Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * zswap.c - zswap driver file
   4 *
   5 * zswap is a backend for frontswap that takes pages that are in the process
   6 * of being swapped out and attempts to compress and store them in a
   7 * RAM-based memory pool.  This can result in a significant I/O reduction on
   8 * the swap device and, in the case where decompressing from RAM is faster
   9 * than reading from the swap device, can also improve workload performance.
  10 *
  11 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
  12*/
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/highmem.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/types.h>
  22#include <linux/atomic.h>
  23#include <linux/frontswap.h>
  24#include <linux/rbtree.h>
  25#include <linux/swap.h>
  26#include <linux/crypto.h>
  27#include <linux/scatterlist.h>
 
  28#include <linux/mempool.h>
  29#include <linux/zpool.h>
  30#include <crypto/acompress.h>
  31
  32#include <linux/mm_types.h>
  33#include <linux/page-flags.h>
  34#include <linux/swapops.h>
  35#include <linux/writeback.h>
  36#include <linux/pagemap.h>
  37#include <linux/workqueue.h>
 
  38
  39#include "swap.h"
 
  40
  41/*********************************
  42* statistics
  43**********************************/
  44/* Total bytes used by the compressed storage */
  45u64 zswap_pool_total_size;
  46/* The number of compressed pages currently stored in zswap */
  47atomic_t zswap_stored_pages = ATOMIC_INIT(0);
  48/* The number of same-value filled pages currently stored in zswap */
  49static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
  50
  51/*
  52 * The statistics below are not protected from concurrent access for
  53 * performance reasons so they may not be a 100% accurate.  However,
  54 * they do provide useful information on roughly how many times a
  55 * certain event is occurring.
  56*/
  57
  58/* Pool limit was hit (see zswap_max_pool_percent) */
  59static u64 zswap_pool_limit_hit;
  60/* Pages written back when pool limit was reached */
  61static u64 zswap_written_back_pages;
  62/* Store failed due to a reclaim failure after pool limit was reached */
  63static u64 zswap_reject_reclaim_fail;
 
 
  64/* Compressed page was too big for the allocator to (optimally) store */
  65static u64 zswap_reject_compress_poor;
  66/* Store failed because underlying allocator could not get memory */
  67static u64 zswap_reject_alloc_fail;
  68/* Store failed because the entry metadata could not be allocated (rare) */
  69static u64 zswap_reject_kmemcache_fail;
  70/* Duplicate store was encountered (rare) */
  71static u64 zswap_duplicate_entry;
  72
  73/* Shrinker work queue */
  74static struct workqueue_struct *shrink_wq;
  75/* Pool limit was hit, we need to calm down */
  76static bool zswap_pool_reached_full;
  77
  78/*********************************
  79* tunables
  80**********************************/
  81
  82#define ZSWAP_PARAM_UNSET ""
  83
 
 
  84/* Enable/disable zswap */
  85static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
  86static int zswap_enabled_param_set(const char *,
  87				   const struct kernel_param *);
  88static const struct kernel_param_ops zswap_enabled_param_ops = {
  89	.set =		zswap_enabled_param_set,
  90	.get =		param_get_bool,
  91};
  92module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
  93
  94/* Crypto compressor to use */
  95static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
  96static int zswap_compressor_param_set(const char *,
  97				      const struct kernel_param *);
  98static const struct kernel_param_ops zswap_compressor_param_ops = {
  99	.set =		zswap_compressor_param_set,
 100	.get =		param_get_charp,
 101	.free =		param_free_charp,
 102};
 103module_param_cb(compressor, &zswap_compressor_param_ops,
 104		&zswap_compressor, 0644);
 105
 106/* Compressed storage zpool to use */
 107static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
 108static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 109static const struct kernel_param_ops zswap_zpool_param_ops = {
 110	.set =		zswap_zpool_param_set,
 111	.get =		param_get_charp,
 112	.free =		param_free_charp,
 113};
 114module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 115
 116/* The maximum percentage of memory that the compressed pool can occupy */
 117static unsigned int zswap_max_pool_percent = 20;
 118module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 119
 120/* The threshold for accepting new pages after the max_pool_percent was hit */
 121static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
 122module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
 123		   uint, 0644);
 124
 125/*
 126 * Enable/disable handling same-value filled pages (enabled by default).
 127 * If disabled every page is considered non-same-value filled.
 128 */
 129static bool zswap_same_filled_pages_enabled = true;
 130module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
 131		   bool, 0644);
 132
 133/* Enable/disable handling non-same-value filled pages (enabled by default) */
 134static bool zswap_non_same_filled_pages_enabled = true;
 135module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
 136		   bool, 0644);
 137
 
 
 
 
 
 
 
 
 
 
 
 
 
 138/*********************************
 139* data structures
 140**********************************/
 141
 142struct crypto_acomp_ctx {
 143	struct crypto_acomp *acomp;
 144	struct acomp_req *req;
 145	struct crypto_wait wait;
 146	u8 *dstmem;
 147	struct mutex *mutex;
 
 148};
 149
 
 
 
 
 
 
 150struct zswap_pool {
 151	struct zpool *zpool;
 152	struct crypto_acomp_ctx __percpu *acomp_ctx;
 153	struct kref kref;
 154	struct list_head list;
 155	struct work_struct release_work;
 156	struct work_struct shrink_work;
 157	struct hlist_node node;
 158	char tfm_name[CRYPTO_MAX_ALG_NAME];
 159};
 160
 
 
 
 
 
 
 
 
 
 
 
 161/*
 162 * struct zswap_entry
 163 *
 164 * This structure contains the metadata for tracking a single compressed
 165 * page within zswap.
 166 *
 167 * rbnode - links the entry into red-black tree for the appropriate swap type
 168 * offset - the swap offset for the entry.  Index into the red-black tree.
 169 * refcount - the number of outstanding reference to the entry. This is needed
 170 *            to protect against premature freeing of the entry by code
 171 *            concurrent calls to load, invalidate, and writeback.  The lock
 172 *            for the zswap_tree structure that contains the entry must
 173 *            be held while changing the refcount.  Since the lock must
 174 *            be held, there is no reason to also make refcount atomic.
 175 * length - the length in bytes of the compressed page data.  Needed during
 176 *          decompression. For a same value filled page length is 0.
 
 177 * pool - the zswap_pool the entry's data is in
 178 * handle - zpool allocation handle that stores the compressed page data
 179 * value - value of the same-value filled pages which have same content
 
 
 180 */
 181struct zswap_entry {
 182	struct rb_node rbnode;
 183	pgoff_t offset;
 184	int refcount;
 185	unsigned int length;
 186	struct zswap_pool *pool;
 187	union {
 188		unsigned long handle;
 189		unsigned long value;
 190	};
 191	struct obj_cgroup *objcg;
 
 192};
 193
 194struct zswap_header {
 195	swp_entry_t swpentry;
 196};
 197
 198/*
 199 * The tree lock in the zswap_tree struct protects a few things:
 200 * - the rbtree
 201 * - the refcount field of each entry in the tree
 202 */
 203struct zswap_tree {
 204	struct rb_root rbroot;
 205	spinlock_t lock;
 206};
 207
 208static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 
 209
 210/* RCU-protected iteration */
 211static LIST_HEAD(zswap_pools);
 212/* protects zswap_pools list modification */
 213static DEFINE_SPINLOCK(zswap_pools_lock);
 214/* pool counter to provide unique names to zpool */
 215static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 216
 217/* used by param callback function */
 218static bool zswap_init_started;
 
 
 
 219
 220/* fatal error during init */
 221static bool zswap_init_failed;
 
 
 222
 223/* init completed, but couldn't create the initial pool */
 224static bool zswap_has_pool;
 225
 226/*********************************
 227* helpers and fwd declarations
 228**********************************/
 229
 
 
 
 
 
 
 230#define zswap_pool_debug(msg, p)				\
 231	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 232		 zpool_get_type((p)->zpool))
 233
 234static int zswap_writeback_entry(struct zpool *pool, unsigned long handle);
 235static int zswap_pool_get(struct zswap_pool *pool);
 236static void zswap_pool_put(struct zswap_pool *pool);
 237
 238static const struct zpool_ops zswap_zpool_ops = {
 239	.evict = zswap_writeback_entry
 240};
 241
 242static bool zswap_is_full(void)
 243{
 244	return totalram_pages() * zswap_max_pool_percent / 100 <
 245			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 246}
 247
 248static bool zswap_can_accept(void)
 249{
 250	return totalram_pages() * zswap_accept_thr_percent / 100 *
 251				zswap_max_pool_percent / 100 >
 252			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 253}
 254
 
 
 
 
 
 
 
 
 
 
 
 255static void zswap_update_total_size(void)
 256{
 257	struct zswap_pool *pool;
 258	u64 total = 0;
 259
 260	rcu_read_lock();
 261
 262	list_for_each_entry_rcu(pool, &zswap_pools, list)
 263		total += zpool_get_total_size(pool->zpool);
 264
 265	rcu_read_unlock();
 266
 267	zswap_pool_total_size = total;
 268}
 269
 270/*********************************
 271* zswap entry functions
 272**********************************/
 273static struct kmem_cache *zswap_entry_cache;
 274
 275static int __init zswap_entry_cache_create(void)
 276{
 277	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
 278	return zswap_entry_cache == NULL;
 279}
 280
 281static void __init zswap_entry_cache_destroy(void)
 282{
 283	kmem_cache_destroy(zswap_entry_cache);
 284}
 285
 286static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp)
 287{
 288	struct zswap_entry *entry;
 289	entry = kmem_cache_alloc(zswap_entry_cache, gfp);
 290	if (!entry)
 291		return NULL;
 292	entry->refcount = 1;
 293	RB_CLEAR_NODE(&entry->rbnode);
 294	return entry;
 295}
 296
 297static void zswap_entry_cache_free(struct zswap_entry *entry)
 298{
 299	kmem_cache_free(zswap_entry_cache, entry);
 300}
 301
 302/*********************************
 303* rbtree functions
 304**********************************/
 305static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 306{
 307	struct rb_node *node = root->rb_node;
 308	struct zswap_entry *entry;
 309
 310	while (node) {
 311		entry = rb_entry(node, struct zswap_entry, rbnode);
 312		if (entry->offset > offset)
 313			node = node->rb_left;
 314		else if (entry->offset < offset)
 315			node = node->rb_right;
 316		else
 317			return entry;
 318	}
 319	return NULL;
 320}
 321
 322/*
 323 * In the case that a entry with the same offset is found, a pointer to
 324 * the existing entry is stored in dupentry and the function returns -EEXIST
 325 */
 326static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 327			struct zswap_entry **dupentry)
 328{
 329	struct rb_node **link = &root->rb_node, *parent = NULL;
 330	struct zswap_entry *myentry;
 331
 332	while (*link) {
 333		parent = *link;
 334		myentry = rb_entry(parent, struct zswap_entry, rbnode);
 335		if (myentry->offset > entry->offset)
 336			link = &(*link)->rb_left;
 337		else if (myentry->offset < entry->offset)
 338			link = &(*link)->rb_right;
 339		else {
 340			*dupentry = myentry;
 341			return -EEXIST;
 342		}
 343	}
 344	rb_link_node(&entry->rbnode, parent, link);
 345	rb_insert_color(&entry->rbnode, root);
 346	return 0;
 347}
 348
 349static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 350{
 351	if (!RB_EMPTY_NODE(&entry->rbnode)) {
 352		rb_erase(&entry->rbnode, root);
 353		RB_CLEAR_NODE(&entry->rbnode);
 354	}
 355}
 356
 357/*
 358 * Carries out the common pattern of freeing and entry's zpool allocation,
 359 * freeing the entry itself, and decrementing the number of stored pages.
 360 */
 361static void zswap_free_entry(struct zswap_entry *entry)
 362{
 363	if (entry->objcg) {
 364		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
 365		obj_cgroup_put(entry->objcg);
 366	}
 367	if (!entry->length)
 368		atomic_dec(&zswap_same_filled_pages);
 369	else {
 370		zpool_free(entry->pool->zpool, entry->handle);
 371		zswap_pool_put(entry->pool);
 372	}
 373	zswap_entry_cache_free(entry);
 374	atomic_dec(&zswap_stored_pages);
 375	zswap_update_total_size();
 376}
 377
 378/* caller must hold the tree lock */
 379static void zswap_entry_get(struct zswap_entry *entry)
 380{
 381	entry->refcount++;
 382}
 383
 384/* caller must hold the tree lock
 385* remove from the tree and free it, if nobody reference the entry
 386*/
 387static void zswap_entry_put(struct zswap_tree *tree,
 388			struct zswap_entry *entry)
 389{
 390	int refcount = --entry->refcount;
 391
 392	BUG_ON(refcount < 0);
 393	if (refcount == 0) {
 394		zswap_rb_erase(&tree->rbroot, entry);
 395		zswap_free_entry(entry);
 396	}
 397}
 398
 399/* caller must hold the tree lock */
 400static struct zswap_entry *zswap_entry_find_get(struct rb_root *root,
 401				pgoff_t offset)
 402{
 403	struct zswap_entry *entry;
 404
 405	entry = zswap_rb_search(root, offset);
 406	if (entry)
 407		zswap_entry_get(entry);
 408
 409	return entry;
 410}
 411
 412/*********************************
 413* per-cpu code
 414**********************************/
 415static DEFINE_PER_CPU(u8 *, zswap_dstmem);
 416/*
 417 * If users dynamically change the zpool type and compressor at runtime, i.e.
 418 * zswap is running, zswap can have more than one zpool on one cpu, but they
 419 * are sharing dtsmem. So we need this mutex to be per-cpu.
 420 */
 421static DEFINE_PER_CPU(struct mutex *, zswap_mutex);
 422
 423static int zswap_dstmem_prepare(unsigned int cpu)
 424{
 425	struct mutex *mutex;
 426	u8 *dst;
 427
 428	dst = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 429	if (!dst)
 430		return -ENOMEM;
 431
 432	mutex = kmalloc_node(sizeof(*mutex), GFP_KERNEL, cpu_to_node(cpu));
 433	if (!mutex) {
 434		kfree(dst);
 435		return -ENOMEM;
 436	}
 437
 438	mutex_init(mutex);
 439	per_cpu(zswap_dstmem, cpu) = dst;
 440	per_cpu(zswap_mutex, cpu) = mutex;
 441	return 0;
 442}
 443
 444static int zswap_dstmem_dead(unsigned int cpu)
 445{
 446	struct mutex *mutex;
 447	u8 *dst;
 448
 449	mutex = per_cpu(zswap_mutex, cpu);
 450	kfree(mutex);
 451	per_cpu(zswap_mutex, cpu) = NULL;
 452
 453	dst = per_cpu(zswap_dstmem, cpu);
 454	kfree(dst);
 455	per_cpu(zswap_dstmem, cpu) = NULL;
 456
 457	return 0;
 458}
 459
 460static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
 461{
 462	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 463	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
 464	struct crypto_acomp *acomp;
 465	struct acomp_req *req;
 466
 467	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
 468	if (IS_ERR(acomp)) {
 469		pr_err("could not alloc crypto acomp %s : %ld\n",
 470				pool->tfm_name, PTR_ERR(acomp));
 471		return PTR_ERR(acomp);
 472	}
 473	acomp_ctx->acomp = acomp;
 474
 475	req = acomp_request_alloc(acomp_ctx->acomp);
 476	if (!req) {
 477		pr_err("could not alloc crypto acomp_request %s\n",
 478		       pool->tfm_name);
 479		crypto_free_acomp(acomp_ctx->acomp);
 480		return -ENOMEM;
 481	}
 482	acomp_ctx->req = req;
 483
 484	crypto_init_wait(&acomp_ctx->wait);
 485	/*
 486	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
 487	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
 488	 * won't be called, crypto_wait_req() will return without blocking.
 489	 */
 490	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 491				   crypto_req_done, &acomp_ctx->wait);
 492
 493	acomp_ctx->mutex = per_cpu(zswap_mutex, cpu);
 494	acomp_ctx->dstmem = per_cpu(zswap_dstmem, cpu);
 495
 496	return 0;
 497}
 498
 499static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
 500{
 501	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 502	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
 503
 504	if (!IS_ERR_OR_NULL(acomp_ctx)) {
 505		if (!IS_ERR_OR_NULL(acomp_ctx->req))
 506			acomp_request_free(acomp_ctx->req);
 507		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
 508			crypto_free_acomp(acomp_ctx->acomp);
 509	}
 510
 511	return 0;
 512}
 513
 514/*********************************
 515* pool functions
 516**********************************/
 517
 518static struct zswap_pool *__zswap_pool_current(void)
 519{
 520	struct zswap_pool *pool;
 521
 522	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 523	WARN_ONCE(!pool && zswap_has_pool,
 524		  "%s: no page storage pool!\n", __func__);
 525
 526	return pool;
 527}
 528
 529static struct zswap_pool *zswap_pool_current(void)
 530{
 531	assert_spin_locked(&zswap_pools_lock);
 532
 533	return __zswap_pool_current();
 534}
 535
 536static struct zswap_pool *zswap_pool_current_get(void)
 537{
 538	struct zswap_pool *pool;
 539
 540	rcu_read_lock();
 541
 542	pool = __zswap_pool_current();
 543	if (!zswap_pool_get(pool))
 544		pool = NULL;
 545
 546	rcu_read_unlock();
 547
 548	return pool;
 549}
 550
 551static struct zswap_pool *zswap_pool_last_get(void)
 552{
 553	struct zswap_pool *pool, *last = NULL;
 554
 555	rcu_read_lock();
 556
 557	list_for_each_entry_rcu(pool, &zswap_pools, list)
 558		last = pool;
 559	WARN_ONCE(!last && zswap_has_pool,
 560		  "%s: no page storage pool!\n", __func__);
 561	if (!zswap_pool_get(last))
 562		last = NULL;
 563
 564	rcu_read_unlock();
 565
 566	return last;
 567}
 568
 569/* type and compressor must be null-terminated */
 570static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 571{
 572	struct zswap_pool *pool;
 573
 574	assert_spin_locked(&zswap_pools_lock);
 575
 576	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 577		if (strcmp(pool->tfm_name, compressor))
 578			continue;
 579		if (strcmp(zpool_get_type(pool->zpool), type))
 580			continue;
 581		/* if we can't get it, it's about to be destroyed */
 582		if (!zswap_pool_get(pool))
 583			continue;
 584		return pool;
 585	}
 586
 587	return NULL;
 588}
 589
 590static void shrink_worker(struct work_struct *w)
 591{
 592	struct zswap_pool *pool = container_of(w, typeof(*pool),
 593						shrink_work);
 594
 595	if (zpool_shrink(pool->zpool, 1, NULL))
 596		zswap_reject_reclaim_fail++;
 597	zswap_pool_put(pool);
 598}
 599
 600static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
 601{
 
