Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? As a power of 2 */
  47int page_cluster;
  48const int page_cluster_max = 31;
  49
  50/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
  51struct lru_rotate {
  52	local_lock_t lock;
  53	struct folio_batch fbatch;
  54};
  55static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  56	.lock = INIT_LOCAL_LOCK(lock),
  57};
  58
  59/*
  60 * The following folio batches are grouped together because they are protected
  61 * by disabling preemption (and interrupts remain enabled).
  62 */
  63struct cpu_fbatches {
  64	local_lock_t lock;
  65	struct folio_batch lru_add;
  66	struct folio_batch lru_deactivate_file;
  67	struct folio_batch lru_deactivate;
  68	struct folio_batch lru_lazyfree;
  69#ifdef CONFIG_SMP
  70	struct folio_batch activate;
  71#endif
  72};
  73static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
  74	.lock = INIT_LOCAL_LOCK(lock),
  75};
  76
  77/*
  78 * This path almost never happens for VM activity - pages are normally freed
  79 * via pagevecs.  But it gets used by networking - and for compound pages.
  80 */
  81static void __page_cache_release(struct folio *folio)
  82{
  83	if (folio_test_lru(folio)) {
  84		struct lruvec *lruvec;
  85		unsigned long flags;
  86
  87		lruvec = folio_lruvec_lock_irqsave(folio, &flags);
  88		lruvec_del_folio(lruvec, folio);
  89		__folio_clear_lru_flags(folio);
  90		unlock_page_lruvec_irqrestore(lruvec, flags);
  91	}
  92	/* See comment on folio_test_mlocked in release_pages() */
 
 
 
 
 
 
  93	if (unlikely(folio_test_mlocked(folio))) {
  94		long nr_pages = folio_nr_pages(folio);
  95
  96		__folio_clear_mlocked(folio);
  97		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
  98		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
  99	}
 100}
 101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102static void __folio_put_small(struct folio *folio)
 103{
 104	__page_cache_release(folio);
 105	mem_cgroup_uncharge(folio);
 106	free_unref_page(&folio->page, 0);
 107}
 108
 109static void __folio_put_large(struct folio *folio)
 110{
 111	/*
 112	 * __page_cache_release() is supposed to be called for thp, not for
 113	 * hugetlb. This is because hugetlb page does never have PageLRU set
 114	 * (it's never listed to any LRU lists) and no memcg routines should
 115	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 116	 */
 117	if (!folio_test_hugetlb(folio))
 118		__page_cache_release(folio);
 119	destroy_large_folio(folio);
 120}
 121
 122void __folio_put(struct folio *folio)
 123{
 124	if (unlikely(folio_is_zone_device(folio)))
 125		free_zone_device_page(&folio->page);
 126	else if (unlikely(folio_test_large(folio)))
 127		__folio_put_large(folio);
 128	else
 129		__folio_put_small(folio);
 130}
 131EXPORT_SYMBOL(__folio_put);
 132
 133/**
 134 * put_pages_list() - release a list of pages
 135 * @pages: list of pages threaded on page->lru
 136 *
 137 * Release a list of pages which are strung together on page.lru.
 138 */
 139void put_pages_list(struct list_head *pages)
 140{
 
 141	struct folio *folio, *next;
 142
 
 143	list_for_each_entry_safe(folio, next, pages, lru) {
 144		if (!folio_put_testzero(folio)) {
 145			list_del(&folio->lru);
 146			continue;
 147		}
 148		if (folio_test_large(folio)) {
 149			list_del(&folio->lru);
 150			__folio_put_large(folio);
 151			continue;
 152		}
 153		/* LRU flag must be clear because it's passed using the lru */
 
 
 
 154	}
 155
 156	free_unref_page_list(pages);
 
