Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
   1/* ec.c -  Elliptic Curve functions
   2 * Copyright (C) 2007 Free Software Foundation, Inc.
   3 * Copyright (C) 2013 g10 Code GmbH
   4 *
   5 * This file is part of Libgcrypt.
   6 *
   7 * Libgcrypt is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU Lesser General Public License as
   9 * published by the Free Software Foundation; either version 2.1 of
  10 * the License, or (at your option) any later version.
  11 *
  12 * Libgcrypt is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU Lesser General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU Lesser General Public
  18 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20
  21#include "mpi-internal.h"
  22#include "longlong.h"
  23
  24#define point_init(a)  mpi_point_init((a))
  25#define point_free(a)  mpi_point_free_parts((a))
  26
  27#define log_error(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
  28#define log_fatal(fmt, ...) pr_err(fmt, ##__VA_ARGS__)
  29
  30#define DIM(v) (sizeof(v)/sizeof((v)[0]))
  31
  32
  33/* Create a new point option.  NBITS gives the size in bits of one
  34 * coordinate; it is only used to pre-allocate some resources and
  35 * might also be passed as 0 to use a default value.
  36 */
  37MPI_POINT mpi_point_new(unsigned int nbits)
  38{
  39	MPI_POINT p;
  40
  41	(void)nbits;  /* Currently not used.  */
  42
  43	p = kmalloc(sizeof(*p), GFP_KERNEL);
  44	if (p)
  45		mpi_point_init(p);
  46	return p;
  47}
  48EXPORT_SYMBOL_GPL(mpi_point_new);
  49
  50/* Release the point object P.  P may be NULL. */
  51void mpi_point_release(MPI_POINT p)
  52{
  53	if (p) {
  54		mpi_point_free_parts(p);
  55		kfree(p);
  56	}
  57}
  58EXPORT_SYMBOL_GPL(mpi_point_release);
  59
  60/* Initialize the fields of a point object.  gcry_mpi_point_free_parts
  61 * may be used to release the fields.
  62 */
  63void mpi_point_init(MPI_POINT p)
  64{
  65	p->x = mpi_new(0);
  66	p->y = mpi_new(0);
  67	p->z = mpi_new(0);
  68}
  69EXPORT_SYMBOL_GPL(mpi_point_init);
  70
  71/* Release the parts of a point object. */
  72void mpi_point_free_parts(MPI_POINT p)
  73{
  74	mpi_free(p->x); p->x = NULL;
  75	mpi_free(p->y); p->y = NULL;
  76	mpi_free(p->z); p->z = NULL;
  77}
  78EXPORT_SYMBOL_GPL(mpi_point_free_parts);
  79
  80/* Set the value from S into D.  */
  81static void point_set(MPI_POINT d, MPI_POINT s)
  82{
  83	mpi_set(d->x, s->x);
  84	mpi_set(d->y, s->y);
  85	mpi_set(d->z, s->z);
  86}
  87
  88static void point_resize(MPI_POINT p, struct mpi_ec_ctx *ctx)
  89{
  90	size_t nlimbs = ctx->p->nlimbs;
  91
  92	mpi_resize(p->x, nlimbs);
  93	p->x->nlimbs = nlimbs;
  94	mpi_resize(p->z, nlimbs);
  95	p->z->nlimbs = nlimbs;
  96
  97	if (ctx->model != MPI_EC_MONTGOMERY) {
  98		mpi_resize(p->y, nlimbs);
  99		p->y->nlimbs = nlimbs;
 100	}
 101}
 102
 103static void point_swap_cond(MPI_POINT d, MPI_POINT s, unsigned long swap,
 104		struct mpi_ec_ctx *ctx)
 105{
 106	mpi_swap_cond(d->x, s->x, swap);
 107	if (ctx->model != MPI_EC_MONTGOMERY)
 108		mpi_swap_cond(d->y, s->y, swap);
 109	mpi_swap_cond(d->z, s->z, swap);
 110}
 111
 112
 113/* W = W mod P.  */
 114static void ec_mod(MPI w, struct mpi_ec_ctx *ec)
 115{
 116	if (ec->t.p_barrett)
 117		mpi_mod_barrett(w, w, ec->t.p_barrett);
 118	else
 119		mpi_mod(w, w, ec->p);
 120}
 121
 122static void ec_addm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
 123{
 124	mpi_add(w, u, v);
 125	ec_mod(w, ctx);
 126}
 127
 128static void ec_subm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ec)
 129{
 130	mpi_sub(w, u, v);
 131	while (w->sign)
 132		mpi_add(w, w, ec->p);
 133	/*ec_mod(w, ec);*/
 134}
 135
 136static void ec_mulm(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
 137{
 138	mpi_mul(w, u, v);
 139	ec_mod(w, ctx);
 140}
 141
 142/* W = 2 * U mod P.  */
 143static void ec_mul2(MPI w, MPI u, struct mpi_ec_ctx *ctx)
 144{
 145	mpi_lshift(w, u, 1);
 146	ec_mod(w, ctx);
 147}
 148
 149static void ec_powm(MPI w, const MPI b, const MPI e,
 150		struct mpi_ec_ctx *ctx)
 151{
 152	mpi_powm(w, b, e, ctx->p);
 153	/* mpi_abs(w); */
 154}
 155
 156/* Shortcut for
 157 * ec_powm(B, B, mpi_const(MPI_C_TWO), ctx);
 158 * for easier optimization.
 159 */
 160static void ec_pow2(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
 161{
 162	/* Using mpi_mul is slightly faster (at least on amd64).  */
 163	/* mpi_powm(w, b, mpi_const(MPI_C_TWO), ctx->p); */
 164	ec_mulm(w, b, b, ctx);
 165}
 166
 167/* Shortcut for
 168 * ec_powm(B, B, mpi_const(MPI_C_THREE), ctx);
 169 * for easier optimization.
