Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
   4 *
   5 * Copyright: 2014 Raumfeld GmbH
   6 * Author: Sven Brandau <info@brandau.biz>
   7 *
   8 * based on code from:
   9 *	Raumfeld GmbH
  10 *	  Johannes Stezenbach <js@sig21.net>
  11 *	Wolfson Microelectronics PLC.
  12 *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
  13 *	Freescale Semiconductor, Inc.
  14 *	  Timur Tabi <timur@freescale.com>
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
  18
  19#include <linux/module.h>
  20#include <linux/moduleparam.h>
  21#include <linux/init.h>
  22#include <linux/delay.h>
  23#include <linux/pm.h>
  24#include <linux/i2c.h>
  25#include <linux/of_device.h>
  26#include <linux/of_gpio.h>
  27#include <linux/regmap.h>
  28#include <linux/regulator/consumer.h>
  29#include <linux/gpio/consumer.h>
  30#include <linux/slab.h>
  31#include <sound/core.h>
  32#include <sound/pcm.h>
  33#include <sound/pcm_params.h>
  34#include <sound/soc.h>
  35#include <sound/soc-dapm.h>
  36#include <sound/initval.h>
  37#include <sound/tlv.h>
  38
  39#include <sound/sta350.h>
  40#include "sta350.h"
  41
  42#define STA350_RATES (SNDRV_PCM_RATE_32000 | \
  43		      SNDRV_PCM_RATE_44100 | \
  44		      SNDRV_PCM_RATE_48000 | \
  45		      SNDRV_PCM_RATE_88200 | \
  46		      SNDRV_PCM_RATE_96000 | \
  47		      SNDRV_PCM_RATE_176400 | \
  48		      SNDRV_PCM_RATE_192000)
  49
  50#define STA350_FORMATS \
  51	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S18_3LE | \
  52	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
  53	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S32_LE)
  54
  55/* Power-up register defaults */
  56static const struct reg_default sta350_regs[] = {
  57	{  0x0, 0x63 },
  58	{  0x1, 0x80 },
  59	{  0x2, 0xdf },
  60	{  0x3, 0x40 },
  61	{  0x4, 0xc2 },
  62	{  0x5, 0x5c },
  63	{  0x6, 0x00 },
  64	{  0x7, 0xff },
  65	{  0x8, 0x60 },
  66	{  0x9, 0x60 },
  67	{  0xa, 0x60 },
  68	{  0xb, 0x00 },
  69	{  0xc, 0x00 },
  70	{  0xd, 0x00 },
  71	{  0xe, 0x00 },
  72	{  0xf, 0x40 },
  73	{ 0x10, 0x80 },
  74	{ 0x11, 0x77 },
  75	{ 0x12, 0x6a },
  76	{ 0x13, 0x69 },
  77	{ 0x14, 0x6a },
  78	{ 0x15, 0x69 },
  79	{ 0x16, 0x00 },
  80	{ 0x17, 0x00 },
  81	{ 0x18, 0x00 },
  82	{ 0x19, 0x00 },
  83	{ 0x1a, 0x00 },
  84	{ 0x1b, 0x00 },
  85	{ 0x1c, 0x00 },
  86	{ 0x1d, 0x00 },
  87	{ 0x1e, 0x00 },
  88	{ 0x1f, 0x00 },
  89	{ 0x20, 0x00 },
  90	{ 0x21, 0x00 },
  91	{ 0x22, 0x00 },
  92	{ 0x23, 0x00 },
  93	{ 0x24, 0x00 },
  94	{ 0x25, 0x00 },
  95	{ 0x26, 0x00 },
  96	{ 0x27, 0x2a },
  97	{ 0x28, 0xc0 },
  98	{ 0x29, 0xf3 },
  99	{ 0x2a, 0x33 },
 100	{ 0x2b, 0x00 },
 101	{ 0x2c, 0x0c },
 102	{ 0x31, 0x00 },
 103	{ 0x36, 0x00 },
 104	{ 0x37, 0x00 },
 105	{ 0x38, 0x00 },
 106	{ 0x39, 0x01 },
 107	{ 0x3a, 0xee },
 108	{ 0x3b, 0xff },
 109	{ 0x3c, 0x7e },
 110	{ 0x3d, 0xc0 },
 111	{ 0x3e, 0x26 },
 112	{ 0x3f, 0x00 },
 113	{ 0x48, 0x00 },
 114	{ 0x49, 0x00 },
 115	{ 0x4a, 0x00 },
 116	{ 0x4b, 0x04 },
 117	{ 0x4c, 0x00 },
 118};
 119
 120static const struct regmap_range sta350_write_regs_range[] = {
 121	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
 122	regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
 123	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
 124	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
 125};
 126
 127static const struct regmap_range sta350_read_regs_range[] = {
 128	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
 129	regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
 130	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
 131	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
 132};
 133
 134static const struct regmap_range sta350_volatile_regs_range[] = {
 135	regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
 136	regmap_reg_range(STA350_STATUS,  STA350_STATUS),
 137};
 138
 139static const struct regmap_access_table sta350_write_regs = {
 140	.yes_ranges =	sta350_write_regs_range,
 141	.n_yes_ranges =	ARRAY_SIZE(sta350_write_regs_range),
 142};
 143
 144static const struct regmap_access_table sta350_read_regs = {
 145	.yes_ranges =	sta350_read_regs_range,
 146	.n_yes_ranges =	ARRAY_SIZE(sta350_read_regs_range),
 147};
 148
 149static const struct regmap_access_table sta350_volatile_regs = {
 150	.yes_ranges =	sta350_volatile_regs_range,
 151	.n_yes_ranges =	ARRAY_SIZE(sta350_volatile_regs_range),
 152};
 153
 154/* regulator power supply names */
 155static const char * const sta350_supply_names[] = {
 156	"vdd-dig",	/* digital supply, 3.3V */
 157	"vdd-pll",	/* pll supply, 3.3V */
 158	"vcc"		/* power amp supply, 5V - 26V */
 159};
 160
 161/* codec private data */
 162struct sta350_priv {
 163	struct regmap *regmap;
 164	struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
 165	struct sta350_platform_data *pdata;
 166
 167	unsigned int mclk;
 168	unsigned int format;
 169
 170	u32 coef_shadow[STA350_COEF_COUNT];
 171	int shutdown;
 172
 173	struct gpio_desc *gpiod_nreset;
 174	struct gpio_desc *gpiod_power_down;
 175
 176	struct mutex coeff_lock;
 177};
 178
 179static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
 180static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
 181static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
 182
 183static const char * const sta350_drc_ac[] = {
 184	"Anti-Clipping", "Dynamic Range Compression"
 185};
 186static const char * const sta350_auto_gc_mode[] = {
 187	"User", "AC no clipping", "AC limited clipping (10%)",
 188	"DRC nighttime listening mode"
 189};
 190static const char * const sta350_auto_xo_mode[] = {
 191	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
 192	"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
 193	"340Hz", "360Hz"
 194};
 195static const char * const sta350_binary_output[] = {
 196	"FFX 3-state output - normal operation", "Binary output"
 197};
 198static const char * const sta350_limiter_select[] = {
 199	"Limiter Disabled", "Limiter #1", "Limiter #2"
 200};
 201static const char * const sta350_limiter_attack_rate[] = {
 202	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
 203	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
 204	"0.0645", "0.0564", "0.0501", "0.0451"
 205};
 206static const char * const sta350_limiter_release_rate[] = {
 207	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
 208	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
 209	"0.0134", "0.0117", "0.0110", "0.0104"
 210};
 211static const char * const sta350_noise_shaper_type[] = {
 212	"Third order", "Fourth order"
 213};
 214
 215static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
 216	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
 217	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
 218);
 219
 220static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
 221	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
 222	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
 223	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
 224	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
 225	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
 226);
 227
 228static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
 229	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
 230	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
 231	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
 232);
 233
 234static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
 235	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
 236	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
 237	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
 238	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
 239	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
 240);
 241
 242static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
 243			    STA350_CONFD, STA350_CONFD_DRC_SHIFT,
 244			    sta350_drc_ac);
 245static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
 246			    STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
 247			    sta350_noise_shaper_type);
 248static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
 249			    STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
 250			    sta350_auto_gc_mode);
 251static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
 252			    STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
 253			    sta350_auto_xo_mode);
 254static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
 255			    STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
 256			    sta350_binary_output);
 257static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
 258			    STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
 259			    sta350_binary_output);
 260static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
 261			    STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
 262			    sta350_binary_output);
 263static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
 264			    STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
 265			    sta350_limiter_select);
 266static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
 267			    STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
 268			    sta350_limiter_select);
 269static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
 270			    STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
 271			    sta350_limiter_select);
 272static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
 273			    STA350_L1AR, STA350_LxA_SHIFT,
 274			    sta350_limiter_attack_rate);
 275static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
 276			    STA350_L2AR, STA350_LxA_SHIFT,
 277			    sta350_limiter_attack_rate);
 278static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
 279			    STA350_L1AR, STA350_LxR_SHIFT,
 280			    sta350_limiter_release_rate);
 281static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
 282			    STA350_L2AR, STA350_LxR_SHIFT,
 283			    sta350_limiter_release_rate);
 284
 285/*
 286 * byte array controls for setting biquad, mixer, scaling coefficients;
 287 * for biquads all five coefficients need to be set in one go,
 288 * mixer and pre/postscale coefs can be set individually;
 289 * each coef is 24bit, the bytes are ordered in the same way
 290 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
 291 */
 292
 293static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
 294				   struct snd_ctl_elem_info *uinfo)
 295{
 296	int numcoef = kcontrol->private_value >> 16;
 297	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
 298	uinfo->count = 3 * numcoef;
 299	return 0;
 300}
 301
 302static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
 303				  struct snd_ctl_elem_value *ucontrol)
 304{
 305	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
 306	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 307	int numcoef = kcontrol->private_value >> 16;
 308	int index = kcontrol->private_value & 0xffff;
 309	unsigned int cfud, val;
 310	int i, ret = 0;
 311
 312	mutex_lock(&sta350->coeff_lock);
 313
 314	/* preserve reserved bits in STA350_CFUD */
 315	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
 316	cfud &= 0xf0;
 317	/*
 318	 * chip documentation does not say if the bits are self clearing,
 319	 * so do it explicitly
 320	 */
 321	regmap_write(sta350->regmap, STA350_CFUD, cfud);
 322
 323	regmap_write(sta350->regmap, STA350_CFADDR2, index);
 324	if (numcoef == 1) {
 325		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
 326	} else if (numcoef == 5) {
 327		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
 328	} else {
 329		ret = -EINVAL;
 330		goto exit_unlock;
 331	}
 332
 333	for (i = 0; i < 3 * numcoef; i++) {
 334		regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
 335		ucontrol->value.bytes.data[i] = val;
 336	}
 337
 338exit_unlock:
 339	mutex_unlock(&sta350->coeff_lock);
 340
 341	return ret;
 342}
 343
 344static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
 345				  struct snd_ctl_elem_value *ucontrol)
 346{
 347	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
