Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * core.c - Kernel Live Patching Core
4 *
5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6 * Copyright (C) 2014 SUSE
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/mutex.h>
14#include <linux/slab.h>
15#include <linux/list.h>
16#include <linux/kallsyms.h>
17#include <linux/livepatch.h>
18#include <linux/elf.h>
19#include <linux/moduleloader.h>
20#include <linux/completion.h>
21#include <linux/memory.h>
22#include <linux/rcupdate.h>
23#include <asm/cacheflush.h>
24#include "core.h"
25#include "patch.h"
26#include "state.h"
27#include "transition.h"
28
29/*
30 * klp_mutex is a coarse lock which serializes access to klp data. All
31 * accesses to klp-related variables and structures must have mutex protection,
32 * except within the following functions which carefully avoid the need for it:
33 *
34 * - klp_ftrace_handler()
35 * - klp_update_patch_state()
36 */
37DEFINE_MUTEX(klp_mutex);
38
39/*
40 * Actively used patches: enabled or in transition. Note that replaced
41 * or disabled patches are not listed even though the related kernel
42 * module still can be loaded.
43 */
44LIST_HEAD(klp_patches);
45
46static struct kobject *klp_root_kobj;
47
48static bool klp_is_module(struct klp_object *obj)
49{
50 return obj->name;
51}
52
53/* sets obj->mod if object is not vmlinux and module is found */
54static void klp_find_object_module(struct klp_object *obj)
55{
56 struct module *mod;
57
58 if (!klp_is_module(obj))
59 return;
60
61 rcu_read_lock_sched();
62 /*
63 * We do not want to block removal of patched modules and therefore
64 * we do not take a reference here. The patches are removed by
65 * klp_module_going() instead.
66 */
67 mod = find_module(obj->name);
68 /*
69 * Do not mess work of klp_module_coming() and klp_module_going().
70 * Note that the patch might still be needed before klp_module_going()
71 * is called. Module functions can be called even in the GOING state
72 * until mod->exit() finishes. This is especially important for
73 * patches that modify semantic of the functions.
74 */
75 if (mod && mod->klp_alive)
76 obj->mod = mod;
77
78 rcu_read_unlock_sched();
79}
80
81static bool klp_initialized(void)
82{
83 return !!klp_root_kobj;
84}
85
86static struct klp_func *klp_find_func(struct klp_object *obj,
87 struct klp_func *old_func)
88{
89 struct klp_func *func;
90
91 klp_for_each_func(obj, func) {
92 if ((strcmp(old_func->old_name, func->old_name) == 0) &&
93 (old_func->old_sympos == func->old_sympos)) {
94 return func;
95 }
96 }
97
98 return NULL;
99}
100
101static struct klp_object *klp_find_object(struct klp_patch *patch,
102 struct klp_object *old_obj)
103{
104 struct klp_object *obj;
105
106 klp_for_each_object(patch, obj) {
107 if (klp_is_module(old_obj)) {
108 if (klp_is_module(obj) &&
109 strcmp(old_obj->name, obj->name) == 0) {
110 return obj;
111 }
112 } else if (!klp_is_module(obj)) {
113 return obj;
114 }
115 }
116
117 return NULL;
118}
119
120struct klp_find_arg {
121 const char *objname;
122 const char *name;
123 unsigned long addr;
124 unsigned long count;
125 unsigned long pos;
126};
127
128static int klp_match_callback(void *data, unsigned long addr)
129{
130 struct klp_find_arg *args = data;
131
132 args->addr = addr;
133 args->count++;
134
135 /*
136 * Finish the search when the symbol is found for the desired position
137 * or the position is not defined for a non-unique symbol.
138 */
139 if ((args->pos && (args->count == args->pos)) ||
140 (!args->pos && (args->count > 1)))
141 return 1;
142
143 return 0;
144}
145
146static int klp_find_callback(void *data, const char *name,
147 struct module *mod, unsigned long addr)
148{
149 struct klp_find_arg *args = data;
150
151 if ((mod && !args->objname) || (!mod && args->objname))
152 return 0;
153
154 if (strcmp(args->name, name))
155 return 0;
156
157 if (args->objname && strcmp(args->objname, mod->name))
158 return 0;
159
160 return klp_match_callback(data, addr);
161}
162
163static int klp_find_object_symbol(const char *objname, const char *name,
164 unsigned long sympos, unsigned long *addr)
165{
166 struct klp_find_arg args = {
167 .objname = objname,
168 .name = name,
169 .addr = 0,
170 .count = 0,
171 .pos = sympos,
172 };
173
174 if (objname)
175 module_kallsyms_on_each_symbol(klp_find_callback, &args);
176 else
177 kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
178
179 /*
180 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
181 * otherwise ensure the symbol position count matches sympos.
182 */
183 if (args.addr == 0)
184 pr_err("symbol '%s' not found in symbol table\n", name);
185 else if (args.count > 1 && sympos == 0) {
186 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
187 name, objname);
188 } else if (sympos != args.count && sympos > 0) {
189 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
190 sympos, name, objname ? objname : "vmlinux");
191 } else {
192 *addr = args.addr;
193 return 0;
194 }
195
196 *addr = 0;
197 return -EINVAL;
198}
199
200static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
201 unsigned int symndx, Elf_Shdr *relasec,
202 const char *sec_objname)
203{
204 int i, cnt, ret;
205 char sym_objname[MODULE_NAME_LEN];
206 char sym_name[KSYM_NAME_LEN];
207 Elf_Rela *relas;
208 Elf_Sym *sym;
209 unsigned long sympos, addr;
210 bool sym_vmlinux;
211 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
212
213 /*
214 * Since the field widths for sym_objname and sym_name in the sscanf()
215 * call are hard-coded and correspond to MODULE_NAME_LEN and
216 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
217 * and KSYM_NAME_LEN have the values we expect them to have.
218 *
219 * Because the value of MODULE_NAME_LEN can differ among architectures,
220 * we use the smallest/strictest upper bound possible (56, based on
221 * the current definition of MODULE_NAME_LEN) to prevent overflows.
222 */
223 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
224
225 relas = (Elf_Rela *) relasec->sh_addr;
226 /* For each rela in this klp relocation section */
227 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
228 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
229 if (sym->st_shndx != SHN_LIVEPATCH) {
230 pr_err("symbol %s is not marked as a livepatch symbol\n",
231 strtab + sym->st_name);
232 return -EINVAL;
233 }
234
235 /* Format: .klp.sym.sym_objname.sym_name,sympos */
236 cnt = sscanf(strtab + sym->st_name,
237 ".klp.sym.%55[^.].%511[^,],%lu",
238 sym_objname, sym_name, &sympos);
239 if (cnt != 3) {
240 pr_err("symbol %s has an incorrectly formatted name\n",
241 strtab + sym->st_name);
242 return -EINVAL;
243 }
244
245 sym_vmlinux = !strcmp(sym_objname, "vmlinux");
246
247 /*
248 * Prevent module-specific KLP rela sections from referencing
249 * vmlinux symbols. This helps prevent ordering issues with
250 * module special section initializations. Presumably such
251 * symbols are exported and normal relas can be used instead.
252 */
253 if (!sec_vmlinux && sym_vmlinux) {
254 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
255 sym_name);
256 return -EINVAL;
257 }
258
259 /* klp_find_object_symbol() treats a NULL objname as vmlinux */
260 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
261 sym_name, sympos, &addr);
262 if (ret)
263 return ret;
264
265 sym->st_value = addr;
266 }
267
268 return 0;
269}
270
271/*
272 * At a high-level, there are two types of klp relocation sections: those which
273 * reference symbols which live in vmlinux; and those which reference symbols
274 * which live in other modules. This function is called for both types:
275 *
276 * 1) When a klp module itself loads, the module code calls this function to
277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278 * These relocations are written to the klp module text to allow the patched
279 * code/data to reference unexported vmlinux symbols. They're written as
280 * early as possible to ensure that other module init code (.e.g.,
281 * jump_label_apply_nops) can access any unexported vmlinux symbols which
282 * might be referenced by the klp module's special sections.
283 *
284 * 2) When a to-be-patched module loads -- or is already loaded when a
285 * corresponding klp module loads -- klp code calls this function to write
286 * module-specific klp relocations (.klp.rela.{module}.* sections). These
287 * are written to the klp module text to allow the patched code/data to
288 * reference symbols which live in the to-be-patched module or one of its
289 * module dependencies. Exported symbols are supported, in addition to
290 * unexported symbols, in order to enable late module patching, which allows
291 * the to-be-patched module to be loaded and patched sometime *after* the
292 * klp module is loaded.