 170 */
 171static void ec_pow3(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
 172{
 173	mpi_powm(w, b, mpi_const(MPI_C_THREE), ctx->p);
 174}
 175
 176static void ec_invm(MPI x, MPI a, struct mpi_ec_ctx *ctx)
 177{
 178	if (!mpi_invm(x, a, ctx->p))
 179		log_error("ec_invm: inverse does not exist:\n");
 180}
 181
 182static void mpih_set_cond(mpi_ptr_t wp, mpi_ptr_t up,
 183		mpi_size_t usize, unsigned long set)
 184{
 185	mpi_size_t i;
 186	mpi_limb_t mask = ((mpi_limb_t)0) - set;
 187	mpi_limb_t x;
 188
 189	for (i = 0; i < usize; i++) {
 190		x = mask & (wp[i] ^ up[i]);
 191		wp[i] = wp[i] ^ x;
 192	}
 193}
 194
 195/* Routines for 2^255 - 19.  */
 196
 197#define LIMB_SIZE_25519 ((256+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
 198
 199static void ec_addm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
 200{
 201	mpi_ptr_t wp, up, vp;
 202	mpi_size_t wsize = LIMB_SIZE_25519;
 203	mpi_limb_t n[LIMB_SIZE_25519];
 204	mpi_limb_t borrow;
 205
 206	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
 207		log_bug("addm_25519: different sizes\n");
 208
 209	memset(n, 0, sizeof(n));
 210	up = u->d;
 211	vp = v->d;
 212	wp = w->d;
 213
 214	mpihelp_add_n(wp, up, vp, wsize);
 215	borrow = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
 216	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
 217	mpihelp_add_n(wp, wp, n, wsize);
 218	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
 219}
 220
 221static void ec_subm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
 222{
 223	mpi_ptr_t wp, up, vp;
 224	mpi_size_t wsize = LIMB_SIZE_25519;
 225	mpi_limb_t n[LIMB_SIZE_25519];
 226	mpi_limb_t borrow;
 227
 228	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
 229		log_bug("subm_25519: different sizes\n");
 230
 231	memset(n, 0, sizeof(n));
 232	up = u->d;
 233	vp = v->d;
 234	wp = w->d;
 235
 236	borrow = mpihelp_sub_n(wp, up, vp, wsize);
 237	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
 238	mpihelp_add_n(wp, wp, n, wsize);
 239	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
 240}
 241
 242static void ec_mulm_25519(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
 243{
 244	mpi_ptr_t wp, up, vp;
 245	mpi_size_t wsize = LIMB_SIZE_25519;
 246	mpi_limb_t n[LIMB_SIZE_25519*2];
 247	mpi_limb_t m[LIMB_SIZE_25519+1];
 248	mpi_limb_t cy;
 249	int msb;
 250
 251	(void)ctx;
 252	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
 253		log_bug("mulm_25519: different sizes\n");
 254
 255	up = u->d;
 256	vp = v->d;
 257	wp = w->d;
 258
 259	mpihelp_mul_n(n, up, vp, wsize);
 260	memcpy(wp, n, wsize * BYTES_PER_MPI_LIMB);
 261	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
 262
 263	memcpy(m, n+LIMB_SIZE_25519-1, (wsize+1) * BYTES_PER_MPI_LIMB);
 264	mpihelp_rshift(m, m, LIMB_SIZE_25519+1, (255 % BITS_PER_MPI_LIMB));
 265
 266	memcpy(n, m, wsize * BYTES_PER_MPI_LIMB);
 267	cy = mpihelp_lshift(m, m, LIMB_SIZE_25519, 4);
 268	m[LIMB_SIZE_25519] = cy;
 269	cy = mpihelp_add_n(m, m, n, wsize);
 270	m[LIMB_SIZE_25519] += cy;
 271	cy = mpihelp_add_n(m, m, n, wsize);
 272	m[LIMB_SIZE_25519] += cy;
 273	cy = mpihelp_add_n(m, m, n, wsize);
 274	m[LIMB_SIZE_25519] += cy;
 275
 276	cy = mpihelp_add_n(wp, wp, m, wsize);
 277	m[LIMB_SIZE_25519] += cy;
 278
 279	memset(m, 0, wsize * BYTES_PER_MPI_LIMB);
 280	msb = (wp[LIMB_SIZE_25519-1] >> (255 % BITS_PER_MPI_LIMB));
 281	m[0] = (m[LIMB_SIZE_25519] * 2 + msb) * 19;
 282	wp[LIMB_SIZE_25519-1] &= ~((mpi_limb_t)1 << (255 % BITS_PER_MPI_LIMB));
 283	mpihelp_add_n(wp, wp, m, wsize);
 284
 285	m[0] = 0;
 286	cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
 287	mpih_set_cond(m, ctx->p->d, wsize, (cy != 0UL));
 288	mpihelp_add_n(wp, wp, m, wsize);
 289}
 290
 291static void ec_mul2_25519(MPI w, MPI u, struct mpi_ec_ctx *ctx)
 292{
 293	ec_addm_25519(w, u, u, ctx);
 294}
 295
 296static void ec_pow2_25519(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
 297{
 298	ec_mulm_25519(w, b, b, ctx);
 299}
 300
 301/* Routines for 2^448 - 2^224 - 1.  */
 302
 303#define LIMB_SIZE_448 ((448+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB)
 304#define LIMB_SIZE_HALF_448 ((LIMB_SIZE_448+1)/2)
 305
 306static void ec_addm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
 307{
 308	mpi_ptr_t wp, up, vp;
 309	mpi_size_t wsize = LIMB_SIZE_448;
 310	mpi_limb_t n[LIMB_SIZE_448];
 311	mpi_limb_t cy;
 312
 313	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
 314		log_bug("addm_448: different sizes\n");
 315
 316	memset(n, 0, sizeof(n));
 317	up = u->d;
 318	vp = v->d;
 319	wp = w->d;
 320
 321	cy = mpihelp_add_n(wp, up, vp, wsize);
 322	mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL));
 323	mpihelp_sub_n(wp, wp, n, wsize);
 324}
 325
 326static void ec_subm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
 327{
 328	mpi_ptr_t wp, up, vp;
 329	mpi_size_t wsize = LIMB_SIZE_448;
 330	mpi_limb_t n[LIMB_SIZE_448];
 331	mpi_limb_t borrow;
 332
 333	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
 334		log_bug("subm_448: different sizes\n");
 335
 336	memset(n, 0, sizeof(n));
 337	up = u->d;
 338	vp = v->d;
 339	wp = w->d;
 340
 341	borrow = mpihelp_sub_n(wp, up, vp, wsize);
 342	mpih_set_cond(n, ctx->p->d, wsize, (borrow != 0UL));
 343	mpihelp_add_n(wp, wp, n, wsize);
 344}
 345
 346static void ec_mulm_448(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx)
 347{
 348	mpi_ptr_t wp, up, vp;
 349	mpi_size_t wsize = LIMB_SIZE_448;
 350	mpi_limb_t n[LIMB_SIZE_448*2];
 351	mpi_limb_t a2[LIMB_SIZE_HALF_448];
 352	mpi_limb_t a3[LIMB_SIZE_HALF_448];
 353	mpi_limb_t b0[LIMB_SIZE_HALF_448];
 354	mpi_limb_t b1[LIMB_SIZE_HALF_448];
 355	mpi_limb_t cy;
 356	int i;
 357#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
 358	mpi_limb_t b1_rest, a3_rest;
 359#endif
 360
 361	if (w->nlimbs != wsize || u->nlimbs != wsize || v->nlimbs != wsize)
 362		log_bug("mulm_448: different sizes\n");
 363
 364	up = u->d;
 365	vp = v->d;
 366	wp = w->d;
 367
 368	mpihelp_mul_n(n, up, vp, wsize);
 369
 370	for (i = 0; i < (wsize + 1) / 2; i++) {
 371		b0[i] = n[i];
 372		b1[i] = n[i+wsize/2];
 373		a2[i] = n[i+wsize];
 374		a3[i] = n[i+wsize+wsize/2];
 375	}
 376
