Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct selinux_policy_convert_data {
  72	struct convert_context_args args;
  73	struct sidtab_convert_params sidtab_params;
  74};
  75
  76/* Forward declaration. */
  77static int context_struct_to_string(struct policydb *policydb,
  78				    struct context *context,
  79				    char **scontext,
  80				    u32 *scontext_len);
  81
  82static int sidtab_entry_to_string(struct policydb *policydb,
  83				  struct sidtab *sidtab,
  84				  struct sidtab_entry *entry,
  85				  char **scontext,
  86				  u32 *scontext_len);
  87
  88static void context_struct_compute_av(struct policydb *policydb,
  89				      struct context *scontext,
  90				      struct context *tcontext,
  91				      u16 tclass,
  92				      struct av_decision *avd,
  93				      struct extended_perms *xperms);
  94
  95static int selinux_set_mapping(struct policydb *pol,
  96			       const struct security_class_mapping *map,
  97			       struct selinux_map *out_map)
  98{
  99	u16 i, j;
 100	unsigned k;
 101	bool print_unknown_handle = false;
 102
 103	/* Find number of classes in the input mapping */
 104	if (!map)
 105		return -EINVAL;
 106	i = 0;
 107	while (map[i].name)
 108		i++;
 109
 110	/* Allocate space for the class records, plus one for class zero */
 111	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 112	if (!out_map->mapping)
 113		return -ENOMEM;
 114
 115	/* Store the raw class and permission values */
 116	j = 0;
 117	while (map[j].name) {
 118		const struct security_class_mapping *p_in = map + (j++);
 119		struct selinux_mapping *p_out = out_map->mapping + j;
 
 120
 121		/* An empty class string skips ahead */
 122		if (!strcmp(p_in->name, "")) {
 123			p_out->num_perms = 0;
 124			continue;
 125		}
 126
 127		p_out->value = string_to_security_class(pol, p_in->name);
 128		if (!p_out->value) {
 129			pr_info("SELinux:  Class %s not defined in policy.\n",
 130			       p_in->name);
 131			if (pol->reject_unknown)
 132				goto err;
 133			p_out->num_perms = 0;
 134			print_unknown_handle = true;
 135			continue;
 136		}
 137
 138		k = 0;
 139		while (p_in->perms[k]) {
 140			/* An empty permission string skips ahead */
 141			if (!*p_in->perms[k]) {
 142				k++;
 143				continue;
 144			}
 145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 146							    p_in->perms[k]);
 147			if (!p_out->perms[k]) {
 148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 149				       p_in->perms[k], p_in->name);
 150				if (pol->reject_unknown)
 151					goto err;
 152				print_unknown_handle = true;
 153			}
 154
 155			k++;
 156		}
 157		p_out->num_perms = k;
 158	}
 159
 160	if (print_unknown_handle)
 161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 162		       pol->allow_unknown ? "allowed" : "denied");
 163
 164	out_map->size = i;
 165	return 0;
 166err:
 167	kfree(out_map->mapping);
 168	out_map->mapping = NULL;
 169	return -EINVAL;
 170}
 171
 172/*
 173 * Get real, policy values from mapped values
 174 */
 175
 176static u16 unmap_class(struct selinux_map *map, u16 tclass)
 177{
 178	if (tclass < map->size)
 179		return map->mapping[tclass].value;
 180
 181	return tclass;
 182}
 183
 184/*
 185 * Get kernel value for class from its policy value
 186 */
 187static u16 map_class(struct selinux_map *map, u16 pol_value)
 188{
 189	u16 i;
 190
 191	for (i = 1; i < map->size; i++) {
 192		if (map->mapping[i].value == pol_value)
 193			return i;
 194	}
 195
 196	return SECCLASS_NULL;
 197}
 198
 199static void map_decision(struct selinux_map *map,
 200			 u16 tclass, struct av_decision *avd,
 201			 int allow_unknown)
 202{
 203	if (tclass < map->size) {
 204		struct selinux_mapping *mapping = &map->mapping[tclass];
 205		unsigned int i, n = mapping->num_perms;
 206		u32 result;
 207
 208		for (i = 0, result = 0; i < n; i++) {
 209			if (avd->allowed & mapping->perms[i])
 210				result |= 1<<i;
 211			if (allow_unknown && !mapping->perms[i])
 212				result |= 1<<i;
 213		}
 214		avd->allowed = result;
 215
 216		for (i = 0, result = 0; i < n; i++)
 217			if (avd->auditallow & mapping->perms[i])
 218				result |= 1<<i;
 219		avd->auditallow = result;
 220
 221		for (i = 0, result = 0; i < n; i++) {
 222			if (avd->auditdeny & mapping->perms[i])
 223				result |= 1<<i;
 224			if (!allow_unknown && !mapping->perms[i])
 225				result |= 1<<i;
 226		}
 227		/*
 228		 * In case the kernel has a bug and requests a permission
 229		 * between num_perms and the maximum permission number, we
 230		 * should audit that denial
 231		 */
 232		for (; i < (sizeof(u32)*8); i++)
 233			result |= 1<<i;
 234		avd->auditdeny = result;
 235	}
 236}
 237
 238int security_mls_enabled(struct selinux_state *state)
 239{
 240	int mls_enabled;
 241	struct selinux_policy *policy;
 242
 243	if (!selinux_initialized(state))
 244		return 0;
 245
 246	rcu_read_lock();
 247	policy = rcu_dereference(state->policy);
 248	mls_enabled = policy->policydb.mls_enabled;
 249	rcu_read_unlock();
 250	return mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265				struct context *scontext,
 266				struct context *tcontext,
 267				struct context *xcontext,
 268				struct constraint_expr *cexpr)
 269{
 270	u32 val1, val2;
 271	struct context *c;
 272	struct role_datum *r1, *r2;
 273	struct mls_level *l1, *l2;
 274	struct constraint_expr *e;
 275	int s[CEXPR_MAXDEPTH];
 276	int sp = -1;
 277
 278	for (e = cexpr; e; e = e->next) {
 279		switch (e->expr_type) {
 280		case CEXPR_NOT:
 281			BUG_ON(sp < 0);
 282			s[sp] = !s[sp];
 283			break;
 284		case CEXPR_AND:
 285			BUG_ON(sp < 1);
 286			sp--;
 287			s[sp] &= s[sp + 1];
 288			break;
 289		case CEXPR_OR:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] |= s[sp + 1];
 293			break;
 294		case CEXPR_ATTR:
 295			if (sp == (CEXPR_MAXDEPTH - 1))
 296				return 0;
 297			switch (e->attr) {
 298			case CEXPR_USER:
 299				val1 = scontext->user;
 300				val2 = tcontext->user;
 301				break;
 302			case CEXPR_TYPE:
 303				val1 = scontext->type;
 304				val2 = tcontext->type;
 305				break;
 306			case CEXPR_ROLE:
 307				val1 = scontext->role;
 308				val2 = tcontext->role;
 309				r1 = policydb->role_val_to_struct[val1 - 1];
 310				r2 = policydb->role_val_to_struct[val2 - 1];
 311				switch (e->op) {
 312				case CEXPR_DOM:
 313					s[++sp] = ebitmap_get_bit(&r1->dominates,
 314								  val2 - 1);
 315					continue;
 316				case CEXPR_DOMBY:
 317					s[++sp] = ebitmap_get_bit(&r2->dominates,
 318								  val1 - 1);
 319					continue;
 320				case CEXPR_INCOMP:
 321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322								    val2 - 1) &&
 323						   !ebitmap_get_bit(&r2->dominates,
 324								    val1 - 1));
 325					continue;
 326				default:
 327					break;
 328				}
 329				break;
 330			case CEXPR_L1L2:
 331				l1 = &(scontext->range.level[0]);
 332				l2 = &(tcontext->range.level[0]);
 333				goto mls_ops;
 334			case CEXPR_L1H2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[1]);
 337				goto mls_ops;
 338			case CEXPR_H1L2:
 339				l1 = &(scontext->range.level[1]);
 340				l2 = &(tcontext->range.level[0]);
 341				goto mls_ops;
 342			case CEXPR_H1H2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[1]);
 345				goto mls_ops;
 346			case CEXPR_L1H1:
 347				l1 = &(scontext->range.level[0]);
 348				l2 = &(scontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L2H2:
 351				l1 = &(tcontext->range.level[0]);
 352				l2 = &(tcontext->range.level[1]);
 353				goto mls_ops;
 354mls_ops:
 355				switch (e->op) {
 356				case CEXPR_EQ:
 357					s[++sp] = mls_level_eq(l1, l2);
 358					continue;
 359				case CEXPR_NEQ:
 360					s[++sp] = !mls_level_eq(l1, l2);
 361					continue;
 362				case CEXPR_DOM:
 363					s[++sp] = mls_level_dom(l1, l2);
 364					continue;
 365				case CEXPR_DOMBY:
 366					s[++sp] = mls_level_dom(l2, l1);
 367					continue;
 368				case CEXPR_INCOMP:
 369					s[++sp] = mls_level_incomp(l2, l1);
 370					continue;
 371				default:
 372					BUG();
 373					return 0;
 374				}
 375				break;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380
 381			switch (e->op) {
 382			case CEXPR_EQ:
 383				s[++sp] = (val1 == val2);
 384				break;
 385			case CEXPR_NEQ:
 386				s[++sp] = (val1 != val2);
 387				break;
 388			default:
 389				BUG();
 390				return 0;
 391			}
 392			break;
 393		case CEXPR_NAMES:
 394			if (sp == (CEXPR_MAXDEPTH-1))
 395				return 0;
 396			c = scontext;
 397			if (e->attr & CEXPR_TARGET)
 398				c = tcontext;
 399			else if (e->attr & CEXPR_XTARGET) {
 400				c = xcontext;
 401				if (!c) {
 402					BUG();
 403					return 0;
 404				}
 405			}
 406			if (e->attr & CEXPR_USER)
 407				val1 = c->user;
 408			else if (e->attr & CEXPR_ROLE)
 409				val1 = c->role;
 410			else if (e->attr & CEXPR_TYPE)
 411				val1 = c->type;
 412			else {
 413				BUG();
 414				return 0;
 415			}
 416
 417			switch (e->op) {
 418			case CEXPR_EQ:
 419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420				break;
 421			case CEXPR_NEQ:
 422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			default:
 425				BUG();
 426				return 0;
 427			}
 428			break;
 429		default:
 430			BUG();
 431			return 0;
 432		}
 433	}
 434
 435	BUG_ON(sp != 0);
 436	return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445	struct perm_datum *pdatum = d;
 446	char **permission_names = args;
 447
 448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450	permission_names[pdatum->value - 1] = (char *)k;
 451
 452	return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456				    struct context *scontext,
 457				    struct context *tcontext,
 458				    u16 tclass,
 459				    u32 permissions,
 460				    const char *reason)
 461{
 462	struct common_datum *common_dat;
 463	struct class_datum *tclass_dat;
 464	struct audit_buffer *ab;
 465	char *tclass_name;
 466	char *scontext_name = NULL;
 467	char *tcontext_name = NULL;
 468	char *permission_names[32];
 469	int index;
 470	u32 length;
 471	bool need_comma = false;
 472
 473	if (!permissions)
 474		return;
 475
 476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478	common_dat = tclass_dat->comdatum;
 479
 480	/* init permission_names */
 481	if (common_dat &&
 482	    hashtab_map(&common_dat->permissions.table,
 483			dump_masked_av_helper, permission_names) < 0)
 484		goto out;
 485
 486	if (hashtab_map(&tclass_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	/* get scontext/tcontext in text form */
 491	if (context_struct_to_string(policydb, scontext,
 492				     &scontext_name, &length) < 0)
 493		goto out;
 494
 495	if (context_struct_to_string(policydb, tcontext,
 496				     &tcontext_name, &length) < 0)
 497		goto out;
 498
 499	/* audit a message */
 500	ab = audit_log_start(audit_context(),
 501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502	if (!ab)
 503		goto out;
 504
 505	audit_log_format(ab, "op=security_compute_av reason=%s "
 506			 "scontext=%s tcontext=%s tclass=%s perms=",
 507			 reason, scontext_name, tcontext_name, tclass_name);
 508
 509	for (index = 0; index < 32; index++) {
 510		u32 mask = (1 << index);
 511
 512		if ((mask & permissions) == 0)
 513			continue;
 514
 515		audit_log_format(ab, "%s%s",
 516				 need_comma ? "," : "",
 517				 permission_names[index]
 518				 ? permission_names[index] : "????");
 519		need_comma = true;
 520	}
 521	audit_log_end(ab);
 522out:
 523	/* release scontext/tcontext */
 524	kfree(tcontext_name);
 525	kfree(scontext_name);
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 558
 559	if (target->bounds) {
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	xperms->len = 1;
 605}
 606
 607/*
 608 * Compute access vectors and extended permissions based on a context
 609 * structure pair for the permissions in a particular class.
 610 */
 611static void context_struct_compute_av(struct policydb *policydb,
 612				      struct context *scontext,
 613				      struct context *tcontext,
 614				      u16 tclass,
 615				      struct av_decision *avd,
 616				      struct extended_perms *xperms)
 617{
 618	struct constraint_node *constraint;
 619	struct role_allow *ra;
 620	struct avtab_key avkey;
 621	struct avtab_node *node;
 622	struct class_datum *tclass_datum;
 623	struct ebitmap *sattr, *tattr;
 624	struct ebitmap_node *snode, *tnode;
 625	unsigned int i, j;
 626
 627	avd->allowed = 0;
 628	avd->auditallow = 0;
 629	avd->auditdeny = 0xffffffff;
 630	if (xperms) {
 631		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 632		xperms->len = 0;
 633	}
 634
 635	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 636		if (printk_ratelimit())
 637			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 638		return;
 639	}
 640
 641	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 642
 643	/*
 644	 * If a specific type enforcement rule was defined for
 645	 * this permission check, then use it.
 646	 */
 647	avkey.target_class = tclass;
 648	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 649	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 650	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 651	ebitmap_for_each_positive_bit(sattr, snode, i) {
 652		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 653			avkey.source_type = i + 1;
 654			avkey.target_type = j + 1;
 655			for (node = avtab_search_node(&policydb->te_avtab,
 656						      &avkey);
 657			     node;
 658			     node = avtab_search_node_next(node, avkey.specified)) {
 659				if (node->key.specified == AVTAB_ALLOWED)
 660					avd->allowed |= node->datum.u.data;
 661				else if (node->key.specified == AVTAB_AUDITALLOW)
 662					avd->auditallow |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITDENY)
 664					avd->auditdeny &= node->datum.u.data;
 665				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 666					services_compute_xperms_drivers(xperms, node);
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 671					avd, xperms);
 672
 673		}
 674	}
 675
 676	/*
 677	 * Remove any permissions prohibited by a constraint (this includes
 678	 * the MLS policy).
 679	 */
 680	constraint = tclass_datum->constraints;
 681	while (constraint) {
 682		if ((constraint->permissions & (avd->allowed)) &&
 683		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 684					  constraint->expr)) {
 685			avd->allowed &= ~(constraint->permissions);
 686		}
 687		constraint = constraint->next;
 688	}
 689
 690	/*
 691	 * If checking process transition permission and the
 692	 * role is changing, then check the (current_role, new_role)
 693	 * pair.
 694	 */
 695	if (tclass == policydb->process_class &&
 696	    (avd->allowed & policydb->process_trans_perms) &&
 697	    scontext->role != tcontext->role) {
 698		for (ra = policydb->role_allow; ra; ra = ra->next) {
 699			if (scontext->role == ra->role &&
 700			    tcontext->role == ra->new_role)
 701				break;
 702		}
 703		if (!ra)
 704			avd->allowed &= ~policydb->process_trans_perms;
 705	}
 706
 707	/*
 708	 * If the given source and target types have boundary
 709	 * constraint, lazy checks have to mask any violated
 710	 * permission and notice it to userspace via audit.
 711	 */
 712	type_attribute_bounds_av(policydb, scontext, tcontext,
 713				 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct selinux_state *state,
 717					struct selinux_policy *policy,
 718					struct sidtab_entry *oentry,
 719					struct sidtab_entry *nentry,
 720					struct sidtab_entry *tentry,
 721					u16 tclass)
 722{
 723	struct policydb *p = &policy->policydb;
 724	struct sidtab *sidtab = policy->sidtab;
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 729		goto out;
 730	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 731		goto out;
 732	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 752	struct selinux_policy *policy;
 753	struct policydb *policydb;
 754	struct sidtab *sidtab;
 755	struct sidtab_entry *oentry;
 756	struct sidtab_entry *nentry;
 757	struct sidtab_entry *tentry;
 758	struct class_datum *tclass_datum;
 759	struct constraint_node *constraint;
 760	u16 tclass;
 761	int rc = 0;
 762
 763
 764	if (!selinux_initialized(state))
 765		return 0;
 766
 767	rcu_read_lock();
 768
 769	policy = rcu_dereference(state->policy);
 770	policydb = &policy->policydb;
 771	sidtab = policy->sidtab;
 772
 773	if (!user)
 774		tclass = unmap_class(&policy->map, orig_tclass);
 775	else
 776		tclass = orig_tclass;
 777
 778	if (!tclass || tclass > policydb->p_classes.nprim) {
 779		rc = -EINVAL;
 780		goto out;
 781	}
 782	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 783
 784	oentry = sidtab_search_entry(sidtab, oldsid);
 785	if (!oentry) {
 786		pr_err("SELinux: %s:  unrecognized SID %d\n",
 787			__func__, oldsid);
 788		rc = -EINVAL;
 789		goto out;
 790	}
 791
 792	nentry = sidtab_search_entry(sidtab, newsid);
 793	if (!nentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, newsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	tentry = sidtab_search_entry(sidtab, tasksid);
 801	if (!tentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, tasksid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	constraint = tclass_datum->validatetrans;
 809	while (constraint) {
 810		if (!constraint_expr_eval(policydb, &oentry->context,
 811					  &nentry->context, &tentry->context,
 812					  constraint->expr)) {
 813			if (user)
 814				rc = -EPERM;
 815			else
 816				rc = security_validtrans_handle_fail(state,
 817								policy,
 818								oentry,
 819								nentry,
 820								tentry,
 821								tclass);
 822			goto out;
 823		}
 824		constraint = constraint->next;
 825	}
 826
 827out:
 828	rcu_read_unlock();
 829	return rc;
 830}
 831
 832int security_validate_transition_user(struct selinux_state *state,
 833				      u32 oldsid, u32 newsid, u32 tasksid,
 834				      u16 tclass)
 835{
 836	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 837					      tclass, true);
 838}
 839
 840int security_validate_transition(struct selinux_state *state,
 841				 u32 oldsid, u32 newsid, u32 tasksid,
 842				 u16 orig_tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      orig_tclass, false);
 846}
 847
 848/*
 849 * security_bounded_transition - check whether the given
 850 * transition is directed to bounded, or not.
 851 * It returns 0, if @newsid is bounded by @oldsid.
 852 * Otherwise, it returns error code.
 853 *
 854 * @state: SELinux state
 855 * @oldsid : current security identifier
 856 * @newsid : destinated security identifier
 857 */
 858int security_bounded_transition(struct selinux_state *state,
 859				u32 old_sid, u32 new_sid)
 860{
 861	struct selinux_policy *policy;
 862	struct policydb *policydb;
 863	struct sidtab *sidtab;
 864	struct sidtab_entry *old_entry, *new_entry;
 865	struct type_datum *type;
 866	int index;
 867	int rc;
 868
 869	if (!selinux_initialized(state))
 870		return 0;
 871
 872	rcu_read_lock();
 873	policy = rcu_dereference(state->policy);
 874	policydb = &policy->policydb;
 875	sidtab = policy->sidtab;
 876
 877	rc = -EINVAL;
 878	old_entry = sidtab_search_entry(sidtab, old_sid);
 879	if (!old_entry) {
 880		pr_err("SELinux: %s: unrecognized SID %u\n",
 881		       __func__, old_sid);
 882		goto out;
 883	}
 884
 885	rc = -EINVAL;
 886	new_entry = sidtab_search_entry(sidtab, new_sid);
 887	if (!new_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, new_sid);
 890		goto out;
 891	}
 892
 893	rc = 0;
 894	/* type/domain unchanged */
 895	if (old_entry->context.type == new_entry->context.type)
 896		goto out;
 897
 898	index = new_entry->context.type;
 899	while (true) {
 900		type = policydb->type_val_to_struct[index - 1];
 901		BUG_ON(!type);
 902
 903		/* not bounded anymore */
 904		rc = -EPERM;
 905		if (!type->bounds)
 906			break;
 907
 908		/* @newsid is bounded by @oldsid */
 909		rc = 0;
 910		if (type->bounds == old_entry->context.type)
 911			break;
 912
 913		index = type->bounds;
 914	}
 915
 916	if (rc) {
 917		char *old_name = NULL;
 918		char *new_name = NULL;
 919		u32 length;
 920
 921		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 922					    &old_name, &length) &&
 923		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 924					    &new_name, &length)) {
 925			audit_log(audit_context(),
 926				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 927				  "op=security_bounded_transition "
 928				  "seresult=denied "
 929				  "oldcontext=%s newcontext=%s",
 930				  old_name, new_name);
 931		}
 932		kfree(new_name);
 933		kfree(old_name);
 934	}
 935out:
 936	rcu_read_unlock();
 937
 938	return rc;
 939}
 940
 941static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 942{
 943	avd->allowed = 0;
 944	avd->auditallow = 0;
 945	avd->auditdeny = 0xffffffff;
 946	if (policy)
 947		avd->seqno = policy->latest_granting;
 948	else
 949		avd->seqno = 0;
 950	avd->flags = 0;
 951}
 952
 953void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 954					struct avtab_node *node)
 955{
 956	unsigned int i;
 957
 958	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 959		if (xpermd->driver != node->datum.u.xperms->driver)
 960			return;
 961	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 962		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 963					xpermd->driver))
 964			return;
 965	} else {
 966		BUG();
 967	}
 968
 969	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 970		xpermd->used |= XPERMS_ALLOWED;
 971		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 972			memset(xpermd->allowed->p, 0xff,
 973					sizeof(xpermd->allowed->p));
 974		}
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 976			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 977				xpermd->allowed->p[i] |=
 978					node->datum.u.xperms->perms.p[i];
 979		}
 980	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 981		xpermd->used |= XPERMS_AUDITALLOW;
 982		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 983			memset(xpermd->auditallow->p, 0xff,
 984					sizeof(xpermd->auditallow->p));
 985		}
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 987			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 988				xpermd->auditallow->p[i] |=
 989					node->datum.u.xperms->perms.p[i];
 990		}
 991	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 992		xpermd->used |= XPERMS_DONTAUDIT;
 993		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 994			memset(xpermd->dontaudit->p, 0xff,
 995					sizeof(xpermd->dontaudit->p));
 996		}
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 998			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 999				xpermd->dontaudit->p[i] |=
1000					node->datum.u.xperms->perms.p[i];
1001		}
1002	} else {
1003		BUG();
1004	}
1005}
1006
1007void security_compute_xperms_decision(struct selinux_state *state,
1008				      u32 ssid,
1009				      u32 tsid,
1010				      u16 orig_tclass,
1011				      u8 driver,
1012				      struct extended_perms_decision *xpermd)
1013{
1014	struct selinux_policy *policy;
1015	struct policydb *policydb;
1016	struct sidtab *sidtab;
1017	u16 tclass;
1018	struct context *scontext, *tcontext;
1019	struct avtab_key avkey;
1020	struct avtab_node *node;
1021	struct ebitmap *sattr, *tattr;
1022	struct ebitmap_node *snode, *tnode;
1023	unsigned int i, j;
1024
1025	xpermd->driver = driver;
1026	xpermd->used = 0;
1027	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1028	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1029	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1030
1031	rcu_read_lock();
1032	if (!selinux_initialized(state))
1033		goto allow;
1034
1035	policy = rcu_dereference(state->policy);
1036	policydb = &policy->policydb;
1037	sidtab = policy->sidtab;
1038
1039	scontext = sidtab_search(sidtab, ssid);
1040	if (!scontext) {
1041		pr_err("SELinux: %s:  unrecognized SID %d\n",
1042		       __func__, ssid);
1043		goto out;
1044	}
1045
1046	tcontext = sidtab_search(sidtab, tsid);
1047	if (!tcontext) {
1048		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049		       __func__, tsid);
1050		goto out;
1051	}
1052
1053	tclass = unmap_class(&policy->map, orig_tclass);
1054	if (unlikely(orig_tclass && !tclass)) {
1055		if (policydb->allow_unknown)
1056			goto allow;
1057		goto out;
1058	}
1059
1060
1061	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1062		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1063		goto out;
1064	}
1065
1066	avkey.target_class = tclass;
1067	avkey.specified = AVTAB_XPERMS;
1068	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1069	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1070	ebitmap_for_each_positive_bit(sattr, snode, i) {
1071		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1072			avkey.source_type = i + 1;
1073			avkey.target_type = j + 1;
1074			for (node = avtab_search_node(&policydb->te_avtab,
1075						      &avkey);
1076			     node;
1077			     node = avtab_search_node_next(node, avkey.specified))
1078				services_compute_xperms_decision(xpermd, node);
1079
1080			cond_compute_xperms(&policydb->te_cond_avtab,
1081						&avkey, xpermd);
1082		}
1083	}
1084out:
1085	rcu_read_unlock();
1086	return;
1087allow:
1088	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1089	goto out;
1090}
1091
1092/**
1093 * security_compute_av - Compute access vector decisions.
1094 * @state: SELinux state
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @orig_tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(struct selinux_state *state,
1105			 u32 ssid,
1106			 u32 tsid,
1107			 u16 orig_tclass,
1108			 struct av_decision *avd,
1109			 struct extended_perms *xperms)
1110{
1111	struct selinux_policy *policy;
1112	struct policydb *policydb;
1113	struct sidtab *sidtab;
1114	u16 tclass;
1115	struct context *scontext = NULL, *tcontext = NULL;
1116
1117	rcu_read_lock();
1118	policy = rcu_dereference(state->policy);
1119	avd_init(policy, avd);
1120	xperms->len = 0;
1121	if (!selinux_initialized(state))
1122		goto allow;
1123
1124	policydb = &policy->policydb;
1125	sidtab = policy->sidtab;
1126
1127	scontext = sidtab_search(sidtab, ssid);
1128	if (!scontext) {
1129		pr_err("SELinux: %s:  unrecognized SID %d\n",
1130		       __func__, ssid);
1131		goto out;
1132	}
1133
1134	/* permissive domain? */
1135	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1136		avd->flags |= AVD_FLAGS_PERMISSIVE;
1137
1138	tcontext = sidtab_search(sidtab, tsid);
1139	if (!tcontext) {
1140		pr_err("SELinux: %s:  unrecognized SID %d\n",
1141		       __func__, tsid);
1142		goto out;
1143	}
1144
1145	tclass = unmap_class(&policy->map, orig_tclass);
1146	if (unlikely(orig_tclass && !tclass)) {
1147		if (policydb->allow_unknown)
1148			goto allow;
1149		goto out;
1150	}
1151	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1152				  xperms);
1153	map_decision(&policy->map, orig_tclass, avd,
1154		     policydb->allow_unknown);
1155out:
1156	rcu_read_unlock();
1157	return;
1158allow:
1159	avd->allowed = 0xffffffff;
1160	goto out;
1161}
1162
1163void security_compute_av_user(struct selinux_state *state,
1164			      u32 ssid,
1165			      u32 tsid,
1166			      u16 tclass,
1167			      struct av_decision *avd)
1168{
1169	struct selinux_policy *policy;
1170	struct policydb *policydb;
1171	struct sidtab *sidtab;
1172	struct context *scontext = NULL, *tcontext = NULL;
1173
1174	rcu_read_lock();
1175	policy = rcu_dereference(state->policy);
1176	avd_init(policy, avd);
1177	if (!selinux_initialized(state))
1178		goto allow;
1179
1180	policydb = &policy->policydb;
1181	sidtab = policy->sidtab;
1182
1183	scontext = sidtab_search(sidtab, ssid);
1184	if (!scontext) {
1185		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186		       __func__, ssid);
1187		goto out;
1188	}
1189
1190	/* permissive domain? */
1191	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1192		avd->flags |= AVD_FLAGS_PERMISSIVE;
1193
1194	tcontext = sidtab_search(sidtab, tsid);
1195	if (!tcontext) {
1196		pr_err("SELinux: %s:  unrecognized SID %d\n",
1197		       __func__, tsid);
1198		goto out;
1199	}
1200
1201	if (unlikely(!tclass)) {
1202		if (policydb->allow_unknown)
1203			goto allow;
1204		goto out;
1205	}
1206
1207	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1208				  NULL);
1209 out:
1210	rcu_read_unlock();
1211	return;
1212allow:
1213	avd->allowed = 0xffffffff;
1214	goto out;
1215}
1216
1217/*
1218 * Write the security context string representation of
1219 * the context structure `context' into a dynamically
1220 * allocated string of the correct size.  Set `*scontext'
1221 * to point to this string and set `*scontext_len' to
1222 * the length of the string.
1223 */
1224static int context_struct_to_string(struct policydb *p,
1225				    struct context *context,
1226				    char **scontext, u32 *scontext_len)
1227{
1228	char *scontextp;
1229
1230	if (scontext)
1231		*scontext = NULL;
1232	*scontext_len = 0;
1233
1234	if (context->len) {
1235		*scontext_len = context->len;
1236		if (scontext) {
1237			*scontext = kstrdup(context->str, GFP_ATOMIC);
1238			if (!(*scontext))
1239				return -ENOMEM;
1240		}
1241		return 0;
1242	}
1243
1244	/* Compute the size of the context. */
1245	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1246	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1248	*scontext_len += mls_compute_context_len(p, context);
1249
1250	if (!scontext)
1251		return 0;
1252
1253	/* Allocate space for the context; caller must free this space. */
1254	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1255	if (!scontextp)
1256		return -ENOMEM;
1257	*scontext = scontextp;
1258
1259	/*
1260	 * Copy the user name, role name and type name into the context.
1261	 */
1262	scontextp += sprintf(scontextp, "%s:%s:%s",
1263		sym_name(p, SYM_USERS, context->user - 1),
1264		sym_name(p, SYM_ROLES, context->role - 1),
1265		sym_name(p, SYM_TYPES, context->type - 1));
1266
1267	mls_sid_to_context(p, context, &scontextp);
1268
1269	*scontextp = 0;
1270
1271	return 0;
1272}
1273
1274static int sidtab_entry_to_string(struct policydb *p,
1275				  struct sidtab *sidtab,
1276				  struct sidtab_entry *entry,
1277				  char **scontext, u32 *scontext_len)
1278{
1279	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1280
1281	if (rc != -ENOENT)
1282		return rc;
1283
1284	rc = context_struct_to_string(p, &entry->context, scontext,
1285				      scontext_len);
1286	if (!rc && scontext)
1287		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1288	return rc;
1289}
1290
1291#include "initial_sid_to_string.h"
1292
1293int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1294{
1295	struct selinux_policy *policy;
1296	int rc;
1297
1298	if (!selinux_initialized(state)) {
1299		pr_err("SELinux: %s:  called before initial load_policy\n",
1300		       __func__);
1301		return -EINVAL;
1302	}
1303
1304	rcu_read_lock();
1305	policy = rcu_dereference(state->policy);
1306	rc = sidtab_hash_stats(policy->sidtab, page);
1307	rcu_read_unlock();
1308
1309	return rc;
1310}
1311
1312const char *security_get_initial_sid_context(u32 sid)
1313{
1314	if (unlikely(sid > SECINITSID_NUM))
1315		return NULL;
1316	return initial_sid_to_string[sid];
1317}
1318
1319static int security_sid_to_context_core(struct selinux_state *state,
1320					u32 sid, char **scontext,
1321					u32 *scontext_len, int force,
1322					int only_invalid)
1323{
1324	struct selinux_policy *policy;
1325	struct policydb *policydb;
1326	struct sidtab *sidtab;
1327	struct sidtab_entry *entry;
1328	int rc = 0;
1329
1330	if (scontext)
1331		*scontext = NULL;
1332	*scontext_len  = 0;
1333
1334	if (!selinux_initialized(state)) {
1335		if (sid <= SECINITSID_NUM) {
1336			char *scontextp;
1337			const char *s = initial_sid_to_string[sid];
1338
 
