Linux Audio

Check our new training course

Loading...
v6.8
 1// SPDX-License-Identifier: GPL-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 2
 3#include <linux/pfn.h>
 4#include <asm/xen/page.h>
 5#include <asm/xen/hypercall.h>
 
 
 
 
 
 
 
 6#include <xen/interface/memory.h>
 
 7
 8#include "multicalls.h"
 9#include "mmu.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
11unsigned long arbitrary_virt_to_mfn(void *vaddr)
12{
13	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
14
15	return PFN_DOWN(maddr.maddr);
16}
17
18xmaddr_t arbitrary_virt_to_machine(void *vaddr)
19{
20	unsigned long address = (unsigned long)vaddr;
21	unsigned int level;
22	pte_t *pte;
23	unsigned offset;
24
25	/*
26	 * if the PFN is in the linear mapped vaddr range, we can just use
27	 * the (quick) virt_to_machine() p2m lookup
28	 */
29	if (virt_addr_valid(vaddr))
30		return virt_to_machine(vaddr);
31
32	/* otherwise we have to do a (slower) full page-table walk */
33
34	pte = lookup_address(address, &level);
35	BUG_ON(pte == NULL);
36	offset = address & ~PAGE_MASK;
37	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
38}
39EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
40
41/* Returns: 0 success */
42int xen_unmap_domain_gfn_range(struct vm_area_struct *vma,
43			       int nr, struct page **pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45	if (xen_feature(XENFEAT_auto_translated_physmap))
46		return xen_xlate_unmap_gfn_range(vma, nr, pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
48	if (!pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49		return 0;
50
51	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52}
53EXPORT_SYMBOL_GPL(xen_unmap_domain_gfn_range);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v3.1
   1/*
   2 * Xen mmu operations
   3 *
   4 * This file contains the various mmu fetch and update operations.
   5 * The most important job they must perform is the mapping between the
   6 * domain's pfn and the overall machine mfns.
   7 *
   8 * Xen allows guests to directly update the pagetable, in a controlled
   9 * fashion.  In other words, the guest modifies the same pagetable
  10 * that the CPU actually uses, which eliminates the overhead of having
  11 * a separate shadow pagetable.
  12 *
  13 * In order to allow this, it falls on the guest domain to map its
  14 * notion of a "physical" pfn - which is just a domain-local linear
  15 * address - into a real "machine address" which the CPU's MMU can
  16 * use.
  17 *
  18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
  19 * inserted directly into the pagetable.  When creating a new
  20 * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
  21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
  22 * the mfn back into a pfn.
  23 *
  24 * The other constraint is that all pages which make up a pagetable
  25 * must be mapped read-only in the guest.  This prevents uncontrolled
  26 * guest updates to the pagetable.  Xen strictly enforces this, and
  27 * will disallow any pagetable update which will end up mapping a
  28 * pagetable page RW, and will disallow using any writable page as a
  29 * pagetable.
  30 *
  31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
  32 * would need to validate the whole pagetable before going on.
  33 * Naturally, this is quite slow.  The solution is to "pin" a
  34 * pagetable, which enforces all the constraints on the pagetable even
  35 * when it is not actively in use.  This menas that Xen can be assured
  36 * that it is still valid when you do load it into %cr3, and doesn't
  37 * need to revalidate it.
  38 *
  39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  40 */
  41#include <linux/sched.h>
  42#include <linux/highmem.h>
  43#include <linux/debugfs.h>
  44#include <linux/bug.h>
  45#include <linux/vmalloc.h>
  46#include <linux/module.h>
  47#include <linux/gfp.h>
  48#include <linux/memblock.h>
  49#include <linux/seq_file.h>
  50
  51#include <trace/events/xen.h>
  52
  53#include <asm/pgtable.h>
  54#include <asm/tlbflush.h>
  55#include <asm/fixmap.h>
  56#include <asm/mmu_context.h>
  57#include <asm/setup.h>
  58#include <asm/paravirt.h>
  59#include <asm/e820.h>
  60#include <asm/linkage.h>
  61#include <asm/page.h>
  62#include <asm/init.h>
  63#include <asm/pat.h>
  64#include <asm/smp.h>
  65
 
 
  66#include <asm/xen/hypercall.h>
  67#include <asm/xen/hypervisor.h>
  68
  69#include <xen/xen.h>
  70#include <xen/page.h>
  71#include <xen/interface/xen.h>
  72#include <xen/interface/hvm/hvm_op.h>
  73#include <xen/interface/version.h>
  74#include <xen/interface/memory.h>
  75#include <xen/hvc-console.h>
  76
  77#include "multicalls.h"
  78#include "mmu.h"
  79#include "debugfs.h"
  80
  81/*
  82 * Protects atomic reservation decrease/increase against concurrent increases.
  83 * Also protects non-atomic updates of current_pages and balloon lists.
  84 */
  85DEFINE_SPINLOCK(xen_reservation_lock);
  86
  87/*
  88 * Identity map, in addition to plain kernel map.  This needs to be
  89 * large enough to allocate page table pages to allocate the rest.
  90 * Each page can map 2MB.
  91 */
  92#define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
  93static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
  94
  95#ifdef CONFIG_X86_64
  96/* l3 pud for userspace vsyscall mapping */
  97static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
  98#endif /* CONFIG_X86_64 */
  99
 100/*
 101 * Note about cr3 (pagetable base) values:
 102 *
 103 * xen_cr3 contains the current logical cr3 value; it contains the
 104 * last set cr3.  This may not be the current effective cr3, because
 105 * its update may be being lazily deferred.  However, a vcpu looking
 106 * at its own cr3 can use this value knowing that it everything will
 107 * be self-consistent.
 108 *
 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
 110 * hypercall to set the vcpu cr3 is complete (so it may be a little
 111 * out of date, but it will never be set early).  If one vcpu is
 112 * looking at another vcpu's cr3 value, it should use this variable.
 113 */
 114DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
 115DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
 116
 117
 118/*
 119 * Just beyond the highest usermode address.  STACK_TOP_MAX has a
 120 * redzone above it, so round it up to a PGD boundary.
 121 */
 122#define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
 123
 124unsigned long arbitrary_virt_to_mfn(void *vaddr)
 125{
 126	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
 127
 128	return PFN_DOWN(maddr.maddr);
 129}
 130
 131xmaddr_t arbitrary_virt_to_machine(void *vaddr)
 132{
 133	unsigned long address = (unsigned long)vaddr;
 134	unsigned int level;
 135	pte_t *pte;
 136	unsigned offset;
 137
 138	/*
 139	 * if the PFN is in the linear mapped vaddr range, we can just use
 140	 * the (quick) virt_to_machine() p2m lookup
 141	 */
 142	if (virt_addr_valid(vaddr))
 143		return virt_to_machine(vaddr);
 144
 145	/* otherwise we have to do a (slower) full page-table walk */
 146
 147	pte = lookup_address(address, &level);
 148	BUG_ON(pte == NULL);
 149	offset = address & ~PAGE_MASK;
 150	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
 151}
 152EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
 153
 154void make_lowmem_page_readonly(void *vaddr)
 155{
 156	pte_t *pte, ptev;
 157	unsigned long address = (unsigned long)vaddr;
 158	unsigned int level;
 159
 160	pte = lookup_address(address, &level);
 161	if (pte == NULL)
 162		return;		/* vaddr missing */
 163
 164	ptev = pte_wrprotect(*pte);
 165
 166	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 167		BUG();
 168}
 169
 170void make_lowmem_page_readwrite(void *vaddr)
 171{
 172	pte_t *pte, ptev;
 173	unsigned long address = (unsigned long)vaddr;
 174	unsigned int level;
 175
 176	pte = lookup_address(address, &level);
 177	if (pte == NULL)
 178		return;		/* vaddr missing */
 179
 180	ptev = pte_mkwrite(*pte);
 181
 182	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
 183		BUG();
 184}
 185
 186
 187static bool xen_page_pinned(void *ptr)
 188{
 189	struct page *page = virt_to_page(ptr);
 190
 191	return PagePinned(page);
 192}
 193
 194void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
 195{
 196	struct multicall_space mcs;
 197	struct mmu_update *u;
 198
 199	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
 200
 201	mcs = xen_mc_entry(sizeof(*u));
 202	u = mcs.args;
 203
 204	/* ptep might be kmapped when using 32-bit HIGHPTE */
 205	u->ptr = virt_to_machine(ptep).maddr;
 206	u->val = pte_val_ma(pteval);
 207
 208	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
 209
 210	xen_mc_issue(PARAVIRT_LAZY_MMU);
 211}
 212EXPORT_SYMBOL_GPL(xen_set_domain_pte);
 213
 214static void xen_extend_mmu_update(const struct mmu_update *update)
 215{
 216	struct multicall_space mcs;
 217	struct mmu_update *u;
 218
 219	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
 220
 221	if (mcs.mc != NULL) {
 222		mcs.mc->args[1]++;
 223	} else {
 224		mcs = __xen_mc_entry(sizeof(*u));
 225		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 226	}
 227
 228	u = mcs.args;
 229	*u = *update;
 230}
 231
 232static void xen_extend_mmuext_op(const struct mmuext_op *op)
 233{
 234	struct multicall_space mcs;
 235	struct mmuext_op *u;
 236
 237	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
 238
 239	if (mcs.mc != NULL) {
 240		mcs.mc->args[1]++;
 241	} else {
 242		mcs = __xen_mc_entry(sizeof(*u));
 243		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
 244	}
 245
 246	u = mcs.args;
 247	*u = *op;
 248}
 249
 250static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
 251{
 252	struct mmu_update u;
 253
 254	preempt_disable();
 255
 256	xen_mc_batch();
 257
 258	/* ptr may be ioremapped for 64-bit pagetable setup */
 259	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 260	u.val = pmd_val_ma(val);
 261	xen_extend_mmu_update(&u);
 262
 263	xen_mc_issue(PARAVIRT_LAZY_MMU);
 264
 265	preempt_enable();
 266}
 267
 268static void xen_set_pmd(pmd_t *ptr, pmd_t val)
 269{
 270	trace_xen_mmu_set_pmd(ptr, val);
 271
 272	/* If page is not pinned, we can just update the entry
 273	   directly */
 274	if (!xen_page_pinned(ptr)) {
 275		*ptr = val;
 276		return;
 277	}
 278
 279	xen_set_pmd_hyper(ptr, val);
 280}
 281
 282/*
 283 * Associate a virtual page frame with a given physical page frame
 284 * and protection flags for that frame.