 377#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
 378	b0[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1;
 379	a2[LIMB_SIZE_HALF_448-1] &= ((mpi_limb_t)1UL << 32)-1;
 380
 381	b1_rest = 0;
 382	a3_rest = 0;
 383
 384	for (i = (wsize + 1) / 2 - 1; i >= 0; i--) {
 385		mpi_limb_t b1v, a3v;
 386		b1v = b1[i];
 387		a3v = a3[i];
 388		b1[i] = (b1_rest << 32) | (b1v >> 32);
 389		a3[i] = (a3_rest << 32) | (a3v >> 32);
 390		b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1);
 391		a3_rest = a3v & (((mpi_limb_t)1UL << 32)-1);
 392	}
 393#endif
 394
 395	cy = mpihelp_add_n(b0, b0, a2, LIMB_SIZE_HALF_448);
 396	cy += mpihelp_add_n(b0, b0, a3, LIMB_SIZE_HALF_448);
 397	for (i = 0; i < (wsize + 1) / 2; i++)
 398		wp[i] = b0[i];
 399#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
 400	wp[LIMB_SIZE_HALF_448-1] &= (((mpi_limb_t)1UL << 32)-1);
 401#endif
 402
 403#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
 404	cy = b0[LIMB_SIZE_HALF_448-1] >> 32;
 405#endif
 406
 407	cy = mpihelp_add_1(b1, b1, LIMB_SIZE_HALF_448, cy);
 408	cy += mpihelp_add_n(b1, b1, a2, LIMB_SIZE_HALF_448);
 409	cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448);
 410	cy += mpihelp_add_n(b1, b1, a3, LIMB_SIZE_HALF_448);
 411#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
 412	b1_rest = 0;
 413	for (i = (wsize + 1) / 2 - 1; i >= 0; i--) {
 414		mpi_limb_t b1v = b1[i];
 415		b1[i] = (b1_rest << 32) | (b1v >> 32);
 416		b1_rest = b1v & (((mpi_limb_t)1UL << 32)-1);
 417	}
 418	wp[LIMB_SIZE_HALF_448-1] |= (b1_rest << 32);
 419#endif
 420	for (i = 0; i < wsize / 2; i++)
 421		wp[i+(wsize + 1) / 2] = b1[i];
 422
 423#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
 424	cy = b1[LIMB_SIZE_HALF_448-1];
 425#endif
 426
 427	memset(n, 0, wsize * BYTES_PER_MPI_LIMB);
 428
 429#if (LIMB_SIZE_HALF_448 > LIMB_SIZE_448/2)
 430	n[LIMB_SIZE_HALF_448-1] = cy << 32;
 431#else
 432	n[LIMB_SIZE_HALF_448] = cy;
 433#endif
 434	n[0] = cy;
 435	mpihelp_add_n(wp, wp, n, wsize);
 436
 437	memset(n, 0, wsize * BYTES_PER_MPI_LIMB);
 438	cy = mpihelp_sub_n(wp, wp, ctx->p->d, wsize);
 439	mpih_set_cond(n, ctx->p->d, wsize, (cy != 0UL));
 440	mpihelp_add_n(wp, wp, n, wsize);
 441}
 442
 443static void ec_mul2_448(MPI w, MPI u, struct mpi_ec_ctx *ctx)
 444{
 445	ec_addm_448(w, u, u, ctx);
 446}
 447
 448static void ec_pow2_448(MPI w, const MPI b, struct mpi_ec_ctx *ctx)
 449{
 450	ec_mulm_448(w, b, b, ctx);
 451}
 452
 453struct field_table {
 454	const char *p;
 455
 456	/* computation routines for the field.  */
 457	void (*addm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
 458	void (*subm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
 459	void (*mulm)(MPI w, MPI u, MPI v, struct mpi_ec_ctx *ctx);
 460	void (*mul2)(MPI w, MPI u, struct mpi_ec_ctx *ctx);
 461	void (*pow2)(MPI w, const MPI b, struct mpi_ec_ctx *ctx);
 462};
 463
 464static const struct field_table field_table[] = {
 465	{
 466		"0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFED",
 467		ec_addm_25519,
 468		ec_subm_25519,
 469		ec_mulm_25519,
 470		ec_mul2_25519,
 471		ec_pow2_25519
 472	},
 473	{
 474		"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE"
 475		"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
 476		ec_addm_448,
 477		ec_subm_448,
 478		ec_mulm_448,
 479		ec_mul2_448,
 480		ec_pow2_448
 481	},
 482	{ NULL, NULL, NULL, NULL, NULL, NULL },
 483};
 484
 485/* Force recomputation of all helper variables.  */
 486static void mpi_ec_get_reset(struct mpi_ec_ctx *ec)
 487{
 488	ec->t.valid.a_is_pminus3 = 0;
 489	ec->t.valid.two_inv_p = 0;
 490}
 491
 492/* Accessor for helper variable.  */
 493static int ec_get_a_is_pminus3(struct mpi_ec_ctx *ec)
 494{
 495	MPI tmp;
 496
 497	if (!ec->t.valid.a_is_pminus3) {
 498		ec->t.valid.a_is_pminus3 = 1;
 499		tmp = mpi_alloc_like(ec->p);
 500		mpi_sub_ui(tmp, ec->p, 3);
 501		ec->t.a_is_pminus3 = !mpi_cmp(ec->a, tmp);
 502		mpi_free(tmp);
 503	}
 504
 505	return ec->t.a_is_pminus3;
 506}
 507
 508/* Accessor for helper variable.  */
 509static MPI ec_get_two_inv_p(struct mpi_ec_ctx *ec)
 510{
 511	if (!ec->t.valid.two_inv_p) {
 512		ec->t.valid.two_inv_p = 1;
 513		if (!ec->t.two_inv_p)
 514			ec->t.two_inv_p = mpi_alloc(0);
 515		ec_invm(ec->t.two_inv_p, mpi_const(MPI_C_TWO), ec);
 516	}
 517	return ec->t.two_inv_p;
 518}
 519
 520static const char *const curve25519_bad_points[] = {
 521	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffed",
 522	"0x0000000000000000000000000000000000000000000000000000000000000000",
 523	"0x0000000000000000000000000000000000000000000000000000000000000001",
 524	"0x00b8495f16056286fdb1329ceb8d09da6ac49ff1fae35616aeb8413b7c7aebe0",
 525	"0x57119fd0dd4e22d8868e1c58c45c44045bef839c55b1d0b1248c50a3bc959c5f",
 526	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffec",
 527	"0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffee",
 528	NULL
 529};
 530
 531static const char *const curve448_bad_points[] = {
 532	"0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
 533	"ffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
 534	"0x00000000000000000000000000000000000000000000000000000000"
 535	"00000000000000000000000000000000000000000000000000000000",
 536	"0x00000000000000000000000000000000000000000000000000000000"
 537	"00000000000000000000000000000000000000000000000000000001",
 538	"0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffe"
 539	"fffffffffffffffffffffffffffffffffffffffffffffffffffffffe",
 540	"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff"
 541	"00000000000000000000000000000000000000000000000000000000",
 542	NULL
 543};
 544
 545static const char *const *bad_points_table[] = {
 546	curve25519_bad_points,
 547	curve448_bad_points,
 548};
 549
 550static void mpi_ec_coefficient_normalize(MPI a, MPI p)
 551{
 552	if (a->sign) {
 553		mpi_resize(a, p->nlimbs);
 554		mpihelp_sub_n(a->d, p->d, a->d, p->nlimbs);
 555		a->nlimbs = p->nlimbs;
 556		a->sign = 0;
 557	}
 558}
 559
 560/* This function initialized a context for elliptic curve based on the
 561 * field GF(p).  P is the prime specifying this field, A is the first
 562 * coefficient.  CTX is expected to be zeroized.