 
 
 
 
 
 
 
 
 
 
1339			if (!s)
1340				return -EINVAL;
1341			*scontext_len = strlen(s) + 1;
1342			if (!scontext)
1343				return 0;
1344			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1345			if (!scontextp)
1346				return -ENOMEM;
1347			*scontext = scontextp;
1348			return 0;
1349		}
1350		pr_err("SELinux: %s:  called before initial "
1351		       "load_policy on unknown SID %d\n", __func__, sid);
1352		return -EINVAL;
1353	}
1354	rcu_read_lock();
1355	policy = rcu_dereference(state->policy);
1356	policydb = &policy->policydb;
1357	sidtab = policy->sidtab;
1358
1359	if (force)
1360		entry = sidtab_search_entry_force(sidtab, sid);
1361	else
1362		entry = sidtab_search_entry(sidtab, sid);
1363	if (!entry) {
1364		pr_err("SELinux: %s:  unrecognized SID %d\n",
1365			__func__, sid);
1366		rc = -EINVAL;
1367		goto out_unlock;
1368	}
1369	if (only_invalid && !entry->context.len)
1370		goto out_unlock;
1371
1372	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1373				    scontext_len);
1374
1375out_unlock:
1376	rcu_read_unlock();
1377	return rc;
1378
1379}
1380
1381/**
1382 * security_sid_to_context - Obtain a context for a given SID.
1383 * @state: SELinux state
1384 * @sid: security identifier, SID
1385 * @scontext: security context
1386 * @scontext_len: length in bytes
1387 *
1388 * Write the string representation of the context associated with @sid
1389 * into a dynamically allocated string of the correct size.  Set @scontext
1390 * to point to this string and set @scontext_len to the length of the string.
1391 */
1392int security_sid_to_context(struct selinux_state *state,
1393			    u32 sid, char **scontext, u32 *scontext_len)
1394{
1395	return security_sid_to_context_core(state, sid, scontext,
1396					    scontext_len, 0, 0);
1397}
1398
1399int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1400				  char **scontext, u32 *scontext_len)
1401{
1402	return security_sid_to_context_core(state, sid, scontext,
1403					    scontext_len, 1, 0);
1404}
1405
1406/**
1407 * security_sid_to_context_inval - Obtain a context for a given SID if it
1408 *                                 is invalid.
1409 * @state: SELinux state
1410 * @sid: security identifier, SID
1411 * @scontext: security context
1412 * @scontext_len: length in bytes
1413 *
1414 * Write the string representation of the context associated with @sid
1415 * into a dynamically allocated string of the correct size, but only if the
1416 * context is invalid in the current policy.  Set @scontext to point to
1417 * this string (or NULL if the context is valid) and set @scontext_len to
1418 * the length of the string (or 0 if the context is valid).
1419 */
1420int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1421				  char **scontext, u32 *scontext_len)
1422{
1423	return security_sid_to_context_core(state, sid, scontext,
1424					    scontext_len, 1, 1);
1425}
1426
1427/*
1428 * Caveat:  Mutates scontext.
1429 */
1430static int string_to_context_struct(struct policydb *pol,
1431				    struct sidtab *sidtabp,
1432				    char *scontext,
1433				    struct context *ctx,
1434				    u32 def_sid)
1435{
1436	struct role_datum *role;
1437	struct type_datum *typdatum;
1438	struct user_datum *usrdatum;
1439	char *scontextp, *p, oldc;
1440	int rc = 0;
1441
1442	context_init(ctx);
1443
1444	/* Parse the security context. */
1445
1446	rc = -EINVAL;
1447	scontextp = scontext;
1448
1449	/* Extract the user. */
1450	p = scontextp;
1451	while (*p && *p != ':')
1452		p++;
1453
1454	if (*p == 0)
1455		goto out;
1456
1457	*p++ = 0;
1458
1459	usrdatum = symtab_search(&pol->p_users, scontextp);
1460	if (!usrdatum)
1461		goto out;
1462
1463	ctx->user = usrdatum->value;
1464
1465	/* Extract role. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469
1470	if (*p == 0)
1471		goto out;
1472
1473	*p++ = 0;
1474
1475	role = symtab_search(&pol->p_roles, scontextp);
1476	if (!role)
1477		goto out;
1478	ctx->role = role->value;
1479
1480	/* Extract type. */
1481	scontextp = p;
1482	while (*p && *p != ':')
1483		p++;
1484	oldc = *p;
1485	*p++ = 0;
1486
1487	typdatum = symtab_search(&pol->p_types, scontextp);
1488	if (!typdatum || typdatum->attribute)
1489		goto out;
1490
1491	ctx->type = typdatum->value;
1492
1493	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1494	if (rc)
1495		goto out;
1496
1497	/* Check the validity of the new context. */
1498	rc = -EINVAL;
1499	if (!policydb_context_isvalid(pol, ctx))
1500		goto out;
1501	rc = 0;
1502out:
1503	if (rc)
1504		context_destroy(ctx);
1505	return rc;
1506}
1507
1508static int security_context_to_sid_core(struct selinux_state *state,
1509					const char *scontext, u32 scontext_len,
1510					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1511					int force)
1512{
1513	struct selinux_policy *policy;
1514	struct policydb *policydb;
1515	struct sidtab *sidtab;
1516	char *scontext2, *str = NULL;
1517	struct context context;
1518	int rc = 0;
1519
1520	/* An empty security context is never valid. */
1521	if (!scontext_len)
1522		return -EINVAL;
1523
1524	/* Copy the string to allow changes and ensure a NUL terminator */
1525	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1526	if (!scontext2)
1527		return -ENOMEM;
1528
1529	if (!selinux_initialized(state)) {
1530		int i;
1531
1532		for (i = 1; i < SECINITSID_NUM; i++) {
1533			const char *s = initial_sid_to_string[i];
1534
1535			if (s && !strcmp(s, scontext2)) {
1536				*sid = i;
1537				goto out;
1538			}
1539		}
1540		*sid = SECINITSID_KERNEL;
1541		goto out;
1542	}
1543	*sid = SECSID_NULL;
1544
1545	if (force) {
1546		/* Save another copy for storing in uninterpreted form */
1547		rc = -ENOMEM;
1548		str = kstrdup(scontext2, gfp_flags);
1549		if (!str)
1550			goto out;
1551	}
1552retry:
1553	rcu_read_lock();
1554	policy = rcu_dereference(state->policy);
1555	policydb = &policy->policydb;
1556	sidtab = policy->sidtab;
1557	rc = string_to_context_struct(policydb, sidtab, scontext2,
1558				      &context, def_sid);
1559	if (rc == -EINVAL && force) {
1560		context.str = str;
1561		context.len = strlen(str) + 1;
1562		str = NULL;
1563	} else if (rc)
1564		goto out_unlock;
1565	rc = sidtab_context_to_sid(sidtab, &context, sid);
1566	if (rc == -ESTALE) {
1567		rcu_read_unlock();
1568		if (context.str) {
1569			str = context.str;
1570			context.str = NULL;
1571		}
1572		context_destroy(&context);
1573		goto retry;
1574	}
1575	context_destroy(&context);
1576out_unlock:
1577	rcu_read_unlock();
1578out:
1579	kfree(scontext2);
1580	kfree(str);
1581	return rc;
1582}
1583
1584/**
1585 * security_context_to_sid - Obtain a SID for a given security context.
1586 * @state: SELinux state
1587 * @scontext: security context
1588 * @scontext_len: length in bytes
1589 * @sid: security identifier, SID
1590 * @gfp: context for the allocation
1591 *
1592 * Obtains a SID associated with the security context that
1593 * has the string representation specified by @scontext.
1594 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1595 * memory is available, or 0 on success.
1596 */
1597int security_context_to_sid(struct selinux_state *state,
1598			    const char *scontext, u32 scontext_len, u32 *sid,
1599			    gfp_t gfp)
1600{
1601	return security_context_to_sid_core(state, scontext, scontext_len,
1602					    sid, SECSID_NULL, gfp, 0);
1603}
1604
1605int security_context_str_to_sid(struct selinux_state *state,
1606				const char *scontext, u32 *sid, gfp_t gfp)
1607{
1608	return security_context_to_sid(state, scontext, strlen(scontext),
1609				       sid, gfp);
1610}
1611
1612/**
1613 * security_context_to_sid_default - Obtain a SID for a given security context,
1614 * falling back to specified default if needed.
1615 *
1616 * @state: SELinux state
1617 * @scontext: security context
1618 * @scontext_len: length in bytes
1619 * @sid: security identifier, SID
1620 * @def_sid: default SID to assign on error
1621 * @gfp_flags: the allocator get-free-page (GFP) flags
1622 *
1623 * Obtains a SID associated with the security context that
1624 * has the string representation specified by @scontext.
1625 * The default SID is passed to the MLS layer to be used to allow
1626 * kernel labeling of the MLS field if the MLS field is not present
1627 * (for upgrading to MLS without full relabel).
1628 * Implicitly forces adding of the context even if it cannot be mapped yet.
1629 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1630 * memory is available, or 0 on success.
1631 */
1632int security_context_to_sid_default(struct selinux_state *state,
1633				    const char *scontext, u32 scontext_len,
1634				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1635{
1636	return security_context_to_sid_core(state, scontext, scontext_len,
1637					    sid, def_sid, gfp_flags, 1);
1638}
1639
1640int security_context_to_sid_force(struct selinux_state *state,
1641				  const char *scontext, u32 scontext_len,
1642				  u32 *sid)
1643{
1644	return security_context_to_sid_core(state, scontext, scontext_len,
1645					    sid, SECSID_NULL, GFP_KERNEL, 1);
1646}
1647
1648static int compute_sid_handle_invalid_context(
1649	struct selinux_state *state,
1650	struct selinux_policy *policy,
1651	struct sidtab_entry *sentry,
1652	struct sidtab_entry *tentry,
1653	u16 tclass,
1654	struct context *newcontext)
1655{
1656	struct policydb *policydb = &policy->policydb;
1657	struct sidtab *sidtab = policy->sidtab;
1658	char *s = NULL, *t = NULL, *n = NULL;
1659	u32 slen, tlen, nlen;
1660	struct audit_buffer *ab;
1661
1662	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1663		goto out;
1664	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1665		goto out;
1666	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1667		goto out;
1668	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1669	if (!ab)
1670		goto out;
1671	audit_log_format(ab,
1672			 "op=security_compute_sid invalid_context=");
1673	/* no need to record the NUL with untrusted strings */
1674	audit_log_n_untrustedstring(ab, n, nlen - 1);
1675	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1676			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1677	audit_log_end(ab);
1678out:
1679	kfree(s);
1680	kfree(t);
1681	kfree(n);
1682	if (!enforcing_enabled(state))
1683		return 0;
1684	return -EACCES;
1685}
1686
1687static void filename_compute_type(struct policydb *policydb,
1688				  struct context *newcontext,
1689				  u32 stype, u32 ttype, u16 tclass,
1690				  const char *objname)
1691{
1692	struct filename_trans_key ft;
1693	struct filename_trans_datum *datum;
1694
1695	/*
1696	 * Most filename trans rules are going to live in specific directories
1697	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1698	 * if the ttype does not contain any rules.
1699	 */
1700	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1701		return;
1702
1703	ft.ttype = ttype;
1704	ft.tclass = tclass;
1705	ft.name = objname;
1706
1707	datum = policydb_filenametr_search(policydb, &ft);
1708	while (datum) {
1709		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1710			newcontext->type = datum->otype;
1711			return;
1712		}
1713		datum = datum->next;
1714	}
1715}
1716
1717static int security_compute_sid(struct selinux_state *state,
1718				u32 ssid,
1719				u32 tsid,
1720				u16 orig_tclass,
1721				u32 specified,
1722				const char *objname,
1723				u32 *out_sid,
1724				bool kern)
1725{
1726	struct selinux_policy *policy;
1727	struct policydb *policydb;
1728	struct sidtab *sidtab;
1729	struct class_datum *cladatum;
1730	struct context *scontext, *tcontext, newcontext;
1731	struct sidtab_entry *sentry, *tentry;
1732	struct avtab_key avkey;
1733	struct avtab_datum *avdatum;
1734	struct avtab_node *node;
1735	u16 tclass;
1736	int rc = 0;
1737	bool sock;
1738
1739	if (!selinux_initialized(state)) {
1740		switch (orig_tclass) {
1741		case SECCLASS_PROCESS: /* kernel value */
1742			*out_sid = ssid;
1743			break;
1744		default:
1745			*out_sid = tsid;
1746			break;
1747		}
1748		goto out;
1749	}
1750
1751retry:
1752	cladatum = NULL;
1753	context_init(&newcontext);
1754
1755	rcu_read_lock();
1756
1757	policy = rcu_dereference(state->policy);
1758
1759	if (kern) {
1760		tclass = unmap_class(&policy->map, orig_tclass);
1761		sock = security_is_socket_class(orig_tclass);
1762	} else {
1763		tclass = orig_tclass;
1764		sock = security_is_socket_class(map_class(&policy->map,
1765							  tclass));
1766	}
1767
1768	policydb = &policy->policydb;
1769	sidtab = policy->sidtab;
1770
1771	sentry = sidtab_search_entry(sidtab, ssid);
1772	if (!sentry) {
1773		pr_err("SELinux: %s:  unrecognized SID %d\n",
1774		       __func__, ssid);
1775		rc = -EINVAL;
1776		goto out_unlock;
1777	}
1778	tentry = sidtab_search_entry(sidtab, tsid);
1779	if (!tentry) {
1780		pr_err("SELinux: %s:  unrecognized SID %d\n",
1781		       __func__, tsid);
1782		rc = -EINVAL;
1783		goto out_unlock;
1784	}
1785
1786	scontext = &sentry->context;
1787	tcontext = &tentry->context;
1788
1789	if (tclass && tclass <= policydb->p_classes.nprim)
1790		cladatum = policydb->class_val_to_struct[tclass - 1];
1791
1792	/* Set the user identity. */
1793	switch (specified) {
1794	case AVTAB_TRANSITION:
1795	case AVTAB_CHANGE:
1796		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1797			newcontext.user = tcontext->user;
1798		} else {
1799			/* notice this gets both DEFAULT_SOURCE and unset */
1800			/* Use the process user identity. */
1801			newcontext.user = scontext->user;
1802		}
1803		break;
1804	case AVTAB_MEMBER:
1805		/* Use the related object owner. */
1806		newcontext.user = tcontext->user;
1807		break;
1808	}
1809
1810	/* Set the role to default values. */
1811	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1812		newcontext.role = scontext->role;
1813	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1814		newcontext.role = tcontext->role;
1815	} else {
1816		if ((tclass == policydb->process_class) || sock)
1817			newcontext.role = scontext->role;
1818		else
1819			newcontext.role = OBJECT_R_VAL;
1820	}
1821
1822	/* Set the type to default values. */
1823	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1824		newcontext.type = scontext->type;
1825	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1826		newcontext.type = tcontext->type;
1827	} else {
1828		if ((tclass == policydb->process_class) || sock) {
1829			/* Use the type of process. */
1830			newcontext.type = scontext->type;
1831		} else {
1832			/* Use the type of the related object. */
1833			newcontext.type = tcontext->type;
1834		}
1835	}
1836
1837	/* Look for a type transition/member/change rule. */
1838	avkey.source_type = scontext->type;
1839	avkey.target_type = tcontext->type;
1840	avkey.target_class = tclass;
1841	avkey.specified = specified;
1842	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1843
1844	/* If no permanent rule, also check for enabled conditional rules */
1845	if (!avdatum) {
1846		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1847		for (; node; node = avtab_search_node_next(node, specified)) {
1848			if (node->key.specified & AVTAB_ENABLED) {
1849				avdatum = &node->datum;
1850				break;
1851			}
1852		}
1853	}
1854
1855	if (avdatum) {
1856		/* Use the type from the type transition/member/change rule. */
1857		newcontext.type = avdatum->u.data;
1858	}
1859
1860	/* if we have a objname this is a file trans check so check those rules */
1861	if (objname)
1862		filename_compute_type(policydb, &newcontext, scontext->type,
1863				      tcontext->type, tclass, objname);
1864
1865	/* Check for class-specific changes. */
1866	if (specified & AVTAB_TRANSITION) {
1867		/* Look for a role transition rule. */
1868		struct role_trans_datum *rtd;
1869		struct role_trans_key rtk = {
1870			.role = scontext->role,
1871			.type = tcontext->type,
1872			.tclass = tclass,
1873		};
1874
1875		rtd = policydb_roletr_search(policydb, &rtk);
1876		if (rtd)
1877			newcontext.role = rtd->new_role;
1878	}
1879
1880	/* Set the MLS attributes.
1881	   This is done last because it may allocate memory. */
1882	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1883			     &newcontext, sock);
1884	if (rc)
1885		goto out_unlock;
1886
1887	/* Check the validity of the context. */
1888	if (!policydb_context_isvalid(policydb, &newcontext)) {
1889		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1890							tentry, tclass,
1891							&newcontext);
1892		if (rc)
1893			goto out_unlock;
1894	}
1895	/* Obtain the sid for the context. */
1896	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1897	if (rc == -ESTALE) {
1898		rcu_read_unlock();
1899		context_destroy(&newcontext);
1900		goto retry;
1901	}
1902out_unlock:
1903	rcu_read_unlock();
1904	context_destroy(&newcontext);
1905out:
1906	return rc;
1907}
1908
1909/**
1910 * security_transition_sid - Compute the SID for a new subject/object.
1911 * @state: SELinux state
1912 * @ssid: source security identifier
1913 * @tsid: target security identifier
1914 * @tclass: target security class
1915 * @qstr: object name
1916 * @out_sid: security identifier for new subject/object
1917 *
1918 * Compute a SID to use for labeling a new subject or object in the
1919 * class @tclass based on a SID pair (@ssid, @tsid).
1920 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1921 * if insufficient memory is available, or %0 if the new SID was
1922 * computed successfully.
1923 */
1924int security_transition_sid(struct selinux_state *state,
1925			    u32 ssid, u32 tsid, u16 tclass,
1926			    const struct qstr *qstr, u32 *out_sid)
1927{
1928	return security_compute_sid(state, ssid, tsid, tclass,
1929				    AVTAB_TRANSITION,
1930				    qstr ? qstr->name : NULL, out_sid, true);
1931}
1932
1933int security_transition_sid_user(struct selinux_state *state,
1934				 u32 ssid, u32 tsid, u16 tclass,
1935				 const char *objname, u32 *out_sid)
1936{
1937	return security_compute_sid(state, ssid, tsid, tclass,
1938				    AVTAB_TRANSITION,
1939				    objname, out_sid, false);
1940}
1941
1942/**
1943 * security_member_sid - Compute the SID for member selection.
1944 * @state: SELinux state
1945 * @ssid: source security identifier
1946 * @tsid: target security identifier
1947 * @tclass: target security class
1948 * @out_sid: security identifier for selected member
1949 *
1950 * Compute a SID to use when selecting a member of a polyinstantiated
1951 * object of class @tclass based on a SID pair (@ssid, @tsid).
1952 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1953 * if insufficient memory is available, or %0 if the SID was
1954 * computed successfully.
1955 */
1956int security_member_sid(struct selinux_state *state,
1957			u32 ssid,
1958			u32 tsid,
1959			u16 tclass,
1960			u32 *out_sid)
1961{
1962	return security_compute_sid(state, ssid, tsid, tclass,
1963				    AVTAB_MEMBER, NULL,
1964				    out_sid, false);
1965}
1966
1967/**
1968 * security_change_sid - Compute the SID for object relabeling.
1969 * @state: SELinux state
1970 * @ssid: source security identifier
1971 * @tsid: target security identifier
1972 * @tclass: target security class
1973 * @out_sid: security identifier for selected member
1974 *
1975 * Compute a SID to use for relabeling an object of class @tclass
1976 * based on a SID pair (@ssid, @tsid).
1977 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1978 * if insufficient memory is available, or %0 if the SID was
1979 * computed successfully.
1980 */
1981int security_change_sid(struct selinux_state *state,
1982			u32 ssid,
1983			u32 tsid,
1984			u16 tclass,
1985			u32 *out_sid)
1986{
1987	return security_compute_sid(state,
1988				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1989				    out_sid, false);
1990}
1991
1992static inline int convert_context_handle_invalid_context(
1993	struct selinux_state *state,
1994	struct policydb *policydb,
1995	struct context *context)
1996{
1997	char *s;
1998	u32 len;
1999
2000	if (enforcing_enabled(state))
2001		return -EINVAL;
2002
2003	if (!context_struct_to_string(policydb, context, &s, &len)) {
2004		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2005			s);
2006		kfree(s);
2007	}
2008	return 0;
2009}
2010
2011/**
2012 * services_convert_context - Convert a security context across policies.
2013 * @args: populated convert_context_args struct
2014 * @oldc: original context
2015 * @newc: converted context
2016 * @gfp_flags: allocation flags
2017 *
2018 * Convert the values in the security context structure @oldc from the values
2019 * specified in the policy @args->oldp to the values specified in the policy
2020 * @args->newp, storing the new context in @newc, and verifying that the
2021 * context is valid under the new policy.
2022 */
2023int services_convert_context(struct convert_context_args *args,
2024			     struct context *oldc, struct context *newc,
2025			     gfp_t gfp_flags)
2026{
2027	struct ocontext *oc;
2028	struct role_datum *role;
2029	struct type_datum *typdatum;
2030	struct user_datum *usrdatum;
2031	char *s;
2032	u32 len;
2033	int rc;
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, gfp_flags);
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2041		if (rc == -EINVAL) {
2042			/*
2043			 * Retain string representation for later mapping.
2044			 *
2045			 * IMPORTANT: We need to copy the contents of oldc->str
2046			 * back into s again because string_to_context_struct()
2047			 * may have garbled it.
2048			 */
2049			memcpy(s, oldc->str, oldc->len);
2050			context_init(newc);
2051			newc->str = s;
2052			newc->len = oldc->len;
2053			return 0;
2054		}
2055		kfree(s);
2056		if (rc) {
2057			/* Other error condition, e.g. ENOMEM. */
2058			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2059			       oldc->str, -rc);
2060			return rc;
2061		}
2062		pr_info("SELinux:  Context %s became valid (mapped).\n",
2063			oldc->str);
2064		return 0;
2065	}
2066
2067	context_init(newc);
2068
2069	/* Convert the user. */
2070	usrdatum = symtab_search(&args->newp->p_users,
2071				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2072	if (!usrdatum)
2073		goto bad;
2074	newc->user = usrdatum->value;
2075
2076	/* Convert the role. */
2077	role = symtab_search(&args->newp->p_roles,
2078			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2079	if (!role)
2080		goto bad;
2081	newc->role = role->value;
2082
2083	/* Convert the type. */
2084	typdatum = symtab_search(&args->newp->p_types,
2085				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2086	if (!typdatum)
2087		goto bad;
2088	newc->type = typdatum->value;
2089
2090	/* Convert the MLS fields if dealing with MLS policies */
2091	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2092		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2093		if (rc)
2094			goto bad;
2095	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2096		/*
2097		 * Switching between non-MLS and MLS policy:
2098		 * ensure that the MLS fields of the context for all
2099		 * existing entries in the sidtab are filled in with a
2100		 * suitable default value, likely taken from one of the
2101		 * initial SIDs.
2102		 */
2103		oc = args->newp->ocontexts[OCON_ISID];
2104		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2105			oc = oc->next;
2106		if (!oc) {
2107			pr_err("SELinux:  unable to look up"
2108				" the initial SIDs list\n");
2109			goto bad;
2110		}
2111		rc = mls_range_set(newc, &oc->context[0].range);
2112		if (rc)
2113			goto bad;
2114	}
2115
2116	/* Check the validity of the new context. */
2117	if (!policydb_context_isvalid(args->newp, newc)) {
2118		rc = convert_context_handle_invalid_context(args->state,
2119							    args->oldp, oldc);
2120		if (rc)
2121			goto bad;
2122	}
2123
2124	return 0;
2125bad:
2126	/* Map old representation to string and save it. */
2127	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2128	if (rc)
2129		return rc;
2130	context_destroy(newc);
2131	newc->str = s;
2132	newc->len = len;
2133	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2134		newc->str);
2135	return 0;
2136}
2137
2138static void security_load_policycaps(struct selinux_state *state,
2139				struct selinux_policy *policy)
2140{
2141	struct policydb *p;
2142	unsigned int i;
2143	struct ebitmap_node *node;
2144
2145	p = &policy->policydb;
2146
2147	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2148		WRITE_ONCE(state->policycap[i],
2149			ebitmap_get_bit(&p->policycaps, i));
2150
2151	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152		pr_info("SELinux:  policy capability %s=%d\n",
2153			selinux_policycap_names[i],
2154			ebitmap_get_bit(&p->policycaps, i));
2155
2156	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158			pr_info("SELinux:  unknown policy capability %u\n",
2159				i);
2160	}
2161}
2162
2163static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164				struct selinux_policy *newpolicy);
2165
2166static void selinux_policy_free(struct selinux_policy *policy)
2167{
2168	if (!policy)
2169		return;
2170
2171	sidtab_destroy(policy->sidtab);
2172	kfree(policy->map.mapping);
2173	policydb_destroy(&policy->policydb);
2174	kfree(policy->sidtab);
2175	kfree(policy);
2176}
2177
2178static void selinux_policy_cond_free(struct selinux_policy *policy)
2179{
2180	cond_policydb_destroy_dup(&policy->policydb);
2181	kfree(policy);
2182}
2183
2184void selinux_policy_cancel(struct selinux_state *state,
2185			   struct selinux_load_state *load_state)
2186{
 