 285 */
 286void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
 287{
 288	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
 289}
 290
 291static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
 292{
 293	struct mmu_update u;
 294
 295	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
 296		return false;
 297
 298	xen_mc_batch();
 299
 300	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
 301	u.val = pte_val_ma(pteval);
 302	xen_extend_mmu_update(&u);
 303
 304	xen_mc_issue(PARAVIRT_LAZY_MMU);
 305
 306	return true;
 307}
 308
 309static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
 310{
 311	if (!xen_batched_set_pte(ptep, pteval))
 312		native_set_pte(ptep, pteval);
 313}
 314
 315static void xen_set_pte(pte_t *ptep, pte_t pteval)
 316{
 317	trace_xen_mmu_set_pte(ptep, pteval);
 318	__xen_set_pte(ptep, pteval);
 319}
 320
 321static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
 322		    pte_t *ptep, pte_t pteval)
 323{
 324	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
 325	__xen_set_pte(ptep, pteval);
 326}
 327
 328pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
 329				 unsigned long addr, pte_t *ptep)
 330{
 331	/* Just return the pte as-is.  We preserve the bits on commit */
 332	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
 333	return *ptep;
 334}
 335
 336void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
 337				 pte_t *ptep, pte_t pte)
 338{
 339	struct mmu_update u;
 340
 341	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
 342	xen_mc_batch();
 343
 344	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
 345	u.val = pte_val_ma(pte);
 346	xen_extend_mmu_update(&u);
 347
 348	xen_mc_issue(PARAVIRT_LAZY_MMU);
 349}
 350
 351/* Assume pteval_t is equivalent to all the other *val_t types. */
 352static pteval_t pte_mfn_to_pfn(pteval_t val)
 353{
 354	if (val & _PAGE_PRESENT) {
 355		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 356		pteval_t flags = val & PTE_FLAGS_MASK;
 357		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
 358	}
 359
 360	return val;
 361}
 362
 363static pteval_t pte_pfn_to_mfn(pteval_t val)
 364{
 365	if (val & _PAGE_PRESENT) {
 366		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 367		pteval_t flags = val & PTE_FLAGS_MASK;
 368		unsigned long mfn;
 369
 370		if (!xen_feature(XENFEAT_auto_translated_physmap))
 371			mfn = get_phys_to_machine(pfn);
 372		else
 373			mfn = pfn;
 374		/*
 375		 * If there's no mfn for the pfn, then just create an
 376		 * empty non-present pte.  Unfortunately this loses
 377		 * information about the original pfn, so
 378		 * pte_mfn_to_pfn is asymmetric.
 379		 */
 380		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
 381			mfn = 0;
 382			flags = 0;
 383		} else {
 384			/*
 385			 * Paramount to do this test _after_ the
 386			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
 387			 * IDENTITY_FRAME_BIT resolves to true.
 388			 */
 389			mfn &= ~FOREIGN_FRAME_BIT;
 390			if (mfn & IDENTITY_FRAME_BIT) {
 391				mfn &= ~IDENTITY_FRAME_BIT;
 392				flags |= _PAGE_IOMAP;
 393			}
 394		}
 395		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
 396	}
 397
 398	return val;
 399}
 400
 401static pteval_t iomap_pte(pteval_t val)
 402{
 403	if (val & _PAGE_PRESENT) {
 404		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
 405		pteval_t flags = val & PTE_FLAGS_MASK;
 406
 407		/* We assume the pte frame number is a MFN, so
 408		   just use it as-is. */
 409		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
 410	}
 411
 412	return val;
 413}
 414
 415static pteval_t xen_pte_val(pte_t pte)
 416{
 417	pteval_t pteval = pte.pte;
 418
 419	/* If this is a WC pte, convert back from Xen WC to Linux WC */
 420	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
 421		WARN_ON(!pat_enabled);
 422		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
 423	}
 424
 425	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
 426		return pteval;
 427
 428	return pte_mfn_to_pfn(pteval);
 429}
 430PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
 431
 432static pgdval_t xen_pgd_val(pgd_t pgd)
 433{
 434	return pte_mfn_to_pfn(pgd.pgd);
 435}
 436PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
 437
 438/*
 439 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
 440 * are reserved for now, to correspond to the Intel-reserved PAT
 441 * types.
 442 *
 443 * We expect Linux's PAT set as follows:
 444 *
 445 * Idx  PTE flags        Linux    Xen    Default
 446 * 0                     WB       WB     WB
 447 * 1            PWT      WC       WT     WT
 448 * 2        PCD          UC-      UC-    UC-
 449 * 3        PCD PWT      UC       UC     UC
 450 * 4    PAT              WB       WC     WB
 451 * 5    PAT     PWT      WC       WP     WT
 452 * 6    PAT PCD          UC-      UC     UC-
 453 * 7    PAT PCD PWT      UC       UC     UC
 454 */
 455
 456void xen_set_pat(u64 pat)
 457{
 458	/* We expect Linux to use a PAT setting of
 459	 * UC UC- WC WB (ignoring the PAT flag) */
 460	WARN_ON(pat != 0x0007010600070106ull);
 461}
 462
 463static pte_t xen_make_pte(pteval_t pte)
 464{
 465	phys_addr_t addr = (pte & PTE_PFN_MASK);
 466
 467	/* If Linux is trying to set a WC pte, then map to the Xen WC.
 468	 * If _PAGE_PAT is set, then it probably means it is really
 469	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
 470	 * things work out OK...
 471	 *
 472	 * (We should never see kernel mappings with _PAGE_PSE set,
 473	 * but we could see hugetlbfs mappings, I think.).
 474	 */
 475	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
 476		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
 477			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
 478	}
 479
 480	/*
 481	 * Unprivileged domains are allowed to do IOMAPpings for
 482	 * PCI passthrough, but not map ISA space.  The ISA
 483	 * mappings are just dummy local mappings to keep other
 484	 * parts of the kernel happy.
