Linux Audio

Check our new training course

Loading...
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * x86 instruction analysis
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Copyright (C) IBM Corporation, 2002, 2004, 2009
  6 */
  7
  8#include <linux/kernel.h>
  9#ifdef __KERNEL__
 10#include <linux/string.h>
 11#else
 12#include <string.h>
 13#endif
 14#include <asm/inat.h> /*__ignore_sync_check__ */
 15#include <asm/insn.h> /* __ignore_sync_check__ */
 16#include <asm/unaligned.h> /* __ignore_sync_check__ */
 17
 18#include <linux/errno.h>
 19#include <linux/kconfig.h>
 20
 21#include <asm/emulate_prefix.h> /* __ignore_sync_check__ */
 22
 23#define leXX_to_cpu(t, r)						\
 24({									\
 25	__typeof__(t) v;						\
 26	switch (sizeof(t)) {						\
 27	case 4: v = le32_to_cpu(r); break;				\
 28	case 2: v = le16_to_cpu(r); break;				\
 29	case 1:	v = r; break;						\
 30	default:							\
 31		BUILD_BUG(); break;					\
 32	}								\
 33	v;								\
 34})
 35
 36/* Verify next sizeof(t) bytes can be on the same instruction */
 37#define validate_next(t, insn, n)	\
 38	((insn)->next_byte + sizeof(t) + n <= (insn)->end_kaddr)
 39
 40#define __get_next(t, insn)	\
 41	({ t r = get_unaligned((t *)(insn)->next_byte); (insn)->next_byte += sizeof(t); leXX_to_cpu(t, r); })
 42
 43#define __peek_nbyte_next(t, insn, n)	\
 44	({ t r = get_unaligned((t *)(insn)->next_byte + n); leXX_to_cpu(t, r); })
 45
 46#define get_next(t, insn)	\
 47	({ if (unlikely(!validate_next(t, insn, 0))) goto err_out; __get_next(t, insn); })
 48
 49#define peek_nbyte_next(t, insn, n)	\
 50	({ if (unlikely(!validate_next(t, insn, n))) goto err_out; __peek_nbyte_next(t, insn, n); })
 51
 52#define peek_next(t, insn)	peek_nbyte_next(t, insn, 0)
 
 53
 54/**
 55 * insn_init() - initialize struct insn
 56 * @insn:	&struct insn to be initialized
 57 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 58 * @buf_len:	length of the insn buffer at @kaddr
 59 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 60 */
 61void insn_init(struct insn *insn, const void *kaddr, int buf_len, int x86_64)
 62{
 63	/*
 64	 * Instructions longer than MAX_INSN_SIZE (15 bytes) are invalid
 65	 * even if the input buffer is long enough to hold them.
 66	 */
 67	if (buf_len > MAX_INSN_SIZE)
 68		buf_len = MAX_INSN_SIZE;
 69
 70	memset(insn, 0, sizeof(*insn));
 71	insn->kaddr = kaddr;
 72	insn->end_kaddr = kaddr + buf_len;
 73	insn->next_byte = kaddr;
 74	insn->x86_64 = x86_64 ? 1 : 0;
 75	insn->opnd_bytes = 4;
 76	if (x86_64)
 77		insn->addr_bytes = 8;
 78	else
 79		insn->addr_bytes = 4;
 80}
 81
 82static const insn_byte_t xen_prefix[] = { __XEN_EMULATE_PREFIX };
 83static const insn_byte_t kvm_prefix[] = { __KVM_EMULATE_PREFIX };
 84
 85static int __insn_get_emulate_prefix(struct insn *insn,
 86				     const insn_byte_t *prefix, size_t len)
 87{
 88	size_t i;
 89
 90	for (i = 0; i < len; i++) {
 91		if (peek_nbyte_next(insn_byte_t, insn, i) != prefix[i])
 92			goto err_out;
 93	}
 94
 95	insn->emulate_prefix_size = len;
 96	insn->next_byte += len;
 97
 98	return 1;
 99
100err_out:
101	return 0;
102}
103
104static void insn_get_emulate_prefix(struct insn *insn)
105{
106	if (__insn_get_emulate_prefix(insn, xen_prefix, sizeof(xen_prefix)))
107		return;
108
109	__insn_get_emulate_prefix(insn, kvm_prefix, sizeof(kvm_prefix));
110}
111
112/**
113 * insn_get_prefixes - scan x86 instruction prefix bytes
114 * @insn:	&struct insn containing instruction
115 *
116 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
117 * to point to the (first) opcode.  No effect if @insn->prefixes.got
118 * is already set.
119 *
120 * * Returns:
121 * 0:  on success
122 * < 0: on error
123 */
124int insn_get_prefixes(struct insn *insn)
125{
126	struct insn_field *prefixes = &insn->prefixes;
127	insn_attr_t attr;
128	insn_byte_t b, lb;
129	int i, nb;
130
131	if (prefixes->got)
132		return 0;
133
134	insn_get_emulate_prefix(insn);
135
136	nb = 0;
137	lb = 0;
138	b = peek_next(insn_byte_t, insn);
139	attr = inat_get_opcode_attribute(b);
140	while (inat_is_legacy_prefix(attr)) {
141		/* Skip if same prefix */
142		for (i = 0; i < nb; i++)
143			if (prefixes->bytes[i] == b)
144				goto found;
145		if (nb == 4)
146			/* Invalid instruction */
147			break;
148		prefixes->bytes[nb++] = b;
149		if (inat_is_address_size_prefix(attr)) {
150			/* address size switches 2/4 or 4/8 */
151			if (insn->x86_64)
152				insn->addr_bytes ^= 12;
153			else
154				insn->addr_bytes ^= 6;
155		} else if (inat_is_operand_size_prefix(attr)) {
156			/* oprand size switches 2/4 */
157			insn->opnd_bytes ^= 6;
158		}
159found:
160		prefixes->nbytes++;
161		insn->next_byte++;
162		lb = b;
163		b = peek_next(insn_byte_t, insn);
164		attr = inat_get_opcode_attribute(b);
165	}
166	/* Set the last prefix */
167	if (lb && lb != insn->prefixes.bytes[3]) {
168		if (unlikely(insn->prefixes.bytes[3])) {
169			/* Swap the last prefix */
170			b = insn->prefixes.bytes[3];
171			for (i = 0; i < nb; i++)
172				if (prefixes->bytes[i] == lb)
173					insn_set_byte(prefixes, i, b);
174		}
175		insn_set_byte(&insn->prefixes, 3, lb);
176	}
177
178	/* Decode REX prefix */
179	if (insn->x86_64) {
180		b = peek_next(insn_byte_t, insn);
181		attr = inat_get_opcode_attribute(b);
182		if (inat_is_rex_prefix(attr)) {
183			insn_field_set(&insn->rex_prefix, b, 1);
 