 563 */
 564void mpi_ec_init(struct mpi_ec_ctx *ctx, enum gcry_mpi_ec_models model,
 565			enum ecc_dialects dialect,
 566			int flags, MPI p, MPI a, MPI b)
 567{
 568	int i;
 569	static int use_barrett = -1 /* TODO: 1 or -1 */;
 570
 571	mpi_ec_coefficient_normalize(a, p);
 572	mpi_ec_coefficient_normalize(b, p);
 573
 574	/* Fixme: Do we want to check some constraints? e.g.  a < p  */
 575
 576	ctx->model = model;
 577	ctx->dialect = dialect;
 578	ctx->flags = flags;
 579	if (dialect == ECC_DIALECT_ED25519)
 580		ctx->nbits = 256;
 581	else
 582		ctx->nbits = mpi_get_nbits(p);
 583	ctx->p = mpi_copy(p);
 584	ctx->a = mpi_copy(a);
 585	ctx->b = mpi_copy(b);
 586
 587	ctx->t.p_barrett = use_barrett > 0 ? mpi_barrett_init(ctx->p, 0) : NULL;
 588
 589	mpi_ec_get_reset(ctx);
 590
 591	if (model == MPI_EC_MONTGOMERY) {
 592		for (i = 0; i < DIM(bad_points_table); i++) {
 593			MPI p_candidate = mpi_scanval(bad_points_table[i][0]);
 594			int match_p = !mpi_cmp(ctx->p, p_candidate);
 595			int j;
 596
 597			mpi_free(p_candidate);
 598			if (!match_p)
 599				continue;
 600
 601			for (j = 0; i < DIM(ctx->t.scratch) && bad_points_table[i][j]; j++)
 602				ctx->t.scratch[j] = mpi_scanval(bad_points_table[i][j]);
 603		}
 604	} else {
 605		/* Allocate scratch variables.  */
 606		for (i = 0; i < DIM(ctx->t.scratch); i++)
 607			ctx->t.scratch[i] = mpi_alloc_like(ctx->p);
 608	}
 609
 610	ctx->addm = ec_addm;
 611	ctx->subm = ec_subm;
 612	ctx->mulm = ec_mulm;
 613	ctx->mul2 = ec_mul2;
 614	ctx->pow2 = ec_pow2;
 615
 616	for (i = 0; field_table[i].p; i++) {
 617		MPI f_p;
 618
 619		f_p = mpi_scanval(field_table[i].p);
 620		if (!f_p)
 621			break;
 622
 623		if (!mpi_cmp(p, f_p)) {
 624			ctx->addm = field_table[i].addm;
 625			ctx->subm = field_table[i].subm;
 626			ctx->mulm = field_table[i].mulm;
 627			ctx->mul2 = field_table[i].mul2;
 628			ctx->pow2 = field_table[i].pow2;
 629			mpi_free(f_p);
 630
 631			mpi_resize(ctx->a, ctx->p->nlimbs);
 632			ctx->a->nlimbs = ctx->p->nlimbs;
 633
 634			mpi_resize(ctx->b, ctx->p->nlimbs);
 635			ctx->b->nlimbs = ctx->p->nlimbs;
 636
 637			for (i = 0; i < DIM(ctx->t.scratch) && ctx->t.scratch[i]; i++)
 638				ctx->t.scratch[i]->nlimbs = ctx->p->nlimbs;
 639
 640			break;
 641		}
 642
 643		mpi_free(f_p);
 644	}
 645}
 646EXPORT_SYMBOL_GPL(mpi_ec_init);
 647
 648void mpi_ec_deinit(struct mpi_ec_ctx *ctx)
 649{
 650	int i;
 651
 652	mpi_barrett_free(ctx->t.p_barrett);
 653
 654	/* Domain parameter.  */
 655	mpi_free(ctx->p);
 656	mpi_free(ctx->a);
 657	mpi_free(ctx->b);
 658	mpi_point_release(ctx->G);
 659	mpi_free(ctx->n);
 660
 661	/* The key.  */
 662	mpi_point_release(ctx->Q);
 663	mpi_free(ctx->d);
 664
 665	/* Private data of ec.c.  */
 666	mpi_free(ctx->t.two_inv_p);
 667
 668	for (i = 0; i < DIM(ctx->t.scratch); i++)
 669		mpi_free(ctx->t.scratch[i]);
 670}
 671EXPORT_SYMBOL_GPL(mpi_ec_deinit);
 672
 673/* Compute the affine coordinates from the projective coordinates in
 674 * POINT.  Set them into X and Y.  If one coordinate is not required,
 675 * X or Y may be passed as NULL.  CTX is the usual context. Returns: 0
 676 * on success or !0 if POINT is at infinity.
 677 */
 678int mpi_ec_get_affine(MPI x, MPI y, MPI_POINT point, struct mpi_ec_ctx *ctx)
 679{
 680	if (!mpi_cmp_ui(point->z, 0))
 681		return -1;
 682
 683	switch (ctx->model) {
 684	case MPI_EC_WEIERSTRASS: /* Using Jacobian coordinates.  */
 685		{
 686			MPI z1, z2, z3;
 687
 688			z1 = mpi_new(0);
 689			z2 = mpi_new(0);
 690			ec_invm(z1, point->z, ctx);  /* z1 = z^(-1) mod p  */
 691			ec_mulm(z2, z1, z1, ctx);    /* z2 = z^(-2) mod p  */
 692
 693			if (x)
 694				ec_mulm(x, point->x, z2, ctx);
 695
 696			if (y) {
 697				z3 = mpi_new(0);
 698				ec_mulm(z3, z2, z1, ctx);      /* z3 = z^(-3) mod p */
 699				ec_mulm(y, point->y, z3, ctx);
 700				mpi_free(z3);
 701			}
 702
 703			mpi_free(z2);
 704			mpi_free(z1);
 705		}
 706		return 0;
 707
 708	case MPI_EC_MONTGOMERY:
 709		{
 710			if (x)
 711				mpi_set(x, point->x);
 712
 713			if (y) {
 714				log_fatal("%s: Getting Y-coordinate on %s is not supported\n",
 715						"mpi_ec_get_affine", "Montgomery");
 716				return -1;
 717			}
 718		}
 719		return 0;
 720
 721	case MPI_EC_EDWARDS:
 722		{
 723			MPI z;
 724
 725			z = mpi_new(0);
 726			ec_invm(z, point->z, ctx);
 727
 728			mpi_resize(z, ctx->p->nlimbs);
 729			z->nlimbs = ctx->p->nlimbs;
 730
 731			if (x) {
 732				mpi_resize(x, ctx->p->nlimbs);
 733				x->nlimbs = ctx->p->nlimbs;
 734				ctx->mulm(x, point->x, z, ctx);
 735			}
 736			if (y) {
 737				mpi_resize(y, ctx->p->nlimbs);
 738				y->nlimbs = ctx->p->nlimbs;
 739				ctx->mulm(y, point->y, z, ctx);
 740			}
 741
 742			mpi_free(z);
 743		}
 744		return 0;
 745
 746	default:
 747		return -1;
 748	}
 749}
 750EXPORT_SYMBOL_GPL(mpi_ec_get_affine);
 751
 752/*  RESULT = 2 * POINT  (Weierstrass version). */
 753static void dup_point_weierstrass(MPI_POINT result,
 754		MPI_POINT point, struct mpi_ec_ctx *ctx)
 755{
 756#define x3 (result->x)
 757#define y3 (result->y)
 758#define z3 (result->z)
 759#define t1 (ctx->t.scratch[0])
 760#define t2 (ctx->t.scratch[1])
 761#define t3 (ctx->t.scratch[2])