2187	struct selinux_policy *oldpolicy;
2188
2189	oldpolicy = rcu_dereference_protected(state->policy,
2190					lockdep_is_held(&state->policy_mutex));
2191
2192	sidtab_cancel_convert(oldpolicy->sidtab);
2193	selinux_policy_free(load_state->policy);
2194	kfree(load_state->convert_data);
2195}
2196
2197static void selinux_notify_policy_change(struct selinux_state *state,
2198					u32 seqno)
2199{
2200	/* Flush external caches and notify userspace of policy load */
2201	avc_ss_reset(state->avc, seqno);
2202	selnl_notify_policyload(seqno);
2203	selinux_status_update_policyload(state, seqno);
2204	selinux_netlbl_cache_invalidate();
2205	selinux_xfrm_notify_policyload();
2206	selinux_ima_measure_state_locked(state);
2207}
2208
2209void selinux_policy_commit(struct selinux_state *state,
2210			   struct selinux_load_state *load_state)
2211{
 
2212	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2213	unsigned long flags;
2214	u32 seqno;
2215
2216	oldpolicy = rcu_dereference_protected(state->policy,
2217					lockdep_is_held(&state->policy_mutex));
2218
2219	/* If switching between different policy types, log MLS status */
2220	if (oldpolicy) {
2221		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2222			pr_info("SELinux: Disabling MLS support...\n");
2223		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2224			pr_info("SELinux: Enabling MLS support...\n");
2225	}
2226
2227	/* Set latest granting seqno for new policy. */
2228	if (oldpolicy)
2229		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2230	else
2231		newpolicy->latest_granting = 1;
2232	seqno = newpolicy->latest_granting;
2233
2234	/* Install the new policy. */
2235	if (oldpolicy) {
2236		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2237		rcu_assign_pointer(state->policy, newpolicy);
2238		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2239	} else {
2240		rcu_assign_pointer(state->policy, newpolicy);
2241	}
2242
2243	/* Load the policycaps from the new policy */
2244	security_load_policycaps(state, newpolicy);
2245
2246	if (!selinux_initialized(state)) {
2247		/*
2248		 * After first policy load, the security server is
2249		 * marked as initialized and ready to handle requests and
2250		 * any objects created prior to policy load are then labeled.
2251		 */
2252		selinux_mark_initialized(state);
2253		selinux_complete_init();
2254	}
2255
2256	/* Free the old policy */
2257	synchronize_rcu();
2258	selinux_policy_free(oldpolicy);
2259	kfree(load_state->convert_data);
2260
2261	/* Notify others of the policy change */
2262	selinux_notify_policy_change(state, seqno);
2263}
2264
2265/**
2266 * security_load_policy - Load a security policy configuration.
2267 * @state: SELinux state
2268 * @data: binary policy data
2269 * @len: length of data in bytes
2270 * @load_state: policy load state
2271 *
2272 * Load a new set of security policy configuration data,
2273 * validate it and convert the SID table as necessary.
2274 * This function will flush the access vector cache after
2275 * loading the new policy.
2276 */
2277int security_load_policy(struct selinux_state *state, void *data, size_t len,
2278			 struct selinux_load_state *load_state)
2279{
 
2280	struct selinux_policy *newpolicy, *oldpolicy;
2281	struct selinux_policy_convert_data *convert_data;
2282	int rc = 0;
2283	struct policy_file file = { data, len }, *fp = &file;
2284
2285	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2286	if (!newpolicy)
2287		return -ENOMEM;
2288
2289	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2290	if (!newpolicy->sidtab) {
2291		rc = -ENOMEM;
2292		goto err_policy;
2293	}
2294
2295	rc = policydb_read(&newpolicy->policydb, fp);
2296	if (rc)
2297		goto err_sidtab;
2298
2299	newpolicy->policydb.len = len;
2300	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2301				&newpolicy->map);
2302	if (rc)
2303		goto err_policydb;
2304
2305	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2306	if (rc) {
2307		pr_err("SELinux:  unable to load the initial SIDs\n");
2308		goto err_mapping;
2309	}
2310
2311	if (!selinux_initialized(state)) {
2312		/* First policy load, so no need to preserve state from old policy */
2313		load_state->policy = newpolicy;
2314		load_state->convert_data = NULL;
2315		return 0;
2316	}
2317
2318	oldpolicy = rcu_dereference_protected(state->policy,
2319					lockdep_is_held(&state->policy_mutex));
2320
2321	/* Preserve active boolean values from the old policy */
2322	rc = security_preserve_bools(oldpolicy, newpolicy);
2323	if (rc) {
2324		pr_err("SELinux:  unable to preserve booleans\n");
2325		goto err_free_isids;
2326	}
2327
2328	/*
2329	 * Convert the internal representations of contexts
2330	 * in the new SID table.
2331	 */
2332
2333	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2334	if (!convert_data) {
2335		rc = -ENOMEM;
2336		goto err_free_isids;
2337	}
2338
2339	convert_data->args.state = state;
2340	convert_data->args.oldp = &oldpolicy->policydb;
2341	convert_data->args.newp = &newpolicy->policydb;
2342
2343	convert_data->sidtab_params.args = &convert_data->args;
2344	convert_data->sidtab_params.target = newpolicy->sidtab;
2345
2346	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2347	if (rc) {
2348		pr_err("SELinux:  unable to convert the internal"
2349			" representation of contexts in the new SID"
2350			" table\n");
2351		goto err_free_convert_data;
2352	}
2353
2354	load_state->policy = newpolicy;
2355	load_state->convert_data = convert_data;
2356	return 0;
2357
2358err_free_convert_data:
2359	kfree(convert_data);
2360err_free_isids:
2361	sidtab_destroy(newpolicy->sidtab);
2362err_mapping:
2363	kfree(newpolicy->map.mapping);
2364err_policydb:
2365	policydb_destroy(&newpolicy->policydb);
2366err_sidtab:
2367	kfree(newpolicy->sidtab);
2368err_policy:
2369	kfree(newpolicy);
2370
2371	return rc;
2372}
2373
2374/**
2375 * ocontext_to_sid - Helper to safely get sid for an ocontext
2376 * @sidtab: SID table
2377 * @c: ocontext structure
2378 * @index: index of the context entry (0 or 1)
2379 * @out_sid: pointer to the resulting SID value
2380 *
2381 * For all ocontexts except OCON_ISID the SID fields are populated
2382 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2383 * operation, this helper must be used to do that safely.
2384 *
2385 * WARNING: This function may return -ESTALE, indicating that the caller
2386 * must retry the operation after re-acquiring the policy pointer!
2387 */
2388static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2389			   size_t index, u32 *out_sid)
2390{
2391	int rc;
2392	u32 sid;
2393
2394	/* Ensure the associated sidtab entry is visible to this thread. */
2395	sid = smp_load_acquire(&c->sid[index]);
2396	if (!sid) {
2397		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2398		if (rc)
2399			return rc;
2400
2401		/*
2402		 * Ensure the new sidtab entry is visible to other threads
2403		 * when they see the SID.
2404		 */
2405		smp_store_release(&c->sid[index], sid);
2406	}
2407	*out_sid = sid;
2408	return 0;
2409}
2410
2411/**
2412 * security_port_sid - Obtain the SID for a port.
2413 * @state: SELinux state
2414 * @protocol: protocol number
2415 * @port: port number
2416 * @out_sid: security identifier
2417 */
2418int security_port_sid(struct selinux_state *state,
2419		      u8 protocol, u16 port, u32 *out_sid)
2420{
2421	struct selinux_policy *policy;
2422	struct policydb *policydb;
2423	struct sidtab *sidtab;
2424	struct ocontext *c;
2425	int rc;
2426
2427	if (!selinux_initialized(state)) {
2428		*out_sid = SECINITSID_PORT;
2429		return 0;
2430	}
2431
2432retry:
2433	rc = 0;
2434	rcu_read_lock();
2435	policy = rcu_dereference(state->policy);
2436	policydb = &policy->policydb;
2437	sidtab = policy->sidtab;
2438
2439	c = policydb->ocontexts[OCON_PORT];
2440	while (c) {
2441		if (c->u.port.protocol == protocol &&
2442		    c->u.port.low_port <= port &&
2443		    c->u.port.high_port >= port)
2444			break;
2445		c = c->next;
2446	}
2447
2448	if (c) {
2449		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2450		if (rc == -ESTALE) {
2451			rcu_read_unlock();
2452			goto retry;
2453		}
2454		if (rc)
2455			goto out;
2456	} else {
2457		*out_sid = SECINITSID_PORT;
2458	}
2459
2460out:
2461	rcu_read_unlock();
2462	return rc;
2463}
2464
2465/**
2466 * security_ib_pkey_sid - Obtain the SID for a pkey.
2467 * @state: SELinux state
2468 * @subnet_prefix: Subnet Prefix
2469 * @pkey_num: pkey number
2470 * @out_sid: security identifier
2471 */
2472int security_ib_pkey_sid(struct selinux_state *state,
2473			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2474{
2475	struct selinux_policy *policy;
2476	struct policydb *policydb;
2477	struct sidtab *sidtab;
2478	struct ocontext *c;
2479	int rc;
2480
2481	if (!selinux_initialized(state)) {
2482		*out_sid = SECINITSID_UNLABELED;
2483		return 0;
2484	}
2485
2486retry:
2487	rc = 0;
2488	rcu_read_lock();
2489	policy = rcu_dereference(state->policy);
2490	policydb = &policy->policydb;
2491	sidtab = policy->sidtab;
2492
2493	c = policydb->ocontexts[OCON_IBPKEY];
2494	while (c) {
2495		if (c->u.ibpkey.low_pkey <= pkey_num &&
2496		    c->u.ibpkey.high_pkey >= pkey_num &&
2497		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2498			break;
2499
2500		c = c->next;
2501	}
2502
2503	if (c) {
2504		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2505		if (rc == -ESTALE) {
2506			rcu_read_unlock();
2507			goto retry;
2508		}
2509		if (rc)
2510			goto out;
2511	} else
2512		*out_sid = SECINITSID_UNLABELED;
2513
2514out:
2515	rcu_read_unlock();
2516	return rc;
2517}
2518
2519/**
2520 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2521 * @state: SELinux state
2522 * @dev_name: device name
2523 * @port_num: port number
2524 * @out_sid: security identifier
2525 */
2526int security_ib_endport_sid(struct selinux_state *state,
2527			    const char *dev_name, u8 port_num, u32 *out_sid)
2528{
2529	struct selinux_policy *policy;
2530	struct policydb *policydb;
2531	struct sidtab *sidtab;
2532	struct ocontext *c;
2533	int rc;
2534
2535	if (!selinux_initialized(state)) {
2536		*out_sid = SECINITSID_UNLABELED;
2537		return 0;
2538	}
2539
2540retry:
2541	rc = 0;
2542	rcu_read_lock();
2543	policy = rcu_dereference(state->policy);
2544	policydb = &policy->policydb;
2545	sidtab = policy->sidtab;
2546
2547	c = policydb->ocontexts[OCON_IBENDPORT];
2548	while (c) {
2549		if (c->u.ibendport.port == port_num &&
2550		    !strncmp(c->u.ibendport.dev_name,
2551			     dev_name,
2552			     IB_DEVICE_NAME_MAX))
2553			break;
2554
2555		c = c->next;
2556	}
2557
2558	if (c) {
2559		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2560		if (rc == -ESTALE) {
2561			rcu_read_unlock();
2562			goto retry;
2563		}
2564		if (rc)
2565			goto out;
2566	} else
2567		*out_sid = SECINITSID_UNLABELED;
2568
2569out:
2570	rcu_read_unlock();
2571	return rc;
2572}
2573
2574/**
2575 * security_netif_sid - Obtain the SID for a network interface.
2576 * @state: SELinux state
2577 * @name: interface name
2578 * @if_sid: interface SID
2579 */
2580int security_netif_sid(struct selinux_state *state,
2581		       char *name, u32 *if_sid)
2582{
2583	struct selinux_policy *policy;
2584	struct policydb *policydb;
2585	struct sidtab *sidtab;
2586	int rc;
2587	struct ocontext *c;
2588
2589	if (!selinux_initialized(state)) {
2590		*if_sid = SECINITSID_NETIF;
2591		return 0;
2592	}
2593
2594retry:
2595	rc = 0;
2596	rcu_read_lock();
2597	policy = rcu_dereference(state->policy);
2598	policydb = &policy->policydb;
2599	sidtab = policy->sidtab;
2600
2601	c = policydb->ocontexts[OCON_NETIF];
2602	while (c) {
2603		if (strcmp(name, c->u.name) == 0)
2604			break;
2605		c = c->next;
2606	}
2607
2608	if (c) {
2609		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2610		if (rc == -ESTALE) {
2611			rcu_read_unlock();
2612			goto retry;
2613		}
2614		if (rc)
2615			goto out;
2616	} else
2617		*if_sid = SECINITSID_NETIF;
2618
2619out:
2620	rcu_read_unlock();
2621	return rc;
2622}
2623
2624static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2625{
2626	int i, fail = 0;
2627
2628	for (i = 0; i < 4; i++)
2629		if (addr[i] != (input[i] & mask[i])) {
2630			fail = 1;
2631			break;
2632		}
2633
2634	return !fail;
2635}
2636
2637/**
2638 * security_node_sid - Obtain the SID for a node (host).
2639 * @state: SELinux state
2640 * @domain: communication domain aka address family
2641 * @addrp: address
2642 * @addrlen: address length in bytes
2643 * @out_sid: security identifier
2644 */
2645int security_node_sid(struct selinux_state *state,
2646		      u16 domain,
2647		      void *addrp,
2648		      u32 addrlen,
2649		      u32 *out_sid)
2650{
2651	struct selinux_policy *policy;
2652	struct policydb *policydb;
2653	struct sidtab *sidtab;
2654	int rc;
2655	struct ocontext *c;
2656
2657	if (!selinux_initialized(state)) {
2658		*out_sid = SECINITSID_NODE;
2659		return 0;
2660	}
2661
2662retry:
2663	rcu_read_lock();
2664	policy = rcu_dereference(state->policy);
2665	policydb = &policy->policydb;
2666	sidtab = policy->sidtab;
2667
2668	switch (domain) {
2669	case AF_INET: {
2670		u32 addr;
2671
2672		rc = -EINVAL;
2673		if (addrlen != sizeof(u32))
2674			goto out;
2675
2676		addr = *((u32 *)addrp);
2677
2678		c = policydb->ocontexts[OCON_NODE];
2679		while (c) {
2680			if (c->u.node.addr == (addr & c->u.node.mask))
2681				break;
2682			c = c->next;
2683		}
2684		break;
2685	}
2686
2687	case AF_INET6:
2688		rc = -EINVAL;
2689		if (addrlen != sizeof(u64) * 2)
2690			goto out;
2691		c = policydb->ocontexts[OCON_NODE6];
2692		while (c) {
2693			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2694						c->u.node6.mask))
2695				break;
2696			c = c->next;
2697		}
2698		break;
2699
2700	default:
2701		rc = 0;
2702		*out_sid = SECINITSID_NODE;
2703		goto out;
2704	}
2705
2706	if (c) {
2707		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2708		if (rc == -ESTALE) {
2709			rcu_read_unlock();
2710			goto retry;
2711		}
2712		if (rc)
2713			goto out;
2714	} else {
2715		*out_sid = SECINITSID_NODE;
2716	}
2717
2718	rc = 0;
2719out:
2720	rcu_read_unlock();
2721	return rc;
2722}
2723
2724#define SIDS_NEL 25
2725
2726/**
2727 * security_get_user_sids - Obtain reachable SIDs for a user.
2728 * @state: SELinux state
2729 * @fromsid: starting SID
2730 * @username: username
2731 * @sids: array of reachable SIDs for user
2732 * @nel: number of elements in @sids
2733 *
2734 * Generate the set of SIDs for legal security contexts
2735 * for a given user that can be reached by @fromsid.
2736 * Set *@sids to point to a dynamically allocated
2737 * array containing the set of SIDs.  Set *@nel to the
2738 * number of elements in the array.
2739 */
2740
2741int security_get_user_sids(struct selinux_state *state,
2742			   u32 fromsid,
2743			   char *username,
2744			   u32 **sids,
2745			   u32 *nel)
2746{
2747	struct selinux_policy *policy;
2748	struct policydb *policydb;
2749	struct sidtab *sidtab;
2750	struct context *fromcon, usercon;
2751	u32 *mysids = NULL, *mysids2, sid;
2752	u32 i, j, mynel, maxnel = SIDS_NEL;
2753	struct user_datum *user;
2754	struct role_datum *role;
2755	struct ebitmap_node *rnode, *tnode;
2756	int rc;
2757
2758	*sids = NULL;
2759	*nel = 0;
2760
2761	if (!selinux_initialized(state))
2762		return 0;
2763
2764	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2765	if (!mysids)
2766		return -ENOMEM;
2767
2768retry:
2769	mynel = 0;
2770	rcu_read_lock();
2771	policy = rcu_dereference(state->policy);
2772	policydb = &policy->policydb;
2773	sidtab = policy->sidtab;
2774
2775	context_init(&usercon);
2776
2777	rc = -EINVAL;
2778	fromcon = sidtab_search(sidtab, fromsid);
2779	if (!fromcon)
2780		goto out_unlock;
2781
2782	rc = -EINVAL;
2783	user = symtab_search(&policydb->p_users, username);
2784	if (!user)
2785		goto out_unlock;
2786
2787	usercon.user = user->value;
2788
2789	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2790		role = policydb->role_val_to_struct[i];
2791		usercon.role = i + 1;
2792		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2793			usercon.type = j + 1;
2794
2795			if (mls_setup_user_range(policydb, fromcon, user,
2796						 &usercon))
2797				continue;
2798
2799			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2800			if (rc == -ESTALE) {
2801				rcu_read_unlock();
2802				goto retry;
2803			}
2804			if (rc)
2805				goto out_unlock;
2806			if (mynel < maxnel) {
2807				mysids[mynel++] = sid;
2808			} else {
2809				rc = -ENOMEM;
2810				maxnel += SIDS_NEL;
2811				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2812				if (!mysids2)
2813					goto out_unlock;
2814				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2815				kfree(mysids);
2816				mysids = mysids2;
2817				mysids[mynel++] = sid;
2818			}
2819		}
2820	}
2821	rc = 0;
2822out_unlock:
2823	rcu_read_unlock();
2824	if (rc || !mynel) {
2825		kfree(mysids);
2826		return rc;
2827	}
2828
2829	rc = -ENOMEM;
2830	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2831	if (!mysids2) {
2832		kfree(mysids);
2833		return rc;
2834	}
2835	for (i = 0, j = 0; i < mynel; i++) {
2836		struct av_decision dummy_avd;
2837		rc = avc_has_perm_noaudit(state,
2838					  fromsid, mysids[i],
2839					  SECCLASS_PROCESS, /* kernel value */
2840					  PROCESS__TRANSITION, AVC_STRICT,
2841					  &dummy_avd);
2842		if (!rc)
2843			mysids2[j++] = mysids[i];
2844		cond_resched();
2845	}
2846	kfree(mysids);
2847	*sids = mysids2;
2848	*nel = j;
2849	return 0;
2850}
2851
2852/**
2853 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2854 * @policy: policy
2855 * @fstype: filesystem type
2856 * @path: path from root of mount
2857 * @orig_sclass: file security class
2858 * @sid: SID for path
2859 *
2860 * Obtain a SID to use for a file in a filesystem that
2861 * cannot support xattr or use a fixed labeling behavior like
2862 * transition SIDs or task SIDs.
2863 *
2864 * WARNING: This function may return -ESTALE, indicating that the caller
2865 * must retry the operation after re-acquiring the policy pointer!
2866 */
2867static inline int __security_genfs_sid(struct selinux_policy *policy,
2868				       const char *fstype,
2869				       const char *path,
2870				       u16 orig_sclass,
2871				       u32 *sid)
2872{
2873	struct policydb *policydb = &policy->policydb;
2874	struct sidtab *sidtab = policy->sidtab;
2875	int len;
2876	u16 sclass;
2877	struct genfs *genfs;
2878	struct ocontext *c;
2879	int cmp = 0;
2880
2881	while (path[0] == '/' && path[1] == '/')
2882		path++;
2883
2884	sclass = unmap_class(&policy->map, orig_sclass);
2885	*sid = SECINITSID_UNLABELED;
2886
2887	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2888		cmp = strcmp(fstype, genfs->fstype);
2889		if (cmp <= 0)
2890			break;
2891	}
2892
2893	if (!genfs || cmp)
2894		return -ENOENT;
2895
2896	for (c = genfs->head; c; c = c->next) {
2897		len = strlen(c->u.name);
2898		if ((!c->v.sclass || sclass == c->v.sclass) &&
2899		    (strncmp(c->u.name, path, len) == 0))
2900			break;
2901	}
2902
2903	if (!c)
2904		return -ENOENT;
2905
2906	return ocontext_to_sid(sidtab, c, 0, sid);
2907}
2908
2909/**
2910 * security_genfs_sid - Obtain a SID for a file in a filesystem
2911 * @state: SELinux state
2912 * @fstype: filesystem type
2913 * @path: path from root of mount
2914 * @orig_sclass: file security class
2915 * @sid: SID for path
2916 *
2917 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2918 * it afterward.
2919 */
2920int security_genfs_sid(struct selinux_state *state,
2921		       const char *fstype,
2922		       const char *path,
2923		       u16 orig_sclass,
2924		       u32 *sid)
2925{
2926	struct selinux_policy *policy;
2927	int retval;
2928
2929	if (!selinux_initialized(state)) {
2930		*sid = SECINITSID_UNLABELED;
2931		return 0;
2932	}
2933
2934	do {
2935		rcu_read_lock();
2936		policy = rcu_dereference(state->policy);
2937		retval = __security_genfs_sid(policy, fstype, path,
2938					      orig_sclass, sid);
2939		rcu_read_unlock();
2940	} while (retval == -ESTALE);
2941	return retval;
2942}
2943
2944int selinux_policy_genfs_sid(struct selinux_policy *policy,
2945			const char *fstype,
2946			const char *path,
2947			u16 orig_sclass,
2948			u32 *sid)
2949{
2950	/* no lock required, policy is not yet accessible by other threads */
2951	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2952}
2953
2954/**
2955 * security_fs_use - Determine how to handle labeling for a filesystem.
2956 * @state: SELinux state
2957 * @sb: superblock in question
2958 */
2959int security_fs_use(struct selinux_state *state, struct super_block *sb)
2960{
2961	struct selinux_policy *policy;
2962	struct policydb *policydb;
2963	struct sidtab *sidtab;
2964	int rc;
2965	struct ocontext *c;
2966	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2967	const char *fstype = sb->s_type->name;
2968
2969	if (!selinux_initialized(state)) {
2970		sbsec->behavior = SECURITY_FS_USE_NONE;
2971		sbsec->sid = SECINITSID_UNLABELED;
2972		return 0;
2973	}
2974
2975retry:
2976	rcu_read_lock();
2977	policy = rcu_dereference(state->policy);
2978	policydb = &policy->policydb;
2979	sidtab = policy->sidtab;
2980
2981	c = policydb->ocontexts[OCON_FSUSE];
2982	while (c) {
2983		if (strcmp(fstype, c->u.name) == 0)
2984			break;
2985		c = c->next;
2986	}
2987
2988	if (c) {
2989		sbsec->behavior = c->v.behavior;
2990		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2991		if (rc == -ESTALE) {
2992			rcu_read_unlock();
2993			goto retry;
2994		}
2995		if (rc)
2996			goto out;
2997	} else {
2998		rc = __security_genfs_sid(policy, fstype, "/",
2999					SECCLASS_DIR, &sbsec->sid);
3000		if (rc == -ESTALE) {
3001			rcu_read_unlock();
3002			goto retry;
3003		}
3004		if (rc) {
3005			sbsec->behavior = SECURITY_FS_USE_NONE;
3006			rc = 0;
3007		} else {
3008			sbsec->behavior = SECURITY_FS_USE_GENFS;
3009		}
3010	}
3011
3012out:
3013	rcu_read_unlock();
3014	return rc;
3015}
3016
3017int security_get_bools(struct selinux_policy *policy,
3018		       u32 *len, char ***names, int **values)
3019{
3020	struct policydb *policydb;
3021	u32 i;
3022	int rc;
3023
3024	policydb = &policy->policydb;
3025
3026	*names = NULL;
3027	*values = NULL;
3028
3029	rc = 0;
3030	*len = policydb->p_bools.nprim;
3031	if (!*len)
3032		goto out;
3033
3034	rc = -ENOMEM;
3035	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3036	if (!*names)
3037		goto err;
3038
3039	rc = -ENOMEM;
3040	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3041	if (!*values)
3042		goto err;
3043
3044	for (i = 0; i < *len; i++) {
3045		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3046
3047		rc = -ENOMEM;
3048		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3049				      GFP_ATOMIC);
3050		if (!(*names)[i])
3051			goto err;
3052	}
3053	rc = 0;
3054out:
3055	return rc;
3056err:
3057	if (*names) {
3058		for (i = 0; i < *len; i++)
3059			kfree((*names)[i]);
3060		kfree(*names);
3061	}
3062	kfree(*values);
3063	*len = 0;
3064	*names = NULL;
3065	*values = NULL;
3066	goto out;
3067}
3068
3069
3070int security_set_bools(struct selinux_state *state, u32 len, int *values)
3071{
 