 348	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 349	int numcoef = kcontrol->private_value >> 16;
 350	int index = kcontrol->private_value & 0xffff;
 351	unsigned int cfud;
 352	int i;
 353
 354	/* preserve reserved bits in STA350_CFUD */
 355	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
 356	cfud &= 0xf0;
 357	/*
 358	 * chip documentation does not say if the bits are self clearing,
 359	 * so do it explicitly
 360	 */
 361	regmap_write(sta350->regmap, STA350_CFUD, cfud);
 362
 363	regmap_write(sta350->regmap, STA350_CFADDR2, index);
 364	for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
 365		sta350->coef_shadow[index + i] =
 366			  (ucontrol->value.bytes.data[3 * i] << 16)
 367			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
 368			| (ucontrol->value.bytes.data[3 * i + 2]);
 369	for (i = 0; i < 3 * numcoef; i++)
 370		regmap_write(sta350->regmap, STA350_B1CF1 + i,
 371			     ucontrol->value.bytes.data[i]);
 372	if (numcoef == 1)
 373		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
 374	else if (numcoef == 5)
 375		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
 376	else
 377		return -EINVAL;
 378
 379	return 0;
 380}
 381
 382static int sta350_sync_coef_shadow(struct snd_soc_component *component)
 383{
 384	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 385	unsigned int cfud;
 386	int i;
 387
 388	/* preserve reserved bits in STA350_CFUD */
 389	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
 390	cfud &= 0xf0;
 391
 392	for (i = 0; i < STA350_COEF_COUNT; i++) {
 393		regmap_write(sta350->regmap, STA350_CFADDR2, i);
 394		regmap_write(sta350->regmap, STA350_B1CF1,
 395			     (sta350->coef_shadow[i] >> 16) & 0xff);
 396		regmap_write(sta350->regmap, STA350_B1CF2,
 397			     (sta350->coef_shadow[i] >> 8) & 0xff);
 398		regmap_write(sta350->regmap, STA350_B1CF3,
 399			     (sta350->coef_shadow[i]) & 0xff);
 400		/*
 401		 * chip documentation does not say if the bits are
 402		 * self-clearing, so do it explicitly
 403		 */
 404		regmap_write(sta350->regmap, STA350_CFUD, cfud);
 405		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
 406	}
 407	return 0;
 408}
 409
 410static int sta350_cache_sync(struct snd_soc_component *component)
 411{
 412	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 413	unsigned int mute;
 414	int rc;
 415
 416	/* mute during register sync */
 417	regmap_read(sta350->regmap, STA350_CFUD, &mute);
 418	regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
 419	sta350_sync_coef_shadow(component);
 420	rc = regcache_sync(sta350->regmap);
 421	regmap_write(sta350->regmap, STA350_MMUTE, mute);
 422	return rc;
 423}
 424
 425#define SINGLE_COEF(xname, index) \
 426{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
 427	.info = sta350_coefficient_info, \
 428	.get = sta350_coefficient_get,\
 429	.put = sta350_coefficient_put, \
 430	.private_value = index | (1 << 16) }
 431
 432#define BIQUAD_COEFS(xname, index) \
 433{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
 434	.info = sta350_coefficient_info, \
 435	.get = sta350_coefficient_get,\
 436	.put = sta350_coefficient_put, \
 437	.private_value = index | (5 << 16) }
 438
 439static const struct snd_kcontrol_new sta350_snd_controls[] = {
 440SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
 441/* VOL */
 442SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
 443SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
 444SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
 445/* CONFD */
 446SOC_SINGLE("High Pass Filter Bypass Switch",
 447	   STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
 448SOC_SINGLE("De-emphasis Filter Switch",
 449	   STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
 450SOC_SINGLE("DSP Bypass Switch",
 451	   STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
 452SOC_SINGLE("Post-scale Link Switch",
 453	   STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
 454SOC_SINGLE("Biquad Coefficient Link Switch",
 455	   STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
 456SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
 457SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
 458SOC_SINGLE("Zero-detect Mute Enable Switch",
 459	   STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
 460SOC_SINGLE("Submix Mode Switch",
 461	   STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
 462/* CONFE */
 463SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
 464SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
 465/* MUTE */
 466SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
 467SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
 468SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
 469SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
 470/* AUTOx */
 471SOC_ENUM("Automode GC", sta350_auto_gc_enum),
 472SOC_ENUM("Automode XO", sta350_auto_xo_enum),
 473/* CxCFG */
 474SOC_SINGLE("Ch1 Tone Control Bypass Switch",
 475	   STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
 476SOC_SINGLE("Ch2 Tone Control Bypass Switch",
 477	   STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
 478SOC_SINGLE("Ch1 EQ Bypass Switch",
 479	   STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
 480SOC_SINGLE("Ch2 EQ Bypass Switch",
 481	   STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
 482SOC_SINGLE("Ch1 Master Volume Bypass Switch",
 483	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
 484SOC_SINGLE("Ch2 Master Volume Bypass Switch",
 485	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
 486SOC_SINGLE("Ch3 Master Volume Bypass Switch",
 487	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
 488SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
 489SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
 490SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
 491SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
 492SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
 493SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
 494/* TONE */
 495SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
 496		     STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
 497SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
 498		     STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
 499SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
 500SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
 501SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
 502SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
 503
 504/*
 505 * depending on mode, the attack/release thresholds have
 506 * two different enum definitions; provide both
 507 */
 508SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
 509	       STA350_L1ATRT, STA350_LxA_SHIFT,
 510	       16, 0, sta350_limiter_ac_attack_tlv),
 511SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
 512	       STA350_L2ATRT, STA350_LxA_SHIFT,
 513	       16, 0, sta350_limiter_ac_attack_tlv),
 514SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
 515	       STA350_L1ATRT, STA350_LxR_SHIFT,
 516	       16, 0, sta350_limiter_ac_release_tlv),
 517SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
 518	       STA350_L2ATRT, STA350_LxR_SHIFT,
 519	       16, 0, sta350_limiter_ac_release_tlv),
 520SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
 521	       STA350_L1ATRT, STA350_LxA_SHIFT,
 522	       16, 0, sta350_limiter_drc_attack_tlv),
 523SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
 524	       STA350_L2ATRT, STA350_LxA_SHIFT,
 525	       16, 0, sta350_limiter_drc_attack_tlv),
 526SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
 527	       STA350_L1ATRT, STA350_LxR_SHIFT,
 528	       16, 0, sta350_limiter_drc_release_tlv),
 529SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
 530	       STA350_L2ATRT, STA350_LxR_SHIFT,
 531	       16, 0, sta350_limiter_drc_release_tlv),
 532
 533BIQUAD_COEFS("Ch1 - Biquad 1", 0),
 534BIQUAD_COEFS("Ch1 - Biquad 2", 5),
 535BIQUAD_COEFS("Ch1 - Biquad 3", 10),
 536BIQUAD_COEFS("Ch1 - Biquad 4", 15),
 537BIQUAD_COEFS("Ch2 - Biquad 1", 20),
 538BIQUAD_COEFS("Ch2 - Biquad 2", 25),
 539BIQUAD_COEFS("Ch2 - Biquad 3", 30),
 540BIQUAD_COEFS("Ch2 - Biquad 4", 35),
 541BIQUAD_COEFS("High-pass", 40),
 542BIQUAD_COEFS("Low-pass", 45),
 543SINGLE_COEF("Ch1 - Prescale", 50),
 544SINGLE_COEF("Ch2 - Prescale", 51),
 545SINGLE_COEF("Ch1 - Postscale", 52),
 546SINGLE_COEF("Ch2 - Postscale", 53),
 547SINGLE_COEF("Ch3 - Postscale", 54),
 548SINGLE_COEF("Thermal warning - Postscale", 55),
 549SINGLE_COEF("Ch1 - Mix 1", 56),
 550SINGLE_COEF("Ch1 - Mix 2", 57),
 551SINGLE_COEF("Ch2 - Mix 1", 58),
 552SINGLE_COEF("Ch2 - Mix 2", 59),
 553SINGLE_COEF("Ch3 - Mix 1", 60),
 554SINGLE_COEF("Ch3 - Mix 2", 61),
 555};
 556
 557static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
 558SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
 559SND_SOC_DAPM_OUTPUT("LEFT"),
 560SND_SOC_DAPM_OUTPUT("RIGHT"),
 561SND_SOC_DAPM_OUTPUT("SUB"),
 562};
 563
 564static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
 565	{ "LEFT", NULL, "DAC" },
 566	{ "RIGHT", NULL, "DAC" },
 567	{ "SUB", NULL, "DAC" },
 568	{ "DAC", NULL, "Playback" },
 569};
 570
 571/* MCLK interpolation ratio per fs */
 572static struct {
 573	int fs;
 574	int ir;
 575} interpolation_ratios[] = {
 576	{ 32000, 0 },
 577	{ 44100, 0 },
 578	{ 48000, 0 },
 579	{ 88200, 1 },
 580	{ 96000, 1 },
 581	{ 176400, 2 },
 582	{ 192000, 2 },
 583};
 584
 585/* MCLK to fs clock ratios */
 586static int mcs_ratio_table[3][6] = {
 587	{ 768, 512, 384, 256, 128, 576 },
 588	{ 384, 256, 192, 128,  64,   0 },
 589	{ 192, 128,  96,  64,  32,   0 },
 590};
 591
 592/**
 593 * sta350_set_dai_sysclk - configure MCLK
 594 * @codec_dai: the codec DAI
 595 * @clk_id: the clock ID (ignored)
 596 * @freq: the MCLK input frequency
 597 * @dir: the clock direction (ignored)
 598 *
 599 * The value of MCLK is used to determine which sample rates are supported
 600 * by the STA350, based on the mcs_ratio_table.
 601 *
 602 * This function must be called by the machine driver's 'startup' function,
 603 * otherwise the list of supported sample rates will not be available in
 604 * time for ALSA.
 605 */
 606static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
 607				 int clk_id, unsigned int freq, int dir)
 608{
 609	struct snd_soc_component *component = codec_dai->component;
 610	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 611
 612	dev_dbg(component->dev, "mclk=%u\n", freq);
 613	sta350->mclk = freq;
 614
 615	return 0;
 616}
 617
 618/**
 619 * sta350_set_dai_fmt - configure the codec for the selected audio format
 620 * @codec_dai: the codec DAI
 621 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
 622 *
 623 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
 624 * codec accordingly.
 625 */
 626static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
 627			      unsigned int fmt)
 628{
 629	struct snd_soc_component *component = codec_dai->component;
 630	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 631	unsigned int confb = 0;
 632
 633	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
 634	case SND_SOC_DAIFMT_CBC_CFC:
 635		break;
 636	default:
 637		return -EINVAL;
 638	}
 639
 640	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
 641	case SND_SOC_DAIFMT_I2S:
 642	case SND_SOC_DAIFMT_RIGHT_J:
 643	case SND_SOC_DAIFMT_LEFT_J:
 644		sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 645		break;
 646	default:
 647		return -EINVAL;
 648	}
 649
 650	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
 651	case SND_SOC_DAIFMT_NB_NF:
 652		confb |= STA350_CONFB_C2IM;
 653		break;
 654	case SND_SOC_DAIFMT_NB_IF:
 655		confb |= STA350_CONFB_C1IM;
 656		break;
 657	default:
 658		return -EINVAL;
 659	}
 660
 661	return regmap_update_bits(sta350->regmap, STA350_CONFB,
 662				  STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
 663}
 664
 665/**
 666 * sta350_hw_params - program the STA350 with the given hardware parameters.