 762#define l1 (ctx->t.scratch[3])
 763#define l2 (ctx->t.scratch[4])
 764#define l3 (ctx->t.scratch[5])
 765
 766	if (!mpi_cmp_ui(point->y, 0) || !mpi_cmp_ui(point->z, 0)) {
 767		/* P_y == 0 || P_z == 0 => [1:1:0] */
 768		mpi_set_ui(x3, 1);
 769		mpi_set_ui(y3, 1);
 770		mpi_set_ui(z3, 0);
 771	} else {
 772		if (ec_get_a_is_pminus3(ctx)) {
 773			/* Use the faster case.  */
 774			/* L1 = 3(X - Z^2)(X + Z^2) */
 775			/*                          T1: used for Z^2. */
 776			/*                          T2: used for the right term. */
 777			ec_pow2(t1, point->z, ctx);
 778			ec_subm(l1, point->x, t1, ctx);
 779			ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx);
 780			ec_addm(t2, point->x, t1, ctx);
 781			ec_mulm(l1, l1, t2, ctx);
 782		} else {
 783			/* Standard case. */
 784			/* L1 = 3X^2 + aZ^4 */
 785			/*                          T1: used for aZ^4. */
 786			ec_pow2(l1, point->x, ctx);
 787			ec_mulm(l1, l1, mpi_const(MPI_C_THREE), ctx);
 788			ec_powm(t1, point->z, mpi_const(MPI_C_FOUR), ctx);
 789			ec_mulm(t1, t1, ctx->a, ctx);
 790			ec_addm(l1, l1, t1, ctx);
 791		}
 792		/* Z3 = 2YZ */
 793		ec_mulm(z3, point->y, point->z, ctx);
 794		ec_mul2(z3, z3, ctx);
 795
 796		/* L2 = 4XY^2 */
 797		/*                              T2: used for Y2; required later. */
 798		ec_pow2(t2, point->y, ctx);
 799		ec_mulm(l2, t2, point->x, ctx);
 800		ec_mulm(l2, l2, mpi_const(MPI_C_FOUR), ctx);
 801
 802		/* X3 = L1^2 - 2L2 */
 803		/*                              T1: used for L2^2. */
 804		ec_pow2(x3, l1, ctx);
 805		ec_mul2(t1, l2, ctx);
 806		ec_subm(x3, x3, t1, ctx);
 807
 808		/* L3 = 8Y^4 */
 809		/*                              T2: taken from above. */
 810		ec_pow2(t2, t2, ctx);
 811		ec_mulm(l3, t2, mpi_const(MPI_C_EIGHT), ctx);
 812
 813		/* Y3 = L1(L2 - X3) - L3 */
 814		ec_subm(y3, l2, x3, ctx);
 815		ec_mulm(y3, y3, l1, ctx);
 816		ec_subm(y3, y3, l3, ctx);
 817	}
 818
 819#undef x3
 820#undef y3
 821#undef z3
 822#undef t1
 823#undef t2
 824#undef t3
 825#undef l1
 826#undef l2
 827#undef l3
 828}
 829
 830/*  RESULT = 2 * POINT  (Montgomery version). */
 831static void dup_point_montgomery(MPI_POINT result,
 832				MPI_POINT point, struct mpi_ec_ctx *ctx)
 833{
 834	(void)result;
 835	(void)point;
 836	(void)ctx;
 837	log_fatal("%s: %s not yet supported\n",
 838			"mpi_ec_dup_point", "Montgomery");
 839}
 840
 841/*  RESULT = 2 * POINT  (Twisted Edwards version). */
 842static void dup_point_edwards(MPI_POINT result,
 843		MPI_POINT point, struct mpi_ec_ctx *ctx)
 844{
 845#define X1 (point->x)
 846#define Y1 (point->y)
 847#define Z1 (point->z)
 848#define X3 (result->x)
 849#define Y3 (result->y)
 850#define Z3 (result->z)
 851#define B (ctx->t.scratch[0])
 852#define C (ctx->t.scratch[1])
 853#define D (ctx->t.scratch[2])
 854#define E (ctx->t.scratch[3])
 855#define F (ctx->t.scratch[4])
 856#define H (ctx->t.scratch[5])
 857#define J (ctx->t.scratch[6])
 858
 859	/* Compute: (X_3 : Y_3 : Z_3) = 2( X_1 : Y_1 : Z_1 ) */
 860
 861	/* B = (X_1 + Y_1)^2  */
 862	ctx->addm(B, X1, Y1, ctx);
 863	ctx->pow2(B, B, ctx);
 864
 865	/* C = X_1^2 */
 866	/* D = Y_1^2 */
 867	ctx->pow2(C, X1, ctx);
 868	ctx->pow2(D, Y1, ctx);
 869
 870	/* E = aC */
 871	if (ctx->dialect == ECC_DIALECT_ED25519)
 872		ctx->subm(E, ctx->p, C, ctx);
 873	else
 874		ctx->mulm(E, ctx->a, C, ctx);
 875
 876	/* F = E + D */
 877	ctx->addm(F, E, D, ctx);
 878
 879	/* H = Z_1^2 */
 880	ctx->pow2(H, Z1, ctx);
 881
 882	/* J = F - 2H */
 883	ctx->mul2(J, H, ctx);
 884	ctx->subm(J, F, J, ctx);
 885
 886	/* X_3 = (B - C - D) · J */
 887	ctx->subm(X3, B, C, ctx);
 888	ctx->subm(X3, X3, D, ctx);
 889	ctx->mulm(X3, X3, J, ctx);
 890
 891	/* Y_3 = F · (E - D) */
 892	ctx->subm(Y3, E, D, ctx);
 893	ctx->mulm(Y3, Y3, F, ctx);
 894
 895	/* Z_3 = F · J */
 896	ctx->mulm(Z3, F, J, ctx);
 897
 898#undef X1
 899#undef Y1
 900#undef Z1
 901#undef X3
 902#undef Y3
 903#undef Z3
 904#undef B
 905#undef C
 906#undef D
 907#undef E
 908#undef F
 909#undef H
 910#undef J
 911}
 912
 913/*  RESULT = 2 * POINT  */
 914static void
 915mpi_ec_dup_point(MPI_POINT result, MPI_POINT point, struct mpi_ec_ctx *ctx)
 916{
 917	switch (ctx->model) {
 918	case MPI_EC_WEIERSTRASS:
 919		dup_point_weierstrass(result, point, ctx);
 920		break;
 921	case MPI_EC_MONTGOMERY:
 922		dup_point_montgomery(result, point, ctx);
 923		break;
 924	case MPI_EC_EDWARDS:
 925		dup_point_edwards(result, point, ctx);
 926		break;
 927	}
 928}
 929
 930/* RESULT = P1 + P2  (Weierstrass version).*/
 931static void add_points_weierstrass(MPI_POINT result,
 932		MPI_POINT p1, MPI_POINT p2,
 933		struct mpi_ec_ctx *ctx)
 934{
 935#define x1 (p1->x)
 936#define y1 (p1->y)
 937#define z1 (p1->z)
 938#define x2 (p2->x)
 939#define y2 (p2->y)
 940#define z2 (p2->z)
 941#define x3 (result->x)
 942#define y3 (result->y)
 943#define z3 (result->z)
 944#define l1 (ctx->t.scratch[0])
 945#define l2 (ctx->t.scratch[1])
 946#define l3 (ctx->t.scratch[2])
 947#define l4 (ctx->t.scratch[3])
 948#define l5 (ctx->t.scratch[4])
 949#define l6 (ctx->t.scratch[5])
 950#define l7 (ctx->t.scratch[6])
 951#define l8 (ctx->t.scratch[7])
 952#define l9 (ctx->t.scratch[8])
 953#define t1 (ctx->t.scratch[9])