3072	struct selinux_policy *newpolicy, *oldpolicy;
3073	int rc;
3074	u32 i, seqno = 0;
3075
3076	if (!selinux_initialized(state))
3077		return -EINVAL;
3078
3079	oldpolicy = rcu_dereference_protected(state->policy,
3080					lockdep_is_held(&state->policy_mutex));
3081
3082	/* Consistency check on number of booleans, should never fail */
3083	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3084		return -EINVAL;
3085
3086	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3087	if (!newpolicy)
3088		return -ENOMEM;
3089
3090	/*
3091	 * Deep copy only the parts of the policydb that might be
3092	 * modified as a result of changing booleans.
3093	 */
3094	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3095	if (rc) {
3096		kfree(newpolicy);
3097		return -ENOMEM;
3098	}
3099
3100	/* Update the boolean states in the copy */
3101	for (i = 0; i < len; i++) {
3102		int new_state = !!values[i];
3103		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3104
3105		if (new_state != old_state) {
3106			audit_log(audit_context(), GFP_ATOMIC,
3107				AUDIT_MAC_CONFIG_CHANGE,
3108				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3109				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3110				new_state,
3111				old_state,
3112				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3113				audit_get_sessionid(current));
3114			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3115		}
3116	}
3117
3118	/* Re-evaluate the conditional rules in the copy */
3119	evaluate_cond_nodes(&newpolicy->policydb);
3120
3121	/* Set latest granting seqno for new policy */
3122	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3123	seqno = newpolicy->latest_granting;
3124
3125	/* Install the new policy */
3126	rcu_assign_pointer(state->policy, newpolicy);
3127
3128	/*
3129	 * Free the conditional portions of the old policydb
3130	 * that were copied for the new policy, and the oldpolicy
3131	 * structure itself but not what it references.
3132	 */
3133	synchronize_rcu();
3134	selinux_policy_cond_free(oldpolicy);
3135
3136	/* Notify others of the policy change */
3137	selinux_notify_policy_change(state, seqno);
3138	return 0;
3139}
3140
3141int security_get_bool_value(struct selinux_state *state,
3142			    u32 index)
3143{
3144	struct selinux_policy *policy;
3145	struct policydb *policydb;
3146	int rc;
3147	u32 len;
3148
3149	if (!selinux_initialized(state))
3150		return 0;
3151
3152	rcu_read_lock();
3153	policy = rcu_dereference(state->policy);
3154	policydb = &policy->policydb;
3155
3156	rc = -EFAULT;
3157	len = policydb->p_bools.nprim;
3158	if (index >= len)
3159		goto out;
3160
3161	rc = policydb->bool_val_to_struct[index]->state;
3162out:
3163	rcu_read_unlock();
3164	return rc;
3165}
3166
3167static int security_preserve_bools(struct selinux_policy *oldpolicy,
3168				struct selinux_policy *newpolicy)
3169{
3170	int rc, *bvalues = NULL;
3171	char **bnames = NULL;
3172	struct cond_bool_datum *booldatum;
3173	u32 i, nbools = 0;
3174
3175	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3176	if (rc)
3177		goto out;
3178	for (i = 0; i < nbools; i++) {
3179		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3180					bnames[i]);
3181		if (booldatum)
3182			booldatum->state = bvalues[i];
3183	}
3184	evaluate_cond_nodes(&newpolicy->policydb);
3185
3186out:
3187	if (bnames) {
3188		for (i = 0; i < nbools; i++)
3189			kfree(bnames[i]);
3190	}
3191	kfree(bnames);
3192	kfree(bvalues);
3193	return rc;
3194}
3195
3196/*
3197 * security_sid_mls_copy() - computes a new sid based on the given
3198 * sid and the mls portion of mls_sid.
3199 */
3200int security_sid_mls_copy(struct selinux_state *state,
3201			  u32 sid, u32 mls_sid, u32 *new_sid)
3202{
3203	struct selinux_policy *policy;
3204	struct policydb *policydb;
3205	struct sidtab *sidtab;
3206	struct context *context1;
3207	struct context *context2;
3208	struct context newcon;
3209	char *s;
3210	u32 len;
3211	int rc;
3212
3213	if (!selinux_initialized(state)) {
3214		*new_sid = sid;
3215		return 0;
3216	}
3217
3218retry:
3219	rc = 0;
3220	context_init(&newcon);
3221
3222	rcu_read_lock();
3223	policy = rcu_dereference(state->policy);
3224	policydb = &policy->policydb;
3225	sidtab = policy->sidtab;
3226
3227	if (!policydb->mls_enabled) {
3228		*new_sid = sid;
3229		goto out_unlock;
3230	}
3231
3232	rc = -EINVAL;
3233	context1 = sidtab_search(sidtab, sid);
3234	if (!context1) {
3235		pr_err("SELinux: %s:  unrecognized SID %d\n",
3236			__func__, sid);
3237		goto out_unlock;
3238	}
3239
3240	rc = -EINVAL;
3241	context2 = sidtab_search(sidtab, mls_sid);
3242	if (!context2) {
3243		pr_err("SELinux: %s:  unrecognized SID %d\n",
3244			__func__, mls_sid);
3245		goto out_unlock;
3246	}
3247
3248	newcon.user = context1->user;
3249	newcon.role = context1->role;
3250	newcon.type = context1->type;
3251	rc = mls_context_cpy(&newcon, context2);
3252	if (rc)
3253		goto out_unlock;
3254
3255	/* Check the validity of the new context. */
3256	if (!policydb_context_isvalid(policydb, &newcon)) {
3257		rc = convert_context_handle_invalid_context(state, policydb,
3258							&newcon);
3259		if (rc) {
3260			if (!context_struct_to_string(policydb, &newcon, &s,
3261						      &len)) {
3262				struct audit_buffer *ab;
3263
3264				ab = audit_log_start(audit_context(),
3265						     GFP_ATOMIC,
3266						     AUDIT_SELINUX_ERR);
3267				audit_log_format(ab,
3268						 "op=security_sid_mls_copy invalid_context=");
3269				/* don't record NUL with untrusted strings */
3270				audit_log_n_untrustedstring(ab, s, len - 1);
3271				audit_log_end(ab);
3272				kfree(s);
3273			}
3274			goto out_unlock;
3275		}
3276	}
3277	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3278	if (rc == -ESTALE) {
3279		rcu_read_unlock();
3280		context_destroy(&newcon);
3281		goto retry;
3282	}
3283out_unlock:
3284	rcu_read_unlock();
3285	context_destroy(&newcon);
3286	return rc;
3287}
3288
3289/**
3290 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3291 * @state: SELinux state
3292 * @nlbl_sid: NetLabel SID
3293 * @nlbl_type: NetLabel labeling protocol type
3294 * @xfrm_sid: XFRM SID
3295 * @peer_sid: network peer sid
3296 *
3297 * Description:
3298 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3299 * resolved into a single SID it is returned via @peer_sid and the function
3300 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3301 * returns a negative value.  A table summarizing the behavior is below:
3302 *
3303 *                                 | function return |      @sid
3304 *   ------------------------------+-----------------+-----------------
3305 *   no peer labels                |        0        |    SECSID_NULL
3306 *   single peer label             |        0        |    <peer_label>
3307 *   multiple, consistent labels   |        0        |    <peer_label>
3308 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3309 *
3310 */
3311int security_net_peersid_resolve(struct selinux_state *state,
3312				 u32 nlbl_sid, u32 nlbl_type,
3313				 u32 xfrm_sid,
3314				 u32 *peer_sid)
3315{
3316	struct selinux_policy *policy;
3317	struct policydb *policydb;
3318	struct sidtab *sidtab;
3319	int rc;
3320	struct context *nlbl_ctx;
3321	struct context *xfrm_ctx;
3322
3323	*peer_sid = SECSID_NULL;
3324
3325	/* handle the common (which also happens to be the set of easy) cases
3326	 * right away, these two if statements catch everything involving a
3327	 * single or absent peer SID/label */
3328	if (xfrm_sid == SECSID_NULL) {
3329		*peer_sid = nlbl_sid;
3330		return 0;
3331	}
3332	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3333	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3334	 * is present */
3335	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3336		*peer_sid = xfrm_sid;
3337		return 0;
3338	}
3339
3340	if (!selinux_initialized(state))
3341		return 0;
3342
3343	rcu_read_lock();
3344	policy = rcu_dereference(state->policy);
3345	policydb = &policy->policydb;
3346	sidtab = policy->sidtab;
3347
3348	/*
3349	 * We don't need to check initialized here since the only way both
3350	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3351	 * security server was initialized and state->initialized was true.
3352	 */
3353	if (!policydb->mls_enabled) {
3354		rc = 0;
3355		goto out;
3356	}
3357
3358	rc = -EINVAL;
3359	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3360	if (!nlbl_ctx) {
3361		pr_err("SELinux: %s:  unrecognized SID %d\n",
3362		       __func__, nlbl_sid);
3363		goto out;
3364	}
3365	rc = -EINVAL;
3366	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3367	if (!xfrm_ctx) {
3368		pr_err("SELinux: %s:  unrecognized SID %d\n",
3369		       __func__, xfrm_sid);
3370		goto out;
3371	}
3372	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3373	if (rc)
3374		goto out;
3375
3376	/* at present NetLabel SIDs/labels really only carry MLS
3377	 * information so if the MLS portion of the NetLabel SID
3378	 * matches the MLS portion of the labeled XFRM SID/label
3379	 * then pass along the XFRM SID as it is the most
3380	 * expressive */
3381	*peer_sid = xfrm_sid;
3382out:
3383	rcu_read_unlock();
3384	return rc;
3385}
3386
3387static int get_classes_callback(void *k, void *d, void *args)
3388{
3389	struct class_datum *datum = d;
3390	char *name = k, **classes = args;
3391	int value = datum->value - 1;
3392
3393	classes[value] = kstrdup(name, GFP_ATOMIC);
3394	if (!classes[value])
3395		return -ENOMEM;
3396
3397	return 0;
3398}
3399
3400int security_get_classes(struct selinux_policy *policy,
3401			 char ***classes, int *nclasses)
3402{
3403	struct policydb *policydb;
3404	int rc;
3405
3406	policydb = &policy->policydb;
3407
3408	rc = -ENOMEM;
3409	*nclasses = policydb->p_classes.nprim;
3410	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3411	if (!*classes)
3412		goto out;
3413
3414	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3415			 *classes);
3416	if (rc) {
3417		int i;
 
3418		for (i = 0; i < *nclasses; i++)
3419			kfree((*classes)[i]);
3420		kfree(*classes);
3421	}
3422
3423out:
3424	return rc;
3425}
3426
3427static int get_permissions_callback(void *k, void *d, void *args)
3428{
3429	struct perm_datum *datum = d;
3430	char *name = k, **perms = args;
3431	int value = datum->value - 1;
3432
3433	perms[value] = kstrdup(name, GFP_ATOMIC);
3434	if (!perms[value])
3435		return -ENOMEM;
3436
3437	return 0;
3438}
3439
3440int security_get_permissions(struct selinux_policy *policy,
3441			     char *class, char ***perms, int *nperms)
3442{
3443	struct policydb *policydb;
3444	int rc, i;
 
3445	struct class_datum *match;
3446
3447	policydb = &policy->policydb;
3448
3449	rc = -EINVAL;
3450	match = symtab_search(&policydb->p_classes, class);
3451	if (!match) {
3452		pr_err("SELinux: %s:  unrecognized class %s\n",
3453			__func__, class);
3454		goto out;
3455	}
3456
3457	rc = -ENOMEM;
3458	*nperms = match->permissions.nprim;
3459	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3460	if (!*perms)
3461		goto out;
3462
3463	if (match->comdatum) {
3464		rc = hashtab_map(&match->comdatum->permissions.table,
3465				 get_permissions_callback, *perms);
3466		if (rc)
3467			goto err;
3468	}
3469
3470	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3471			 *perms);
3472	if (rc)
3473		goto err;
3474
3475out:
3476	return rc;
3477
3478err:
3479	for (i = 0; i < *nperms; i++)
3480		kfree((*perms)[i]);
3481	kfree(*perms);
3482	return rc;
3483}
3484
3485int security_get_reject_unknown(struct selinux_state *state)
3486{
3487	struct selinux_policy *policy;
3488	int value;
3489
3490	if (!selinux_initialized(state))
3491		return 0;
3492
3493	rcu_read_lock();
3494	policy = rcu_dereference(state->policy);
3495	value = policy->policydb.reject_unknown;
3496	rcu_read_unlock();
3497	return value;
3498}
3499
3500int security_get_allow_unknown(struct selinux_state *state)
3501{
3502	struct selinux_policy *policy;
3503	int value;
3504
3505	if (!selinux_initialized(state))
3506		return 0;
3507
3508	rcu_read_lock();
3509	policy = rcu_dereference(state->policy);
3510	value = policy->policydb.allow_unknown;
3511	rcu_read_unlock();
3512	return value;
3513}
3514
3515/**
3516 * security_policycap_supported - Check for a specific policy capability
3517 * @state: SELinux state
3518 * @req_cap: capability
3519 *
3520 * Description:
3521 * This function queries the currently loaded policy to see if it supports the
3522 * capability specified by @req_cap.  Returns true (1) if the capability is
3523 * supported, false (0) if it isn't supported.
3524 *
3525 */
3526int security_policycap_supported(struct selinux_state *state,
3527				 unsigned int req_cap)
3528{
3529	struct selinux_policy *policy;
3530	int rc;
3531
3532	if (!selinux_initialized(state))
3533		return 0;
3534
3535	rcu_read_lock();
3536	policy = rcu_dereference(state->policy);
3537	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3538	rcu_read_unlock();
3539
3540	return rc;
3541}
3542
3543struct selinux_audit_rule {
3544	u32 au_seqno;
3545	struct context au_ctxt;
3546};
3547
3548void selinux_audit_rule_free(void *vrule)
3549{
3550	struct selinux_audit_rule *rule = vrule;
3551
3552	if (rule) {
3553		context_destroy(&rule->au_ctxt);
3554		kfree(rule);
3555	}
3556}
3557
3558int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3559{
3560	struct selinux_state *state = &selinux_state;
3561	struct selinux_policy *policy;
3562	struct policydb *policydb;
3563	struct selinux_audit_rule *tmprule;
3564	struct role_datum *roledatum;
3565	struct type_datum *typedatum;
3566	struct user_datum *userdatum;
3567	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3568	int rc = 0;
3569
3570	*rule = NULL;
3571
3572	if (!selinux_initialized(state))
3573		return -EOPNOTSUPP;
3574
3575	switch (field) {
3576	case AUDIT_SUBJ_USER:
3577	case AUDIT_SUBJ_ROLE:
3578	case AUDIT_SUBJ_TYPE:
3579	case AUDIT_OBJ_USER:
3580	case AUDIT_OBJ_ROLE:
3581	case AUDIT_OBJ_TYPE:
3582		/* only 'equals' and 'not equals' fit user, role, and type */
3583		if (op != Audit_equal && op != Audit_not_equal)
3584			return -EINVAL;
3585		break;
3586	case AUDIT_SUBJ_SEN:
3587	case AUDIT_SUBJ_CLR:
3588	case AUDIT_OBJ_LEV_LOW:
3589	case AUDIT_OBJ_LEV_HIGH:
3590		/* we do not allow a range, indicated by the presence of '-' */
3591		if (strchr(rulestr, '-'))
3592			return -EINVAL;
3593		break;
3594	default:
3595		/* only the above fields are valid */
3596		return -EINVAL;
3597	}
3598
3599	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3600	if (!tmprule)
3601		return -ENOMEM;
3602
3603	context_init(&tmprule->au_ctxt);
3604
3605	rcu_read_lock();
3606	policy = rcu_dereference(state->policy);
3607	policydb = &policy->policydb;
3608
3609	tmprule->au_seqno = policy->latest_granting;
3610
3611	switch (field) {
3612	case AUDIT_SUBJ_USER:
3613	case AUDIT_OBJ_USER:
3614		rc = -EINVAL;
3615		userdatum = symtab_search(&policydb->p_users, rulestr);
3616		if (!userdatum)
3617			goto out;
 
 
3618		tmprule->au_ctxt.user = userdatum->value;
3619		break;
3620	case AUDIT_SUBJ_ROLE:
3621	case AUDIT_OBJ_ROLE:
3622		rc = -EINVAL;
3623		roledatum = symtab_search(&policydb->p_roles, rulestr);
3624		if (!roledatum)
3625			goto out;
 
 
3626		tmprule->au_ctxt.role = roledatum->value;
3627		break;
3628	case AUDIT_SUBJ_TYPE:
3629	case AUDIT_OBJ_TYPE:
3630		rc = -EINVAL;
3631		typedatum = symtab_search(&policydb->p_types, rulestr);
3632		if (!typedatum)
3633			goto out;
 
 
3634		tmprule->au_ctxt.type = typedatum->value;
3635		break;
3636	case AUDIT_SUBJ_SEN:
3637	case AUDIT_SUBJ_CLR:
3638	case AUDIT_OBJ_LEV_LOW:
3639	case AUDIT_OBJ_LEV_HIGH:
3640		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3641				     GFP_ATOMIC);
3642		if (rc)
3643			goto out;
3644		break;
3645	}
3646	rc = 0;
3647out:
3648	rcu_read_unlock();
3649
3650	if (rc) {
3651		selinux_audit_rule_free(tmprule);
3652		tmprule = NULL;
3653	}
3654
3655	*rule = tmprule;
 
3656
 
 
 
 
3657	return rc;
3658}
3659
3660/* Check to see if the rule contains any selinux fields */
3661int selinux_audit_rule_known(struct audit_krule *rule)
3662{
3663	int i;
3664
3665	for (i = 0; i < rule->field_count; i++) {
3666		struct audit_field *f = &rule->fields[i];
3667		switch (f->type) {
3668		case AUDIT_SUBJ_USER:
3669		case AUDIT_SUBJ_ROLE:
3670		case AUDIT_SUBJ_TYPE:
3671		case AUDIT_SUBJ_SEN:
3672		case AUDIT_SUBJ_CLR:
3673		case AUDIT_OBJ_USER:
3674		case AUDIT_OBJ_ROLE:
3675		case AUDIT_OBJ_TYPE:
3676		case AUDIT_OBJ_LEV_LOW:
3677		case AUDIT_OBJ_LEV_HIGH:
3678			return 1;
3679		}
3680	}
3681
3682	return 0;
3683}
3684
3685int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3686{
3687	struct selinux_state *state = &selinux_state;
3688	struct selinux_policy *policy;
3689	struct context *ctxt;
3690	struct mls_level *level;
3691	struct selinux_audit_rule *rule = vrule;
3692	int match = 0;
3693
3694	if (unlikely(!rule)) {
3695		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3696		return -ENOENT;
3697	}
3698
3699	if (!selinux_initialized(state))
3700		return 0;
3701
3702	rcu_read_lock();
3703
3704	policy = rcu_dereference(state->policy);
3705
3706	if (rule->au_seqno < policy->latest_granting) {
3707		match = -ESTALE;
3708		goto out;
3709	}
3710
3711	ctxt = sidtab_search(policy->sidtab, sid);
3712	if (unlikely(!ctxt)) {
3713		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3714			  sid);
3715		match = -ENOENT;
3716		goto out;
3717	}
3718
3719	/* a field/op pair that is not caught here will simply fall through
3720	   without a match */
3721	switch (field) {
3722	case AUDIT_SUBJ_USER:
3723	case AUDIT_OBJ_USER:
3724		switch (op) {
3725		case Audit_equal:
3726			match = (ctxt->user == rule->au_ctxt.user);
3727			break;
3728		case Audit_not_equal:
3729			match = (ctxt->user != rule->au_ctxt.user);
3730			break;
3731		}
3732		break;
3733	case AUDIT_SUBJ_ROLE:
3734	case AUDIT_OBJ_ROLE:
3735		switch (op) {
3736		case Audit_equal:
3737			match = (ctxt->role == rule->au_ctxt.role);
3738			break;
3739		case Audit_not_equal:
3740			match = (ctxt->role != rule->au_ctxt.role);
3741			break;
3742		}
3743		break;
3744	case AUDIT_SUBJ_TYPE:
3745	case AUDIT_OBJ_TYPE:
3746		switch (op) {
3747		case Audit_equal:
3748			match = (ctxt->type == rule->au_ctxt.type);
3749			break;
3750		case Audit_not_equal:
3751			match = (ctxt->type != rule->au_ctxt.type);
3752			break;
3753		}
3754		break;
3755	case AUDIT_SUBJ_SEN:
3756	case AUDIT_SUBJ_CLR:
3757	case AUDIT_OBJ_LEV_LOW:
3758	case AUDIT_OBJ_LEV_HIGH:
3759		level = ((field == AUDIT_SUBJ_SEN ||
3760			  field == AUDIT_OBJ_LEV_LOW) ?
3761			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3762		switch (op) {
3763		case Audit_equal:
3764			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3765					     level);
3766			break;
3767		case Audit_not_equal:
3768			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3769					      level);
3770			break;
3771		case Audit_lt:
3772			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3773					       level) &&
3774				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3775					       level));
3776			break;
3777		case Audit_le:
3778			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_gt:
3782			match = (mls_level_dom(level,
3783					      &rule->au_ctxt.range.level[0]) &&
3784				 !mls_level_eq(level,
3785					       &rule->au_ctxt.range.level[0]));
3786			break;
3787		case Audit_ge:
3788			match = mls_level_dom(level,
3789					      &rule->au_ctxt.range.level[0]);
3790			break;
3791		}
3792	}
3793
3794out:
3795	rcu_read_unlock();
3796	return match;
3797}
3798
3799static int aurule_avc_callback(u32 event)
3800{
3801	if (event == AVC_CALLBACK_RESET)
3802		return audit_update_lsm_rules();
3803	return 0;
3804}
3805
3806static int __init aurule_init(void)
3807{
3808	int err;
3809
3810	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3811	if (err)
3812		panic("avc_add_callback() failed, error %d\n", err);
3813
3814	return err;
3815}
3816__initcall(aurule_init);
3817
3818#ifdef CONFIG_NETLABEL
3819/**
3820 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3821 * @secattr: the NetLabel packet security attributes
3822 * @sid: the SELinux SID
3823 *
3824 * Description:
3825 * Attempt to cache the context in @ctx, which was derived from the packet in
3826 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3827 * already been initialized.
3828 *
3829 */
3830static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3831				      u32 sid)
3832{
3833	u32 *sid_cache;
3834
3835	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3836	if (sid_cache == NULL)
3837		return;
3838	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3839	if (secattr->cache == NULL) {
3840		kfree(sid_cache);
3841		return;
3842	}
3843
3844	*sid_cache = sid;
3845	secattr->cache->free = kfree;
3846	secattr->cache->data = sid_cache;
3847	secattr->flags |= NETLBL_SECATTR_CACHE;
3848}
3849
3850/**
3851 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3852 * @state: SELinux state
3853 * @secattr: the NetLabel packet security attributes
3854 * @sid: the SELinux SID
3855 *
3856 * Description:
3857 * Convert the given NetLabel security attributes in @secattr into a
3858 * SELinux SID.  If the @secattr field does not contain a full SELinux
3859 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3860 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3861 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3862 * conversion for future lookups.  Returns zero on success, negative values on
3863 * failure.
3864 *
3865 */
3866int security_netlbl_secattr_to_sid(struct selinux_state *state,
3867				   struct netlbl_lsm_secattr *secattr,
3868				   u32 *sid)
3869{
3870	struct selinux_policy *policy;
3871	struct policydb *policydb;
3872	struct sidtab *sidtab;
3873	int rc;
3874	struct context *ctx;
3875	struct context ctx_new;
3876
3877	if (!selinux_initialized(state)) {
3878		*sid = SECSID_NULL;
3879		return 0;
3880	}
3881
3882retry:
3883	rc = 0;
3884	rcu_read_lock();
3885	policy = rcu_dereference(state->policy);
3886	policydb = &policy->policydb;
3887	sidtab = policy->sidtab;
3888
3889	if (secattr->flags & NETLBL_SECATTR_CACHE)
3890		*sid = *(u32 *)secattr->cache->data;
3891	else if (secattr->flags & NETLBL_SECATTR_SECID)
3892		*sid = secattr->attr.secid;
3893	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3894		rc = -EIDRM;
3895		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3896		if (ctx == NULL)
3897			goto out;
3898
3899		context_init(&ctx_new);
3900		ctx_new.user = ctx->user;
3901		ctx_new.role = ctx->role;
3902		ctx_new.type = ctx->type;
3903		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3904		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3905			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3906			if (rc)
3907				goto out;
3908		}
3909		rc = -EIDRM;
3910		if (!mls_context_isvalid(policydb, &ctx_new)) {
3911			ebitmap_destroy(&ctx_new.range.level[0].cat);
3912			goto out;
3913		}
3914
3915		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3916		ebitmap_destroy(&ctx_new.range.level[0].cat);
3917		if (rc == -ESTALE) {
3918			rcu_read_unlock();
3919			goto retry;
3920		}
3921		if (rc)
3922			goto out;
3923
3924		security_netlbl_cache_add(secattr, *sid);
3925	} else
3926		*sid = SECSID_NULL;
3927
3928out:
3929	rcu_read_unlock();
3930	return rc;
3931}
3932
3933/**
3934 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3935 * @state: SELinux state
3936 * @sid: the SELinux SID
3937 * @secattr: the NetLabel packet security attributes
3938 *
3939 * Description:
3940 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3941 * Returns zero on success, negative values on failure.
3942 *
3943 */
3944int security_netlbl_sid_to_secattr(struct selinux_state *state,
3945				   u32 sid, struct netlbl_lsm_secattr *secattr)
3946{
3947	struct selinux_policy *policy;
3948	struct policydb *policydb;
3949	int rc;
3950	struct context *ctx;
3951
3952	if (!selinux_initialized(state))
3953		return 0;
3954
3955	rcu_read_lock();
3956	policy = rcu_dereference(state->policy);
3957	policydb = &policy->policydb;
3958
3959	rc = -ENOENT;
3960	ctx = sidtab_search(policy->sidtab, sid);
3961	if (ctx == NULL)
3962		goto out;
3963
3964	rc = -ENOMEM;
3965	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3966				  GFP_ATOMIC);
3967	if (secattr->domain == NULL)
3968		goto out;
3969
3970	secattr->attr.secid = sid;
3971	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3972	mls_export_netlbl_lvl(policydb, ctx, secattr);
3973	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3974out:
3975	rcu_read_unlock();
3976	return rc;
3977}
3978#endif /* CONFIG_NETLABEL */
3979
3980/**
3981 * __security_read_policy - read the policy.
3982 * @policy: SELinux policy
3983 * @data: binary policy data
3984 * @len: length of data in bytes
3985 *
3986 */
3987static int __security_read_policy(struct selinux_policy *policy,
3988				  void *data, size_t *len)
3989{
3990	int rc;
3991	struct policy_file fp;
3992
3993	fp.data = data;
3994	fp.len = *len;
3995
3996	rc = policydb_write(&policy->policydb, &fp);
3997	if (rc)
3998		return rc;
3999
4000	*len = (unsigned long)fp.data - (unsigned long)data;
4001	return 0;
4002}
4003
4004/**
4005 * security_read_policy - read the policy.
4006 * @state: selinux_state
4007 * @data: binary policy data
4008 * @len: length of data in bytes
4009 *
4010 */
4011int security_read_policy(struct selinux_state *state,
4012			 void **data, size_t *len)
4013{
 
4014	struct selinux_policy *policy;
4015
4016	policy = rcu_dereference_protected(
4017			state->policy, lockdep_is_held(&state->policy_mutex));
4018	if (!policy)
4019		return -EINVAL;
4020
4021	*len = policy->policydb.len;
4022	*data = vmalloc_user(*len);
4023	if (!*data)
4024		return -ENOMEM;
4025
4026	return __security_read_policy(policy, *data, len);
4027}
4028
4029/**
4030 * security_read_state_kernel - read the policy.
4031 * @state: selinux_state
4032 * @data: binary policy data
4033 * @len: length of data in bytes
4034 *
4035 * Allocates kernel memory for reading SELinux policy.
4036 * This function is for internal use only and should not
4037 * be used for returning data to user space.
4038 *
4039 * This function must be called with policy_mutex held.
4040 */
4041int security_read_state_kernel(struct selinux_state *state,
4042			       void **data, size_t *len)
4043{
4044	int err;
 