 485	 */
 486	if (unlikely(pte & _PAGE_IOMAP) &&
 487	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
 488		pte = iomap_pte(pte);
 489	} else {
 490		pte &= ~_PAGE_IOMAP;
 491		pte = pte_pfn_to_mfn(pte);
 492	}
 493
 494	return native_make_pte(pte);
 495}
 496PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
 497
 498#ifdef CONFIG_XEN_DEBUG
 499pte_t xen_make_pte_debug(pteval_t pte)
 500{
 501	phys_addr_t addr = (pte & PTE_PFN_MASK);
 502	phys_addr_t other_addr;
 503	bool io_page = false;
 504	pte_t _pte;
 505
 506	if (pte & _PAGE_IOMAP)
 507		io_page = true;
 508
 509	_pte = xen_make_pte(pte);
 510
 511	if (!addr)
 512		return _pte;
 513
 514	if (io_page &&
 515	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
 516		other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
 517		WARN_ONCE(addr != other_addr,
 518			"0x%lx is using VM_IO, but it is 0x%lx!\n",
 519			(unsigned long)addr, (unsigned long)other_addr);
 520	} else {
 521		pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
 522		other_addr = (_pte.pte & PTE_PFN_MASK);
 523		WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
 524			"0x%lx is missing VM_IO (and wasn't fixed)!\n",
 525			(unsigned long)addr);
 526	}
 527
 528	return _pte;
 529}
 530PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
 531#endif
 532
 533static pgd_t xen_make_pgd(pgdval_t pgd)
 534{
 535	pgd = pte_pfn_to_mfn(pgd);
 536	return native_make_pgd(pgd);
 537}
 538PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
 539
 540static pmdval_t xen_pmd_val(pmd_t pmd)
 541{
 542	return pte_mfn_to_pfn(pmd.pmd);
 543}
 544PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
 545
 546static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
 547{
 548	struct mmu_update u;
 549
 550	preempt_disable();
 551
 552	xen_mc_batch();
 553
 554	/* ptr may be ioremapped for 64-bit pagetable setup */
 555	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
 556	u.val = pud_val_ma(val);
 557	xen_extend_mmu_update(&u);
 558
 559	xen_mc_issue(PARAVIRT_LAZY_MMU);
 560
 561	preempt_enable();
 562}
 563
 564static void xen_set_pud(pud_t *ptr, pud_t val)
 565{
 566	trace_xen_mmu_set_pud(ptr, val);
 567
 568	/* If page is not pinned, we can just update the entry
 569	   directly */
 570	if (!xen_page_pinned(ptr)) {
 571		*ptr = val;
 572		return;
 573	}
 574
 575	xen_set_pud_hyper(ptr, val);
 576}
 577
 578#ifdef CONFIG_X86_PAE
 579static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
 580{
 581	trace_xen_mmu_set_pte_atomic(ptep, pte);
 582	set_64bit((u64 *)ptep, native_pte_val(pte));
 583}
 584
 585static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 586{
 587	trace_xen_mmu_pte_clear(mm, addr, ptep);
 588	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
 589		native_pte_clear(mm, addr, ptep);
 590}
 591
 592static void xen_pmd_clear(pmd_t *pmdp)
 593{
 594	trace_xen_mmu_pmd_clear(pmdp);
 595	set_pmd(pmdp, __pmd(0));
 596}
 597#endif	/* CONFIG_X86_PAE */
 598
 599static pmd_t xen_make_pmd(pmdval_t pmd)
 600{
 601	pmd = pte_pfn_to_mfn(pmd);
 602	return native_make_pmd(pmd);
 603}
 604PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
 605
 606#if PAGETABLE_LEVELS == 4
 607static pudval_t xen_pud_val(pud_t pud)
 608{
 609	return pte_mfn_to_pfn(pud.pud);
 610}
 611PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
 612
 613static pud_t xen_make_pud(pudval_t pud)
 614{
 615	pud = pte_pfn_to_mfn(pud);
 616
 617	return native_make_pud(pud);
 618}
 619PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
 620
 621static pgd_t *xen_get_user_pgd(pgd_t *pgd)
 622{
 623	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
 624	unsigned offset = pgd - pgd_page;
 625	pgd_t *user_ptr = NULL;
 626
 627	if (offset < pgd_index(USER_LIMIT)) {
 628		struct page *page = virt_to_page(pgd_page);
 629		user_ptr = (pgd_t *)page->private;
 630		if (user_ptr)
 631			user_ptr += offset;
 632	}
 633
 634	return user_ptr;
 635}
 636
 637static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 638{
 639	struct mmu_update u;
 640
 641	u.ptr = virt_to_machine(ptr).maddr;
 642	u.val = pgd_val_ma(val);
 643	xen_extend_mmu_update(&u);
 644}
 645
 646/*
 647 * Raw hypercall-based set_pgd, intended for in early boot before
 648 * there's a page structure.  This implies:
 649 *  1. The only existing pagetable is the kernel's
 650 *  2. It is always pinned
 651 *  3. It has no user pagetable attached to it
 652 */
 653static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
 654{
 655	preempt_disable();
 656
 657	xen_mc_batch();
 658
 659	__xen_set_pgd_hyper(ptr, val);
 660
 661	xen_mc_issue(PARAVIRT_LAZY_MMU);
 662
 663	preempt_enable();
 664}
 665
 666static void xen_set_pgd(pgd_t *ptr, pgd_t val)
 667{
 668	pgd_t *user_ptr = xen_get_user_pgd(ptr);
 669
 670	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
 671
 672	/* If page is not pinned, we can just update the entry
 673	   directly */
 674	if (!xen_page_pinned(ptr)) {
 675		*ptr = val;
 676		if (user_ptr) {
 677			WARN_ON(xen_page_pinned(user_ptr));
 678			*user_ptr = val;
 679		}
 680		return;
 681	}
 682
 683	/* If it's pinned, then we can at least batch the kernel and
 684	   user updates together. */
 685	xen_mc_batch();
 686
 687	__xen_set_pgd_hyper(ptr, val);
 688	if (user_ptr)
 689		__xen_set_pgd_hyper(user_ptr, val);
 690
 691	xen_mc_issue(PARAVIRT_LAZY_MMU);
 692}
 693#endif	/* PAGETABLE_LEVELS == 4 */
 694
 695/*
 696 * (Yet another) pagetable walker.  This one is intended for pinning a
 697 * pagetable.  This means that it walks a pagetable and calls the
 698 * callback function on each page it finds making up the page table,
 699 * at every level.  It walks the entire pagetable, but it only bothers
 700 * pinning pte pages which are below limit.  In the normal case this
 701 * will be STACK_TOP_MAX, but at boot we need to pin up to
 702 * FIXADDR_TOP.
 703 *
 704 * For 32-bit the important bit is that we don't pin beyond there,
 705 * because then we start getting into Xen's ptes.
 706 *
 707 * For 64-bit, we must skip the Xen hole in the middle of the address
 708 * space, just after the big x86-64 virtual hole.
 709 */
 710static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
 711			  int (*func)(struct mm_struct *mm, struct page *,
 712				      enum pt_level),
 713			  unsigned long limit)
 714{
 715	int flush = 0;
 716	unsigned hole_low, hole_high;
 717	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
 718	unsigned pgdidx, pudidx, pmdidx;
 719
 720	/* The limit is the last byte to be touched */
 721	limit--;
 722	BUG_ON(limit >= FIXADDR_TOP);
 723
 724	if (xen_feature(XENFEAT_auto_translated_physmap))
 725		return 0;
 726
 727	/*
 728	 * 64-bit has a great big hole in the middle of the address
 729	 * space, which contains the Xen mappings.  On 32-bit these
 730	 * will end up making a zero-sized hole and so is a no-op.
 731	 */
 732	hole_low = pgd_index(USER_LIMIT);
 733	hole_high = pgd_index(PAGE_OFFSET);
 734
 735	pgdidx_limit = pgd_index(limit);
 736#if PTRS_PER_PUD > 1
 737	pudidx_limit = pud_index(limit);
 738#else
 739	pudidx_limit = 0;
 740#endif
 741#if PTRS_PER_PMD > 1
 742	pmdidx_limit = pmd_index(limit);
 743#else
 744	pmdidx_limit = 0;
 745#endif
 746
 747	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
 748		pud_t *pud;
 749
 750		if (pgdidx >= hole_low && pgdidx < hole_high)
 751			continue;
 752
 753		if (!pgd_val(pgd[pgdidx]))
 754			continue;
 755
 756		pud = pud_offset(&pgd[pgdidx], 0);
 757
 758		if (PTRS_PER_PUD > 1) /* not folded */
 759			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
 760
 761		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
 762			pmd_t *pmd;
 763
 764			if (pgdidx == pgdidx_limit &&
 765			    pudidx > pudidx_limit)
 766				goto out;
 767
 768			if (pud_none(pud[pudidx]))
 769				continue;
 770
 771			pmd = pmd_offset(&pud[pudidx], 0);
 772
 773			if (PTRS_PER_PMD > 1) /* not folded */
 774				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
 775
 776			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
 777				struct page *pte;
 778
 779				if (pgdidx == pgdidx_limit &&
 780				    pudidx == pudidx_limit &&
 781				    pmdidx > pmdidx_limit)
 782					goto out;
 783
 784				if (pmd_none(pmd[pmdidx]))
 785					continue;
 786
 787				pte = pmd_page(pmd[pmdidx]);
 788				flush |= (*func)(mm, pte, PT_PTE);
 789			}
 790		}
 791	}
 792
 793out:
 794	/* Do the top level last, so that the callbacks can use it as
 795	   a cue to do final things like tlb flushes. */
 796	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
 797
 798	return flush;
 799}
 800
 801static int xen_pgd_walk(struct mm_struct *mm,
 802			int (*func)(struct mm_struct *mm, struct page *,
 803				    enum pt_level),
 804			unsigned long limit)
 805{
 806	return __xen_pgd_walk(mm, mm->pgd, func, limit);
 807}
 808
 809/* If we're using split pte locks, then take the page's lock and
 810   return a pointer to it.  Otherwise return NULL. */
 811static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
 812{
 813	spinlock_t *ptl = NULL;
 814
 815#if USE_SPLIT_PTLOCKS
 816	ptl = __pte_lockptr(page);
 817	spin_lock_nest_lock(ptl, &mm->page_table_lock);
 818#endif
 819
 820	return ptl;
 821}
 822
 823static void xen_pte_unlock(void *v)
 824{
 825	spinlock_t *ptl = v;
 826	spin_unlock(ptl);
 827}
 828
 829static void xen_do_pin(unsigned level, unsigned long pfn)
 830{
 831	struct mmuext_op op;
 832
 833	op.cmd = level;
 834	op.arg1.mfn = pfn_to_mfn(pfn);
 835
 836	xen_extend_mmuext_op(&op);
 837}
 838
 839static int xen_pin_page(struct mm_struct *mm, struct page *page,
 840			enum pt_level level)
 841{
 842	unsigned pgfl = TestSetPagePinned(page);
 843	int flush;
 844
 845	if (pgfl)
 846		flush = 0;		/* already pinned */
 847	else if (PageHighMem(page))
 848		/* kmaps need flushing if we found an unpinned
 849		   highpage */
 850		flush = 1;
 851	else {
 852		void *pt = lowmem_page_address(page);
 853		unsigned long pfn = page_to_pfn(page);
 854		struct multicall_space mcs = __xen_mc_entry(0);
 855		spinlock_t *ptl;
 856
 857		flush = 0;
 858
 859		/*
 860		 * We need to hold the pagetable lock between the time
 861		 * we make the pagetable RO and when we actually pin
 862		 * it.  If we don't, then other users may come in and
 863		 * attempt to update the pagetable by writing it,
 864		 * which will fail because the memory is RO but not
 865		 * pinned, so Xen won't do the trap'n'emulate.