 602	struct zswap_pool *pool;
 603	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
 604	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 605	int ret;
 606
 607	if (!zswap_has_pool) {
 608		/* if either are unset, pool initialization failed, and we
 609		 * need both params to be set correctly before trying to
 610		 * create a pool.
 611		 */
 612		if (!strcmp(type, ZSWAP_PARAM_UNSET))
 613			return NULL;
 614		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
 615			return NULL;
 616	}
 617
 618	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 619	if (!pool)
 620		return NULL;
 621
 622	/* unique name for each pool specifically required by zsmalloc */
 623	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
 624
 625	pool->zpool = zpool_create_pool(type, name, gfp, &zswap_zpool_ops);
 626	if (!pool->zpool) {
 627		pr_err("%s zpool not available\n", type);
 628		goto error;
 
 
 
 629	}
 630	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
 631
 632	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 633
 634	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
 635	if (!pool->acomp_ctx) {
 636		pr_err("percpu alloc failed\n");
 637		goto error;
 638	}
 639
 640	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
 641				       &pool->node);
 642	if (ret)
 643		goto error;
 644	pr_debug("using %s compressor\n", pool->tfm_name);
 645
 646	/* being the current pool takes 1 ref; this func expects the
 647	 * caller to always add the new pool as the current pool
 648	 */
 649	kref_init(&pool->kref);
 
 
 
 650	INIT_LIST_HEAD(&pool->list);
 651	INIT_WORK(&pool->shrink_work, shrink_worker);
 652
 653	zswap_pool_debug("created", pool);
 654
 655	return pool;
 656
 
 
 657error:
 658	if (pool->acomp_ctx)
 659		free_percpu(pool->acomp_ctx);
 660	if (pool->zpool)
 661		zpool_destroy_pool(pool->zpool);
 662	kfree(pool);
 663	return NULL;
 664}
 665
 666static __init struct zswap_pool *__zswap_pool_create_fallback(void)
 667{
 668	bool has_comp, has_zpool;
 669
 670	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
 671	if (!has_comp && strcmp(zswap_compressor,
 672				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
 673		pr_err("compressor %s not available, using default %s\n",
 674		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
 675		param_free_charp(&zswap_compressor);
 676		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
 677		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
 678	}
 679	if (!has_comp) {
 680		pr_err("default compressor %s not available\n",
 681		       zswap_compressor);
 682		param_free_charp(&zswap_compressor);
 683		zswap_compressor = ZSWAP_PARAM_UNSET;
 684	}
 685
 686	has_zpool = zpool_has_pool(zswap_zpool_type);
 687	if (!has_zpool && strcmp(zswap_zpool_type,
 688				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
 689		pr_err("zpool %s not available, using default %s\n",
 690		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
 691		param_free_charp(&zswap_zpool_type);
 692		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
 693		has_zpool = zpool_has_pool(zswap_zpool_type);
 694	}
 695	if (!has_zpool) {
 696		pr_err("default zpool %s not available\n",
 697		       zswap_zpool_type);
 698		param_free_charp(&zswap_zpool_type);
 699		zswap_zpool_type = ZSWAP_PARAM_UNSET;
 700	}
 701
 702	if (!has_comp || !has_zpool)
 703		return NULL;
 704
 705	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
 706}
 707
 708static void zswap_pool_destroy(struct zswap_pool *pool)
 709{
 
 
 710	zswap_pool_debug("destroying", pool);
 711
 712	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
 713	free_percpu(pool->acomp_ctx);
 714	zpool_destroy_pool(pool->zpool);
 715	kfree(pool);
 716}
 717
 718static int __must_check zswap_pool_get(struct zswap_pool *pool)
 719{
 720	if (!pool)
 721		return 0;
 722
 723	return kref_get_unless_zero(&pool->kref);
 
 
 724}
 725
 726static void __zswap_pool_release(struct work_struct *work)
 727{
 728	struct zswap_pool *pool = container_of(work, typeof(*pool),
 729						release_work);
 730
 731	synchronize_rcu();
 732
 733	/* nobody should have been able to get a kref... */
 734	WARN_ON(kref_get_unless_zero(&pool->kref));
 
 735
 736	/* pool is now off zswap_pools list and has no references. */
 737	zswap_pool_destroy(pool);
 738}
 739
 740static void __zswap_pool_empty(struct kref *kref)
 
 
 741{
 742	struct zswap_pool *pool;
 743
 744	pool = container_of(kref, typeof(*pool), kref);
 745
 746	spin_lock(&zswap_pools_lock);
 747
 748	WARN_ON(pool == zswap_pool_current());
 749
 750	list_del_rcu(&pool->list);
 751
 752	INIT_WORK(&pool->release_work, __zswap_pool_release);
 753	schedule_work(&pool->release_work);
 754
 755	spin_unlock(&zswap_pools_lock);
 
 
 
 
 
 
 
 
 756}
 757
 758static void zswap_pool_put(struct zswap_pool *pool)
 759{
 760	kref_put(&pool->kref, __zswap_pool_empty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761}
 762
 763/*********************************
 764* param callbacks
 765**********************************/
 766
 
 
 
 
 
 
 
 
 767/* val must be a null-terminated string */
 768static int __zswap_param_set(const char *val, const struct kernel_param *kp,
 769			     char *type, char *compressor)
 770{
 771	struct zswap_pool *pool, *put_pool = NULL;
 772	char *s = strstrip((char *)val);
 773	int ret;
 
 774
 775	if (zswap_init_failed) {
 
 
 
 
 
 
 
 
 
 
 
 776		pr_err("can't set param, initialization failed\n");
 777		return -ENODEV;
 778	}
 
 779
 780	/* no change required */
 781	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
 782		return 0;
 783
 784	/* if this is load-time (pre-init) param setting,
 785	 * don't create a pool; that's done during init.
 786	 */
 787	if (!zswap_init_started)
 788		return param_set_charp(s, kp);
 789
 790	if (!type) {
 791		if (!zpool_has_pool(s)) {
 792			pr_err("zpool %s not available\n", s);
 793			return -ENOENT;
 794		}
 795		type = s;
 796	} else if (!compressor) {
 797		if (!crypto_has_acomp(s, 0, 0)) {
 798			pr_err("compressor %s not available\n", s);
 799			return -ENOENT;
 800		}
 801		compressor = s;
 802	} else {
 803		WARN_ON(1);
 804		return -EINVAL;
 805	}
 806
 807	spin_lock(&zswap_pools_lock);
 808
 809	pool = zswap_pool_find_get(type, compressor);
 810	if (pool) {
 811		zswap_pool_debug("using existing", pool);
 812		WARN_ON(pool == zswap_pool_current());
 813		list_del_rcu(&pool->list);
 814	}
 815
 816	spin_unlock(&zswap_pools_lock);
 817
 818	if (!pool)
 819		pool = zswap_pool_create(type, compressor);
 
 
 
 
 
 
 
 
 
 
 
 820
 821	if (pool)
 822		ret = param_set_charp(s, kp);
 823	else
 824		ret = -EINVAL;
 825
 826	spin_lock(&zswap_pools_lock);
 827
 828	if (!ret) {
 829		put_pool = zswap_pool_current();
 830		list_add_rcu(&pool->list, &zswap_pools);
 831		zswap_has_pool = true;
 832	} else if (pool) {
 833		/* add the possibly pre-existing pool to the end of the pools
 834		 * list; if it's new (and empty) then it'll be removed and
 835		 * destroyed by the put after we drop the lock
 836		 */
 837		list_add_tail_rcu(&pool->list, &zswap_pools);
 838		put_pool = pool;
 839	}
 840
 841	spin_unlock(&zswap_pools_lock);
 842
 843	if (!zswap_has_pool && !pool) {
 844		/* if initial pool creation failed, and this pool creation also
 845		 * failed, maybe both compressor and zpool params were bad.
 846		 * Allow changing this param, so pool creation will succeed
 847		 * when the other param is changed. We already verified this
 848		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
 849		 * checks above.
 850		 */
 851		ret = param_set_charp(s, kp);
 852	}
 853
 854	/* drop the ref from either the old current pool,
 855	 * or the new pool we failed to add
 856	 */
 857	if (put_pool)
 858		zswap_pool_put(put_pool);
 859
 860	return ret;
 861}
 862
 863static int zswap_compressor_param_set(const char *val,
 864				      const struct kernel_param *kp)
 865{
 866	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
 867}
 868
 869static int zswap_zpool_param_set(const char *val,
 870				 const struct kernel_param *kp)
 871{
 872	return __zswap_param_set(val, kp, NULL, zswap_compressor);
 873}
 874
 875static int zswap_enabled_param_set(const char *val,
 876				   const struct kernel_param *kp)
 877{
 878	if (zswap_init_failed) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879		pr_err("can't enable, initialization failed\n");
 880		return -ENODEV;
 881	}
 882	if (!zswap_has_pool && zswap_init_started) {
 883		pr_err("can't enable, no pool configured\n");
 884		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885	}
 
 886
 887	return param_set_bool(val, kp);
 
 
 
 
 
 
 888}
 889
 890/*********************************
 891* writeback code
 892**********************************/
 893/* return enum for zswap_get_swap_cache_page */
 894enum zswap_get_swap_ret {
 895	ZSWAP_SWAPCACHE_NEW,
 896	ZSWAP_SWAPCACHE_EXIST,
 897	ZSWAP_SWAPCACHE_FAIL,
 898};
 
 
 
 
 
 
 
 
 
 
 