4045	struct selinux_policy *policy;
4046
4047	policy = rcu_dereference_protected(
4048			state->policy, lockdep_is_held(&state->policy_mutex));
4049	if (!policy)
4050		return -EINVAL;
4051
4052	*len = policy->policydb.len;
4053	*data = vmalloc(*len);
4054	if (!*data)
4055		return -ENOMEM;
4056
4057	err = __security_read_policy(policy, *data, len);
4058	if (err) {
4059		vfree(*data);
4060		*data = NULL;
4061		*len = 0;
4062	}
4063	return err;
4064}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct selinux_policy_convert_data {
  72	struct convert_context_args args;
  73	struct sidtab_convert_params sidtab_params;
  74};
  75
  76/* Forward declaration. */
  77static int context_struct_to_string(struct policydb *policydb,
  78				    struct context *context,
  79				    char **scontext,
  80				    u32 *scontext_len);
  81
  82static int sidtab_entry_to_string(struct policydb *policydb,
  83				  struct sidtab *sidtab,
  84				  struct sidtab_entry *entry,
  85				  char **scontext,
  86				  u32 *scontext_len);
  87
  88static void context_struct_compute_av(struct policydb *policydb,
  89				      struct context *scontext,
  90				      struct context *tcontext,
  91				      u16 tclass,
  92				      struct av_decision *avd,
  93				      struct extended_perms *xperms);
  94
  95static int selinux_set_mapping(struct policydb *pol,
  96			       const struct security_class_mapping *map,
  97			       struct selinux_map *out_map)
  98{
  99	u16 i, j;
 
 100	bool print_unknown_handle = false;
 101
 102	/* Find number of classes in the input mapping */
 103	if (!map)
 104		return -EINVAL;
 105	i = 0;
 106	while (map[i].name)
 107		i++;
 108
 109	/* Allocate space for the class records, plus one for class zero */
 110	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 111	if (!out_map->mapping)
 112		return -ENOMEM;
 113
 114	/* Store the raw class and permission values */
 115	j = 0;
 116	while (map[j].name) {
 117		const struct security_class_mapping *p_in = map + (j++);
 118		struct selinux_mapping *p_out = out_map->mapping + j;
 119		u16 k;
 120
 121		/* An empty class string skips ahead */
 122		if (!strcmp(p_in->name, "")) {
 123			p_out->num_perms = 0;
 124			continue;
 125		}
 126
 127		p_out->value = string_to_security_class(pol, p_in->name);
 128		if (!p_out->value) {
 129			pr_info("SELinux:  Class %s not defined in policy.\n",
 130			       p_in->name);
 131			if (pol->reject_unknown)
 132				goto err;
 133			p_out->num_perms = 0;
 134			print_unknown_handle = true;
 135			continue;
 136		}
 137
 138		k = 0;
 139		while (p_in->perms[k]) {
 140			/* An empty permission string skips ahead */
 141			if (!*p_in->perms[k]) {
 142				k++;
 143				continue;
 144			}
 145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 146							    p_in->perms[k]);
 147			if (!p_out->perms[k]) {
 148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 149				       p_in->perms[k], p_in->name);
 150				if (pol->reject_unknown)
 151					goto err;
 152				print_unknown_handle = true;
 153			}
 154
 155			k++;
 156		}
 157		p_out->num_perms = k;
 158	}
 159
 160	if (print_unknown_handle)
 161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 162		       pol->allow_unknown ? "allowed" : "denied");
 163
 164	out_map->size = i;
 165	return 0;
 166err:
 167	kfree(out_map->mapping);
 168	out_map->mapping = NULL;
 169	return -EINVAL;
 170}
 171
 172/*
 173 * Get real, policy values from mapped values
 174 */
 175
 176static u16 unmap_class(struct selinux_map *map, u16 tclass)
 177{
 178	if (tclass < map->size)
 179		return map->mapping[tclass].value;
 180
 181	return tclass;
 182}
 183
 184/*
 185 * Get kernel value for class from its policy value
 186 */
 187static u16 map_class(struct selinux_map *map, u16 pol_value)
 188{
 189	u16 i;
 190
 191	for (i = 1; i < map->size; i++) {
 192		if (map->mapping[i].value == pol_value)
 193			return i;
 194	}
 195
 196	return SECCLASS_NULL;
 197}
 198
 199static void map_decision(struct selinux_map *map,
 200			 u16 tclass, struct av_decision *avd,
 201			 int allow_unknown)
 202{
 203	if (tclass < map->size) {
 204		struct selinux_mapping *mapping = &map->mapping[tclass];
 205		unsigned int i, n = mapping->num_perms;
 206		u32 result;
 207
 208		for (i = 0, result = 0; i < n; i++) {
 209			if (avd->allowed & mapping->perms[i])
 210				result |= (u32)1<<i;
 211			if (allow_unknown && !mapping->perms[i])
 212				result |= (u32)1<<i;
 213		}
 214		avd->allowed = result;
 215
 216		for (i = 0, result = 0; i < n; i++)
 217			if (avd->auditallow & mapping->perms[i])
 218				result |= (u32)1<<i;
 219		avd->auditallow = result;
 220
 221		for (i = 0, result = 0; i < n; i++) {
 222			if (avd->auditdeny & mapping->perms[i])
 223				result |= (u32)1<<i;
 224			if (!allow_unknown && !mapping->perms[i])
 225				result |= (u32)1<<i;
 226		}
 227		/*
 228		 * In case the kernel has a bug and requests a permission
 229		 * between num_perms and the maximum permission number, we
 230		 * should audit that denial
 231		 */
 232		for (; i < (sizeof(u32)*8); i++)
 233			result |= (u32)1<<i;
 234		avd->auditdeny = result;
 235	}
 236}
 237
 238int security_mls_enabled(void)
 239{
 240	int mls_enabled;
 241	struct selinux_policy *policy;
 242
 243	if (!selinux_initialized())
 244		return 0;
 245
 246	rcu_read_lock();
 247	policy = rcu_dereference(selinux_state.policy);
 248	mls_enabled = policy->policydb.mls_enabled;
 249	rcu_read_unlock();
 250	return mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265				struct context *scontext,
 266				struct context *tcontext,
 267				struct context *xcontext,
 268				struct constraint_expr *cexpr)
 269{
 270	u32 val1, val2;
 271	struct context *c;
 272	struct role_datum *r1, *r2;
 273	struct mls_level *l1, *l2;
 274	struct constraint_expr *e;
 275	int s[CEXPR_MAXDEPTH];
 276	int sp = -1;
 277
 278	for (e = cexpr; e; e = e->next) {
 279		switch (e->expr_type) {
 280		case CEXPR_NOT:
 281			BUG_ON(sp < 0);
 282			s[sp] = !s[sp];
 283			break;
 284		case CEXPR_AND:
 285			BUG_ON(sp < 1);
 286			sp--;
 287			s[sp] &= s[sp + 1];
 288			break;
 289		case CEXPR_OR:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] |= s[sp + 1];
 293			break;
 294		case CEXPR_ATTR:
 295			if (sp == (CEXPR_MAXDEPTH - 1))
 296				return 0;
 297			switch (e->attr) {
 298			case CEXPR_USER:
 299				val1 = scontext->user;
 300				val2 = tcontext->user;
 301				break;
 302			case CEXPR_TYPE:
 303				val1 = scontext->type;
 304				val2 = tcontext->type;
 305				break;
 306			case CEXPR_ROLE:
 307				val1 = scontext->role;
 308				val2 = tcontext->role;
 309				r1 = policydb->role_val_to_struct[val1 - 1];
 310				r2 = policydb->role_val_to_struct[val2 - 1];
 311				switch (e->op) {
 312				case CEXPR_DOM:
 313					s[++sp] = ebitmap_get_bit(&r1->dominates,
 314								  val2 - 1);
 315					continue;
 316				case CEXPR_DOMBY:
 317					s[++sp] = ebitmap_get_bit(&r2->dominates,
 318								  val1 - 1);
 319					continue;
 320				case CEXPR_INCOMP:
 321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322								    val2 - 1) &&
 323						   !ebitmap_get_bit(&r2->dominates,
 324								    val1 - 1));
 325					continue;
 326				default:
 327					break;
 328				}
 329				break;
 330			case CEXPR_L1L2:
 331				l1 = &(scontext->range.level[0]);
 332				l2 = &(tcontext->range.level[0]);
 333				goto mls_ops;
 334			case CEXPR_L1H2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[1]);
 337				goto mls_ops;
 338			case CEXPR_H1L2:
 339				l1 = &(scontext->range.level[1]);
 340				l2 = &(tcontext->range.level[0]);
 341				goto mls_ops;
 342			case CEXPR_H1H2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[1]);
 345				goto mls_ops;
 346			case CEXPR_L1H1:
 347				l1 = &(scontext->range.level[0]);
 348				l2 = &(scontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L2H2:
 351				l1 = &(tcontext->range.level[0]);
 352				l2 = &(tcontext->range.level[1]);
 353				goto mls_ops;
 354mls_ops:
 355				switch (e->op) {
 356				case CEXPR_EQ:
 357					s[++sp] = mls_level_eq(l1, l2);
 358					continue;
 359				case CEXPR_NEQ:
 360					s[++sp] = !mls_level_eq(l1, l2);
 361					continue;
 362				case CEXPR_DOM:
 363					s[++sp] = mls_level_dom(l1, l2);
 364					continue;
 365				case CEXPR_DOMBY:
 366					s[++sp] = mls_level_dom(l2, l1);
 367					continue;
 368				case CEXPR_INCOMP:
 369					s[++sp] = mls_level_incomp(l2, l1);
 370					continue;
 371				default:
 372					BUG();
 373					return 0;
 374				}
 375				break;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380
 381			switch (e->op) {
 382			case CEXPR_EQ:
 383				s[++sp] = (val1 == val2);
 384				break;
 385			case CEXPR_NEQ:
 386				s[++sp] = (val1 != val2);
 387				break;
 388			default:
 389				BUG();
 390				return 0;
 391			}
 392			break;
 393		case CEXPR_NAMES:
 394			if (sp == (CEXPR_MAXDEPTH-1))
 395				return 0;
 396			c = scontext;
 397			if (e->attr & CEXPR_TARGET)
 398				c = tcontext;
 399			else if (e->attr & CEXPR_XTARGET) {
 400				c = xcontext;
 401				if (!c) {
 402					BUG();
 403					return 0;
 404				}
 405			}
 406			if (e->attr & CEXPR_USER)
 407				val1 = c->user;
 408			else if (e->attr & CEXPR_ROLE)
 409				val1 = c->role;
 410			else if (e->attr & CEXPR_TYPE)
 411				val1 = c->type;
 412			else {
 413				BUG();
 414				return 0;
 415			}
 416
 417			switch (e->op) {
 418			case CEXPR_EQ:
 419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420				break;
 421			case CEXPR_NEQ:
 422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			default:
 425				BUG();
 426				return 0;
 427			}
 428			break;
 429		default:
 430			BUG();
 431			return 0;
 432		}
 433	}
 434
 435	BUG_ON(sp != 0);
 436	return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445	struct perm_datum *pdatum = d;
 446	char **permission_names = args;
 447
 448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450	permission_names[pdatum->value - 1] = (char *)k;
 451
 452	return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456				    struct context *scontext,
 457				    struct context *tcontext,
 458				    u16 tclass,
 459				    u32 permissions,
 460				    const char *reason)
 461{
 462	struct common_datum *common_dat;
 463	struct class_datum *tclass_dat;
 464	struct audit_buffer *ab;
 465	char *tclass_name;
 466	char *scontext_name = NULL;
 467	char *tcontext_name = NULL;
 468	char *permission_names[32];
 469	int index;
 470	u32 length;
 471	bool need_comma = false;
 472
 473	if (!permissions)
 474		return;
 475
 476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478	common_dat = tclass_dat->comdatum;
 479
 480	/* init permission_names */
 481	if (common_dat &&
 482	    hashtab_map(&common_dat->permissions.table,
 483			dump_masked_av_helper, permission_names) < 0)
 484		goto out;
 485
 486	if (hashtab_map(&tclass_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	/* get scontext/tcontext in text form */
 491	if (context_struct_to_string(policydb, scontext,
 492				     &scontext_name, &length) < 0)
 493		goto out;
 494
 495	if (context_struct_to_string(policydb, tcontext,
 496				     &tcontext_name, &length) < 0)
 497		goto out;
 498
 499	/* audit a message */
 500	ab = audit_log_start(audit_context(),
 501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502	if (!ab)
 503		goto out;
 504
 505	audit_log_format(ab, "op=security_compute_av reason=%s "
 506			 "scontext=%s tcontext=%s tclass=%s perms=",
 507			 reason, scontext_name, tcontext_name, tclass_name);
 508
 509	for (index = 0; index < 32; index++) {
 510		u32 mask = (1 << index);
 511
 512		if ((mask & permissions) == 0)
 513			continue;
 514
 515		audit_log_format(ab, "%s%s",
 516				 need_comma ? "," : "",
 517				 permission_names[index]
 518				 ? permission_names[index] : "????");
 519		need_comma = true;
 520	}
 521	audit_log_end(ab);
 522out:
 523	/* release scontext/tcontext */
 524	kfree(tcontext_name);
 525	kfree(scontext_name);
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 558
 559	if (target->bounds) {
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permissions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	xperms->len = 1;
 605}
 606
 607/*
 608 * Compute access vectors and extended permissions based on a context
 609 * structure pair for the permissions in a particular class.
 610 */
 611static void context_struct_compute_av(struct policydb *policydb,
 612				      struct context *scontext,
 613				      struct context *tcontext,
 614				      u16 tclass,
 615				      struct av_decision *avd,
 616				      struct extended_perms *xperms)
 617{
 618	struct constraint_node *constraint;
 619	struct role_allow *ra;
 620	struct avtab_key avkey;
 621	struct avtab_node *node;
 622	struct class_datum *tclass_datum;
 623	struct ebitmap *sattr, *tattr;
 624	struct ebitmap_node *snode, *tnode;
 625	unsigned int i, j;
 626
 627	avd->allowed = 0;
 628	avd->auditallow = 0;
 629	avd->auditdeny = 0xffffffff;
 630	if (xperms) {
 631		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 632		xperms->len = 0;
 633	}
 634
 635	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 636		if (printk_ratelimit())
 637			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 638		return;
 639	}
 640
 641	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 642
 643	/*
 644	 * If a specific type enforcement rule was defined for
 645	 * this permission check, then use it.
 646	 */
 647	avkey.target_class = tclass;
 648	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 649	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 650	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 651	ebitmap_for_each_positive_bit(sattr, snode, i) {
 652		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 653			avkey.source_type = i + 1;
 654			avkey.target_type = j + 1;
 655			for (node = avtab_search_node(&policydb->te_avtab,
 656						      &avkey);
 657			     node;
 658			     node = avtab_search_node_next(node, avkey.specified)) {
 659				if (node->key.specified == AVTAB_ALLOWED)
 660					avd->allowed |= node->datum.u.data;
 661				else if (node->key.specified == AVTAB_AUDITALLOW)
 662					avd->auditallow |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITDENY)
 664					avd->auditdeny &= node->datum.u.data;
 665				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 666					services_compute_xperms_drivers(xperms, node);
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 671					avd, xperms);
 672
 673		}
 674	}
 675
 676	/*
 677	 * Remove any permissions prohibited by a constraint (this includes
 678	 * the MLS policy).
 679	 */
 680	constraint = tclass_datum->constraints;
 681	while (constraint) {
 682		if ((constraint->permissions & (avd->allowed)) &&
 683		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 684					  constraint->expr)) {
 685			avd->allowed &= ~(constraint->permissions);
 686		}
 687		constraint = constraint->next;
 688	}
 689
 690	/*
 691	 * If checking process transition permission and the
 692	 * role is changing, then check the (current_role, new_role)
 693	 * pair.
 694	 */
 695	if (tclass == policydb->process_class &&
 696	    (avd->allowed & policydb->process_trans_perms) &&
 697	    scontext->role != tcontext->role) {
 698		for (ra = policydb->role_allow; ra; ra = ra->next) {
 699			if (scontext->role == ra->role &&
 700			    tcontext->role == ra->new_role)
 701				break;
 702		}
 703		if (!ra)
 704			avd->allowed &= ~policydb->process_trans_perms;
 705	}
 706
 707	/*
 708	 * If the given source and target types have boundary
 709	 * constraint, lazy checks have to mask any violated
 710	 * permission and notice it to userspace via audit.
 711	 */
 712	type_attribute_bounds_av(policydb, scontext, tcontext,
 713				 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct selinux_policy *policy,
 
 717					struct sidtab_entry *oentry,
 718					struct sidtab_entry *nentry,
 719					struct sidtab_entry *tentry,
 720					u16 tclass)
 721{
 722	struct policydb *p = &policy->policydb;
 723	struct sidtab *sidtab = policy->sidtab;
 724	char *o = NULL, *n = NULL, *t = NULL;
 725	u32 olen, nlen, tlen;
 726
 727	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 728		goto out;
 729	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 730		goto out;
 731	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 732		goto out;
 733	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 734		  "op=security_validate_transition seresult=denied"
 735		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 736		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 737out:
 738	kfree(o);
 739	kfree(n);
 740	kfree(t);
 741
 742	if (!enforcing_enabled())
 743		return 0;
 744	return -EPERM;
 745}
 746
 747static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 
 748					  u16 orig_tclass, bool user)
 749{
 750	struct selinux_policy *policy;
 751	struct policydb *policydb;
 752	struct sidtab *sidtab;
 753	struct sidtab_entry *oentry;
 754	struct sidtab_entry *nentry;
 755	struct sidtab_entry *tentry;
 756	struct class_datum *tclass_datum;
 757	struct constraint_node *constraint;
 758	u16 tclass;
 759	int rc = 0;
 760
 761
 762	if (!selinux_initialized())
 763		return 0;
 764
 765	rcu_read_lock();
 766
 767	policy = rcu_dereference(selinux_state.policy);
 768	policydb = &policy->policydb;
 769	sidtab = policy->sidtab;
 770
 771	if (!user)
 772		tclass = unmap_class(&policy->map, orig_tclass);
 773	else
 774		tclass = orig_tclass;
 775
 776	if (!tclass || tclass > policydb->p_classes.nprim) {
 777		rc = -EINVAL;
 778		goto out;
 779	}
 780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782	oentry = sidtab_search_entry(sidtab, oldsid);
 783	if (!oentry) {
 784		pr_err("SELinux: %s:  unrecognized SID %d\n",
 785			__func__, oldsid);
 786		rc = -EINVAL;
 787		goto out;
 788	}
 789
 790	nentry = sidtab_search_entry(sidtab, newsid);
 791	if (!nentry) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, newsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	tentry = sidtab_search_entry(sidtab, tasksid);
 799	if (!tentry) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, tasksid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	constraint = tclass_datum->validatetrans;
 807	while (constraint) {
 808		if (!constraint_expr_eval(policydb, &oentry->context,
 809					  &nentry->context, &tentry->context,
 810					  constraint->expr)) {
 811			if (user)
 812				rc = -EPERM;
 813			else
 814				rc = security_validtrans_handle_fail(policy,
 
 815								oentry,
 816								nentry,
 817								tentry,
 818								tclass);
 819			goto out;
 820		}
 821		constraint = constraint->next;
 822	}
 823
 824out:
 825	rcu_read_unlock();
 826	return rc;
 827}
 828
 829int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 
 830				      u16 tclass)
 831{
 832	return security_compute_validatetrans(oldsid, newsid, tasksid,
 833					      tclass, true);
 834}
 835
 836int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 
 837				 u16 orig_tclass)
 838{
 839	return security_compute_validatetrans(oldsid, newsid, tasksid,
 840					      orig_tclass, false);
 841}
 842
 843/*
 844 * security_bounded_transition - check whether the given
 845 * transition is directed to bounded, or not.
 846 * It returns 0, if @newsid is bounded by @oldsid.
 847 * Otherwise, it returns error code.
 848 *
 
 849 * @oldsid : current security identifier
 850 * @newsid : destinated security identifier
 851 */
 852int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 853{
 854	struct selinux_policy *policy;
 855	struct policydb *policydb;
 856	struct sidtab *sidtab;
 857	struct sidtab_entry *old_entry, *new_entry;
 858	struct type_datum *type;
 859	u32 index;
 860	int rc;
 861
 862	if (!selinux_initialized())
 863		return 0;
 864
 865	rcu_read_lock();
 866	policy = rcu_dereference(selinux_state.policy);
 867	policydb = &policy->policydb;
 868	sidtab = policy->sidtab;
 869
 870	rc = -EINVAL;
 871	old_entry = sidtab_search_entry(sidtab, old_sid);
 872	if (!old_entry) {
 873		pr_err("SELinux: %s: unrecognized SID %u\n",
 874		       __func__, old_sid);
 875		goto out;
 876	}
 877
 878	rc = -EINVAL;
 879	new_entry = sidtab_search_entry(sidtab, new_sid);
 880	if (!new_entry) {
 881		pr_err("SELinux: %s: unrecognized SID %u\n",
 882		       __func__, new_sid);
 883		goto out;
 884	}
 885
 886	rc = 0;
 887	/* type/domain unchanged */
 888	if (old_entry->context.type == new_entry->context.type)
 889		goto out;
 890
 891	index = new_entry->context.type;
 892	while (true) {
 893		type = policydb->type_val_to_struct[index - 1];
 894		BUG_ON(!type);
 895
 896		/* not bounded anymore */
 897		rc = -EPERM;
 898		if (!type->bounds)
 899			break;
 900
 901		/* @newsid is bounded by @oldsid */
 902		rc = 0;
 903		if (type->bounds == old_entry->context.type)
 904			break;
 905
 906		index = type->bounds;
 907	}
 908
 909	if (rc) {
 910		char *old_name = NULL;
 911		char *new_name = NULL;
 912		u32 length;
 913
 914		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 915					    &old_name, &length) &&
 916		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 917					    &new_name, &length)) {
 918			audit_log(audit_context(),
 919				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 920				  "op=security_bounded_transition "
 921				  "seresult=denied "
 922				  "oldcontext=%s newcontext=%s",
 923				  old_name, new_name);
 924		}
 925		kfree(new_name);
 926		kfree(old_name);
 927	}
 928out:
 929	rcu_read_unlock();
 930
 931	return rc;
 932}
 933
 934static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 935{
 936	avd->allowed = 0;
 937	avd->auditallow = 0;
 938	avd->auditdeny = 0xffffffff;
 939	if (policy)
 940		avd->seqno = policy->latest_granting;
 941	else
 942		avd->seqno = 0;
 943	avd->flags = 0;
 944}
 945
 946void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 947					struct avtab_node *node)
 948{
 949	unsigned int i;
 950
 951	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 952		if (xpermd->driver != node->datum.u.xperms->driver)
 953			return;
 954	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 955		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 956					xpermd->driver))
 957			return;
 958	} else {
 959		BUG();
 960	}
 961
 962	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 963		xpermd->used |= XPERMS_ALLOWED;
 964		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 965			memset(xpermd->allowed->p, 0xff,
 966					sizeof(xpermd->allowed->p));
 967		}
 968		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 969			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 970				xpermd->allowed->p[i] |=
 971					node->datum.u.xperms->perms.p[i];
 972		}
 973	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 974		xpermd->used |= XPERMS_AUDITALLOW;
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976			memset(xpermd->auditallow->p, 0xff,
 977					sizeof(xpermd->auditallow->p));
 978		}
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 981				xpermd->auditallow->p[i] |=
 982					node->datum.u.xperms->perms.p[i];
 983		}
 984	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 985		xpermd->used |= XPERMS_DONTAUDIT;
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 987			memset(xpermd->dontaudit->p, 0xff,
 988					sizeof(xpermd->dontaudit->p));
 989		}
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 991			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 992				xpermd->dontaudit->p[i] |=
 993					node->datum.u.xperms->perms.p[i];
 994		}
 995	} else {
 996		BUG();
 997	}
 998}
 999
1000void security_compute_xperms_decision(u32 ssid,
 
1001				      u32 tsid,
1002				      u16 orig_tclass,
1003				      u8 driver,
1004				      struct extended_perms_decision *xpermd)
1005{
1006	struct selinux_policy *policy;
1007	struct policydb *policydb;
1008	struct sidtab *sidtab;
1009	u16 tclass;
1010	struct context *scontext, *tcontext;
1011	struct avtab_key avkey;
1012	struct avtab_node *node;
1013	struct ebitmap *sattr, *tattr;
1014	struct ebitmap_node *snode, *tnode;
1015	unsigned int i, j;
1016
1017	xpermd->driver = driver;
1018	xpermd->used = 0;
1019	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1020	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1021	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1022
1023	rcu_read_lock();
1024	if (!selinux_initialized())
1025		goto allow;
1026
1027	policy = rcu_dereference(selinux_state.policy);
1028	policydb = &policy->policydb;
1029	sidtab = policy->sidtab;
1030
1031	scontext = sidtab_search(sidtab, ssid);
1032	if (!scontext) {
1033		pr_err("SELinux: %s:  unrecognized SID %d\n",
1034		       __func__, ssid);
1035		goto out;
1036	}
1037
1038	tcontext = sidtab_search(sidtab, tsid);
1039	if (!tcontext) {
1040		pr_err("SELinux: %s:  unrecognized SID %d\n",
1041		       __func__, tsid);
1042		goto out;
1043	}
1044
1045	tclass = unmap_class(&policy->map, orig_tclass);
1046	if (unlikely(orig_tclass && !tclass)) {
1047		if (policydb->allow_unknown)
1048			goto allow;
1049		goto out;
1050	}
1051
1052
1053	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1054		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1055		goto out;
1056	}
1057
1058	avkey.target_class = tclass;
1059	avkey.specified = AVTAB_XPERMS;
1060	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1061	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1062	ebitmap_for_each_positive_bit(sattr, snode, i) {
1063		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1064			avkey.source_type = i + 1;
1065			avkey.target_type = j + 1;
1066			for (node = avtab_search_node(&policydb->te_avtab,
1067						      &avkey);
1068			     node;
1069			     node = avtab_search_node_next(node, avkey.specified))
1070				services_compute_xperms_decision(xpermd, node);
1071
1072			cond_compute_xperms(&policydb->te_cond_avtab,
1073						&avkey, xpermd);
1074		}
1075	}
1076out:
1077	rcu_read_unlock();
1078	return;
1079allow:
1080	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1081	goto out;
1082}
1083
1084/**
1085 * security_compute_av - Compute access vector decisions.
 
