Linux Audio

Check our new training course

Loading...
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 * Page table support for the Hexagon architecture
  4 *
  5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
  6 */
  7
  8#ifndef _ASM_PGTABLE_H
  9#define _ASM_PGTABLE_H
 10
 11/*
 12 * Page table definitions for Qualcomm Hexagon processor.
 13 */
 14#include <asm/page.h>
 15#include <asm-generic/pgtable-nopmd.h>
 16
 17/* A handy thing to have if one has the RAM. Declared in head.S */
 18extern unsigned long empty_zero_page;
 19
 20/*
 21 * The PTE model described here is that of the Hexagon Virtual Machine,
 22 * which autonomously walks 2-level page tables.  At a lower level, we
 23 * also describe the RISCish software-loaded TLB entry structure of
 24 * the underlying Hexagon processor. A kernel built to run on the
 25 * virtual machine has no need to know about the underlying hardware.
 26 */
 27#include <asm/vm_mmu.h>
 28
 29/*
 30 * To maximize the comfort level for the PTE manipulation macros,
 31 * define the "well known" architecture-specific bits.
 32 */
 33#define _PAGE_READ	__HVM_PTE_R
 34#define _PAGE_WRITE	__HVM_PTE_W
 35#define _PAGE_EXECUTE	__HVM_PTE_X
 36#define _PAGE_USER	__HVM_PTE_U
 37
 38/*
 39 * We have a total of 4 "soft" bits available in the abstract PTE.
 40 * The two mandatory software bits are Dirty and Accessed.
 41 * To make nonlinear swap work according to the more recent
 42 * model, we want a low order "Present" bit to indicate whether
 43 * the PTE describes MMU programming or swap space.
 44 */
 45#define _PAGE_PRESENT	(1<<0)
 46#define _PAGE_DIRTY	(1<<1)
 47#define _PAGE_ACCESSED	(1<<2)
 48
 49/*
 50 * For now, let's say that Valid and Present are the same thing.
 51 * Alternatively, we could say that it's the "or" of R, W, and X
 52 * permissions.
 53 */
 54#define _PAGE_VALID	_PAGE_PRESENT
 55
 56/*
 57 * We're not defining _PAGE_GLOBAL here, since there's no concept
 58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
 59 * and we want to use the same page table structures and macros in
 60 * the native kernel as we do in the virtual machine kernel.
 61 * So we'll put up with a bit of inefficiency for now...
 62 */
 63
 64/*
 65 * Top "FOURTH" level (pgd), which for the Hexagon VM is really
 66 * only the second from the bottom, pgd and pud both being collapsed.
 67 * Each entry represents 4MB of virtual address space, 4K of table
 68 * thus maps the full 4GB.
 69 */
 70#define PGDIR_SHIFT 22
 71#define PTRS_PER_PGD 1024
 72
 73#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
 74#define PGDIR_MASK (~(PGDIR_SIZE-1))
 75
 76#ifdef CONFIG_PAGE_SIZE_4KB
 77#define PTRS_PER_PTE 1024
 78#endif
 79
 80#ifdef CONFIG_PAGE_SIZE_16KB
 81#define PTRS_PER_PTE 256
 82#endif
 83
 84#ifdef CONFIG_PAGE_SIZE_64KB
 85#define PTRS_PER_PTE 64
 86#endif
 87
 88#ifdef CONFIG_PAGE_SIZE_256KB
 89#define PTRS_PER_PTE 16
 90#endif
 91
 92#ifdef CONFIG_PAGE_SIZE_1MB
 93#define PTRS_PER_PTE 4
 94#endif
 95
 96/*  Any bigger and the PTE disappears.  */
 97#define pgd_ERROR(e) \
 98	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
 99		pgd_val(e))
100
101/*
102 * Page Protection Constants. Includes (in this variant) cache attributes.
103 */
104extern unsigned long _dflt_cache_att;
105
106#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
107				_dflt_cache_att)
108#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
109				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
110#define PAGE_COPY	PAGE_READONLY
111#define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
112				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
113#define PAGE_COPY_EXEC	PAGE_EXEC
114#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
115				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
116#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
117				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
118
119
120/*
121 * Aliases for mapping mmap() protection bits to page protections.