 866		 *
 867		 * If we're using split pte locks, we can't hold the
 868		 * entire pagetable's worth of locks during the
 869		 * traverse, because we may wrap the preempt count (8
 870		 * bits).  The solution is to mark RO and pin each PTE
 871		 * page while holding the lock.  This means the number
 872		 * of locks we end up holding is never more than a
 873		 * batch size (~32 entries, at present).
 874		 *
 875		 * If we're not using split pte locks, we needn't pin
 876		 * the PTE pages independently, because we're
 877		 * protected by the overall pagetable lock.
 878		 */
 879		ptl = NULL;
 880		if (level == PT_PTE)
 881			ptl = xen_pte_lock(page, mm);
 882
 883		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
 884					pfn_pte(pfn, PAGE_KERNEL_RO),
 885					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
 886
 887		if (ptl) {
 888			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
 889
 890			/* Queue a deferred unlock for when this batch
 891			   is completed. */
 892			xen_mc_callback(xen_pte_unlock, ptl);
 893		}
 894	}
 895
 896	return flush;
 897}
 898
 899/* This is called just after a mm has been created, but it has not
 900   been used yet.  We need to make sure that its pagetable is all
 901   read-only, and can be pinned. */
 902static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
 903{
 904	trace_xen_mmu_pgd_pin(mm, pgd);
 905
 906	xen_mc_batch();
 907
 908	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
 909		/* re-enable interrupts for flushing */
 910		xen_mc_issue(0);
 911
 912		kmap_flush_unused();
 913
 914		xen_mc_batch();
 915	}
 916
 917#ifdef CONFIG_X86_64
 918	{
 919		pgd_t *user_pgd = xen_get_user_pgd(pgd);
 920
 921		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
 922
 923		if (user_pgd) {
 924			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
 925			xen_do_pin(MMUEXT_PIN_L4_TABLE,
 926				   PFN_DOWN(__pa(user_pgd)));
 927		}
 928	}
 929#else /* CONFIG_X86_32 */
 930#ifdef CONFIG_X86_PAE
 931	/* Need to make sure unshared kernel PMD is pinnable */
 932	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
 933		     PT_PMD);
 934#endif
 935	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
 936#endif /* CONFIG_X86_64 */
 937	xen_mc_issue(0);
 938}
 939
 940static void xen_pgd_pin(struct mm_struct *mm)
 941{
 942	__xen_pgd_pin(mm, mm->pgd);
 943}
 944
 945/*
 946 * On save, we need to pin all pagetables to make sure they get their
 947 * mfns turned into pfns.  Search the list for any unpinned pgds and pin
 948 * them (unpinned pgds are not currently in use, probably because the
 949 * process is under construction or destruction).
 950 *
 951 * Expected to be called in stop_machine() ("equivalent to taking
 952 * every spinlock in the system"), so the locking doesn't really
 953 * matter all that much.
 954 */
 955void xen_mm_pin_all(void)
 956{
 957	struct page *page;
 958
 959	spin_lock(&pgd_lock);
 960
 961	list_for_each_entry(page, &pgd_list, lru) {
 962		if (!PagePinned(page)) {
 963			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
 964			SetPageSavePinned(page);
 965		}
 966	}
 967
 968	spin_unlock(&pgd_lock);
 969}
 970
 971/*
 972 * The init_mm pagetable is really pinned as soon as its created, but
 973 * that's before we have page structures to store the bits.  So do all
 974 * the book-keeping now.
 975 */
 976static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
 977				  enum pt_level level)
 978{
 979	SetPagePinned(page);
 980	return 0;
 981}
 982
 983static void __init xen_mark_init_mm_pinned(void)
 984{
 985	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
 986}
 987
 988static int xen_unpin_page(struct mm_struct *mm, struct page *page,
 989			  enum pt_level level)
 990{
 991	unsigned pgfl = TestClearPagePinned(page);
 992
 993	if (pgfl && !PageHighMem(page)) {
 994		void *pt = lowmem_page_address(page);
 995		unsigned long pfn = page_to_pfn(page);
 996		spinlock_t *ptl = NULL;
 997		struct multicall_space mcs;
 998
 999		/*
1000		 * Do the converse to pin_page.  If we're using split
1001		 * pte locks, we must be holding the lock for while
1002		 * the pte page is unpinned but still RO to prevent
1003		 * concurrent updates from seeing it in this
1004		 * partially-pinned state.
1005		 */
1006		if (level == PT_PTE) {
1007			ptl = xen_pte_lock(page, mm);
1008
1009			if (ptl)
1010				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1011		}
1012
1013		mcs = __xen_mc_entry(0);
1014
1015		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1016					pfn_pte(pfn, PAGE_KERNEL),
1017					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1018
1019		if (ptl) {
1020			/* unlock when batch completed */
1021			xen_mc_callback(xen_pte_unlock, ptl);
1022		}
1023	}
1024
1025	return 0;		/* never need to flush on unpin */
1026}
1027
1028/* Release a pagetables pages back as normal RW */
1029static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1030{
1031	trace_xen_mmu_pgd_unpin(mm, pgd);
1032
1033	xen_mc_batch();
1034
1035	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1036
1037#ifdef CONFIG_X86_64
1038	{
1039		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1040
1041		if (user_pgd) {
1042			xen_do_pin(MMUEXT_UNPIN_TABLE,
1043				   PFN_DOWN(__pa(user_pgd)));
1044			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1045		}
1046	}
1047#endif
1048
1049#ifdef CONFIG_X86_PAE
1050	/* Need to make sure unshared kernel PMD is unpinned */
1051	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1052		       PT_PMD);
1053#endif
1054
1055	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1056
1057	xen_mc_issue(0);
1058}
1059
1060static void xen_pgd_unpin(struct mm_struct *mm)
1061{
1062	__xen_pgd_unpin(mm, mm->pgd);
1063}
1064
1065/*
1066 * On resume, undo any pinning done at save, so that the rest of the
1067 * kernel doesn't see any unexpected pinned pagetables.
1068 */
1069void xen_mm_unpin_all(void)
1070{
1071	struct page *page;
1072
1073	spin_lock(&pgd_lock);
1074
1075	list_for_each_entry(page, &pgd_list, lru) {
1076		if (PageSavePinned(page)) {
1077			BUG_ON(!PagePinned(page));
1078			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1079			ClearPageSavePinned(page);
1080		}
1081	}
1082
1083	spin_unlock(&pgd_lock);
1084}
1085
1086static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1087{
1088	spin_lock(&next->page_table_lock);
1089	xen_pgd_pin(next);
1090	spin_unlock(&next->page_table_lock);
1091}
1092
1093static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1094{
1095	spin_lock(&mm->page_table_lock);
1096	xen_pgd_pin(mm);
1097	spin_unlock(&mm->page_table_lock);
1098}
1099
1100
1101#ifdef CONFIG_SMP
1102/* Another cpu may still have their %cr3 pointing at the pagetable, so
1103   we need to repoint it somewhere else before we can unpin it. */
1104static void drop_other_mm_ref(void *info)
1105{
1106	struct mm_struct *mm = info;
1107	struct mm_struct *active_mm;
1108
1109	active_mm = percpu_read(cpu_tlbstate.active_mm);
1110
1111	if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1112		leave_mm(smp_processor_id());
1113
1114	/* If this cpu still has a stale cr3 reference, then make sure
1115	   it has been flushed. */
1116	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1117		load_cr3(swapper_pg_dir);
1118}
1119
1120static void xen_drop_mm_ref(struct mm_struct *mm)
1121{
1122	cpumask_var_t mask;
1123	unsigned cpu;
1124
1125	if (current->active_mm == mm) {
1126		if (current->mm == mm)
1127			load_cr3(swapper_pg_dir);
1128		else
1129			leave_mm(smp_processor_id());
1130	}
1131
1132	/* Get the "official" set of cpus referring to our pagetable. */
1133	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1134		for_each_online_cpu(cpu) {
1135			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1136			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1137				continue;
1138			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1139		}
1140		return;
1141	}
1142	cpumask_copy(mask, mm_cpumask(mm));
1143
1144	/* It's possible that a vcpu may have a stale reference to our
1145	   cr3, because its in lazy mode, and it hasn't yet flushed
1146	   its set of pending hypercalls yet.  In this case, we can
1147	   look at its actual current cr3 value, and force it to flush
1148	   if needed. */
1149	for_each_online_cpu(cpu) {
1150		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1151			cpumask_set_cpu(cpu, mask);
1152	}
1153
1154	if (!cpumask_empty(mask))
1155		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1156	free_cpumask_var(mask);
1157}
1158#else
1159static void xen_drop_mm_ref(struct mm_struct *mm)
1160{
1161	if (current->active_mm == mm)
1162		load_cr3(swapper_pg_dir);
1163}
1164#endif
1165
1166/*
1167 * While a process runs, Xen pins its pagetables, which means that the
1168 * hypervisor forces it to be read-only, and it controls all updates
1169 * to it.  This means that all pagetable updates have to go via the
1170 * hypervisor, which is moderately expensive.