 
 899
 900/*
 901 * zswap_get_swap_cache_page
 902 *
 903 * This is an adaption of read_swap_cache_async()
 904 *
 905 * This function tries to find a page with the given swap entry
 906 * in the swapper_space address space (the swap cache).  If the page
 907 * is found, it is returned in retpage.  Otherwise, a page is allocated,
 908 * added to the swap cache, and returned in retpage.
 909 *
 910 * If success, the swap cache page is returned in retpage
 911 * Returns ZSWAP_SWAPCACHE_EXIST if page was already in the swap cache
 912 * Returns ZSWAP_SWAPCACHE_NEW if the new page needs to be populated,
 913 *     the new page is added to swapcache and locked
 914 * Returns ZSWAP_SWAPCACHE_FAIL on error
 915 */
 916static int zswap_get_swap_cache_page(swp_entry_t entry,
 917				struct page **retpage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918{
 919	bool page_was_allocated;
 920
 921	*retpage = __read_swap_cache_async(entry, GFP_KERNEL,
 922			NULL, 0, &page_was_allocated);
 923	if (page_was_allocated)
 924		return ZSWAP_SWAPCACHE_NEW;
 925	if (!*retpage)
 926		return ZSWAP_SWAPCACHE_FAIL;
 927	return ZSWAP_SWAPCACHE_EXIST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928}
 929
 930/*
 931 * Attempts to free an entry by adding a page to the swap cache,
 932 * decompressing the entry data into the page, and issuing a
 933 * bio write to write the page back to the swap device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934 *
 935 * This can be thought of as a "resumed writeback" of the page
 936 * to the swap device.  We are basically resuming the same swap
 937 * writeback path that was intercepted with the frontswap_store()
 938 * in the first place.  After the page has been decompressed into
 939 * the swap cache, the compressed version stored by zswap can be
 940 * freed.
 941 */
 942static int zswap_writeback_entry(struct zpool *pool, unsigned long handle)
 
 943{
 944	struct zswap_header *zhdr;
 945	swp_entry_t swpentry;
 946	struct zswap_tree *tree;
 947	pgoff_t offset;
 948	struct zswap_entry *entry;
 949	struct page *page;
 950	struct scatterlist input, output;
 951	struct crypto_acomp_ctx *acomp_ctx;
 952
 953	u8 *src, *tmp = NULL;
 954	unsigned int dlen;
 955	int ret;
 956	struct writeback_control wbc = {
 957		.sync_mode = WB_SYNC_NONE,
 958	};
 959
 960	if (!zpool_can_sleep_mapped(pool)) {
 961		tmp = kmalloc(PAGE_SIZE, GFP_KERNEL);
 962		if (!tmp)
 963			return -ENOMEM;
 964	}
 
 965
 966	/* extract swpentry from data */
 967	zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
 968	swpentry = zhdr->swpentry; /* here */
 969	tree = zswap_trees[swp_type(swpentry)];
 970	offset = swp_offset(swpentry);
 971	zpool_unmap_handle(pool, handle);
 
 
 
 
 
 972
 973	/* find and ref zswap entry */
 
 
 
 
 
 
 
 
 
 974	spin_lock(&tree->lock);
 975	entry = zswap_entry_find_get(&tree->rbroot, offset);
 976	if (!entry) {
 977		/* entry was invalidated */
 978		spin_unlock(&tree->lock);
 979		kfree(tmp);
 980		return 0;
 
 
 981	}
 982	spin_unlock(&tree->lock);
 983	BUG_ON(offset != entry->offset);
 984
 985	/* try to allocate swap cache page */
 986	switch (zswap_get_swap_cache_page(swpentry, &page)) {
 987	case ZSWAP_SWAPCACHE_FAIL: /* no memory or invalidate happened */
 988		ret = -ENOMEM;
 989		goto fail;
 990
 991	case ZSWAP_SWAPCACHE_EXIST:
 992		/* page is already in the swap cache, ignore for now */
 993		put_page(page);
 994		ret = -EEXIST;
 995		goto fail;
 996
 997	case ZSWAP_SWAPCACHE_NEW: /* page is locked */
 998		/* decompress */
 999		acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1000		dlen = PAGE_SIZE;
1001
1002		zhdr = zpool_map_handle(pool, handle, ZPOOL_MM_RO);
1003		src = (u8 *)zhdr + sizeof(struct zswap_header);
1004		if (!zpool_can_sleep_mapped(pool)) {
1005			memcpy(tmp, src, entry->length);
1006			src = tmp;
1007			zpool_unmap_handle(pool, handle);
1008		}
1009
1010		mutex_lock(acomp_ctx->mutex);
1011		sg_init_one(&input, src, entry->length);
1012		sg_init_table(&output, 1);
1013		sg_set_page(&output, page, PAGE_SIZE, 0);
1014		acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1015		ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1016		dlen = acomp_ctx->req->dlen;
1017		mutex_unlock(acomp_ctx->mutex);
1018
1019		if (!zpool_can_sleep_mapped(pool))
1020			kfree(tmp);
1021		else
1022			zpool_unmap_handle(pool, handle);
1023
1024		BUG_ON(ret);
1025		BUG_ON(dlen != PAGE_SIZE);
1026
1027		/* page is up to date */
1028		SetPageUptodate(page);
1029	}
1030
1031	/* move it to the tail of the inactive list after end_writeback */
1032	SetPageReclaim(page);
1033
1034	/* start writeback */
1035	__swap_writepage(page, &wbc);
1036	put_page(page);
1037	zswap_written_back_pages++;
1038
1039	spin_lock(&tree->lock);
1040	/* drop local reference */
1041	zswap_entry_put(tree, entry);
 
 
 
 
 
 
 
 
 
 
 
1042
1043	/*
1044	* There are two possible situations for entry here:
1045	* (1) refcount is 1(normal case),  entry is valid and on the tree
1046	* (2) refcount is 0, entry is freed and not on the tree
1047	*     because invalidate happened during writeback
1048	*  search the tree and free the entry if find entry
1049	*/
1050	if (entry == zswap_rb_search(&tree->rbroot, offset))
1051		zswap_entry_put(tree, entry);
1052	spin_unlock(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054	return ret;
 
1055
1056fail:
1057	if (!zpool_can_sleep_mapped(pool))
1058		kfree(tmp);
 
 
 
 
 
 
 
 
 
 
 
 
 
1059
1060	/*
1061	* if we get here due to ZSWAP_SWAPCACHE_EXIST
1062	* a load may be happening concurrently.
1063	* it is safe and okay to not free the entry.
1064	* if we free the entry in the following put
1065	* it is also okay to return !0
1066	*/
1067	spin_lock(&tree->lock);
1068	zswap_entry_put(tree, entry);
1069	spin_unlock(&tree->lock);
 
 
 
 
1070
1071	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072}
1073
1074static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1075{
1076	unsigned int pos;
1077	unsigned long *page;
 
 
1078
1079	page = (unsigned long *)ptr;
1080	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
1081		if (page[pos] != page[0])
 
 
 
 
 
1082			return 0;
1083	}
1084	*value = page[0];
 
 
1085	return 1;
1086}
1087
1088static void zswap_fill_page(void *ptr, unsigned long value)
1089{
1090	unsigned long *page;
1091
1092	page = (unsigned long *)ptr;
1093	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1094}
1095
1096/*********************************
1097* frontswap hooks
1098**********************************/
1099/* attempts to compress and store an single page */
1100static int zswap_frontswap_store(unsigned type, pgoff_t offset,
1101				struct page *page)
1102{
1103	struct zswap_tree *tree = zswap_trees[type];
 
 
1104	struct zswap_entry *entry, *dupentry;
1105	struct scatterlist input, output;
1106	struct crypto_acomp_ctx *acomp_ctx;
1107	struct obj_cgroup *objcg = NULL;
1108	struct zswap_pool *pool;
1109	int ret;
1110	unsigned int hlen, dlen = PAGE_SIZE;
1111	unsigned long handle, value;
1112	char *buf;
1113	u8 *src, *dst;
1114	struct zswap_header zhdr = { .swpentry = swp_entry(type, offset) };
1115	gfp_t gfp;
1116
1117	/* THP isn't supported */
1118	if (PageTransHuge(page)) {
1119		ret = -EINVAL;
1120		goto reject;
1121	}
1122
1123	if (!zswap_enabled || !tree) {
1124		ret = -ENODEV;
1125		goto reject;
 
 
 
 
 
 
 
 
 
 
 
 
1126	}
1127
1128	objcg = get_obj_cgroup_from_page(page);
1129	if (objcg && !obj_cgroup_may_zswap(objcg))
1130		goto shrink;
1131
1132	/* reclaim space if needed */
1133	if (zswap_is_full()) {
1134		zswap_pool_limit_hit++;
1135		zswap_pool_reached_full = true;
1136		goto shrink;
1137	}
1138
1139	if (zswap_pool_reached_full) {
1140	       if (!zswap_can_accept()) {
1141			ret = -ENOMEM;
1142			goto reject;
1143		} else
1144			zswap_pool_reached_full = false;
1145	}
1146
1147	/* allocate entry */
1148	entry = zswap_entry_cache_alloc(GFP_KERNEL);
1149	if (!entry) {
1150		zswap_reject_kmemcache_fail++;
1151		ret = -ENOMEM;
1152		goto reject;
1153	}
1154
1155	if (zswap_same_filled_pages_enabled) {
1156		src = kmap_atomic(page);
 
 
 
1157		if (zswap_is_page_same_filled(src, &value)) {
1158			kunmap_atomic(src);
1159			entry->offset = offset;
1160			entry->length = 0;
1161			entry->value = value;
1162			atomic_inc(&zswap_same_filled_pages);
1163			goto insert_entry;
1164		}
1165		kunmap_atomic(src);
1166	}
1167
1168	if (!zswap_non_same_filled_pages_enabled) {
1169		ret = -EINVAL;
1170		goto freepage;
1171	}
1172
1173	/* if entry is successfully added, it keeps the reference */
1174	entry->pool = zswap_pool_current_get();
1175	if (!entry->pool) {
1176		ret = -EINVAL;
1177		goto freepage;
1178	}
1179
1180	/* compress */
1181	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1182
1183	mutex_lock(acomp_ctx->mutex);
1184
1185	dst = acomp_ctx->dstmem;
1186	sg_init_table(&input, 1);
1187	sg_set_page(&input, page, PAGE_SIZE, 0);
1188
1189	/* zswap_dstmem is of size (PAGE_SIZE * 2). Reflect same in sg_list */
1190	sg_init_one(&output, dst, PAGE_SIZE * 2);
1191	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1192	/*
1193	 * it maybe looks a little bit silly that we send an asynchronous request,
1194	 * then wait for its completion synchronously. This makes the process look
1195	 * synchronous in fact.
1196	 * Theoretically, acomp supports users send multiple acomp requests in one
1197	 * acomp instance, then get those requests done simultaneously. but in this
1198	 * case, frontswap actually does store and load page by page, there is no
1199	 * existing method to send the second page before the first page is done
1200	 * in one thread doing frontswap.
1201	 * but in different threads running on different cpu, we have different
1202	 * acomp instance, so multiple threads can do (de)compression in parallel.
1203	 */
1204	ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1205	dlen = acomp_ctx->req->dlen;
1206
1207	if (ret) {
1208		ret = -EINVAL;
1209		goto put_dstmem;
1210	}
1211
1212	/* store */
1213	hlen = zpool_evictable(entry->pool->zpool) ? sizeof(zhdr) : 0;
1214	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1215	if (zpool_malloc_support_movable(entry->pool->zpool))
1216		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1217	ret = zpool_malloc(entry->pool->zpool, hlen + dlen, gfp, &handle);
1218	if (ret == -ENOSPC) {
1219		zswap_reject_compress_poor++;
1220		goto put_dstmem;
1221	}
1222	if (ret) {
1223		zswap_reject_alloc_fail++;
1224		goto put_dstmem;
1225	}
1226	buf = zpool_map_handle(entry->pool->zpool, handle, ZPOOL_MM_WO);
1227	memcpy(buf, &zhdr, hlen);
1228	memcpy(buf + hlen, dst, dlen);
1229	zpool_unmap_handle(entry->pool->zpool, handle);
1230	mutex_unlock(acomp_ctx->mutex);
1231
1232	/* populate entry */
1233	entry->offset = offset;
1234	entry->handle = handle;
1235	entry->length = dlen;
1236
1237insert_entry:
 
1238	entry->objcg = objcg;
1239	if (objcg) {
1240		obj_cgroup_charge_zswap(objcg, entry->length);
1241		/* Account before objcg ref is moved to tree */
1242		count_objcg_event(objcg, ZSWPOUT);
1243	}
1244
1245	/* map */
1246	spin_lock(&tree->lock);
1247	do {
1248		ret = zswap_rb_insert(&tree->rbroot, entry, &dupentry);
1249		if (ret == -EEXIST) {
1250			zswap_duplicate_entry++;
1251			/* remove from rbtree */
1252			zswap_rb_erase(&tree->rbroot, dupentry);
1253			zswap_entry_put(tree, dupentry);
1254		}
1255	} while (ret == -EEXIST);
 
 
 
 
1256	spin_unlock(&tree->lock);
1257
1258	/* update stats */
1259	atomic_inc(&zswap_stored_pages);
1260	zswap_update_total_size();
1261	count_vm_event(ZSWPOUT);
1262
1263	return 0;
1264
1265put_dstmem:
1266	mutex_unlock(acomp_ctx->mutex);
1267	zswap_pool_put(entry->pool);
1268freepage:
1269	zswap_entry_cache_free(entry);
1270reject:
1271	if (objcg)
1272		obj_cgroup_put(objcg);
1273	return ret;
 
 
 
 
 
 
 
 
 
 
 
1274
1275shrink:
1276	pool = zswap_pool_last_get();
1277	if (pool)
1278		queue_work(shrink_wq, &pool->shrink_work);
1279	ret = -ENOMEM;
1280	goto reject;
1281}
1282
1283/*
1284 * returns 0 if the page was successfully decompressed
1285 * return -1 on entry not found or error
1286*/
1287static int zswap_frontswap_load(unsigned type, pgoff_t offset,
1288				struct page *page)
1289{
1290	struct zswap_tree *tree = zswap_trees[type];
 
 
 