 157	INIT_LIST_HEAD(pages);
 158}
 159EXPORT_SYMBOL(put_pages_list);
 160
 161/*
 162 * get_kernel_pages() - pin kernel pages in memory
 163 * @kiov:	An array of struct kvec structures
 164 * @nr_segs:	number of segments to pin
 165 * @write:	pinning for read/write, currently ignored
 166 * @pages:	array that receives pointers to the pages pinned.
 167 *		Should be at least nr_segs long.
 168 *
 169 * Returns number of pages pinned. This may be fewer than the number requested.
 170 * If nr_segs is 0 or negative, returns 0.  If no pages were pinned, returns 0.
 171 * Each page returned must be released with a put_page() call when it is
 172 * finished with.
 173 */
 174int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
 175		struct page **pages)
 176{
 177	int seg;
 178
 179	for (seg = 0; seg < nr_segs; seg++) {
 180		if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
 181			return seg;
 182
 183		pages[seg] = kmap_to_page(kiov[seg].iov_base);
 184		get_page(pages[seg]);
 185	}
 186
 187	return seg;
 188}
 189EXPORT_SYMBOL_GPL(get_kernel_pages);
 190
 191typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
 192
 193static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
 194{
 195	int was_unevictable = folio_test_clear_unevictable(folio);
 196	long nr_pages = folio_nr_pages(folio);
 197
 198	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 199
 200	/*
 201	 * Is an smp_mb__after_atomic() still required here, before
 202	 * folio_evictable() tests the mlocked flag, to rule out the possibility
 203	 * of stranding an evictable folio on an unevictable LRU?  I think
 204	 * not, because __munlock_page() only clears the mlocked flag
 205	 * while the LRU lock is held.
 206	 *
 207	 * (That is not true of __page_cache_release(), and not necessarily
 208	 * true of release_pages(): but those only clear the mlocked flag after
 209	 * folio_put_testzero() has excluded any other users of the folio.)
 210	 */
 211	if (folio_evictable(folio)) {
 212		if (was_unevictable)
 213			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
 214	} else {
 215		folio_clear_active(folio);
 216		folio_set_unevictable(folio);
 217		/*
 218		 * folio->mlock_count = !!folio_test_mlocked(folio)?
 219		 * But that leaves __mlock_page() in doubt whether another
 220		 * actor has already counted the mlock or not.  Err on the
 221		 * safe side, underestimate, let page reclaim fix it, rather
 222		 * than leaving a page on the unevictable LRU indefinitely.
 223		 */
 224		folio->mlock_count = 0;
 225		if (!was_unevictable)
 226			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
 227	}
 228
 229	lruvec_add_folio(lruvec, folio);
 230	trace_mm_lru_insertion(folio);
 231}
 232
 233static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
 234{
 235	int i;
 236	struct lruvec *lruvec = NULL;
 237	unsigned long flags = 0;
 238
 239	for (i = 0; i < folio_batch_count(fbatch); i++) {
 240		struct folio *folio = fbatch->folios[i];
 241
 242		/* block memcg migration while the folio moves between lru */
 243		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
 244			continue;
 245
 246		lruvec = folio_lruvec_relock_irqsave(folio, lruvec, &flags);
 247		move_fn(lruvec, folio);
 248
 249		folio_set_lru(folio);
 250	}
 251
 252	if (lruvec)
 253		unlock_page_lruvec_irqrestore(lruvec, flags);
 254	folios_put(fbatch->folios, folio_batch_count(fbatch));
 255	folio_batch_init(fbatch);
 256}
 257
 258static void folio_batch_add_and_move(struct folio_batch *fbatch,
 259		struct folio *folio, move_fn_t move_fn)
 260{
 261	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
 262	    !lru_cache_disabled())
 263		return;
 264	folio_batch_move_lru(fbatch, move_fn);
 265}
 266
 267static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
 268{
 269	if (!folio_test_unevictable(folio)) {
 270		lruvec_del_folio(lruvec, folio);
 271		folio_clear_active(folio);
 272		lruvec_add_folio_tail(lruvec, folio);
 273		__count_vm_events(PGROTATED, folio_nr_pages(folio));
 274	}
 275}
 276
 277/*
 278 * Writeback is about to end against a folio which has been marked for
 279 * immediate reclaim.  If it still appears to be reclaimable, move it
 280 * to the tail of the inactive list.
 281 *
 282 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
 283 */
 284void folio_rotate_reclaimable(struct folio *folio)
 285{
 286	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
 287	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
 288		struct folio_batch *fbatch;
 289		unsigned long flags;
 290
 291		folio_get(folio);
 292		local_lock_irqsave(&lru_rotate.lock, flags);
 293		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
 294		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
 295		local_unlock_irqrestore(&lru_rotate.lock, flags);
 296	}
 297}
 298
 299void lru_note_cost(struct lruvec *lruvec, bool file,
 300		   unsigned int nr_io, unsigned int nr_rotated)
 301{
 302	unsigned long cost;
 303
 304	/*
 305	 * Reflect the relative cost of incurring IO and spending CPU
 306	 * time on rotations. This doesn't attempt to make a precise
 307	 * comparison, it just says: if reloads are about comparable
 308	 * between the LRU lists, or rotations are overwhelmingly
 309	 * different between them, adjust scan balance for CPU work.
 310	 */
 311	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
 312
 313	do {
 314		unsigned long lrusize;
 315
 316		/*
 317		 * Hold lruvec->lru_lock is safe here, since
 318		 * 1) The pinned lruvec in reclaim, or
 319		 * 2) From a pre-LRU page during refault (which also holds the
 320		 *    rcu lock, so would be safe even if the page was on the LRU
 321		 *    and could move simultaneously to a new lruvec).
 322		 */
 323		spin_lock_irq(&lruvec->lru_lock);
 324		/* Record cost event */
 325		if (file)
 326			lruvec->file_cost += cost;
 327		else
 328			lruvec->anon_cost += cost;
 329
 330		/*
 331		 * Decay previous events
 332		 *
 333		 * Because workloads change over time (and to avoid
 334		 * overflow) we keep these statistics as a floating
 335		 * average, which ends up weighing recent refaults
 336		 * more than old ones.
 337		 */
 338		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 339			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 340			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 341			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 342
 343		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 344			lruvec->file_cost /= 2;
 345			lruvec->anon_cost /= 2;
 346		}
 347		spin_unlock_irq(&lruvec->lru_lock);
 348	} while ((lruvec = parent_lruvec(lruvec)));
 349}
 350
 351void lru_note_cost_refault(struct folio *folio)
 352{
 353	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
 354		      folio_nr_pages(folio), 0);
 355}
 356
 357static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
 358{
 359	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
 360		long nr_pages = folio_nr_pages(folio);
 361
 362		lruvec_del_folio(lruvec, folio);
 363		folio_set_active(folio);
 364		lruvec_add_folio(lruvec, folio);
 365		trace_mm_lru_activate(folio);
 366
 367		__count_vm_events(PGACTIVATE, nr_pages);
 368		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 369				     nr_pages);
 370	}
 371}
 372
 373#ifdef CONFIG_SMP
 374static void folio_activate_drain(int cpu)
 375{
 376	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
 377
 378	if (folio_batch_count(fbatch))
 379		folio_batch_move_lru(fbatch, folio_activate_fn);
 380}
 381
 382void folio_activate(struct folio *folio)
 383{
 384	if (folio_test_lru(folio) && !folio_test_active(folio) &&
 385	    !folio_test_unevictable(folio)) {
 386		struct folio_batch *fbatch;
 387
 388		folio_get(folio);
 389		local_lock(&cpu_fbatches.lock);
 390		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
 391		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
 392		local_unlock(&cpu_fbatches.lock);
 393	}
 394}
 395
 396#else
 397static inline void folio_activate_drain(int cpu)
 398{
 399}
 400
 401void folio_activate(struct folio *folio)
 402{
 403	struct lruvec *lruvec;
 404
 405	if (folio_test_clear_lru(folio)) {
 406		lruvec = folio_lruvec_lock_irq(folio);
 407		folio_activate_fn(lruvec, folio);
 408		unlock_page_lruvec_irq(lruvec);
 409		folio_set_lru(folio);
 410	}
 411}
 412#endif
 413
 414static void __lru_cache_activate_folio(struct folio *folio)
 415{
 416	struct folio_batch *fbatch;
 417	int i;
 418
 419	local_lock(&cpu_fbatches.lock);
 420	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 421
 422	/*
 423	 * Search backwards on the optimistic assumption that the folio being
 424	 * activated has just been added to this batch. Note that only
 425	 * the local batch is examined as a !LRU folio could be in the
 426	 * process of being released, reclaimed, migrated or on a remote
 427	 * batch that is currently being drained. Furthermore, marking
 428	 * a remote batch's folio active potentially hits a race where
 429	 * a folio is marked active just after it is added to the inactive
 430	 * list causing accounting errors and BUG_ON checks to trigger.
 431	 */
 432	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
 433		struct folio *batch_folio = fbatch->folios[i];
 434
 435		if (batch_folio == folio) {
 436			folio_set_active(folio);
 437			break;
 438		}
 439	}
 440
 441	local_unlock(&cpu_fbatches.lock);
 442}
 443
 444#ifdef CONFIG_LRU_GEN
 445static void folio_inc_refs(struct folio *folio)
 446{
 447	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
 448
 449	if (folio_test_unevictable(folio))
 450		return;
 451
 452	if (!folio_test_referenced(folio)) {
 453		folio_set_referenced(folio);
 454		return;
 455	}
 456
 457	if (!folio_test_workingset(folio)) {
 458		folio_set_workingset(folio);
 459		return;
 460	}
 461
 462	/* see the comment on MAX_NR_TIERS */
 463	do {
 464		new_flags = old_flags & LRU_REFS_MASK;
 465		if (new_flags == LRU_REFS_MASK)
 466			break;
 467
 468		new_flags += BIT(LRU_REFS_PGOFF);
 469		new_flags |= old_flags & ~LRU_REFS_MASK;
 470	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
 471}
 472#else
 473static void folio_inc_refs(struct folio *folio)
 474{
 475}
 476#endif /* CONFIG_LRU_GEN */
 477
 478/*
 479 * Mark a page as having seen activity.
 480 *
 481 * inactive,unreferenced	->	inactive,referenced
 482 * inactive,referenced		->	active,unreferenced
 483 * active,unreferenced		->	active,referenced
 484 *
 485 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 486 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 487 */
 488void folio_mark_accessed(struct folio *folio)
 489{
 490	if (lru_gen_enabled()) {
 491		folio_inc_refs(folio);
 492		return;
 493	}
 494
 495	if (!folio_test_referenced(folio)) {
 496		folio_set_referenced(folio);
 497	} else if (folio_test_unevictable(folio)) {
 498		/*
 499		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 500		 * this list is never rotated or maintained, so marking an
 501		 * unevictable page accessed has no effect.
 502		 */
 503	} else if (!folio_test_active(folio)) {
 504		/*
 505		 * If the folio is on the LRU, queue it for activation via
 506		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
 507		 * folio_batch, mark it active and it'll be moved to the active
 508		 * LRU on the next drain.
 509		 */
 510		if (folio_test_lru(folio))
 511			folio_activate(folio);
 512		else
 513			__lru_cache_activate_folio(folio);
 514		folio_clear_referenced(folio);
 515		workingset_activation(folio);
 516	}
 517	if (folio_test_idle(folio))
 518		folio_clear_idle(folio);
 519}
 520EXPORT_SYMBOL(folio_mark_accessed);
 521
 522/**
 523 * folio_add_lru - Add a folio to an LRU list.
 524 * @folio: The folio to be added to the LRU.
 525 *
 526 * Queue the folio for addition to the LRU. The decision on whether
 527 * to add the page to the [in]active [file|anon] list is deferred until the
 528 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
 529 * have the folio added to the active list using folio_mark_accessed().
 530 */
 531void folio_add_lru(struct folio *folio)
 532{
 533	struct folio_batch *fbatch;
 534
 535	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
 536			folio_test_unevictable(folio), folio);
 537	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 538
 539	/* see the comment in lru_gen_add_folio() */
 540	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
 541	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
 542		folio_set_active(folio);
 543
 544	folio_get(folio);
 545	local_lock(&cpu_fbatches.lock);
 546	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 547	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
 548	local_unlock(&cpu_fbatches.lock);
 549}
 550EXPORT_SYMBOL(folio_add_lru);
 551
 552/**
 553 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
 554 * @folio: The folio to be added to the LRU.
 555 * @vma: VMA in which the folio is mapped.
 556 *
 557 * If the VMA is mlocked, @folio is added to the unevictable list.
 558 * Otherwise, it is treated the same way as folio_add_lru().
 559 */
 560void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
 561{
 562	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 563
 564	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
 565		mlock_new_page(&folio->page);
 566	else
 567		folio_add_lru(folio);
 568}
 569
 570/*
 571 * If the folio cannot be invalidated, it is moved to the
 572 * inactive list to speed up its reclaim.  It is moved to the
 573 * head of the list, rather than the tail, to give the flusher