293 */
294int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 const char *shstrtab, const char *strtab,
296 unsigned int symndx, unsigned int secndx,
297 const char *objname)
298{
299 int cnt, ret;
300 char sec_objname[MODULE_NAME_LEN];
301 Elf_Shdr *sec = sechdrs + secndx;
302
303 /*
304 * Format: .klp.rela.sec_objname.section_name
305 * See comment in klp_resolve_symbols() for an explanation
306 * of the selected field width value.
307 */
308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 sec_objname);
310 if (cnt != 1) {
311 pr_err("section %s has an incorrectly formatted name\n",
312 shstrtab + sec->sh_name);
313 return -EINVAL;
314 }
315
316 if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 return 0;
318
319 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
320 if (ret)
321 return ret;
322
323 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
324}
325
326/*
327 * Sysfs Interface
328 *
329 * /sys/kernel/livepatch
330 * /sys/kernel/livepatch/<patch>
331 * /sys/kernel/livepatch/<patch>/enabled
332 * /sys/kernel/livepatch/<patch>/transition
333 * /sys/kernel/livepatch/<patch>/force
334 * /sys/kernel/livepatch/<patch>/<object>
335 * /sys/kernel/livepatch/<patch>/<object>/patched
336 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
337 */
338static int __klp_disable_patch(struct klp_patch *patch);
339
340static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
341 const char *buf, size_t count)
342{
343 struct klp_patch *patch;
344 int ret;
345 bool enabled;
346
347 ret = kstrtobool(buf, &enabled);
348 if (ret)
349 return ret;
350
351 patch = container_of(kobj, struct klp_patch, kobj);
352
353 mutex_lock(&klp_mutex);
354
355 if (patch->enabled == enabled) {
356 /* already in requested state */
357 ret = -EINVAL;
358 goto out;
359 }
360
361 /*
362 * Allow to reverse a pending transition in both ways. It might be
363 * necessary to complete the transition without forcing and breaking
364 * the system integrity.
365 *
366 * Do not allow to re-enable a disabled patch.
367 */
368 if (patch == klp_transition_patch)
369 klp_reverse_transition();
370 else if (!enabled)
371 ret = __klp_disable_patch(patch);
372 else
373 ret = -EINVAL;
374
375out:
376 mutex_unlock(&klp_mutex);
377
378 if (ret)
379 return ret;
380 return count;
381}
382
383static ssize_t enabled_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385{
386 struct klp_patch *patch;
387
388 patch = container_of(kobj, struct klp_patch, kobj);
389 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
390}
391
392static ssize_t transition_show(struct kobject *kobj,
393 struct kobj_attribute *attr, char *buf)
394{
395 struct klp_patch *patch;
396
397 patch = container_of(kobj, struct klp_patch, kobj);
398 return snprintf(buf, PAGE_SIZE-1, "%d\n",
399 patch == klp_transition_patch);
400}
401
402static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
403 const char *buf, size_t count)
404{
405 struct klp_patch *patch;
406 int ret;
407 bool val;
408
409 ret = kstrtobool(buf, &val);
410 if (ret)
411 return ret;
412
413 if (!val)
414 return count;
415
416 mutex_lock(&klp_mutex);
417
418 patch = container_of(kobj, struct klp_patch, kobj);
419 if (patch != klp_transition_patch) {
420 mutex_unlock(&klp_mutex);
421 return -EINVAL;
422 }
423
424 klp_force_transition();
425
426 mutex_unlock(&klp_mutex);
427
428 return count;
429}
430
431static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
432static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
433static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
434static struct attribute *klp_patch_attrs[] = {
435 &enabled_kobj_attr.attr,
436 &transition_kobj_attr.attr,
437 &force_kobj_attr.attr,
438 NULL
439};
440ATTRIBUTE_GROUPS(klp_patch);
441
442static ssize_t patched_show(struct kobject *kobj,
443 struct kobj_attribute *attr, char *buf)
444{
445 struct klp_object *obj;
446
447 obj = container_of(kobj, struct klp_object, kobj);
448 return sysfs_emit(buf, "%d\n", obj->patched);
449}
450
451static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
452static struct attribute *klp_object_attrs[] = {
453 &patched_kobj_attr.attr,
454 NULL,
455};
456ATTRIBUTE_GROUPS(klp_object);
457
458static void klp_free_object_dynamic(struct klp_object *obj)
459{
460 kfree(obj->name);
461 kfree(obj);
462}
463
464static void klp_init_func_early(struct klp_object *obj,
465 struct klp_func *func);
466static void klp_init_object_early(struct klp_patch *patch,
467 struct klp_object *obj);
468
469static struct klp_object *klp_alloc_object_dynamic(const char *name,
470 struct klp_patch *patch)
471{
472 struct klp_object *obj;
473
474 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
475 if (!obj)
476 return NULL;
477
478 if (name) {
479 obj->name = kstrdup(name, GFP_KERNEL);
480 if (!obj->name) {
481 kfree(obj);
482 return NULL;
483 }
484 }
485
486 klp_init_object_early(patch, obj);
487 obj->dynamic = true;
488
489 return obj;
490}
491
492static void klp_free_func_nop(struct klp_func *func)
493{
494 kfree(func->old_name);
495 kfree(func);
496}
497
498static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
499 struct klp_object *obj)
500{
501 struct klp_func *func;
502
503 func = kzalloc(sizeof(*func), GFP_KERNEL);
504 if (!func)
505 return NULL;
506
507 if (old_func->old_name) {
508 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
509 if (!func->old_name) {
510 kfree(func);
511 return NULL;
512 }
513 }
514
515 klp_init_func_early(obj, func);
516 /*
517 * func->new_func is same as func->old_func. These addresses are
518 * set when the object is loaded, see klp_init_object_loaded().
519 */
520 func->old_sympos = old_func->old_sympos;
521 func->nop = true;
522
523 return func;
524}
525
526static int klp_add_object_nops(struct klp_patch *patch,
527 struct klp_object *old_obj)
528{
529 struct klp_object *obj;
530 struct klp_func *func, *old_func;
531
532 obj = klp_find_object(patch, old_obj);
533
534 if (!obj) {
535 obj = klp_alloc_object_dynamic(old_obj->name, patch);
536 if (!obj)
537 return -ENOMEM;
538 }
539
540 klp_for_each_func(old_obj, old_func) {
541 func = klp_find_func(obj, old_func);
542 if (func)
543 continue;
544
545 func = klp_alloc_func_nop(old_func, obj);
546 if (!func)
547 return -ENOMEM;
548 }
549
550 return 0;
551}
552
553/*
554 * Add 'nop' functions which simply return to the caller to run
555 * the original function. The 'nop' functions are added to a
556 * patch to facilitate a 'replace' mode.
557 */
558static int klp_add_nops(struct klp_patch *patch)
559{
560 struct klp_patch *old_patch;
561 struct klp_object *old_obj;
562
563 klp_for_each_patch(old_patch) {
564 klp_for_each_object(old_patch, old_obj) {
565 int err;
566
567 err = klp_add_object_nops(patch, old_obj);
568 if (err)
569 return err;
570 }
571 }
572
573 return 0;
574}
575
576static void klp_kobj_release_patch(struct kobject *kobj)
577{
578 struct klp_patch *patch;
579
580 patch = container_of(kobj, struct klp_patch, kobj);
581 complete(&patch->finish);
582}
583
584static struct kobj_type klp_ktype_patch = {
585 .release = klp_kobj_release_patch,
586 .sysfs_ops = &kobj_sysfs_ops,
587 .default_groups = klp_patch_groups,
588};
589
590static void klp_kobj_release_object(struct kobject *kobj)
591{
592 struct klp_object *obj;
593
594 obj = container_of(kobj, struct klp_object, kobj);
595
596 if (obj->dynamic)
597 klp_free_object_dynamic(obj);
598}
599
600static struct kobj_type klp_ktype_object = {
601 .release = klp_kobj_release_object,
602 .sysfs_ops = &kobj_sysfs_ops,
603 .default_groups = klp_object_groups,
604};
605
606static void klp_kobj_release_func(struct kobject *kobj)
607{
608 struct klp_func *func;
609
610 func = container_of(kobj, struct klp_func, kobj);
611
612 if (func->nop)
613 klp_free_func_nop(func);
614}
615
616static struct kobj_type klp_ktype_func = {
617 .release = klp_kobj_release_func,
618 .sysfs_ops = &kobj_sysfs_ops,
619};
620
621static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
622{
623 struct klp_func *func, *tmp_func;
624
625 klp_for_each_func_safe(obj, func, tmp_func) {
626 if (nops_only && !func->nop)
627 continue;
628
629 list_del(&func->node);
630 kobject_put(&func->kobj);
631 }
632}
633
634/* Clean up when a patched object is unloaded */
635static void klp_free_object_loaded(struct klp_object *obj)
636{
637 struct klp_func *func;
638
639 obj->mod = NULL;
640
641 klp_for_each_func(obj, func) {
642 func->old_func = NULL;
643
644 if (func->nop)
645 func->new_func = NULL;
646 }
647}
648
649static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
650{
651 struct klp_object *obj, *tmp_obj;
652
653 klp_for_each_object_safe(patch, obj, tmp_obj) {
654 __klp_free_funcs(obj, nops_only);
655
656 if (nops_only && !obj->dynamic)
657 continue;
658
659 list_del(&obj->node);
660 kobject_put(&obj->kobj);
661 }
662}
663
664static void klp_free_objects(struct klp_patch *patch)
665{
666 __klp_free_objects(patch, false);
667}
668
669static void klp_free_objects_dynamic(struct klp_patch *patch)
670{
671 __klp_free_objects(patch, true);
672}
673
674/*
675 * This function implements the free operations that can be called safely
676 * under klp_mutex.