 667 * @substream: the audio stream
 668 * @params: the hardware parameters to set
 669 * @dai: the SOC DAI (ignored)
 670 *
 671 * This function programs the hardware with the values provided.
 672 * Specifically, the sample rate and the data format.
 673 */
 674static int sta350_hw_params(struct snd_pcm_substream *substream,
 675			    struct snd_pcm_hw_params *params,
 676			    struct snd_soc_dai *dai)
 677{
 678	struct snd_soc_component *component = dai->component;
 679	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 680	int i, mcs = -EINVAL, ir = -EINVAL;
 681	unsigned int confa, confb;
 682	unsigned int rate, ratio;
 683	int ret;
 684
 685	if (!sta350->mclk) {
 686		dev_err(component->dev,
 687			"sta350->mclk is unset. Unable to determine ratio\n");
 688		return -EIO;
 689	}
 690
 691	rate = params_rate(params);
 692	ratio = sta350->mclk / rate;
 693	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
 694
 695	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
 696		if (interpolation_ratios[i].fs == rate) {
 697			ir = interpolation_ratios[i].ir;
 698			break;
 699		}
 700	}
 701
 702	if (ir < 0) {
 703		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
 704		return -EINVAL;
 705	}
 706
 707	for (i = 0; i < 6; i++) {
 708		if (mcs_ratio_table[ir][i] == ratio) {
 709			mcs = i;
 710			break;
 711		}
 712	}
 713
 714	if (mcs < 0) {
 715		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
 716		return -EINVAL;
 717	}
 718
 719	confa = (ir << STA350_CONFA_IR_SHIFT) |
 720		(mcs << STA350_CONFA_MCS_SHIFT);
 721	confb = 0;
 722
 723	switch (params_width(params)) {
 724	case 24:
 725		dev_dbg(component->dev, "24bit\n");
 726		fallthrough;
 727	case 32:
 728		dev_dbg(component->dev, "24bit or 32bit\n");
 729		switch (sta350->format) {
 730		case SND_SOC_DAIFMT_I2S:
 731			confb |= 0x0;
 732			break;
 733		case SND_SOC_DAIFMT_LEFT_J:
 734			confb |= 0x1;
 735			break;
 736		case SND_SOC_DAIFMT_RIGHT_J:
 737			confb |= 0x2;
 738			break;
 739		}
 740
 741		break;
 742	case 20:
 743		dev_dbg(component->dev, "20bit\n");
 744		switch (sta350->format) {
 745		case SND_SOC_DAIFMT_I2S:
 746			confb |= 0x4;
 747			break;
 748		case SND_SOC_DAIFMT_LEFT_J:
 749			confb |= 0x5;
 750			break;
 751		case SND_SOC_DAIFMT_RIGHT_J:
 752			confb |= 0x6;
 753			break;
 754		}
 755
 756		break;
 757	case 18:
 758		dev_dbg(component->dev, "18bit\n");
 759		switch (sta350->format) {
 760		case SND_SOC_DAIFMT_I2S:
 761			confb |= 0x8;
 762			break;
 763		case SND_SOC_DAIFMT_LEFT_J:
 764			confb |= 0x9;
 765			break;
 766		case SND_SOC_DAIFMT_RIGHT_J:
 767			confb |= 0xa;
 768			break;
 769		}
 770
 771		break;
 772	case 16:
 773		dev_dbg(component->dev, "16bit\n");
 774		switch (sta350->format) {
 775		case SND_SOC_DAIFMT_I2S:
 776			confb |= 0x0;
 777			break;
 778		case SND_SOC_DAIFMT_LEFT_J:
 779			confb |= 0xd;
 780			break;
 781		case SND_SOC_DAIFMT_RIGHT_J:
 782			confb |= 0xe;
 783			break;
 784		}
 785
 786		break;
 787	default:
 788		return -EINVAL;
 789	}
 790
 791	ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
 792				 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
 793				 confa);
 794	if (ret < 0)
 795		return ret;
 796
 797	ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
 798				 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
 799				 confb);
 800	if (ret < 0)
 801		return ret;
 802
 803	return 0;
 804}
 805
 806static int sta350_startup_sequence(struct sta350_priv *sta350)
 807{
 808	if (sta350->gpiod_power_down)
 809		gpiod_set_value(sta350->gpiod_power_down, 1);
 810
 811	if (sta350->gpiod_nreset) {
 812		gpiod_set_value(sta350->gpiod_nreset, 0);
 813		mdelay(1);
 814		gpiod_set_value(sta350->gpiod_nreset, 1);
 815		mdelay(1);
 816	}
 817
 818	return 0;
 819}
 820
 821/**
 822 * sta350_set_bias_level - DAPM callback
 823 * @component: the component device
 824 * @level: DAPM power level
 825 *
 826 * This is called by ALSA to put the component into low power mode
 827 * or to wake it up.  If the component is powered off completely
 828 * all registers must be restored after power on.
 829 */
 830static int sta350_set_bias_level(struct snd_soc_component *component,
 831				 enum snd_soc_bias_level level)
 832{
 833	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 834	int ret;
 835
 836	dev_dbg(component->dev, "level = %d\n", level);
 837	switch (level) {
 838	case SND_SOC_BIAS_ON:
 839		break;
 840
 841	case SND_SOC_BIAS_PREPARE:
 842		/* Full power on */
 843		regmap_update_bits(sta350->regmap, STA350_CONFF,
 844				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
 845				   STA350_CONFF_PWDN | STA350_CONFF_EAPD);
 846		break;
 847
 848	case SND_SOC_BIAS_STANDBY:
 849		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
 850			ret = regulator_bulk_enable(
 851				ARRAY_SIZE(sta350->supplies),
 852				sta350->supplies);
 853			if (ret < 0) {
 854				dev_err(component->dev,
 855					"Failed to enable supplies: %d\n",
 856					ret);
 857				return ret;
 858			}
 859			sta350_startup_sequence(sta350);
 860			sta350_cache_sync(component);
 861		}
 862
 863		/* Power down */
 864		regmap_update_bits(sta350->regmap, STA350_CONFF,
 865				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
 866				   0);
 867
 868		break;
 869
 870	case SND_SOC_BIAS_OFF:
 871		/* The chip runs through the power down sequence for us */
 872		regmap_update_bits(sta350->regmap, STA350_CONFF,
 873				   STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
 874
 875		/* power down: low */
 876		if (sta350->gpiod_power_down)
 877			gpiod_set_value(sta350->gpiod_power_down, 0);
 878
 879		if (sta350->gpiod_nreset)
 880			gpiod_set_value(sta350->gpiod_nreset, 0);
 881
 882		regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
 883				       sta350->supplies);
 884		break;
 885	}
 886	return 0;
 887}
 888
 889static const struct snd_soc_dai_ops sta350_dai_ops = {
 890	.hw_params	= sta350_hw_params,
 891	.set_sysclk	= sta350_set_dai_sysclk,
 892	.set_fmt	= sta350_set_dai_fmt,
 893};
 894
 895static struct snd_soc_dai_driver sta350_dai = {
 896	.name = "sta350-hifi",
 897	.playback = {
 898		.stream_name = "Playback",
 899		.channels_min = 2,
 900		.channels_max = 2,
 901		.rates = STA350_RATES,
 902		.formats = STA350_FORMATS,
 903	},
 904	.ops = &sta350_dai_ops,
 905};
 906
 907static int sta350_probe(struct snd_soc_component *component)
 908{
 909	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 910	struct sta350_platform_data *pdata = sta350->pdata;
 911	int i, ret = 0, thermal = 0;
 912
 913	ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
 914				    sta350->supplies);
 915	if (ret < 0) {
 916		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
 917		return ret;
 918	}
 919
 920	ret = sta350_startup_sequence(sta350);
 921	if (ret < 0) {
 922		dev_err(component->dev, "Failed to startup device\n");
 923		return ret;
 924	}
 925
 926	/* CONFA */
 927	if (!pdata->thermal_warning_recovery)
 928		thermal |= STA350_CONFA_TWAB;
 929	if (!pdata->thermal_warning_adjustment)
 930		thermal |= STA350_CONFA_TWRB;
 931	if (!pdata->fault_detect_recovery)
 932		thermal |= STA350_CONFA_FDRB;
 933	regmap_update_bits(sta350->regmap, STA350_CONFA,
 934			   STA350_CONFA_TWAB | STA350_CONFA_TWRB |
 935			   STA350_CONFA_FDRB,
 936			   thermal);
 937
 938	/* CONFC */
 939	regmap_update_bits(sta350->regmap, STA350_CONFC,
 940			   STA350_CONFC_OM_MASK,
 941			   pdata->ffx_power_output_mode
 942				<< STA350_CONFC_OM_SHIFT);
 943	regmap_update_bits(sta350->regmap, STA350_CONFC,
 944			   STA350_CONFC_CSZ_MASK,
 945			   pdata->drop_compensation_ns
 946				<< STA350_CONFC_CSZ_SHIFT);
 947	regmap_update_bits(sta350->regmap,
 948			   STA350_CONFC,
 949			   STA350_CONFC_OCRB,
 950			   pdata->oc_warning_adjustment ?
 951				STA350_CONFC_OCRB : 0);
 952
 953	/* CONFE */
 954	regmap_update_bits(sta350->regmap, STA350_CONFE,
 955			   STA350_CONFE_MPCV,
 956			   pdata->max_power_use_mpcc ?
 957				STA350_CONFE_MPCV : 0);
 958	regmap_update_bits(sta350->regmap, STA350_CONFE,
 959			   STA350_CONFE_MPC,
 960			   pdata->max_power_correction ?
 961				STA350_CONFE_MPC : 0);
 962	regmap_update_bits(sta350->regmap, STA350_CONFE,
 963			   STA350_CONFE_AME,
 964			   pdata->am_reduction_mode ?
 965				STA350_CONFE_AME : 0);
 966	regmap_update_bits(sta350->regmap, STA350_CONFE,
 967			   STA350_CONFE_PWMS,
 968			   pdata->odd_pwm_speed_mode ?
 969				STA350_CONFE_PWMS : 0);
 970	regmap_update_bits(sta350->regmap, STA350_CONFE,
 971			   STA350_CONFE_DCCV,
 972			   pdata->distortion_compensation ?
 973				STA350_CONFE_DCCV : 0);
 974	/*  CONFF */
 975	regmap_update_bits(sta350->regmap, STA350_CONFF,
 976			   STA350_CONFF_IDE,
 977			   pdata->invalid_input_detect_mute ?
 978				STA350_CONFF_IDE : 0);
 979	regmap_update_bits(sta350->regmap, STA350_CONFF,
 980			   STA350_CONFF_OCFG_MASK,
 981			   pdata->output_conf
 982				<< STA350_CONFF_OCFG_SHIFT);
 983
 984	/* channel to output mapping */
 985	regmap_update_bits(sta350->regmap, STA350_C1CFG,
 986			   STA350_CxCFG_OM_MASK,
 987			   pdata->ch1_output_mapping
 988				<< STA350_CxCFG_OM_SHIFT);
 989	regmap_update_bits(sta350->regmap, STA350_C2CFG,
 990			   STA350_CxCFG_OM_MASK,
 991			   pdata->ch2_output_mapping
 992				<< STA350_CxCFG_OM_SHIFT);
 993	regmap_update_bits(sta350->regmap, STA350_C3CFG,
 994			   STA350_CxCFG_OM_MASK,
 995			   pdata->ch3_output_mapping
 996				<< STA350_CxCFG_OM_SHIFT);
 997
 998	/* miscellaneous registers */
 999	regmap_update_bits(sta350->regmap, STA350_MISC1,
1000			   STA350_MISC1_CPWMEN,
1001			   pdata->activate_mute_output ?