 574 * threads some time to write it out, as this is much more
 575 * effective than the single-page writeout from reclaim.
 576 *
 577 * If the folio isn't mapped and dirty/writeback, the folio
 578 * could be reclaimed asap using the reclaim flag.
 579 *
 580 * 1. active, mapped folio -> none
 581 * 2. active, dirty/writeback folio -> inactive, head, reclaim
 582 * 3. inactive, mapped folio -> none
 583 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
 584 * 5. inactive, clean -> inactive, tail
 585 * 6. Others -> none
 586 *
 587 * In 4, it moves to the head of the inactive list so the folio is
 588 * written out by flusher threads as this is much more efficient
 589 * than the single-page writeout from reclaim.
 590 */
 591static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
 592{
 593	bool active = folio_test_active(folio);
 594	long nr_pages = folio_nr_pages(folio);
 595
 596	if (folio_test_unevictable(folio))
 597		return;
 598
 599	/* Some processes are using the folio */
 600	if (folio_mapped(folio))
 601		return;
 602
 603	lruvec_del_folio(lruvec, folio);
 604	folio_clear_active(folio);
 605	folio_clear_referenced(folio);
 606
 607	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
 608		/*
 609		 * Setting the reclaim flag could race with
 610		 * folio_end_writeback() and confuse readahead.  But the
 611		 * race window is _really_ small and  it's not a critical
 612		 * problem.
 613		 */
 614		lruvec_add_folio(lruvec, folio);
 615		folio_set_reclaim(folio);
 616	} else {
 617		/*
 618		 * The folio's writeback ended while it was in the batch.
 619		 * We move that folio to the tail of the inactive list.
 620		 */
 621		lruvec_add_folio_tail(lruvec, folio);
 622		__count_vm_events(PGROTATED, nr_pages);
 623	}
 624
 625	if (active) {
 626		__count_vm_events(PGDEACTIVATE, nr_pages);
 627		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 628				     nr_pages);
 629	}
 630}
 631
 632static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
 633{
 634	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
 635		long nr_pages = folio_nr_pages(folio);
 636
 637		lruvec_del_folio(lruvec, folio);
 638		folio_clear_active(folio);
 639		folio_clear_referenced(folio);
 640		lruvec_add_folio(lruvec, folio);
 641
 642		__count_vm_events(PGDEACTIVATE, nr_pages);
 643		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 644				     nr_pages);
 645	}
 646}
 647
 648static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
 649{
 650	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
 651	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
 652		long nr_pages = folio_nr_pages(folio);
 653
 654		lruvec_del_folio(lruvec, folio);
 655		folio_clear_active(folio);
 656		folio_clear_referenced(folio);
 657		/*
 658		 * Lazyfree folios are clean anonymous folios.  They have
 659		 * the swapbacked flag cleared, to distinguish them from normal
 660		 * anonymous folios
 661		 */
 662		folio_clear_swapbacked(folio);
 663		lruvec_add_folio(lruvec, folio);
 664
 665		__count_vm_events(PGLAZYFREE, nr_pages);
 666		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 667				     nr_pages);
 668	}
 669}
 670
 671/*
 672 * Drain pages out of the cpu's folio_batch.
 673 * Either "cpu" is the current CPU, and preemption has already been
 674 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 675 */
 676void lru_add_drain_cpu(int cpu)
 677{
 678	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 679	struct folio_batch *fbatch = &fbatches->lru_add;
 680
 681	if (folio_batch_count(fbatch))
 682		folio_batch_move_lru(fbatch, lru_add_fn);
 683
 684	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
 685	/* Disabling interrupts below acts as a compiler barrier. */
 686	if (data_race(folio_batch_count(fbatch))) {
 687		unsigned long flags;
 688
 689		/* No harm done if a racing interrupt already did this */
 690		local_lock_irqsave(&lru_rotate.lock, flags);
 691		folio_batch_move_lru(fbatch, lru_move_tail_fn);
 692		local_unlock_irqrestore(&lru_rotate.lock, flags);
 693	}
 694
 695	fbatch = &fbatches->lru_deactivate_file;
 696	if (folio_batch_count(fbatch))
 697		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
 698
 699	fbatch = &fbatches->lru_deactivate;
 700	if (folio_batch_count(fbatch))
 701		folio_batch_move_lru(fbatch, lru_deactivate_fn);
 702
 703	fbatch = &fbatches->lru_lazyfree;
 704	if (folio_batch_count(fbatch))
 705		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
 706
 707	folio_activate_drain(cpu);
 708}
 709
 710/**
 711 * deactivate_file_folio() - Deactivate a file folio.
 712 * @folio: Folio to deactivate.
 713 *
 714 * This function hints to the VM that @folio is a good reclaim candidate,
 715 * for example if its invalidation fails due to the folio being dirty
 716 * or under writeback.
 717 *
 718 * Context: Caller holds a reference on the folio.
 719 */
 720void deactivate_file_folio(struct folio *folio)
 721{
 722	struct folio_batch *fbatch;
 723
 724	/* Deactivating an unevictable folio will not accelerate reclaim */
 725	if (folio_test_unevictable(folio))
 726		return;
 727
 728	folio_get(folio);
 729	local_lock(&cpu_fbatches.lock);
 730	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
 731	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
 732	local_unlock(&cpu_fbatches.lock);
 733}
 734
 735/*
 736 * deactivate_page - deactivate a page
 737 * @page: page to deactivate
 738 *
 739 * deactivate_page() moves @page to the inactive list if @page was on the active
 740 * list and was not an unevictable page.  This is done to accelerate the reclaim
 741 * of @page.
 742 */
 743void deactivate_page(struct page *page)
 744{
 745	struct folio *folio = page_folio(page);
 746
 747	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
 748	    (folio_test_active(folio) || lru_gen_enabled())) {
 749		struct folio_batch *fbatch;
 750
 751		folio_get(folio);
 752		local_lock(&cpu_fbatches.lock);
 753		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
 754		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
 755		local_unlock(&cpu_fbatches.lock);
 756	}
 757}
 758
 759/**
 760 * mark_page_lazyfree - make an anon page lazyfree
 761 * @page: page to deactivate
 762 *
 763 * mark_page_lazyfree() moves @page to the inactive file list.
 764 * This is done to accelerate the reclaim of @page.
 765 */
 766void mark_page_lazyfree(struct page *page)
 767{
 768	struct folio *folio = page_folio(page);
 769
 770	if (folio_test_lru(folio) && folio_test_anon(folio) &&
 771	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
 772	    !folio_test_unevictable(folio)) {
 773		struct folio_batch *fbatch;
 774
 775		folio_get(folio);
 776		local_lock(&cpu_fbatches.lock);
 777		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
 778		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
 779		local_unlock(&cpu_fbatches.lock);
 780	}
 781}
 782
 783void lru_add_drain(void)
 784{
 785	local_lock(&cpu_fbatches.lock);
 786	lru_add_drain_cpu(smp_processor_id());
 787	local_unlock(&cpu_fbatches.lock);
 788	mlock_page_drain_local();
 789}
 790
 791/*
 792 * It's called from per-cpu workqueue context in SMP case so
 793 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
 794 * the same cpu. It shouldn't be a problem in !SMP case since
 795 * the core is only one and the locks will disable preemption.
 796 */
 797static void lru_add_and_bh_lrus_drain(void)
 798{
 799	local_lock(&cpu_fbatches.lock);
 800	lru_add_drain_cpu(smp_processor_id());
 801	local_unlock(&cpu_fbatches.lock);
 802	invalidate_bh_lrus_cpu();
 803	mlock_page_drain_local();
 804}
 805
 806void lru_add_drain_cpu_zone(struct zone *zone)
 807{
 808	local_lock(&cpu_fbatches.lock);
 809	lru_add_drain_cpu(smp_processor_id());
 810	drain_local_pages(zone);
 811	local_unlock(&cpu_fbatches.lock);
 812	mlock_page_drain_local();
 813}
 814
 815#ifdef CONFIG_SMP
 816
 817static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 818
 819static void lru_add_drain_per_cpu(struct work_struct *dummy)
 820{
 821	lru_add_and_bh_lrus_drain();
 822}
 823
 824static bool cpu_needs_drain(unsigned int cpu)
 825{
 826	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 827
 828	/* Check these in order of likelihood that they're not zero */
 829	return folio_batch_count(&fbatches->lru_add) ||
 830		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
 831		folio_batch_count(&fbatches->lru_deactivate_file) ||
 832		folio_batch_count(&fbatches->lru_deactivate) ||
 833		folio_batch_count(&fbatches->lru_lazyfree) ||
 834		folio_batch_count(&fbatches->activate) ||
 835		need_mlock_page_drain(cpu) ||
 836		has_bh_in_lru(cpu, NULL);
 837}
 838
 839/*
 840 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 841 * kworkers being shut down before our page_alloc_cpu_dead callback is
 842 * executed on the offlined cpu.
 843 * Calling this function with cpu hotplug locks held can actually lead
 844 * to obscure indirect dependencies via WQ context.
 845 */
 846static inline void __lru_add_drain_all(bool force_all_cpus)
 847{
 848	/*
 849	 * lru_drain_gen - Global pages generation number
 850	 *
 851	 * (A) Definition: global lru_drain_gen = x implies that all generations
 852	 *     0 < n <= x are already *scheduled* for draining.
 853	 *
 854	 * This is an optimization for the highly-contended use case where a
 855	 * user space workload keeps constantly generating a flow of pages for
 856	 * each CPU.
 857	 */
 858	static unsigned int lru_drain_gen;
 859	static struct cpumask has_work;
 860	static DEFINE_MUTEX(lock);
 861	unsigned cpu, this_gen;
 862
 863	/*
 864	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 865	 * initialized.
 866	 */
 867	if (WARN_ON(!mm_percpu_wq))
 868		return;
 869
 870	/*
 871	 * Guarantee folio_batch counter stores visible by this CPU
 872	 * are visible to other CPUs before loading the current drain
 873	 * generation.
 874	 */
 875	smp_mb();
 876
 877	/*
 878	 * (B) Locally cache global LRU draining generation number
 879	 *
 880	 * The read barrier ensures that the counter is loaded before the mutex
 881	 * is taken. It pairs with smp_mb() inside the mutex critical section
 882	 * at (D).
 883	 */
 884	this_gen = smp_load_acquire(&lru_drain_gen);
 885
 886	mutex_lock(&lock);
 887
 888	/*
 889	 * (C) Exit the draining operation if a newer generation, from another
 890	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
 891	 */
 892	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 893		goto done;
 894
 895	/*
 896	 * (D) Increment global generation number
 897	 *
 898	 * Pairs with smp_load_acquire() at (B), outside of the critical
 899	 * section. Use a full memory barrier to guarantee that the
 900	 * new global drain generation number is stored before loading
 901	 * folio_batch counters.
 902	 *
 903	 * This pairing must be done here, before the for_each_online_cpu loop
 904	 * below which drains the page vectors.
 905	 *
 906	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
 907	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
 908	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
 909	 * along, adds some pages to its per-cpu vectors, then calls
 910	 * lru_add_drain_all().
 911	 *
 912	 * If the paired barrier is done at any later step, e.g. after the
 913	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
 914	 * added pages.
 915	 */
 916	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 917	smp_mb();
 918
 919	cpumask_clear(&has_work);
 920	for_each_online_cpu(cpu) {
 921		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 922
 923		if (cpu_needs_drain(cpu)) {
 924			INIT_WORK(work, lru_add_drain_per_cpu);
 925			queue_work_on(cpu, mm_percpu_wq, work);
 926			__cpumask_set_cpu(cpu, &has_work);
 927		}
 928	}
 929
 930	for_each_cpu(cpu, &has_work)
 931		flush_work(&per_cpu(lru_add_drain_work, cpu));
 932
 933done:
 934	mutex_unlock(&lock);
 935}
 936
 937void lru_add_drain_all(void)
 938{
 939	__lru_add_drain_all(false);
 940}
 941#else
 942void lru_add_drain_all(void)
 943{
 944	lru_add_drain();
 945}
 946#endif /* CONFIG_SMP */
 947
 948atomic_t lru_disable_count = ATOMIC_INIT(0);
 949
 950/*
 951 * lru_cache_disable() needs to be called before we start compiling
 952 * a list of pages to be migrated using isolate_lru_page().
 953 * It drains pages on LRU cache and then disable on all cpus until
 954 * lru_cache_enable is called.
 955 *
 956 * Must be paired with a call to lru_cache_enable().
 957 */
 958void lru_cache_disable(void)
 959{
 960	atomic_inc(&lru_disable_count);
 961	/*
 962	 * Readers of lru_disable_count are protected by either disabling
 963	 * preemption or rcu_read_lock:
 964	 *
 965	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
 966	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
 967	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
 968	 *
 969	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
 970	 * preempt_disable() regions of code. So any CPU which sees
 971	 * lru_disable_count = 0 will have exited the critical
 972	 * section when synchronize_rcu() returns.
 973	 */
 974	synchronize_rcu_expedited();
 975#ifdef CONFIG_SMP
 976	__lru_add_drain_all(true);
 977#else
 978	lru_add_and_bh_lrus_drain();
 979#endif
 980}
 981
 982/**
 983 * release_pages - batched put_page()
 984 * @arg: array of pages to release
 985 * @nr: number of pages
 986 *
 987 * Decrement the reference count on all the pages in @arg.  If it
 988 * fell to zero, remove the page from the LRU and free it.
 