677 *
678 * The operation must be completed by calling klp_free_patch_finish()
679 * outside klp_mutex.
680 */
681static void klp_free_patch_start(struct klp_patch *patch)
682{
683 if (!list_empty(&patch->list))
684 list_del(&patch->list);
685
686 klp_free_objects(patch);
687}
688
689/*
690 * This function implements the free part that must be called outside
691 * klp_mutex.
692 *
693 * It must be called after klp_free_patch_start(). And it has to be
694 * the last function accessing the livepatch structures when the patch
695 * gets disabled.
696 */
697static void klp_free_patch_finish(struct klp_patch *patch)
698{
699 /*
700 * Avoid deadlock with enabled_store() sysfs callback by
701 * calling this outside klp_mutex. It is safe because
702 * this is called when the patch gets disabled and it
703 * cannot get enabled again.
704 */
705 kobject_put(&patch->kobj);
706 wait_for_completion(&patch->finish);
707
708 /* Put the module after the last access to struct klp_patch. */
709 if (!patch->forced)
710 module_put(patch->mod);
711}
712
713/*
714 * The livepatch might be freed from sysfs interface created by the patch.
715 * This work allows to wait until the interface is destroyed in a separate
716 * context.
717 */
718static void klp_free_patch_work_fn(struct work_struct *work)
719{
720 struct klp_patch *patch =
721 container_of(work, struct klp_patch, free_work);
722
723 klp_free_patch_finish(patch);
724}
725
726void klp_free_patch_async(struct klp_patch *patch)
727{
728 klp_free_patch_start(patch);
729 schedule_work(&patch->free_work);
730}
731
732void klp_free_replaced_patches_async(struct klp_patch *new_patch)
733{
734 struct klp_patch *old_patch, *tmp_patch;
735
736 klp_for_each_patch_safe(old_patch, tmp_patch) {
737 if (old_patch == new_patch)
738 return;
739 klp_free_patch_async(old_patch);
740 }
741}
742
743static int klp_init_func(struct klp_object *obj, struct klp_func *func)
744{
745 if (!func->old_name)
746 return -EINVAL;
747
748 /*
749 * NOPs get the address later. The patched module must be loaded,
750 * see klp_init_object_loaded().
751 */
752 if (!func->new_func && !func->nop)
753 return -EINVAL;
754
755 if (strlen(func->old_name) >= KSYM_NAME_LEN)
756 return -EINVAL;
757
758 INIT_LIST_HEAD(&func->stack_node);
759 func->patched = false;
760 func->transition = false;
761
762 /* The format for the sysfs directory is <function,sympos> where sympos
763 * is the nth occurrence of this symbol in kallsyms for the patched
764 * object. If the user selects 0 for old_sympos, then 1 will be used
765 * since a unique symbol will be the first occurrence.
766 */
767 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
768 func->old_name,
769 func->old_sympos ? func->old_sympos : 1);
770}
771
772static int klp_apply_object_relocs(struct klp_patch *patch,
773 struct klp_object *obj)
774{
775 int i, ret;
776 struct klp_modinfo *info = patch->mod->klp_info;
777
778 for (i = 1; i < info->hdr.e_shnum; i++) {
779 Elf_Shdr *sec = info->sechdrs + i;
780
781 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
782 continue;
783
784 ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
785 info->secstrings,
786 patch->mod->core_kallsyms.strtab,
787 info->symndx, i, obj->name);
788 if (ret)
789 return ret;
790 }
791
792 return 0;
793}
794
795/* parts of the initialization that is done only when the object is loaded */
796static int klp_init_object_loaded(struct klp_patch *patch,
797 struct klp_object *obj)
798{
799 struct klp_func *func;
800 int ret;
801
802 if (klp_is_module(obj)) {
803 /*
804 * Only write module-specific relocations here
805 * (.klp.rela.{module}.*). vmlinux-specific relocations were
806 * written earlier during the initialization of the klp module
807 * itself.
808 */
809 ret = klp_apply_object_relocs(patch, obj);
810 if (ret)
811 return ret;
812 }
813
814 klp_for_each_func(obj, func) {
815 ret = klp_find_object_symbol(obj->name, func->old_name,
816 func->old_sympos,
817 (unsigned long *)&func->old_func);
818 if (ret)
819 return ret;
820
821 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
822 &func->old_size, NULL);
823 if (!ret) {
824 pr_err("kallsyms size lookup failed for '%s'\n",
825 func->old_name);
826 return -ENOENT;
827 }
828
829 if (func->nop)
830 func->new_func = func->old_func;
831
832 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
833 &func->new_size, NULL);
834 if (!ret) {
835 pr_err("kallsyms size lookup failed for '%s' replacement\n",
836 func->old_name);
837 return -ENOENT;
838 }
839 }
840
841 return 0;
842}
843
844static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
845{
846 struct klp_func *func;
847 int ret;
848 const char *name;
849
850 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
851 return -EINVAL;
852
853 obj->patched = false;
854 obj->mod = NULL;
855
856 klp_find_object_module(obj);
857
858 name = klp_is_module(obj) ? obj->name : "vmlinux";
859 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
860 if (ret)
861 return ret;
862
863 klp_for_each_func(obj, func) {
864 ret = klp_init_func(obj, func);
865 if (ret)
866 return ret;
867 }
868
869 if (klp_is_object_loaded(obj))
870 ret = klp_init_object_loaded(patch, obj);
871
872 return ret;
873}
874
875static void klp_init_func_early(struct klp_object *obj,
876 struct klp_func *func)
877{
878 kobject_init(&func->kobj, &klp_ktype_func);
879 list_add_tail(&func->node, &obj->func_list);
880}
881
882static void klp_init_object_early(struct klp_patch *patch,
883 struct klp_object *obj)
884{
885 INIT_LIST_HEAD(&obj->func_list);
886 kobject_init(&obj->kobj, &klp_ktype_object);
887 list_add_tail(&obj->node, &patch->obj_list);
888}
889
890static void klp_init_patch_early(struct klp_patch *patch)
891{
892 struct klp_object *obj;
893 struct klp_func *func;
894
895 INIT_LIST_HEAD(&patch->list);
896 INIT_LIST_HEAD(&patch->obj_list);
897 kobject_init(&patch->kobj, &klp_ktype_patch);
898 patch->enabled = false;
899 patch->forced = false;
900 INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
901 init_completion(&patch->finish);
902
903 klp_for_each_object_static(patch, obj) {
904 klp_init_object_early(patch, obj);
905
906 klp_for_each_func_static(obj, func) {
907 klp_init_func_early(obj, func);
908 }
909 }
910}
911
912static int klp_init_patch(struct klp_patch *patch)
913{
914 struct klp_object *obj;
915 int ret;
916
917 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
918 if (ret)
919 return ret;
920
921 if (patch->replace) {
922 ret = klp_add_nops(patch);
923 if (ret)
924 return ret;
925 }
926
927 klp_for_each_object(patch, obj) {
928 ret = klp_init_object(patch, obj);
929 if (ret)
930 return ret;
931 }
932
933 list_add_tail(&patch->list, &klp_patches);
934
935 return 0;
936}
937
938static int __klp_disable_patch(struct klp_patch *patch)
939{
940 struct klp_object *obj;
941
942 if (WARN_ON(!patch->enabled))
943 return -EINVAL;
944
945 if (klp_transition_patch)
946 return -EBUSY;
947
948 klp_init_transition(patch, KLP_UNPATCHED);
949
950 klp_for_each_object(patch, obj)
951 if (obj->patched)
952 klp_pre_unpatch_callback(obj);
953
954 /*
955 * Enforce the order of the func->transition writes in
956 * klp_init_transition() and the TIF_PATCH_PENDING writes in
957 * klp_start_transition(). In the rare case where klp_ftrace_handler()
958 * is called shortly after klp_update_patch_state() switches the task,
959 * this ensures the handler sees that func->transition is set.