 
1291	struct zswap_entry *entry;
1292	struct scatterlist input, output;
1293	struct crypto_acomp_ctx *acomp_ctx;
1294	u8 *src, *dst, *tmp;
1295	unsigned int dlen;
1296	int ret;
1297
1298	/* find */
1299	spin_lock(&tree->lock);
1300	entry = zswap_entry_find_get(&tree->rbroot, offset);
1301	if (!entry) {
1302		/* entry was written back */
1303		spin_unlock(&tree->lock);
1304		return -1;
1305	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306	spin_unlock(&tree->lock);
1307
1308	if (!entry->length) {
1309		dst = kmap_atomic(page);
 
 
1310		zswap_fill_page(dst, entry->value);
1311		kunmap_atomic(dst);
1312		ret = 0;
1313		goto stats;
1314	}
1315
1316	if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1317		tmp = kmalloc(entry->length, GFP_KERNEL);
1318		if (!tmp) {
1319			ret = -ENOMEM;
1320			goto freeentry;
1321		}
1322	}
1323
1324	/* decompress */
1325	dlen = PAGE_SIZE;
1326	src = zpool_map_handle(entry->pool->zpool, entry->handle, ZPOOL_MM_RO);
1327	if (zpool_evictable(entry->pool->zpool))
1328		src += sizeof(struct zswap_header);
1329
1330	if (!zpool_can_sleep_mapped(entry->pool->zpool)) {
1331		memcpy(tmp, src, entry->length);
1332		src = tmp;
1333		zpool_unmap_handle(entry->pool->zpool, entry->handle);
1334	}
1335
1336	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1337	mutex_lock(acomp_ctx->mutex);
1338	sg_init_one(&input, src, entry->length);
1339	sg_init_table(&output, 1);
1340	sg_set_page(&output, page, PAGE_SIZE, 0);
1341	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, dlen);
1342	ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1343	mutex_unlock(acomp_ctx->mutex);
1344
1345	if (zpool_can_sleep_mapped(entry->pool->zpool))
1346		zpool_unmap_handle(entry->pool->zpool, entry->handle);
1347	else
1348		kfree(tmp);
1349
1350	BUG_ON(ret);
1351stats:
1352	count_vm_event(ZSWPIN);
1353	if (entry->objcg)
1354		count_objcg_event(entry->objcg, ZSWPIN);
1355freeentry:
1356	spin_lock(&tree->lock);
1357	zswap_entry_put(tree, entry);
1358	spin_unlock(&tree->lock);
1359
1360	return ret;
 
 
 
 
 
1361}
1362
1363/* frees an entry in zswap */
1364static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset)
1365{
1366	struct zswap_tree *tree = zswap_trees[type];
 
1367	struct zswap_entry *entry;
1368
1369	/* find */
1370	spin_lock(&tree->lock);
1371	entry = zswap_rb_search(&tree->rbroot, offset);
1372	if (!entry) {
1373		/* entry was written back */
1374		spin_unlock(&tree->lock);
1375		return;
1376	}
1377
1378	/* remove from rbtree */
1379	zswap_rb_erase(&tree->rbroot, entry);
1380
1381	/* drop the initial reference from entry creation */
1382	zswap_entry_put(tree, entry);
1383
1384	spin_unlock(&tree->lock);
1385}
1386
1387/* frees all zswap entries for the given swap type */
1388static void zswap_frontswap_invalidate_area(unsigned type)
1389{
1390	struct zswap_tree *tree = zswap_trees[type];
1391	struct zswap_entry *entry, *n;
1392
1393	if (!tree)
1394		return;
 
 
 
 
1395
1396	/* walk the tree and free everything */
1397	spin_lock(&tree->lock);
1398	rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode)
1399		zswap_free_entry(entry);
1400	tree->rbroot = RB_ROOT;
1401	spin_unlock(&tree->lock);
1402	kfree(tree);
1403	zswap_trees[type] = NULL;
 
1404}
1405
1406static void zswap_frontswap_init(unsigned type)
1407{
1408	struct zswap_tree *tree;
 
1409
1410	tree = kzalloc(sizeof(*tree), GFP_KERNEL);
1411	if (!tree) {
1412		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1413		return;
1414	}
1415
1416	tree->rbroot = RB_ROOT;
1417	spin_lock_init(&tree->lock);
1418	zswap_trees[type] = tree;
1419}
1420
1421static const struct frontswap_ops zswap_frontswap_ops = {
1422	.store = zswap_frontswap_store,
1423	.load = zswap_frontswap_load,
1424	.invalidate_page = zswap_frontswap_invalidate_page,
1425	.invalidate_area = zswap_frontswap_invalidate_area,
1426	.init = zswap_frontswap_init
1427};
1428
1429/*********************************
1430* debugfs functions
1431**********************************/
1432#ifdef CONFIG_DEBUG_FS
1433#include <linux/debugfs.h>
1434
1435static struct dentry *zswap_debugfs_root;
1436
1437static int __init zswap_debugfs_init(void)
1438{
1439	if (!debugfs_initialized())
1440		return -ENODEV;
1441
1442	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1443
1444	debugfs_create_u64("pool_limit_hit", 0444,
1445			   zswap_debugfs_root, &zswap_pool_limit_hit);
1446	debugfs_create_u64("reject_reclaim_fail", 0444,
1447			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1448	debugfs_create_u64("reject_alloc_fail", 0444,
1449			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1450	debugfs_create_u64("reject_kmemcache_fail", 0444,
1451			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
 
 
1452	debugfs_create_u64("reject_compress_poor", 0444,
1453			   zswap_debugfs_root, &zswap_reject_compress_poor);
1454	debugfs_create_u64("written_back_pages", 0444,
1455			   zswap_debugfs_root, &zswap_written_back_pages);
1456	debugfs_create_u64("duplicate_entry", 0444,
1457			   zswap_debugfs_root, &zswap_duplicate_entry);
1458	debugfs_create_u64("pool_total_size", 0444,
1459			   zswap_debugfs_root, &zswap_pool_total_size);
1460	debugfs_create_atomic_t("stored_pages", 0444,
1461				zswap_debugfs_root, &zswap_stored_pages);
1462	debugfs_create_atomic_t("same_filled_pages", 0444,
1463				zswap_debugfs_root, &zswap_same_filled_pages);
1464
1465	return 0;
1466}
1467#else
1468static int __init zswap_debugfs_init(void)
1469{
1470	return 0;
1471}
1472#endif
1473
1474/*********************************
1475* module init and exit
1476**********************************/
1477static int __init init_zswap(void)
1478{
1479	struct zswap_pool *pool;
1480	int ret;
1481
1482	zswap_init_started = true;
1483
1484	if (zswap_entry_cache_create()) {
1485		pr_err("entry cache creation failed\n");
1486		goto cache_fail;
1487	}
1488
1489	ret = cpuhp_setup_state(CPUHP_MM_ZSWP_MEM_PREPARE, "mm/zswap:prepare",
1490				zswap_dstmem_prepare, zswap_dstmem_dead);
1491	if (ret) {
1492		pr_err("dstmem alloc failed\n");
1493		goto dstmem_fail;
1494	}
1495
1496	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1497				      "mm/zswap_pool:prepare",
1498				      zswap_cpu_comp_prepare,
1499				      zswap_cpu_comp_dead);
1500	if (ret)
1501		goto hp_fail;
1502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503	pool = __zswap_pool_create_fallback();
1504	if (pool) {
1505		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1506			zpool_get_type(pool->zpool));
1507		list_add(&pool->list, &zswap_pools);
1508		zswap_has_pool = true;
1509	} else {
1510		pr_err("pool creation failed\n");
1511		zswap_enabled = false;
1512	}
1513
1514	shrink_wq = create_workqueue("zswap-shrink");
1515	if (!shrink_wq)
1516		goto fallback_fail;
1517
1518	ret = frontswap_register_ops(&zswap_frontswap_ops);
1519	if (ret)
1520		goto destroy_wq;
1521	if (zswap_debugfs_init())
1522		pr_warn("debugfs initialization failed\n");
 
1523	return 0;
1524
1525destroy_wq:
 
 
1526	destroy_workqueue(shrink_wq);
1527fallback_fail:
1528	if (pool)
1529		zswap_pool_destroy(pool);
1530hp_fail:
1531	cpuhp_remove_state(CPUHP_MM_ZSWP_MEM_PREPARE);
1532dstmem_fail:
1533	zswap_entry_cache_destroy();
1534cache_fail:
1535	/* if built-in, we aren't unloaded on failure; don't allow use */
1536	zswap_init_failed = true;
1537	zswap_enabled = false;
1538	return -ENOMEM;
1539}
 
 
 
 
 
 
 
1540/* must be late so crypto has time to come up */
1541late_initcall(init_zswap);
1542
1543MODULE_LICENSE("GPL");
1544MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1545MODULE_DESCRIPTION("Compressed cache for swap pages");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * zswap.c - zswap driver file
   4 *
   5 * zswap is a cache that takes pages that are in the process
   6 * of being swapped out and attempts to compress and store them in a
   7 * RAM-based memory pool.  This can result in a significant I/O reduction on
   8 * the swap device and, in the case where decompressing from RAM is faster
   9 * than reading from the swap device, can also improve workload performance.
  10 *
  11 * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
  12*/
  13
  14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/highmem.h>
  19#include <linux/slab.h>
  20#include <linux/spinlock.h>
  21#include <linux/types.h>
  22#include <linux/atomic.h>
 
  23#include <linux/rbtree.h>
  24#include <linux/swap.h>
  25#include <linux/crypto.h>
  26#include <linux/scatterlist.h>
  27#include <linux/mempolicy.h>
  28#include <linux/mempool.h>
  29#include <linux/zpool.h>
  30#include <crypto/acompress.h>
  31#include <linux/zswap.h>
  32#include <linux/mm_types.h>
  33#include <linux/page-flags.h>
  34#include <linux/swapops.h>
  35#include <linux/writeback.h>
  36#include <linux/pagemap.h>
  37#include <linux/workqueue.h>
  38#include <linux/list_lru.h>
  39
  40#include "swap.h"
  41#include "internal.h"
  42
  43/*********************************
  44* statistics
  45**********************************/
  46/* Total bytes used by the compressed storage */
  47u64 zswap_pool_total_size;
  48/* The number of compressed pages currently stored in zswap */
  49atomic_t zswap_stored_pages = ATOMIC_INIT(0);
  50/* The number of same-value filled pages currently stored in zswap */
  51static atomic_t zswap_same_filled_pages = ATOMIC_INIT(0);
  52
  53/*
  54 * The statistics below are not protected from concurrent access for
  55 * performance reasons so they may not be a 100% accurate.  However,
  56 * they do provide useful information on roughly how many times a
  57 * certain event is occurring.
  58*/
  59
  60/* Pool limit was hit (see zswap_max_pool_percent) */
  61static u64 zswap_pool_limit_hit;
  62/* Pages written back when pool limit was reached */
  63static u64 zswap_written_back_pages;
  64/* Store failed due to a reclaim failure after pool limit was reached */
  65static u64 zswap_reject_reclaim_fail;
  66/* Store failed due to compression algorithm failure */
  67static u64 zswap_reject_compress_fail;
  68/* Compressed page was too big for the allocator to (optimally) store */
  69static u64 zswap_reject_compress_poor;
  70/* Store failed because underlying allocator could not get memory */
  71static u64 zswap_reject_alloc_fail;
  72/* Store failed because the entry metadata could not be allocated (rare) */
  73static u64 zswap_reject_kmemcache_fail;
 
 
  74
  75/* Shrinker work queue */
  76static struct workqueue_struct *shrink_wq;
  77/* Pool limit was hit, we need to calm down */
  78static bool zswap_pool_reached_full;
  79
  80/*********************************
  81* tunables
  82**********************************/
  83
  84#define ZSWAP_PARAM_UNSET ""
  85
  86static int zswap_setup(void);
  87
  88/* Enable/disable zswap */
  89static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
  90static int zswap_enabled_param_set(const char *,
  91				   const struct kernel_param *);
  92static const struct kernel_param_ops zswap_enabled_param_ops = {
  93	.set =		zswap_enabled_param_set,
  94	.get =		param_get_bool,
  95};
  96module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
  97
  98/* Crypto compressor to use */
  99static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
 100static int zswap_compressor_param_set(const char *,
 101				      const struct kernel_param *);
 102static const struct kernel_param_ops zswap_compressor_param_ops = {
 103	.set =		zswap_compressor_param_set,
 104	.get =		param_get_charp,
 105	.free =		param_free_charp,
 106};
 107module_param_cb(compressor, &zswap_compressor_param_ops,
 108		&zswap_compressor, 0644);
 109
 110/* Compressed storage zpool to use */
 111static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
 112static int zswap_zpool_param_set(const char *, const struct kernel_param *);
 113static const struct kernel_param_ops zswap_zpool_param_ops = {
 114	.set =		zswap_zpool_param_set,
 115	.get =		param_get_charp,
 116	.free =		param_free_charp,
 117};
 118module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
 119
 120/* The maximum percentage of memory that the compressed pool can occupy */
 121static unsigned int zswap_max_pool_percent = 20;
 122module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
 123
 124/* The threshold for accepting new pages after the max_pool_percent was hit */
 125static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
 126module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
 127		   uint, 0644);
 128
 129/*
 130 * Enable/disable handling same-value filled pages (enabled by default).
 131 * If disabled every page is considered non-same-value filled.
 132 */
 133static bool zswap_same_filled_pages_enabled = true;
 134module_param_named(same_filled_pages_enabled, zswap_same_filled_pages_enabled,
 135		   bool, 0644);
 136
 137/* Enable/disable handling non-same-value filled pages (enabled by default) */
 138static bool zswap_non_same_filled_pages_enabled = true;
 139module_param_named(non_same_filled_pages_enabled, zswap_non_same_filled_pages_enabled,
 140		   bool, 0644);
 141
 142/* Number of zpools in zswap_pool (empirically determined for scalability) */
 143#define ZSWAP_NR_ZPOOLS 32
 144
 145/* Enable/disable memory pressure-based shrinker. */
 146static bool zswap_shrinker_enabled = IS_ENABLED(
 147		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
 148module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
 149
 150bool is_zswap_enabled(void)
 151{
 152	return zswap_enabled;
 153}
 154
 155/*********************************
 156* data structures
 157**********************************/
 158
 159struct crypto_acomp_ctx {
 160	struct crypto_acomp *acomp;
 161	struct acomp_req *req;
 162	struct crypto_wait wait;
 163	u8 *buffer;
 164	struct mutex mutex;
 165	bool is_sleepable;
 166};
 167
 168/*
 169 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
 170 * The only case where lru_lock is not acquired while holding tree.lock is
 171 * when a zswap_entry is taken off the lru for writeback, in that case it
 172 * needs to be verified that it's still valid in the tree.
 173 */
 174struct zswap_pool {
 175	struct zpool *zpools[ZSWAP_NR_ZPOOLS];
 176	struct crypto_acomp_ctx __percpu *acomp_ctx;
 177	struct percpu_ref ref;
 178	struct list_head list;
 179	struct work_struct release_work;
 