1002				STA350_MISC1_CPWMEN : 0);
1003	regmap_update_bits(sta350->regmap, STA350_MISC1,
1004			   STA350_MISC1_BRIDGOFF,
1005			   pdata->bridge_immediate_off ?
1006				STA350_MISC1_BRIDGOFF : 0);
1007	regmap_update_bits(sta350->regmap, STA350_MISC1,
1008			   STA350_MISC1_NSHHPEN,
1009			   pdata->noise_shape_dc_cut ?
1010				STA350_MISC1_NSHHPEN : 0);
1011	regmap_update_bits(sta350->regmap, STA350_MISC1,
1012			   STA350_MISC1_RPDNEN,
1013			   pdata->powerdown_master_vol ?
1014				STA350_MISC1_RPDNEN: 0);
1015
1016	regmap_update_bits(sta350->regmap, STA350_MISC2,
1017			   STA350_MISC2_PNDLSL_MASK,
1018			   pdata->powerdown_delay_divider
1019				<< STA350_MISC2_PNDLSL_SHIFT);
1020
1021	/* initialize coefficient shadow RAM with reset values */
1022	for (i = 4; i <= 49; i += 5)
1023		sta350->coef_shadow[i] = 0x400000;
1024	for (i = 50; i <= 54; i++)
1025		sta350->coef_shadow[i] = 0x7fffff;
1026	sta350->coef_shadow[55] = 0x5a9df7;
1027	sta350->coef_shadow[56] = 0x7fffff;
1028	sta350->coef_shadow[59] = 0x7fffff;
1029	sta350->coef_shadow[60] = 0x400000;
1030	sta350->coef_shadow[61] = 0x400000;
1031
1032	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1033	/* Bias level configuration will have done an extra enable */
1034	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1035
1036	return 0;
1037}
1038
1039static void sta350_remove(struct snd_soc_component *component)
1040{
1041	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1042
1043	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1044}
1045
1046static const struct snd_soc_component_driver sta350_component = {
1047	.probe			= sta350_probe,
1048	.remove			= sta350_remove,
1049	.set_bias_level		= sta350_set_bias_level,
1050	.controls		= sta350_snd_controls,
1051	.num_controls		= ARRAY_SIZE(sta350_snd_controls),
1052	.dapm_widgets		= sta350_dapm_widgets,
1053	.num_dapm_widgets	= ARRAY_SIZE(sta350_dapm_widgets),
1054	.dapm_routes		= sta350_dapm_routes,
1055	.num_dapm_routes	= ARRAY_SIZE(sta350_dapm_routes),
1056	.suspend_bias_off	= 1,
1057	.idle_bias_on		= 1,
1058	.use_pmdown_time	= 1,
1059	.endianness		= 1,
1060};
1061
1062static const struct regmap_config sta350_regmap = {
1063	.reg_bits =		8,
1064	.val_bits =		8,
1065	.max_register =		STA350_MISC2,
1066	.reg_defaults =		sta350_regs,
1067	.num_reg_defaults =	ARRAY_SIZE(sta350_regs),
1068	.cache_type =		REGCACHE_RBTREE,
1069	.wr_table =		&sta350_write_regs,
1070	.rd_table =		&sta350_read_regs,
1071	.volatile_table =	&sta350_volatile_regs,
1072};
1073
1074#ifdef CONFIG_OF
1075static const struct of_device_id st350_dt_ids[] = {
1076	{ .compatible = "st,sta350", },
1077	{ }
1078};
1079MODULE_DEVICE_TABLE(of, st350_dt_ids);
1080
1081static const char * const sta350_ffx_modes[] = {
1082	[STA350_FFX_PM_DROP_COMP]		= "drop-compensation",
1083	[STA350_FFX_PM_TAPERED_COMP]		= "tapered-compensation",
1084	[STA350_FFX_PM_FULL_POWER]		= "full-power-mode",
1085	[STA350_FFX_PM_VARIABLE_DROP_COMP]	= "variable-drop-compensation",
1086};
1087
1088static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1089{
1090	struct device_node *np = dev->of_node;
1091	struct sta350_platform_data *pdata;
1092	const char *ffx_power_mode;
1093	u16 tmp;
1094	u8 tmp8;
1095
1096	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1097	if (!pdata)
1098		return -ENOMEM;
1099
1100	of_property_read_u8(np, "st,output-conf",
1101			    &pdata->output_conf);
1102	of_property_read_u8(np, "st,ch1-output-mapping",
1103			    &pdata->ch1_output_mapping);
1104	of_property_read_u8(np, "st,ch2-output-mapping",
1105			    &pdata->ch2_output_mapping);
1106	of_property_read_u8(np, "st,ch3-output-mapping",
1107			    &pdata->ch3_output_mapping);
1108
1109	if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1110		pdata->thermal_warning_recovery = 1;
1111	if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1112		pdata->thermal_warning_adjustment = 1;
1113	if (of_get_property(np, "st,fault-detect-recovery", NULL))
1114		pdata->fault_detect_recovery = 1;
1115
1116	pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1117	if (!of_property_read_string(np, "st,ffx-power-output-mode",
1118				     &ffx_power_mode)) {
1119		int i, mode = -EINVAL;
1120
1121		for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1122			if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1123				mode = i;
1124
1125		if (mode < 0)
1126			dev_warn(dev, "Unsupported ffx output mode: %s\n",
1127				 ffx_power_mode);
1128		else
1129			pdata->ffx_power_output_mode = mode;
1130	}
1131
1132	tmp = 140;
1133	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1134	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1135
1136	if (of_get_property(np, "st,overcurrent-warning-adjustment", NULL))
1137		pdata->oc_warning_adjustment = 1;
1138
1139	/* CONFE */
1140	if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1141		pdata->max_power_use_mpcc = 1;
1142
1143	if (of_get_property(np, "st,max-power-correction", NULL))
1144		pdata->max_power_correction = 1;
1145
1146	if (of_get_property(np, "st,am-reduction-mode", NULL))
1147		pdata->am_reduction_mode = 1;
1148
1149	if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1150		pdata->odd_pwm_speed_mode = 1;
1151
1152	if (of_get_property(np, "st,distortion-compensation", NULL))
1153		pdata->distortion_compensation = 1;
1154
1155	/* CONFF */
1156	if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1157		pdata->invalid_input_detect_mute = 1;
1158
1159	/* MISC */
1160	if (of_get_property(np, "st,activate-mute-output", NULL))
1161		pdata->activate_mute_output = 1;
1162
1163	if (of_get_property(np, "st,bridge-immediate-off", NULL))
1164		pdata->bridge_immediate_off = 1;
1165
1166	if (of_get_property(np, "st,noise-shape-dc-cut", NULL))
1167		pdata->noise_shape_dc_cut = 1;
1168
1169	if (of_get_property(np, "st,powerdown-master-volume", NULL))
1170		pdata->powerdown_master_vol = 1;
1171
1172	if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1173		if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1174			pdata->powerdown_delay_divider = ilog2(tmp8);
1175		else
1176			dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1177				 tmp8);
1178	}
1179
1180	sta350->pdata = pdata;
1181
1182	return 0;
1183}
1184#endif
1185
1186static int sta350_i2c_probe(struct i2c_client *i2c)
1187{
1188	struct device *dev = &i2c->dev;
1189	struct sta350_priv *sta350;
1190	int ret, i;
1191
1192	sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1193	if (!sta350)
1194		return -ENOMEM;
1195
1196	mutex_init(&sta350->coeff_lock);
1197	sta350->pdata = dev_get_platdata(dev);
1198
1199#ifdef CONFIG_OF
1200	if (dev->of_node) {
1201		ret = sta350_probe_dt(dev, sta350);
1202		if (ret < 0)
1203			return ret;
1204	}
1205#endif
1206
1207	/* GPIOs */
1208	sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1209						       GPIOD_OUT_LOW);
1210	if (IS_ERR(sta350->gpiod_nreset))
1211		return PTR_ERR(sta350->gpiod_nreset);
1212
1213	sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1214							   GPIOD_OUT_LOW);
1215	if (IS_ERR(sta350->gpiod_power_down))
1216		return PTR_ERR(sta350->gpiod_power_down);
1217
1218	/* regulators */
1219	for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1220		sta350->supplies[i].supply = sta350_supply_names[i];
1221
1222	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1223				      sta350->supplies);
1224	if (ret < 0) {
1225		dev_err(dev, "Failed to request supplies: %d\n", ret);
1226		return ret;
1227	}
1228
1229	sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1230	if (IS_ERR(sta350->regmap)) {
1231		ret = PTR_ERR(sta350->regmap);
1232		dev_err(dev, "Failed to init regmap: %d\n", ret);
1233		return ret;
1234	}
1235
1236	i2c_set_clientdata(i2c, sta350);
1237
1238	ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1239	if (ret < 0)
1240		dev_err(dev, "Failed to register component (%d)\n", ret);
1241
1242	return ret;
1243}
1244
1245static void sta350_i2c_remove(struct i2c_client *client)
1246{}
1247
1248static const struct i2c_device_id sta350_i2c_id[] = {
1249	{ "sta350", 0 },
1250	{ }
1251};
1252MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1253
1254static struct i2c_driver sta350_i2c_driver = {
1255	.driver = {
1256		.name = "sta350",
1257		.of_match_table = of_match_ptr(st350_dt_ids),
1258	},
1259	.probe_new = sta350_i2c_probe,
1260	.remove =   sta350_i2c_remove,
1261	.id_table = sta350_i2c_id,
1262};
1263
1264module_i2c_driver(sta350_i2c_driver);
1265
1266MODULE_DESCRIPTION("ASoC STA350 driver");
1267MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1268MODULE_LICENSE("GPL");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system
   4 *
   5 * Copyright: 2014 Raumfeld GmbH
   6 * Author: Sven Brandau <info@brandau.biz>
   7 *
   8 * based on code from:
   9 *	Raumfeld GmbH
  10 *	  Johannes Stezenbach <js@sig21.net>
  11 *	Wolfson Microelectronics PLC.
  12 *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
  13 *	Freescale Semiconductor, Inc.