960 */
961 smp_wmb();
962
963 klp_start_transition();
964 patch->enabled = false;
965 klp_try_complete_transition();
966
967 return 0;
968}
969
970static int __klp_enable_patch(struct klp_patch *patch)
971{
972 struct klp_object *obj;
973 int ret;
974
975 if (klp_transition_patch)
976 return -EBUSY;
977
978 if (WARN_ON(patch->enabled))
979 return -EINVAL;
980
981 pr_notice("enabling patch '%s'\n", patch->mod->name);
982
983 klp_init_transition(patch, KLP_PATCHED);
984
985 /*
986 * Enforce the order of the func->transition writes in
987 * klp_init_transition() and the ops->func_stack writes in
988 * klp_patch_object(), so that klp_ftrace_handler() will see the
989 * func->transition updates before the handler is registered and the
990 * new funcs become visible to the handler.
991 */
992 smp_wmb();
993
994 klp_for_each_object(patch, obj) {
995 if (!klp_is_object_loaded(obj))
996 continue;
997
998 ret = klp_pre_patch_callback(obj);
999 if (ret) {
1000 pr_warn("pre-patch callback failed for object '%s'\n",
1001 klp_is_module(obj) ? obj->name : "vmlinux");
1002 goto err;
1003 }
1004
1005 ret = klp_patch_object(obj);
1006 if (ret) {
1007 pr_warn("failed to patch object '%s'\n",
1008 klp_is_module(obj) ? obj->name : "vmlinux");
1009 goto err;
1010 }
1011 }
1012
1013 klp_start_transition();
1014 patch->enabled = true;
1015 klp_try_complete_transition();
1016
1017 return 0;
1018err:
1019 pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1020
1021 klp_cancel_transition();
1022 return ret;
1023}
1024
1025/**
1026 * klp_enable_patch() - enable the livepatch
1027 * @patch: patch to be enabled
1028 *
1029 * Initializes the data structure associated with the patch, creates the sysfs
1030 * interface, performs the needed symbol lookups and code relocations,
1031 * registers the patched functions with ftrace.
1032 *
1033 * This function is supposed to be called from the livepatch module_init()
1034 * callback.
1035 *
1036 * Return: 0 on success, otherwise error
1037 */
1038int klp_enable_patch(struct klp_patch *patch)
1039{
1040 int ret;
1041 struct klp_object *obj;
1042
1043 if (!patch || !patch->mod || !patch->objs)
1044 return -EINVAL;
1045
1046 klp_for_each_object_static(patch, obj) {
1047 if (!obj->funcs)
1048 return -EINVAL;
1049 }
1050
1051
1052 if (!is_livepatch_module(patch->mod)) {
1053 pr_err("module %s is not marked as a livepatch module\n",
1054 patch->mod->name);
1055 return -EINVAL;
1056 }
1057
1058 if (!klp_initialized())
1059 return -ENODEV;
1060
1061 if (!klp_have_reliable_stack()) {
1062 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1063 pr_warn("The livepatch transition may never complete.\n");
1064 }
1065
1066 mutex_lock(&klp_mutex);
1067
1068 if (!klp_is_patch_compatible(patch)) {
1069 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1070 patch->mod->name);
1071 mutex_unlock(&klp_mutex);
1072 return -EINVAL;
1073 }
1074
1075 if (!try_module_get(patch->mod)) {
1076 mutex_unlock(&klp_mutex);
1077 return -ENODEV;
1078 }
1079
1080 klp_init_patch_early(patch);
1081
1082 ret = klp_init_patch(patch);
1083 if (ret)
1084 goto err;
1085
1086 ret = __klp_enable_patch(patch);
1087 if (ret)
1088 goto err;
1089
1090 mutex_unlock(&klp_mutex);
1091
1092 return 0;
1093
1094err:
1095 klp_free_patch_start(patch);
1096
1097 mutex_unlock(&klp_mutex);
1098
1099 klp_free_patch_finish(patch);
1100
1101 return ret;
1102}
1103EXPORT_SYMBOL_GPL(klp_enable_patch);
1104
1105/*
1106 * This function unpatches objects from the replaced livepatches.
1107 *
1108 * We could be pretty aggressive here. It is called in the situation where
1109 * these structures are no longer accessed from the ftrace handler.
1110 * All functions are redirected by the klp_transition_patch. They
1111 * use either a new code or they are in the original code because
1112 * of the special nop function patches.
1113 *
1114 * The only exception is when the transition was forced. In this case,
1115 * klp_ftrace_handler() might still see the replaced patch on the stack.
1116 * Fortunately, it is carefully designed to work with removed functions
1117 * thanks to RCU. We only have to keep the patches on the system. Also
1118 * this is handled transparently by patch->module_put.
1119 */
1120void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1121{
1122 struct klp_patch *old_patch;
1123
1124 klp_for_each_patch(old_patch) {
1125 if (old_patch == new_patch)
1126 return;
1127
1128 old_patch->enabled = false;
1129 klp_unpatch_objects(old_patch);
1130 }
1131}
1132
1133/*
1134 * This function removes the dynamically allocated 'nop' functions.
1135 *
1136 * We could be pretty aggressive. NOPs do not change the existing
1137 * behavior except for adding unnecessary delay by the ftrace handler.
1138 *
1139 * It is safe even when the transition was forced. The ftrace handler
1140 * will see a valid ops->func_stack entry thanks to RCU.
1141 *
1142 * We could even free the NOPs structures. They must be the last entry
1143 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1144 * It does the same as klp_synchronize_transition() to make sure that
1145 * nobody is inside the ftrace handler once the operation finishes.
1146 *
1147 * IMPORTANT: It must be called right after removing the replaced patches!
1148 */
1149void klp_discard_nops(struct klp_patch *new_patch)
1150{
1151 klp_unpatch_objects_dynamic(klp_transition_patch);
1152 klp_free_objects_dynamic(klp_transition_patch);
1153}
1154
1155/*
1156 * Remove parts of patches that touch a given kernel module. The list of
1157 * patches processed might be limited. When limit is NULL, all patches
1158 * will be handled.
1159 */
1160static void klp_cleanup_module_patches_limited(struct module *mod,
1161 struct klp_patch *limit)
1162{
1163 struct klp_patch *patch;
1164 struct klp_object *obj;
1165
1166 klp_for_each_patch(patch) {
1167 if (patch == limit)
1168 break;
1169
1170 klp_for_each_object(patch, obj) {
1171 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1172 continue;
1173
1174 if (patch != klp_transition_patch)
1175 klp_pre_unpatch_callback(obj);
1176
1177 pr_notice("reverting patch '%s' on unloading module '%s'\n",
1178 patch->mod->name, obj->mod->name);
1179 klp_unpatch_object(obj);
1180
1181 klp_post_unpatch_callback(obj);
1182
1183 klp_free_object_loaded(obj);
1184 break;
1185 }
1186 }
1187}
1188
1189int klp_module_coming(struct module *mod)
1190{
1191 int ret;
1192 struct klp_patch *patch;
1193 struct klp_object *obj;
1194
1195 if (WARN_ON(mod->state != MODULE_STATE_COMING))
1196 return -EINVAL;
1197
1198 if (!strcmp(mod->name, "vmlinux")) {
1199 pr_err("vmlinux.ko: invalid module name\n");
1200 return -EINVAL;
1201 }
1202
1203 mutex_lock(&klp_mutex);
1204 /*
1205 * Each module has to know that klp_module_coming()
1206 * has been called. We never know what module will
1207 * get patched by a new patch.
1208 */
1209 mod->klp_alive = true;
1210
1211 klp_for_each_patch(patch) {
1212 klp_for_each_object(patch, obj) {
1213 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1214 continue;
1215
1216 obj->mod = mod;
1217
1218 ret = klp_init_object_loaded(patch, obj);
1219 if (ret) {
1220 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1221 patch->mod->name, obj->mod->name, ret);
1222 goto err;
1223 }
1224
1225 pr_notice("applying patch '%s' to loading module '%s'\n",
1226 patch->mod->name, obj->mod->name);
1227
1228 ret = klp_pre_patch_callback(obj);
1229 if (ret) {
1230 pr_warn("pre-patch callback failed for object '%s'\n",
1231 obj->name);
1232 goto err;
1233 }
1234
1235 ret = klp_patch_object(obj);
1236 if (ret) {
1237 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1238 patch->mod->name, obj->mod->name, ret);
1239
1240 klp_post_unpatch_callback(obj);
1241 goto err;
1242 }
1243
1244 if (patch != klp_transition_patch)
1245 klp_post_patch_callback(obj);
1246
1247 break;
1248 }
1249 }
1250
1251 mutex_unlock(&klp_mutex);
1252
1253 return 0;
1254
1255err:
1256 /*
1257 * If a patch is unsuccessfully applied, return
1258 * error to the module loader.