 180	struct hlist_node node;
 181	char tfm_name[CRYPTO_MAX_ALG_NAME];
 182};
 183
 184/* Global LRU lists shared by all zswap pools. */
 185static struct list_lru zswap_list_lru;
 186/* counter of pages stored in all zswap pools. */
 187static atomic_t zswap_nr_stored = ATOMIC_INIT(0);
 188
 189/* The lock protects zswap_next_shrink updates. */
 190static DEFINE_SPINLOCK(zswap_shrink_lock);
 191static struct mem_cgroup *zswap_next_shrink;
 192static struct work_struct zswap_shrink_work;
 193static struct shrinker *zswap_shrinker;
 194
 195/*
 196 * struct zswap_entry
 197 *
 198 * This structure contains the metadata for tracking a single compressed
 199 * page within zswap.
 200 *
 201 * rbnode - links the entry into red-black tree for the appropriate swap type
 202 * swpentry - associated swap entry, the offset indexes into the red-black tree
 
 
 
 
 
 
 203 * length - the length in bytes of the compressed page data.  Needed during
 204 *          decompression. For a same value filled page length is 0, and both
 205 *          pool and lru are invalid and must be ignored.
 206 * pool - the zswap_pool the entry's data is in
 207 * handle - zpool allocation handle that stores the compressed page data
 208 * value - value of the same-value filled pages which have same content
 209 * objcg - the obj_cgroup that the compressed memory is charged to
 210 * lru - handle to the pool's lru used to evict pages.
 211 */
 212struct zswap_entry {
 213	struct rb_node rbnode;
 214	swp_entry_t swpentry;
 
 215	unsigned int length;
 216	struct zswap_pool *pool;
 217	union {
 218		unsigned long handle;
 219		unsigned long value;
 220	};
 221	struct obj_cgroup *objcg;
 222	struct list_head lru;
 223};
 224
 
 
 
 
 
 
 
 
 
 225struct zswap_tree {
 226	struct rb_root rbroot;
 227	spinlock_t lock;
 228};
 229
 230static struct zswap_tree *zswap_trees[MAX_SWAPFILES];
 231static unsigned int nr_zswap_trees[MAX_SWAPFILES];
 232
 233/* RCU-protected iteration */
 234static LIST_HEAD(zswap_pools);
 235/* protects zswap_pools list modification */
 236static DEFINE_SPINLOCK(zswap_pools_lock);
 237/* pool counter to provide unique names to zpool */
 238static atomic_t zswap_pools_count = ATOMIC_INIT(0);
 239
 240enum zswap_init_type {
 241	ZSWAP_UNINIT,
 242	ZSWAP_INIT_SUCCEED,
 243	ZSWAP_INIT_FAILED
 244};
 245
 246static enum zswap_init_type zswap_init_state;
 247
 248/* used to ensure the integrity of initialization */
 249static DEFINE_MUTEX(zswap_init_lock);
 250
 251/* init completed, but couldn't create the initial pool */
 252static bool zswap_has_pool;
 253
 254/*********************************
 255* helpers and fwd declarations
 256**********************************/
 257
 258static inline struct zswap_tree *swap_zswap_tree(swp_entry_t swp)
 259{
 260	return &zswap_trees[swp_type(swp)][swp_offset(swp)
 261		>> SWAP_ADDRESS_SPACE_SHIFT];
 262}
 263
 264#define zswap_pool_debug(msg, p)				\
 265	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
 266		 zpool_get_type((p)->zpools[0]))
 
 
 
 
 
 
 
 
 267
 268static bool zswap_is_full(void)
 269{
 270	return totalram_pages() * zswap_max_pool_percent / 100 <
 271			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 272}
 273
 274static bool zswap_can_accept(void)
 275{
 276	return totalram_pages() * zswap_accept_thr_percent / 100 *
 277				zswap_max_pool_percent / 100 >
 278			DIV_ROUND_UP(zswap_pool_total_size, PAGE_SIZE);
 279}
 280
 281static u64 get_zswap_pool_size(struct zswap_pool *pool)
 282{
 283	u64 pool_size = 0;
 284	int i;
 285
 286	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
 287		pool_size += zpool_get_total_size(pool->zpools[i]);
 288
 289	return pool_size;
 290}
 291
 292static void zswap_update_total_size(void)
 293{
 294	struct zswap_pool *pool;
 295	u64 total = 0;
 296
 297	rcu_read_lock();
 298
 299	list_for_each_entry_rcu(pool, &zswap_pools, list)
 300		total += get_zswap_pool_size(pool);
 301
 302	rcu_read_unlock();
 303
 304	zswap_pool_total_size = total;
 305}
 306
 307/*********************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308* pool functions
 309**********************************/
 310static void __zswap_pool_empty(struct percpu_ref *ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311
 312static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
 313{
 314	int i;
 315	struct zswap_pool *pool;
 316	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
 317	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
 318	int ret;
 319
 320	if (!zswap_has_pool) {
 321		/* if either are unset, pool initialization failed, and we
 322		 * need both params to be set correctly before trying to
 323		 * create a pool.
 324		 */
 325		if (!strcmp(type, ZSWAP_PARAM_UNSET))
 326			return NULL;
 327		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
 328			return NULL;
 329	}
 330
 331	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 332	if (!pool)
 333		return NULL;
 334
 335	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++) {
 336		/* unique name for each pool specifically required by zsmalloc */
 337		snprintf(name, 38, "zswap%x",
 338			 atomic_inc_return(&zswap_pools_count));
 339
 340		pool->zpools[i] = zpool_create_pool(type, name, gfp);
 341		if (!pool->zpools[i]) {
 342			pr_err("%s zpool not available\n", type);
 343			goto error;
 344		}
 345	}
 346	pr_debug("using %s zpool\n", zpool_get_type(pool->zpools[0]));
 347
 348	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
 349
 350	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
 351	if (!pool->acomp_ctx) {
 352		pr_err("percpu alloc failed\n");
 353		goto error;
 354	}
 355
 356	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
 357				       &pool->node);
 358	if (ret)
 359		goto error;
 
 360
 361	/* being the current pool takes 1 ref; this func expects the
 362	 * caller to always add the new pool as the current pool
 363	 */
 364	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
 365			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
 366	if (ret)
 367		goto ref_fail;
 368	INIT_LIST_HEAD(&pool->list);
 
 369
 370	zswap_pool_debug("created", pool);
 371
 372	return pool;
 373
 374ref_fail:
 375	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
 376error:
 377	if (pool->acomp_ctx)
 378		free_percpu(pool->acomp_ctx);
 379	while (i--)
 380		zpool_destroy_pool(pool->zpools[i]);
 381	kfree(pool);
 382	return NULL;
 383}
 384
 385static struct zswap_pool *__zswap_pool_create_fallback(void)
 386{
 387	bool has_comp, has_zpool;
 388
 389	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
 390	if (!has_comp && strcmp(zswap_compressor,
 391				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
 392		pr_err("compressor %s not available, using default %s\n",
 393		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
 394		param_free_charp(&zswap_compressor);
 395		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
 396		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
 397	}
 398	if (!has_comp) {
 399		pr_err("default compressor %s not available\n",
 400		       zswap_compressor);
 401		param_free_charp(&zswap_compressor);
 402		zswap_compressor = ZSWAP_PARAM_UNSET;
 403	}
 404
 405	has_zpool = zpool_has_pool(zswap_zpool_type);
 406	if (!has_zpool && strcmp(zswap_zpool_type,
 407				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
 408		pr_err("zpool %s not available, using default %s\n",
 409		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
 410		param_free_charp(&zswap_zpool_type);
 411		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
 412		has_zpool = zpool_has_pool(zswap_zpool_type);
 413	}
 414	if (!has_zpool) {
 415		pr_err("default zpool %s not available\n",
 416		       zswap_zpool_type);
 417		param_free_charp(&zswap_zpool_type);
 418		zswap_zpool_type = ZSWAP_PARAM_UNSET;
 419	}
 420
 421	if (!has_comp || !has_zpool)
 422		return NULL;
 423
 424	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
 425}
 426
 427static void zswap_pool_destroy(struct zswap_pool *pool)
 428{
 429	int i;
 430
 431	zswap_pool_debug("destroying", pool);
 432
 433	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
 434	free_percpu(pool->acomp_ctx);
 
 
 
 
 
 
 
 
 435
 436	for (i = 0; i < ZSWAP_NR_ZPOOLS; i++)
 437		zpool_destroy_pool(pool->zpools[i]);
 438	kfree(pool);
 439}
 440
 441static void __zswap_pool_release(struct work_struct *work)
 442{
 443	struct zswap_pool *pool = container_of(work, typeof(*pool),
 444						release_work);
 445
 446	synchronize_rcu();
 447
 448	/* nobody should have been able to get a ref... */
 449	WARN_ON(!percpu_ref_is_zero(&pool->ref));
 450	percpu_ref_exit(&pool->ref);
 451
 452	/* pool is now off zswap_pools list and has no references. */
 453	zswap_pool_destroy(pool);
 454}
 455
 456static struct zswap_pool *zswap_pool_current(void);
 457
 458static void __zswap_pool_empty(struct percpu_ref *ref)
 459{
 460	struct zswap_pool *pool;
 461
 462	pool = container_of(ref, typeof(*pool), ref);
 463
 464	spin_lock_bh(&zswap_pools_lock);
 465
 466	WARN_ON(pool == zswap_pool_current());
 467
 468	list_del_rcu(&pool->list);
 469
 470	INIT_WORK(&pool->release_work, __zswap_pool_release);
 471	schedule_work(&pool->release_work);
 472
 473	spin_unlock_bh(&zswap_pools_lock);
 474}
 475
 476static int __must_check zswap_pool_get(struct zswap_pool *pool)
 477{
 478	if (!pool)
 479		return 0;
 480
 481	return percpu_ref_tryget(&pool->ref);
 482}
 483
 484static void zswap_pool_put(struct zswap_pool *pool)
 485{
 486	percpu_ref_put(&pool->ref);
 487}
 488
 489static struct zswap_pool *__zswap_pool_current(void)
 490{
 491	struct zswap_pool *pool;
 492
 493	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
 494	WARN_ONCE(!pool && zswap_has_pool,
 495		  "%s: no page storage pool!\n", __func__);
 496
 497	return pool;
 498}
 499
 500static struct zswap_pool *zswap_pool_current(void)
 501{
 502	assert_spin_locked(&zswap_pools_lock);
 503
 504	return __zswap_pool_current();
 505}
 506
 507static struct zswap_pool *zswap_pool_current_get(void)
 508{
 509	struct zswap_pool *pool;
 510
 511	rcu_read_lock();
 512
 513	pool = __zswap_pool_current();
 514	if (!zswap_pool_get(pool))
 515		pool = NULL;
 516
 517	rcu_read_unlock();
 518
 519	return pool;
 520}
 521
 522/* type and compressor must be null-terminated */
 523static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
 524{
 525	struct zswap_pool *pool;
 526
 527	assert_spin_locked(&zswap_pools_lock);
 528
 529	list_for_each_entry_rcu(pool, &zswap_pools, list) {
 530		if (strcmp(pool->tfm_name, compressor))
 531			continue;
 532		/* all zpools share the same type */
 533		if (strcmp(zpool_get_type(pool->zpools[0]), type))
 534			continue;
 535		/* if we can't get it, it's about to be destroyed */
 536		if (!zswap_pool_get(pool))
 537			continue;
 538		return pool;
 539	}
 540
 541	return NULL;
 542}
 543
 544/*********************************
 545* param callbacks
 546**********************************/
 547
 548static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
 549{
 550	/* no change required */
 551	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
 552		return false;
 553	return true;
 554}
 555
 556/* val must be a null-terminated string */
 557static int __zswap_param_set(const char *val, const struct kernel_param *kp,
 558			     char *type, char *compressor)
 559{
 560	struct zswap_pool *pool, *put_pool = NULL;
 561	char *s = strstrip((char *)val);
 562	int ret = 0;
 563	bool new_pool = false;
 564
 565	mutex_lock(&zswap_init_lock);
 566	switch (zswap_init_state) {
 567	case ZSWAP_UNINIT:
 568		/* if this is load-time (pre-init) param setting,
 569		 * don't create a pool; that's done during init.
 570		 */
 571		ret = param_set_charp(s, kp);
 572		break;
 573	case ZSWAP_INIT_SUCCEED:
 574		new_pool = zswap_pool_changed(s, kp);
 575		break;
 576	case ZSWAP_INIT_FAILED:
 577		pr_err("can't set param, initialization failed\n");
 578		ret = -ENODEV;
 579	}
 580	mutex_unlock(&zswap_init_lock);
 581
 582	/* no need to create a new pool, return directly */
 583	if (!new_pool)
 584		return ret;
 
 
 
 
 
