Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3//! A condition variable.
  4//!
  5//! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition
  6//! variable.
  7
  8use super::{lock::Backend, lock::Guard, LockClassKey};
  9use crate::{
 10    bindings,
 11    init::PinInit,
 12    pin_init,
 13    str::CStr,
 14    task::{MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE},
 15    time::Jiffies,
 16    types::Opaque,
 17};
 18use core::ffi::{c_int, c_long};
 19use core::marker::PhantomPinned;
 20use core::ptr;
 21use macros::pin_data;
 22
 23/// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class.
 24#[macro_export]
 25macro_rules! new_condvar {
 26    ($($name:literal)?) => {
 27        $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
 28    };
 29}
 30pub use new_condvar;
 31
 32/// A conditional variable.
 33///
 34/// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to
 35/// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And
 36/// it wakes up when notified by another thread (via [`CondVar::notify_one`] or
 37/// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up
 38/// spuriously.
 39///
 40/// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such
 41/// instances is with the [`pin_init`](crate::pin_init) and [`new_condvar`] macros.
 42///
 43/// # Examples
 44///
 45/// The following is an example of using a condvar with a mutex:
 46///
 47/// ```
 48/// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex};
 49///
 50/// #[pin_data]
 51/// pub struct Example {
 52///     #[pin]
 53///     value: Mutex<u32>,
 54///
 55///     #[pin]
 56///     value_changed: CondVar,
 57/// }
 58///
 59/// /// Waits for `e.value` to become `v`.
 60/// fn wait_for_value(e: &Example, v: u32) {
 61///     let mut guard = e.value.lock();
 62///     while *guard != v {
 63///         e.value_changed.wait(&mut guard);
 64///     }
 65/// }
 66///
 67/// /// Increments `e.value` and notifies all potential waiters.
 68/// fn increment(e: &Example) {
 69///     *e.value.lock() += 1;
 70///     e.value_changed.notify_all();
 71/// }
 72///
 73/// /// Allocates a new boxed `Example`.
 74/// fn new_example() -> Result<Pin<Box<Example>>> {
 75///     Box::pin_init(pin_init!(Example {
 76///         value <- new_mutex!(0),
 77///         value_changed <- new_condvar!(),
 78///     }))
 79/// }
 80/// ```
 81///
 82/// [`struct wait_queue_head`]: srctree/include/linux/wait.h
 83#[pin_data]
 84pub struct CondVar {
 85    #[pin]
 86    pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>,
 87
 88    /// A condvar needs to be pinned because it contains a [`struct list_head`] that is
 89    /// self-referential, so it cannot be safely moved once it is initialised.
 90    ///
 91    /// [`struct list_head`]: srctree/include/linux/types.h
 92    #[pin]
 93    _pin: PhantomPinned,
 94}
 95
 96// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread.
 97#[allow(clippy::non_send_fields_in_send_ty)]
 98unsafe impl Send for CondVar {}
 99
100// SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads
101// concurrently.
102unsafe impl Sync for CondVar {}
103
104impl CondVar {
105    /// Constructs a new condvar initialiser.
106    pub fn new(name: &'static CStr, key: &'static LockClassKey) -> impl PinInit<Self> {
107        pin_init!(Self {
108            _pin: PhantomPinned,
109            // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
110            // static lifetimes so they live indefinitely.
111            wait_queue_head <- Opaque::ffi_init(|slot| unsafe {
112                bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr())
113            }),
114        })
115    }
116
117    fn wait_internal<T: ?Sized, B: Backend>(
118        &self,
119        wait_state: c_int,
120        guard: &mut Guard<'_, T, B>,
121        timeout_in_jiffies: c_long,
122    ) -> c_long {
123        let wait = Opaque::<bindings::wait_queue_entry>::uninit();
124
125        // SAFETY: `wait` points to valid memory.
126        unsafe { bindings::init_wait(wait.get()) };
127
128        // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
129        unsafe {
130            bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state)
131        };
132
133        // SAFETY: Switches to another thread. The timeout can be any number.
134        let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) });
135
136        // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
137        unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) };
138
139        ret
140    }
141
142    /// Releases the lock and waits for a notification in uninterruptible mode.
143    ///
144    /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
145    /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by
146    /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up
147    /// spuriously.
148    pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) {
149        self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
150    }
151
152    /// Releases the lock and waits for a notification in interruptible mode.
153    ///
154    /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may
155    /// wake up due to signals. It may also wake up spuriously.
156    ///
157    /// Returns whether there is a signal pending.
158    #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"]
159    pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool {
160        self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
161        crate::current!().signal_pending()
162    }
163
164    /// Releases the lock and waits for a notification in interruptible mode.
165    ///
166    /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
167    /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or
168    /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal.
169    #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"]
170    pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>(
171        &self,
172        guard: &mut Guard<'_, T, B>,
173        jiffies: Jiffies,
174    ) -> CondVarTimeoutResult {
175        let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT);
176        let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies);
177
178        match (res as Jiffies, crate::current!().signal_pending()) {
179            (jiffies, true) => CondVarTimeoutResult::Signal { jiffies },
180            (0, false) => CondVarTimeoutResult::Timeout,
181            (jiffies, false) => CondVarTimeoutResult::Woken { jiffies },
182        }
183    }
184
185    /// Calls the kernel function to notify the appropriate number of threads.
186    fn notify(&self, count: c_int) {
187        // SAFETY: `wait_queue_head` points to valid memory.
188        unsafe {
189            bindings::__wake_up(
190                self.wait_queue_head.get(),
191                TASK_NORMAL,
192                count,
193                ptr::null_mut(),
194            )
195        };
196    }
197
198    /// Calls the kernel function to notify one thread synchronously.
199    ///
200    /// This method behaves like `notify_one`, except that it hints to the scheduler that the
201    /// current thread is about to go to sleep, so it should schedule the target thread on the same
202    /// CPU.
203    pub fn notify_sync(&self) {
204        // SAFETY: `wait_queue_head` points to valid memory.
205        unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) };
206    }
207
208    /// Wakes a single waiter up, if any.
209    ///
210    /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
211    /// completely (as opposed to automatically waking up the next waiter).
212    pub fn notify_one(&self) {
213        self.notify(1);
214    }
215
216    /// Wakes all waiters up, if any.
217    ///
218    /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
219    /// completely (as opposed to automatically waking up the next waiter).
220    pub fn notify_all(&self) {
221        self.notify(0);
222    }
223}
224
225/// The return type of `wait_timeout`.
226pub enum CondVarTimeoutResult {
227    /// The timeout was reached.
228    Timeout,
229    /// Somebody woke us up.
230    Woken {
231        /// Remaining sleep duration.
232        jiffies: Jiffies,
233    },
234    /// A signal occurred.
235    Signal {
236        /// Remaining sleep duration.
237        jiffies: Jiffies,
238    },
239}