184			insn->next_byte++;
185			if (X86_REX_W(b))
186				/* REX.W overrides opnd_size */
187				insn->opnd_bytes = 8;
188		}
189	}
190	insn->rex_prefix.got = 1;
191
192	/* Decode VEX prefix */
193	b = peek_next(insn_byte_t, insn);
194	attr = inat_get_opcode_attribute(b);
195	if (inat_is_vex_prefix(attr)) {
196		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
197		if (!insn->x86_64) {
198			/*
199			 * In 32-bits mode, if the [7:6] bits (mod bits of
200			 * ModRM) on the second byte are not 11b, it is
201			 * LDS or LES or BOUND.
202			 */
203			if (X86_MODRM_MOD(b2) != 3)
204				goto vex_end;
205		}
206		insn_set_byte(&insn->vex_prefix, 0, b);
207		insn_set_byte(&insn->vex_prefix, 1, b2);
208		if (inat_is_evex_prefix(attr)) {
209			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
210			insn_set_byte(&insn->vex_prefix, 2, b2);
211			b2 = peek_nbyte_next(insn_byte_t, insn, 3);
212			insn_set_byte(&insn->vex_prefix, 3, b2);
213			insn->vex_prefix.nbytes = 4;
214			insn->next_byte += 4;
215			if (insn->x86_64 && X86_VEX_W(b2))
216				/* VEX.W overrides opnd_size */
217				insn->opnd_bytes = 8;
218		} else if (inat_is_vex3_prefix(attr)) {
219			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
220			insn_set_byte(&insn->vex_prefix, 2, b2);
221			insn->vex_prefix.nbytes = 3;
222			insn->next_byte += 3;
223			if (insn->x86_64 && X86_VEX_W(b2))
224				/* VEX.W overrides opnd_size */
225				insn->opnd_bytes = 8;
226		} else {
227			/*
228			 * For VEX2, fake VEX3-like byte#2.
229			 * Makes it easier to decode vex.W, vex.vvvv,
230			 * vex.L and vex.pp. Masking with 0x7f sets vex.W == 0.
231			 */
232			insn_set_byte(&insn->vex_prefix, 2, b2 & 0x7f);
233			insn->vex_prefix.nbytes = 2;
234			insn->next_byte += 2;
235		}
236	}
237vex_end:
238	insn->vex_prefix.got = 1;
239
240	prefixes->got = 1;
241
242	return 0;
243
244err_out:
245	return -ENODATA;
246}
247
248/**
249 * insn_get_opcode - collect opcode(s)
250 * @insn:	&struct insn containing instruction
251 *
252 * Populates @insn->opcode, updates @insn->next_byte to point past the
253 * opcode byte(s), and set @insn->attr (except for groups).
254 * If necessary, first collects any preceding (prefix) bytes.
255 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
256 * is already 1.
257 *
258 * Returns:
259 * 0:  on success
260 * < 0: on error
261 */
262int insn_get_opcode(struct insn *insn)
263{
264	struct insn_field *opcode = &insn->opcode;
265	int pfx_id, ret;
266	insn_byte_t op;
267
268	if (opcode->got)
269		return 0;
270
271	if (!insn->prefixes.got) {
272		ret = insn_get_prefixes(insn);
273		if (ret)
274			return ret;
275	}
276
277	/* Get first opcode */
278	op = get_next(insn_byte_t, insn);
279	insn_set_byte(opcode, 0, op);
280	opcode->nbytes = 1;
281
282	/* Check if there is VEX prefix or not */
283	if (insn_is_avx(insn)) {
284		insn_byte_t m, p;
285		m = insn_vex_m_bits(insn);
286		p = insn_vex_p_bits(insn);
287		insn->attr = inat_get_avx_attribute(op, m, p);
288		if ((inat_must_evex(insn->attr) && !insn_is_evex(insn)) ||
289		    (!inat_accept_vex(insn->attr) &&
290		     !inat_is_group(insn->attr))) {
291			/* This instruction is bad */
292			insn->attr = 0;
293			return -EINVAL;
294		}
295		/* VEX has only 1 byte for opcode */
296		goto end;
297	}
298
299	insn->attr = inat_get_opcode_attribute(op);
300	while (inat_is_escape(insn->attr)) {
301		/* Get escaped opcode */
302		op = get_next(insn_byte_t, insn);
303		opcode->bytes[opcode->nbytes++] = op;
304		pfx_id = insn_last_prefix_id(insn);
305		insn->attr = inat_get_escape_attribute(op, pfx_id, insn->attr);
306	}
307
308	if (inat_must_vex(insn->attr)) {
309		/* This instruction is bad */
310		insn->attr = 0;
311		return -EINVAL;
312	}
 
