < 0) {
825 printk(KERN_ERR "sysfs_create_file failed: %d\n", err);
826 return err;
827 }
828 } else
829 break;
830
831 sysfs_attrib++;
832 }
833
834 return 0;
835}
836
837/*
838 * edac_remove_mci_instance_attributes
839 * remove MC driver specific attributes at the topmost level
840 * directory of this mci instance.
841 */
842static void edac_remove_mci_instance_attributes(struct mem_ctl_info *mci,
843 const struct mcidev_sysfs_attribute *sysfs_attrib,
844 struct kobject *kobj, int count)
845{
846 struct mcidev_sysfs_group_kobj *grp_kobj, *tmp;
847
848 debugf1("%s()\n", __func__);
849
850 /*
851 * loop if there are attributes and until we hit a NULL entry
852 * Remove first all the attributes
853 */
854 while (sysfs_attrib) {
855 debugf4("%s() sysfs_attrib = %p\n",__func__, sysfs_attrib);
856 if (sysfs_attrib->grp) {
857 debugf4("%s() seeking for group %s\n",
858 __func__, sysfs_attrib->grp->name);
859 list_for_each_entry(grp_kobj,
860 &mci->grp_kobj_list, list) {
861 debugf4("%s() grp_kobj->grp = %p\n",__func__, grp_kobj->grp);
862 if (grp_kobj->grp == sysfs_attrib->grp) {
863 edac_remove_mci_instance_attributes(mci,
864 grp_kobj->grp->mcidev_attr,
865 &grp_kobj->kobj, count + 1);
866 debugf4("%s() group %s\n", __func__,
867 sysfs_attrib->grp->name);
868 kobject_put(&grp_kobj->kobj);
869 }
870 }
871 debugf4("%s() end of seeking for group %s\n",
872 __func__, sysfs_attrib->grp->name);
873 } else if (sysfs_attrib->attr.name) {
874 debugf4("%s() file %s\n", __func__,
875 sysfs_attrib->attr.name);
876 sysfs_remove_file(kobj, &sysfs_attrib->attr);
877 } else
878 break;
879 sysfs_attrib++;
880 }
881
882 /* Remove the group objects */
883 if (count)
884 return;
885 list_for_each_entry_safe(grp_kobj, tmp,
886 &mci->grp_kobj_list, list) {
887 list_del(&grp_kobj->list);
888 kfree(grp_kobj);
889 }
890}
891
892
893/*
894 * Create a new Memory Controller kobject instance,
895 * mc<id> under the 'mc' directory
896 *
897 * Return:
898 * 0 Success
899 * !0 Failure
900 */
901int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
902{
903 int i;
904 int err;
905 struct csrow_info *csrow;
906 struct kobject *kobj_mci = &mci->edac_mci_kobj;
907
908 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
909
910 INIT_LIST_HEAD(&mci->grp_kobj_list);
911
912 /* create a symlink for the device */
913 err = sysfs_create_link(kobj_mci, &mci->dev->kobj,
914 EDAC_DEVICE_SYMLINK);
915 if (err) {
916 debugf1("%s() failure to create symlink\n", __func__);
917 goto fail0;
918 }
919
920 /* If the low level driver desires some attributes,
921 * then create them now for the driver.
