Loading...
Note: File does not exist in v3.1.
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
4 *
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
7 * and Castagnoli.
8 *
9 * This CRC-32 implementation algorithm is bitreflected and processes
10 * the least-significant bit first (Little-Endian).
11 *
12 * Copyright IBM Corp. 2015
13 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
14 */
15
16#include <linux/linkage.h>
17#include <asm/nospec-insn.h>
18#include <asm/vx-insn.h>
19
20/* Vector register range containing CRC-32 constants */
21#define CONST_PERM_LE2BE %v9
22#define CONST_R2R1 %v10
23#define CONST_R4R3 %v11
24#define CONST_R5 %v12
25#define CONST_RU_POLY %v13
26#define CONST_CRC_POLY %v14
27
28 .data
29 .balign 8
30
31/*
32 * The CRC-32 constant block contains reduction constants to fold and
33 * process particular chunks of the input data stream in parallel.
34 *
35 * For the CRC-32 variants, the constants are precomputed according to
36 * these definitions:
37 *
38 * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
39 * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
40 * R3 = [(x128+32 mod P'(x) << 32)]' << 1
41 * R4 = [(x128-32 mod P'(x) << 32)]' << 1
42 * R5 = [(x64 mod P'(x) << 32)]' << 1
43 * R6 = [(x32 mod P'(x) << 32)]' << 1
44 *
45 * The bitreflected Barret reduction constant, u', is defined as
46 * the bit reversal of floor(x**64 / P(x)).
47 *
48 * where P(x) is the polynomial in the normal domain and the P'(x) is the
49 * polynomial in the reversed (bitreflected) domain.
50 *
51 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
52 *
53 * P(x) = 0x04C11DB7
54 * P'(x) = 0xEDB88320
55 *
56 * CRC-32C (Castagnoli) polynomials:
57 *
58 * P(x) = 0x1EDC6F41
59 * P'(x) = 0x82F63B78
60 */
61
62SYM_DATA_START_LOCAL(constants_CRC_32_LE)
63 .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
64 .quad 0x1c6e41596, 0x154442bd4 # R2, R1
65 .quad 0x0ccaa009e, 0x1751997d0 # R4, R3
66 .octa 0x163cd6124 # R5
67 .octa 0x1F7011641 # u'
68 .octa 0x1DB710641 # P'(x) << 1
69SYM_DATA_END(constants_CRC_32_LE)
70
71SYM_DATA_START_LOCAL(constants_CRC_32C_LE)
72 .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
73 .quad 0x09e4addf8, 0x740eef02 # R2, R1
74 .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3
75 .octa 0x0dd45aab8 # R5
76 .octa 0x0dea713f1 # u'
77 .octa 0x105ec76f0 # P'(x) << 1
78SYM_DATA_END(constants_CRC_32C_LE)
79
80 .previous
81
82 GEN_BR_THUNK %r14
83
84 .text
85
86/*
87 * The CRC-32 functions use these calling conventions:
88 *
89 * Parameters:
90 *
91 * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
92 * %r3: Input buffer pointer, performance might be improved if the
93 * buffer is on a doubleword boundary.
94 * %r4: Length of the buffer, must be 64 bytes or greater.
95 *
96 * Register usage:
97 *
98 * %r5: CRC-32 constant pool base pointer.
99 * V0: Initial CRC value and intermediate constants and results.
100 * V1..V4: Data for CRC computation.
101 * V5..V8: Next data chunks that are fetched from the input buffer.
102 * V9: Constant for BE->LE conversion and shift operations
103 *
104 * V10..V14: CRC-32 constants.
105 */
106
107SYM_FUNC_START(crc32_le_vgfm_16)
108 larl %r5,constants_CRC_32_LE
109 j crc32_le_vgfm_generic
110SYM_FUNC_END(crc32_le_vgfm_16)
111
112SYM_FUNC_START(crc32c_le_vgfm_16)
113 larl %r5,constants_CRC_32C_LE
114 j crc32_le_vgfm_generic
115SYM_FUNC_END(crc32c_le_vgfm_16)
116
117SYM_FUNC_START(crc32_le_vgfm_generic)
118 /* Load CRC-32 constants */
119 VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
120
121 /*
122 * Load the initial CRC value.
123 *
124 * The CRC value is loaded into the rightmost word of the
125 * vector register and is later XORed with the LSB portion
126 * of the loaded input data.