122 * These get used for static initialization, so using the _dflt_cache_att
123 * variable for the default cache attribute isn't workable. If the
124 * default gets changed at boot time, the boot option code has to
125 * update data structures like the protaction_map[] array.
126 */
127#define CACHEDEF	(CACHE_DEFAULT << 6)
128
129extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
130
131/*  HUGETLB not working currently  */
132#ifdef CONFIG_HUGETLB_PAGE
133#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
134#endif
135
136/*
137 * For now, assume that higher-level code will do TLB/MMU invalidations
138 * and don't insert that overhead into this low-level function.
139 */
140extern void sync_icache_dcache(pte_t pte);
141
142#define pte_present_exec_user(pte) \
143	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
144	(_PAGE_EXECUTE | _PAGE_USER))
145
146static inline void set_pte(pte_t *ptep, pte_t pteval)
147{
148	/*  should really be using pte_exec, if it weren't declared later. */
149	if (pte_present_exec_user(pteval))
150		sync_icache_dcache(pteval);
151
152	*ptep = pteval;
153}
154
155/*
156 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
157 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
158 * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
159 * as a universal null entry, but some of those least significant bits
160 * are interpreted by software.
161 */
162#define _NULL_PMD	0x7
163#define _NULL_PTE	0x0
164
165static inline void pmd_clear(pmd_t *pmd_entry_ptr)
166{
167	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
168}
169
170/*
171 * Conveniently, a null PTE value is invalid.
172 */
173static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
174				pte_t *ptep)
175{
176	pte_val(*ptep) = _NULL_PTE;
177}
178
179/**
180 * pmd_none - check if pmd_entry is mapped
181 * @pmd_entry:  pmd entry
182 *
183 * MIPS checks it against that "invalid pte table" thing.
184 */
185static inline int pmd_none(pmd_t pmd)
186{
187	return pmd_val(pmd) == _NULL_PMD;
188}
189
190/**
191 * pmd_present - is there a page table behind this?
192 * Essentially the inverse of pmd_none.  We maybe
193 * save an inline instruction by defining it this
194 * way, instead of simply "!pmd_none".
195 */
196static inline int pmd_present(pmd_t pmd)
197{
198	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
199}
200
201/**
202 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
203 * As we have no known cause of badness, it's null, as it is for many
204 * architectures.
205 */
206static inline int pmd_bad(pmd_t pmd)
207{
208	return 0;
209}
210
211/*
212 * pmd_pfn - converts a PMD entry to a page frame number
213 */
214#define pmd_pfn(pmd)  (pmd_val(pmd) >> PAGE_SHIFT)
215
216/*
217 * pmd_page - converts a PMD entry to a page pointer
218 */
219#define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
220
221/**
222 * pte_none - check if pte is mapped
223 * @pte: pte_t entry
224 */
225static inline int pte_none(pte_t pte)
226{
227	return pte_val(pte) == _NULL_PTE;
228};
229
230/*
231 * pte_present - check if page is present
232 */
233static inline int pte_present(pte_t pte)
234{
235	return pte_val(pte) & _PAGE_PRESENT;
236}
237
238/* mk_pte - make a PTE out of a page pointer and protection bits */
239#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
240
241/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
242#define pte_page(x) pfn_to_page(pte_pfn(x))
243
244/* pte_mkold - mark PTE as not recently accessed */
245static inline pte_t pte_mkold(pte_t pte)
246{
247	pte_val(pte) &= ~_PAGE_ACCESSED;
248	return pte;
249}
250
251/* pte_mkyoung - mark PTE as recently accessed */
252static inline pte_t pte_mkyoung(pte_t pte)
253{
254	pte_val(pte) |= _PAGE_ACCESSED;
255	return pte;
256}
257
258/* pte_mkclean - mark page as in sync with backing store */
259static inline pte_t pte_mkclean(pte_t pte)
260{
261	pte_val(pte) &= ~_PAGE_DIRTY;
262	return pte;
263}