 
 
 
 989 *
 990 * Note that the argument can be an array of pages, encoded pages,
 991 * or folio pointers. We ignore any encoded bits, and turn any of
 992 * them into just a folio that gets free'd.
 993 */
 994void release_pages(release_pages_arg arg, int nr)
 995{
 996	int i;
 997	struct encoded_page **encoded = arg.encoded_pages;
 998	LIST_HEAD(pages_to_free);
 999	struct lruvec *lruvec = NULL;
1000	unsigned long flags = 0;
1001	unsigned int lock_batch;
1002
1003	for (i = 0; i < nr; i++) {
1004		struct folio *folio;
1005
1006		/* Turn any of the argument types into a folio */
1007		folio = page_folio(encoded_page_ptr(encoded[i]));
1008
1009		/*
1010		 * Make sure the IRQ-safe lock-holding time does not get
1011		 * excessive with a continuous string of pages from the
1012		 * same lruvec. The lock is held only if lruvec != NULL.
1013		 */
1014		if (lruvec && ++lock_batch == SWAP_CLUSTER_MAX) {
1015			unlock_page_lruvec_irqrestore(lruvec, flags);
1016			lruvec = NULL;
1017		}
1018
1019		if (is_huge_zero_page(&folio->page))
1020			continue;
1021
1022		if (folio_is_zone_device(folio)) {
1023			if (lruvec) {
1024				unlock_page_lruvec_irqrestore(lruvec, flags);
1025				lruvec = NULL;
1026			}
1027			if (put_devmap_managed_page(&folio->page))
1028				continue;
1029			if (folio_put_testzero(folio))
1030				free_zone_device_page(&folio->page);
1031			continue;
1032		}
1033
1034		if (!folio_put_testzero(folio))
1035			continue;
1036
1037		if (folio_test_large(folio)) {
 
1038			if (lruvec) {
1039				unlock_page_lruvec_irqrestore(lruvec, flags);
1040				lruvec = NULL;
1041			}
1042			__folio_put_large(folio);
1043			continue;
1044		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045
1046		if (folio_test_lru(folio)) {
1047			struct lruvec *prev_lruvec = lruvec;
 
 
 
1048
1049			lruvec = folio_lruvec_relock_irqsave(folio, lruvec,
1050									&flags);
1051			if (prev_lruvec != lruvec)
1052				lock_batch = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053
1054			lruvec_del_folio(lruvec, folio);
1055			__folio_clear_lru_flags(folio);
1056		}
 
1057
1058		/*
1059		 * In rare cases, when truncation or holepunching raced with
1060		 * munlock after VM_LOCKED was cleared, Mlocked may still be
1061		 * found set here.  This does not indicate a problem, unless
1062		 * "unevictable_pgs_cleared" appears worryingly large.
1063		 */
1064		if (unlikely(folio_test_mlocked(folio))) {
1065			__folio_clear_mlocked(folio);
1066			zone_stat_sub_folio(folio, NR_MLOCK);
1067			count_vm_event(UNEVICTABLE_PGCLEARED);
1068		}
1069
1070		list_add(&folio->lru, &pages_to_free);
 
 
1071	}
1072	if (lruvec)
1073		unlock_page_lruvec_irqrestore(lruvec, flags);
1074
1075	mem_cgroup_uncharge_list(&pages_to_free);
1076	free_unref_page_list(&pages_to_free);
1077}
1078EXPORT_SYMBOL(release_pages);
1079
1080/*
1081 * The pages which we're about to release may be in the deferred lru-addition
1082 * queues.  That would prevent them from really being freed right now.  That's
1083 * OK from a correctness point of view but is inefficient - those pages may be
1084 * cache-warm and we want to give them back to the page allocator ASAP.
1085 *
1086 * So __pagevec_release() will drain those queues here.
1087 * folio_batch_move_lru() calls folios_put() directly to avoid
1088 * mutual recursion.
1089 */
1090void __pagevec_release(struct pagevec *pvec)
1091{
1092	if (!pvec->percpu_pvec_drained) {
1093		lru_add_drain();
1094		pvec->percpu_pvec_drained = true;
1095	}
1096	release_pages(pvec->pages, pagevec_count(pvec));
1097	pagevec_reinit(pvec);
1098}
1099EXPORT_SYMBOL(__pagevec_release);
1100
1101/**
1102 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1103 * @fbatch: The batch to prune
1104 *
1105 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1106 * entries.  This function prunes all the non-folio entries from @fbatch
1107 * without leaving holes, so that it can be passed on to folio-only batch
1108 * operations.
1109 */
1110void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1111{
1112	unsigned int i, j;
1113
1114	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1115		struct folio *folio = fbatch->folios[i];
1116		if (!xa_is_value(folio))
1117			fbatch->folios[j++] = folio;
1118	}
1119	fbatch->nr = j;
1120}
1121
1122unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1123		struct address_space *mapping, pgoff_t *index, pgoff_t end,
1124		xa_mark_t tag)
1125{
1126	pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1127					PAGEVEC_SIZE, pvec->pages);
1128	return pagevec_count(pvec);
1129}
1130EXPORT_SYMBOL(pagevec_lookup_range_tag);
1131
1132/*
1133 * Perform any setup for the swap system
1134 */
1135void __init swap_setup(void)
1136{
1137	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1138
1139	/* Use a smaller cluster for small-memory machines */
1140	if (megs < 16)
1141		page_cluster = 2;
1142	else
1143		page_cluster = 3;
1144	/*
1145	 * Right now other parts of the system means that we
1146	 * _really_ don't want to cluster much more
1147	 */
1148}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swap.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * This file contains the default values for the operation of the
  10 * Linux VM subsystem. Fine-tuning documentation can be found in
  11 * Documentation/admin-guide/sysctl/vm.rst.
  12 * Started 18.12.91
  13 * Swap aging added 23.2.95, Stephen Tweedie.
  14 * Buffermem limits added 12.3.98, Rik van Riel.
  15 */
  16
  17#include <linux/mm.h>
  18#include <linux/sched.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/swap.h>
  21#include <linux/mman.h>
  22#include <linux/pagemap.h>
  23#include <linux/pagevec.h>
  24#include <linux/init.h>
  25#include <linux/export.h>
  26#include <linux/mm_inline.h>
  27#include <linux/percpu_counter.h>
  28#include <linux/memremap.h>
  29#include <linux/percpu.h>
  30#include <linux/cpu.h>
  31#include <linux/notifier.h>
  32#include <linux/backing-dev.h>
  33#include <linux/memcontrol.h>
  34#include <linux/gfp.h>
  35#include <linux/uio.h>
  36#include <linux/hugetlb.h>
  37#include <linux/page_idle.h>
  38#include <linux/local_lock.h>
  39#include <linux/buffer_head.h>
  40
  41#include "internal.h"
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/pagemap.h>
  45
  46/* How many pages do we try to swap or page in/out together? As a power of 2 */
  47int page_cluster;
  48const int page_cluster_max = 31;
  49
  50/* Protecting only lru_rotate.fbatch which requires disabling interrupts */
  51struct lru_rotate {
  52	local_lock_t lock;
  53	struct folio_batch fbatch;
  54};
  55static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
  56	.lock = INIT_LOCAL_LOCK(lock),
  57};
  58
  59/*
  60 * The following folio batches are grouped together because they are protected
  61 * by disabling preemption (and interrupts remain enabled).
  62 */
  63struct cpu_fbatches {
  64	local_lock_t lock;
  65	struct folio_batch lru_add;
  66	struct folio_batch lru_deactivate_file;
  67	struct folio_batch lru_deactivate;
  68	struct folio_batch lru_lazyfree;
  69#ifdef CONFIG_SMP
  70	struct folio_batch activate;
  71#endif
  72};
  73static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
  74	.lock = INIT_LOCAL_LOCK(lock),
  75};
  76
  77static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
  78		unsigned long *flagsp)
 