 
313end:
314	opcode->got = 1;
315	return 0;
316
317err_out:
318	return -ENODATA;
319}
320
321/**
322 * insn_get_modrm - collect ModRM byte, if any
323 * @insn:	&struct insn containing instruction
324 *
325 * Populates @insn->modrm and updates @insn->next_byte to point past the
326 * ModRM byte, if any.  If necessary, first collects the preceding bytes
327 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
328 *
329 * Returns:
330 * 0:  on success
331 * < 0: on error
332 */
333int insn_get_modrm(struct insn *insn)
334{
335	struct insn_field *modrm = &insn->modrm;
336	insn_byte_t pfx_id, mod;
337	int ret;
338
339	if (modrm->got)
340		return 0;
341
342	if (!insn->opcode.got) {
343		ret = insn_get_opcode(insn);
344		if (ret)
345			return ret;
346	}
347
348	if (inat_has_modrm(insn->attr)) {
349		mod = get_next(insn_byte_t, insn);
350		insn_field_set(modrm, mod, 1);
 
351		if (inat_is_group(insn->attr)) {
352			pfx_id = insn_last_prefix_id(insn);
353			insn->attr = inat_get_group_attribute(mod, pfx_id,
354							      insn->attr);
355			if (insn_is_avx(insn) && !inat_accept_vex(insn->attr)) {
356				/* Bad insn */
357				insn->attr = 0;
358				return -EINVAL;
359			}
360		}
361	}
362
363	if (insn->x86_64 && inat_is_force64(insn->attr))
364		insn->opnd_bytes = 8;
365
366	modrm->got = 1;
367	return 0;
368
369err_out:
370	return -ENODATA;
371}
372
373
374/**
375 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
376 * @insn:	&struct insn containing instruction
377 *
378 * If necessary, first collects the instruction up to and including the
379 * ModRM byte.  No effect if @insn->x86_64 is 0.
380 */
381int insn_rip_relative(struct insn *insn)
382{
383	struct insn_field *modrm = &insn->modrm;
384	int ret;
385
386	if (!insn->x86_64)
387		return 0;
388
389	if (!modrm->got) {
390		ret = insn_get_modrm(insn);
391		if (ret)
392			return 0;
393	}
394	/*
395	 * For rip-relative instructions, the mod field (top 2 bits)
396	 * is zero and the r/m field (bottom 3 bits) is 0x5.
397	 */
398	return (modrm->nbytes && (modrm->bytes[0] & 0xc7) == 0x5);
399}
400
401/**
402 * insn_get_sib() - Get the SIB byte of instruction
403 * @insn:	&struct insn containing instruction
404 *
405 * If necessary, first collects the instruction up to and including the
406 * ModRM byte.
407 *
408 * Returns:
409 * 0: if decoding succeeded
410 * < 0: otherwise.
411 */
412int insn_get_sib(struct insn *insn)
413{
414	insn_byte_t modrm;
415	int ret;
416
417	if (insn->sib.got)
418		return 0;
419
420	if (!insn->modrm.got) {
421		ret = insn_get_modrm(insn);
422		if (ret)
423			return ret;
424	}
425
426	if (insn->modrm.nbytes) {
427		modrm = insn->modrm.bytes[0];
428		if (insn->addr_bytes != 2 &&
429		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
430			insn_field_set(&insn->sib,
431				       get_next(insn_byte_t, insn), 1);
432		}
433	}
434	insn->sib.got = 1;
435
436	return 0;
437
438err_out:
439	return -ENODATA;
440}
441
442
443/**
444 * insn_get_displacement() - Get the displacement of instruction
445 * @insn:	&struct insn containing instruction
446 *
447 * If necessary, first collects the instruction up to and including the
448 * SIB byte.
449 * Displacement value is sign-expanded.
450 *
451 * * Returns:
452 * 0: if decoding succeeded
453 * < 0: otherwise.
454 */
455int insn_get_displacement(struct insn *insn)
456{
457	insn_byte_t mod, rm, base;
458	int ret;
459
460	if (insn->displacement.got)
461		return 0;
462
463	if (!insn->sib.got) {
464		ret = insn_get_sib(insn);
465		if (ret)
466			return ret;
467	}
468
469	if (insn->modrm.nbytes) {
470		/*
471		 * Interpreting the modrm byte:
472		 * mod = 00 - no displacement fields (exceptions below)
473		 * mod = 01 - 1-byte displacement field
474		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
475		 * 	address size = 2 (0x67 prefix in 32-bit mode)
476		 * mod = 11 - no memory operand
477		 *
478		 * If address size = 2...
479		 * mod = 00, r/m = 110 - displacement field is 2 bytes
480		 *
481		 * If address size != 2...
482		 * mod != 11, r/m = 100 - SIB byte exists
483		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
484		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
485		 * 	field is 4 bytes
486		 */
487		mod = X86_MODRM_MOD(insn->modrm.value);
488		rm = X86_MODRM_RM(insn->modrm.value);
489		base = X86_SIB_BASE(insn->sib.value);
490		if (mod == 3)
491			goto out;
492		if (mod == 1) {
493			insn_field_set(&insn->displacement,
494				       get_next(signed char, insn), 1);
495		} else if (insn->addr_bytes == 2) {
496			if ((mod == 0 && rm == 6) || mod == 2) {
497				insn_field_set(&insn->displacement,
498					       get_next(short, insn), 2);
 