1086 * @ssid: source security identifier
1087 * @tsid: target security identifier
1088 * @orig_tclass: target security class
1089 * @avd: access vector decisions
1090 * @xperms: extended permissions
1091 *
1092 * Compute a set of access vector decisions based on the
1093 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1094 */
1095void security_compute_av(u32 ssid,
 
1096			 u32 tsid,
1097			 u16 orig_tclass,
1098			 struct av_decision *avd,
1099			 struct extended_perms *xperms)
1100{
1101	struct selinux_policy *policy;
1102	struct policydb *policydb;
1103	struct sidtab *sidtab;
1104	u16 tclass;
1105	struct context *scontext = NULL, *tcontext = NULL;
1106
1107	rcu_read_lock();
1108	policy = rcu_dereference(selinux_state.policy);
1109	avd_init(policy, avd);
1110	xperms->len = 0;
1111	if (!selinux_initialized())
1112		goto allow;
1113
1114	policydb = &policy->policydb;
1115	sidtab = policy->sidtab;
1116
1117	scontext = sidtab_search(sidtab, ssid);
1118	if (!scontext) {
1119		pr_err("SELinux: %s:  unrecognized SID %d\n",
1120		       __func__, ssid);
1121		goto out;
1122	}
1123
1124	/* permissive domain? */
1125	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1126		avd->flags |= AVD_FLAGS_PERMISSIVE;
1127
1128	tcontext = sidtab_search(sidtab, tsid);
1129	if (!tcontext) {
1130		pr_err("SELinux: %s:  unrecognized SID %d\n",
1131		       __func__, tsid);
1132		goto out;
1133	}
1134
1135	tclass = unmap_class(&policy->map, orig_tclass);
1136	if (unlikely(orig_tclass && !tclass)) {
1137		if (policydb->allow_unknown)
1138			goto allow;
1139		goto out;
1140	}
1141	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1142				  xperms);
1143	map_decision(&policy->map, orig_tclass, avd,
1144		     policydb->allow_unknown);
1145out:
1146	rcu_read_unlock();
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
 
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
1158	struct selinux_policy *policy;
1159	struct policydb *policydb;
1160	struct sidtab *sidtab;
1161	struct context *scontext = NULL, *tcontext = NULL;
1162
1163	rcu_read_lock();
1164	policy = rcu_dereference(selinux_state.policy);
1165	avd_init(policy, avd);
1166	if (!selinux_initialized())
1167		goto allow;
1168
1169	policydb = &policy->policydb;
1170	sidtab = policy->sidtab;
1171
1172	scontext = sidtab_search(sidtab, ssid);
1173	if (!scontext) {
1174		pr_err("SELinux: %s:  unrecognized SID %d\n",
1175		       __func__, ssid);
1176		goto out;
1177	}
1178
1179	/* permissive domain? */
1180	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1181		avd->flags |= AVD_FLAGS_PERMISSIVE;
1182
1183	tcontext = sidtab_search(sidtab, tsid);
1184	if (!tcontext) {
1185		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186		       __func__, tsid);
1187		goto out;
1188	}
1189
1190	if (unlikely(!tclass)) {
1191		if (policydb->allow_unknown)
1192			goto allow;
1193		goto out;
1194	}
1195
1196	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1197				  NULL);
1198 out:
1199	rcu_read_unlock();
1200	return;
1201allow:
1202	avd->allowed = 0xffffffff;
1203	goto out;
1204}
1205
1206/*
1207 * Write the security context string representation of
1208 * the context structure `context' into a dynamically
1209 * allocated string of the correct size.  Set `*scontext'
1210 * to point to this string and set `*scontext_len' to
1211 * the length of the string.
1212 */
1213static int context_struct_to_string(struct policydb *p,
1214				    struct context *context,
1215				    char **scontext, u32 *scontext_len)
1216{
1217	char *scontextp;
1218
1219	if (scontext)
1220		*scontext = NULL;
1221	*scontext_len = 0;
1222
1223	if (context->len) {
1224		*scontext_len = context->len;
1225		if (scontext) {
1226			*scontext = kstrdup(context->str, GFP_ATOMIC);
1227			if (!(*scontext))
1228				return -ENOMEM;
1229		}
1230		return 0;
1231	}
1232
1233	/* Compute the size of the context. */
1234	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1235	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1236	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1237	*scontext_len += mls_compute_context_len(p, context);
1238
1239	if (!scontext)
1240		return 0;
1241
1242	/* Allocate space for the context; caller must free this space. */
1243	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1244	if (!scontextp)
1245		return -ENOMEM;
1246	*scontext = scontextp;
1247
1248	/*
1249	 * Copy the user name, role name and type name into the context.
1250	 */
1251	scontextp += sprintf(scontextp, "%s:%s:%s",
1252		sym_name(p, SYM_USERS, context->user - 1),
1253		sym_name(p, SYM_ROLES, context->role - 1),
1254		sym_name(p, SYM_TYPES, context->type - 1));
1255
1256	mls_sid_to_context(p, context, &scontextp);
1257
1258	*scontextp = 0;
1259
1260	return 0;
1261}
1262
1263static int sidtab_entry_to_string(struct policydb *p,
1264				  struct sidtab *sidtab,
1265				  struct sidtab_entry *entry,
1266				  char **scontext, u32 *scontext_len)
1267{
1268	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1269
1270	if (rc != -ENOENT)
1271		return rc;
1272
1273	rc = context_struct_to_string(p, &entry->context, scontext,
1274				      scontext_len);
1275	if (!rc && scontext)
1276		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1277	return rc;
1278}
1279
1280#include "initial_sid_to_string.h"
1281
1282int security_sidtab_hash_stats(char *page)
1283{
1284	struct selinux_policy *policy;
1285	int rc;
1286
1287	if (!selinux_initialized()) {
1288		pr_err("SELinux: %s:  called before initial load_policy\n",
1289		       __func__);
1290		return -EINVAL;
1291	}
1292
1293	rcu_read_lock();
1294	policy = rcu_dereference(selinux_state.policy);
1295	rc = sidtab_hash_stats(policy->sidtab, page);
1296	rcu_read_unlock();
1297
1298	return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303	if (unlikely(sid > SECINITSID_NUM))
1304		return NULL;
1305	return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(u32 sid, char **scontext,
 
1309					u32 *scontext_len, int force,
1310					int only_invalid)
1311{
1312	struct selinux_policy *policy;
1313	struct policydb *policydb;
1314	struct sidtab *sidtab;
1315	struct sidtab_entry *entry;
1316	int rc = 0;
1317
1318	if (scontext)
1319		*scontext = NULL;
1320	*scontext_len  = 0;
1321
1322	if (!selinux_initialized()) {
1323		if (sid <= SECINITSID_NUM) {
1324			char *scontextp;
1325			const char *s;
1326
1327			/*
1328			 * Before the policy is loaded, translate
1329			 * SECINITSID_INIT to "kernel", because systemd and
1330			 * libselinux < 2.6 take a getcon_raw() result that is
1331			 * both non-null and not "kernel" to mean that a policy
1332			 * is already loaded.
1333			 */
1334			if (sid == SECINITSID_INIT)
1335				sid = SECINITSID_KERNEL;
1336
1337			s = initial_sid_to_string[sid];
1338			if (!s)
1339				return -EINVAL;
1340			*scontext_len = strlen(s) + 1;
1341			if (!scontext)
1342				return 0;
1343			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1344			if (!scontextp)
1345				return -ENOMEM;
1346			*scontext = scontextp;
1347			return 0;
1348		}
1349		pr_err("SELinux: %s:  called before initial "
1350		       "load_policy on unknown SID %d\n", __func__, sid);
1351		return -EINVAL;
1352	}
1353	rcu_read_lock();
1354	policy = rcu_dereference(selinux_state.policy);
1355	policydb = &policy->policydb;
1356	sidtab = policy->sidtab;
1357
1358	if (force)
1359		entry = sidtab_search_entry_force(sidtab, sid);
1360	else
1361		entry = sidtab_search_entry(sidtab, sid);
1362	if (!entry) {
1363		pr_err("SELinux: %s:  unrecognized SID %d\n",
1364			__func__, sid);
1365		rc = -EINVAL;
1366		goto out_unlock;
1367	}
1368	if (only_invalid && !entry->context.len)
1369		goto out_unlock;
1370
1371	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1372				    scontext_len);
1373
1374out_unlock:
1375	rcu_read_unlock();
1376	return rc;
1377
1378}
1379
1380/**
1381 * security_sid_to_context - Obtain a context for a given SID.
 
1382 * @sid: security identifier, SID
1383 * @scontext: security context
1384 * @scontext_len: length in bytes
1385 *
1386 * Write the string representation of the context associated with @sid
1387 * into a dynamically allocated string of the correct size.  Set @scontext
1388 * to point to this string and set @scontext_len to the length of the string.
1389 */
1390int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1391{
1392	return security_sid_to_context_core(sid, scontext,
1393					    scontext_len, 0, 0);
1394}
1395
1396int security_sid_to_context_force(u32 sid,
1397				  char **scontext, u32 *scontext_len)
1398{
1399	return security_sid_to_context_core(sid, scontext,
1400					    scontext_len, 1, 0);
1401}
1402
1403/**
1404 * security_sid_to_context_inval - Obtain a context for a given SID if it
1405 *                                 is invalid.
 
1406 * @sid: security identifier, SID
1407 * @scontext: security context
1408 * @scontext_len: length in bytes
1409 *
1410 * Write the string representation of the context associated with @sid
1411 * into a dynamically allocated string of the correct size, but only if the
1412 * context is invalid in the current policy.  Set @scontext to point to
1413 * this string (or NULL if the context is valid) and set @scontext_len to
1414 * the length of the string (or 0 if the context is valid).
1415 */
1416int security_sid_to_context_inval(u32 sid,
1417				  char **scontext, u32 *scontext_len)
1418{
1419	return security_sid_to_context_core(sid, scontext,
1420					    scontext_len, 1, 1);
1421}
1422
1423/*
1424 * Caveat:  Mutates scontext.
1425 */
1426static int string_to_context_struct(struct policydb *pol,
1427				    struct sidtab *sidtabp,
1428				    char *scontext,
1429				    struct context *ctx,
1430				    u32 def_sid)
1431{
1432	struct role_datum *role;
1433	struct type_datum *typdatum;
1434	struct user_datum *usrdatum;
1435	char *scontextp, *p, oldc;
1436	int rc = 0;
1437
1438	context_init(ctx);
1439
1440	/* Parse the security context. */
1441
1442	rc = -EINVAL;
1443	scontextp = scontext;
1444
1445	/* Extract the user. */
1446	p = scontextp;
1447	while (*p && *p != ':')
1448		p++;
1449
1450	if (*p == 0)
1451		goto out;
1452
1453	*p++ = 0;
1454
1455	usrdatum = symtab_search(&pol->p_users, scontextp);
1456	if (!usrdatum)
1457		goto out;
1458
1459	ctx->user = usrdatum->value;
1460
1461	/* Extract role. */
1462	scontextp = p;
1463	while (*p && *p != ':')
1464		p++;
1465
1466	if (*p == 0)
1467		goto out;
1468
1469	*p++ = 0;
1470
1471	role = symtab_search(&pol->p_roles, scontextp);
1472	if (!role)
1473		goto out;
1474	ctx->role = role->value;
1475
1476	/* Extract type. */
1477	scontextp = p;
1478	while (*p && *p != ':')
1479		p++;
1480	oldc = *p;
1481	*p++ = 0;
1482
1483	typdatum = symtab_search(&pol->p_types, scontextp);
1484	if (!typdatum || typdatum->attribute)
1485		goto out;
1486
1487	ctx->type = typdatum->value;
1488
1489	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1490	if (rc)
1491		goto out;
1492
1493	/* Check the validity of the new context. */
1494	rc = -EINVAL;
1495	if (!policydb_context_isvalid(pol, ctx))
1496		goto out;
1497	rc = 0;
1498out:
1499	if (rc)
1500		context_destroy(ctx);
1501	return rc;
1502}
1503
1504static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1505					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1506					int force)
1507{
1508	struct selinux_policy *policy;
1509	struct policydb *policydb;
1510	struct sidtab *sidtab;
1511	char *scontext2, *str = NULL;
1512	struct context context;
1513	int rc = 0;
1514
1515	/* An empty security context is never valid. */
1516	if (!scontext_len)
1517		return -EINVAL;
1518
1519	/* Copy the string to allow changes and ensure a NUL terminator */
1520	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1521	if (!scontext2)
1522		return -ENOMEM;
1523
1524	if (!selinux_initialized()) {
1525		u32 i;
1526
1527		for (i = 1; i < SECINITSID_NUM; i++) {
1528			const char *s = initial_sid_to_string[i];
1529
1530			if (s && !strcmp(s, scontext2)) {
1531				*sid = i;
1532				goto out;
1533			}
1534		}
1535		*sid = SECINITSID_KERNEL;
1536		goto out;
1537	}
1538	*sid = SECSID_NULL;
1539
1540	if (force) {
1541		/* Save another copy for storing in uninterpreted form */
1542		rc = -ENOMEM;
1543		str = kstrdup(scontext2, gfp_flags);
1544		if (!str)
1545			goto out;
1546	}
1547retry:
1548	rcu_read_lock();
1549	policy = rcu_dereference(selinux_state.policy);
1550	policydb = &policy->policydb;
1551	sidtab = policy->sidtab;
1552	rc = string_to_context_struct(policydb, sidtab, scontext2,
1553				      &context, def_sid);
1554	if (rc == -EINVAL && force) {
1555		context.str = str;
1556		context.len = strlen(str) + 1;
1557		str = NULL;
1558	} else if (rc)
1559		goto out_unlock;
1560	rc = sidtab_context_to_sid(sidtab, &context, sid);
1561	if (rc == -ESTALE) {
1562		rcu_read_unlock();
1563		if (context.str) {
1564			str = context.str;
1565			context.str = NULL;
1566		}
1567		context_destroy(&context);
1568		goto retry;
1569	}
1570	context_destroy(&context);
1571out_unlock:
1572	rcu_read_unlock();
1573out:
1574	kfree(scontext2);
1575	kfree(str);
1576	return rc;
1577}
1578
1579/**
1580 * security_context_to_sid - Obtain a SID for a given security context.
 
1581 * @scontext: security context
1582 * @scontext_len: length in bytes
1583 * @sid: security identifier, SID
1584 * @gfp: context for the allocation
1585 *
1586 * Obtains a SID associated with the security context that
1587 * has the string representation specified by @scontext.
1588 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1589 * memory is available, or 0 on success.
1590 */
1591int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
 
1592			    gfp_t gfp)
1593{
1594	return security_context_to_sid_core(scontext, scontext_len,
1595					    sid, SECSID_NULL, gfp, 0);
1596}
1597
1598int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
 
1599{
1600	return security_context_to_sid(scontext, strlen(scontext),
1601				       sid, gfp);
1602}
1603
1604/**
1605 * security_context_to_sid_default - Obtain a SID for a given security context,
1606 * falling back to specified default if needed.
1607 *
 
1608 * @scontext: security context
1609 * @scontext_len: length in bytes
1610 * @sid: security identifier, SID
1611 * @def_sid: default SID to assign on error
1612 * @gfp_flags: the allocator get-free-page (GFP) flags
1613 *
1614 * Obtains a SID associated with the security context that
1615 * has the string representation specified by @scontext.
1616 * The default SID is passed to the MLS layer to be used to allow
1617 * kernel labeling of the MLS field if the MLS field is not present
1618 * (for upgrading to MLS without full relabel).
1619 * Implicitly forces adding of the context even if it cannot be mapped yet.
1620 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1621 * memory is available, or 0 on success.
1622 */
1623int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1624				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1625{
1626	return security_context_to_sid_core(scontext, scontext_len,
1627					    sid, def_sid, gfp_flags, 1);
1628}
1629
1630int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1631				  u32 *sid)
1632{
1633	return security_context_to_sid_core(scontext, scontext_len,
1634					    sid, SECSID_NULL, GFP_KERNEL, 1);
1635}
1636
1637static int compute_sid_handle_invalid_context(
 
1638	struct selinux_policy *policy,
1639	struct sidtab_entry *sentry,
1640	struct sidtab_entry *tentry,
1641	u16 tclass,
1642	struct context *newcontext)
1643{
1644	struct policydb *policydb = &policy->policydb;
1645	struct sidtab *sidtab = policy->sidtab;
1646	char *s = NULL, *t = NULL, *n = NULL;
1647	u32 slen, tlen, nlen;
1648	struct audit_buffer *ab;
1649
1650	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1651		goto out;
1652	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1653		goto out;
1654	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1655		goto out;
1656	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1657	if (!ab)
1658		goto out;
1659	audit_log_format(ab,
1660			 "op=security_compute_sid invalid_context=");
1661	/* no need to record the NUL with untrusted strings */
1662	audit_log_n_untrustedstring(ab, n, nlen - 1);
1663	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1664			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1665	audit_log_end(ab);
1666out:
1667	kfree(s);
1668	kfree(t);
1669	kfree(n);
1670	if (!enforcing_enabled())
1671		return 0;
1672	return -EACCES;
1673}
1674
1675static void filename_compute_type(struct policydb *policydb,
1676				  struct context *newcontext,
1677				  u32 stype, u32 ttype, u16 tclass,
1678				  const char *objname)
1679{
1680	struct filename_trans_key ft;
1681	struct filename_trans_datum *datum;
1682
1683	/*
1684	 * Most filename trans rules are going to live in specific directories
1685	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1686	 * if the ttype does not contain any rules.
1687	 */
1688	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1689		return;
1690
1691	ft.ttype = ttype;
1692	ft.tclass = tclass;
1693	ft.name = objname;
1694
1695	datum = policydb_filenametr_search(policydb, &ft);
1696	while (datum) {
1697		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1698			newcontext->type = datum->otype;
1699			return;
1700		}
1701		datum = datum->next;
1702	}
1703}
1704
1705static int security_compute_sid(u32 ssid,
 
1706				u32 tsid,
1707				u16 orig_tclass,
1708				u16 specified,
1709				const char *objname,
1710				u32 *out_sid,
1711				bool kern)
1712{
1713	struct selinux_policy *policy;
1714	struct policydb *policydb;
1715	struct sidtab *sidtab;
1716	struct class_datum *cladatum;
1717	struct context *scontext, *tcontext, newcontext;
1718	struct sidtab_entry *sentry, *tentry;
1719	struct avtab_key avkey;
1720	struct avtab_node *avnode, *node;
 
1721	u16 tclass;
1722	int rc = 0;
1723	bool sock;
1724
1725	if (!selinux_initialized()) {
1726		switch (orig_tclass) {
1727		case SECCLASS_PROCESS: /* kernel value */
1728			*out_sid = ssid;
1729			break;
1730		default:
1731			*out_sid = tsid;
1732			break;
1733		}
1734		goto out;
1735	}
1736
1737retry:
1738	cladatum = NULL;
1739	context_init(&newcontext);
1740
1741	rcu_read_lock();
1742
1743	policy = rcu_dereference(selinux_state.policy);
1744
1745	if (kern) {
1746		tclass = unmap_class(&policy->map, orig_tclass);
1747		sock = security_is_socket_class(orig_tclass);
1748	} else {
1749		tclass = orig_tclass;
1750		sock = security_is_socket_class(map_class(&policy->map,
1751							  tclass));
1752	}
1753
1754	policydb = &policy->policydb;
1755	sidtab = policy->sidtab;
1756
1757	sentry = sidtab_search_entry(sidtab, ssid);
1758	if (!sentry) {
1759		pr_err("SELinux: %s:  unrecognized SID %d\n",
1760		       __func__, ssid);
1761		rc = -EINVAL;
1762		goto out_unlock;
1763	}
1764	tentry = sidtab_search_entry(sidtab, tsid);
1765	if (!tentry) {
1766		pr_err("SELinux: %s:  unrecognized SID %d\n",
1767		       __func__, tsid);
1768		rc = -EINVAL;
1769		goto out_unlock;
1770	}
1771
1772	scontext = &sentry->context;
1773	tcontext = &tentry->context;
1774
1775	if (tclass && tclass <= policydb->p_classes.nprim)
1776		cladatum = policydb->class_val_to_struct[tclass - 1];
1777
1778	/* Set the user identity. */
1779	switch (specified) {
1780	case AVTAB_TRANSITION:
1781	case AVTAB_CHANGE:
1782		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1783			newcontext.user = tcontext->user;
1784		} else {
1785			/* notice this gets both DEFAULT_SOURCE and unset */
1786			/* Use the process user identity. */
1787			newcontext.user = scontext->user;
1788		}
1789		break;
1790	case AVTAB_MEMBER:
1791		/* Use the related object owner. */
1792		newcontext.user = tcontext->user;
1793		break;
1794	}
1795
1796	/* Set the role to default values. */
1797	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1798		newcontext.role = scontext->role;
1799	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1800		newcontext.role = tcontext->role;
1801	} else {
1802		if ((tclass == policydb->process_class) || sock)
1803			newcontext.role = scontext->role;
1804		else
1805			newcontext.role = OBJECT_R_VAL;
1806	}
1807
1808	/* Set the type to default values. */
1809	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1810		newcontext.type = scontext->type;
1811	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1812		newcontext.type = tcontext->type;
1813	} else {
1814		if ((tclass == policydb->process_class) || sock) {
1815			/* Use the type of process. */
1816			newcontext.type = scontext->type;
1817		} else {
1818			/* Use the type of the related object. */
1819			newcontext.type = tcontext->type;
1820		}
1821	}
1822
1823	/* Look for a type transition/member/change rule. */
1824	avkey.source_type = scontext->type;
1825	avkey.target_type = tcontext->type;
1826	avkey.target_class = tclass;
1827	avkey.specified = specified;
1828	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1829
1830	/* If no permanent rule, also check for enabled conditional rules */
1831	if (!avnode) {
1832		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1833		for (; node; node = avtab_search_node_next(node, specified)) {
1834			if (node->key.specified & AVTAB_ENABLED) {
1835				avnode = node;
1836				break;
1837			}
1838		}
1839	}
1840
1841	if (avnode) {
1842		/* Use the type from the type transition/member/change rule. */
1843		newcontext.type = avnode->datum.u.data;
1844	}
1845
1846	/* if we have a objname this is a file trans check so check those rules */
1847	if (objname)
1848		filename_compute_type(policydb, &newcontext, scontext->type,
1849				      tcontext->type, tclass, objname);
1850
1851	/* Check for class-specific changes. */
1852	if (specified & AVTAB_TRANSITION) {
1853		/* Look for a role transition rule. */
1854		struct role_trans_datum *rtd;
1855		struct role_trans_key rtk = {
1856			.role = scontext->role,
1857			.type = tcontext->type,
1858			.tclass = tclass,
1859		};
1860
1861		rtd = policydb_roletr_search(policydb, &rtk);
1862		if (rtd)
1863			newcontext.role = rtd->new_role;
1864	}
1865
1866	/* Set the MLS attributes.
1867	   This is done last because it may allocate memory. */
1868	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1869			     &newcontext, sock);
1870	if (rc)
1871		goto out_unlock;
1872
1873	/* Check the validity of the context. */
1874	if (!policydb_context_isvalid(policydb, &newcontext)) {
1875		rc = compute_sid_handle_invalid_context(policy, sentry,
1876							tentry, tclass,
1877							&newcontext);
1878		if (rc)
1879			goto out_unlock;
1880	}
1881	/* Obtain the sid for the context. */
1882	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1883	if (rc == -ESTALE) {
1884		rcu_read_unlock();
1885		context_destroy(&newcontext);
1886		goto retry;
1887	}
1888out_unlock:
1889	rcu_read_unlock();
1890	context_destroy(&newcontext);
1891out:
1892	return rc;
1893}
1894
1895/**
1896 * security_transition_sid - Compute the SID for a new subject/object.
 
1897 * @ssid: source security identifier
1898 * @tsid: target security identifier
1899 * @tclass: target security class
1900 * @qstr: object name
1901 * @out_sid: security identifier for new subject/object
1902 *
1903 * Compute a SID to use for labeling a new subject or object in the
1904 * class @tclass based on a SID pair (@ssid, @tsid).
1905 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906 * if insufficient memory is available, or %0 if the new SID was
1907 * computed successfully.
1908 */
1909int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1910			    const struct qstr *qstr, u32 *out_sid)
1911{
1912	return security_compute_sid(ssid, tsid, tclass,
1913				    AVTAB_TRANSITION,
1914				    qstr ? qstr->name : NULL, out_sid, true);
1915}
1916
1917int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1918				 const char *objname, u32 *out_sid)
1919{
1920	return security_compute_sid(ssid, tsid, tclass,
1921				    AVTAB_TRANSITION,
1922				    objname, out_sid, false);
1923}
1924
1925/**
1926 * security_member_sid - Compute the SID for member selection.
 
1927 * @ssid: source security identifier
1928 * @tsid: target security identifier
1929 * @tclass: target security class
1930 * @out_sid: security identifier for selected member
1931 *
1932 * Compute a SID to use when selecting a member of a polyinstantiated
1933 * object of class @tclass based on a SID pair (@ssid, @tsid).
1934 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1935 * if insufficient memory is available, or %0 if the SID was
1936 * computed successfully.
1937 */
1938int security_member_sid(u32 ssid,
 
1939			u32 tsid,
1940			u16 tclass,
1941			u32 *out_sid)
1942{
1943	return security_compute_sid(ssid, tsid, tclass,
1944				    AVTAB_MEMBER, NULL,
1945				    out_sid, false);
1946}
1947
1948/**
1949 * security_change_sid - Compute the SID for object relabeling.
 