  14 *	  Timur Tabi <timur@freescale.com>
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
  18
  19#include <linux/module.h>
  20#include <linux/moduleparam.h>
  21#include <linux/init.h>
  22#include <linux/delay.h>
  23#include <linux/pm.h>
  24#include <linux/i2c.h>
  25#include <linux/of.h>
 
  26#include <linux/regmap.h>
  27#include <linux/regulator/consumer.h>
  28#include <linux/gpio/consumer.h>
  29#include <linux/slab.h>
  30#include <sound/core.h>
  31#include <sound/pcm.h>
  32#include <sound/pcm_params.h>
  33#include <sound/soc.h>
  34#include <sound/soc-dapm.h>
  35#include <sound/initval.h>
  36#include <sound/tlv.h>
  37
  38#include <sound/sta350.h>
  39#include "sta350.h"
  40
  41#define STA350_RATES (SNDRV_PCM_RATE_32000 | \
  42		      SNDRV_PCM_RATE_44100 | \
  43		      SNDRV_PCM_RATE_48000 | \
  44		      SNDRV_PCM_RATE_88200 | \
  45		      SNDRV_PCM_RATE_96000 | \
  46		      SNDRV_PCM_RATE_176400 | \
  47		      SNDRV_PCM_RATE_192000)
  48
  49#define STA350_FORMATS \
  50	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S18_3LE | \
  51	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \
  52	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S32_LE)
  53
  54/* Power-up register defaults */
  55static const struct reg_default sta350_regs[] = {
  56	{  0x0, 0x63 },
  57	{  0x1, 0x80 },
  58	{  0x2, 0xdf },
  59	{  0x3, 0x40 },
  60	{  0x4, 0xc2 },
  61	{  0x5, 0x5c },
  62	{  0x6, 0x00 },
  63	{  0x7, 0xff },
  64	{  0x8, 0x60 },
  65	{  0x9, 0x60 },
  66	{  0xa, 0x60 },
  67	{  0xb, 0x00 },
  68	{  0xc, 0x00 },
  69	{  0xd, 0x00 },
  70	{  0xe, 0x00 },
  71	{  0xf, 0x40 },
  72	{ 0x10, 0x80 },
  73	{ 0x11, 0x77 },
  74	{ 0x12, 0x6a },
  75	{ 0x13, 0x69 },
  76	{ 0x14, 0x6a },
  77	{ 0x15, 0x69 },
  78	{ 0x16, 0x00 },
  79	{ 0x17, 0x00 },
  80	{ 0x18, 0x00 },
  81	{ 0x19, 0x00 },
  82	{ 0x1a, 0x00 },
  83	{ 0x1b, 0x00 },
  84	{ 0x1c, 0x00 },
  85	{ 0x1d, 0x00 },
  86	{ 0x1e, 0x00 },
  87	{ 0x1f, 0x00 },
  88	{ 0x20, 0x00 },
  89	{ 0x21, 0x00 },
  90	{ 0x22, 0x00 },
  91	{ 0x23, 0x00 },
  92	{ 0x24, 0x00 },
  93	{ 0x25, 0x00 },
  94	{ 0x26, 0x00 },
  95	{ 0x27, 0x2a },
  96	{ 0x28, 0xc0 },
  97	{ 0x29, 0xf3 },
  98	{ 0x2a, 0x33 },
  99	{ 0x2b, 0x00 },
 100	{ 0x2c, 0x0c },
 101	{ 0x31, 0x00 },
 102	{ 0x36, 0x00 },
 103	{ 0x37, 0x00 },
 104	{ 0x38, 0x00 },
 105	{ 0x39, 0x01 },
 106	{ 0x3a, 0xee },
 107	{ 0x3b, 0xff },
 108	{ 0x3c, 0x7e },
 109	{ 0x3d, 0xc0 },
 110	{ 0x3e, 0x26 },
 111	{ 0x3f, 0x00 },
 112	{ 0x48, 0x00 },
 113	{ 0x49, 0x00 },
 114	{ 0x4a, 0x00 },
 115	{ 0x4b, 0x04 },
 116	{ 0x4c, 0x00 },
 117};
 118
 119static const struct regmap_range sta350_write_regs_range[] = {
 120	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
 121	regmap_reg_range(STA350_C1CFG,  STA350_FDRC2),
 122	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
 123	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
 124};
 125
 126static const struct regmap_range sta350_read_regs_range[] = {
 127	regmap_reg_range(STA350_CONFA,  STA350_AUTO2),
 128	regmap_reg_range(STA350_C1CFG,  STA350_STATUS),
 129	regmap_reg_range(STA350_EQCFG,  STA350_EVOLRES),
 130	regmap_reg_range(STA350_NSHAPE, STA350_MISC2),
 131};
 132
 133static const struct regmap_range sta350_volatile_regs_range[] = {
 134	regmap_reg_range(STA350_CFADDR2, STA350_CFUD),
 135	regmap_reg_range(STA350_STATUS,  STA350_STATUS),
 136};
 137
 138static const struct regmap_access_table sta350_write_regs = {
 139	.yes_ranges =	sta350_write_regs_range,
 140	.n_yes_ranges =	ARRAY_SIZE(sta350_write_regs_range),
 141};
 142
 143static const struct regmap_access_table sta350_read_regs = {
 144	.yes_ranges =	sta350_read_regs_range,
 145	.n_yes_ranges =	ARRAY_SIZE(sta350_read_regs_range),
 146};
 147
 148static const struct regmap_access_table sta350_volatile_regs = {
 149	.yes_ranges =	sta350_volatile_regs_range,
 150	.n_yes_ranges =	ARRAY_SIZE(sta350_volatile_regs_range),
 151};
 152
 153/* regulator power supply names */
 154static const char * const sta350_supply_names[] = {
 155	"vdd-dig",	/* digital supply, 3.3V */
 156	"vdd-pll",	/* pll supply, 3.3V */
 157	"vcc"		/* power amp supply, 5V - 26V */
 158};
 159
 160/* codec private data */
 161struct sta350_priv {
 162	struct regmap *regmap;
 163	struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)];
 164	struct sta350_platform_data *pdata;
 165
 166	unsigned int mclk;
 167	unsigned int format;
 168
 169	u32 coef_shadow[STA350_COEF_COUNT];
 170	int shutdown;
 171
 172	struct gpio_desc *gpiod_nreset;
 173	struct gpio_desc *gpiod_power_down;
 174
 175	struct mutex coeff_lock;
 176};
 177
 178static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1);
 179static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
 180static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0);
 181
 182static const char * const sta350_drc_ac[] = {
 183	"Anti-Clipping", "Dynamic Range Compression"
 184};
 185static const char * const sta350_auto_gc_mode[] = {
 186	"User", "AC no clipping", "AC limited clipping (10%)",
 187	"DRC nighttime listening mode"
 188};
 189static const char * const sta350_auto_xo_mode[] = {
 190	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz",
 191	"200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz",
 192	"340Hz", "360Hz"
 193};
 194static const char * const sta350_binary_output[] = {
 195	"FFX 3-state output - normal operation", "Binary output"
 196};
 197static const char * const sta350_limiter_select[] = {
 198	"Limiter Disabled", "Limiter #1", "Limiter #2"
 199};
 200static const char * const sta350_limiter_attack_rate[] = {
 201	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
 202	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
 203	"0.0645", "0.0564", "0.0501", "0.0451"
 204};
 205static const char * const sta350_limiter_release_rate[] = {
 206	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
 207	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
 208	"0.0134", "0.0117", "0.0110", "0.0104"
 209};
 210static const char * const sta350_noise_shaper_type[] = {
 211	"Third order", "Fourth order"
 212};
 213
 214static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv,
 215	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
 216	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
 217);
 218
 219static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv,
 220	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
 221	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
 222	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
 223	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
 224	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
 225);
 226
 227static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv,
 228	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
 229	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
 230	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
 231);
 232
 233static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv,
 234	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
 235	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
 236	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
 237	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
 238	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
 239);
 240
 241static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum,
 242			    STA350_CONFD, STA350_CONFD_DRC_SHIFT,
 243			    sta350_drc_ac);
 244static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum,
 245			    STA350_CONFE, STA350_CONFE_NSBW_SHIFT,
 246			    sta350_noise_shaper_type);
 247static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum,
 248			    STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT,
 249			    sta350_auto_gc_mode);
 250static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum,
 251			    STA350_AUTO2, STA350_AUTO2_XO_SHIFT,
 252			    sta350_auto_xo_mode);
 253static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum,
 254			    STA350_C1CFG, STA350_CxCFG_BO_SHIFT,
 255			    sta350_binary_output);
 256static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum,
 257			    STA350_C2CFG, STA350_CxCFG_BO_SHIFT,
 258			    sta350_binary_output);
 259static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum,
 260			    STA350_C3CFG, STA350_CxCFG_BO_SHIFT,
 261			    sta350_binary_output);
 262static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum,
 263			    STA350_C1CFG, STA350_CxCFG_LS_SHIFT,
 264			    sta350_limiter_select);
 265static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum,
 266			    STA350_C2CFG, STA350_CxCFG_LS_SHIFT,
 267			    sta350_limiter_select);
 268static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum,
 269			    STA350_C3CFG, STA350_CxCFG_LS_SHIFT,
 270			    sta350_limiter_select);
 271static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum,
 272			    STA350_L1AR, STA350_LxA_SHIFT,
 273			    sta350_limiter_attack_rate);
 274static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum,
 275			    STA350_L2AR, STA350_LxA_SHIFT,
 276			    sta350_limiter_attack_rate);
 277static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum,
 278			    STA350_L1AR, STA350_LxR_SHIFT,
 279			    sta350_limiter_release_rate);
 280static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum,
 281			    STA350_L2AR, STA350_LxR_SHIFT,
 282			    sta350_limiter_release_rate);
 283
 284/*
 285 * byte array controls for setting biquad, mixer, scaling coefficients;
 286 * for biquads all five coefficients need to be set in one go,
 287 * mixer and pre/postscale coefs can be set individually;
 288 * each coef is 24bit, the bytes are ordered in the same way
 289 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0)
 290 */
 291
 292static int sta350_coefficient_info(struct snd_kcontrol *kcontrol,
 293				   struct snd_ctl_elem_info *uinfo)
 294{
 295	int numcoef = kcontrol->private_value >> 16;
 296	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
 297	uinfo->count = 3 * numcoef;
 298	return 0;
 299}
 300
 301static int sta350_coefficient_get(struct snd_kcontrol *kcontrol,
 302				  struct snd_ctl_elem_value *ucontrol)
 303{
 304	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
 305	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 306	int numcoef = kcontrol->private_value >> 16;
 307	int index = kcontrol->private_value & 0xffff;
 308	unsigned int cfud, val;
 309	int i, ret = 0;
 310
 311	mutex_lock(&sta350->coeff_lock);
 312
 313	/* preserve reserved bits in STA350_CFUD */
 314	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
 315	cfud &= 0xf0;
 316	/*
 317	 * chip documentation does not say if the bits are self clearing,
 318	 * so do it explicitly
 319	 */
 320	regmap_write(sta350->regmap, STA350_CFUD, cfud);
 321
 322	regmap_write(sta350->regmap, STA350_CFADDR2, index);
 323	if (numcoef == 1) {
 324		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04);
 325	} else if (numcoef == 5) {
 326		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08);
 327	} else {
 328		ret = -EINVAL;
 329		goto exit_unlock;
 330	}
 331
 332	for (i = 0; i < 3 * numcoef; i++) {
 333		regmap_read(sta350->regmap, STA350_B1CF1 + i, &val);
 334		ucontrol->value.bytes.data[i] = val;
 335	}
 336
 337exit_unlock:
 338	mutex_unlock(&sta350->coeff_lock);
 339
 340	return ret;
 341}
 342
 343static int sta350_coefficient_put(struct snd_kcontrol *kcontrol,
 344				  struct snd_ctl_elem_value *ucontrol)
 345{
 346	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
 347	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 348	int numcoef = kcontrol->private_value >> 16;
 349	int index = kcontrol->private_value & 0xffff;
 350	unsigned int cfud;
 351	int i;
 352
 353	/* preserve reserved bits in STA350_CFUD */
 354	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
 355	cfud &= 0xf0;
 356	/*