499			}
500		} else {
501			if ((mod == 0 && rm == 5) || mod == 2 ||
502			    (mod == 0 && base == 5)) {
503				insn_field_set(&insn->displacement,
504					       get_next(int, insn), 4);
505			}
506		}
507	}
508out:
509	insn->displacement.got = 1;
510	return 0;
511
512err_out:
513	return -ENODATA;
514}
515
516/* Decode moffset16/32/64. Return 0 if failed */
517static int __get_moffset(struct insn *insn)
518{
519	switch (insn->addr_bytes) {
520	case 2:
521		insn_field_set(&insn->moffset1, get_next(short, insn), 2);
 
522		break;
523	case 4:
524		insn_field_set(&insn->moffset1, get_next(int, insn), 4);
 
525		break;
526	case 8:
527		insn_field_set(&insn->moffset1, get_next(int, insn), 4);
528		insn_field_set(&insn->moffset2, get_next(int, insn), 4);
 
 
529		break;
530	default:	/* opnd_bytes must be modified manually */
531		goto err_out;
532	}
533	insn->moffset1.got = insn->moffset2.got = 1;
534
535	return 1;
536
537err_out:
538	return 0;
539}
540
541/* Decode imm v32(Iz). Return 0 if failed */
542static int __get_immv32(struct insn *insn)
543{
544	switch (insn->opnd_bytes) {
545	case 2:
546		insn_field_set(&insn->immediate, get_next(short, insn), 2);
 
547		break;
548	case 4:
549	case 8:
550		insn_field_set(&insn->immediate, get_next(int, insn), 4);
 
551		break;
552	default:	/* opnd_bytes must be modified manually */
553		goto err_out;
554	}
555
556	return 1;
557
558err_out:
559	return 0;
560}
561
562/* Decode imm v64(Iv/Ov), Return 0 if failed */
563static int __get_immv(struct insn *insn)
564{
565	switch (insn->opnd_bytes) {
566	case 2:
567		insn_field_set(&insn->immediate1, get_next(short, insn), 2);
 
568		break;
569	case 4:
570		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
571		insn->immediate1.nbytes = 4;
572		break;
573	case 8:
574		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
575		insn_field_set(&insn->immediate2, get_next(int, insn), 4);
 
 
576		break;
577	default:	/* opnd_bytes must be modified manually */
578		goto err_out;
579	}
580	insn->immediate1.got = insn->immediate2.got = 1;
581
582	return 1;
583err_out:
584	return 0;
585}
586
587/* Decode ptr16:16/32(Ap) */
588static int __get_immptr(struct insn *insn)
589{
590	switch (insn->opnd_bytes) {
591	case 2:
592		insn_field_set(&insn->immediate1, get_next(short, insn), 2);
 
593		break;
594	case 4:
595		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
 
596		break;
597	case 8:
598		/* ptr16:64 is not exist (no segment) */
599		return 0;
600	default:	/* opnd_bytes must be modified manually */
601		goto err_out;
602	}
603	insn_field_set(&insn->immediate2, get_next(unsigned short, insn), 2);
 
604	insn->immediate1.got = insn->immediate2.got = 1;
605
606	return 1;
607err_out:
608	return 0;
609}
610
611/**
612 * insn_get_immediate() - Get the immediate in an instruction
613 * @insn:	&struct insn containing instruction
614 *
615 * If necessary, first collects the instruction up to and including the
616 * displacement bytes.
617 * Basically, most of immediates are sign-expanded. Unsigned-value can be
618 * computed by bit masking with ((1 << (nbytes * 8)) - 1)
619 *
620 * Returns:
621 * 0:  on success
622 * < 0: on error
623 */
624int insn_get_immediate(struct insn *insn)
625{
626	int ret;
627
628	if (insn->immediate.got)
629		return 0;
630
631	if (!insn->displacement.got) {
632		ret = insn_get_displacement(insn);
633		if (ret)
634			return ret;
635	}
636
637	if (inat_has_moffset(insn->attr)) {
638		if (!__get_moffset(insn))
639			goto err_out;
640		goto done;
641	}
642
643	if (!inat_has_immediate(insn->attr))
644		/* no immediates */
645		goto done;
646
647	switch (inat_immediate_size(insn->attr)) {
648	case INAT_IMM_BYTE:
649		insn_field_set(&insn->immediate, get_next(signed char, insn), 1);
 
650		break;
651	case INAT_IMM_WORD:
652		insn_field_set(&insn->immediate, get_next(short, insn), 2);
 
653		break;
654	case INAT_IMM_DWORD:
655		insn_field_set(&insn->immediate, get_next(int, insn), 4);
 
656		break;
657	case INAT_IMM_QWORD:
658		insn_field_set(&insn->immediate1, get_next(int, insn), 4);
659		insn_field_set(&insn->immediate2, get_next(int, insn), 4);
 