1259 */
1260 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1261 patch->mod->name, obj->mod->name, obj->mod->name);
1262 mod->klp_alive = false;
1263 obj->mod = NULL;
1264 klp_cleanup_module_patches_limited(mod, patch);
1265 mutex_unlock(&klp_mutex);
1266
1267 return ret;
1268}
1269
1270void klp_module_going(struct module *mod)
1271{
1272 if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1273 mod->state != MODULE_STATE_COMING))
1274 return;
1275
1276 mutex_lock(&klp_mutex);
1277 /*
1278 * Each module has to know that klp_module_going()
1279 * has been called. We never know what module will
1280 * get patched by a new patch.
1281 */
1282 mod->klp_alive = false;
1283
1284 klp_cleanup_module_patches_limited(mod, NULL);
1285
1286 mutex_unlock(&klp_mutex);
1287}
1288
1289static int __init klp_init(void)
1290{
1291 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1292 if (!klp_root_kobj)
1293 return -ENOMEM;
1294
1295 return 0;
1296}
1297
1298module_init(klp_init);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * core.c - Kernel Live Patching Core
4 *
5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6 * Copyright (C) 2014 SUSE
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/module.h>
12#include <linux/kernel.h>
13#include <linux/mutex.h>
14#include <linux/slab.h>
15#include <linux/list.h>
16#include <linux/kallsyms.h>
17#include <linux/livepatch.h>
18#include <linux/elf.h>
19#include <linux/moduleloader.h>
20#include <linux/completion.h>
21#include <linux/memory.h>
22#include <linux/rcupdate.h>
23#include <asm/cacheflush.h>
24#include "core.h"
25#include "patch.h"
26#include "state.h"
27#include "transition.h"
28
29/*
30 * klp_mutex is a coarse lock which serializes access to klp data. All
31 * accesses to klp-related variables and structures must have mutex protection,
32 * except within the following functions which carefully avoid the need for it:
33 *
34 * - klp_ftrace_handler()
35 * - klp_update_patch_state()
36 * - __klp_sched_try_switch()
37 */
38DEFINE_MUTEX(klp_mutex);
39
40/*
41 * Actively used patches: enabled or in transition. Note that replaced
42 * or disabled patches are not listed even though the related kernel
43 * module still can be loaded.
44 */
45LIST_HEAD(klp_patches);
46
47static struct kobject *klp_root_kobj;
48
49static bool klp_is_module(struct klp_object *obj)
50{
51 return obj->name;
52}
53
54/* sets obj->mod if object is not vmlinux and module is found */
55static void klp_find_object_module(struct klp_object *obj)
56{
57 struct module *mod;
58
59 if (!klp_is_module(obj))
60 return;
61
62 rcu_read_lock_sched();
63 /*
64 * We do not want to block removal of patched modules and therefore
65 * we do not take a reference here. The patches are removed by
66 * klp_module_going() instead.
67 */
68 mod = find_module(obj->name);
69 /*
70 * Do not mess work of klp_module_coming() and klp_module_going().
71 * Note that the patch might still be needed before klp_module_going()
72 * is called. Module functions can be called even in the GOING state
73 * until mod->exit() finishes. This is especially important for
74 * patches that modify semantic of the functions.
75 */
76 if (mod && mod->klp_alive)
77 obj->mod = mod;
78
79 rcu_read_unlock_sched();
80}
81
82static bool klp_initialized(void)
83{
84 return !!klp_root_kobj;
85}
86
87static struct klp_func *klp_find_func(struct klp_object *obj,
88 struct klp_func *old_func)
89{
90 struct klp_func *func;
91
92 klp_for_each_func(obj, func) {
93 if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 (old_func->old_sympos == func->old_sympos)) {
95 return func;
96 }
97 }
98
99 return NULL;
100}
101
102static struct klp_object *klp_find_object(struct klp_patch *patch,
103 struct klp_object *old_obj)
104{
105 struct klp_object *obj;
106
107 klp_for_each_object(patch, obj) {
108 if (klp_is_module(old_obj)) {
109 if (klp_is_module(obj) &&
110 strcmp(old_obj->name, obj->name) == 0) {
111 return obj;
112 }
113 } else if (!klp_is_module(obj)) {
114 return obj;
115 }
116 }
117
118 return NULL;
119}
120
121struct klp_find_arg {
122 const char *name;
123 unsigned long addr;
124 unsigned long count;
125 unsigned long pos;
126};
127
128static int klp_match_callback(void *data, unsigned long addr)
129{
130 struct klp_find_arg *args = data;
131
132 args->addr = addr;
133 args->count++;
134
135 /*
136 * Finish the search when the symbol is found for the desired position
137 * or the position is not defined for a non-unique symbol.
138 */
139 if ((args->pos && (args->count == args->pos)) ||
140 (!args->pos && (args->count > 1)))
141 return 1;
142
143 return 0;
144}
145
146static int klp_find_callback(void *data, const char *name, unsigned long addr)
147{
148 struct klp_find_arg *args = data;
149
150 if (strcmp(args->name, name))
151 return 0;
152
153 return klp_match_callback(data, addr);
154}
155
156static int klp_find_object_symbol(const char *objname, const char *name,
157 unsigned long sympos, unsigned long *addr)
158{
159 struct klp_find_arg args = {
160 .name = name,
161 .addr = 0,
162 .count = 0,
163 .pos = sympos,
164 };
165
166 if (objname)
167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168 else
169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
170
171 /*
172 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173 * otherwise ensure the symbol position count matches sympos.
174 */
175 if (args.addr == 0)
176 pr_err("symbol '%s' not found in symbol table\n", name);
177 else if (args.count > 1 && sympos == 0) {
178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179 name, objname);
180 } else if (sympos != args.count && sympos > 0) {
181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182 sympos, name, objname ? objname : "vmlinux");
183 } else {
184 *addr = args.addr;
185 return 0;
186 }
187
188 *addr = 0;
189 return -EINVAL;
190}
191
192static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193 unsigned int symndx, Elf_Shdr *relasec,
194 const char *sec_objname)
195{
196 int i, cnt, ret;
197 char sym_objname[MODULE_NAME_LEN];
198 char sym_name[KSYM_NAME_LEN];
199 Elf_Rela *relas;
200 Elf_Sym *sym;
201 unsigned long sympos, addr;
202 bool sym_vmlinux;
203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
204
205 /*
206 * Since the field widths for sym_objname and sym_name in the sscanf()
207 * call are hard-coded and correspond to MODULE_NAME_LEN and
208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209 * and KSYM_NAME_LEN have the values we expect them to have.
210 *
211 * Because the value of MODULE_NAME_LEN can differ among architectures,
212 * we use the smallest/strictest upper bound possible (56, based on
213 * the current definition of MODULE_NAME_LEN) to prevent overflows.
214 */
215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
216
217 relas = (Elf_Rela *) relasec->sh_addr;
218 /* For each rela in this klp relocation section */
219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221 if (sym->st_shndx != SHN_LIVEPATCH) {
222 pr_err("symbol %s is not marked as a livepatch symbol\n",
223 strtab + sym->st_name);
224 return -EINVAL;
225 }
226
227 /* Format: .klp.sym.sym_objname.sym_name,sympos */
228 cnt = sscanf(strtab + sym->st_name,
229 ".klp.sym.%55[^.].%511[^,],%lu",
230 sym_objname, sym_name, &sympos);
231 if (cnt != 3) {
232 pr_err("symbol %s has an incorrectly formatted name\n",
233 strtab + sym->st_name);
234 return -EINVAL;
235 }
236
237 sym_vmlinux = !strcmp(sym_objname, "vmlinux");
238
239 /*
240 * Prevent module-specific KLP rela sections from referencing
241 * vmlinux symbols. This helps prevent ordering issues with
242 * module special section initializations. Presumably such
243 * symbols are exported and normal relas can be used instead.
244 */
245 if (!sec_vmlinux && sym_vmlinux) {
246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247 sym_name);
248 return -EINVAL;
249 }
250
251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */
252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253 sym_name, sympos, &addr);
254 if (ret)
255 return ret;
256
257 sym->st_value = addr;
258 }
259
260 return 0;
261}
262
263void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264 const char *strtab,
265 unsigned int symindex,
266 unsigned int relsec,
267 struct module *me)
268{
269}
270
271/*
272 * At a high-level, there are two types of klp relocation sections: those which
273 * reference symbols which live in vmlinux; and those which reference symbols
274 * which live in other modules. This function is called for both types:
275 *
276 * 1) When a klp module itself loads, the module code calls this function to
277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278 * These relocations are written to the klp module text to allow the patched
279 * code/data to reference unexported vmlinux symbols. They're written as
280 * early as possible to ensure that other module init code (.e.g.,
281 * jump_label_apply_nops) can access any unexported vmlinux symbols which
282 * might be referenced by the klp module's special sections.