 
 585
 586	if (!type) {
 587		if (!zpool_has_pool(s)) {
 588			pr_err("zpool %s not available\n", s);
 589			return -ENOENT;
 590		}
 591		type = s;
 592	} else if (!compressor) {
 593		if (!crypto_has_acomp(s, 0, 0)) {
 594			pr_err("compressor %s not available\n", s);
 595			return -ENOENT;
 596		}
 597		compressor = s;
 598	} else {
 599		WARN_ON(1);
 600		return -EINVAL;
 601	}
 602
 603	spin_lock_bh(&zswap_pools_lock);
 604
 605	pool = zswap_pool_find_get(type, compressor);
 606	if (pool) {
 607		zswap_pool_debug("using existing", pool);
 608		WARN_ON(pool == zswap_pool_current());
 609		list_del_rcu(&pool->list);
 610	}
 611
 612	spin_unlock_bh(&zswap_pools_lock);
 613
 614	if (!pool)
 615		pool = zswap_pool_create(type, compressor);
 616	else {
 617		/*
 618		 * Restore the initial ref dropped by percpu_ref_kill()
 619		 * when the pool was decommissioned and switch it again
 620		 * to percpu mode.
 621		 */
 622		percpu_ref_resurrect(&pool->ref);
 623
 624		/* Drop the ref from zswap_pool_find_get(). */
 625		zswap_pool_put(pool);
 626	}
 627
 628	if (pool)
 629		ret = param_set_charp(s, kp);
 630	else
 631		ret = -EINVAL;
 632
 633	spin_lock_bh(&zswap_pools_lock);
 634
 635	if (!ret) {
 636		put_pool = zswap_pool_current();
 637		list_add_rcu(&pool->list, &zswap_pools);
 638		zswap_has_pool = true;
 639	} else if (pool) {
 640		/* add the possibly pre-existing pool to the end of the pools
 641		 * list; if it's new (and empty) then it'll be removed and
 642		 * destroyed by the put after we drop the lock
 643		 */
 644		list_add_tail_rcu(&pool->list, &zswap_pools);
 645		put_pool = pool;
 646	}
 647
 648	spin_unlock_bh(&zswap_pools_lock);
 649
 650	if (!zswap_has_pool && !pool) {
 651		/* if initial pool creation failed, and this pool creation also
 652		 * failed, maybe both compressor and zpool params were bad.
 653		 * Allow changing this param, so pool creation will succeed
 654		 * when the other param is changed. We already verified this
 655		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
 656		 * checks above.
 657		 */
 658		ret = param_set_charp(s, kp);
 659	}
 660
 661	/* drop the ref from either the old current pool,
 662	 * or the new pool we failed to add
 663	 */
 664	if (put_pool)
 665		percpu_ref_kill(&put_pool->ref);
 666
 667	return ret;
 668}
 669
 670static int zswap_compressor_param_set(const char *val,
 671				      const struct kernel_param *kp)
 672{
 673	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
 674}
 675
 676static int zswap_zpool_param_set(const char *val,
 677				 const struct kernel_param *kp)
 678{
 679	return __zswap_param_set(val, kp, NULL, zswap_compressor);
 680}
 681
 682static int zswap_enabled_param_set(const char *val,
 683				   const struct kernel_param *kp)
 684{
 685	int ret = -ENODEV;
 686
 687	/* if this is load-time (pre-init) param setting, only set param. */
 688	if (system_state != SYSTEM_RUNNING)
 689		return param_set_bool(val, kp);
 690
 691	mutex_lock(&zswap_init_lock);
 692	switch (zswap_init_state) {
 693	case ZSWAP_UNINIT:
 694		if (zswap_setup())
 695			break;
 696		fallthrough;
 697	case ZSWAP_INIT_SUCCEED:
 698		if (!zswap_has_pool)
 699			pr_err("can't enable, no pool configured\n");
 700		else
 701			ret = param_set_bool(val, kp);
 702		break;
 703	case ZSWAP_INIT_FAILED:
 704		pr_err("can't enable, initialization failed\n");
 
 705	}
 706	mutex_unlock(&zswap_init_lock);
 707
 708	return ret;
 709}
 710
 711/*********************************
 712* lru functions
 713**********************************/
 714
 715/* should be called under RCU */
 716#ifdef CONFIG_MEMCG
 717static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
 718{
 719	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
 720}
 721#else
 722static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
 723{
 724	return NULL;
 725}
 726#endif
 727
 728static inline int entry_to_nid(struct zswap_entry *entry)
 729{
 730	return page_to_nid(virt_to_page(entry));
 731}
 732
 733static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
 734{
 735	atomic_long_t *nr_zswap_protected;
 736	unsigned long lru_size, old, new;
 737	int nid = entry_to_nid(entry);
 738	struct mem_cgroup *memcg;
 739	struct lruvec *lruvec;
 740
 741	/*
 742	 * Note that it is safe to use rcu_read_lock() here, even in the face of
 743	 * concurrent memcg offlining. Thanks to the memcg->kmemcg_id indirection
 744	 * used in list_lru lookup, only two scenarios are possible:
 745	 *
 746	 * 1. list_lru_add() is called before memcg->kmemcg_id is updated. The
 747	 *    new entry will be reparented to memcg's parent's list_lru.
 748	 * 2. list_lru_add() is called after memcg->kmemcg_id is updated. The
 749	 *    new entry will be added directly to memcg's parent's list_lru.
 750	 *
 751	 * Similar reasoning holds for list_lru_del().
 752	 */
 753	rcu_read_lock();
 754	memcg = mem_cgroup_from_entry(entry);
 755	/* will always succeed */
 756	list_lru_add(list_lru, &entry->lru, nid, memcg);
 757
 758	/* Update the protection area */
 759	lru_size = list_lru_count_one(list_lru, nid, memcg);
 760	lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
 761	nr_zswap_protected = &lruvec->zswap_lruvec_state.nr_zswap_protected;
 762	old = atomic_long_inc_return(nr_zswap_protected);
 763	/*
 764	 * Decay to avoid overflow and adapt to changing workloads.
 765	 * This is based on LRU reclaim cost decaying heuristics.
 766	 */
 767	do {
 768		new = old > lru_size / 4 ? old / 2 : old;
 769	} while (!atomic_long_try_cmpxchg(nr_zswap_protected, &old, new));
 770	rcu_read_unlock();
 771}
 772
 773static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
 774{
 775	int nid = entry_to_nid(entry);
 776	struct mem_cgroup *memcg;
 777
 778	rcu_read_lock();
 779	memcg = mem_cgroup_from_entry(entry);
 780	/* will always succeed */
 781	list_lru_del(list_lru, &entry->lru, nid, memcg);
 782	rcu_read_unlock();
 783}
 784
 785void zswap_lruvec_state_init(struct lruvec *lruvec)
 786{
 787	atomic_long_set(&lruvec->zswap_lruvec_state.nr_zswap_protected, 0);
 788}
 789
 790void zswap_folio_swapin(struct folio *folio)
 791{
 792	struct lruvec *lruvec;
 793
 794	if (folio) {
 795		lruvec = folio_lruvec(folio);
 796		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_zswap_protected);
 797	}
 798}
 799
 800void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
 801{
 802	/* lock out zswap shrinker walking memcg tree */
 803	spin_lock(&zswap_shrink_lock);
 804	if (zswap_next_shrink == memcg)
 805		zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
 806	spin_unlock(&zswap_shrink_lock);
 807}
 808
 809/*********************************
 810* rbtree functions
 811**********************************/
 812static struct zswap_entry *zswap_rb_search(struct rb_root *root, pgoff_t offset)
 813{
 814	struct rb_node *node = root->rb_node;
 815	struct zswap_entry *entry;
 816	pgoff_t entry_offset;
 817
 818	while (node) {
 819		entry = rb_entry(node, struct zswap_entry, rbnode);
 820		entry_offset = swp_offset(entry->swpentry);
 821		if (entry_offset > offset)
 822			node = node->rb_left;
 823		else if (entry_offset < offset)
 824			node = node->rb_right;
 825		else
 826			return entry;
 827	}
 828	return NULL;
 829}
 830
 831/*
 832 * In the case that a entry with the same offset is found, a pointer to
 833 * the existing entry is stored in dupentry and the function returns -EEXIST
 
 
 
 
 
 
 
 
 
 
 
 
 834 */
 835static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
 836			struct zswap_entry **dupentry)
 837{
 838	struct rb_node **link = &root->rb_node, *parent = NULL;
 839	struct zswap_entry *myentry;
 840	pgoff_t myentry_offset, entry_offset = swp_offset(entry->swpentry);
 841
 842	while (*link) {
 843		parent = *link;
 844		myentry = rb_entry(parent, struct zswap_entry, rbnode);
 845		myentry_offset = swp_offset(myentry->swpentry);
 846		if (myentry_offset > entry_offset)
 847			link = &(*link)->rb_left;
 848		else if (myentry_offset < entry_offset)
 849			link = &(*link)->rb_right;
 850		else {
 851			*dupentry = myentry;
 852			return -EEXIST;
 853		}
 854	}
 855	rb_link_node(&entry->rbnode, parent, link);
 856	rb_insert_color(&entry->rbnode, root);
 857	return 0;
 858}
 859
 860static void zswap_rb_erase(struct rb_root *root, struct zswap_entry *entry)
 861{
 862	rb_erase(&entry->rbnode, root);
 863	RB_CLEAR_NODE(&entry->rbnode);
 864}
 865
 866/*********************************
 867* zswap entry functions
 868**********************************/
 869static struct kmem_cache *zswap_entry_cache;
 870
 871static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
 872{
 873	struct zswap_entry *entry;
 874	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
 875	if (!entry)
 876		return NULL;
 877	RB_CLEAR_NODE(&entry->rbnode);
 878	return entry;
 879}
 880
 881static void zswap_entry_cache_free(struct zswap_entry *entry)
 882{
 883	kmem_cache_free(zswap_entry_cache, entry);
 884}
 885
 886static struct zpool *zswap_find_zpool(struct zswap_entry *entry)
 887{
 888	int i = 0;
 889
 890	if (ZSWAP_NR_ZPOOLS > 1)
 891		i = hash_ptr(entry, ilog2(ZSWAP_NR_ZPOOLS));
 892
 893	return entry->pool->zpools[i];
 894}
 895
 896/*
 897 * Carries out the common pattern of freeing and entry's zpool allocation,
 898 * freeing the entry itself, and decrementing the number of stored pages.
 899 */
 900static void zswap_entry_free(struct zswap_entry *entry)
 901{
 902	if (!entry->length)
 903		atomic_dec(&zswap_same_filled_pages);
 904	else {
 905		zswap_lru_del(&zswap_list_lru, entry);
 906		zpool_free(zswap_find_zpool(entry), entry->handle);
 907		atomic_dec(&zswap_nr_stored);
 908		zswap_pool_put(entry->pool);
 909	}
 910	if (entry->objcg) {
 911		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
 912		obj_cgroup_put(entry->objcg);
 913	}
 914	zswap_entry_cache_free(entry);
 915	atomic_dec(&zswap_stored_pages);
 916	zswap_update_total_size();
 917}
 918
 919/*
 920 * The caller hold the tree lock and search the entry from the tree,
 921 * so it must be on the tree, remove it from the tree and free it.
 922 */
 923static void zswap_invalidate_entry(struct zswap_tree *tree,
 924				   struct zswap_entry *entry)
 925{
 926	zswap_rb_erase(&tree->rbroot, entry);
 927	zswap_entry_free(entry);
 928}
 929
 930/*********************************
 931* compressed storage functions
 932**********************************/
 933static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
 934{
 935	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 936	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
 937	struct crypto_acomp *acomp;
 938	struct acomp_req *req;
 939	int ret;
 940
 941	mutex_init(&acomp_ctx->mutex);
 942
 943	acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
 944	if (!acomp_ctx->buffer)
 945		return -ENOMEM;
 946
 947	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
 948	if (IS_ERR(acomp)) {
 949		pr_err("could not alloc crypto acomp %s : %ld\n",
 950				pool->tfm_name, PTR_ERR(acomp));
 951		ret = PTR_ERR(acomp);
 952		goto acomp_fail;
 953	}
 954	acomp_ctx->acomp = acomp;
 955	acomp_ctx->is_sleepable = acomp_is_async(acomp);
 956
 957	req = acomp_request_alloc(acomp_ctx->acomp);
 958	if (!req) {
 959		pr_err("could not alloc crypto acomp_request %s\n",
 960		       pool->tfm_name);
 961		ret = -ENOMEM;
 962		goto req_fail;
 963	}
 964	acomp_ctx->req = req;
 965
 966	crypto_init_wait(&acomp_ctx->wait);
 967	/*
 968	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
 969	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
 970	 * won't be called, crypto_wait_req() will return without blocking.
 971	 */
 972	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 973				   crypto_req_done, &acomp_ctx->wait);
 974
 975	return 0;
 976
 977req_fail:
 978	crypto_free_acomp(acomp_ctx->acomp);
 979acomp_fail:
 980	kfree(acomp_ctx->buffer);
 981	return ret;
 982}
 983
 984static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
 985{
 986	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
 987	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
 988
 989	if (!IS_ERR_OR_NULL(acomp_ctx)) {
 990		if (!IS_ERR_OR_NULL(acomp_ctx->req))
 991			acomp_request_free(acomp_ctx->req);
 992		if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
 993			crypto_free_acomp(acomp_ctx->acomp);
 994		kfree(acomp_ctx->buffer);
 995	}
 996
 997	return 0;
 998}
 999
1000static bool zswap_compress(struct folio *folio, struct zswap_entry *entry)
1001{
1002	struct crypto_acomp_ctx *acomp_ctx;
1003	struct scatterlist input, output;
1004	int comp_ret = 0, alloc_ret = 0;
1005	unsigned int dlen = PAGE_SIZE;
1006	unsigned long handle;
1007	struct zpool *zpool;
1008	char *buf;
1009	gfp_t gfp;
1010	u8 *dst;
1011
1012	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1013
1014	mutex_lock(&acomp_ctx->mutex);
1015
1016	dst = acomp_ctx->buffer;
1017	sg_init_table(&input, 1);
1018	sg_set_page(&input, &folio->page, PAGE_SIZE, 0);
1019
1020	/*
1021	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
1022	 * and hardware-accelerators may won't check the dst buffer size, so
1023	 * giving the dst buffer with enough length to avoid buffer overflow.
1024	 */
1025	sg_init_one(&output, dst, PAGE_SIZE * 2);
1026	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
1027
1028	/*
1029	 * it maybe looks a little bit silly that we send an asynchronous request,
1030	 * then wait for its completion synchronously. This makes the process look
1031	 * synchronous in fact.
1032	 * Theoretically, acomp supports users send multiple acomp requests in one
1033	 * acomp instance, then get those requests done simultaneously. but in this
1034	 * case, zswap actually does store and load page by page, there is no
1035	 * existing method to send the second page before the first page is done
1036	 * in one thread doing zwap.
1037	 * but in different threads running on different cpu, we have different
1038	 * acomp instance, so multiple threads can do (de)compression in parallel.
1039	 */
1040	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
1041	dlen = acomp_ctx->req->dlen;
1042	if (comp_ret)
1043		goto unlock;
1044
1045	zpool = zswap_find_zpool(entry);
1046	gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
1047	if (zpool_malloc_support_movable(zpool))
1048		gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
1049	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
1050	if (alloc_ret)
1051		goto unlock;
1052
1053	buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
1054	memcpy(buf, dst, dlen);
1055	zpool_unmap_handle(zpool, handle);
1056
1057	entry->handle = handle;
1058	entry->length = dlen;
1059
1060unlock:
1061	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
1062		zswap_reject_compress_poor++;
1063	else if (comp_ret)
1064		zswap_reject_compress_fail++;
1065	else if (alloc_ret)
1066		zswap_reject_alloc_fail++;
1067
1068	mutex_unlock(&acomp_ctx->mutex);
1069	return comp_ret == 0 && alloc_ret == 0;
1070}
1071
1072static void zswap_decompress(struct zswap_entry *entry, struct page *page)
1073{
1074	struct zpool *zpool = zswap_find_zpool(entry);
1075	struct scatterlist input, output;
1076	struct crypto_acomp_ctx *acomp_ctx;
1077	u8 *src;
1078
1079	acomp_ctx = raw_cpu_ptr(entry->pool->acomp_ctx);
1080	mutex_lock(&acomp_ctx->mutex);
1081
1082	src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1083	/*
1084	 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
1085	 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
1086	 * resort to copying the buffer to a temporary one.
1087	 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
1088	 * such as a kmap address of high memory or even ever a vmap address.
1089	 * However, sg_init_one is only equipped to handle linearly mapped low memory.
1090	 * In such cases, we also must copy the buffer to a temporary and lowmem one.
1091	 */
1092	if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
1093	    !virt_addr_valid(src)) {
1094		memcpy(acomp_ctx->buffer, src, entry->length);
1095		src = acomp_ctx->buffer;
1096		zpool_unmap_handle(zpool, entry->handle);
1097	}
1098
1099	sg_init_one(&input, src, entry->length);
1100	sg_init_table(&output, 1);
1101	sg_set_page(&output, page, PAGE_SIZE, 0);
1102	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1103	BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1104	BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1105	mutex_unlock(&acomp_ctx->mutex);
1106
1107	if (src != acomp_ctx->buffer)
1108		zpool_unmap_handle(zpool, entry->handle);
1109}
1110
1111/*********************************
1112* writeback code
1113**********************************/
1114/*
1115 * Attempts to free an entry by adding a folio to the swap cache,
1116 * decompressing the entry data into the folio, and issuing a
1117 * bio write to write the folio back to the swap device.
1118 *
1119 * This can be thought of as a "resumed writeback" of the folio
1120 * to the swap device.  We are basically resuming the same swap
1121 * writeback path that was intercepted with the zswap_store()
1122 * in the first place.  After the folio has been decompressed into
1123 * the swap cache, the compressed version stored by zswap can be
1124 * freed.
1125 */
1126static int zswap_writeback_entry(struct zswap_entry *entry,
1127				 swp_entry_t swpentry)
1128{
 