 357	 * chip documentation does not say if the bits are self clearing,
 358	 * so do it explicitly
 359	 */
 360	regmap_write(sta350->regmap, STA350_CFUD, cfud);
 361
 362	regmap_write(sta350->regmap, STA350_CFADDR2, index);
 363	for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++)
 364		sta350->coef_shadow[index + i] =
 365			  (ucontrol->value.bytes.data[3 * i] << 16)
 366			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
 367			| (ucontrol->value.bytes.data[3 * i + 2]);
 368	for (i = 0; i < 3 * numcoef; i++)
 369		regmap_write(sta350->regmap, STA350_B1CF1 + i,
 370			     ucontrol->value.bytes.data[i]);
 371	if (numcoef == 1)
 372		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
 373	else if (numcoef == 5)
 374		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02);
 375	else
 376		return -EINVAL;
 377
 378	return 0;
 379}
 380
 381static int sta350_sync_coef_shadow(struct snd_soc_component *component)
 382{
 383	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 384	unsigned int cfud;
 385	int i;
 386
 387	/* preserve reserved bits in STA350_CFUD */
 388	regmap_read(sta350->regmap, STA350_CFUD, &cfud);
 389	cfud &= 0xf0;
 390
 391	for (i = 0; i < STA350_COEF_COUNT; i++) {
 392		regmap_write(sta350->regmap, STA350_CFADDR2, i);
 393		regmap_write(sta350->regmap, STA350_B1CF1,
 394			     (sta350->coef_shadow[i] >> 16) & 0xff);
 395		regmap_write(sta350->regmap, STA350_B1CF2,
 396			     (sta350->coef_shadow[i] >> 8) & 0xff);
 397		regmap_write(sta350->regmap, STA350_B1CF3,
 398			     (sta350->coef_shadow[i]) & 0xff);
 399		/*
 400		 * chip documentation does not say if the bits are
 401		 * self-clearing, so do it explicitly
 402		 */
 403		regmap_write(sta350->regmap, STA350_CFUD, cfud);
 404		regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01);
 405	}
 406	return 0;
 407}
 408
 409static int sta350_cache_sync(struct snd_soc_component *component)
 410{
 411	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 412	unsigned int mute;
 413	int rc;
 414
 415	/* mute during register sync */
 416	regmap_read(sta350->regmap, STA350_CFUD, &mute);
 417	regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE);
 418	sta350_sync_coef_shadow(component);
 419	rc = regcache_sync(sta350->regmap);
 420	regmap_write(sta350->regmap, STA350_MMUTE, mute);
 421	return rc;
 422}
 423
 424#define SINGLE_COEF(xname, index) \
 425{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
 426	.info = sta350_coefficient_info, \
 427	.get = sta350_coefficient_get,\
 428	.put = sta350_coefficient_put, \
 429	.private_value = index | (1 << 16) }
 430
 431#define BIQUAD_COEFS(xname, index) \
 432{	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
 433	.info = sta350_coefficient_info, \
 434	.get = sta350_coefficient_get,\
 435	.put = sta350_coefficient_put, \
 436	.private_value = index | (5 << 16) }
 437
 438static const struct snd_kcontrol_new sta350_snd_controls[] = {
 439SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv),
 440/* VOL */
 441SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv),
 442SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv),
 443SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv),
 444/* CONFD */
 445SOC_SINGLE("High Pass Filter Bypass Switch",
 446	   STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1),
 447SOC_SINGLE("De-emphasis Filter Switch",
 448	   STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0),
 449SOC_SINGLE("DSP Bypass Switch",
 450	   STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0),
 451SOC_SINGLE("Post-scale Link Switch",
 452	   STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0),
 453SOC_SINGLE("Biquad Coefficient Link Switch",
 454	   STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0),
 455SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum),
 456SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum),
 457SOC_SINGLE("Zero-detect Mute Enable Switch",
 458	   STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0),
 459SOC_SINGLE("Submix Mode Switch",
 460	   STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0),
 461/* CONFE */
 462SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0),
 463SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0),
 464/* MUTE */
 465SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1),
 466SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1),
 467SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1),
 468SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1),
 469/* AUTOx */
 470SOC_ENUM("Automode GC", sta350_auto_gc_enum),
 471SOC_ENUM("Automode XO", sta350_auto_xo_enum),
 472/* CxCFG */
 473SOC_SINGLE("Ch1 Tone Control Bypass Switch",
 474	   STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
 475SOC_SINGLE("Ch2 Tone Control Bypass Switch",
 476	   STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0),
 477SOC_SINGLE("Ch1 EQ Bypass Switch",
 478	   STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
 479SOC_SINGLE("Ch2 EQ Bypass Switch",
 480	   STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0),
 481SOC_SINGLE("Ch1 Master Volume Bypass Switch",
 482	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
 483SOC_SINGLE("Ch2 Master Volume Bypass Switch",
 484	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
 485SOC_SINGLE("Ch3 Master Volume Bypass Switch",
 486	   STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0),
 487SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum),
 488SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum),
 489SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum),
 490SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum),
 491SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum),
 492SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum),
 493/* TONE */
 494SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume",
 495		     STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv),
 496SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume",
 497		     STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv),
 498SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum),
 499SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum),
 500SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum),
 501SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum),
 502
 503/*
 504 * depending on mode, the attack/release thresholds have
 505 * two different enum definitions; provide both
 506 */
 507SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)",
 508	       STA350_L1ATRT, STA350_LxA_SHIFT,
 509	       16, 0, sta350_limiter_ac_attack_tlv),
 510SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)",
 511	       STA350_L2ATRT, STA350_LxA_SHIFT,
 512	       16, 0, sta350_limiter_ac_attack_tlv),
 513SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)",
 514	       STA350_L1ATRT, STA350_LxR_SHIFT,
 515	       16, 0, sta350_limiter_ac_release_tlv),
 516SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)",
 517	       STA350_L2ATRT, STA350_LxR_SHIFT,
 518	       16, 0, sta350_limiter_ac_release_tlv),
 519SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)",
 520	       STA350_L1ATRT, STA350_LxA_SHIFT,
 521	       16, 0, sta350_limiter_drc_attack_tlv),
 522SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)",
 523	       STA350_L2ATRT, STA350_LxA_SHIFT,
 524	       16, 0, sta350_limiter_drc_attack_tlv),
 525SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)",
 526	       STA350_L1ATRT, STA350_LxR_SHIFT,
 527	       16, 0, sta350_limiter_drc_release_tlv),
 528SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)",
 529	       STA350_L2ATRT, STA350_LxR_SHIFT,
 530	       16, 0, sta350_limiter_drc_release_tlv),
 531
 532BIQUAD_COEFS("Ch1 - Biquad 1", 0),
 533BIQUAD_COEFS("Ch1 - Biquad 2", 5),
 534BIQUAD_COEFS("Ch1 - Biquad 3", 10),
 535BIQUAD_COEFS("Ch1 - Biquad 4", 15),
 536BIQUAD_COEFS("Ch2 - Biquad 1", 20),
 537BIQUAD_COEFS("Ch2 - Biquad 2", 25),
 538BIQUAD_COEFS("Ch2 - Biquad 3", 30),
 539BIQUAD_COEFS("Ch2 - Biquad 4", 35),
 540BIQUAD_COEFS("High-pass", 40),
 541BIQUAD_COEFS("Low-pass", 45),
 542SINGLE_COEF("Ch1 - Prescale", 50),
 543SINGLE_COEF("Ch2 - Prescale", 51),
 544SINGLE_COEF("Ch1 - Postscale", 52),
 545SINGLE_COEF("Ch2 - Postscale", 53),
 546SINGLE_COEF("Ch3 - Postscale", 54),
 547SINGLE_COEF("Thermal warning - Postscale", 55),
 548SINGLE_COEF("Ch1 - Mix 1", 56),
 549SINGLE_COEF("Ch1 - Mix 2", 57),
 550SINGLE_COEF("Ch2 - Mix 1", 58),
 551SINGLE_COEF("Ch2 - Mix 2", 59),
 552SINGLE_COEF("Ch3 - Mix 1", 60),
 553SINGLE_COEF("Ch3 - Mix 2", 61),
 554};
 555
 556static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = {
 557SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0),
 558SND_SOC_DAPM_OUTPUT("LEFT"),
 559SND_SOC_DAPM_OUTPUT("RIGHT"),
 560SND_SOC_DAPM_OUTPUT("SUB"),
 561};
 562
 563static const struct snd_soc_dapm_route sta350_dapm_routes[] = {
 564	{ "LEFT", NULL, "DAC" },
 565	{ "RIGHT", NULL, "DAC" },
 566	{ "SUB", NULL, "DAC" },
 567	{ "DAC", NULL, "Playback" },
 568};
 569
 570/* MCLK interpolation ratio per fs */
 571static struct {
 572	int fs;
 573	int ir;
 574} interpolation_ratios[] = {
 575	{ 32000, 0 },
 576	{ 44100, 0 },
 577	{ 48000, 0 },
 578	{ 88200, 1 },
 579	{ 96000, 1 },
 580	{ 176400, 2 },
 581	{ 192000, 2 },
 582};
 583
 584/* MCLK to fs clock ratios */
 585static int mcs_ratio_table[3][6] = {
 586	{ 768, 512, 384, 256, 128, 576 },
 587	{ 384, 256, 192, 128,  64,   0 },
 588	{ 192, 128,  96,  64,  32,   0 },
 589};
 590
 591/**
 592 * sta350_set_dai_sysclk - configure MCLK
 593 * @codec_dai: the codec DAI
 594 * @clk_id: the clock ID (ignored)
 595 * @freq: the MCLK input frequency
 596 * @dir: the clock direction (ignored)
 597 *
 598 * The value of MCLK is used to determine which sample rates are supported
 599 * by the STA350, based on the mcs_ratio_table.
 600 *
 601 * This function must be called by the machine driver's 'startup' function,
 602 * otherwise the list of supported sample rates will not be available in
 603 * time for ALSA.
 604 */
 605static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai,
 606				 int clk_id, unsigned int freq, int dir)
 607{
 608	struct snd_soc_component *component = codec_dai->component;
 609	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 610
 611	dev_dbg(component->dev, "mclk=%u\n", freq);
 612	sta350->mclk = freq;
 613
 614	return 0;
 615}
 616
 617/**
 618 * sta350_set_dai_fmt - configure the codec for the selected audio format
 619 * @codec_dai: the codec DAI
 620 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
 621 *
 622 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
 623 * codec accordingly.
 624 */
 625static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai,
 626			      unsigned int fmt)
 627{
 628	struct snd_soc_component *component = codec_dai->component;
 629	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 630	unsigned int confb = 0;
 631
 632	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
 633	case SND_SOC_DAIFMT_CBC_CFC:
 634		break;
 635	default:
 636		return -EINVAL;
 637	}
 638
 639	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
 640	case SND_SOC_DAIFMT_I2S:
 641	case SND_SOC_DAIFMT_RIGHT_J:
 642	case SND_SOC_DAIFMT_LEFT_J:
 643		sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 644		break;
 645	default:
 646		return -EINVAL;
 647	}
 648
 649	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
 650	case SND_SOC_DAIFMT_NB_NF:
 651		confb |= STA350_CONFB_C2IM;
 652		break;
 653	case SND_SOC_DAIFMT_NB_IF:
 654		confb |= STA350_CONFB_C1IM;
 655		break;
 656	default:
 657		return -EINVAL;
 658	}
 659
 660	return regmap_update_bits(sta350->regmap, STA350_CONFB,
 661				  STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb);
 662}
 663
 664/**
 665 * sta350_hw_params - program the STA350 with the given hardware parameters.