1171 *
1172 * Since we're pulling the pagetable down, we switch to use init_mm,
1173 * unpin old process pagetable and mark it all read-write, which
1174 * allows further operations on it to be simple memory accesses.
1175 *
1176 * The only subtle point is that another CPU may be still using the
1177 * pagetable because of lazy tlb flushing.  This means we need need to
1178 * switch all CPUs off this pagetable before we can unpin it.
1179 */
1180static void xen_exit_mmap(struct mm_struct *mm)
1181{
1182	get_cpu();		/* make sure we don't move around */
1183	xen_drop_mm_ref(mm);
1184	put_cpu();
1185
1186	spin_lock(&mm->page_table_lock);
1187
1188	/* pgd may not be pinned in the error exit path of execve */
1189	if (xen_page_pinned(mm->pgd))
1190		xen_pgd_unpin(mm);
1191
1192	spin_unlock(&mm->page_table_lock);
1193}
1194
1195static void __init xen_pagetable_setup_start(pgd_t *base)
1196{
1197}
1198
1199static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1200{
1201	/* reserve the range used */
1202	native_pagetable_reserve(start, end);
1203
1204	/* set as RW the rest */
1205	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1206			PFN_PHYS(pgt_buf_top));
1207	while (end < PFN_PHYS(pgt_buf_top)) {
1208		make_lowmem_page_readwrite(__va(end));
1209		end += PAGE_SIZE;
1210	}
1211}
1212
1213static void xen_post_allocator_init(void);
1214
1215static void __init xen_pagetable_setup_done(pgd_t *base)
1216{
1217	xen_setup_shared_info();
1218	xen_post_allocator_init();
1219}
1220
1221static void xen_write_cr2(unsigned long cr2)
1222{
1223	percpu_read(xen_vcpu)->arch.cr2 = cr2;
1224}
1225
1226static unsigned long xen_read_cr2(void)
1227{
1228	return percpu_read(xen_vcpu)->arch.cr2;
1229}
1230
1231unsigned long xen_read_cr2_direct(void)
1232{
1233	return percpu_read(xen_vcpu_info.arch.cr2);
1234}
1235
1236static void xen_flush_tlb(void)
1237{
1238	struct mmuext_op *op;
1239	struct multicall_space mcs;
1240
1241	trace_xen_mmu_flush_tlb(0);
1242
1243	preempt_disable();
1244
1245	mcs = xen_mc_entry(sizeof(*op));
1246
1247	op = mcs.args;
1248	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1249	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1250
1251	xen_mc_issue(PARAVIRT_LAZY_MMU);
1252
1253	preempt_enable();
1254}
1255
1256static void xen_flush_tlb_single(unsigned long addr)
1257{
1258	struct mmuext_op *op;
1259	struct multicall_space mcs;
1260
1261	trace_xen_mmu_flush_tlb_single(addr);
1262
1263	preempt_disable();
1264
1265	mcs = xen_mc_entry(sizeof(*op));
1266	op = mcs.args;
1267	op->cmd = MMUEXT_INVLPG_LOCAL;
1268	op->arg1.linear_addr = addr & PAGE_MASK;
1269	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1270
1271	xen_mc_issue(PARAVIRT_LAZY_MMU);
1272
1273	preempt_enable();
1274}
1275
1276static void xen_flush_tlb_others(const struct cpumask *cpus,
1277				 struct mm_struct *mm, unsigned long va)
1278{
1279	struct {
1280		struct mmuext_op op;
1281#ifdef CONFIG_SMP
1282		DECLARE_BITMAP(mask, num_processors);
1283#else
1284		DECLARE_BITMAP(mask, NR_CPUS);
1285#endif
1286	} *args;
1287	struct multicall_space mcs;
1288
1289	trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1290
1291	if (cpumask_empty(cpus))
1292		return;		/* nothing to do */
1293
1294	mcs = xen_mc_entry(sizeof(*args));
1295	args = mcs.args;
1296	args->op.arg2.vcpumask = to_cpumask(args->mask);
1297
1298	/* Remove us, and any offline CPUS. */
1299	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1300	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1301
1302	if (va == TLB_FLUSH_ALL) {
1303		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1304	} else {
1305		args->op.cmd = MMUEXT_INVLPG_MULTI;
1306		args->op.arg1.linear_addr = va;
1307	}
1308
1309	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1310
1311	xen_mc_issue(PARAVIRT_LAZY_MMU);
1312}
1313
1314static unsigned long xen_read_cr3(void)
1315{
1316	return percpu_read(xen_cr3);
1317}
1318
1319static void set_current_cr3(void *v)
1320{
1321	percpu_write(xen_current_cr3, (unsigned long)v);
1322}
1323
1324static void __xen_write_cr3(bool kernel, unsigned long cr3)
1325{
1326	struct mmuext_op op;
1327	unsigned long mfn;
1328
1329	trace_xen_mmu_write_cr3(kernel, cr3);
1330
1331	if (cr3)
1332		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1333	else
1334		mfn = 0;
1335
1336	WARN_ON(mfn == 0 && kernel);
1337
1338	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1339	op.arg1.mfn = mfn;
1340
1341	xen_extend_mmuext_op(&op);
1342
1343	if (kernel) {
1344		percpu_write(xen_cr3, cr3);
1345
1346		/* Update xen_current_cr3 once the batch has actually
1347		   been submitted. */
1348		xen_mc_callback(set_current_cr3, (void *)cr3);
1349	}
1350}
1351
1352static void xen_write_cr3(unsigned long cr3)
1353{
1354	BUG_ON(preemptible());
1355
1356	xen_mc_batch();  /* disables interrupts */
1357
1358	/* Update while interrupts are disabled, so its atomic with
1359	   respect to ipis */
1360	percpu_write(xen_cr3, cr3);
1361
1362	__xen_write_cr3(true, cr3);
1363
1364#ifdef CONFIG_X86_64
1365	{
1366		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1367		if (user_pgd)
1368			__xen_write_cr3(false, __pa(user_pgd));
1369		else
1370			__xen_write_cr3(false, 0);
1371	}
1372#endif
1373
1374	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1375}
1376
1377static int xen_pgd_alloc(struct mm_struct *mm)
1378{
1379	pgd_t *pgd = mm->pgd;
1380	int ret = 0;
1381
1382	BUG_ON(PagePinned(virt_to_page(pgd)));
1383
1384#ifdef CONFIG_X86_64
1385	{
1386		struct page *page = virt_to_page(pgd);
1387		pgd_t *user_pgd;
1388
1389		BUG_ON(page->private != 0);
1390
1391		ret = -ENOMEM;
1392
1393		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1394		page->private = (unsigned long)user_pgd;
1395
1396		if (user_pgd != NULL) {
1397			user_pgd[pgd_index(VSYSCALL_START)] =
1398				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1399			ret = 0;
1400		}
1401
1402		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1403	}
1404#endif
1405
1406	return ret;
1407}
1408
1409static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1410{
1411#ifdef CONFIG_X86_64
1412	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1413
1414	if (user_pgd)
1415		free_page((unsigned long)user_pgd);
1416#endif
1417}
1418
1419#ifdef CONFIG_X86_32
1420static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1421{
1422	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1423	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1424		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1425			       pte_val_ma(pte));
1426
1427	return pte;
1428}
1429#else /* CONFIG_X86_64 */
1430static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1431{
1432	unsigned long pfn = pte_pfn(pte);
1433
1434	/*
1435	 * If the new pfn is within the range of the newly allocated
1436	 * kernel pagetable, and it isn't being mapped into an
1437	 * early_ioremap fixmap slot as a freshly allocated page, make sure
1438	 * it is RO.