283 *
284 * 2) When a to-be-patched module loads -- or is already loaded when a
285 * corresponding klp module loads -- klp code calls this function to write
286 * module-specific klp relocations (.klp.rela.{module}.* sections). These
287 * are written to the klp module text to allow the patched code/data to
288 * reference symbols which live in the to-be-patched module or one of its
289 * module dependencies. Exported symbols are supported, in addition to
290 * unexported symbols, in order to enable late module patching, which allows
291 * the to-be-patched module to be loaded and patched sometime *after* the
292 * klp module is loaded.
293 */
294static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 const char *shstrtab, const char *strtab,
296 unsigned int symndx, unsigned int secndx,
297 const char *objname, bool apply)
298{
299 int cnt, ret;
300 char sec_objname[MODULE_NAME_LEN];
301 Elf_Shdr *sec = sechdrs + secndx;
302
303 /*
304 * Format: .klp.rela.sec_objname.section_name
305 * See comment in klp_resolve_symbols() for an explanation
306 * of the selected field width value.
307 */
308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 sec_objname);
310 if (cnt != 1) {
311 pr_err("section %s has an incorrectly formatted name\n",
312 shstrtab + sec->sh_name);
313 return -EINVAL;
314 }
315
316 if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 return 0;
318
319 if (apply) {
320 ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321 sec, sec_objname);
322 if (ret)
323 return ret;
324
325 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
326 }
327
328 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329 return 0;
330}
331
332int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333 const char *shstrtab, const char *strtab,
334 unsigned int symndx, unsigned int secndx,
335 const char *objname)
336{
337 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338 secndx, objname, true);
339}
340
341/*
342 * Sysfs Interface
343 *
344 * /sys/kernel/livepatch
345 * /sys/kernel/livepatch/<patch>
346 * /sys/kernel/livepatch/<patch>/enabled
347 * /sys/kernel/livepatch/<patch>/transition
348 * /sys/kernel/livepatch/<patch>/force
349 * /sys/kernel/livepatch/<patch>/<object>
350 * /sys/kernel/livepatch/<patch>/<object>/patched
351 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
352 */
353static int __klp_disable_patch(struct klp_patch *patch);
354
355static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
356 const char *buf, size_t count)
357{
358 struct klp_patch *patch;
359 int ret;
360 bool enabled;
361
362 ret = kstrtobool(buf, &enabled);
363 if (ret)
364 return ret;
365
366 patch = container_of(kobj, struct klp_patch, kobj);
367
368 mutex_lock(&klp_mutex);
369
370 if (patch->enabled == enabled) {
371 /* already in requested state */
372 ret = -EINVAL;
373 goto out;
374 }
375
376 /*
377 * Allow to reverse a pending transition in both ways. It might be
378 * necessary to complete the transition without forcing and breaking
379 * the system integrity.
380 *
381 * Do not allow to re-enable a disabled patch.
382 */
383 if (patch == klp_transition_patch)
384 klp_reverse_transition();
385 else if (!enabled)
386 ret = __klp_disable_patch(patch);
387 else
388 ret = -EINVAL;
389
390out:
391 mutex_unlock(&klp_mutex);
392
393 if (ret)
394 return ret;
395 return count;
396}
397
398static ssize_t enabled_show(struct kobject *kobj,
399 struct kobj_attribute *attr, char *buf)
400{
401 struct klp_patch *patch;
402
403 patch = container_of(kobj, struct klp_patch, kobj);
404 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
405}
406
407static ssize_t transition_show(struct kobject *kobj,
408 struct kobj_attribute *attr, char *buf)
409{
410 struct klp_patch *patch;
411
412 patch = container_of(kobj, struct klp_patch, kobj);
413 return snprintf(buf, PAGE_SIZE-1, "%d\n",
414 patch == klp_transition_patch);
415}
416
417static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
418 const char *buf, size_t count)
419{
420 struct klp_patch *patch;
421 int ret;
422 bool val;
423
424 ret = kstrtobool(buf, &val);
425 if (ret)
426 return ret;
427
428 if (!val)
429 return count;
430
431 mutex_lock(&klp_mutex);
432
433 patch = container_of(kobj, struct klp_patch, kobj);
434 if (patch != klp_transition_patch) {
435 mutex_unlock(&klp_mutex);
436 return -EINVAL;
437 }
438
439 klp_force_transition();
440
441 mutex_unlock(&klp_mutex);
442
443 return count;
444}
445
446static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
447static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
448static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
449static struct attribute *klp_patch_attrs[] = {
450 &enabled_kobj_attr.attr,
451 &transition_kobj_attr.attr,
452 &force_kobj_attr.attr,
453 NULL
454};
455ATTRIBUTE_GROUPS(klp_patch);
456
457static ssize_t patched_show(struct kobject *kobj,
458 struct kobj_attribute *attr, char *buf)
459{
460 struct klp_object *obj;
461
462 obj = container_of(kobj, struct klp_object, kobj);
463 return sysfs_emit(buf, "%d\n", obj->patched);
464}
465
466static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
467static struct attribute *klp_object_attrs[] = {
468 &patched_kobj_attr.attr,
469 NULL,
470};
471ATTRIBUTE_GROUPS(klp_object);
472
473static void klp_free_object_dynamic(struct klp_object *obj)
474{
475 kfree(obj->name);
476 kfree(obj);
477}
478
479static void klp_init_func_early(struct klp_object *obj,
480 struct klp_func *func);
481static void klp_init_object_early(struct klp_patch *patch,
482 struct klp_object *obj);
483
484static struct klp_object *klp_alloc_object_dynamic(const char *name,
485 struct klp_patch *patch)
486{
487 struct klp_object *obj;
488
489 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
490 if (!obj)
491 return NULL;
492
493 if (name) {
494 obj->name = kstrdup(name, GFP_KERNEL);
495 if (!obj->name) {
496 kfree(obj);
497 return NULL;
498 }
499 }
500
501 klp_init_object_early(patch, obj);
502 obj->dynamic = true;
503
504 return obj;
505}
506
507static void klp_free_func_nop(struct klp_func *func)
508{
509 kfree(func->old_name);
510 kfree(func);
511}
512
513static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
514 struct klp_object *obj)
515{
516 struct klp_func *func;
517
518 func = kzalloc(sizeof(*func), GFP_KERNEL);
519 if (!func)
520 return NULL;
521
522 if (old_func->old_name) {
523 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
524 if (!func->old_name) {
525 kfree(func);
526 return NULL;
527 }
528 }
529
530 klp_init_func_early(obj, func);
531 /*
532 * func->new_func is same as func->old_func. These addresses are
533 * set when the object is loaded, see klp_init_object_loaded().
534 */
535 func->old_sympos = old_func->old_sympos;
536 func->nop = true;
537
538 return func;
539}
540
541static int klp_add_object_nops(struct klp_patch *patch,
542 struct klp_object *old_obj)
543{
544 struct klp_object *obj;
545 struct klp_func *func, *old_func;
546
547 obj = klp_find_object(patch, old_obj);
548
549 if (!obj) {
550 obj = klp_alloc_object_dynamic(old_obj->name, patch);
551 if (!obj)
552 return -ENOMEM;
553 }
554
555 klp_for_each_func(old_obj, old_func) {
556 func = klp_find_func(obj, old_func);
557 if (func)
558 continue;
559
560 func = klp_alloc_func_nop(old_func, obj);
561 if (!func)
562 return -ENOMEM;
563 }
564
565 return 0;
566}
567
568/*
569 * Add 'nop' functions which simply return to the caller to run
570 * the original function. The 'nop' functions are added to a
571 * patch to facilitate a 'replace' mode.