 
 
  79{
  80	if (folio_test_lru(folio)) {
  81		folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
  82		lruvec_del_folio(*lruvecp, folio);
 
 
 
  83		__folio_clear_lru_flags(folio);
 
  84	}
  85
  86	/*
  87	 * In rare cases, when truncation or holepunching raced with
  88	 * munlock after VM_LOCKED was cleared, Mlocked may still be
  89	 * found set here.  This does not indicate a problem, unless
  90	 * "unevictable_pgs_cleared" appears worryingly large.
  91	 */
  92	if (unlikely(folio_test_mlocked(folio))) {
  93		long nr_pages = folio_nr_pages(folio);
  94
  95		__folio_clear_mlocked(folio);
  96		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
  97		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
  98	}
  99}
 100
 101/*
 102 * This path almost never happens for VM activity - pages are normally freed
 103 * in batches.  But it gets used by networking - and for compound pages.
 104 */
 105static void page_cache_release(struct folio *folio)
 106{
 107	struct lruvec *lruvec = NULL;
 108	unsigned long flags;
 109
 110	__page_cache_release(folio, &lruvec, &flags);
 111	if (lruvec)
 112		unlock_page_lruvec_irqrestore(lruvec, flags);
 113}
 114
 115static void __folio_put_small(struct folio *folio)
 116{
 117	page_cache_release(folio);
 118	mem_cgroup_uncharge(folio);
 119	free_unref_page(&folio->page, 0);
 120}
 121
 122static void __folio_put_large(struct folio *folio)
 123{
 124	/*
 125	 * __page_cache_release() is supposed to be called for thp, not for
 126	 * hugetlb. This is because hugetlb page does never have PageLRU set
 127	 * (it's never listed to any LRU lists) and no memcg routines should
 128	 * be called for hugetlb (it has a separate hugetlb_cgroup.)
 129	 */
 130	if (!folio_test_hugetlb(folio))
 131		page_cache_release(folio);
 132	destroy_large_folio(folio);
 133}
 134
 135void __folio_put(struct folio *folio)
 136{
 137	if (unlikely(folio_is_zone_device(folio)))
 138		free_zone_device_page(&folio->page);
 139	else if (unlikely(folio_test_large(folio)))
 140		__folio_put_large(folio);
 141	else
 142		__folio_put_small(folio);
 143}
 144EXPORT_SYMBOL(__folio_put);
 145
 146/**
 147 * put_pages_list() - release a list of pages
 148 * @pages: list of pages threaded on page->lru
 149 *
 150 * Release a list of pages which are strung together on page.lru.
 151 */
 152void put_pages_list(struct list_head *pages)
 153{
 154	struct folio_batch fbatch;
 155	struct folio *folio, *next;
 156
 157	folio_batch_init(&fbatch);
 158	list_for_each_entry_safe(folio, next, pages, lru) {
 159		if (!folio_put_testzero(folio))
 
 160			continue;
 
 161		if (folio_test_large(folio)) {
 
 162			__folio_put_large(folio);
 163			continue;
 164		}
 165		/* LRU flag must be clear because it's passed using the lru */
 166		if (folio_batch_add(&fbatch, folio) > 0)
 167			continue;
 168		free_unref_folios(&fbatch);
 169	}
 170
 171	if (fbatch.nr)
 172		free_unref_folios(&fbatch);
 173	INIT_LIST_HEAD(pages);
 174}
 175EXPORT_SYMBOL(put_pages_list);
 176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
 178
 179static void lru_add_fn(struct lruvec *lruvec, struct folio *folio)
 180{
 181	int was_unevictable = folio_test_clear_unevictable(folio);
 182	long nr_pages = folio_nr_pages(folio);
 183
 184	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 185
 186	/*
 187	 * Is an smp_mb__after_atomic() still required here, before
 188	 * folio_evictable() tests the mlocked flag, to rule out the possibility
 189	 * of stranding an evictable folio on an unevictable LRU?  I think
 190	 * not, because __munlock_folio() only clears the mlocked flag
 191	 * while the LRU lock is held.
 192	 *
 193	 * (That is not true of __page_cache_release(), and not necessarily
 194	 * true of folios_put(): but those only clear the mlocked flag after
 195	 * folio_put_testzero() has excluded any other users of the folio.)
 196	 */
 197	if (folio_evictable(folio)) {
 198		if (was_unevictable)
 199			__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
 200	} else {
 201		folio_clear_active(folio);
 202		folio_set_unevictable(folio);
 203		/*
 204		 * folio->mlock_count = !!folio_test_mlocked(folio)?
 205		 * But that leaves __mlock_folio() in doubt whether another
 206		 * actor has already counted the mlock or not.  Err on the
 207		 * safe side, underestimate, let page reclaim fix it, rather
 208		 * than leaving a page on the unevictable LRU indefinitely.
 209		 */
 210		folio->mlock_count = 0;
 211		if (!was_unevictable)
 212			__count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
 213	}
 214
 215	lruvec_add_folio(lruvec, folio);
 216	trace_mm_lru_insertion(folio);
 217}
 218
 219static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
 220{
 221	int i;
 222	struct lruvec *lruvec = NULL;
 223	unsigned long flags = 0;
 224
 225	for (i = 0; i < folio_batch_count(fbatch); i++) {
 226		struct folio *folio = fbatch->folios[i];
 227
 228		/* block memcg migration while the folio moves between lru */
 229		if (move_fn != lru_add_fn && !folio_test_clear_lru(folio))
 230			continue;
 231
 232		folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
 233		move_fn(lruvec, folio);
 234
 235		folio_set_lru(folio);
 236	}
 237
 238	if (lruvec)
 239		unlock_page_lruvec_irqrestore(lruvec, flags);
 240	folios_put(fbatch);
 