 
1129	struct zswap_tree *tree;
1130	struct folio *folio;
1131	struct mempolicy *mpol;
1132	bool folio_was_allocated;
 
 
 
 
 
 
1133	struct writeback_control wbc = {
1134		.sync_mode = WB_SYNC_NONE,
1135	};
1136
1137	/* try to allocate swap cache folio */
1138	mpol = get_task_policy(current);
1139	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1140				NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1141	if (!folio)
1142		return -ENOMEM;
1143
1144	/*
1145	 * Found an existing folio, we raced with swapin or concurrent
1146	 * shrinker. We generally writeback cold folios from zswap, and
1147	 * swapin means the folio just became hot, so skip this folio.
1148	 * For unlikely concurrent shrinker case, it will be unlinked
1149	 * and freed when invalidated by the concurrent shrinker anyway.
1150	 */
1151	if (!folio_was_allocated) {
1152		folio_put(folio);
1153		return -EEXIST;
1154	}
1155
1156	/*
1157	 * folio is locked, and the swapcache is now secured against
1158	 * concurrent swapping to and from the slot, and concurrent
1159	 * swapoff so we can safely dereference the zswap tree here.
1160	 * Verify that the swap entry hasn't been invalidated and recycled
1161	 * behind our backs, to avoid overwriting a new swap folio with
1162	 * old compressed data. Only when this is successful can the entry
1163	 * be dereferenced.
1164	 */
1165	tree = swap_zswap_tree(swpentry);
1166	spin_lock(&tree->lock);
1167	if (zswap_rb_search(&tree->rbroot, swp_offset(swpentry)) != entry) {
 
 
1168		spin_unlock(&tree->lock);
1169		delete_from_swap_cache(folio);
1170		folio_unlock(folio);
1171		folio_put(folio);
1172		return -ENOMEM;
1173	}
 
 
 
 
 
 
 
 
1174
1175	/* Safe to deref entry after the entry is verified above. */
1176	zswap_rb_erase(&tree->rbroot, entry);
1177	spin_unlock(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179	zswap_decompress(entry, &folio->page);
 
 
 
 
 
 
 
1180
1181	count_vm_event(ZSWPWB);
1182	if (entry->objcg)
1183		count_objcg_event(entry->objcg, ZSWPWB);
 
1184
1185	zswap_entry_free(entry);
 
1186
1187	/* folio is up to date */
1188	folio_mark_uptodate(folio);
 
1189
1190	/* move it to the tail of the inactive list after end_writeback */
1191	folio_set_reclaim(folio);
1192
1193	/* start writeback */
1194	__swap_writepage(folio, &wbc);
1195	folio_put(folio);
 
1196
1197	return 0;
1198}
1199
1200/*********************************
1201* shrinker functions
1202**********************************/
1203static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1204				       spinlock_t *lock, void *arg)
1205{
1206	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1207	bool *encountered_page_in_swapcache = (bool *)arg;
1208	swp_entry_t swpentry;
1209	enum lru_status ret = LRU_REMOVED_RETRY;
1210	int writeback_result;
1211
1212	/*
1213	 * As soon as we drop the LRU lock, the entry can be freed by
1214	 * a concurrent invalidation. This means the following:
1215	 *
1216	 * 1. We extract the swp_entry_t to the stack, allowing
1217	 *    zswap_writeback_entry() to pin the swap entry and
1218	 *    then validate the zwap entry against that swap entry's
1219	 *    tree using pointer value comparison. Only when that
1220	 *    is successful can the entry be dereferenced.
1221	 *
1222	 * 2. Usually, objects are taken off the LRU for reclaim. In
1223	 *    this case this isn't possible, because if reclaim fails
1224	 *    for whatever reason, we have no means of knowing if the
1225	 *    entry is alive to put it back on the LRU.
1226	 *
1227	 *    So rotate it before dropping the lock. If the entry is
1228	 *    written back or invalidated, the free path will unlink
1229	 *    it. For failures, rotation is the right thing as well.
1230	 *
1231	 *    Temporary failures, where the same entry should be tried
1232	 *    again immediately, almost never happen for this shrinker.
1233	 *    We don't do any trylocking; -ENOMEM comes closest,
1234	 *    but that's extremely rare and doesn't happen spuriously
1235	 *    either. Don't bother distinguishing this case.
1236	 */
1237	list_move_tail(item, &l->list);
1238
1239	/*
1240	 * Once the lru lock is dropped, the entry might get freed. The
1241	 * swpentry is copied to the stack, and entry isn't deref'd again
1242	 * until the entry is verified to still be alive in the tree.
1243	 */
1244	swpentry = entry->swpentry;
1245
1246	/*
1247	 * It's safe to drop the lock here because we return either
1248	 * LRU_REMOVED_RETRY or LRU_RETRY.
1249	 */
1250	spin_unlock(lock);
1251
1252	writeback_result = zswap_writeback_entry(entry, swpentry);
1253
1254	if (writeback_result) {
1255		zswap_reject_reclaim_fail++;
1256		ret = LRU_RETRY;
1257
1258		/*
1259		 * Encountering a page already in swap cache is a sign that we are shrinking
1260		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1261		 * shrinker context).
1262		 */
1263		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1264			ret = LRU_STOP;
1265			*encountered_page_in_swapcache = true;
1266		}
1267	} else {
1268		zswap_written_back_pages++;
1269	}
1270
1271	spin_lock(lock);
1272	return ret;
1273}
1274
1275static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1276		struct shrink_control *sc)
1277{
1278	struct lruvec *lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
1279	unsigned long shrink_ret, nr_protected, lru_size;
1280	bool encountered_page_in_swapcache = false;
1281
1282	if (!zswap_shrinker_enabled ||
1283			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1284		sc->nr_scanned = 0;
1285		return SHRINK_STOP;
1286	}
1287
1288	nr_protected =
1289		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1290	lru_size = list_lru_shrink_count(&zswap_list_lru, sc);
1291
1292	/*
1293	 * Abort if we are shrinking into the protected region.
1294	 *
1295	 * This short-circuiting is necessary because if we have too many multiple
1296	 * concurrent reclaimers getting the freeable zswap object counts at the
1297	 * same time (before any of them made reasonable progress), the total
1298	 * number of reclaimed objects might be more than the number of unprotected
1299	 * objects (i.e the reclaimers will reclaim into the protected area of the
1300	 * zswap LRU).
1301	 */
1302	if (nr_protected >= lru_size - sc->nr_to_scan) {
1303		sc->nr_scanned = 0;
1304		return SHRINK_STOP;
1305	}
1306
1307	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1308		&encountered_page_in_swapcache);
1309
1310	if (encountered_page_in_swapcache)
1311		return SHRINK_STOP;
1312
1313	return shrink_ret ? shrink_ret : SHRINK_STOP;
1314}
1315
1316static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1317		struct shrink_control *sc)
1318{
1319	struct mem_cgroup *memcg = sc->memcg;
1320	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1321	unsigned long nr_backing, nr_stored, nr_freeable, nr_protected;
1322
1323	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1324		return 0;
1325
1326	/*
1327	 * The shrinker resumes swap writeback, which will enter block
1328	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1329	 * rules (may_enter_fs()), which apply on a per-folio basis.
1330	 */
1331	if (!gfp_has_io_fs(sc->gfp_mask))
1332		return 0;
1333
1334	/*
1335	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1336	 * have them per-node and thus per-lruvec. Careful if memcg is
1337	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1338	 * for the lruvec, but not for memcg_page_state().
1339	 *
1340	 * Without memcg, use the zswap pool-wide metrics.
1341	 */
1342	if (!mem_cgroup_disabled()) {
1343		mem_cgroup_flush_stats(memcg);
1344		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1345		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1346	} else {
1347		nr_backing = zswap_pool_total_size >> PAGE_SHIFT;
1348		nr_stored = atomic_read(&zswap_nr_stored);
1349	}
1350
1351	if (!nr_stored)
1352		return 0;
1353
1354	nr_protected =
1355		atomic_long_read(&lruvec->zswap_lruvec_state.nr_zswap_protected);
1356	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1357	/*
1358	 * Subtract the lru size by an estimate of the number of pages
1359	 * that should be protected.
1360	 */
1361	nr_freeable = nr_freeable > nr_protected ? nr_freeable - nr_protected : 0;
1362
1363	/*
1364	 * Scale the number of freeable pages by the memory saving factor.
1365	 * This ensures that the better zswap compresses memory, the fewer
1366	 * pages we will evict to swap (as it will otherwise incur IO for
1367	 * relatively small memory saving).
1368	 */
1369	return mult_frac(nr_freeable, nr_backing, nr_stored);
1370}
1371
1372static struct shrinker *zswap_alloc_shrinker(void)
1373{
1374	struct shrinker *shrinker;
1375
1376	shrinker =
1377		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1378	if (!shrinker)
1379		return NULL;
1380
1381	shrinker->scan_objects = zswap_shrinker_scan;
1382	shrinker->count_objects = zswap_shrinker_count;
1383	shrinker->batch = 0;
1384	shrinker->seeks = DEFAULT_SEEKS;
1385	return shrinker;
1386}
1387
1388static int shrink_memcg(struct mem_cgroup *memcg)
1389{
1390	int nid, shrunk = 0;
1391
1392	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1393		return -EINVAL;
1394
1395	/*
1396	 * Skip zombies because their LRUs are reparented and we would be
1397	 * reclaiming from the parent instead of the dead memcg.
1398	 */
1399	if (memcg && !mem_cgroup_online(memcg))
1400		return -ENOENT;
1401
1402	for_each_node_state(nid, N_NORMAL_MEMORY) {
1403		unsigned long nr_to_walk = 1;
1404
1405		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1406					    &shrink_memcg_cb, NULL, &nr_to_walk);
1407	}
1408	return shrunk ? 0 : -EAGAIN;
1409}
1410
1411static void shrink_worker(struct work_struct *w)
1412{
1413	struct mem_cgroup *memcg;
1414	int ret, failures = 0;
1415
1416	/* global reclaim will select cgroup in a round-robin fashion. */
1417	do {
1418		spin_lock(&zswap_shrink_lock);
1419		zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1420		memcg = zswap_next_shrink;
1421
1422		/*
1423		 * We need to retry if we have gone through a full round trip, or if we
1424		 * got an offline memcg (or else we risk undoing the effect of the
1425		 * zswap memcg offlining cleanup callback). This is not catastrophic
1426		 * per se, but it will keep the now offlined memcg hostage for a while.
1427		 *
1428		 * Note that if we got an online memcg, we will keep the extra
1429		 * reference in case the original reference obtained by mem_cgroup_iter
1430		 * is dropped by the zswap memcg offlining callback, ensuring that the
1431		 * memcg is not killed when we are reclaiming.
1432		 */
1433		if (!memcg) {
1434			spin_unlock(&zswap_shrink_lock);
1435			if (++failures == MAX_RECLAIM_RETRIES)
1436				break;
1437
1438			goto resched;
1439		}
1440
1441		if (!mem_cgroup_tryget_online(memcg)) {
1442			/* drop the reference from mem_cgroup_iter() */
1443			mem_cgroup_iter_break(NULL, memcg);
1444			zswap_next_shrink = NULL;
1445			spin_unlock(&zswap_shrink_lock);
1446
1447			if (++failures == MAX_RECLAIM_RETRIES)
1448				break;
1449
1450			goto resched;
1451		}
1452		spin_unlock(&zswap_shrink_lock);
1453
1454		ret = shrink_memcg(memcg);
1455		/* drop the extra reference */
1456		mem_cgroup_put(memcg);
1457
1458		if (ret == -EINVAL)
1459			break;
1460		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1461			break;
1462
1463resched:
1464		cond_resched();
1465	} while (!zswap_can_accept());
1466}
1467
1468static int zswap_is_page_same_filled(void *ptr, unsigned long *value)
1469{
 