 
660		break;
661	case INAT_IMM_PTR:
662		if (!__get_immptr(insn))
663			goto err_out;
664		break;
665	case INAT_IMM_VWORD32:
666		if (!__get_immv32(insn))
667			goto err_out;
668		break;
669	case INAT_IMM_VWORD:
670		if (!__get_immv(insn))
671			goto err_out;
672		break;
673	default:
674		/* Here, insn must have an immediate, but failed */
675		goto err_out;
676	}
677	if (inat_has_second_immediate(insn->attr)) {
678		insn_field_set(&insn->immediate2, get_next(signed char, insn), 1);
 
679	}
680done:
681	insn->immediate.got = 1;
682	return 0;
683
684err_out:
685	return -ENODATA;
686}
687
688/**
689 * insn_get_length() - Get the length of instruction
690 * @insn:	&struct insn containing instruction
691 *
692 * If necessary, first collects the instruction up to and including the
693 * immediates bytes.
694 *
695 * Returns:
696 *  - 0 on success
697 *  - < 0 on error
698*/
699int insn_get_length(struct insn *insn)
700{
701	int ret;
702
703	if (insn->length)
704		return 0;
705
706	if (!insn->immediate.got) {
707		ret = insn_get_immediate(insn);
708		if (ret)
709			return ret;
710	}
711
712	insn->length = (unsigned char)((unsigned long)insn->next_byte
713				     - (unsigned long)insn->kaddr);
714
715	return 0;
716}
717
718/* Ensure this instruction is decoded completely */
719static inline int insn_complete(struct insn *insn)
720{
721	return insn->opcode.got && insn->modrm.got && insn->sib.got &&
722		insn->displacement.got && insn->immediate.got;
723}
724
725/**
726 * insn_decode() - Decode an x86 instruction
727 * @insn:	&struct insn to be initialized
728 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
729 * @buf_len:	length of the insn buffer at @kaddr
730 * @m:		insn mode, see enum insn_mode
731 *
732 * Returns:
733 * 0: if decoding succeeded
734 * < 0: otherwise.
735 */
736int insn_decode(struct insn *insn, const void *kaddr, int buf_len, enum insn_mode m)
737{
738	int ret;
739
740/* #define INSN_MODE_KERN	-1 __ignore_sync_check__ mode is only valid in the kernel */
741
742	if (m == INSN_MODE_KERN)
743		insn_init(insn, kaddr, buf_len, IS_ENABLED(CONFIG_X86_64));
744	else
745		insn_init(insn, kaddr, buf_len, m == INSN_MODE_64);
746
747	ret = insn_get_length(insn);
748	if (ret)
749		return ret;
750
751	if (insn_complete(insn))
752		return 0;
753
754	return -EINVAL;
755}
v3.1
 
  1/*
  2 * x86 instruction analysis
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License as published by
  6 * the Free Software Foundation; either version 2 of the License, or
  7 * (at your option) any later version.
  8 *
  9 * This program is distributed in the hope that it will be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write to the Free Software
 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 17 *
 18 * Copyright (C) IBM Corporation, 2002, 2004, 2009
 19 */
 20
 
 
 21#include <linux/string.h>
 22#include <asm/inat.h>
 23#include <asm/insn.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24
 25#define get_next(t, insn)	\
 26	({t r; r = *(t*)insn->next_byte; insn->next_byte += sizeof(t); r; })
 27
 28#define peek_next(t, insn)	\
 29	({t r; r = *(t*)insn->next_byte; r; })
 30
 31#define peek_nbyte_next(t, insn, n)	\
 32	({t r; r = *(t*)((insn)->next_byte + n); r; })
 33
 34/**
 35 * insn_init() - initialize struct insn
 36 * @insn:	&struct insn to be initialized
 37 * @kaddr:	address (in kernel memory) of instruction (or copy thereof)
 
 38 * @x86_64:	!0 for 64-bit kernel or 64-bit app
 39 */
 40void insn_init(struct insn *insn, const void *kaddr, int x86_64)
 41{
 
 
 
 
 
 
 
 42	memset(insn, 0, sizeof(*insn));
 43	insn->kaddr = kaddr;
 
 44	insn->next_byte = kaddr;
 45	insn->x86_64 = x86_64 ? 1 : 0;
 46	insn->opnd_bytes = 4;
 47	if (x86_64)
 48		insn->addr_bytes = 8;
 49	else
 50		insn->addr_bytes = 4;
 51}
 52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 53/**
 54 * insn_get_prefixes - scan x86 instruction prefix bytes
 55 * @insn:	&struct insn containing instruction
 56 *
 57 * Populates the @insn->prefixes bitmap, and updates @insn->next_byte
 58 * to point to the (first) opcode.  No effect if @insn->prefixes.got
 59 * is already set.
 