 241}
 242
 243static void folio_batch_add_and_move(struct folio_batch *fbatch,
 244		struct folio *folio, move_fn_t move_fn)
 245{
 246	if (folio_batch_add(fbatch, folio) && !folio_test_large(folio) &&
 247	    !lru_cache_disabled())
 248		return;
 249	folio_batch_move_lru(fbatch, move_fn);
 250}
 251
 252static void lru_move_tail_fn(struct lruvec *lruvec, struct folio *folio)
 253{
 254	if (!folio_test_unevictable(folio)) {
 255		lruvec_del_folio(lruvec, folio);
 256		folio_clear_active(folio);
 257		lruvec_add_folio_tail(lruvec, folio);
 258		__count_vm_events(PGROTATED, folio_nr_pages(folio));
 259	}
 260}
 261
 262/*
 263 * Writeback is about to end against a folio which has been marked for
 264 * immediate reclaim.  If it still appears to be reclaimable, move it
 265 * to the tail of the inactive list.
 266 *
 267 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
 268 */
 269void folio_rotate_reclaimable(struct folio *folio)
 270{
 271	if (!folio_test_locked(folio) && !folio_test_dirty(folio) &&
 272	    !folio_test_unevictable(folio) && folio_test_lru(folio)) {
 273		struct folio_batch *fbatch;
 274		unsigned long flags;
 275
 276		folio_get(folio);
 277		local_lock_irqsave(&lru_rotate.lock, flags);
 278		fbatch = this_cpu_ptr(&lru_rotate.fbatch);
 279		folio_batch_add_and_move(fbatch, folio, lru_move_tail_fn);
 280		local_unlock_irqrestore(&lru_rotate.lock, flags);
 281	}
 282}
 283
 284void lru_note_cost(struct lruvec *lruvec, bool file,
 285		   unsigned int nr_io, unsigned int nr_rotated)
 286{
 287	unsigned long cost;
 288
 289	/*
 290	 * Reflect the relative cost of incurring IO and spending CPU
 291	 * time on rotations. This doesn't attempt to make a precise
 292	 * comparison, it just says: if reloads are about comparable
 293	 * between the LRU lists, or rotations are overwhelmingly
 294	 * different between them, adjust scan balance for CPU work.
 295	 */
 296	cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
 297
 298	do {
 299		unsigned long lrusize;
 300
 301		/*
 302		 * Hold lruvec->lru_lock is safe here, since
 303		 * 1) The pinned lruvec in reclaim, or
 304		 * 2) From a pre-LRU page during refault (which also holds the
 305		 *    rcu lock, so would be safe even if the page was on the LRU
 306		 *    and could move simultaneously to a new lruvec).
 307		 */
 308		spin_lock_irq(&lruvec->lru_lock);
 309		/* Record cost event */
 310		if (file)
 311			lruvec->file_cost += cost;
 312		else
 313			lruvec->anon_cost += cost;
 314
 315		/*
 316		 * Decay previous events
 317		 *
 318		 * Because workloads change over time (and to avoid
 319		 * overflow) we keep these statistics as a floating
 320		 * average, which ends up weighing recent refaults
 321		 * more than old ones.
 322		 */
 323		lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
 324			  lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
 325			  lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
 326			  lruvec_page_state(lruvec, NR_ACTIVE_FILE);
 327
 328		if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
 329			lruvec->file_cost /= 2;
 330			lruvec->anon_cost /= 2;
 331		}
 332		spin_unlock_irq(&lruvec->lru_lock);
 333	} while ((lruvec = parent_lruvec(lruvec)));
 334}
 335
 336void lru_note_cost_refault(struct folio *folio)
 337{
 338	lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
 339		      folio_nr_pages(folio), 0);
 340}
 341
 342static void folio_activate_fn(struct lruvec *lruvec, struct folio *folio)
 343{
 344	if (!folio_test_active(folio) && !folio_test_unevictable(folio)) {
 345		long nr_pages = folio_nr_pages(folio);
 346
 347		lruvec_del_folio(lruvec, folio);
 348		folio_set_active(folio);
 349		lruvec_add_folio(lruvec, folio);
 350		trace_mm_lru_activate(folio);
 351
 352		__count_vm_events(PGACTIVATE, nr_pages);
 353		__count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
 354				     nr_pages);
 355	}
 356}
 357
 358#ifdef CONFIG_SMP
 359static void folio_activate_drain(int cpu)
 360{
 361	struct folio_batch *fbatch = &per_cpu(cpu_fbatches.activate, cpu);
 362
 363	if (folio_batch_count(fbatch))
 364		folio_batch_move_lru(fbatch, folio_activate_fn);
 365}
 366
 367void folio_activate(struct folio *folio)
 368{
 369	if (folio_test_lru(folio) && !folio_test_active(folio) &&
 370	    !folio_test_unevictable(folio)) {
 371		struct folio_batch *fbatch;
 372
 373		folio_get(folio);
 374		local_lock(&cpu_fbatches.lock);
 375		fbatch = this_cpu_ptr(&cpu_fbatches.activate);
 376		folio_batch_add_and_move(fbatch, folio, folio_activate_fn);
 377		local_unlock(&cpu_fbatches.lock);
 378	}
 379}
 380
 381#else
 382static inline void folio_activate_drain(int cpu)
 383{
 384}
 385
 386void folio_activate(struct folio *folio)
 387{
 388	struct lruvec *lruvec;
 389
 390	if (folio_test_clear_lru(folio)) {
 391		lruvec = folio_lruvec_lock_irq(folio);
 392		folio_activate_fn(lruvec, folio);
 393		unlock_page_lruvec_irq(lruvec);
 394		folio_set_lru(folio);
 395	}
 396}
 397#endif
 398
 399static void __lru_cache_activate_folio(struct folio *folio)
 400{
 401	struct folio_batch *fbatch;
 402	int i;
 403
 404	local_lock(&cpu_fbatches.lock);
 405	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 406
 407	/*
 408	 * Search backwards on the optimistic assumption that the folio being
 409	 * activated has just been added to this batch. Note that only
 410	 * the local batch is examined as a !LRU folio could be in the
 411	 * process of being released, reclaimed, migrated or on a remote
 412	 * batch that is currently being drained. Furthermore, marking
 413	 * a remote batch's folio active potentially hits a race where
 414	 * a folio is marked active just after it is added to the inactive
 415	 * list causing accounting errors and BUG_ON checks to trigger.
 416	 */
 417	for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
 418		struct folio *batch_folio = fbatch->folios[i];
 419
 420		if (batch_folio == folio) {
 421			folio_set_active(folio);
 422			break;
 423		}
 424	}
 425
 426	local_unlock(&cpu_fbatches.lock);
 427}
 428
 429#ifdef CONFIG_LRU_GEN
 430static void folio_inc_refs(struct folio *folio)
 431{
 432	unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
 433
 434	if (folio_test_unevictable(folio))
 435		return;
 436
 437	if (!folio_test_referenced(folio)) {
 438		folio_set_referenced(folio);
 439		return;
 440	}
 441
 442	if (!folio_test_workingset(folio)) {
 443		folio_set_workingset(folio);
 444		return;
 445	}
 446
 447	/* see the comment on MAX_NR_TIERS */
 448	do {
 449		new_flags = old_flags & LRU_REFS_MASK;
 450		if (new_flags == LRU_REFS_MASK)
 451			break;
 452
 453		new_flags += BIT(LRU_REFS_PGOFF);
 454		new_flags |= old_flags & ~LRU_REFS_MASK;
 455	} while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
 456}
 457#else
 458static void folio_inc_refs(struct folio *folio)
 459{
 460}
 461#endif /* CONFIG_LRU_GEN */
 462
 463/*
 464 * Mark a page as having seen activity.
 465 *
 466 * inactive,unreferenced	->	inactive,referenced
 467 * inactive,referenced		->	active,unreferenced
 468 * active,unreferenced		->	active,referenced
 469 *
 470 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
 471 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
 472 */
 473void folio_mark_accessed(struct folio *folio)
 474{
 475	if (lru_gen_enabled()) {
 476		folio_inc_refs(folio);
 477		return;
 478	}
 479
 480	if (!folio_test_referenced(folio)) {
 481		folio_set_referenced(folio);
 482	} else if (folio_test_unevictable(folio)) {
 483		/*
 484		 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
 485		 * this list is never rotated or maintained, so marking an
 486		 * unevictable page accessed has no effect.
 487		 */
 488	} else if (!folio_test_active(folio)) {
 489		/*
 490		 * If the folio is on the LRU, queue it for activation via
 491		 * cpu_fbatches.activate. Otherwise, assume the folio is in a
 492		 * folio_batch, mark it active and it'll be moved to the active
 493		 * LRU on the next drain.
 494		 */
 495		if (folio_test_lru(folio))
 496			folio_activate(folio);
 497		else
 498			__lru_cache_activate_folio(folio);
 499		folio_clear_referenced(folio);
 500		workingset_activation(folio);
 501	}
 502	if (folio_test_idle(folio))
 503		folio_clear_idle(folio);
 504}
 505EXPORT_SYMBOL(folio_mark_accessed);
 506
 507/**
 508 * folio_add_lru - Add a folio to an LRU list.
 509 * @folio: The folio to be added to the LRU.
 510 *
 511 * Queue the folio for addition to the LRU. The decision on whether
 512 * to add the page to the [in]active [file|anon] list is deferred until the
 513 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
 514 * have the folio added to the active list using folio_mark_accessed().
 515 */
 516void folio_add_lru(struct folio *folio)
 517{
 518	struct folio_batch *fbatch;
 519
 520	VM_BUG_ON_FOLIO(folio_test_active(folio) &&
 521			folio_test_unevictable(folio), folio);
 522	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 523
 524	/* see the comment in lru_gen_add_folio() */
 525	if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
 526	    lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
 527		folio_set_active(folio);
 528
 529	folio_get(folio);
 530	local_lock(&cpu_fbatches.lock);
 531	fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
 532	folio_batch_add_and_move(fbatch, folio, lru_add_fn);
 533	local_unlock(&cpu_fbatches.lock);
 534}
 535EXPORT_SYMBOL(folio_add_lru);
 536
 537/**
 538 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
 539 * @folio: The folio to be added to the LRU.
 540 * @vma: VMA in which the folio is mapped.
 541 *
 542 * If the VMA is mlocked, @folio is added to the unevictable list.
 543 * Otherwise, it is treated the same way as folio_add_lru().
 544 */
 545void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
 546{
 547	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
 548
 549	if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
 550		mlock_new_folio(folio);
 551	else
 552		folio_add_lru(folio);
 553}
 554
 555/*
 556 * If the folio cannot be invalidated, it is moved to the
 557 * inactive list to speed up its reclaim.  It is moved to the
 558 * head of the list, rather than the tail, to give the flusher
 559 * threads some time to write it out, as this is much more
 560 * effective than the single-page writeout from reclaim.
 561 *
 562 * If the folio isn't mapped and dirty/writeback, the folio
 563 * could be reclaimed asap using the reclaim flag.
 564 *
 565 * 1. active, mapped folio -> none
 566 * 2. active, dirty/writeback folio -> inactive, head, reclaim
 567 * 3. inactive, mapped folio -> none
 568 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
 569 * 5. inactive, clean -> inactive, tail
 570 * 6. Others -> none
 571 *
 572 * In 4, it moves to the head of the inactive list so the folio is
 573 * written out by flusher threads as this is much more efficient
 574 * than the single-page writeout from reclaim.
 575 */
 576static void lru_deactivate_file_fn(struct lruvec *lruvec, struct folio *folio)
 577{
 578	bool active = folio_test_active(folio);
 579	long nr_pages = folio_nr_pages(folio);
 580
 581	if (folio_test_unevictable(folio))
 582		return;
 583
 584	/* Some processes are using the folio */
 585	if (folio_mapped(folio))
 586		return;
 587
 588	lruvec_del_folio(lruvec, folio);
 589	folio_clear_active(folio);
 590	folio_clear_referenced(folio);
 591
 592	if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
 593		/*
 594		 * Setting the reclaim flag could race with
 595		 * folio_end_writeback() and confuse readahead.  But the
 596		 * race window is _really_ small and  it's not a critical
 597		 * problem.
 598		 */
 599		lruvec_add_folio(lruvec, folio);
 600		folio_set_reclaim(folio);
 601	} else {
 602		/*
 603		 * The folio's writeback ended while it was in the batch.
 604		 * We move that folio to the tail of the inactive list.
 605		 */
 606		lruvec_add_folio_tail(lruvec, folio);
 607		__count_vm_events(PGROTATED, nr_pages);
 608	}
 609
 610	if (active) {
 611		__count_vm_events(PGDEACTIVATE, nr_pages);
 612		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 613				     nr_pages);
 614	}
 615}
 616
 617static void lru_deactivate_fn(struct lruvec *lruvec, struct folio *folio)
 618{
 619	if (!folio_test_unevictable(folio) && (folio_test_active(folio) || lru_gen_enabled())) {
 620		long nr_pages = folio_nr_pages(folio);
 621
 622		lruvec_del_folio(lruvec, folio);
 623		folio_clear_active(folio);
 624		folio_clear_referenced(folio);
 625		lruvec_add_folio(lruvec, folio);
 626
 627		__count_vm_events(PGDEACTIVATE, nr_pages);
 628		__count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
 629				     nr_pages);
 630	}
 631}
 632
 633static void lru_lazyfree_fn(struct lruvec *lruvec, struct folio *folio)
 634{
 635	if (folio_test_anon(folio) && folio_test_swapbacked(folio) &&
 636	    !folio_test_swapcache(folio) && !folio_test_unevictable(folio)) {
 637		long nr_pages = folio_nr_pages(folio);
 638
 639		lruvec_del_folio(lruvec, folio);
 640		folio_clear_active(folio);
 641		folio_clear_referenced(folio);
 642		/*
 643		 * Lazyfree folios are clean anonymous folios.  They have
 644		 * the swapbacked flag cleared, to distinguish them from normal
 645		 * anonymous folios
 646		 */
 647		folio_clear_swapbacked(folio);
 648		lruvec_add_folio(lruvec, folio);
 649
 650		__count_vm_events(PGLAZYFREE, nr_pages);
 651		__count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
 652				     nr_pages);
 653	}
 654}
 655
 656/*
 657 * Drain pages out of the cpu's folio_batch.
 658 * Either "cpu" is the current CPU, and preemption has already been
 659 * disabled; or "cpu" is being hot-unplugged, and is already dead.
 660 */
 661void lru_add_drain_cpu(int cpu)
 662{
 663	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 664	struct folio_batch *fbatch = &fbatches->lru_add;
 665
 666	if (folio_batch_count(fbatch))
 667		folio_batch_move_lru(fbatch, lru_add_fn);
 668
 669	fbatch = &per_cpu(lru_rotate.fbatch, cpu);
 670	/* Disabling interrupts below acts as a compiler barrier. */
 671	if (data_race(folio_batch_count(fbatch))) {
 672		unsigned long flags;
 673
 674		/* No harm done if a racing interrupt already did this */
 675		local_lock_irqsave(&lru_rotate.lock, flags);
 676		folio_batch_move_lru(fbatch, lru_move_tail_fn);
 677		local_unlock_irqrestore(&lru_rotate.lock, flags);
 678	}
 679
 680	fbatch = &fbatches->lru_deactivate_file;
 681	if (folio_batch_count(fbatch))
 682		folio_batch_move_lru(fbatch, lru_deactivate_file_fn);
 683
 684	fbatch = &fbatches->lru_deactivate;
 685	if (folio_batch_count(fbatch))
 686		folio_batch_move_lru(fbatch, lru_deactivate_fn);
 687
 688	fbatch = &fbatches->lru_lazyfree;
 689	if (folio_batch_count(fbatch))
 690		folio_batch_move_lru(fbatch, lru_lazyfree_fn);
 691
 692	folio_activate_drain(cpu);
 693}
 694
 695/**
 696 * deactivate_file_folio() - Deactivate a file folio.
 697 * @folio: Folio to deactivate.
 698 *
 699 * This function hints to the VM that @folio is a good reclaim candidate,
 700 * for example if its invalidation fails due to the folio being dirty
 701 * or under writeback.
 702 *
 703 * Context: Caller holds a reference on the folio.
 704 */
 705void deactivate_file_folio(struct folio *folio)
 706{
 707	struct folio_batch *fbatch;
 708
 709	/* Deactivating an unevictable folio will not accelerate reclaim */
 710	if (folio_test_unevictable(folio))
 711		return;
 712
 713	folio_get(folio);
 714	local_lock(&cpu_fbatches.lock);
 715	fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate_file);
 716	folio_batch_add_and_move(fbatch, folio, lru_deactivate_file_fn);
 717	local_unlock(&cpu_fbatches.lock);
 718}
 719
 720/*
 721 * folio_deactivate - deactivate a folio
 722 * @folio: folio to deactivate
 723 *
 724 * folio_deactivate() moves @folio to the inactive list if @folio was on the
 725 * active list and was not unevictable. This is done to accelerate the
 726 * reclaim of @folio.
 727 */
 728void folio_deactivate(struct folio *folio)
 729{
 