 954#define t2 (ctx->t.scratch[10])
 955
 956	if ((!mpi_cmp(x1, x2)) && (!mpi_cmp(y1, y2)) && (!mpi_cmp(z1, z2))) {
 957		/* Same point; need to call the duplicate function.  */
 958		mpi_ec_dup_point(result, p1, ctx);
 959	} else if (!mpi_cmp_ui(z1, 0)) {
 960		/* P1 is at infinity.  */
 961		mpi_set(x3, p2->x);
 962		mpi_set(y3, p2->y);
 963		mpi_set(z3, p2->z);
 964	} else if (!mpi_cmp_ui(z2, 0)) {
 965		/* P2 is at infinity.  */
 966		mpi_set(x3, p1->x);
 967		mpi_set(y3, p1->y);
 968		mpi_set(z3, p1->z);
 969	} else {
 970		int z1_is_one = !mpi_cmp_ui(z1, 1);
 971		int z2_is_one = !mpi_cmp_ui(z2, 1);
 972
 973		/* l1 = x1 z2^2  */
 974		/* l2 = x2 z1^2  */
 975		if (z2_is_one)
 976			mpi_set(l1, x1);
 977		else {
 978			ec_pow2(l1, z2, ctx);
 979			ec_mulm(l1, l1, x1, ctx);
 980		}
 981		if (z1_is_one)
 982			mpi_set(l2, x2);
 983		else {
 984			ec_pow2(l2, z1, ctx);
 985			ec_mulm(l2, l2, x2, ctx);
 986		}
 987		/* l3 = l1 - l2 */
 988		ec_subm(l3, l1, l2, ctx);
 989		/* l4 = y1 z2^3  */
 990		ec_powm(l4, z2, mpi_const(MPI_C_THREE), ctx);
 991		ec_mulm(l4, l4, y1, ctx);
 992		/* l5 = y2 z1^3  */
 993		ec_powm(l5, z1, mpi_const(MPI_C_THREE), ctx);
 994		ec_mulm(l5, l5, y2, ctx);
 995		/* l6 = l4 - l5  */
 996		ec_subm(l6, l4, l5, ctx);
 997
 998		if (!mpi_cmp_ui(l3, 0)) {
 999			if (!mpi_cmp_ui(l6, 0)) {
1000				/* P1 and P2 are the same - use duplicate function. */
1001				mpi_ec_dup_point(result, p1, ctx);
1002			} else {
1003				/* P1 is the inverse of P2.  */
1004				mpi_set_ui(x3, 1);
1005				mpi_set_ui(y3, 1);
1006				mpi_set_ui(z3, 0);
1007			}
1008		} else {
1009			/* l7 = l1 + l2  */
1010			ec_addm(l7, l1, l2, ctx);
1011			/* l8 = l4 + l5  */
1012			ec_addm(l8, l4, l5, ctx);
1013			/* z3 = z1 z2 l3  */
1014			ec_mulm(z3, z1, z2, ctx);
1015			ec_mulm(z3, z3, l3, ctx);
1016			/* x3 = l6^2 - l7 l3^2  */
1017			ec_pow2(t1, l6, ctx);
1018			ec_pow2(t2, l3, ctx);
1019			ec_mulm(t2, t2, l7, ctx);
1020			ec_subm(x3, t1, t2, ctx);
1021			/* l9 = l7 l3^2 - 2 x3  */
1022			ec_mul2(t1, x3, ctx);
1023			ec_subm(l9, t2, t1, ctx);
1024			/* y3 = (l9 l6 - l8 l3^3)/2  */
1025			ec_mulm(l9, l9, l6, ctx);
1026			ec_powm(t1, l3, mpi_const(MPI_C_THREE), ctx); /* fixme: Use saved value*/
1027			ec_mulm(t1, t1, l8, ctx);
1028			ec_subm(y3, l9, t1, ctx);
1029			ec_mulm(y3, y3, ec_get_two_inv_p(ctx), ctx);
1030		}
1031	}
1032
1033#undef x1
1034#undef y1
1035#undef z1
1036#undef x2
1037#undef y2
1038#undef z2
1039#undef x3
1040#undef y3
1041#undef z3
1042#undef l1
1043#undef l2
1044#undef l3
1045#undef l4
1046#undef l5
1047#undef l6
1048#undef l7
1049#undef l8
1050#undef l9
1051#undef t1
1052#undef t2
1053}
1054
1055/* RESULT = P1 + P2  (Montgomery version).*/
1056static void add_points_montgomery(MPI_POINT result,
1057		MPI_POINT p1, MPI_POINT p2,
1058		struct mpi_ec_ctx *ctx)
1059{
1060	(void)result;
1061	(void)p1;
1062	(void)p2;
1063	(void)ctx;
1064	log_fatal("%s: %s not yet supported\n",
1065			"mpi_ec_add_points", "Montgomery");
1066}
1067
1068/* RESULT = P1 + P2  (Twisted Edwards version).*/
1069static void add_points_edwards(MPI_POINT result,
1070		MPI_POINT p1, MPI_POINT p2,
1071		struct mpi_ec_ctx *ctx)
1072{
1073#define X1 (p1->x)
1074#define Y1 (p1->y)
1075#define Z1 (p1->z)
1076#define X2 (p2->x)
1077#define Y2 (p2->y)
1078#define Z2 (p2->z)
1079#define X3 (result->x)
1080#define Y3 (result->y)
1081#define Z3 (result->z)
1082#define A (ctx->t.scratch[0])
1083#define B (ctx->t.scratch[1])
1084#define C (ctx->t.scratch[2])
1085#define D (ctx->t.scratch[3])
1086#define E (ctx->t.scratch[4])
1087#define F (ctx->t.scratch[5])
1088#define G (ctx->t.scratch[6])
1089#define tmp (ctx->t.scratch[7])
1090
1091	point_resize(result, ctx);
1092
1093	/* Compute: (X_3 : Y_3 : Z_3) = (X_1 : Y_1 : Z_1) + (X_2 : Y_2 : Z_3) */
1094
1095	/* A = Z1 · Z2 */
1096	ctx->mulm(A, Z1, Z2, ctx);
1097
1098	/* B = A^2 */
1099	ctx->pow2(B, A, ctx);
1100
1101	/* C = X1 · X2 */
1102	ctx->mulm(C, X1, X2, ctx);
1103
1104	/* D = Y1 · Y2 */
1105	ctx->mulm(D, Y1, Y2, ctx);
1106
1107	/* E = d · C · D */
1108	ctx->mulm(E, ctx->b, C, ctx);
1109	ctx->mulm(E, E, D, ctx);
1110
1111	/* F = B - E */
1112	ctx->subm(F, B, E, ctx);
1113
1114	/* G = B + E */
1115	ctx->addm(G, B, E, ctx);
1116
1117	/* X_3 = A · F · ((X_1 + Y_1) · (X_2 + Y_2) - C - D) */
1118	ctx->addm(tmp, X1, Y1, ctx);
1119	ctx->addm(X3, X2, Y2, ctx);
1120	ctx->mulm(X3, X3, tmp, ctx);
1121	ctx->subm(X3, X3, C, ctx);
1122	ctx->subm(X3, X3, D, ctx);
1123	ctx->mulm(X3, X3, F, ctx);
1124	ctx->mulm(X3, X3, A, ctx);
1125
1126	/* Y_3 = A · G · (D - aC) */
1127	if (ctx->dialect == ECC_DIALECT_ED25519) {
1128		ctx->addm(Y3, D, C, ctx);
1129	} else {
1130		ctx->mulm(Y3, ctx->a, C, ctx);
1131		ctx->subm(Y3, D, Y3, ctx);
1132	}
1133	ctx->mulm(Y3, Y3, G, ctx);
1134	ctx->mulm(Y3, Y3, A, ctx);
1135
1136	/* Z_3 = F · G */
1137	ctx->mulm(Z3, F, G, ctx);
1138
1139
1140#undef X1
1141#undef Y1
1142#undef Z1
1143#undef X2
1144#undef Y2
1145#undef Z2
1146#undef X3
1147#undef Y3
1148#undef Z3
1149#undef A
1150#undef B
1151#undef C
1152#undef D
1153#undef E
1154#undef F
1155#undef G
1156#undef tmp
1157}
1158
1159/* Compute a step of Montgomery Ladder (only use X and Z in the point).