 
 
 
 60 */
 61void insn_get_prefixes(struct insn *insn)
 62{
 63	struct insn_field *prefixes = &insn->prefixes;
 64	insn_attr_t attr;
 65	insn_byte_t b, lb;
 66	int i, nb;
 67
 68	if (prefixes->got)
 69		return;
 
 
 70
 71	nb = 0;
 72	lb = 0;
 73	b = peek_next(insn_byte_t, insn);
 74	attr = inat_get_opcode_attribute(b);
 75	while (inat_is_legacy_prefix(attr)) {
 76		/* Skip if same prefix */
 77		for (i = 0; i < nb; i++)
 78			if (prefixes->bytes[i] == b)
 79				goto found;
 80		if (nb == 4)
 81			/* Invalid instruction */
 82			break;
 83		prefixes->bytes[nb++] = b;
 84		if (inat_is_address_size_prefix(attr)) {
 85			/* address size switches 2/4 or 4/8 */
 86			if (insn->x86_64)
 87				insn->addr_bytes ^= 12;
 88			else
 89				insn->addr_bytes ^= 6;
 90		} else if (inat_is_operand_size_prefix(attr)) {
 91			/* oprand size switches 2/4 */
 92			insn->opnd_bytes ^= 6;
 93		}
 94found:
 95		prefixes->nbytes++;
 96		insn->next_byte++;
 97		lb = b;
 98		b = peek_next(insn_byte_t, insn);
 99		attr = inat_get_opcode_attribute(b);
100	}
101	/* Set the last prefix */
102	if (lb && lb != insn->prefixes.bytes[3]) {
103		if (unlikely(insn->prefixes.bytes[3])) {
104			/* Swap the last prefix */
105			b = insn->prefixes.bytes[3];
106			for (i = 0; i < nb; i++)
107				if (prefixes->bytes[i] == lb)
108					prefixes->bytes[i] = b;
109		}
110		insn->prefixes.bytes[3] = lb;
111	}
112
113	/* Decode REX prefix */
114	if (insn->x86_64) {
115		b = peek_next(insn_byte_t, insn);
116		attr = inat_get_opcode_attribute(b);
117		if (inat_is_rex_prefix(attr)) {
118			insn->rex_prefix.value = b;
119			insn->rex_prefix.nbytes = 1;
120			insn->next_byte++;
121			if (X86_REX_W(b))
122				/* REX.W overrides opnd_size */
123				insn->opnd_bytes = 8;
124		}
125	}
126	insn->rex_prefix.got = 1;
127
128	/* Decode VEX prefix */
129	b = peek_next(insn_byte_t, insn);
130	attr = inat_get_opcode_attribute(b);
131	if (inat_is_vex_prefix(attr)) {
132		insn_byte_t b2 = peek_nbyte_next(insn_byte_t, insn, 1);
133		if (!insn->x86_64) {
134			/*
135			 * In 32-bits mode, if the [7:6] bits (mod bits of
136			 * ModRM) on the second byte are not 11b, it is
137			 * LDS or LES.
138			 */
139			if (X86_MODRM_MOD(b2) != 3)
140				goto vex_end;
141		}
142		insn->vex_prefix.bytes[0] = b;
143		insn->vex_prefix.bytes[1] = b2;
144		if (inat_is_vex3_prefix(attr)) {
 
 
 
 
 
 
 
 
 
 
145			b2 = peek_nbyte_next(insn_byte_t, insn, 2);
146			insn->vex_prefix.bytes[2] = b2;
147			insn->vex_prefix.nbytes = 3;
148			insn->next_byte += 3;
149			if (insn->x86_64 && X86_VEX_W(b2))
150				/* VEX.W overrides opnd_size */
151				insn->opnd_bytes = 8;
152		} else {
 
 
 
 
 
 
153			insn->vex_prefix.nbytes = 2;
154			insn->next_byte += 2;
155		}
156	}
157vex_end:
158	insn->vex_prefix.got = 1;
159
160	prefixes->got = 1;
161	return;
 
 
 
 
162}
163
164/**
165 * insn_get_opcode - collect opcode(s)
166 * @insn:	&struct insn containing instruction
167 *
168 * Populates @insn->opcode, updates @insn->next_byte to point past the
169 * opcode byte(s), and set @insn->attr (except for groups).
170 * If necessary, first collects any preceding (prefix) bytes.
171 * Sets @insn->opcode.value = opcode1.  No effect if @insn->opcode.got
172 * is already 1.
 
 
 
 
173 */
174void insn_get_opcode(struct insn *insn)
175{
176	struct insn_field *opcode = &insn->opcode;
177	insn_byte_t op, pfx;
 
 
178	if (opcode->got)
179		return;
180	if (!insn->prefixes.got)
181		insn_get_prefixes(insn);
 
 
 
 
182
183	/* Get first opcode */
184	op = get_next(insn_byte_t, insn);
185	opcode->bytes[0] = op;
186	opcode->nbytes = 1;
187
188	/* Check if there is VEX prefix or not */
189	if (insn_is_avx(insn)) {
190		insn_byte_t m, p;
191		m = insn_vex_m_bits(insn);
192		p = insn_vex_p_bits(insn);
193		insn->attr = inat_get_avx_attribute(op, m, p);
194		if (!inat_accept_vex(insn->attr))
195			insn->attr = 0;	/* This instruction is bad */
196		goto end;	/* VEX has only 1 byte for opcode */
 
 
 
 
 
 
197	}
198
199	insn->attr = inat_get_opcode_attribute(op);
200	while (inat_is_escape(insn->attr)) {
201		/* Get escaped opcode */
202		op = get_next(insn_byte_t, insn);
203		opcode->bytes[opcode->nbytes++] = op;
204		pfx = insn_last_prefix(insn);
205		insn->attr = inat_get_escape_attribute(op, pfx, insn->attr);
 
 
 
 
 
 
206	}
207	if (inat_must_vex(insn->attr))
208		insn->attr = 0;	/* This instruction is bad */
209end:
210	opcode->got = 1;
 
 
 
 
211}
212
213/**
214 * insn_get_modrm - collect ModRM byte, if any
215 * @insn:	&struct insn containing instruction
216 *
217 * Populates @insn->modrm and updates @insn->next_byte to point past the
218 * ModRM byte, if any.  If necessary, first collects the preceding bytes
219 * (prefixes and opcode(s)).  No effect if @insn->modrm.got is already 1.
 