 
 730	if (folio_test_lru(folio) && !folio_test_unevictable(folio) &&
 731	    (folio_test_active(folio) || lru_gen_enabled())) {
 732		struct folio_batch *fbatch;
 733
 734		folio_get(folio);
 735		local_lock(&cpu_fbatches.lock);
 736		fbatch = this_cpu_ptr(&cpu_fbatches.lru_deactivate);
 737		folio_batch_add_and_move(fbatch, folio, lru_deactivate_fn);
 738		local_unlock(&cpu_fbatches.lock);
 739	}
 740}
 741
 742/**
 743 * folio_mark_lazyfree - make an anon folio lazyfree
 744 * @folio: folio to deactivate
 745 *
 746 * folio_mark_lazyfree() moves @folio to the inactive file list.
 747 * This is done to accelerate the reclaim of @folio.
 748 */
 749void folio_mark_lazyfree(struct folio *folio)
 750{
 
 
 751	if (folio_test_lru(folio) && folio_test_anon(folio) &&
 752	    folio_test_swapbacked(folio) && !folio_test_swapcache(folio) &&
 753	    !folio_test_unevictable(folio)) {
 754		struct folio_batch *fbatch;
 755
 756		folio_get(folio);
 757		local_lock(&cpu_fbatches.lock);
 758		fbatch = this_cpu_ptr(&cpu_fbatches.lru_lazyfree);
 759		folio_batch_add_and_move(fbatch, folio, lru_lazyfree_fn);
 760		local_unlock(&cpu_fbatches.lock);
 761	}
 762}
 763
 764void lru_add_drain(void)
 765{
 766	local_lock(&cpu_fbatches.lock);
 767	lru_add_drain_cpu(smp_processor_id());
 768	local_unlock(&cpu_fbatches.lock);
 769	mlock_drain_local();
 770}
 771
 772/*
 773 * It's called from per-cpu workqueue context in SMP case so
 774 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
 775 * the same cpu. It shouldn't be a problem in !SMP case since
 776 * the core is only one and the locks will disable preemption.
 777 */
 778static void lru_add_and_bh_lrus_drain(void)
 779{
 780	local_lock(&cpu_fbatches.lock);
 781	lru_add_drain_cpu(smp_processor_id());
 782	local_unlock(&cpu_fbatches.lock);
 783	invalidate_bh_lrus_cpu();
 784	mlock_drain_local();
 785}
 786
 787void lru_add_drain_cpu_zone(struct zone *zone)
 788{
 789	local_lock(&cpu_fbatches.lock);
 790	lru_add_drain_cpu(smp_processor_id());
 791	drain_local_pages(zone);
 792	local_unlock(&cpu_fbatches.lock);
 793	mlock_drain_local();
 794}
 795
 796#ifdef CONFIG_SMP
 797
 798static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
 799
 800static void lru_add_drain_per_cpu(struct work_struct *dummy)
 801{
 802	lru_add_and_bh_lrus_drain();
 803}
 804
 805static bool cpu_needs_drain(unsigned int cpu)
 806{
 807	struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
 808
 809	/* Check these in order of likelihood that they're not zero */
 810	return folio_batch_count(&fbatches->lru_add) ||
 811		data_race(folio_batch_count(&per_cpu(lru_rotate.fbatch, cpu))) ||
 812		folio_batch_count(&fbatches->lru_deactivate_file) ||
 813		folio_batch_count(&fbatches->lru_deactivate) ||
 814		folio_batch_count(&fbatches->lru_lazyfree) ||
 815		folio_batch_count(&fbatches->activate) ||
 816		need_mlock_drain(cpu) ||
 817		has_bh_in_lru(cpu, NULL);
 818}
 819
 820/*
 821 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
 822 * kworkers being shut down before our page_alloc_cpu_dead callback is
 823 * executed on the offlined cpu.
 824 * Calling this function with cpu hotplug locks held can actually lead
 825 * to obscure indirect dependencies via WQ context.
 826 */
 827static inline void __lru_add_drain_all(bool force_all_cpus)
 828{
 829	/*
 830	 * lru_drain_gen - Global pages generation number
 831	 *
 832	 * (A) Definition: global lru_drain_gen = x implies that all generations
 833	 *     0 < n <= x are already *scheduled* for draining.
 834	 *
 835	 * This is an optimization for the highly-contended use case where a
 836	 * user space workload keeps constantly generating a flow of pages for
 837	 * each CPU.
 838	 */
 839	static unsigned int lru_drain_gen;
 840	static struct cpumask has_work;
 841	static DEFINE_MUTEX(lock);
 842	unsigned cpu, this_gen;
 843
 844	/*
 845	 * Make sure nobody triggers this path before mm_percpu_wq is fully
 846	 * initialized.
 847	 */
 848	if (WARN_ON(!mm_percpu_wq))
 849		return;
 850
 851	/*
 852	 * Guarantee folio_batch counter stores visible by this CPU
 853	 * are visible to other CPUs before loading the current drain
 854	 * generation.
 855	 */
 856	smp_mb();
 857
 858	/*
 859	 * (B) Locally cache global LRU draining generation number
 860	 *
 861	 * The read barrier ensures that the counter is loaded before the mutex
 862	 * is taken. It pairs with smp_mb() inside the mutex critical section
 863	 * at (D).
 864	 */
 865	this_gen = smp_load_acquire(&lru_drain_gen);
 866
 867	mutex_lock(&lock);
 868
 869	/*
 870	 * (C) Exit the draining operation if a newer generation, from another
 871	 * lru_add_drain_all(), was already scheduled for draining. Check (A).
 872	 */
 873	if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
 874		goto done;
 875
 876	/*
 877	 * (D) Increment global generation number
 878	 *
 879	 * Pairs with smp_load_acquire() at (B), outside of the critical
 880	 * section. Use a full memory barrier to guarantee that the
 881	 * new global drain generation number is stored before loading
 882	 * folio_batch counters.
 883	 *
 884	 * This pairing must be done here, before the for_each_online_cpu loop
 885	 * below which drains the page vectors.
 886	 *
 887	 * Let x, y, and z represent some system CPU numbers, where x < y < z.
 888	 * Assume CPU #z is in the middle of the for_each_online_cpu loop
 889	 * below and has already reached CPU #y's per-cpu data. CPU #x comes
 890	 * along, adds some pages to its per-cpu vectors, then calls
 891	 * lru_add_drain_all().
 892	 *
 893	 * If the paired barrier is done at any later step, e.g. after the
 894	 * loop, CPU #x will just exit at (C) and miss flushing out all of its
 895	 * added pages.
 896	 */
 897	WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
 898	smp_mb();
 899
 900	cpumask_clear(&has_work);
 901	for_each_online_cpu(cpu) {
 902		struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
 903
 904		if (cpu_needs_drain(cpu)) {
 905			INIT_WORK(work, lru_add_drain_per_cpu);
 906			queue_work_on(cpu, mm_percpu_wq, work);
 907			__cpumask_set_cpu(cpu, &has_work);
 908		}
 909	}
 910
 911	for_each_cpu(cpu, &has_work)
 912		flush_work(&per_cpu(lru_add_drain_work, cpu));
 913
 914done:
 915	mutex_unlock(&lock);
 916}
 917
 918void lru_add_drain_all(void)
 919{
 920	__lru_add_drain_all(false);
 921}
 922#else
 923void lru_add_drain_all(void)
 924{
 925	lru_add_drain();
 926}
 927#endif /* CONFIG_SMP */
 928
 929atomic_t lru_disable_count = ATOMIC_INIT(0);
 930
 931/*
 932 * lru_cache_disable() needs to be called before we start compiling
 933 * a list of pages to be migrated using isolate_lru_page().
 934 * It drains pages on LRU cache and then disable on all cpus until
 935 * lru_cache_enable is called.
 936 *
 937 * Must be paired with a call to lru_cache_enable().
 938 */
 939void lru_cache_disable(void)
 940{
 941	atomic_inc(&lru_disable_count);
 942	/*
 943	 * Readers of lru_disable_count are protected by either disabling
 944	 * preemption or rcu_read_lock:
 945	 *
 946	 * preempt_disable, local_irq_disable  [bh_lru_lock()]
 947	 * rcu_read_lock		       [rt_spin_lock CONFIG_PREEMPT_RT]
 948	 * preempt_disable		       [local_lock !CONFIG_PREEMPT_RT]
 949	 *
 950	 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
 951	 * preempt_disable() regions of code. So any CPU which sees
 952	 * lru_disable_count = 0 will have exited the critical
 953	 * section when synchronize_rcu() returns.
 954	 */
 955	synchronize_rcu_expedited();
 956#ifdef CONFIG_SMP
 957	__lru_add_drain_all(true);
 958#else
 959	lru_add_and_bh_lrus_drain();
 960#endif
 961}
 962
 963/**
 964 * folios_put_refs - Reduce the reference count on a batch of folios.
 965 * @folios: The folios.
 966 * @refs: The number of refs to subtract from each folio.
 967 *
 968 * Like folio_put(), but for a batch of folios.  This is more efficient
 969 * than writing the loop yourself as it will optimise the locks which need
 970 * to be taken if the folios are freed.  The folios batch is returned
 971 * empty and ready to be reused for another batch; there is no need
 972 * to reinitialise it.  If @refs is NULL, we subtract one from each
 973 * folio refcount.
 974 *
 975 * Context: May be called in process or interrupt context, but not in NMI
 976 * context.  May be called while holding a spinlock.
 