1950 * @ssid: source security identifier
1951 * @tsid: target security identifier
1952 * @tclass: target security class
1953 * @out_sid: security identifier for selected member
1954 *
1955 * Compute a SID to use for relabeling an object of class @tclass
1956 * based on a SID pair (@ssid, @tsid).
1957 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1958 * if insufficient memory is available, or %0 if the SID was
1959 * computed successfully.
1960 */
1961int security_change_sid(u32 ssid,
 
1962			u32 tsid,
1963			u16 tclass,
1964			u32 *out_sid)
1965{
1966	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1967				    out_sid, false);
1968}
1969
1970static inline int convert_context_handle_invalid_context(
 
1971	struct policydb *policydb,
1972	struct context *context)
1973{
1974	char *s;
1975	u32 len;
1976
1977	if (enforcing_enabled())
1978		return -EINVAL;
1979
1980	if (!context_struct_to_string(policydb, context, &s, &len)) {
1981		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1982			s);
1983		kfree(s);
1984	}
1985	return 0;
1986}
1987
1988/**
1989 * services_convert_context - Convert a security context across policies.
1990 * @args: populated convert_context_args struct
1991 * @oldc: original context
1992 * @newc: converted context
1993 * @gfp_flags: allocation flags
1994 *
1995 * Convert the values in the security context structure @oldc from the values
1996 * specified in the policy @args->oldp to the values specified in the policy
1997 * @args->newp, storing the new context in @newc, and verifying that the
1998 * context is valid under the new policy.
1999 */
2000int services_convert_context(struct convert_context_args *args,
2001			     struct context *oldc, struct context *newc,
2002			     gfp_t gfp_flags)
2003{
2004	struct ocontext *oc;
2005	struct role_datum *role;
2006	struct type_datum *typdatum;
2007	struct user_datum *usrdatum;
2008	char *s;
2009	u32 len;
2010	int rc;
2011
2012	if (oldc->str) {
2013		s = kstrdup(oldc->str, gfp_flags);
2014		if (!s)
2015			return -ENOMEM;
2016
2017		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2018		if (rc == -EINVAL) {
2019			/*
2020			 * Retain string representation for later mapping.
2021			 *
2022			 * IMPORTANT: We need to copy the contents of oldc->str
2023			 * back into s again because string_to_context_struct()
2024			 * may have garbled it.
2025			 */
2026			memcpy(s, oldc->str, oldc->len);
2027			context_init(newc);
2028			newc->str = s;
2029			newc->len = oldc->len;
2030			return 0;
2031		}
2032		kfree(s);
2033		if (rc) {
2034			/* Other error condition, e.g. ENOMEM. */
2035			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2036			       oldc->str, -rc);
2037			return rc;
2038		}
2039		pr_info("SELinux:  Context %s became valid (mapped).\n",
2040			oldc->str);
2041		return 0;
2042	}
2043
2044	context_init(newc);
2045
2046	/* Convert the user. */
2047	usrdatum = symtab_search(&args->newp->p_users,
2048				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2049	if (!usrdatum)
2050		goto bad;
2051	newc->user = usrdatum->value;
2052
2053	/* Convert the role. */
2054	role = symtab_search(&args->newp->p_roles,
2055			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2056	if (!role)
2057		goto bad;
2058	newc->role = role->value;
2059
2060	/* Convert the type. */
2061	typdatum = symtab_search(&args->newp->p_types,
2062				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2063	if (!typdatum)
2064		goto bad;
2065	newc->type = typdatum->value;
2066
2067	/* Convert the MLS fields if dealing with MLS policies */
2068	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2069		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2070		if (rc)
2071			goto bad;
2072	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2073		/*
2074		 * Switching between non-MLS and MLS policy:
2075		 * ensure that the MLS fields of the context for all
2076		 * existing entries in the sidtab are filled in with a
2077		 * suitable default value, likely taken from one of the
2078		 * initial SIDs.
2079		 */
2080		oc = args->newp->ocontexts[OCON_ISID];
2081		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2082			oc = oc->next;
2083		if (!oc) {
2084			pr_err("SELinux:  unable to look up"
2085				" the initial SIDs list\n");
2086			goto bad;
2087		}
2088		rc = mls_range_set(newc, &oc->context[0].range);
2089		if (rc)
2090			goto bad;
2091	}
2092
2093	/* Check the validity of the new context. */
2094	if (!policydb_context_isvalid(args->newp, newc)) {
2095		rc = convert_context_handle_invalid_context(args->oldp, oldc);
 
2096		if (rc)
2097			goto bad;
2098	}
2099
2100	return 0;
2101bad:
2102	/* Map old representation to string and save it. */
2103	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2104	if (rc)
2105		return rc;
2106	context_destroy(newc);
2107	newc->str = s;
2108	newc->len = len;
2109	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2110		newc->str);
2111	return 0;
2112}
2113
2114static void security_load_policycaps(struct selinux_policy *policy)
 
2115{
2116	struct policydb *p;
2117	unsigned int i;
2118	struct ebitmap_node *node;
2119
2120	p = &policy->policydb;
2121
2122	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2123		WRITE_ONCE(selinux_state.policycap[i],
2124			ebitmap_get_bit(&p->policycaps, i));
2125
2126	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2127		pr_info("SELinux:  policy capability %s=%d\n",
2128			selinux_policycap_names[i],
2129			ebitmap_get_bit(&p->policycaps, i));
2130
2131	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2132		if (i >= ARRAY_SIZE(selinux_policycap_names))
2133			pr_info("SELinux:  unknown policy capability %u\n",
2134				i);
2135	}
2136}
2137
2138static int security_preserve_bools(struct selinux_policy *oldpolicy,
2139				struct selinux_policy *newpolicy);
2140
2141static void selinux_policy_free(struct selinux_policy *policy)
2142{
2143	if (!policy)
2144		return;
2145
2146	sidtab_destroy(policy->sidtab);
2147	kfree(policy->map.mapping);
2148	policydb_destroy(&policy->policydb);
2149	kfree(policy->sidtab);
2150	kfree(policy);
2151}
2152
2153static void selinux_policy_cond_free(struct selinux_policy *policy)
2154{
2155	cond_policydb_destroy_dup(&policy->policydb);
2156	kfree(policy);
2157}
2158
2159void selinux_policy_cancel(struct selinux_load_state *load_state)
 
2160{
2161	struct selinux_state *state = &selinux_state;
2162	struct selinux_policy *oldpolicy;
2163
2164	oldpolicy = rcu_dereference_protected(state->policy,
2165					lockdep_is_held(&state->policy_mutex));
2166
2167	sidtab_cancel_convert(oldpolicy->sidtab);
2168	selinux_policy_free(load_state->policy);
2169	kfree(load_state->convert_data);
2170}
2171
2172static void selinux_notify_policy_change(u32 seqno)
 
2173{
2174	/* Flush external caches and notify userspace of policy load */
2175	avc_ss_reset(seqno);
2176	selnl_notify_policyload(seqno);
2177	selinux_status_update_policyload(seqno);
2178	selinux_netlbl_cache_invalidate();
2179	selinux_xfrm_notify_policyload();
2180	selinux_ima_measure_state_locked();
2181}
2182
2183void selinux_policy_commit(struct selinux_load_state *load_state)
 
2184{
2185	struct selinux_state *state = &selinux_state;
2186	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2187	unsigned long flags;
2188	u32 seqno;
2189
2190	oldpolicy = rcu_dereference_protected(state->policy,
2191					lockdep_is_held(&state->policy_mutex));
2192
2193	/* If switching between different policy types, log MLS status */
2194	if (oldpolicy) {
2195		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2196			pr_info("SELinux: Disabling MLS support...\n");
2197		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2198			pr_info("SELinux: Enabling MLS support...\n");
2199	}
2200
2201	/* Set latest granting seqno for new policy. */
2202	if (oldpolicy)
2203		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2204	else
2205		newpolicy->latest_granting = 1;
2206	seqno = newpolicy->latest_granting;
2207
2208	/* Install the new policy. */
2209	if (oldpolicy) {
2210		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2211		rcu_assign_pointer(state->policy, newpolicy);
2212		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2213	} else {
2214		rcu_assign_pointer(state->policy, newpolicy);
2215	}
2216
2217	/* Load the policycaps from the new policy */
2218	security_load_policycaps(newpolicy);
2219
2220	if (!selinux_initialized()) {
2221		/*
2222		 * After first policy load, the security server is
2223		 * marked as initialized and ready to handle requests and
2224		 * any objects created prior to policy load are then labeled.
2225		 */
2226		selinux_mark_initialized();
2227		selinux_complete_init();
2228	}
2229
2230	/* Free the old policy */
2231	synchronize_rcu();
2232	selinux_policy_free(oldpolicy);
2233	kfree(load_state->convert_data);
2234
2235	/* Notify others of the policy change */
2236	selinux_notify_policy_change(seqno);
2237}
2238
2239/**
2240 * security_load_policy - Load a security policy configuration.
 
2241 * @data: binary policy data
2242 * @len: length of data in bytes
2243 * @load_state: policy load state
2244 *
2245 * Load a new set of security policy configuration data,
2246 * validate it and convert the SID table as necessary.
2247 * This function will flush the access vector cache after
2248 * loading the new policy.
2249 */
2250int security_load_policy(void *data, size_t len,
2251			 struct selinux_load_state *load_state)
2252{
2253	struct selinux_state *state = &selinux_state;
2254	struct selinux_policy *newpolicy, *oldpolicy;
2255	struct selinux_policy_convert_data *convert_data;
2256	int rc = 0;
2257	struct policy_file file = { data, len }, *fp = &file;
2258
2259	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2260	if (!newpolicy)
2261		return -ENOMEM;
2262
2263	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2264	if (!newpolicy->sidtab) {
2265		rc = -ENOMEM;
2266		goto err_policy;
2267	}
2268
2269	rc = policydb_read(&newpolicy->policydb, fp);
2270	if (rc)
2271		goto err_sidtab;
2272
2273	newpolicy->policydb.len = len;
2274	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2275				&newpolicy->map);
2276	if (rc)
2277		goto err_policydb;
2278
2279	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2280	if (rc) {
2281		pr_err("SELinux:  unable to load the initial SIDs\n");
2282		goto err_mapping;
2283	}
2284
2285	if (!selinux_initialized()) {
2286		/* First policy load, so no need to preserve state from old policy */
2287		load_state->policy = newpolicy;
2288		load_state->convert_data = NULL;
2289		return 0;
2290	}
2291
2292	oldpolicy = rcu_dereference_protected(state->policy,
2293					lockdep_is_held(&state->policy_mutex));
2294
2295	/* Preserve active boolean values from the old policy */
2296	rc = security_preserve_bools(oldpolicy, newpolicy);
2297	if (rc) {
2298		pr_err("SELinux:  unable to preserve booleans\n");
2299		goto err_free_isids;
2300	}
2301
2302	/*
2303	 * Convert the internal representations of contexts
2304	 * in the new SID table.
2305	 */
2306
2307	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2308	if (!convert_data) {
2309		rc = -ENOMEM;
2310		goto err_free_isids;
2311	}
2312
 
2313	convert_data->args.oldp = &oldpolicy->policydb;
2314	convert_data->args.newp = &newpolicy->policydb;
2315
2316	convert_data->sidtab_params.args = &convert_data->args;
2317	convert_data->sidtab_params.target = newpolicy->sidtab;
2318
2319	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2320	if (rc) {
2321		pr_err("SELinux:  unable to convert the internal"
2322			" representation of contexts in the new SID"
2323			" table\n");
2324		goto err_free_convert_data;
2325	}
2326
2327	load_state->policy = newpolicy;
2328	load_state->convert_data = convert_data;
2329	return 0;
2330
2331err_free_convert_data:
2332	kfree(convert_data);
2333err_free_isids:
2334	sidtab_destroy(newpolicy->sidtab);
2335err_mapping:
2336	kfree(newpolicy->map.mapping);
2337err_policydb:
2338	policydb_destroy(&newpolicy->policydb);
2339err_sidtab:
2340	kfree(newpolicy->sidtab);
2341err_policy:
2342	kfree(newpolicy);
2343
2344	return rc;
2345}
2346
2347/**
2348 * ocontext_to_sid - Helper to safely get sid for an ocontext
2349 * @sidtab: SID table
2350 * @c: ocontext structure
2351 * @index: index of the context entry (0 or 1)
2352 * @out_sid: pointer to the resulting SID value
2353 *
2354 * For all ocontexts except OCON_ISID the SID fields are populated
2355 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2356 * operation, this helper must be used to do that safely.
2357 *
2358 * WARNING: This function may return -ESTALE, indicating that the caller
2359 * must retry the operation after re-acquiring the policy pointer!
2360 */
2361static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2362			   size_t index, u32 *out_sid)
2363{
2364	int rc;
2365	u32 sid;
2366
2367	/* Ensure the associated sidtab entry is visible to this thread. */
2368	sid = smp_load_acquire(&c->sid[index]);
2369	if (!sid) {
2370		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2371		if (rc)
2372			return rc;
2373
2374		/*
2375		 * Ensure the new sidtab entry is visible to other threads
2376		 * when they see the SID.
2377		 */
2378		smp_store_release(&c->sid[index], sid);
2379	}
2380	*out_sid = sid;
2381	return 0;
2382}
2383
2384/**
2385 * security_port_sid - Obtain the SID for a port.
 
2386 * @protocol: protocol number
2387 * @port: port number
2388 * @out_sid: security identifier
2389 */
2390int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
2391{
2392	struct selinux_policy *policy;
2393	struct policydb *policydb;
2394	struct sidtab *sidtab;
2395	struct ocontext *c;
2396	int rc;
2397
2398	if (!selinux_initialized()) {
2399		*out_sid = SECINITSID_PORT;
2400		return 0;
2401	}
2402
2403retry:
2404	rc = 0;
2405	rcu_read_lock();
2406	policy = rcu_dereference(selinux_state.policy);
2407	policydb = &policy->policydb;
2408	sidtab = policy->sidtab;
2409
2410	c = policydb->ocontexts[OCON_PORT];
2411	while (c) {
2412		if (c->u.port.protocol == protocol &&
2413		    c->u.port.low_port <= port &&
2414		    c->u.port.high_port >= port)
2415			break;
2416		c = c->next;
2417	}
2418
2419	if (c) {
2420		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2421		if (rc == -ESTALE) {
2422			rcu_read_unlock();
2423			goto retry;
2424		}
2425		if (rc)
2426			goto out;
2427	} else {
2428		*out_sid = SECINITSID_PORT;
2429	}
2430
2431out:
2432	rcu_read_unlock();
2433	return rc;
2434}
2435
2436/**
2437 * security_ib_pkey_sid - Obtain the SID for a pkey.
 
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
 
2443{
2444	struct selinux_policy *policy;
2445	struct policydb *policydb;
2446	struct sidtab *sidtab;
2447	struct ocontext *c;
2448	int rc;
2449
2450	if (!selinux_initialized()) {
2451		*out_sid = SECINITSID_UNLABELED;
2452		return 0;
2453	}
2454
2455retry:
2456	rc = 0;
2457	rcu_read_lock();
2458	policy = rcu_dereference(selinux_state.policy);
2459	policydb = &policy->policydb;
2460	sidtab = policy->sidtab;
2461
2462	c = policydb->ocontexts[OCON_IBPKEY];
2463	while (c) {
2464		if (c->u.ibpkey.low_pkey <= pkey_num &&
2465		    c->u.ibpkey.high_pkey >= pkey_num &&
2466		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2467			break;
2468
2469		c = c->next;
2470	}
2471
2472	if (c) {
2473		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2474		if (rc == -ESTALE) {
2475			rcu_read_unlock();
2476			goto retry;
2477		}
2478		if (rc)
2479			goto out;
2480	} else
2481		*out_sid = SECINITSID_UNLABELED;
2482
2483out:
2484	rcu_read_unlock();
2485	return rc;
2486}
2487
2488/**
2489 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
 
2490 * @dev_name: device name
2491 * @port_num: port number
2492 * @out_sid: security identifier
2493 */
2494int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
 
2495{
2496	struct selinux_policy *policy;
2497	struct policydb *policydb;
2498	struct sidtab *sidtab;
2499	struct ocontext *c;
2500	int rc;
2501
2502	if (!selinux_initialized()) {
2503		*out_sid = SECINITSID_UNLABELED;
2504		return 0;
2505	}
2506
2507retry:
2508	rc = 0;
2509	rcu_read_lock();
2510	policy = rcu_dereference(selinux_state.policy);
2511	policydb = &policy->policydb;
2512	sidtab = policy->sidtab;
2513
2514	c = policydb->ocontexts[OCON_IBENDPORT];
2515	while (c) {
2516		if (c->u.ibendport.port == port_num &&
2517		    !strncmp(c->u.ibendport.dev_name,
2518			     dev_name,
2519			     IB_DEVICE_NAME_MAX))
2520			break;
2521
2522		c = c->next;
2523	}
2524
2525	if (c) {
2526		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2527		if (rc == -ESTALE) {
2528			rcu_read_unlock();
2529			goto retry;
2530		}
2531		if (rc)
2532			goto out;
2533	} else
2534		*out_sid = SECINITSID_UNLABELED;
2535
2536out:
2537	rcu_read_unlock();
2538	return rc;
2539}
2540
2541/**
2542 * security_netif_sid - Obtain the SID for a network interface.
 
2543 * @name: interface name
2544 * @if_sid: interface SID
2545 */
2546int security_netif_sid(char *name, u32 *if_sid)
 
2547{
2548	struct selinux_policy *policy;
2549	struct policydb *policydb;
2550	struct sidtab *sidtab;
2551	int rc;
2552	struct ocontext *c;
2553
2554	if (!selinux_initialized()) {
2555		*if_sid = SECINITSID_NETIF;
2556		return 0;
2557	}
2558
2559retry:
2560	rc = 0;
2561	rcu_read_lock();
2562	policy = rcu_dereference(selinux_state.policy);
2563	policydb = &policy->policydb;
2564	sidtab = policy->sidtab;
2565
2566	c = policydb->ocontexts[OCON_NETIF];
2567	while (c) {
2568		if (strcmp(name, c->u.name) == 0)
2569			break;
2570		c = c->next;
2571	}
2572
2573	if (c) {
2574		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2575		if (rc == -ESTALE) {
2576			rcu_read_unlock();
2577			goto retry;
2578		}
2579		if (rc)
2580			goto out;
2581	} else
2582		*if_sid = SECINITSID_NETIF;
2583
2584out:
2585	rcu_read_unlock();
2586	return rc;
2587}
2588
2589static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2590{
2591	int i, fail = 0;
2592
2593	for (i = 0; i < 4; i++)
2594		if (addr[i] != (input[i] & mask[i])) {
2595			fail = 1;
2596			break;
2597		}
2598
2599	return !fail;
2600}
2601
2602/**
2603 * security_node_sid - Obtain the SID for a node (host).
 
2604 * @domain: communication domain aka address family
2605 * @addrp: address
2606 * @addrlen: address length in bytes
2607 * @out_sid: security identifier
2608 */
2609int security_node_sid(u16 domain,
 
2610		      void *addrp,
2611		      u32 addrlen,
2612		      u32 *out_sid)
2613{
2614	struct selinux_policy *policy;
2615	struct policydb *policydb;
2616	struct sidtab *sidtab;
2617	int rc;
2618	struct ocontext *c;
2619
2620	if (!selinux_initialized()) {
2621		*out_sid = SECINITSID_NODE;
2622		return 0;
2623	}
2624
2625retry:
2626	rcu_read_lock();
2627	policy = rcu_dereference(selinux_state.policy);
2628	policydb = &policy->policydb;
2629	sidtab = policy->sidtab;
2630
2631	switch (domain) {
2632	case AF_INET: {
2633		u32 addr;
2634
2635		rc = -EINVAL;
2636		if (addrlen != sizeof(u32))
2637			goto out;
2638
2639		addr = *((u32 *)addrp);
2640
2641		c = policydb->ocontexts[OCON_NODE];
2642		while (c) {
2643			if (c->u.node.addr == (addr & c->u.node.mask))
2644				break;
2645			c = c->next;
2646		}
2647		break;
2648	}
2649
2650	case AF_INET6:
2651		rc = -EINVAL;
2652		if (addrlen != sizeof(u64) * 2)
2653			goto out;
2654		c = policydb->ocontexts[OCON_NODE6];
2655		while (c) {
2656			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2657						c->u.node6.mask))
2658				break;
2659			c = c->next;
2660		}
2661		break;
2662
2663	default:
2664		rc = 0;
2665		*out_sid = SECINITSID_NODE;
2666		goto out;
2667	}
2668
2669	if (c) {
2670		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2671		if (rc == -ESTALE) {
2672			rcu_read_unlock();
2673			goto retry;
2674		}
2675		if (rc)
2676			goto out;
2677	} else {
2678		*out_sid = SECINITSID_NODE;
2679	}
2680
2681	rc = 0;
2682out:
2683	rcu_read_unlock();
2684	return rc;
2685}
2686
2687#define SIDS_NEL 25
2688
2689/**
2690 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2691 * @fromsid: starting SID
2692 * @username: username
2693 * @sids: array of reachable SIDs for user
2694 * @nel: number of elements in @sids
2695 *
2696 * Generate the set of SIDs for legal security contexts
2697 * for a given user that can be reached by @fromsid.
2698 * Set *@sids to point to a dynamically allocated
2699 * array containing the set of SIDs.  Set *@nel to the
2700 * number of elements in the array.
2701 */
2702
2703int security_get_user_sids(u32 fromsid,
 
2704			   char *username,
2705			   u32 **sids,
2706			   u32 *nel)
2707{
2708	struct selinux_policy *policy;
2709	struct policydb *policydb;
2710	struct sidtab *sidtab;
2711	struct context *fromcon, usercon;
2712	u32 *mysids = NULL, *mysids2, sid;
2713	u32 i, j, mynel, maxnel = SIDS_NEL;
2714	struct user_datum *user;
2715	struct role_datum *role;
2716	struct ebitmap_node *rnode, *tnode;
2717	int rc;
2718
2719	*sids = NULL;
2720	*nel = 0;
2721
2722	if (!selinux_initialized())
2723		return 0;
2724
2725	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2726	if (!mysids)
2727		return -ENOMEM;
2728
2729retry:
2730	mynel = 0;
2731	rcu_read_lock();
2732	policy = rcu_dereference(selinux_state.policy);
2733	policydb = &policy->policydb;
2734	sidtab = policy->sidtab;
2735
2736	context_init(&usercon);
2737
2738	rc = -EINVAL;
2739	fromcon = sidtab_search(sidtab, fromsid);
2740	if (!fromcon)
2741		goto out_unlock;
2742
2743	rc = -EINVAL;
2744	user = symtab_search(&policydb->p_users, username);
2745	if (!user)
2746		goto out_unlock;
2747
2748	usercon.user = user->value;
2749
2750	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2751		role = policydb->role_val_to_struct[i];
2752		usercon.role = i + 1;
2753		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2754			usercon.type = j + 1;
2755
2756			if (mls_setup_user_range(policydb, fromcon, user,
2757						 &usercon))
2758				continue;
2759
2760			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2761			if (rc == -ESTALE) {
2762				rcu_read_unlock();
2763				goto retry;
2764			}
2765			if (rc)
2766				goto out_unlock;
2767			if (mynel < maxnel) {
2768				mysids[mynel++] = sid;
2769			} else {
2770				rc = -ENOMEM;
2771				maxnel += SIDS_NEL;
2772				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2773				if (!mysids2)
2774					goto out_unlock;
2775				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2776				kfree(mysids);
2777				mysids = mysids2;
2778				mysids[mynel++] = sid;
2779			}
2780		}
2781	}
2782	rc = 0;
2783out_unlock:
2784	rcu_read_unlock();
2785	if (rc || !mynel) {
2786		kfree(mysids);
2787		return rc;
2788	}
2789
2790	rc = -ENOMEM;
2791	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2792	if (!mysids2) {
2793		kfree(mysids);
2794		return rc;
2795	}
2796	for (i = 0, j = 0; i < mynel; i++) {
2797		struct av_decision dummy_avd;
2798		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2799					  SECCLASS_PROCESS, /* kernel value */
2800					  PROCESS__TRANSITION, AVC_STRICT,
2801					  &dummy_avd);
2802		if (!rc)
2803			mysids2[j++] = mysids[i];
2804		cond_resched();
2805	}
2806	kfree(mysids);
2807	*sids = mysids2;
2808	*nel = j;
2809	return 0;
2810}
2811
2812/**
2813 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2814 * @policy: policy
2815 * @fstype: filesystem type
2816 * @path: path from root of mount
2817 * @orig_sclass: file security class
2818 * @sid: SID for path
2819 *
2820 * Obtain a SID to use for a file in a filesystem that
2821 * cannot support xattr or use a fixed labeling behavior like
2822 * transition SIDs or task SIDs.
2823 *
2824 * WARNING: This function may return -ESTALE, indicating that the caller
2825 * must retry the operation after re-acquiring the policy pointer!
2826 */
2827static inline int __security_genfs_sid(struct selinux_policy *policy,
2828				       const char *fstype,
2829				       const char *path,
2830				       u16 orig_sclass,
2831				       u32 *sid)
2832{
2833	struct policydb *policydb = &policy->policydb;
2834	struct sidtab *sidtab = policy->sidtab;
 
2835	u16 sclass;
2836	struct genfs *genfs;
2837	struct ocontext *c;
2838	int cmp = 0;
2839
2840	while (path[0] == '/' && path[1] == '/')
2841		path++;
2842
2843	sclass = unmap_class(&policy->map, orig_sclass);
2844	*sid = SECINITSID_UNLABELED;
2845
2846	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2847		cmp = strcmp(fstype, genfs->fstype);
2848		if (cmp <= 0)
2849			break;
2850	}
2851
2852	if (!genfs || cmp)
2853		return -ENOENT;
2854
2855	for (c = genfs->head; c; c = c->next) {
2856		size_t len = strlen(c->u.name);
2857		if ((!c->v.sclass || sclass == c->v.sclass) &&
2858		    (strncmp(c->u.name, path, len) == 0))
2859			break;
2860	}
2861
2862	if (!c)
2863		return -ENOENT;
2864
2865	return ocontext_to_sid(sidtab, c, 0, sid);
2866}
2867
2868/**
2869 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2870 * @fstype: filesystem type
2871 * @path: path from root of mount
2872 * @orig_sclass: file security class
2873 * @sid: SID for path
2874 *
2875 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2876 * it afterward.
2877 */
2878int security_genfs_sid(const char *fstype,
 
2879		       const char *path,
2880		       u16 orig_sclass,
2881		       u32 *sid)
2882{
2883	struct selinux_policy *policy;
2884	int retval;
2885
2886	if (!selinux_initialized()) {
2887		*sid = SECINITSID_UNLABELED;
2888		return 0;
2889	}
2890
2891	do {
2892		rcu_read_lock();
2893		policy = rcu_dereference(selinux_state.policy);
2894		retval = __security_genfs_sid(policy, fstype, path,
2895					      orig_sclass, sid);
2896		rcu_read_unlock();
2897	} while (retval == -ESTALE);
2898	return retval;
2899}
2900
2901int selinux_policy_genfs_sid(struct selinux_policy *policy,
2902			const char *fstype,
2903			const char *path,
2904			u16 orig_sclass,
2905			u32 *sid)
2906{
2907	/* no lock required, policy is not yet accessible by other threads */
2908	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2909}
2910
2911/**
2912 * security_fs_use - Determine how to handle labeling for a filesystem.
 