1439	 */
1440	if (((!is_early_ioremap_ptep(ptep) &&
1441			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1442			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1443		pte = pte_wrprotect(pte);
1444
1445	return pte;
1446}
1447#endif /* CONFIG_X86_64 */
1448
1449/* Init-time set_pte while constructing initial pagetables, which
1450   doesn't allow RO pagetable pages to be remapped RW */
1451static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1452{
1453	pte = mask_rw_pte(ptep, pte);
1454
1455	xen_set_pte(ptep, pte);
1456}
1457
1458static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1459{
1460	struct mmuext_op op;
1461	op.cmd = cmd;
1462	op.arg1.mfn = pfn_to_mfn(pfn);
1463	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1464		BUG();
1465}
1466
1467/* Early in boot, while setting up the initial pagetable, assume
1468   everything is pinned. */
1469static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1470{
1471#ifdef CONFIG_FLATMEM
1472	BUG_ON(mem_map);	/* should only be used early */
1473#endif
1474	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1475	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1476}
1477
1478/* Used for pmd and pud */
1479static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1480{
1481#ifdef CONFIG_FLATMEM
1482	BUG_ON(mem_map);	/* should only be used early */
1483#endif
1484	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1485}
1486
1487/* Early release_pte assumes that all pts are pinned, since there's
1488   only init_mm and anything attached to that is pinned. */
1489static void __init xen_release_pte_init(unsigned long pfn)
1490{
1491	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1492	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1493}
1494
1495static void __init xen_release_pmd_init(unsigned long pfn)
1496{
1497	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1498}
1499
1500static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1501{
1502	struct multicall_space mcs;
1503	struct mmuext_op *op;
1504
1505	mcs = __xen_mc_entry(sizeof(*op));
1506	op = mcs.args;
1507	op->cmd = cmd;
1508	op->arg1.mfn = pfn_to_mfn(pfn);
1509
1510	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1511}
1512
1513static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1514{
1515	struct multicall_space mcs;
1516	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1517
1518	mcs = __xen_mc_entry(0);
1519	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1520				pfn_pte(pfn, prot), 0);
1521}
1522
1523/* This needs to make sure the new pte page is pinned iff its being
1524   attached to a pinned pagetable. */
1525static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1526				    unsigned level)
1527{
1528	bool pinned = PagePinned(virt_to_page(mm->pgd));
1529
1530	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1531
1532	if (pinned) {
1533		struct page *page = pfn_to_page(pfn);
1534
1535		SetPagePinned(page);
1536
1537		if (!PageHighMem(page)) {
1538			xen_mc_batch();
1539
1540			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1541
1542			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1543				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1544
1545			xen_mc_issue(PARAVIRT_LAZY_MMU);
1546		} else {
1547			/* make sure there are no stray mappings of
1548			   this page */
1549			kmap_flush_unused();
1550		}
1551	}
1552}
1553
1554static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1555{
1556	xen_alloc_ptpage(mm, pfn, PT_PTE);
1557}
1558
1559static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1560{
1561	xen_alloc_ptpage(mm, pfn, PT_PMD);
1562}
1563
1564/* This should never happen until we're OK to use struct page */
1565static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1566{
1567	struct page *page = pfn_to_page(pfn);
1568	bool pinned = PagePinned(page);
1569
1570	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1571
1572	if (pinned) {
1573		if (!PageHighMem(page)) {
1574			xen_mc_batch();
1575
1576			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1577				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1578
1579			__set_pfn_prot(pfn, PAGE_KERNEL);
1580
1581			xen_mc_issue(PARAVIRT_LAZY_MMU);
1582		}
1583		ClearPagePinned(page);
1584	}
1585}
1586
1587static void xen_release_pte(unsigned long pfn)
1588{
1589	xen_release_ptpage(pfn, PT_PTE);
1590}
1591
1592static void xen_release_pmd(unsigned long pfn)
1593{
1594	xen_release_ptpage(pfn, PT_PMD);
1595}
1596
1597#if PAGETABLE_LEVELS == 4
1598static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1599{
1600	xen_alloc_ptpage(mm, pfn, PT_PUD);
1601}
1602
1603static void xen_release_pud(unsigned long pfn)
1604{
1605	xen_release_ptpage(pfn, PT_PUD);
1606}
1607#endif
1608
1609void __init xen_reserve_top(void)
1610{
1611#ifdef CONFIG_X86_32
1612	unsigned long top = HYPERVISOR_VIRT_START;
1613	struct xen_platform_parameters pp;
1614
1615	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1616		top = pp.virt_start;
1617
1618	reserve_top_address(-top);
1619#endif	/* CONFIG_X86_32 */
1620}
1621
1622/*
1623 * Like __va(), but returns address in the kernel mapping (which is
1624 * all we have until the physical memory mapping has been set up.
1625 */
1626static void *__ka(phys_addr_t paddr)
1627{
1628#ifdef CONFIG_X86_64
1629	return (void *)(paddr + __START_KERNEL_map);
1630#else
1631	return __va(paddr);
1632#endif
1633}
1634
1635/* Convert a machine address to physical address */
1636static unsigned long m2p(phys_addr_t maddr)
1637{
1638	phys_addr_t paddr;
1639
1640	maddr &= PTE_PFN_MASK;
1641	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1642
1643	return paddr;
1644}
1645
1646/* Convert a machine address to kernel virtual */
1647static void *m2v(phys_addr_t maddr)
1648{
1649	return __ka(m2p(maddr));
1650}
1651
1652/* Set the page permissions on an identity-mapped pages */
1653static void set_page_prot(void *addr, pgprot_t prot)
1654{
1655	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1656	pte_t pte = pfn_pte(pfn, prot);
1657
1658	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1659		BUG();
1660}
1661
1662static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1663{
1664	unsigned pmdidx, pteidx;
1665	unsigned ident_pte;
1666	unsigned long pfn;
1667
1668	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1669				      PAGE_SIZE);
1670
1671	ident_pte = 0;
1672	pfn = 0;
1673	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1674		pte_t *pte_page;
1675
1676		/* Reuse or allocate a page of ptes */
1677		if (pmd_present(pmd[pmdidx]))
1678			pte_page = m2v(pmd[pmdidx].pmd);
1679		else {
1680			/* Check for free pte pages */
1681			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1682				break;
1683
1684			pte_page = &level1_ident_pgt[ident_pte];
1685			ident_pte += PTRS_PER_PTE;
1686
1687			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1688		}
1689
1690		/* Install mappings */
1691		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1692			pte_t pte;
1693
1694#ifdef CONFIG_X86_32
1695			if (pfn > max_pfn_mapped)
1696				max_pfn_mapped = pfn;
1697#endif
1698
1699			if (!pte_none(pte_page[pteidx]))
1700				continue;
1701
1702			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1703			pte_page[pteidx] = pte;
1704		}
1705	}
1706
1707	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1708		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1709
1710	set_page_prot(pmd, PAGE_KERNEL_RO);
1711}
1712
1713void __init xen_setup_machphys_mapping(void)
1714{
1715	struct xen_machphys_mapping mapping;
1716
1717	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1718		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1719		machine_to_phys_nr = mapping.max_mfn + 1;
1720	} else {
1721		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1722	}
1723#ifdef CONFIG_X86_32
1724	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1725		< machine_to_phys_mapping);
1726#endif
1727}
1728
1729#ifdef CONFIG_X86_64
1730static void convert_pfn_mfn(void *v)
1731{
1732	pte_t *pte = v;
1733	int i;
1734
1735	/* All levels are converted the same way, so just treat them
1736	   as ptes. */
1737	for (i = 0; i < PTRS_PER_PTE; i++)
1738		pte[i] = xen_make_pte(pte[i].pte);
1739}
1740
1741/*
1742 * Set up the initial kernel pagetable.
1743 *
1744 * We can construct this by grafting the Xen provided pagetable into
1745 * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1746 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1747 * means that only the kernel has a physical mapping to start with -
1748 * but that's enough to get __va working.  We need to fill in the rest
1749 * of the physical mapping once some sort of allocator has been set
1750 * up.