 977 */
 978void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
 979{
 980	int i, j;
 
 
 981	struct lruvec *lruvec = NULL;
 982	unsigned long flags = 0;
 
 
 
 
 983
 984	for (i = 0, j = 0; i < folios->nr; i++) {
 985		struct folio *folio = folios->folios[i];
 986		unsigned int nr_refs = refs ? refs[i] : 1;
 
 
 
 
 
 
 
 
 
 987
 988		if (is_huge_zero_page(&folio->page))
 989			continue;
 990
 991		if (folio_is_zone_device(folio)) {
 992			if (lruvec) {
 993				unlock_page_lruvec_irqrestore(lruvec, flags);
 994				lruvec = NULL;
 995			}
 996			if (put_devmap_managed_page_refs(&folio->page, nr_refs))
 997				continue;
 998			if (folio_ref_sub_and_test(folio, nr_refs))
 999				free_zone_device_page(&folio->page);
1000			continue;
1001		}
1002
1003		if (!folio_ref_sub_and_test(folio, nr_refs))
1004			continue;
1005
1006		/* hugetlb has its own memcg */
1007		if (folio_test_hugetlb(folio)) {
1008			if (lruvec) {
1009				unlock_page_lruvec_irqrestore(lruvec, flags);
1010				lruvec = NULL;
1011			}
1012			free_huge_folio(folio);
1013			continue;
1014		}
1015		if (folio_test_large(folio) &&
1016		    folio_test_large_rmappable(folio))
1017			folio_undo_large_rmappable(folio);
1018
1019		__page_cache_release(folio, &lruvec, &flags);
1020
1021		if (j != i)
1022			folios->folios[j] = folio;
1023		j++;
1024	}
1025	if (lruvec)
1026		unlock_page_lruvec_irqrestore(lruvec, flags);
1027	if (!j) {
1028		folio_batch_reinit(folios);
1029		return;
1030	}
1031
1032	folios->nr = j;
1033	mem_cgroup_uncharge_folios(folios);
1034	free_unref_folios(folios);
1035}
1036EXPORT_SYMBOL(folios_put_refs);
1037
1038/**
1039 * release_pages - batched put_page()
1040 * @arg: array of pages to release
1041 * @nr: number of pages
1042 *
1043 * Decrement the reference count on all the pages in @arg.  If it
1044 * fell to zero, remove the page from the LRU and free it.
1045 *
1046 * Note that the argument can be an array of pages, encoded pages,
1047 * or folio pointers. We ignore any encoded bits, and turn any of
1048 * them into just a folio that gets free'd.
1049 */
1050void release_pages(release_pages_arg arg, int nr)
1051{
1052	struct folio_batch fbatch;
1053	int refs[PAGEVEC_SIZE];
1054	struct encoded_page **encoded = arg.encoded_pages;
1055	int i;
1056
1057	folio_batch_init(&fbatch);
1058	for (i = 0; i < nr; i++) {
1059		/* Turn any of the argument types into a folio */
1060		struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
1061
1062		/* Is our next entry actually "nr_pages" -> "nr_refs" ? */
1063		refs[fbatch.nr] = 1;
1064		if (unlikely(encoded_page_flags(encoded[i]) &
1065			     ENCODED_PAGE_BIT_NR_PAGES_NEXT))
1066			refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
 
 
 
 
 
 
1067
1068		if (folio_batch_add(&fbatch, folio) > 0)
1069			continue;
1070		folios_put_refs(&fbatch, refs);
1071	}
 
 
1072
1073	if (fbatch.nr)
1074		folios_put_refs(&fbatch, refs);
1075}
1076EXPORT_SYMBOL(release_pages);
1077
1078/*
1079 * The folios which we're about to release may be in the deferred lru-addition
1080 * queues.  That would prevent them from really being freed right now.  That's
1081 * OK from a correctness point of view but is inefficient - those folios may be
1082 * cache-warm and we want to give them back to the page allocator ASAP.
1083 *
1084 * So __folio_batch_release() will drain those queues here.
1085 * folio_batch_move_lru() calls folios_put() directly to avoid
1086 * mutual recursion.
1087 */
1088void __folio_batch_release(struct folio_batch *fbatch)
1089{
1090	if (!fbatch->percpu_pvec_drained) {
1091		lru_add_drain();
1092		fbatch->percpu_pvec_drained = true;
1093	}
1094	folios_put(fbatch);
 
1095}
1096EXPORT_SYMBOL(__folio_batch_release);
1097
1098/**
1099 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1100 * @fbatch: The batch to prune
1101 *
1102 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1103 * entries.  This function prunes all the non-folio entries from @fbatch
1104 * without leaving holes, so that it can be passed on to folio-only batch
1105 * operations.
1106 */
1107void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1108{
1109	unsigned int i, j;
1110
1111	for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1112		struct folio *folio = fbatch->folios[i];
1113		if (!xa_is_value(folio))
1114			fbatch->folios[j++] = folio;
1115	}
1116	fbatch->nr = j;
1117}
 
 
 
 
 
 
 
 
 
 
1118
1119/*
1120 * Perform any setup for the swap system
1121 */
1122void __init swap_setup(void)
1123{
1124	unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1125
1126	/* Use a smaller cluster for small-memory machines */
1127	if (megs < 16)
1128		page_cluster = 2;
1129	else
1130		page_cluster = 3;
1131	/*
1132	 * Right now other parts of the system means that we
1133	 * _really_ don't want to cluster much more
1134	 */
1135}