 666 * @substream: the audio stream
 667 * @params: the hardware parameters to set
 668 * @dai: the SOC DAI (ignored)
 669 *
 670 * This function programs the hardware with the values provided.
 671 * Specifically, the sample rate and the data format.
 672 */
 673static int sta350_hw_params(struct snd_pcm_substream *substream,
 674			    struct snd_pcm_hw_params *params,
 675			    struct snd_soc_dai *dai)
 676{
 677	struct snd_soc_component *component = dai->component;
 678	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 679	int i, mcs = -EINVAL, ir = -EINVAL;
 680	unsigned int confa, confb;
 681	unsigned int rate, ratio;
 682	int ret;
 683
 684	if (!sta350->mclk) {
 685		dev_err(component->dev,
 686			"sta350->mclk is unset. Unable to determine ratio\n");
 687		return -EIO;
 688	}
 689
 690	rate = params_rate(params);
 691	ratio = sta350->mclk / rate;
 692	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
 693
 694	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
 695		if (interpolation_ratios[i].fs == rate) {
 696			ir = interpolation_ratios[i].ir;
 697			break;
 698		}
 699	}
 700
 701	if (ir < 0) {
 702		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
 703		return -EINVAL;
 704	}
 705
 706	for (i = 0; i < 6; i++) {
 707		if (mcs_ratio_table[ir][i] == ratio) {
 708			mcs = i;
 709			break;
 710		}
 711	}
 712
 713	if (mcs < 0) {
 714		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
 715		return -EINVAL;
 716	}
 717
 718	confa = (ir << STA350_CONFA_IR_SHIFT) |
 719		(mcs << STA350_CONFA_MCS_SHIFT);
 720	confb = 0;
 721
 722	switch (params_width(params)) {
 723	case 24:
 724		dev_dbg(component->dev, "24bit\n");
 725		fallthrough;
 726	case 32:
 727		dev_dbg(component->dev, "24bit or 32bit\n");
 728		switch (sta350->format) {
 729		case SND_SOC_DAIFMT_I2S:
 730			confb |= 0x0;
 731			break;
 732		case SND_SOC_DAIFMT_LEFT_J:
 733			confb |= 0x1;
 734			break;
 735		case SND_SOC_DAIFMT_RIGHT_J:
 736			confb |= 0x2;
 737			break;
 738		}
 739
 740		break;
 741	case 20:
 742		dev_dbg(component->dev, "20bit\n");
 743		switch (sta350->format) {
 744		case SND_SOC_DAIFMT_I2S:
 745			confb |= 0x4;
 746			break;
 747		case SND_SOC_DAIFMT_LEFT_J:
 748			confb |= 0x5;
 749			break;
 750		case SND_SOC_DAIFMT_RIGHT_J:
 751			confb |= 0x6;
 752			break;
 753		}
 754
 755		break;
 756	case 18:
 757		dev_dbg(component->dev, "18bit\n");
 758		switch (sta350->format) {
 759		case SND_SOC_DAIFMT_I2S:
 760			confb |= 0x8;
 761			break;
 762		case SND_SOC_DAIFMT_LEFT_J:
 763			confb |= 0x9;
 764			break;
 765		case SND_SOC_DAIFMT_RIGHT_J:
 766			confb |= 0xa;
 767			break;
 768		}
 769
 770		break;
 771	case 16:
 772		dev_dbg(component->dev, "16bit\n");
 773		switch (sta350->format) {
 774		case SND_SOC_DAIFMT_I2S:
 775			confb |= 0x0;
 776			break;
 777		case SND_SOC_DAIFMT_LEFT_J:
 778			confb |= 0xd;
 779			break;
 780		case SND_SOC_DAIFMT_RIGHT_J:
 781			confb |= 0xe;
 782			break;
 783		}
 784
 785		break;
 786	default:
 787		return -EINVAL;
 788	}
 789
 790	ret = regmap_update_bits(sta350->regmap, STA350_CONFA,
 791				 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK,
 792				 confa);
 793	if (ret < 0)
 794		return ret;
 795
 796	ret = regmap_update_bits(sta350->regmap, STA350_CONFB,
 797				 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB,
 798				 confb);
 799	if (ret < 0)
 800		return ret;
 801
 802	return 0;
 803}
 804
 805static int sta350_startup_sequence(struct sta350_priv *sta350)
 806{
 807	if (sta350->gpiod_power_down)
 808		gpiod_set_value(sta350->gpiod_power_down, 1);
 809
 810	if (sta350->gpiod_nreset) {
 811		gpiod_set_value(sta350->gpiod_nreset, 0);
 812		mdelay(1);
 813		gpiod_set_value(sta350->gpiod_nreset, 1);
 814		mdelay(1);
 815	}
 816
 817	return 0;
 818}
 819
 820/**
 821 * sta350_set_bias_level - DAPM callback
 822 * @component: the component device
 823 * @level: DAPM power level
 824 *
 825 * This is called by ALSA to put the component into low power mode
 826 * or to wake it up.  If the component is powered off completely
 827 * all registers must be restored after power on.
 828 */
 829static int sta350_set_bias_level(struct snd_soc_component *component,
 830				 enum snd_soc_bias_level level)
 831{
 832	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 833	int ret;
 834
 835	dev_dbg(component->dev, "level = %d\n", level);
 836	switch (level) {
 837	case SND_SOC_BIAS_ON:
 838		break;
 839
 840	case SND_SOC_BIAS_PREPARE:
 841		/* Full power on */
 842		regmap_update_bits(sta350->regmap, STA350_CONFF,
 843				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
 844				   STA350_CONFF_PWDN | STA350_CONFF_EAPD);
 845		break;
 846
 847	case SND_SOC_BIAS_STANDBY:
 848		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
 849			ret = regulator_bulk_enable(
 850				ARRAY_SIZE(sta350->supplies),
 851				sta350->supplies);
 852			if (ret < 0) {
 853				dev_err(component->dev,
 854					"Failed to enable supplies: %d\n",
 855					ret);
 856				return ret;
 857			}
 858			sta350_startup_sequence(sta350);
 859			sta350_cache_sync(component);
 860		}
 861
 862		/* Power down */
 863		regmap_update_bits(sta350->regmap, STA350_CONFF,
 864				   STA350_CONFF_PWDN | STA350_CONFF_EAPD,
 865				   0);
 866
 867		break;
 868
 869	case SND_SOC_BIAS_OFF:
 870		/* The chip runs through the power down sequence for us */
 871		regmap_update_bits(sta350->regmap, STA350_CONFF,
 872				   STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0);
 873
 874		/* power down: low */
 875		if (sta350->gpiod_power_down)
 876			gpiod_set_value(sta350->gpiod_power_down, 0);
 877
 878		if (sta350->gpiod_nreset)
 879			gpiod_set_value(sta350->gpiod_nreset, 0);
 880
 881		regulator_bulk_disable(ARRAY_SIZE(sta350->supplies),
 882				       sta350->supplies);
 883		break;
 884	}
 885	return 0;
 886}
 887
 888static const struct snd_soc_dai_ops sta350_dai_ops = {
 889	.hw_params	= sta350_hw_params,
 890	.set_sysclk	= sta350_set_dai_sysclk,
 891	.set_fmt	= sta350_set_dai_fmt,
 892};
 893
 894static struct snd_soc_dai_driver sta350_dai = {
 895	.name = "sta350-hifi",
 896	.playback = {
 897		.stream_name = "Playback",
 898		.channels_min = 2,
 899		.channels_max = 2,
 900		.rates = STA350_RATES,
 901		.formats = STA350_FORMATS,
 902	},
 903	.ops = &sta350_dai_ops,
 904};
 905
 906static int sta350_probe(struct snd_soc_component *component)
 907{
 908	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
 909	struct sta350_platform_data *pdata = sta350->pdata;
 910	int i, ret = 0, thermal = 0;
 911
 912	ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies),
 913				    sta350->supplies);
 914	if (ret < 0) {
 915		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
 916		return ret;
 917	}
 918
 919	ret = sta350_startup_sequence(sta350);
 920	if (ret < 0) {
 921		dev_err(component->dev, "Failed to startup device\n");
 922		return ret;
 923	}
 924
 925	/* CONFA */
 926	if (!pdata->thermal_warning_recovery)
 927		thermal |= STA350_CONFA_TWAB;
 928	if (!pdata->thermal_warning_adjustment)
 929		thermal |= STA350_CONFA_TWRB;
 930	if (!pdata->fault_detect_recovery)
 931		thermal |= STA350_CONFA_FDRB;
 932	regmap_update_bits(sta350->regmap, STA350_CONFA,
 933			   STA350_CONFA_TWAB | STA350_CONFA_TWRB |
 934			   STA350_CONFA_FDRB,
 935			   thermal);
 936
 937	/* CONFC */
 938	regmap_update_bits(sta350->regmap, STA350_CONFC,
 939			   STA350_CONFC_OM_MASK,
 940			   pdata->ffx_power_output_mode
 941				<< STA350_CONFC_OM_SHIFT);
 942	regmap_update_bits(sta350->regmap, STA350_CONFC,
 943			   STA350_CONFC_CSZ_MASK,
 944			   pdata->drop_compensation_ns
 945				<< STA350_CONFC_CSZ_SHIFT);
 946	regmap_update_bits(sta350->regmap,
 947			   STA350_CONFC,
 948			   STA350_CONFC_OCRB,
 949			   pdata->oc_warning_adjustment ?
 950				STA350_CONFC_OCRB : 0);
 951
 952	/* CONFE */
 953	regmap_update_bits(sta350->regmap, STA350_CONFE,
 954			   STA350_CONFE_MPCV,
 955			   pdata->max_power_use_mpcc ?
 956				STA350_CONFE_MPCV : 0);
 957	regmap_update_bits(sta350->regmap, STA350_CONFE,
 958			   STA350_CONFE_MPC,
 959			   pdata->max_power_correction ?
 960				STA350_CONFE_MPC : 0);
 961	regmap_update_bits(sta350->regmap, STA350_CONFE,
 962			   STA350_CONFE_AME,
 963			   pdata->am_reduction_mode ?
 964				STA350_CONFE_AME : 0);
 965	regmap_update_bits(sta350->regmap, STA350_CONFE,
 966			   STA350_CONFE_PWMS,
 967			   pdata->odd_pwm_speed_mode ?
 968				STA350_CONFE_PWMS : 0);
 969	regmap_update_bits(sta350->regmap, STA350_CONFE,
 970			   STA350_CONFE_DCCV,
 971			   pdata->distortion_compensation ?
 972				STA350_CONFE_DCCV : 0);
 973	/*  CONFF */
 974	regmap_update_bits(sta350->regmap, STA350_CONFF,
 975			   STA350_CONFF_IDE,
 976			   pdata->invalid_input_detect_mute ?