264
265/* pte_mkdirty - mark page as modified */
266static inline pte_t pte_mkdirty(pte_t pte)
267{
268	pte_val(pte) |= _PAGE_DIRTY;
269	return pte;
270}
271
272/* pte_young - "is PTE marked as accessed"? */
273static inline int pte_young(pte_t pte)
274{
275	return pte_val(pte) & _PAGE_ACCESSED;
276}
277
278/* pte_dirty - "is PTE dirty?" */
279static inline int pte_dirty(pte_t pte)
280{
281	return pte_val(pte) & _PAGE_DIRTY;
282}
283
284/* pte_modify - set protection bits on PTE */
285static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
286{
287	pte_val(pte) &= PAGE_MASK;
288	pte_val(pte) |= pgprot_val(prot);
289	return pte;
290}
291
292/* pte_wrprotect - mark page as not writable */
293static inline pte_t pte_wrprotect(pte_t pte)
294{
295	pte_val(pte) &= ~_PAGE_WRITE;
296	return pte;
297}
298
299/* pte_mkwrite - mark page as writable */
300static inline pte_t pte_mkwrite(pte_t pte)
301{
302	pte_val(pte) |= _PAGE_WRITE;
303	return pte;
304}
305
306/* pte_mkexec - mark PTE as executable */
307static inline pte_t pte_mkexec(pte_t pte)
308{
309	pte_val(pte) |= _PAGE_EXECUTE;
310	return pte;
311}
312
313/* pte_read - "is PTE marked as readable?" */
314static inline int pte_read(pte_t pte)
315{
316	return pte_val(pte) & _PAGE_READ;
317}
318
319/* pte_write - "is PTE marked as writable?" */
320static inline int pte_write(pte_t pte)
321{
322	return pte_val(pte) & _PAGE_WRITE;
323}
324
325
326/* pte_exec - "is PTE marked as executable?" */
327static inline int pte_exec(pte_t pte)
328{
329	return pte_val(pte) & _PAGE_EXECUTE;
330}
331
332/* __pte_to_swp_entry - extract swap entry from PTE */
333#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
334
335/* __swp_entry_to_pte - extract PTE from swap entry */
336#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
337
338/* pfn_pte - convert page number and protection value to page table entry */
339#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
340
341/* pte_pfn - convert pte to page frame number */
342#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
343#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
344
345/*
346 * set_pte_at - update page table and do whatever magic may be
347 * necessary to make the underlying hardware/firmware take note.
348 *
349 * VM may require a virtual instruction to alert the MMU.
350 */
351#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
352
353static inline unsigned long pmd_page_vaddr(pmd_t pmd)
354{
355	return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
356}
357
358/* ZERO_PAGE - returns the globally shared zero page */
359#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
360
361/*
362 * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
363 * interpreted as swap information.  The remaining free bits are interpreted as
364 * swap type/offset tuple.  Rather than have the TLB fill handler test
365 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
366 * all zeros for swap entries, which speeds up the miss handler at the cost of
367 * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
368 * processor architecture and target applications suggest a lot of TLB misses
369 * and not much swap space.
370 *
371 * Format of swap PTE:
372 *	bit	0:	Present (zero)
373 *	bits	1-5:	swap type (arch independent layer uses 5 bits max)
374 *	bits	6-9:	bits 3:0 of offset
375 *	bits	10-12:	effectively _PAGE_PROTNONE (all zero)
376 *	bits	13-31:  bits 22:4 of swap offset
377 *
378 * The split offset makes some of the following macros a little gnarly,
379 * but there's plenty of precedent for this sort of thing.
380 */
381
382/* Used for swap PTEs */
383#define __swp_type(swp_pte)		(((swp_pte).val >> 1) & 0x1f)
384
385#define __swp_offset(swp_pte) \
386	((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
387
388#define __swp_entry(type, offset) \
389	((swp_entry_t)	{ \
390		((type << 1) | \
391		 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
392
393#endif