1751 */
1752pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1753					 unsigned long max_pfn)
1754{
1755	pud_t *l3;
1756	pmd_t *l2;
1757
1758	/* max_pfn_mapped is the last pfn mapped in the initial memory
1759	 * mappings. Considering that on Xen after the kernel mappings we
1760	 * have the mappings of some pages that don't exist in pfn space, we
1761	 * set max_pfn_mapped to the last real pfn mapped. */
1762	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1763
1764	/* Zap identity mapping */
1765	init_level4_pgt[0] = __pgd(0);
1766
1767	/* Pre-constructed entries are in pfn, so convert to mfn */
1768	convert_pfn_mfn(init_level4_pgt);
1769	convert_pfn_mfn(level3_ident_pgt);
1770	convert_pfn_mfn(level3_kernel_pgt);
1771
1772	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1773	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1774
1775	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1776	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1777
1778	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1779	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1780	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1781
1782	/* Set up identity map */
1783	xen_map_identity_early(level2_ident_pgt, max_pfn);
1784
1785	/* Make pagetable pieces RO */
1786	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1787	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1788	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1789	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1790	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1791	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1792
1793	/* Pin down new L4 */
1794	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1795			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1796
1797	/* Unpin Xen-provided one */
1798	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1799
1800	/* Switch over */
1801	pgd = init_level4_pgt;
1802
1803	/*
1804	 * At this stage there can be no user pgd, and no page
1805	 * structure to attach it to, so make sure we just set kernel
1806	 * pgd.
1807	 */
1808	xen_mc_batch();
1809	__xen_write_cr3(true, __pa(pgd));
1810	xen_mc_issue(PARAVIRT_LAZY_CPU);
1811
1812	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1813		      __pa(xen_start_info->pt_base +
1814			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1815		      "XEN PAGETABLES");
1816
1817	return pgd;
1818}
1819#else	/* !CONFIG_X86_64 */
1820static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1821static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1822
1823static void __init xen_write_cr3_init(unsigned long cr3)
1824{
1825	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1826
1827	BUG_ON(read_cr3() != __pa(initial_page_table));
1828	BUG_ON(cr3 != __pa(swapper_pg_dir));
1829
1830	/*
1831	 * We are switching to swapper_pg_dir for the first time (from
1832	 * initial_page_table) and therefore need to mark that page
1833	 * read-only and then pin it.
1834	 *
1835	 * Xen disallows sharing of kernel PMDs for PAE
1836	 * guests. Therefore we must copy the kernel PMD from
1837	 * initial_page_table into a new kernel PMD to be used in
1838	 * swapper_pg_dir.
1839	 */
1840	swapper_kernel_pmd =
1841		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1842	memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1843	       sizeof(pmd_t) * PTRS_PER_PMD);
1844	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1845		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1846	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1847
1848	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1849	xen_write_cr3(cr3);
1850	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1851
1852	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1853			  PFN_DOWN(__pa(initial_page_table)));
1854	set_page_prot(initial_page_table, PAGE_KERNEL);
1855	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1856
1857	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1858}
1859
1860pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1861					 unsigned long max_pfn)
1862{
1863	pmd_t *kernel_pmd;
1864
1865	initial_kernel_pmd =
1866		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1867
1868	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1869				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1870				  512*1024);
1871
1872	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1873	memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1874
1875	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1876
1877	memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1878	initial_page_table[KERNEL_PGD_BOUNDARY] =
1879		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1880
1881	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1882	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1883	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1884
1885	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1886
1887	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1888			  PFN_DOWN(__pa(initial_page_table)));
1889	xen_write_cr3(__pa(initial_page_table));
1890
1891	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1892		      __pa(xen_start_info->pt_base +
1893			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1894		      "XEN PAGETABLES");
1895
1896	return initial_page_table;
1897}
1898#endif	/* CONFIG_X86_64 */
1899
1900static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1901
1902static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1903{
1904	pte_t pte;
1905
1906	phys >>= PAGE_SHIFT;
1907
1908	switch (idx) {
1909	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1910#ifdef CONFIG_X86_F00F_BUG
1911	case FIX_F00F_IDT:
1912#endif
1913#ifdef CONFIG_X86_32
1914	case FIX_WP_TEST:
1915	case FIX_VDSO:
1916# ifdef CONFIG_HIGHMEM
1917	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1918# endif
1919#else
1920	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1921	case VVAR_PAGE:
1922#endif
1923	case FIX_TEXT_POKE0:
1924	case FIX_TEXT_POKE1:
1925		/* All local page mappings */
1926		pte = pfn_pte(phys, prot);
1927		break;
1928
1929#ifdef CONFIG_X86_LOCAL_APIC
1930	case FIX_APIC_BASE:	/* maps dummy local APIC */
1931		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1932		break;
1933#endif
1934
1935#ifdef CONFIG_X86_IO_APIC
1936	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1937		/*
1938		 * We just don't map the IO APIC - all access is via
1939		 * hypercalls.  Keep the address in the pte for reference.
1940		 */
1941		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1942		break;
1943#endif
1944
1945	case FIX_PARAVIRT_BOOTMAP:
1946		/* This is an MFN, but it isn't an IO mapping from the
1947		   IO domain */
1948		pte = mfn_pte(phys, prot);
1949		break;
1950
1951	default:
1952		/* By default, set_fixmap is used for hardware mappings */
1953		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1954		break;
1955	}
1956
1957	__native_set_fixmap(idx, pte);
1958
1959#ifdef CONFIG_X86_64
1960	/* Replicate changes to map the vsyscall page into the user
1961	   pagetable vsyscall mapping. */
1962	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1963	    idx == VVAR_PAGE) {
1964		unsigned long vaddr = __fix_to_virt(idx);
1965		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1966	}
1967#endif
1968}
1969
1970void __init xen_ident_map_ISA(void)
1971{
1972	unsigned long pa;
1973
1974	/*
1975	 * If we're dom0, then linear map the ISA machine addresses into
1976	 * the kernel's address space.
1977	 */
1978	if (!xen_initial_domain())
1979		return;
1980
1981	xen_raw_printk("Xen: setup ISA identity maps\n");
1982
1983	for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1984		pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1985
1986		if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1987			BUG();
1988	}
1989
1990	xen_flush_tlb();
1991}
1992
1993static void __init xen_post_allocator_init(void)
1994{
1995#ifdef CONFIG_XEN_DEBUG
1996	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
1997#endif
1998	pv_mmu_ops.set_pte = xen_set_pte;
1999	pv_mmu_ops.set_pmd = xen_set_pmd;
2000	pv_mmu_ops.set_pud = xen_set_pud;
2001#if PAGETABLE_LEVELS == 4
2002	pv_mmu_ops.set_pgd = xen_set_pgd;
2003#endif
2004
2005	/* This will work as long as patching hasn't happened yet
2006	   (which it hasn't) */
2007	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2008	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2009	pv_mmu_ops.release_pte = xen_release_pte;
2010	pv_mmu_ops.release_pmd = xen_release_pmd;
2011#if PAGETABLE_LEVELS == 4
2012	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2013	pv_mmu_ops.release_pud = xen_release_pud;
2014#endif
2015
2016#ifdef CONFIG_X86_64
2017	SetPagePinned(virt_to_page(level3_user_vsyscall));
2018#endif
2019	xen_mark_init_mm_pinned();
2020}
2021
2022static void xen_leave_lazy_mmu(void)
2023{
2024	preempt_disable();
2025	xen_mc_flush();
2026	paravirt_leave_lazy_mmu();
2027	preempt_enable();
2028}
2029
2030static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2031	.read_cr2 = xen_read_cr2,
2032	.write_cr2 = xen_write_cr2,
2033
2034	.read_cr3 = xen_read_cr3,
2035#ifdef CONFIG_X86_32
2036	.write_cr3 = xen_write_cr3_init,
2037#else
2038	.write_cr3 = xen_write_cr3,
2039#endif
2040
2041	.flush_tlb_user = xen_flush_tlb,
2042	.flush_tlb_kernel = xen_flush_tlb,
2043	.flush_tlb_single = xen_flush_tlb_single,
2044	.flush_tlb_others = xen_flush_tlb_others,
2045
2046	.pte_update = paravirt_nop,
2047	.pte_update_defer = paravirt_nop,
2048
2049	.pgd_alloc = xen_pgd_alloc,
2050	.pgd_free = xen_pgd_free,
2051
2052	.alloc_pte = xen_alloc_pte_init,
2053	.release_pte = xen_release_pte_init,
2054	.alloc_pmd = xen_alloc_pmd_init,
2055	.release_pmd = xen_release_pmd_init,
2056
2057	.set_pte = xen_set_pte_init,
2058	.set_pte_at = xen_set_pte_at,
2059	.set_pmd = xen_set_pmd_hyper,
2060
2061	.ptep_modify_prot_start = __ptep_modify_prot_start,
2062	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2063
2064	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2065	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2066
2067	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2068	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2069
2070#ifdef CONFIG_X86_PAE
2071	.set_pte_atomic = xen_set_pte_atomic,
2072	.pte_clear = xen_pte_clear,
2073	.pmd_clear = xen_pmd_clear,
2074#endif	/* CONFIG_X86_PAE */
2075	.set_pud = xen_set_pud_hyper,
2076
2077	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2078	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2079
2080#if PAGETABLE_LEVELS == 4
2081	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2082	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2083	.set_pgd = xen_set_pgd_hyper,
2084
2085	.alloc_pud = xen_alloc_pmd_init,
2086	.release_pud = xen_release_pmd_init,
2087#endif	/* PAGETABLE_LEVELS == 4 */
2088
2089	.activate_mm = xen_activate_mm,
2090	.dup_mmap = xen_dup_mmap,
2091	.exit_mmap = xen_exit_mmap,
2092
2093	.lazy_mode = {
2094		.enter = paravirt_enter_lazy_mmu,
2095		.leave = xen_leave_lazy_mmu,
2096	},
2097
2098	.set_fixmap = xen_set_fixmap,
2099};
2100
2101void __init xen_init_mmu_ops(void)
2102{
2103	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2104	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2105	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2106	pv_mmu_ops = xen_mmu_ops;
2107
2108	memset(dummy_mapping, 0xff, PAGE_SIZE);
2109}
2110
2111/* Protected by xen_reservation_lock. */
2112#define MAX_CONTIG_ORDER 9 /* 2MB */
2113static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2114
2115#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2116static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2117				unsigned long *in_frames,
2118				unsigned long *out_frames)
2119{
2120	int i;
2121	struct multicall_space mcs;
2122
2123	xen_mc_batch();
2124	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2125		mcs = __xen_mc_entry(0);
2126
2127		if (in_frames)
2128			in_frames[i] = virt_to_mfn(vaddr);
2129
2130		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2131		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2132
2133		if (out_frames)
2134			out_frames[i] = virt_to_pfn(vaddr);
2135	}
2136	xen_mc_issue(0);
2137}
2138
2139/*
2140 * Update the pfn-to-mfn mappings for a virtual address range, either to
2141 * point to an array of mfns, or contiguously from a single starting
2142 * mfn.