127 */
128 VZERO %v0 /* Clear V0 */
129 VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
130
131 /* Load a 64-byte data chunk and XOR with CRC */
132 VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
133 VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
134 VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
135 VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
136 VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
137
138 VX %v1,%v0,%v1 /* V1 ^= CRC */
139 aghi %r3,64 /* BUF = BUF + 64 */
140 aghi %r4,-64 /* LEN = LEN - 64 */
141
142 cghi %r4,64
143 jl .Lless_than_64bytes
144
145.Lfold_64bytes_loop:
146 /* Load the next 64-byte data chunk into V5 to V8 */
147 VLM %v5,%v8,0,%r3
148 VPERM %v5,%v5,%v5,CONST_PERM_LE2BE
149 VPERM %v6,%v6,%v6,CONST_PERM_LE2BE
150 VPERM %v7,%v7,%v7,CONST_PERM_LE2BE
151 VPERM %v8,%v8,%v8,CONST_PERM_LE2BE
152
153 /*
154 * Perform a GF(2) multiplication of the doublewords in V1 with
155 * the R1 and R2 reduction constants in V0. The intermediate result
156 * is then folded (accumulated) with the next data chunk in V5 and
157 * stored in V1. Repeat this step for the register contents
158 * in V2, V3, and V4 respectively.
159 */
160 VGFMAG %v1,CONST_R2R1,%v1,%v5
161 VGFMAG %v2,CONST_R2R1,%v2,%v6
162 VGFMAG %v3,CONST_R2R1,%v3,%v7
163 VGFMAG %v4,CONST_R2R1,%v4,%v8
164
165 aghi %r3,64 /* BUF = BUF + 64 */
166 aghi %r4,-64 /* LEN = LEN - 64 */
167
168 cghi %r4,64
169 jnl .Lfold_64bytes_loop
170
171.Lless_than_64bytes:
172 /*
173 * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
174 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
175 * value remains.
176 */
177 VGFMAG %v1,CONST_R4R3,%v1,%v2
178 VGFMAG %v1,CONST_R4R3,%v1,%v3
179 VGFMAG %v1,CONST_R4R3,%v1,%v4
180
181 cghi %r4,16
182 jl .Lfinal_fold
183
184.Lfold_16bytes_loop:
185
186 VL %v2,0,,%r3 /* Load next data chunk */
187 VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
188 VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
189
190 aghi %r3,16
191 aghi %r4,-16
192
193 cghi %r4,16
194 jnl .Lfold_16bytes_loop
195
196.Lfinal_fold:
197 /*
198 * Set up a vector register for byte shifts. The shift value must
199 * be loaded in bits 1-4 in byte element 7 of a vector register.
200 * Shift by 8 bytes: 0x40
201 * Shift by 4 bytes: 0x20
202 */
203 VLEIB %v9,0x40,7
204
205 /*
206 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
207 * to move R4 into the rightmost doubleword and set the leftmost
208 * doubleword to 0x1.
209 */
210 VSRLB %v0,CONST_R4R3,%v9
211 VLEIG %v0,1,0
212
213 /*
214 * Compute GF(2) product of V1 and V0. The rightmost doubleword
215 * of V1 is multiplied with R4. The leftmost doubleword of V1 is
216 * multiplied by 0x1 and is then XORed with rightmost product.
217 * Implicitly, the intermediate leftmost product becomes padded
218 */
219 VGFMG %v1,%v0,%v1
220
221 /*
222 * Now do the final 32-bit fold by multiplying the rightmost word
223 * in V1 with R5 and XOR the result with the remaining bits in V1.
224 *
225 * To achieve this by a single VGFMAG, right shift V1 by a word
226 * and store the result in V2 which is then accumulated. Use the
227 * vector unpack instruction to load the rightmost half of the
228 * doubleword into the rightmost doubleword element of V1; the other
229 * half is loaded in the leftmost doubleword.
230 * The vector register with CONST_R5 contains the R5 constant in the
231 * rightmost doubleword and the leftmost doubleword is zero to ignore
232 * the leftmost product of V1.
233 */
234 VLEIB %v9,0x20,7 /* Shift by words */
235 VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */
236 VUPLLF %v1,%v1 /* Split rightmost doubleword */
237 VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
238
239 /*
240 * Apply a Barret reduction to compute the final 32-bit CRC value.
241 *
242 * The input values to the Barret reduction are the degree-63 polynomial
243 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
244 * constant u. The Barret reduction result is the CRC value of R(x) mod
245 * P(x).
246 *
247 * The Barret reduction algorithm is defined as:
248 *
249 * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
250 * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
251 * 3. C(x) = R(x) XOR T2(x) mod x^32
252 *
253 * Note: The leftmost doubleword of vector register containing
254 * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
255 * is zero and does not contribute to the final result.
256 */
257
258 /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
259 VUPLLF %v2,%v1
260 VGFMG %v2,CONST_RU_POLY,%v2
261
262 /*
263 * Compute the GF(2) product of the CRC polynomial with T1(x) in
264 * V2 and XOR the intermediate result, T2(x), with the value in V1.
265 * The final result is stored in word element 2 of V2.
266 */
267 VUPLLF %v2,%v2
268 VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
269
270.Ldone:
271 VLGVF %r2,%v2,2
272 BR_EX %r14
273SYM_FUNC_END(crc32_le_vgfm_generic)
274
275.previous