2913 * @sb: superblock in question
2914 */
2915int security_fs_use(struct super_block *sb)
2916{
2917	struct selinux_policy *policy;
2918	struct policydb *policydb;
2919	struct sidtab *sidtab;
2920	int rc;
2921	struct ocontext *c;
2922	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2923	const char *fstype = sb->s_type->name;
2924
2925	if (!selinux_initialized()) {
2926		sbsec->behavior = SECURITY_FS_USE_NONE;
2927		sbsec->sid = SECINITSID_UNLABELED;
2928		return 0;
2929	}
2930
2931retry:
2932	rcu_read_lock();
2933	policy = rcu_dereference(selinux_state.policy);
2934	policydb = &policy->policydb;
2935	sidtab = policy->sidtab;
2936
2937	c = policydb->ocontexts[OCON_FSUSE];
2938	while (c) {
2939		if (strcmp(fstype, c->u.name) == 0)
2940			break;
2941		c = c->next;
2942	}
2943
2944	if (c) {
2945		sbsec->behavior = c->v.behavior;
2946		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2947		if (rc == -ESTALE) {
2948			rcu_read_unlock();
2949			goto retry;
2950		}
2951		if (rc)
2952			goto out;
2953	} else {
2954		rc = __security_genfs_sid(policy, fstype, "/",
2955					SECCLASS_DIR, &sbsec->sid);
2956		if (rc == -ESTALE) {
2957			rcu_read_unlock();
2958			goto retry;
2959		}
2960		if (rc) {
2961			sbsec->behavior = SECURITY_FS_USE_NONE;
2962			rc = 0;
2963		} else {
2964			sbsec->behavior = SECURITY_FS_USE_GENFS;
2965		}
2966	}
2967
2968out:
2969	rcu_read_unlock();
2970	return rc;
2971}
2972
2973int security_get_bools(struct selinux_policy *policy,
2974		       u32 *len, char ***names, int **values)
2975{
2976	struct policydb *policydb;
2977	u32 i;
2978	int rc;
2979
2980	policydb = &policy->policydb;
2981
2982	*names = NULL;
2983	*values = NULL;
2984
2985	rc = 0;
2986	*len = policydb->p_bools.nprim;
2987	if (!*len)
2988		goto out;
2989
2990	rc = -ENOMEM;
2991	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2992	if (!*names)
2993		goto err;
2994
2995	rc = -ENOMEM;
2996	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2997	if (!*values)
2998		goto err;
2999
3000	for (i = 0; i < *len; i++) {
3001		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3002
3003		rc = -ENOMEM;
3004		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3005				      GFP_ATOMIC);
3006		if (!(*names)[i])
3007			goto err;
3008	}
3009	rc = 0;
3010out:
3011	return rc;
3012err:
3013	if (*names) {
3014		for (i = 0; i < *len; i++)
3015			kfree((*names)[i]);
3016		kfree(*names);
3017	}
3018	kfree(*values);
3019	*len = 0;
3020	*names = NULL;
3021	*values = NULL;
3022	goto out;
3023}
3024
3025
3026int security_set_bools(u32 len, int *values)
3027{
3028	struct selinux_state *state = &selinux_state;
3029	struct selinux_policy *newpolicy, *oldpolicy;
3030	int rc;
3031	u32 i, seqno = 0;
3032
3033	if (!selinux_initialized())
3034		return -EINVAL;
3035
3036	oldpolicy = rcu_dereference_protected(state->policy,
3037					lockdep_is_held(&state->policy_mutex));
3038
3039	/* Consistency check on number of booleans, should never fail */
3040	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3041		return -EINVAL;
3042
3043	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3044	if (!newpolicy)
3045		return -ENOMEM;
3046
3047	/*
3048	 * Deep copy only the parts of the policydb that might be
3049	 * modified as a result of changing booleans.
3050	 */
3051	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3052	if (rc) {
3053		kfree(newpolicy);
3054		return -ENOMEM;
3055	}
3056
3057	/* Update the boolean states in the copy */
3058	for (i = 0; i < len; i++) {
3059		int new_state = !!values[i];
3060		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3061
3062		if (new_state != old_state) {
3063			audit_log(audit_context(), GFP_ATOMIC,
3064				AUDIT_MAC_CONFIG_CHANGE,
3065				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3066				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3067				new_state,
3068				old_state,
3069				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3070				audit_get_sessionid(current));
3071			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3072		}
3073	}
3074
3075	/* Re-evaluate the conditional rules in the copy */
3076	evaluate_cond_nodes(&newpolicy->policydb);
3077
3078	/* Set latest granting seqno for new policy */
3079	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3080	seqno = newpolicy->latest_granting;
3081
3082	/* Install the new policy */
3083	rcu_assign_pointer(state->policy, newpolicy);
3084
3085	/*
3086	 * Free the conditional portions of the old policydb
3087	 * that were copied for the new policy, and the oldpolicy
3088	 * structure itself but not what it references.
3089	 */
3090	synchronize_rcu();
3091	selinux_policy_cond_free(oldpolicy);
3092
3093	/* Notify others of the policy change */
3094	selinux_notify_policy_change(seqno);
3095	return 0;
3096}
3097
3098int security_get_bool_value(u32 index)
 
3099{
3100	struct selinux_policy *policy;
3101	struct policydb *policydb;
3102	int rc;
3103	u32 len;
3104
3105	if (!selinux_initialized())
3106		return 0;
3107
3108	rcu_read_lock();
3109	policy = rcu_dereference(selinux_state.policy);
3110	policydb = &policy->policydb;
3111
3112	rc = -EFAULT;
3113	len = policydb->p_bools.nprim;
3114	if (index >= len)
3115		goto out;
3116
3117	rc = policydb->bool_val_to_struct[index]->state;
3118out:
3119	rcu_read_unlock();
3120	return rc;
3121}
3122
3123static int security_preserve_bools(struct selinux_policy *oldpolicy,
3124				struct selinux_policy *newpolicy)
3125{
3126	int rc, *bvalues = NULL;
3127	char **bnames = NULL;
3128	struct cond_bool_datum *booldatum;
3129	u32 i, nbools = 0;
3130
3131	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3132	if (rc)
3133		goto out;
3134	for (i = 0; i < nbools; i++) {
3135		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3136					bnames[i]);
3137		if (booldatum)
3138			booldatum->state = bvalues[i];
3139	}
3140	evaluate_cond_nodes(&newpolicy->policydb);
3141
3142out:
3143	if (bnames) {
3144		for (i = 0; i < nbools; i++)
3145			kfree(bnames[i]);
3146	}
3147	kfree(bnames);
3148	kfree(bvalues);
3149	return rc;
3150}
3151
3152/*
3153 * security_sid_mls_copy() - computes a new sid based on the given
3154 * sid and the mls portion of mls_sid.
3155 */
3156int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
3157{
3158	struct selinux_policy *policy;
3159	struct policydb *policydb;
3160	struct sidtab *sidtab;
3161	struct context *context1;
3162	struct context *context2;
3163	struct context newcon;
3164	char *s;
3165	u32 len;
3166	int rc;
3167
3168	if (!selinux_initialized()) {
3169		*new_sid = sid;
3170		return 0;
3171	}
3172
3173retry:
3174	rc = 0;
3175	context_init(&newcon);
3176
3177	rcu_read_lock();
3178	policy = rcu_dereference(selinux_state.policy);
3179	policydb = &policy->policydb;
3180	sidtab = policy->sidtab;
3181
3182	if (!policydb->mls_enabled) {
3183		*new_sid = sid;
3184		goto out_unlock;
3185	}
3186
3187	rc = -EINVAL;
3188	context1 = sidtab_search(sidtab, sid);
3189	if (!context1) {
3190		pr_err("SELinux: %s:  unrecognized SID %d\n",
3191			__func__, sid);
3192		goto out_unlock;
3193	}
3194
3195	rc = -EINVAL;
3196	context2 = sidtab_search(sidtab, mls_sid);
3197	if (!context2) {
3198		pr_err("SELinux: %s:  unrecognized SID %d\n",
3199			__func__, mls_sid);
3200		goto out_unlock;
3201	}
3202
3203	newcon.user = context1->user;
3204	newcon.role = context1->role;
3205	newcon.type = context1->type;
3206	rc = mls_context_cpy(&newcon, context2);
3207	if (rc)
3208		goto out_unlock;
3209
3210	/* Check the validity of the new context. */
3211	if (!policydb_context_isvalid(policydb, &newcon)) {
3212		rc = convert_context_handle_invalid_context(policydb,
3213							&newcon);
3214		if (rc) {
3215			if (!context_struct_to_string(policydb, &newcon, &s,
3216						      &len)) {
3217				struct audit_buffer *ab;
3218
3219				ab = audit_log_start(audit_context(),
3220						     GFP_ATOMIC,
3221						     AUDIT_SELINUX_ERR);
3222				audit_log_format(ab,
3223						 "op=security_sid_mls_copy invalid_context=");
3224				/* don't record NUL with untrusted strings */
3225				audit_log_n_untrustedstring(ab, s, len - 1);
3226				audit_log_end(ab);
3227				kfree(s);
3228			}
3229			goto out_unlock;
3230		}
3231	}
3232	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3233	if (rc == -ESTALE) {
3234		rcu_read_unlock();
3235		context_destroy(&newcon);
3236		goto retry;
3237	}
3238out_unlock:
3239	rcu_read_unlock();
3240	context_destroy(&newcon);
3241	return rc;
3242}
3243
3244/**
3245 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
3246 * @nlbl_sid: NetLabel SID
3247 * @nlbl_type: NetLabel labeling protocol type
3248 * @xfrm_sid: XFRM SID
3249 * @peer_sid: network peer sid
3250 *
3251 * Description:
3252 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3253 * resolved into a single SID it is returned via @peer_sid and the function
3254 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3255 * returns a negative value.  A table summarizing the behavior is below:
3256 *
3257 *                                 | function return |      @sid
3258 *   ------------------------------+-----------------+-----------------
3259 *   no peer labels                |        0        |    SECSID_NULL
3260 *   single peer label             |        0        |    <peer_label>
3261 *   multiple, consistent labels   |        0        |    <peer_label>
3262 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3263 *
3264 */
3265int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
3266				 u32 xfrm_sid,
3267				 u32 *peer_sid)
3268{
3269	struct selinux_policy *policy;
3270	struct policydb *policydb;
3271	struct sidtab *sidtab;
3272	int rc;
3273	struct context *nlbl_ctx;
3274	struct context *xfrm_ctx;
3275
3276	*peer_sid = SECSID_NULL;
3277
3278	/* handle the common (which also happens to be the set of easy) cases
3279	 * right away, these two if statements catch everything involving a
3280	 * single or absent peer SID/label */
3281	if (xfrm_sid == SECSID_NULL) {
3282		*peer_sid = nlbl_sid;
3283		return 0;
3284	}
3285	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3286	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3287	 * is present */
3288	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3289		*peer_sid = xfrm_sid;
3290		return 0;
3291	}
3292
3293	if (!selinux_initialized())
3294		return 0;
3295
3296	rcu_read_lock();
3297	policy = rcu_dereference(selinux_state.policy);
3298	policydb = &policy->policydb;
3299	sidtab = policy->sidtab;
3300
3301	/*
3302	 * We don't need to check initialized here since the only way both
3303	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3304	 * security server was initialized and state->initialized was true.
3305	 */
3306	if (!policydb->mls_enabled) {
3307		rc = 0;
3308		goto out;
3309	}
3310
3311	rc = -EINVAL;
3312	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3313	if (!nlbl_ctx) {
3314		pr_err("SELinux: %s:  unrecognized SID %d\n",
3315		       __func__, nlbl_sid);
3316		goto out;
3317	}
3318	rc = -EINVAL;
3319	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3320	if (!xfrm_ctx) {
3321		pr_err("SELinux: %s:  unrecognized SID %d\n",
3322		       __func__, xfrm_sid);
3323		goto out;
3324	}
3325	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3326	if (rc)
3327		goto out;
3328
3329	/* at present NetLabel SIDs/labels really only carry MLS
3330	 * information so if the MLS portion of the NetLabel SID
3331	 * matches the MLS portion of the labeled XFRM SID/label
3332	 * then pass along the XFRM SID as it is the most
3333	 * expressive */
3334	*peer_sid = xfrm_sid;
3335out:
3336	rcu_read_unlock();
3337	return rc;
3338}
3339
3340static int get_classes_callback(void *k, void *d, void *args)
3341{
3342	struct class_datum *datum = d;
3343	char *name = k, **classes = args;
3344	u32 value = datum->value - 1;
3345
3346	classes[value] = kstrdup(name, GFP_ATOMIC);
3347	if (!classes[value])
3348		return -ENOMEM;
3349
3350	return 0;
3351}
3352
3353int security_get_classes(struct selinux_policy *policy,
3354			 char ***classes, u32 *nclasses)
3355{
3356	struct policydb *policydb;
3357	int rc;
3358
3359	policydb = &policy->policydb;
3360
3361	rc = -ENOMEM;
3362	*nclasses = policydb->p_classes.nprim;
3363	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3364	if (!*classes)
3365		goto out;
3366
3367	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3368			 *classes);
3369	if (rc) {
3370		u32 i;
3371
3372		for (i = 0; i < *nclasses; i++)
3373			kfree((*classes)[i]);
3374		kfree(*classes);
3375	}
3376
3377out:
3378	return rc;
3379}
3380
3381static int get_permissions_callback(void *k, void *d, void *args)
3382{
3383	struct perm_datum *datum = d;
3384	char *name = k, **perms = args;
3385	u32 value = datum->value - 1;
3386
3387	perms[value] = kstrdup(name, GFP_ATOMIC);
3388	if (!perms[value])
3389		return -ENOMEM;
3390
3391	return 0;
3392}
3393
3394int security_get_permissions(struct selinux_policy *policy,
3395			     const char *class, char ***perms, u32 *nperms)
3396{
3397	struct policydb *policydb;
3398	u32 i;
3399	int rc;
3400	struct class_datum *match;
3401
3402	policydb = &policy->policydb;
3403
3404	rc = -EINVAL;
3405	match = symtab_search(&policydb->p_classes, class);
3406	if (!match) {
3407		pr_err("SELinux: %s:  unrecognized class %s\n",
3408			__func__, class);
3409		goto out;
3410	}
3411
3412	rc = -ENOMEM;
3413	*nperms = match->permissions.nprim;
3414	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3415	if (!*perms)
3416		goto out;
3417
3418	if (match->comdatum) {
3419		rc = hashtab_map(&match->comdatum->permissions.table,
3420				 get_permissions_callback, *perms);
3421		if (rc)
3422			goto err;
3423	}
3424
3425	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3426			 *perms);
3427	if (rc)
3428		goto err;
3429
3430out:
3431	return rc;
3432
3433err:
3434	for (i = 0; i < *nperms; i++)
3435		kfree((*perms)[i]);
3436	kfree(*perms);
3437	return rc;
3438}
3439
3440int security_get_reject_unknown(void)
3441{
3442	struct selinux_policy *policy;
3443	int value;
3444
3445	if (!selinux_initialized())
3446		return 0;
3447
3448	rcu_read_lock();
3449	policy = rcu_dereference(selinux_state.policy);
3450	value = policy->policydb.reject_unknown;
3451	rcu_read_unlock();
3452	return value;
3453}
3454
3455int security_get_allow_unknown(void)
3456{
3457	struct selinux_policy *policy;
3458	int value;
3459
3460	if (!selinux_initialized())
3461		return 0;
3462
3463	rcu_read_lock();
3464	policy = rcu_dereference(selinux_state.policy);
3465	value = policy->policydb.allow_unknown;
3466	rcu_read_unlock();
3467	return value;
3468}
3469
3470/**
3471 * security_policycap_supported - Check for a specific policy capability
 
3472 * @req_cap: capability
3473 *
3474 * Description:
3475 * This function queries the currently loaded policy to see if it supports the
3476 * capability specified by @req_cap.  Returns true (1) if the capability is
3477 * supported, false (0) if it isn't supported.
3478 *
3479 */
3480int security_policycap_supported(unsigned int req_cap)
 
3481{
3482	struct selinux_policy *policy;
3483	int rc;
3484
3485	if (!selinux_initialized())
3486		return 0;
3487
3488	rcu_read_lock();
3489	policy = rcu_dereference(selinux_state.policy);
3490	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3491	rcu_read_unlock();
3492
3493	return rc;
3494}
3495
3496struct selinux_audit_rule {
3497	u32 au_seqno;
3498	struct context au_ctxt;
3499};
3500
3501void selinux_audit_rule_free(void *vrule)
3502{
3503	struct selinux_audit_rule *rule = vrule;
3504
3505	if (rule) {
3506		context_destroy(&rule->au_ctxt);
3507		kfree(rule);
3508	}
3509}
3510
3511int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3512{
3513	struct selinux_state *state = &selinux_state;
3514	struct selinux_policy *policy;
3515	struct policydb *policydb;
3516	struct selinux_audit_rule *tmprule;
3517	struct role_datum *roledatum;
3518	struct type_datum *typedatum;
3519	struct user_datum *userdatum;
3520	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3521	int rc = 0;
3522
3523	*rule = NULL;
3524
3525	if (!selinux_initialized())
3526		return -EOPNOTSUPP;
3527
3528	switch (field) {
3529	case AUDIT_SUBJ_USER:
3530	case AUDIT_SUBJ_ROLE:
3531	case AUDIT_SUBJ_TYPE:
3532	case AUDIT_OBJ_USER:
3533	case AUDIT_OBJ_ROLE:
3534	case AUDIT_OBJ_TYPE:
3535		/* only 'equals' and 'not equals' fit user, role, and type */
3536		if (op != Audit_equal && op != Audit_not_equal)
3537			return -EINVAL;
3538		break;
3539	case AUDIT_SUBJ_SEN:
3540	case AUDIT_SUBJ_CLR:
3541	case AUDIT_OBJ_LEV_LOW:
3542	case AUDIT_OBJ_LEV_HIGH:
3543		/* we do not allow a range, indicated by the presence of '-' */
3544		if (strchr(rulestr, '-'))
3545			return -EINVAL;
3546		break;
3547	default:
3548		/* only the above fields are valid */
3549		return -EINVAL;
3550	}
3551
3552	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3553	if (!tmprule)
3554		return -ENOMEM;
 
3555	context_init(&tmprule->au_ctxt);
3556
3557	rcu_read_lock();
3558	policy = rcu_dereference(state->policy);
3559	policydb = &policy->policydb;
 
3560	tmprule->au_seqno = policy->latest_granting;
 
3561	switch (field) {
3562	case AUDIT_SUBJ_USER:
3563	case AUDIT_OBJ_USER:
 
3564		userdatum = symtab_search(&policydb->p_users, rulestr);
3565		if (!userdatum) {
3566			rc = -EINVAL;
3567			goto err;
3568		}
3569		tmprule->au_ctxt.user = userdatum->value;
3570		break;
3571	case AUDIT_SUBJ_ROLE:
3572	case AUDIT_OBJ_ROLE:
 
3573		roledatum = symtab_search(&policydb->p_roles, rulestr);
3574		if (!roledatum) {
3575			rc = -EINVAL;
3576			goto err;
3577		}
3578		tmprule->au_ctxt.role = roledatum->value;
3579		break;
3580	case AUDIT_SUBJ_TYPE:
3581	case AUDIT_OBJ_TYPE:
 
3582		typedatum = symtab_search(&policydb->p_types, rulestr);
3583		if (!typedatum) {
3584			rc = -EINVAL;
3585			goto err;
3586		}
3587		tmprule->au_ctxt.type = typedatum->value;
3588		break;
3589	case AUDIT_SUBJ_SEN:
3590	case AUDIT_SUBJ_CLR:
3591	case AUDIT_OBJ_LEV_LOW:
3592	case AUDIT_OBJ_LEV_HIGH:
3593		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3594				     GFP_ATOMIC);
3595		if (rc)
3596			goto err;
3597		break;
3598	}
 
 
3599	rcu_read_unlock();
3600
 
 
 
 
 
3601	*rule = tmprule;
3602	return 0;
3603
3604err:
3605	rcu_read_unlock();
3606	selinux_audit_rule_free(tmprule);
3607	*rule = NULL;
3608	return rc;
3609}
3610
3611/* Check to see if the rule contains any selinux fields */
3612int selinux_audit_rule_known(struct audit_krule *rule)
3613{
3614	u32 i;
3615
3616	for (i = 0; i < rule->field_count; i++) {
3617		struct audit_field *f = &rule->fields[i];
3618		switch (f->type) {
3619		case AUDIT_SUBJ_USER:
3620		case AUDIT_SUBJ_ROLE:
3621		case AUDIT_SUBJ_TYPE:
3622		case AUDIT_SUBJ_SEN:
3623		case AUDIT_SUBJ_CLR:
3624		case AUDIT_OBJ_USER:
3625		case AUDIT_OBJ_ROLE:
3626		case AUDIT_OBJ_TYPE:
3627		case AUDIT_OBJ_LEV_LOW:
3628		case AUDIT_OBJ_LEV_HIGH:
3629			return 1;
3630		}
3631	}
3632
3633	return 0;
3634}
3635
3636int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3637{
3638	struct selinux_state *state = &selinux_state;
3639	struct selinux_policy *policy;
3640	struct context *ctxt;
3641	struct mls_level *level;
3642	struct selinux_audit_rule *rule = vrule;
3643	int match = 0;
3644
3645	if (unlikely(!rule)) {
3646		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3647		return -ENOENT;
3648	}
3649
3650	if (!selinux_initialized())
3651		return 0;
3652
3653	rcu_read_lock();
3654
3655	policy = rcu_dereference(state->policy);
3656
3657	if (rule->au_seqno < policy->latest_granting) {
3658		match = -ESTALE;
3659		goto out;
3660	}
3661
3662	ctxt = sidtab_search(policy->sidtab, sid);
3663	if (unlikely(!ctxt)) {
3664		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3665			  sid);
3666		match = -ENOENT;
3667		goto out;
3668	}
3669
3670	/* a field/op pair that is not caught here will simply fall through
3671	   without a match */
3672	switch (field) {
3673	case AUDIT_SUBJ_USER:
3674	case AUDIT_OBJ_USER:
3675		switch (op) {
3676		case Audit_equal:
3677			match = (ctxt->user == rule->au_ctxt.user);
3678			break;
3679		case Audit_not_equal:
3680			match = (ctxt->user != rule->au_ctxt.user);
3681			break;
3682		}
3683		break;
3684	case AUDIT_SUBJ_ROLE:
3685	case AUDIT_OBJ_ROLE:
3686		switch (op) {
3687		case Audit_equal:
3688			match = (ctxt->role == rule->au_ctxt.role);
3689			break;
3690		case Audit_not_equal:
3691			match = (ctxt->role != rule->au_ctxt.role);
3692			break;
3693		}
3694		break;
3695	case AUDIT_SUBJ_TYPE:
3696	case AUDIT_OBJ_TYPE:
3697		switch (op) {
3698		case Audit_equal:
3699			match = (ctxt->type == rule->au_ctxt.type);
3700			break;
3701		case Audit_not_equal:
3702			match = (ctxt->type != rule->au_ctxt.type);
3703			break;
3704		}
3705		break;
3706	case AUDIT_SUBJ_SEN:
3707	case AUDIT_SUBJ_CLR:
3708	case AUDIT_OBJ_LEV_LOW:
3709	case AUDIT_OBJ_LEV_HIGH:
3710		level = ((field == AUDIT_SUBJ_SEN ||
3711			  field == AUDIT_OBJ_LEV_LOW) ?
3712			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3713		switch (op) {
3714		case Audit_equal:
3715			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3716					     level);
3717			break;
3718		case Audit_not_equal:
3719			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3720					      level);
3721			break;
3722		case Audit_lt:
3723			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3724					       level) &&
3725				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3726					       level));
3727			break;
3728		case Audit_le:
3729			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3730					      level);
3731			break;
3732		case Audit_gt:
3733			match = (mls_level_dom(level,
3734					      &rule->au_ctxt.range.level[0]) &&
3735				 !mls_level_eq(level,
3736					       &rule->au_ctxt.range.level[0]));
3737			break;
3738		case Audit_ge:
3739			match = mls_level_dom(level,
3740					      &rule->au_ctxt.range.level[0]);
3741			break;
3742		}
3743	}
3744
3745out:
3746	rcu_read_unlock();
3747	return match;
3748}
3749
3750static int aurule_avc_callback(u32 event)
3751{
3752	if (event == AVC_CALLBACK_RESET)
3753		return audit_update_lsm_rules();
3754	return 0;
3755}
3756
3757static int __init aurule_init(void)
3758{
3759	int err;
3760
3761	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3762	if (err)
3763		panic("avc_add_callback() failed, error %d\n", err);
3764
3765	return err;
3766}
3767__initcall(aurule_init);
3768
3769#ifdef CONFIG_NETLABEL
3770/**
3771 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3772 * @secattr: the NetLabel packet security attributes
3773 * @sid: the SELinux SID
3774 *
3775 * Description:
3776 * Attempt to cache the context in @ctx, which was derived from the packet in
3777 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3778 * already been initialized.
3779 *
3780 */
3781static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3782				      u32 sid)
3783{
3784	u32 *sid_cache;
3785
3786	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3787	if (sid_cache == NULL)
3788		return;
3789	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3790	if (secattr->cache == NULL) {
3791		kfree(sid_cache);
3792		return;
3793	}
3794
3795	*sid_cache = sid;
3796	secattr->cache->free = kfree;
3797	secattr->cache->data = sid_cache;
3798	secattr->flags |= NETLBL_SECATTR_CACHE;
3799}
3800
3801/**
3802 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3803 * @secattr: the NetLabel packet security attributes
3804 * @sid: the SELinux SID
3805 *
3806 * Description:
3807 * Convert the given NetLabel security attributes in @secattr into a
3808 * SELinux SID.  If the @secattr field does not contain a full SELinux
3809 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3810 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3811 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3812 * conversion for future lookups.  Returns zero on success, negative values on
3813 * failure.
3814 *
3815 */
3816int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3817				   u32 *sid)
3818{
3819	struct selinux_policy *policy;
3820	struct policydb *policydb;
3821	struct sidtab *sidtab;
3822	int rc;
3823	struct context *ctx;
3824	struct context ctx_new;
3825
3826	if (!selinux_initialized()) {
3827		*sid = SECSID_NULL;
3828		return 0;
3829	}
3830
3831retry:
3832	rc = 0;
3833	rcu_read_lock();
3834	policy = rcu_dereference(selinux_state.policy);
3835	policydb = &policy->policydb;
3836	sidtab = policy->sidtab;
3837
3838	if (secattr->flags & NETLBL_SECATTR_CACHE)
3839		*sid = *(u32 *)secattr->cache->data;
3840	else if (secattr->flags & NETLBL_SECATTR_SECID)
3841		*sid = secattr->attr.secid;
3842	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3843		rc = -EIDRM;
3844		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3845		if (ctx == NULL)
3846			goto out;
3847
3848		context_init(&ctx_new);
3849		ctx_new.user = ctx->user;
3850		ctx_new.role = ctx->role;
3851		ctx_new.type = ctx->type;
3852		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3853		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3854			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3855			if (rc)
3856				goto out;
3857		}
3858		rc = -EIDRM;
3859		if (!mls_context_isvalid(policydb, &ctx_new)) {
3860			ebitmap_destroy(&ctx_new.range.level[0].cat);
3861			goto out;
3862		}
3863
3864		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3865		ebitmap_destroy(&ctx_new.range.level[0].cat);
3866		if (rc == -ESTALE) {
3867			rcu_read_unlock();
3868			goto retry;
3869		}
3870		if (rc)
3871			goto out;
3872
3873		security_netlbl_cache_add(secattr, *sid);
3874	} else
3875		*sid = SECSID_NULL;
3876
3877out:
3878	rcu_read_unlock();
3879	return rc;
3880}
3881
3882/**
3883 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3884 * @sid: the SELinux SID
3885 * @secattr: the NetLabel packet security attributes
3886 *
3887 * Description:
3888 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3889 * Returns zero on success, negative values on failure.
3890 *
3891 */
3892int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3893{
3894	struct selinux_policy *policy;
3895	struct policydb *policydb;
3896	int rc;
3897	struct context *ctx;
3898
3899	if (!selinux_initialized())
3900		return 0;
3901
3902	rcu_read_lock();
3903	policy = rcu_dereference(selinux_state.policy);
3904	policydb = &policy->policydb;
3905
3906	rc = -ENOENT;
3907	ctx = sidtab_search(policy->sidtab, sid);
3908	if (ctx == NULL)
3909		goto out;
3910
3911	rc = -ENOMEM;
3912	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3913				  GFP_ATOMIC);
3914	if (secattr->domain == NULL)
3915		goto out;
3916
3917	secattr->attr.secid = sid;
3918	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3919	mls_export_netlbl_lvl(policydb, ctx, secattr);
3920	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3921out:
3922	rcu_read_unlock();
3923	return rc;
3924}
3925#endif /* CONFIG_NETLABEL */
3926
3927/**
3928 * __security_read_policy - read the policy.
3929 * @policy: SELinux policy
3930 * @data: binary policy data
3931 * @len: length of data in bytes
3932 *
3933 */
3934static int __security_read_policy(struct selinux_policy *policy,
3935				  void *data, size_t *len)
3936{
3937	int rc;
3938	struct policy_file fp;
3939
3940	fp.data = data;
3941	fp.len = *len;
3942
3943	rc = policydb_write(&policy->policydb, &fp);
3944	if (rc)
3945		return rc;
3946
3947	*len = (unsigned long)fp.data - (unsigned long)data;
3948	return 0;
3949}
3950
3951/**
3952 * security_read_policy - read the policy.
 
3953 * @data: binary policy data
3954 * @len: length of data in bytes
3955 *
3956 */
3957int security_read_policy(void **data, size_t *len)
 
3958{
3959	struct selinux_state *state = &selinux_state;
3960	struct selinux_policy *policy;
3961
3962	policy = rcu_dereference_protected(
3963			state->policy, lockdep_is_held(&state->policy_mutex));
3964	if (!policy)
3965		return -EINVAL;
3966
3967	*len = policy->policydb.len;
3968	*data = vmalloc_user(*len);
3969	if (!*data)
3970		return -ENOMEM;
3971
3972	return __security_read_policy(policy, *data, len);
3973}
3974
3975/**
3976 * security_read_state_kernel - read the policy.
 
3977 * @data: binary policy data
3978 * @len: length of data in bytes
3979 *
3980 * Allocates kernel memory for reading SELinux policy.
3981 * This function is for internal use only and should not
3982 * be used for returning data to user space.
3983 *
3984 * This function must be called with policy_mutex held.
3985 */
3986int security_read_state_kernel(void **data, size_t *len)
 
3987{
3988	int err;
3989	struct selinux_state *state = &selinux_state;
3990	struct selinux_policy *policy;
3991
3992	policy = rcu_dereference_protected(
3993			state->policy, lockdep_is_held(&state->policy_mutex));
3994	if (!policy)
3995		return -EINVAL;
3996
3997	*len = policy->policydb.len;
3998	*data = vmalloc(*len);
3999	if (!*data)
4000		return -ENOMEM;
4001
4002	err = __security_read_policy(policy, *data, len);
4003	if (err) {
4004		vfree(*data);
4005		*data = NULL;
4006		*len = 0;
4007	}
4008	return err;
4009}