2143 */
2144static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2145				     unsigned long *mfns,
2146				     unsigned long first_mfn)
2147{
2148	unsigned i, limit;
2149	unsigned long mfn;
2150
2151	xen_mc_batch();
2152
2153	limit = 1u << order;
2154	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2155		struct multicall_space mcs;
2156		unsigned flags;
2157
2158		mcs = __xen_mc_entry(0);
2159		if (mfns)
2160			mfn = mfns[i];
2161		else
2162			mfn = first_mfn + i;
2163
2164		if (i < (limit - 1))
2165			flags = 0;
2166		else {
2167			if (order == 0)
2168				flags = UVMF_INVLPG | UVMF_ALL;
2169			else
2170				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2171		}
2172
2173		MULTI_update_va_mapping(mcs.mc, vaddr,
2174				mfn_pte(mfn, PAGE_KERNEL), flags);
2175
2176		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2177	}
2178
2179	xen_mc_issue(0);
2180}
2181
2182/*
2183 * Perform the hypercall to exchange a region of our pfns to point to
2184 * memory with the required contiguous alignment.  Takes the pfns as
2185 * input, and populates mfns as output.
2186 *
2187 * Returns a success code indicating whether the hypervisor was able to
2188 * satisfy the request or not.
2189 */
2190static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2191			       unsigned long *pfns_in,
2192			       unsigned long extents_out,
2193			       unsigned int order_out,
2194			       unsigned long *mfns_out,
2195			       unsigned int address_bits)
2196{
2197	long rc;
2198	int success;
2199
2200	struct xen_memory_exchange exchange = {
2201		.in = {
2202			.nr_extents   = extents_in,
2203			.extent_order = order_in,
2204			.extent_start = pfns_in,
2205			.domid        = DOMID_SELF
2206		},
2207		.out = {
2208			.nr_extents   = extents_out,
2209			.extent_order = order_out,
2210			.extent_start = mfns_out,
2211			.address_bits = address_bits,
2212			.domid        = DOMID_SELF
2213		}
2214	};
2215
2216	BUG_ON(extents_in << order_in != extents_out << order_out);
2217
2218	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2219	success = (exchange.nr_exchanged == extents_in);
2220
2221	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2222	BUG_ON(success && (rc != 0));
2223
2224	return success;
2225}
2226
2227int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2228				 unsigned int address_bits)
2229{
2230	unsigned long *in_frames = discontig_frames, out_frame;
2231	unsigned long  flags;
2232	int            success;
2233
2234	/*
2235	 * Currently an auto-translated guest will not perform I/O, nor will
2236	 * it require PAE page directories below 4GB. Therefore any calls to
2237	 * this function are redundant and can be ignored.
2238	 */
2239
2240	if (xen_feature(XENFEAT_auto_translated_physmap))
2241		return 0;
2242
2243	if (unlikely(order > MAX_CONTIG_ORDER))
2244		return -ENOMEM;
2245
2246	memset((void *) vstart, 0, PAGE_SIZE << order);
2247
2248	spin_lock_irqsave(&xen_reservation_lock, flags);
2249
2250	/* 1. Zap current PTEs, remembering MFNs. */
2251	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2252
2253	/* 2. Get a new contiguous memory extent. */
2254	out_frame = virt_to_pfn(vstart);
2255	success = xen_exchange_memory(1UL << order, 0, in_frames,
2256				      1, order, &out_frame,
2257				      address_bits);
2258
2259	/* 3. Map the new extent in place of old pages. */
2260	if (success)
2261		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2262	else
2263		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2264
2265	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2266
2267	return success ? 0 : -ENOMEM;
2268}
2269EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2270
2271void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2272{
2273	unsigned long *out_frames = discontig_frames, in_frame;
2274	unsigned long  flags;
2275	int success;
2276
2277	if (xen_feature(XENFEAT_auto_translated_physmap))
2278		return;
2279
2280	if (unlikely(order > MAX_CONTIG_ORDER))
2281		return;
2282
2283	memset((void *) vstart, 0, PAGE_SIZE << order);
2284
2285	spin_lock_irqsave(&xen_reservation_lock, flags);
2286
2287	/* 1. Find start MFN of contiguous extent. */
2288	in_frame = virt_to_mfn(vstart);
2289
2290	/* 2. Zap current PTEs. */
2291	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2292
2293	/* 3. Do the exchange for non-contiguous MFNs. */
2294	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2295					0, out_frames, 0);
2296
2297	/* 4. Map new pages in place of old pages. */
2298	if (success)
2299		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2300	else
2301		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2302
2303	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2304}
2305EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2306
2307#ifdef CONFIG_XEN_PVHVM
2308static void xen_hvm_exit_mmap(struct mm_struct *mm)
2309{
2310	struct xen_hvm_pagetable_dying a;
2311	int rc;
2312
2313	a.domid = DOMID_SELF;
2314	a.gpa = __pa(mm->pgd);
2315	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2316	WARN_ON_ONCE(rc < 0);
2317}
2318
2319static int is_pagetable_dying_supported(void)
2320{
2321	struct xen_hvm_pagetable_dying a;
2322	int rc = 0;
2323
2324	a.domid = DOMID_SELF;
2325	a.gpa = 0x00;
2326	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2327	if (rc < 0) {
2328		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2329		return 0;
2330	}
2331	return 1;
2332}
2333
2334void __init xen_hvm_init_mmu_ops(void)
2335{
2336	if (is_pagetable_dying_supported())
2337		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2338}
2339#endif
2340
2341#define REMAP_BATCH_SIZE 16
2342
2343struct remap_data {
2344	unsigned long mfn;
2345	pgprot_t prot;
2346	struct mmu_update *mmu_update;
2347};
2348
2349static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2350				 unsigned long addr, void *data)
2351{
2352	struct remap_data *rmd = data;
2353	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2354
2355	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2356	rmd->mmu_update->val = pte_val_ma(pte);
2357	rmd->mmu_update++;
2358
2359	return 0;
2360}
2361
2362int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2363			       unsigned long addr,
2364			       unsigned long mfn, int nr,
2365			       pgprot_t prot, unsigned domid)
2366{
2367	struct remap_data rmd;
2368	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2369	int batch;
2370	unsigned long range;
2371	int err = 0;
2372
2373	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2374
2375	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2376				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2377
2378	rmd.mfn = mfn;
2379	rmd.prot = prot;
2380
2381	while (nr) {
2382		batch = min(REMAP_BATCH_SIZE, nr);
2383		range = (unsigned long)batch << PAGE_SHIFT;
2384
2385		rmd.mmu_update = mmu_update;
2386		err = apply_to_page_range(vma->vm_mm, addr, range,
2387					  remap_area_mfn_pte_fn, &rmd);
2388		if (err)
2389			goto out;
2390
2391		err = -EFAULT;
2392		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2393			goto out;
2394
2395		nr -= batch;
2396		addr += range;
2397	}
2398
2399	err = 0;
2400out:
2401
2402	flush_tlb_all();
2403
2404	return err;
2405}
2406EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2407
2408#ifdef CONFIG_XEN_DEBUG_FS
2409static int p2m_dump_open(struct inode *inode, struct file *filp)
2410{
2411	return single_open(filp, p2m_dump_show, NULL);
2412}
2413
2414static const struct file_operations p2m_dump_fops = {
2415	.open		= p2m_dump_open,
2416	.read		= seq_read,
2417	.llseek		= seq_lseek,
2418	.release	= single_release,
2419};
2420#endif /* CONFIG_XEN_DEBUG_FS */