1160 * Inputs:  P1, P2, and x-coordinate of DIF = P1 - P1.
1161 * Outputs: PRD = 2 * P1 and  SUM = P1 + P2.
1162 */
1163static void montgomery_ladder(MPI_POINT prd, MPI_POINT sum,
1164		MPI_POINT p1, MPI_POINT p2, MPI dif_x,
1165		struct mpi_ec_ctx *ctx)
1166{
1167	ctx->addm(sum->x, p2->x, p2->z, ctx);
1168	ctx->subm(p2->z, p2->x, p2->z, ctx);
1169	ctx->addm(prd->x, p1->x, p1->z, ctx);
1170	ctx->subm(p1->z, p1->x, p1->z, ctx);
1171	ctx->mulm(p2->x, p1->z, sum->x, ctx);
1172	ctx->mulm(p2->z, prd->x, p2->z, ctx);
1173	ctx->pow2(p1->x, prd->x, ctx);
1174	ctx->pow2(p1->z, p1->z, ctx);
1175	ctx->addm(sum->x, p2->x, p2->z, ctx);
1176	ctx->subm(p2->z, p2->x, p2->z, ctx);
1177	ctx->mulm(prd->x, p1->x, p1->z, ctx);
1178	ctx->subm(p1->z, p1->x, p1->z, ctx);
1179	ctx->pow2(sum->x, sum->x, ctx);
1180	ctx->pow2(sum->z, p2->z, ctx);
1181	ctx->mulm(prd->z, p1->z, ctx->a, ctx); /* CTX->A: (a-2)/4 */
1182	ctx->mulm(sum->z, sum->z, dif_x, ctx);
1183	ctx->addm(prd->z, p1->x, prd->z, ctx);
1184	ctx->mulm(prd->z, prd->z, p1->z, ctx);
1185}
1186
1187/* RESULT = P1 + P2 */
1188void mpi_ec_add_points(MPI_POINT result,
1189		MPI_POINT p1, MPI_POINT p2,
1190		struct mpi_ec_ctx *ctx)
1191{
1192	switch (ctx->model) {
1193	case MPI_EC_WEIERSTRASS:
1194		add_points_weierstrass(result, p1, p2, ctx);
1195		break;
1196	case MPI_EC_MONTGOMERY:
1197		add_points_montgomery(result, p1, p2, ctx);
1198		break;
1199	case MPI_EC_EDWARDS:
1200		add_points_edwards(result, p1, p2, ctx);
1201		break;
1202	}
1203}
1204EXPORT_SYMBOL_GPL(mpi_ec_add_points);
1205
1206/* Scalar point multiplication - the main function for ECC.  If takes
1207 * an integer SCALAR and a POINT as well as the usual context CTX.
1208 * RESULT will be set to the resulting point.
1209 */
1210void mpi_ec_mul_point(MPI_POINT result,
1211			MPI scalar, MPI_POINT point,
1212			struct mpi_ec_ctx *ctx)
1213{
1214	MPI x1, y1, z1, k, h, yy;
1215	unsigned int i, loops;
1216	struct gcry_mpi_point p1, p2, p1inv;
1217
1218	if (ctx->model == MPI_EC_EDWARDS) {
1219		/* Simple left to right binary method.  Algorithm 3.27 from
1220		 * {author={Hankerson, Darrel and Menezes, Alfred J. and Vanstone, Scott},
1221		 *  title = {Guide to Elliptic Curve Cryptography},
1222		 *  year = {2003}, isbn = {038795273X},
1223		 *  url = {http://www.cacr.math.uwaterloo.ca/ecc/},
1224		 *  publisher = {Springer-Verlag New York, Inc.}}
1225		 */
1226		unsigned int nbits;
1227		int j;
1228
1229		if (mpi_cmp(scalar, ctx->p) >= 0)
1230			nbits = mpi_get_nbits(scalar);
1231		else
1232			nbits = mpi_get_nbits(ctx->p);
1233
1234		mpi_set_ui(result->x, 0);
1235		mpi_set_ui(result->y, 1);
1236		mpi_set_ui(result->z, 1);
1237		point_resize(point, ctx);
1238
1239		point_resize(result, ctx);
1240		point_resize(point, ctx);
1241
1242		for (j = nbits-1; j >= 0; j--) {
1243			mpi_ec_dup_point(result, result, ctx);
1244			if (mpi_test_bit(scalar, j))
1245				mpi_ec_add_points(result, result, point, ctx);
1246		}
1247		return;
1248	} else if (ctx->model == MPI_EC_MONTGOMERY) {
1249		unsigned int nbits;
1250		int j;
1251		struct gcry_mpi_point p1_, p2_;
1252		MPI_POINT q1, q2, prd, sum;
1253		unsigned long sw;
1254		mpi_size_t rsize;
1255
1256		/* Compute scalar point multiplication with Montgomery Ladder.
1257		 * Note that we don't use Y-coordinate in the points at all.
1258		 * RESULT->Y will be filled by zero.
1259		 */
1260
1261		nbits = mpi_get_nbits(scalar);
1262		point_init(&p1);
1263		point_init(&p2);
1264		point_init(&p1_);
1265		point_init(&p2_);
1266		mpi_set_ui(p1.x, 1);
1267		mpi_free(p2.x);
1268		p2.x = mpi_copy(point->x);
1269		mpi_set_ui(p2.z, 1);
1270
1271		point_resize(&p1, ctx);
1272		point_resize(&p2, ctx);
1273		point_resize(&p1_, ctx);
1274		point_resize(&p2_, ctx);
1275
1276		mpi_resize(point->x, ctx->p->nlimbs);
1277		point->x->nlimbs = ctx->p->nlimbs;
1278
1279		q1 = &p1;
1280		q2 = &p2;
1281		prd = &p1_;
1282		sum = &p2_;
1283
1284		for (j = nbits-1; j >= 0; j--) {
1285			MPI_POINT t;
1286
1287			sw = mpi_test_bit(scalar, j);
1288			point_swap_cond(q1, q2, sw, ctx);
1289			montgomery_ladder(prd, sum, q1, q2, point->x, ctx);
1290			point_swap_cond(prd, sum, sw, ctx);
1291			t = q1;  q1 = prd;  prd = t;
1292			t = q2;  q2 = sum;  sum = t;
1293		}
1294
1295		mpi_clear(result->y);
1296		sw = (nbits & 1);
1297		point_swap_cond(&p1, &p1_, sw, ctx);
1298
1299		rsize = p1.z->nlimbs;
1300		MPN_NORMALIZE(p1.z->d, rsize);
1301		if (rsize == 0) {
1302			mpi_set_ui(result->x, 1);
1303			mpi_set_ui(result->z, 0);
1304		} else {
1305			z1 = mpi_new(0);
1306			ec_invm(z1, p1.z, ctx);
1307			ec_mulm(result->x, p1.x, z1, ctx);
1308			mpi_set_ui(result->z, 1);
1309			mpi_free(z1);
1310		}
1311
1312		point_free(&p1);
1313		point_free(&p2);
1314		point_free(&p1_);
1315		point_free(&p2_);
1316		return;
1317	}
1318
1319	x1 = mpi_alloc_like(ctx->p);
1320	y1 = mpi_alloc_like(ctx->p);
1321	h  = mpi_alloc_like(ctx->p);
1322	k  = mpi_copy(scalar);
1323	yy = mpi_copy(point->y);
1324
1325	if (mpi_has_sign(k)) {
1326		k->sign = 0;
1327		ec_invm(yy, yy, ctx);
1328	}
1329
1330	if (!mpi_cmp_ui(point->z, 1)) {
1331		mpi_set(x1, point->x);
1332		mpi_set(y1, yy);
1333	} else {
1334		MPI z2, z3;
1335
1336		z2 = mpi_alloc_like(ctx->p);
1337		z3 = mpi_alloc_like(ctx->p);
1338		ec_mulm(z2, point->z, point->z, ctx);
1339		ec_mulm(z3, point->z, z2, ctx);
1340		ec_invm(z2, z2, ctx);
1341		ec_mulm(x1, point->x, z2, ctx);
1342		ec_invm(z3, z3, ctx);
1343		ec_mulm(y1, yy, z3, ctx);
1344		mpi_free(z2);
1345		mpi_free(z3);
1346	}
1347	z1 = mpi_copy(mpi_const(MPI_C_ONE));
1348
1349	mpi_mul(h, k, mpi_const(MPI_C_THREE)); /* h = 3k */
1350	loops = mpi_get_nbits(h);
1351	if (loops < 2) {
1352		/* If SCALAR is zero, the above mpi_mul sets H to zero and thus
1353		 * LOOPs will be zero.  To avoid an underflow of I in the main
1354		 * loop we set LOOP to 2 and the result to (0,0,0).