 
 
 
220 */
221void insn_get_modrm(struct insn *insn)
222{
223	struct insn_field *modrm = &insn->modrm;
224	insn_byte_t pfx, mod;
 
 
225	if (modrm->got)
226		return;
227	if (!insn->opcode.got)
228		insn_get_opcode(insn);
 
 
 
 
229
230	if (inat_has_modrm(insn->attr)) {
231		mod = get_next(insn_byte_t, insn);
232		modrm->value = mod;
233		modrm->nbytes = 1;
234		if (inat_is_group(insn->attr)) {
235			pfx = insn_last_prefix(insn);
236			insn->attr = inat_get_group_attribute(mod, pfx,
237							      insn->attr);
 
 
 
 
 
238		}
239	}
240
241	if (insn->x86_64 && inat_is_force64(insn->attr))
242		insn->opnd_bytes = 8;
 
243	modrm->got = 1;
 
 
 
 
244}
245
246
247/**
248 * insn_rip_relative() - Does instruction use RIP-relative addressing mode?
249 * @insn:	&struct insn containing instruction
250 *
251 * If necessary, first collects the instruction up to and including the
252 * ModRM byte.  No effect if @insn->x86_64 is 0.
253 */
254int insn_rip_relative(struct insn *insn)
255{
256	struct insn_field *modrm = &insn->modrm;
 
257
258	if (!insn->x86_64)
259		return 0;
260	if (!modrm->got)
261		insn_get_modrm(insn);
 
 
 
 
262	/*
263	 * For rip-relative instructions, the mod field (top 2 bits)
264	 * is zero and the r/m field (bottom 3 bits) is 0x5.
265	 */
266	return (modrm->nbytes && (modrm->value & 0xc7) == 0x5);
267}
268
269/**
270 * insn_get_sib() - Get the SIB byte of instruction
271 * @insn:	&struct insn containing instruction
272 *
273 * If necessary, first collects the instruction up to and including the
274 * ModRM byte.
 
 
 
 
275 */
276void insn_get_sib(struct insn *insn)
277{
278	insn_byte_t modrm;
 
279
280	if (insn->sib.got)
281		return;
282	if (!insn->modrm.got)
283		insn_get_modrm(insn);
 
 
 
 
 
284	if (insn->modrm.nbytes) {
285		modrm = (insn_byte_t)insn->modrm.value;
286		if (insn->addr_bytes != 2 &&
287		    X86_MODRM_MOD(modrm) != 3 && X86_MODRM_RM(modrm) == 4) {
288			insn->sib.value = get_next(insn_byte_t, insn);
289			insn->sib.nbytes = 1;
290		}
291	}
292	insn->sib.got = 1;
 
 
 
 
 
293}
294
295
296/**
297 * insn_get_displacement() - Get the displacement of instruction
298 * @insn:	&struct insn containing instruction
299 *
300 * If necessary, first collects the instruction up to and including the
301 * SIB byte.
302 * Displacement value is sign-expanded.
 
 
 
 
303 */
304void insn_get_displacement(struct insn *insn)
305{
306	insn_byte_t mod, rm, base;
 
307
308	if (insn->displacement.got)
309		return;
310	if (!insn->sib.got)
311		insn_get_sib(insn);
 
 
 
 
 
312	if (insn->modrm.nbytes) {
313		/*
314		 * Interpreting the modrm byte:
315		 * mod = 00 - no displacement fields (exceptions below)
316		 * mod = 01 - 1-byte displacement field
317		 * mod = 10 - displacement field is 4 bytes, or 2 bytes if
318		 * 	address size = 2 (0x67 prefix in 32-bit mode)
319		 * mod = 11 - no memory operand
320		 *
321		 * If address size = 2...
322		 * mod = 00, r/m = 110 - displacement field is 2 bytes
323		 *
324		 * If address size != 2...
325		 * mod != 11, r/m = 100 - SIB byte exists
326		 * mod = 00, SIB base = 101 - displacement field is 4 bytes
327		 * mod = 00, r/m = 101 - rip-relative addressing, displacement
328		 * 	field is 4 bytes
329		 */
330		mod = X86_MODRM_MOD(insn->modrm.value);
331		rm = X86_MODRM_RM(insn->modrm.value);
332		base = X86_SIB_BASE(insn->sib.value);
333		if (mod == 3)
334			goto out;
335		if (mod == 1) {
336			insn->displacement.value = get_next(char, insn);
337			insn->displacement.nbytes = 1;
338		} else if (insn->addr_bytes == 2) {
339			if ((mod == 0 && rm == 6) || mod == 2) {
340				insn->displacement.value =
341					 get_next(short, insn);
342				insn->displacement.nbytes = 2;
343			}
344		} else {
345			if ((mod == 0 && rm == 5) || mod == 2 ||
346			    (mod == 0 && base == 5)) {
347				insn->displacement.value = get_next(int, insn);
348				insn->displacement.nbytes = 4;
349			}
350		}
351	}
352out:
353	insn->displacement.got = 1;
 
 
 