 977				STA350_CONFF_IDE : 0);
 978	regmap_update_bits(sta350->regmap, STA350_CONFF,
 979			   STA350_CONFF_OCFG_MASK,
 980			   pdata->output_conf
 981				<< STA350_CONFF_OCFG_SHIFT);
 982
 983	/* channel to output mapping */
 984	regmap_update_bits(sta350->regmap, STA350_C1CFG,
 985			   STA350_CxCFG_OM_MASK,
 986			   pdata->ch1_output_mapping
 987				<< STA350_CxCFG_OM_SHIFT);
 988	regmap_update_bits(sta350->regmap, STA350_C2CFG,
 989			   STA350_CxCFG_OM_MASK,
 990			   pdata->ch2_output_mapping
 991				<< STA350_CxCFG_OM_SHIFT);
 992	regmap_update_bits(sta350->regmap, STA350_C3CFG,
 993			   STA350_CxCFG_OM_MASK,
 994			   pdata->ch3_output_mapping
 995				<< STA350_CxCFG_OM_SHIFT);
 996
 997	/* miscellaneous registers */
 998	regmap_update_bits(sta350->regmap, STA350_MISC1,
 999			   STA350_MISC1_CPWMEN,
1000			   pdata->activate_mute_output ?
1001				STA350_MISC1_CPWMEN : 0);
1002	regmap_update_bits(sta350->regmap, STA350_MISC1,
1003			   STA350_MISC1_BRIDGOFF,
1004			   pdata->bridge_immediate_off ?
1005				STA350_MISC1_BRIDGOFF : 0);
1006	regmap_update_bits(sta350->regmap, STA350_MISC1,
1007			   STA350_MISC1_NSHHPEN,
1008			   pdata->noise_shape_dc_cut ?
1009				STA350_MISC1_NSHHPEN : 0);
1010	regmap_update_bits(sta350->regmap, STA350_MISC1,
1011			   STA350_MISC1_RPDNEN,
1012			   pdata->powerdown_master_vol ?
1013				STA350_MISC1_RPDNEN: 0);
1014
1015	regmap_update_bits(sta350->regmap, STA350_MISC2,
1016			   STA350_MISC2_PNDLSL_MASK,
1017			   pdata->powerdown_delay_divider
1018				<< STA350_MISC2_PNDLSL_SHIFT);
1019
1020	/* initialize coefficient shadow RAM with reset values */
1021	for (i = 4; i <= 49; i += 5)
1022		sta350->coef_shadow[i] = 0x400000;
1023	for (i = 50; i <= 54; i++)
1024		sta350->coef_shadow[i] = 0x7fffff;
1025	sta350->coef_shadow[55] = 0x5a9df7;
1026	sta350->coef_shadow[56] = 0x7fffff;
1027	sta350->coef_shadow[59] = 0x7fffff;
1028	sta350->coef_shadow[60] = 0x400000;
1029	sta350->coef_shadow[61] = 0x400000;
1030
1031	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
1032	/* Bias level configuration will have done an extra enable */
1033	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1034
1035	return 0;
1036}
1037
1038static void sta350_remove(struct snd_soc_component *component)
1039{
1040	struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component);
1041
1042	regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies);
1043}
1044
1045static const struct snd_soc_component_driver sta350_component = {
1046	.probe			= sta350_probe,
1047	.remove			= sta350_remove,
1048	.set_bias_level		= sta350_set_bias_level,
1049	.controls		= sta350_snd_controls,
1050	.num_controls		= ARRAY_SIZE(sta350_snd_controls),
1051	.dapm_widgets		= sta350_dapm_widgets,
1052	.num_dapm_widgets	= ARRAY_SIZE(sta350_dapm_widgets),
1053	.dapm_routes		= sta350_dapm_routes,
1054	.num_dapm_routes	= ARRAY_SIZE(sta350_dapm_routes),
1055	.suspend_bias_off	= 1,
1056	.idle_bias_on		= 1,
1057	.use_pmdown_time	= 1,
1058	.endianness		= 1,
1059};
1060
1061static const struct regmap_config sta350_regmap = {
1062	.reg_bits =		8,
1063	.val_bits =		8,
1064	.max_register =		STA350_MISC2,
1065	.reg_defaults =		sta350_regs,
1066	.num_reg_defaults =	ARRAY_SIZE(sta350_regs),
1067	.cache_type =		REGCACHE_MAPLE,
1068	.wr_table =		&sta350_write_regs,
1069	.rd_table =		&sta350_read_regs,
1070	.volatile_table =	&sta350_volatile_regs,
1071};
1072
1073#ifdef CONFIG_OF
1074static const struct of_device_id st350_dt_ids[] = {
1075	{ .compatible = "st,sta350", },
1076	{ }
1077};
1078MODULE_DEVICE_TABLE(of, st350_dt_ids);
1079
1080static const char * const sta350_ffx_modes[] = {
1081	[STA350_FFX_PM_DROP_COMP]		= "drop-compensation",
1082	[STA350_FFX_PM_TAPERED_COMP]		= "tapered-compensation",
1083	[STA350_FFX_PM_FULL_POWER]		= "full-power-mode",
1084	[STA350_FFX_PM_VARIABLE_DROP_COMP]	= "variable-drop-compensation",
1085};
1086
1087static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350)
1088{
1089	struct device_node *np = dev->of_node;
1090	struct sta350_platform_data *pdata;
1091	const char *ffx_power_mode;
1092	u16 tmp;
1093	u8 tmp8;
1094
1095	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1096	if (!pdata)
1097		return -ENOMEM;
1098
1099	of_property_read_u8(np, "st,output-conf",
1100			    &pdata->output_conf);
1101	of_property_read_u8(np, "st,ch1-output-mapping",
1102			    &pdata->ch1_output_mapping);
1103	of_property_read_u8(np, "st,ch2-output-mapping",
1104			    &pdata->ch2_output_mapping);
1105	of_property_read_u8(np, "st,ch3-output-mapping",
1106			    &pdata->ch3_output_mapping);
1107
1108	pdata->thermal_warning_recovery =
1109		of_property_read_bool(np, "st,thermal-warning-recovery");
1110	pdata->thermal_warning_adjustment =
1111		of_property_read_bool(np, "st,thermal-warning-adjustment");
1112	pdata->fault_detect_recovery =
1113		of_property_read_bool(np, "st,fault-detect-recovery");
1114
1115	pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP;
1116	if (!of_property_read_string(np, "st,ffx-power-output-mode",
1117				     &ffx_power_mode)) {
1118		int i, mode = -EINVAL;
1119
1120		for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++)
1121			if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i]))
1122				mode = i;
1123
1124		if (mode < 0)
1125			dev_warn(dev, "Unsupported ffx output mode: %s\n",
1126				 ffx_power_mode);
1127		else
1128			pdata->ffx_power_output_mode = mode;
1129	}
1130
1131	tmp = 140;
1132	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1133	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1134
1135	pdata->oc_warning_adjustment =
1136		of_property_read_bool(np, "st,overcurrent-warning-adjustment");
1137
1138	/* CONFE */
1139	pdata->max_power_use_mpcc =
1140		of_property_read_bool(np, "st,max-power-use-mpcc");
1141	pdata->max_power_correction =
1142		of_property_read_bool(np, "st,max-power-correction");
1143	pdata->am_reduction_mode =
1144		of_property_read_bool(np, "st,am-reduction-mode");
1145	pdata->odd_pwm_speed_mode =
1146		of_property_read_bool(np, "st,odd-pwm-speed-mode");
1147	pdata->distortion_compensation =
1148		of_property_read_bool(np, "st,distortion-compensation");
 
 
 
 
1149
1150	/* CONFF */
1151	pdata->invalid_input_detect_mute =
1152		of_property_read_bool(np, "st,invalid-input-detect-mute");
1153
1154	/* MISC */
1155	pdata->activate_mute_output =
1156		of_property_read_bool(np, "st,activate-mute-output");
1157	pdata->bridge_immediate_off =
1158		of_property_read_bool(np, "st,bridge-immediate-off");
1159	pdata->noise_shape_dc_cut =
1160		of_property_read_bool(np, "st,noise-shape-dc-cut");
1161	pdata->powerdown_master_vol =
1162		of_property_read_bool(np, "st,powerdown-master-volume");
 
 
 
1163
1164	if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) {
1165		if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128)
1166			pdata->powerdown_delay_divider = ilog2(tmp8);
1167		else
1168			dev_warn(dev, "Unsupported powerdown delay divider %d\n",
1169				 tmp8);
1170	}
1171
1172	sta350->pdata = pdata;
1173
1174	return 0;
1175}
1176#endif
1177
1178static int sta350_i2c_probe(struct i2c_client *i2c)
1179{
1180	struct device *dev = &i2c->dev;
1181	struct sta350_priv *sta350;
1182	int ret, i;
1183
1184	sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL);
1185	if (!sta350)
1186		return -ENOMEM;
1187
1188	mutex_init(&sta350->coeff_lock);
1189	sta350->pdata = dev_get_platdata(dev);
1190
1191#ifdef CONFIG_OF
1192	if (dev->of_node) {
1193		ret = sta350_probe_dt(dev, sta350);
1194		if (ret < 0)
1195			return ret;
1196	}
1197#endif
1198
1199	/* GPIOs */
1200	sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1201						       GPIOD_OUT_LOW);
1202	if (IS_ERR(sta350->gpiod_nreset))
1203		return PTR_ERR(sta350->gpiod_nreset);
1204
1205	sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down",
1206							   GPIOD_OUT_LOW);
1207	if (IS_ERR(sta350->gpiod_power_down))
1208		return PTR_ERR(sta350->gpiod_power_down);
1209
1210	/* regulators */
1211	for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++)
1212		sta350->supplies[i].supply = sta350_supply_names[i];
1213
1214	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies),
1215				      sta350->supplies);
1216	if (ret < 0) {
1217		dev_err(dev, "Failed to request supplies: %d\n", ret);
1218		return ret;
1219	}
1220
1221	sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap);
1222	if (IS_ERR(sta350->regmap)) {
1223		ret = PTR_ERR(sta350->regmap);
1224		dev_err(dev, "Failed to init regmap: %d\n", ret);
1225		return ret;
1226	}
1227
1228	i2c_set_clientdata(i2c, sta350);
1229
1230	ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1);
1231	if (ret < 0)
1232		dev_err(dev, "Failed to register component (%d)\n", ret);
1233
1234	return ret;
1235}
1236
1237static void sta350_i2c_remove(struct i2c_client *client)
1238{}
1239
1240static const struct i2c_device_id sta350_i2c_id[] = {
1241	{ "sta350", 0 },
1242	{ }
1243};
1244MODULE_DEVICE_TABLE(i2c, sta350_i2c_id);
1245
1246static struct i2c_driver sta350_i2c_driver = {
1247	.driver = {
1248		.name = "sta350",
1249		.of_match_table = of_match_ptr(st350_dt_ids),
1250	},
1251	.probe =    sta350_i2c_probe,
1252	.remove =   sta350_i2c_remove,
1253	.id_table = sta350_i2c_id,
1254};
1255
1256module_i2c_driver(sta350_i2c_driver);
1257
1258MODULE_DESCRIPTION("ASoC STA350 driver");
1259MODULE_AUTHOR("Sven Brandau <info@brandau.biz>");
1260MODULE_LICENSE("GPL");