1355		 */
1356		loops = 2;
1357		mpi_clear(result->x);
1358		mpi_clear(result->y);
1359		mpi_clear(result->z);
1360	} else {
1361		mpi_set(result->x, point->x);
1362		mpi_set(result->y, yy);
1363		mpi_set(result->z, point->z);
1364	}
1365	mpi_free(yy); yy = NULL;
1366
1367	p1.x = x1; x1 = NULL;
1368	p1.y = y1; y1 = NULL;
1369	p1.z = z1; z1 = NULL;
1370	point_init(&p2);
1371	point_init(&p1inv);
1372
1373	/* Invert point: y = p - y mod p  */
1374	point_set(&p1inv, &p1);
1375	ec_subm(p1inv.y, ctx->p, p1inv.y, ctx);
1376
1377	for (i = loops-2; i > 0; i--) {
1378		mpi_ec_dup_point(result, result, ctx);
1379		if (mpi_test_bit(h, i) == 1 && mpi_test_bit(k, i) == 0) {
1380			point_set(&p2, result);
1381			mpi_ec_add_points(result, &p2, &p1, ctx);
1382		}
1383		if (mpi_test_bit(h, i) == 0 && mpi_test_bit(k, i) == 1) {
1384			point_set(&p2, result);
1385			mpi_ec_add_points(result, &p2, &p1inv, ctx);
1386		}
1387	}
1388
1389	point_free(&p1);
1390	point_free(&p2);
1391	point_free(&p1inv);
1392	mpi_free(h);
1393	mpi_free(k);
1394}
1395EXPORT_SYMBOL_GPL(mpi_ec_mul_point);
1396
1397/* Return true if POINT is on the curve described by CTX.  */
1398int mpi_ec_curve_point(MPI_POINT point, struct mpi_ec_ctx *ctx)
1399{
1400	int res = 0;
1401	MPI x, y, w;
1402
1403	x = mpi_new(0);
1404	y = mpi_new(0);
1405	w = mpi_new(0);
1406
1407	/* Check that the point is in range.  This needs to be done here and
1408	 * not after conversion to affine coordinates.
1409	 */
1410	if (mpi_cmpabs(point->x, ctx->p) >= 0)
1411		goto leave;
1412	if (mpi_cmpabs(point->y, ctx->p) >= 0)
1413		goto leave;
1414	if (mpi_cmpabs(point->z, ctx->p) >= 0)
1415		goto leave;
1416
1417	switch (ctx->model) {
1418	case MPI_EC_WEIERSTRASS:
1419		{
1420			MPI xxx;
1421
1422			if (mpi_ec_get_affine(x, y, point, ctx))
1423				goto leave;
1424
1425			xxx = mpi_new(0);
1426
1427			/* y^2 == x^3 + a·x + b */
1428			ec_pow2(y, y, ctx);
1429
1430			ec_pow3(xxx, x, ctx);
1431			ec_mulm(w, ctx->a, x, ctx);
1432			ec_addm(w, w, ctx->b, ctx);
1433			ec_addm(w, w, xxx, ctx);
1434
1435			if (!mpi_cmp(y, w))
1436				res = 1;
1437
1438			mpi_free(xxx);
1439		}
1440		break;
1441
1442	case MPI_EC_MONTGOMERY:
1443		{
1444#define xx y
1445			/* With Montgomery curve, only X-coordinate is valid. */
1446			if (mpi_ec_get_affine(x, NULL, point, ctx))
1447				goto leave;
1448
1449			/* The equation is: b * y^2 == x^3 + a · x^2 + x */
1450			/* We check if right hand is quadratic residue or not by
1451			 * Euler's criterion.
1452			 */
1453			/* CTX->A has (a-2)/4 and CTX->B has b^-1 */
1454			ec_mulm(w, ctx->a, mpi_const(MPI_C_FOUR), ctx);
1455			ec_addm(w, w, mpi_const(MPI_C_TWO), ctx);
1456			ec_mulm(w, w, x, ctx);
1457			ec_pow2(xx, x, ctx);
1458			ec_addm(w, w, xx, ctx);
1459			ec_addm(w, w, mpi_const(MPI_C_ONE), ctx);
1460			ec_mulm(w, w, x, ctx);
1461			ec_mulm(w, w, ctx->b, ctx);
1462#undef xx
1463			/* Compute Euler's criterion: w^(p-1)/2 */
1464#define p_minus1 y
1465			ec_subm(p_minus1, ctx->p, mpi_const(MPI_C_ONE), ctx);
1466			mpi_rshift(p_minus1, p_minus1, 1);
1467			ec_powm(w, w, p_minus1, ctx);
1468
1469			res = !mpi_cmp_ui(w, 1);
1470#undef p_minus1
1471		}
1472		break;
1473
1474	case MPI_EC_EDWARDS:
1475		{
1476			if (mpi_ec_get_affine(x, y, point, ctx))
1477				goto leave;
1478
1479			mpi_resize(w, ctx->p->nlimbs);
1480			w->nlimbs = ctx->p->nlimbs;
1481
1482			/* a · x^2 + y^2 - 1 - b · x^2 · y^2 == 0 */
1483			ctx->pow2(x, x, ctx);
1484			ctx->pow2(y, y, ctx);
1485			if (ctx->dialect == ECC_DIALECT_ED25519)
1486				ctx->subm(w, ctx->p, x, ctx);
1487			else
1488				ctx->mulm(w, ctx->a, x, ctx);
1489			ctx->addm(w, w, y, ctx);
1490			ctx->mulm(x, x, y, ctx);
1491			ctx->mulm(x, x, ctx->b, ctx);
1492			ctx->subm(w, w, x, ctx);
1493			if (!mpi_cmp_ui(w, 1))
1494				res = 1;
1495		}
1496		break;
1497	}
1498
1499leave:
1500	mpi_free(w);
1501	mpi_free(x);
1502	mpi_free(y);
1503
1504	return res;
1505}
1506EXPORT_SYMBOL_GPL(mpi_ec_curve_point);