572 */
573static int klp_add_nops(struct klp_patch *patch)
574{
575 struct klp_patch *old_patch;
576 struct klp_object *old_obj;
577
578 klp_for_each_patch(old_patch) {
579 klp_for_each_object(old_patch, old_obj) {
580 int err;
581
582 err = klp_add_object_nops(patch, old_obj);
583 if (err)
584 return err;
585 }
586 }
587
588 return 0;
589}
590
591static void klp_kobj_release_patch(struct kobject *kobj)
592{
593 struct klp_patch *patch;
594
595 patch = container_of(kobj, struct klp_patch, kobj);
596 complete(&patch->finish);
597}
598
599static const struct kobj_type klp_ktype_patch = {
600 .release = klp_kobj_release_patch,
601 .sysfs_ops = &kobj_sysfs_ops,
602 .default_groups = klp_patch_groups,
603};
604
605static void klp_kobj_release_object(struct kobject *kobj)
606{
607 struct klp_object *obj;
608
609 obj = container_of(kobj, struct klp_object, kobj);
610
611 if (obj->dynamic)
612 klp_free_object_dynamic(obj);
613}
614
615static const struct kobj_type klp_ktype_object = {
616 .release = klp_kobj_release_object,
617 .sysfs_ops = &kobj_sysfs_ops,
618 .default_groups = klp_object_groups,
619};
620
621static void klp_kobj_release_func(struct kobject *kobj)
622{
623 struct klp_func *func;
624
625 func = container_of(kobj, struct klp_func, kobj);
626
627 if (func->nop)
628 klp_free_func_nop(func);
629}
630
631static const struct kobj_type klp_ktype_func = {
632 .release = klp_kobj_release_func,
633 .sysfs_ops = &kobj_sysfs_ops,
634};
635
636static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
637{
638 struct klp_func *func, *tmp_func;
639
640 klp_for_each_func_safe(obj, func, tmp_func) {
641 if (nops_only && !func->nop)
642 continue;
643
644 list_del(&func->node);
645 kobject_put(&func->kobj);
646 }
647}
648
649/* Clean up when a patched object is unloaded */
650static void klp_free_object_loaded(struct klp_object *obj)
651{
652 struct klp_func *func;
653
654 obj->mod = NULL;
655
656 klp_for_each_func(obj, func) {
657 func->old_func = NULL;
658
659 if (func->nop)
660 func->new_func = NULL;
661 }
662}
663
664static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
665{
666 struct klp_object *obj, *tmp_obj;
667
668 klp_for_each_object_safe(patch, obj, tmp_obj) {
669 __klp_free_funcs(obj, nops_only);
670
671 if (nops_only && !obj->dynamic)
672 continue;
673
674 list_del(&obj->node);
675 kobject_put(&obj->kobj);
676 }
677}
678
679static void klp_free_objects(struct klp_patch *patch)
680{
681 __klp_free_objects(patch, false);
682}
683
684static void klp_free_objects_dynamic(struct klp_patch *patch)
685{
686 __klp_free_objects(patch, true);
687}
688
689/*
690 * This function implements the free operations that can be called safely
691 * under klp_mutex.
692 *
693 * The operation must be completed by calling klp_free_patch_finish()
694 * outside klp_mutex.
695 */
696static void klp_free_patch_start(struct klp_patch *patch)
697{
698 if (!list_empty(&patch->list))
699 list_del(&patch->list);
700
701 klp_free_objects(patch);
702}
703
704/*
705 * This function implements the free part that must be called outside
706 * klp_mutex.
707 *
708 * It must be called after klp_free_patch_start(). And it has to be
709 * the last function accessing the livepatch structures when the patch
710 * gets disabled.
711 */
712static void klp_free_patch_finish(struct klp_patch *patch)
713{
714 /*
715 * Avoid deadlock with enabled_store() sysfs callback by
716 * calling this outside klp_mutex. It is safe because
717 * this is called when the patch gets disabled and it
718 * cannot get enabled again.
719 */
720 kobject_put(&patch->kobj);
721 wait_for_completion(&patch->finish);
722
723 /* Put the module after the last access to struct klp_patch. */
724 if (!patch->forced)
725 module_put(patch->mod);
726}
727
728/*
729 * The livepatch might be freed from sysfs interface created by the patch.
730 * This work allows to wait until the interface is destroyed in a separate
731 * context.
732 */
733static void klp_free_patch_work_fn(struct work_struct *work)
734{
735 struct klp_patch *patch =
736 container_of(work, struct klp_patch, free_work);
737
738 klp_free_patch_finish(patch);
739}
740
741void klp_free_patch_async(struct klp_patch *patch)
742{
743 klp_free_patch_start(patch);
744 schedule_work(&patch->free_work);
745}
746
747void klp_free_replaced_patches_async(struct klp_patch *new_patch)
748{
749 struct klp_patch *old_patch, *tmp_patch;
750
751 klp_for_each_patch_safe(old_patch, tmp_patch) {
752 if (old_patch == new_patch)
753 return;
754 klp_free_patch_async(old_patch);
755 }
756}
757
758static int klp_init_func(struct klp_object *obj, struct klp_func *func)
759{
760 if (!func->old_name)
761 return -EINVAL;
762
763 /*
764 * NOPs get the address later. The patched module must be loaded,
765 * see klp_init_object_loaded().
766 */
767 if (!func->new_func && !func->nop)
768 return -EINVAL;
769
770 if (strlen(func->old_name) >= KSYM_NAME_LEN)
771 return -EINVAL;
772
773 INIT_LIST_HEAD(&func->stack_node);
774 func->patched = false;
775 func->transition = false;
776
777 /* The format for the sysfs directory is <function,sympos> where sympos
778 * is the nth occurrence of this symbol in kallsyms for the patched
779 * object. If the user selects 0 for old_sympos, then 1 will be used
780 * since a unique symbol will be the first occurrence.
781 */
782 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
783 func->old_name,
784 func->old_sympos ? func->old_sympos : 1);
785}
786
787static int klp_write_object_relocs(struct klp_patch *patch,
788 struct klp_object *obj,
789 bool apply)
790{
791 int i, ret;
792 struct klp_modinfo *info = patch->mod->klp_info;
793
794 for (i = 1; i < info->hdr.e_shnum; i++) {
795 Elf_Shdr *sec = info->sechdrs + i;
796
797 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
798 continue;
799
800 ret = klp_write_section_relocs(patch->mod, info->sechdrs,
801 info->secstrings,
802 patch->mod->core_kallsyms.strtab,
803 info->symndx, i, obj->name, apply);
804 if (ret)
805 return ret;
806 }
807
808 return 0;
809}
810
811static int klp_apply_object_relocs(struct klp_patch *patch,
812 struct klp_object *obj)
813{
814 return klp_write_object_relocs(patch, obj, true);
815}
816
817static void klp_clear_object_relocs(struct klp_patch *patch,
818 struct klp_object *obj)
819{
820 klp_write_object_relocs(patch, obj, false);
821}
822
823/* parts of the initialization that is done only when the object is loaded */
824static int klp_init_object_loaded(struct klp_patch *patch,
825 struct klp_object *obj)
826{
827 struct klp_func *func;
828 int ret;
829
830 if (klp_is_module(obj)) {
831 /*
832 * Only write module-specific relocations here
833 * (.klp.rela.{module}.*). vmlinux-specific relocations were
834 * written earlier during the initialization of the klp module
835 * itself.
836 */
837 ret = klp_apply_object_relocs(patch, obj);
838 if (ret)
839 return ret;
840 }
841
842 klp_for_each_func(obj, func) {
843 ret = klp_find_object_symbol(obj->name, func->old_name,
844 func->old_sympos,
845 (unsigned long *)&func->old_func);
846 if (ret)
847 return ret;
848
849 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
850 &func->old_size, NULL);
851 if (!ret) {
852 pr_err("kallsyms size lookup failed for '%s'\n",
853 func->old_name);
854 return -ENOENT;
855 }
856
857 if (func->nop)
858 func->new_func = func->old_func;
859
860 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
861 &func->new_size, NULL);
862 if (!ret) {
863 pr_err("kallsyms size lookup failed for '%s' replacement\n",
864 func->old_name);
865 return -ENOENT;
866 }
867 }
868
869 return 0;
870}
871
872static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
873{
874 struct klp_func *func;
875 int ret;
876 const char *name;
877
878 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
879 return -EINVAL;
880
881 obj->patched = false;
882 obj->mod = NULL;
883
884 klp_find_object_module(obj);
885
886 name = klp_is_module(obj) ? obj->name : "vmlinux";
887 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
888 if (ret)
889 return ret;
890
891 klp_for_each_func(obj, func) {
892 ret = klp_init_func(obj, func);
893 if (ret)
894 return ret;
895 }
896
897 if (klp_is_object_loaded(obj))
898 ret = klp_init_object_loaded(patch, obj);
899
900 return ret;
901}
902
903static void klp_init_func_early(struct klp_object *obj,
904 struct klp_func *func)
905{
906 kobject_init(&func->kobj, &klp_ktype_func);
907 list_add_tail(&func->node, &obj->func_list);
908}
909
910static void klp_init_object_early(struct klp_patch *patch,
911 struct klp_object *obj)
912{
913 INIT_LIST_HEAD(&obj->func_list);
914 kobject_init(&obj->kobj, &klp_ktype_object);
915 list_add_tail(&obj->node, &patch->obj_list);
916}
917
918static void klp_init_patch_early(struct klp_patch *patch)
919{
920 struct klp_object *obj;
921 struct klp_func *func;
922
923 INIT_LIST_HEAD(&patch->list);
924 INIT_LIST_HEAD(&patch->obj_list);
925 kobject_init(&patch->kobj, &klp_ktype_patch);
926 patch->enabled = false;
927 patch->forced = false;
928 INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
929 init_completion(&patch->finish);
930
931 klp_for_each_object_static(patch, obj) {
932 klp_init_object_early(patch, obj);
933
934 klp_for_each_func_static(obj, func) {
935 klp_init_func_early(obj, func);
936 }
937 }
938}
939
940static int klp_init_patch(struct klp_patch *patch)
941{
942 struct klp_object *obj;
943 int ret;
944
945 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
946 if (ret)
947 return ret;
948
949 if (patch->replace) {
950 ret = klp_add_nops(patch);
951 if (ret)
952 return ret;
953 }
954
955 klp_for_each_object(patch, obj) {
956 ret = klp_init_object(patch, obj);
957 if (ret)
958 return ret;
959 }
960
961 list_add_tail(&patch->list, &klp_patches);
962
963 return 0;
964}
965
966static int __klp_disable_patch(struct klp_patch *patch)
967{
968 struct klp_object *obj;
969
970 if (WARN_ON(!patch->enabled))
971 return -EINVAL;
972
973 if (klp_transition_patch)
974 return -EBUSY;
975
976 klp_init_transition(patch, KLP_UNPATCHED);
977
978 klp_for_each_object(patch, obj)
979 if (obj->patched)
980 klp_pre_unpatch_callback(obj);
981
982 /*
983 * Enforce the order of the func->transition writes in
984 * klp_init_transition() and the TIF_PATCH_PENDING writes in
985 * klp_start_transition(). In the rare case where klp_ftrace_handler()
986 * is called shortly after klp_update_patch_state() switches the task,
987 * this ensures the handler sees that func->transition is set.