 
354}
355
356/* Decode moffset16/32/64 */
357static void __get_moffset(struct insn *insn)
358{
359	switch (insn->addr_bytes) {
360	case 2:
361		insn->moffset1.value = get_next(short, insn);
362		insn->moffset1.nbytes = 2;
363		break;
364	case 4:
365		insn->moffset1.value = get_next(int, insn);
366		insn->moffset1.nbytes = 4;
367		break;
368	case 8:
369		insn->moffset1.value = get_next(int, insn);
370		insn->moffset1.nbytes = 4;
371		insn->moffset2.value = get_next(int, insn);
372		insn->moffset2.nbytes = 4;
373		break;
 
 
374	}
375	insn->moffset1.got = insn->moffset2.got = 1;
 
 
 
 
 
376}
377
378/* Decode imm v32(Iz) */
379static void __get_immv32(struct insn *insn)
380{
381	switch (insn->opnd_bytes) {
382	case 2:
383		insn->immediate.value = get_next(short, insn);
384		insn->immediate.nbytes = 2;
385		break;
386	case 4:
387	case 8:
388		insn->immediate.value = get_next(int, insn);
389		insn->immediate.nbytes = 4;
390		break;
 
 
391	}
 
 
 
 
 
392}
393
394/* Decode imm v64(Iv/Ov) */
395static void __get_immv(struct insn *insn)
396{
397	switch (insn->opnd_bytes) {
398	case 2:
399		insn->immediate1.value = get_next(short, insn);
400		insn->immediate1.nbytes = 2;
401		break;
402	case 4:
403		insn->immediate1.value = get_next(int, insn);
404		insn->immediate1.nbytes = 4;
405		break;
406	case 8:
407		insn->immediate1.value = get_next(int, insn);
408		insn->immediate1.nbytes = 4;
409		insn->immediate2.value = get_next(int, insn);
410		insn->immediate2.nbytes = 4;
411		break;
 
 
412	}
413	insn->immediate1.got = insn->immediate2.got = 1;
 
 
 
 
414}
415
416/* Decode ptr16:16/32(Ap) */
417static void __get_immptr(struct insn *insn)
418{
419	switch (insn->opnd_bytes) {
420	case 2:
421		insn->immediate1.value = get_next(short, insn);
422		insn->immediate1.nbytes = 2;
423		break;
424	case 4:
425		insn->immediate1.value = get_next(int, insn);
426		insn->immediate1.nbytes = 4;
427		break;
428	case 8:
429		/* ptr16:64 is not exist (no segment) */
430		return;
 
 
431	}
432	insn->immediate2.value = get_next(unsigned short, insn);
433	insn->immediate2.nbytes = 2;
434	insn->immediate1.got = insn->immediate2.got = 1;
 
 
 
 
435}
436
437/**
438 * insn_get_immediate() - Get the immediates of instruction
439 * @insn:	&struct insn containing instruction
440 *
441 * If necessary, first collects the instruction up to and including the
442 * displacement bytes.
443 * Basically, most of immediates are sign-expanded. Unsigned-value can be
444 * get by bit masking with ((1 << (nbytes * 8)) - 1)
 
 
 
 
445 */
446void insn_get_immediate(struct insn *insn)
447{
 
 
448	if (insn->immediate.got)
449		return;
450	if (!insn->displacement.got)
451		insn_get_displacement(insn);
 
 
 
 
452
453	if (inat_has_moffset(insn->attr)) {
454		__get_moffset(insn);
 
455		goto done;
456	}
457
458	if (!inat_has_immediate(insn->attr))
459		/* no immediates */
460		goto done;
461
462	switch (inat_immediate_size(insn->attr)) {
463	case INAT_IMM_BYTE:
464		insn->immediate.value = get_next(char, insn);
465		insn->immediate.nbytes = 1;
466		break;
467	case INAT_IMM_WORD:
468		insn->immediate.value = get_next(short, insn);
469		insn->immediate.nbytes = 2;
470		break;
471	case INAT_IMM_DWORD:
472		insn->immediate.value = get_next(int, insn);
473		insn->immediate.nbytes = 4;
474		break;
475	case INAT_IMM_QWORD:
476		insn->immediate1.value = get_next(int, insn);
477		insn->immediate1.nbytes = 4;
478		insn->immediate2.value = get_next(int, insn);
479		insn->immediate2.nbytes = 4;
480		break;
481	case INAT_IMM_PTR:
482		__get_immptr(insn);
 
483		break;
484	case INAT_IMM_VWORD32:
485		__get_immv32(insn);
 
486		break;
487	case INAT_IMM_VWORD:
488		__get_immv(insn);
 
489		break;
490	default:
491		break;
 
492	}
493	if (inat_has_second_immediate(insn->attr)) {
494		insn->immediate2.value = get_next(char, insn);
495		insn->immediate2.nbytes = 1;
496	}
497done:
498	insn->immediate.got = 1;
 
 
 
 
499}
500
501/**
502 * insn_get_length() - Get the length of instruction
503 * @insn:	&struct insn containing instruction
504 *
505 * If necessary, first collects the instruction up to and including the
506 * immediates bytes.
507 */
508void insn_get_length(struct insn *insn)
 
 
 
 
509{
 
 
510	if (insn->length)
511		return;
512	if (!insn->immediate.got)
513		insn_get_immediate(insn);
 
 
 
 
 
514	insn->length = (unsigned char)((unsigned long)insn->next_byte
515				     - (unsigned long)insn->kaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516}