1470	unsigned long *page;
1471	unsigned long val;
1472	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
1473
1474	page = (unsigned long *)ptr;
1475	val = page[0];
1476
1477	if (val != page[last_pos])
1478		return 0;
1479
1480	for (pos = 1; pos < last_pos; pos++) {
1481		if (val != page[pos])
1482			return 0;
1483	}
1484
1485	*value = val;
1486
1487	return 1;
1488}
1489
1490static void zswap_fill_page(void *ptr, unsigned long value)
1491{
1492	unsigned long *page;
1493
1494	page = (unsigned long *)ptr;
1495	memset_l(page, value, PAGE_SIZE / sizeof(unsigned long));
1496}
1497
1498bool zswap_store(struct folio *folio)
 
 
 
 
 
1499{
1500	swp_entry_t swp = folio->swap;
1501	pgoff_t offset = swp_offset(swp);
1502	struct zswap_tree *tree = swap_zswap_tree(swp);
1503	struct zswap_entry *entry, *dupentry;
 
 
1504	struct obj_cgroup *objcg = NULL;
1505	struct mem_cgroup *memcg = NULL;
 
 
 
 
 
 
 
1506
1507	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1508	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
 
 
 
1509
1510	/* Large folios aren't supported */
1511	if (folio_test_large(folio))
1512		return false;
1513
1514	if (!zswap_enabled)
1515		goto check_old;
1516
1517	objcg = get_obj_cgroup_from_folio(folio);
1518	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1519		memcg = get_mem_cgroup_from_objcg(objcg);
1520		if (shrink_memcg(memcg)) {
1521			mem_cgroup_put(memcg);
1522			goto reject;
1523		}
1524		mem_cgroup_put(memcg);
1525	}
1526
 
 
 
 
1527	/* reclaim space if needed */
1528	if (zswap_is_full()) {
1529		zswap_pool_limit_hit++;
1530		zswap_pool_reached_full = true;
1531		goto shrink;
1532	}
1533
1534	if (zswap_pool_reached_full) {
1535	       if (!zswap_can_accept())
1536			goto shrink;
1537		else
 
1538			zswap_pool_reached_full = false;
1539	}
1540
1541	/* allocate entry */
1542	entry = zswap_entry_cache_alloc(GFP_KERNEL, folio_nid(folio));
1543	if (!entry) {
1544		zswap_reject_kmemcache_fail++;
 
1545		goto reject;
1546	}
1547
1548	if (zswap_same_filled_pages_enabled) {
1549		unsigned long value;
1550		u8 *src;
1551
1552		src = kmap_local_folio(folio, 0);
1553		if (zswap_is_page_same_filled(src, &value)) {
1554			kunmap_local(src);
 
1555			entry->length = 0;
1556			entry->value = value;
1557			atomic_inc(&zswap_same_filled_pages);
1558			goto insert_entry;
1559		}
1560		kunmap_local(src);
1561	}
1562
1563	if (!zswap_non_same_filled_pages_enabled)
 
1564		goto freepage;
 
1565
1566	/* if entry is successfully added, it keeps the reference */
1567	entry->pool = zswap_pool_current_get();
1568	if (!entry->pool)
 
1569		goto freepage;
 
 
 
 
 
 
1570
1571	if (objcg) {
1572		memcg = get_mem_cgroup_from_objcg(objcg);
1573		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1574			mem_cgroup_put(memcg);
1575			goto put_pool;
1576		}
1577		mem_cgroup_put(memcg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578	}
 
 
 
 
 
1579
1580	if (!zswap_compress(folio, entry))
1581		goto put_pool;
 
 
1582
1583insert_entry:
1584	entry->swpentry = swp;
1585	entry->objcg = objcg;
1586	if (objcg) {
1587		obj_cgroup_charge_zswap(objcg, entry->length);
1588		/* Account before objcg ref is moved to tree */
1589		count_objcg_event(objcg, ZSWPOUT);
1590	}
1591
1592	/* map */
1593	spin_lock(&tree->lock);
1594	/*
1595	 * The folio may have been dirtied again, invalidate the
1596	 * possibly stale entry before inserting the new entry.
1597	 */
1598	if (zswap_rb_insert(&tree->rbroot, entry, &dupentry) == -EEXIST) {
1599		zswap_invalidate_entry(tree, dupentry);
1600		WARN_ON(zswap_rb_insert(&tree->rbroot, entry, &dupentry));
1601	}
1602	if (entry->length) {
1603		INIT_LIST_HEAD(&entry->lru);
1604		zswap_lru_add(&zswap_list_lru, entry);
1605		atomic_inc(&zswap_nr_stored);
1606	}
1607	spin_unlock(&tree->lock);
1608
1609	/* update stats */
1610	atomic_inc(&zswap_stored_pages);
1611	zswap_update_total_size();
1612	count_vm_event(ZSWPOUT);
1613
1614	return true;
1615
1616put_pool:
 
1617	zswap_pool_put(entry->pool);
1618freepage:
1619	zswap_entry_cache_free(entry);
1620reject:
1621	if (objcg)
1622		obj_cgroup_put(objcg);
1623check_old:
1624	/*
1625	 * If the zswap store fails or zswap is disabled, we must invalidate the
1626	 * possibly stale entry which was previously stored at this offset.
1627	 * Otherwise, writeback could overwrite the new data in the swapfile.
1628	 */
1629	spin_lock(&tree->lock);
1630	entry = zswap_rb_search(&tree->rbroot, offset);
1631	if (entry)
1632		zswap_invalidate_entry(tree, entry);
1633	spin_unlock(&tree->lock);
1634	return false;
1635
1636shrink:
1637	queue_work(shrink_wq, &zswap_shrink_work);
 
 
 
1638	goto reject;
1639}
1640
1641bool zswap_load(struct folio *folio)
 
 
 
 
 
1642{
1643	swp_entry_t swp = folio->swap;
1644	pgoff_t offset = swp_offset(swp);
1645	struct page *page = &folio->page;
1646	bool swapcache = folio_test_swapcache(folio);
1647	struct zswap_tree *tree = swap_zswap_tree(swp);
1648	struct zswap_entry *entry;
1649	u8 *dst;
1650
1651	VM_WARN_ON_ONCE(!folio_test_locked(folio));
 
 
1652
 
1653	spin_lock(&tree->lock);
1654	entry = zswap_rb_search(&tree->rbroot, offset);
1655	if (!entry) {
 
1656		spin_unlock(&tree->lock);
1657		return false;
1658	}
1659	/*
1660	 * When reading into the swapcache, invalidate our entry. The
1661	 * swapcache can be the authoritative owner of the page and
1662	 * its mappings, and the pressure that results from having two
1663	 * in-memory copies outweighs any benefits of caching the
1664	 * compression work.
1665	 *
1666	 * (Most swapins go through the swapcache. The notable
1667	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1668	 * files, which reads into a private page and may free it if
1669	 * the fault fails. We remain the primary owner of the entry.)
1670	 */
1671	if (swapcache)
1672		zswap_rb_erase(&tree->rbroot, entry);
1673	spin_unlock(&tree->lock);
1674
1675	if (entry->length)
1676		zswap_decompress(entry, page);
1677	else {
1678		dst = kmap_local_page(page);
1679		zswap_fill_page(dst, entry->value);
1680		kunmap_local(dst);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681	}
1682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1683	count_vm_event(ZSWPIN);
1684	if (entry->objcg)
1685		count_objcg_event(entry->objcg, ZSWPIN);
 
 
 
 
1686
1687	if (swapcache) {
1688		zswap_entry_free(entry);
1689		folio_mark_dirty(folio);
1690	}
1691
1692	return true;
1693}
1694
1695void zswap_invalidate(swp_entry_t swp)
 
1696{
1697	pgoff_t offset = swp_offset(swp);
1698	struct zswap_tree *tree = swap_zswap_tree(swp);
1699	struct zswap_entry *entry;
1700
 
1701	spin_lock(&tree->lock);
1702	entry = zswap_rb_search(&tree->rbroot, offset);
1703	if (entry)
1704		zswap_invalidate_entry(tree, entry);
 
 
 
 
 
 
 
 
 
 
1705	spin_unlock(&tree->lock);
1706}
1707
1708int zswap_swapon(int type, unsigned long nr_pages)
 
1709{
1710	struct zswap_tree *trees, *tree;
1711	unsigned int nr, i;
1712
1713	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1714	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1715	if (!trees) {
1716		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1717		return -ENOMEM;
1718	}
1719
1720	for (i = 0; i < nr; i++) {
1721		tree = trees + i;
1722		tree->rbroot = RB_ROOT;
1723		spin_lock_init(&tree->lock);
1724	}
1725
1726	nr_zswap_trees[type] = nr;
1727	zswap_trees[type] = trees;
1728	return 0;
1729}
1730
1731void zswap_swapoff(int type)
1732{
1733	struct zswap_tree *trees = zswap_trees[type];
1734	unsigned int i;
1735
1736	if (!trees)
 
 
1737		return;
 
1738
1739	/* try_to_unuse() invalidated all the entries already */
1740	for (i = 0; i < nr_zswap_trees[type]; i++)
1741		WARN_ON_ONCE(!RB_EMPTY_ROOT(&trees[i].rbroot));
 
1742
1743	kvfree(trees);
1744	nr_zswap_trees[type] = 0;
1745	zswap_trees[type] = NULL;
1746}
 
 
 
1747
1748/*********************************
1749* debugfs functions
1750**********************************/
1751#ifdef CONFIG_DEBUG_FS
1752#include <linux/debugfs.h>
1753
1754static struct dentry *zswap_debugfs_root;
1755
1756static int zswap_debugfs_init(void)
1757{
1758	if (!debugfs_initialized())
1759		return -ENODEV;
1760
1761	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1762
1763	debugfs_create_u64("pool_limit_hit", 0444,
1764			   zswap_debugfs_root, &zswap_pool_limit_hit);
1765	debugfs_create_u64("reject_reclaim_fail", 0444,
1766			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1767	debugfs_create_u64("reject_alloc_fail", 0444,
1768			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1769	debugfs_create_u64("reject_kmemcache_fail", 0444,
1770			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1771	debugfs_create_u64("reject_compress_fail", 0444,
1772			   zswap_debugfs_root, &zswap_reject_compress_fail);
1773	debugfs_create_u64("reject_compress_poor", 0444,
1774			   zswap_debugfs_root, &zswap_reject_compress_poor);
1775	debugfs_create_u64("written_back_pages", 0444,
1776			   zswap_debugfs_root, &zswap_written_back_pages);
 
 
1777	debugfs_create_u64("pool_total_size", 0444,
1778			   zswap_debugfs_root, &zswap_pool_total_size);
1779	debugfs_create_atomic_t("stored_pages", 0444,
1780				zswap_debugfs_root, &zswap_stored_pages);
1781	debugfs_create_atomic_t("same_filled_pages", 0444,
1782				zswap_debugfs_root, &zswap_same_filled_pages);
1783
1784	return 0;
1785}
1786#else
1787static int zswap_debugfs_init(void)
1788{
1789	return 0;
1790}
1791#endif
1792
1793/*********************************
1794* module init and exit
1795**********************************/
1796static int zswap_setup(void)
1797{
1798	struct zswap_pool *pool;
1799	int ret;
1800
1801	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1802	if (!zswap_entry_cache) {
 
1803		pr_err("entry cache creation failed\n");
1804		goto cache_fail;
1805	}
1806
 
 
 
 
 
 
 
1807	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1808				      "mm/zswap_pool:prepare",
1809				      zswap_cpu_comp_prepare,
1810				      zswap_cpu_comp_dead);
1811	if (ret)
1812		goto hp_fail;
1813
1814	shrink_wq = alloc_workqueue("zswap-shrink",
1815			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1816	if (!shrink_wq)
1817		goto shrink_wq_fail;
1818
1819	zswap_shrinker = zswap_alloc_shrinker();
1820	if (!zswap_shrinker)
1821		goto shrinker_fail;
1822	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1823		goto lru_fail;
1824	shrinker_register(zswap_shrinker);
1825
1826	INIT_WORK(&zswap_shrink_work, shrink_worker);
1827
1828	pool = __zswap_pool_create_fallback();
1829	if (pool) {
1830		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1831			zpool_get_type(pool->zpools[0]));
1832		list_add(&pool->list, &zswap_pools);
1833		zswap_has_pool = true;
1834	} else {
1835		pr_err("pool creation failed\n");
1836		zswap_enabled = false;
1837	}
1838
 
 
 
 
 
 
 
1839	if (zswap_debugfs_init())
1840		pr_warn("debugfs initialization failed\n");
1841	zswap_init_state = ZSWAP_INIT_SUCCEED;
1842	return 0;
1843
1844lru_fail:
1845	shrinker_free(zswap_shrinker);
1846shrinker_fail:
1847	destroy_workqueue(shrink_wq);
1848shrink_wq_fail:
1849	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
 
1850hp_fail:
1851	kmem_cache_destroy(zswap_entry_cache);
 
 
1852cache_fail:
1853	/* if built-in, we aren't unloaded on failure; don't allow use */
1854	zswap_init_state = ZSWAP_INIT_FAILED;
1855	zswap_enabled = false;
1856	return -ENOMEM;
1857}
1858
1859static int __init zswap_init(void)
1860{
1861	if (!zswap_enabled)
1862		return 0;
1863	return zswap_setup();
1864}
1865/* must be late so crypto has time to come up */
1866late_initcall(zswap_init);
1867
 
1868MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1869MODULE_DESCRIPTION("Compressed cache for swap pages");