922 */
923 if (mci->mc_driver_sysfs_attributes) {
924 err = edac_create_mci_instance_attributes(mci,
925 mci->mc_driver_sysfs_attributes,
926 &mci->edac_mci_kobj);
927 if (err) {
928 debugf1("%s() failure to create mci attributes\n",
929 __func__);
930 goto fail0;
931 }
932 }
933
934 /* Make directories for each CSROW object under the mc<id> kobject
935 */
936 for (i = 0; i < mci->nr_csrows; i++) {
937 csrow = &mci->csrows[i];
938
939 /* Only expose populated CSROWs */
940 if (csrow->nr_pages > 0) {
941 err = edac_create_csrow_object(mci, csrow, i);
942 if (err) {
943 debugf1("%s() failure: create csrow %d obj\n",
944 __func__, i);
945 goto fail1;
946 }
947 }
948 }
949
950 return 0;
951
952 /* CSROW error: backout what has already been registered, */
953fail1:
954 for (i--; i >= 0; i--) {
955 if (csrow->nr_pages > 0) {
956 kobject_put(&mci->csrows[i].kobj);
957 }
958 }
959
960 /* remove the mci instance's attributes, if any */
961 edac_remove_mci_instance_attributes(mci,
962 mci->mc_driver_sysfs_attributes, &mci->edac_mci_kobj, 0);
963
964 /* remove the symlink */
965 sysfs_remove_link(kobj_mci, EDAC_DEVICE_SYMLINK);
966
967fail0:
968 return err;
969}
970
971/*
972 * remove a Memory Controller instance
973 */
974void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
975{
976 int i;
977
978 debugf0("%s()\n", __func__);
979
980 /* remove all csrow kobjects */
981 debugf4("%s() unregister this mci kobj\n", __func__);
982 for (i = 0; i < mci->nr_csrows; i++) {
983 if (mci->csrows[i].nr_pages > 0) {
984 debugf0("%s() unreg csrow-%d\n", __func__, i);
985 kobject_put(&mci->csrows[i].kobj);
986 }
987 }
988
989 /* remove this mci instance's attribtes */
990 if (mci->mc_driver_sysfs_attributes) {
991 debugf4("%s() unregister mci private attributes\n", __func__);
992 edac_remove_mci_instance_attributes(mci,
993 mci->mc_driver_sysfs_attributes,
994 &mci->edac_mci_kobj, 0);
995 }
996
997 /* remove the symlink */
998 debugf4("%s() remove_link\n", __func__);
999 sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1000
1001 /* unregister this instance's kobject */
1002 debugf4("%s() remove_mci_instance\n", __func__);
1003 kobject_put(&mci->edac_mci_kobj);
1004}
1005
1006
1007
1008
1009/*
1010 * edac_setup_sysfs_mc_kset(void)
1011 *
1012 * Initialize the mc_kset for the 'mc' entry
1013 * This requires creating the top 'mc' directory with a kset
1014 * and its controls/attributes.
1015 *
1016 * To this 'mc' kset, instance 'mci' will be grouped as children.
1017 *
1018 * Return: 0 SUCCESS
1019 * !0 FAILURE error code
1020 */
1021int edac_sysfs_setup_mc_kset(void)
1022{
1023 int err = -EINVAL;
1024 struct sysdev_class *edac_class;
1025
1026 debugf1("%s()\n", __func__);
1027
1028 /* get the /sys/devices/system/edac class reference */
1029 edac_class = edac_get_sysfs_class();
1030 if (edac_class == NULL) {
1031 debugf1("%s() no edac_class error=%d\n", __func__, err);
1032 goto fail_out;
1033 }
1034
1035 /* Init the MC's kobject */
1036 mc_kset = kset_create_and_add("mc", NULL, &edac_class->kset.kobj);
1037 if (!mc_kset) {
1038 err = -ENOMEM;
1039 debugf1("%s() Failed to register '.../edac/mc'\n", __func__);
1040 goto fail_kset;
1041 }
1042
1043 debugf1("%s() Registered '.../edac/mc' kobject\n", __func__);
1044
1045 return 0;
1046
1047fail_kset:
1048 edac_put_sysfs_class();
1049
1050fail_out:
1051 return err;
1052}
1053
1054/*
1055 * edac_sysfs_teardown_mc_kset
1056 *
1057 * deconstruct the mc_ket for memory controllers
1058 */
1059void edac_sysfs_teardown_mc_kset(void)
1060{
1061 kset_unregister(mc_kset);
1062 edac_put_sysfs_class();
1063}
1064