988 */
989 smp_wmb();
990
991 klp_start_transition();
992 patch->enabled = false;
993 klp_try_complete_transition();
994
995 return 0;
996}
997
998static int __klp_enable_patch(struct klp_patch *patch)
999{
1000 struct klp_object *obj;
1001 int ret;
1002
1003 if (klp_transition_patch)
1004 return -EBUSY;
1005
1006 if (WARN_ON(patch->enabled))
1007 return -EINVAL;
1008
1009 pr_notice("enabling patch '%s'\n", patch->mod->name);
1010
1011 klp_init_transition(patch, KLP_PATCHED);
1012
1013 /*
1014 * Enforce the order of the func->transition writes in
1015 * klp_init_transition() and the ops->func_stack writes in
1016 * klp_patch_object(), so that klp_ftrace_handler() will see the
1017 * func->transition updates before the handler is registered and the
1018 * new funcs become visible to the handler.
1019 */
1020 smp_wmb();
1021
1022 klp_for_each_object(patch, obj) {
1023 if (!klp_is_object_loaded(obj))
1024 continue;
1025
1026 ret = klp_pre_patch_callback(obj);
1027 if (ret) {
1028 pr_warn("pre-patch callback failed for object '%s'\n",
1029 klp_is_module(obj) ? obj->name : "vmlinux");
1030 goto err;
1031 }
1032
1033 ret = klp_patch_object(obj);
1034 if (ret) {
1035 pr_warn("failed to patch object '%s'\n",
1036 klp_is_module(obj) ? obj->name : "vmlinux");
1037 goto err;
1038 }
1039 }
1040
1041 klp_start_transition();
1042 patch->enabled = true;
1043 klp_try_complete_transition();
1044
1045 return 0;
1046err:
1047 pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1048
1049 klp_cancel_transition();
1050 return ret;
1051}
1052
1053/**
1054 * klp_enable_patch() - enable the livepatch
1055 * @patch: patch to be enabled
1056 *
1057 * Initializes the data structure associated with the patch, creates the sysfs
1058 * interface, performs the needed symbol lookups and code relocations,
1059 * registers the patched functions with ftrace.
1060 *
1061 * This function is supposed to be called from the livepatch module_init()
1062 * callback.
1063 *
1064 * Return: 0 on success, otherwise error
1065 */
1066int klp_enable_patch(struct klp_patch *patch)
1067{
1068 int ret;
1069 struct klp_object *obj;
1070
1071 if (!patch || !patch->mod || !patch->objs)
1072 return -EINVAL;
1073
1074 klp_for_each_object_static(patch, obj) {
1075 if (!obj->funcs)
1076 return -EINVAL;
1077 }
1078
1079
1080 if (!is_livepatch_module(patch->mod)) {
1081 pr_err("module %s is not marked as a livepatch module\n",
1082 patch->mod->name);
1083 return -EINVAL;
1084 }
1085
1086 if (!klp_initialized())
1087 return -ENODEV;
1088
1089 if (!klp_have_reliable_stack()) {
1090 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1091 pr_warn("The livepatch transition may never complete.\n");
1092 }
1093
1094 mutex_lock(&klp_mutex);
1095
1096 if (!klp_is_patch_compatible(patch)) {
1097 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1098 patch->mod->name);
1099 mutex_unlock(&klp_mutex);
1100 return -EINVAL;
1101 }
1102
1103 if (!try_module_get(patch->mod)) {
1104 mutex_unlock(&klp_mutex);
1105 return -ENODEV;
1106 }
1107
1108 klp_init_patch_early(patch);
1109
1110 ret = klp_init_patch(patch);
1111 if (ret)
1112 goto err;
1113
1114 ret = __klp_enable_patch(patch);
1115 if (ret)
1116 goto err;
1117
1118 mutex_unlock(&klp_mutex);
1119
1120 return 0;
1121
1122err:
1123 klp_free_patch_start(patch);
1124
1125 mutex_unlock(&klp_mutex);
1126
1127 klp_free_patch_finish(patch);
1128
1129 return ret;
1130}
1131EXPORT_SYMBOL_GPL(klp_enable_patch);
1132
1133/*
1134 * This function unpatches objects from the replaced livepatches.
1135 *
1136 * We could be pretty aggressive here. It is called in the situation where
1137 * these structures are no longer accessed from the ftrace handler.
1138 * All functions are redirected by the klp_transition_patch. They
1139 * use either a new code or they are in the original code because
1140 * of the special nop function patches.
1141 *
1142 * The only exception is when the transition was forced. In this case,
1143 * klp_ftrace_handler() might still see the replaced patch on the stack.
1144 * Fortunately, it is carefully designed to work with removed functions
1145 * thanks to RCU. We only have to keep the patches on the system. Also
1146 * this is handled transparently by patch->module_put.
1147 */
1148void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1149{
1150 struct klp_patch *old_patch;
1151
1152 klp_for_each_patch(old_patch) {
1153 if (old_patch == new_patch)
1154 return;
1155
1156 old_patch->enabled = false;
1157 klp_unpatch_objects(old_patch);
1158 }
1159}
1160
1161/*
1162 * This function removes the dynamically allocated 'nop' functions.
1163 *
1164 * We could be pretty aggressive. NOPs do not change the existing
1165 * behavior except for adding unnecessary delay by the ftrace handler.
1166 *
1167 * It is safe even when the transition was forced. The ftrace handler
1168 * will see a valid ops->func_stack entry thanks to RCU.
1169 *
1170 * We could even free the NOPs structures. They must be the last entry
1171 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1172 * It does the same as klp_synchronize_transition() to make sure that
1173 * nobody is inside the ftrace handler once the operation finishes.
1174 *
1175 * IMPORTANT: It must be called right after removing the replaced patches!
1176 */
1177void klp_discard_nops(struct klp_patch *new_patch)
1178{
1179 klp_unpatch_objects_dynamic(klp_transition_patch);
1180 klp_free_objects_dynamic(klp_transition_patch);
1181}
1182
1183/*
1184 * Remove parts of patches that touch a given kernel module. The list of
1185 * patches processed might be limited. When limit is NULL, all patches
1186 * will be handled.
1187 */
1188static void klp_cleanup_module_patches_limited(struct module *mod,
1189 struct klp_patch *limit)
1190{
1191 struct klp_patch *patch;
1192 struct klp_object *obj;
1193
1194 klp_for_each_patch(patch) {
1195 if (patch == limit)
1196 break;
1197
1198 klp_for_each_object(patch, obj) {
1199 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1200 continue;
1201
1202 if (patch != klp_transition_patch)
1203 klp_pre_unpatch_callback(obj);
1204
1205 pr_notice("reverting patch '%s' on unloading module '%s'\n",
1206 patch->mod->name, obj->mod->name);
1207 klp_unpatch_object(obj);
1208
1209 klp_post_unpatch_callback(obj);
1210 klp_clear_object_relocs(patch, obj);
1211 klp_free_object_loaded(obj);
1212 break;
1213 }
1214 }
1215}
1216
1217int klp_module_coming(struct module *mod)
1218{
1219 int ret;
1220 struct klp_patch *patch;
1221 struct klp_object *obj;
1222
1223 if (WARN_ON(mod->state != MODULE_STATE_COMING))
1224 return -EINVAL;
1225
1226 if (!strcmp(mod->name, "vmlinux")) {
1227 pr_err("vmlinux.ko: invalid module name\n");
1228 return -EINVAL;
1229 }
1230
1231 mutex_lock(&klp_mutex);
1232 /*
1233 * Each module has to know that klp_module_coming()
1234 * has been called. We never know what module will
1235 * get patched by a new patch.
1236 */
1237 mod->klp_alive = true;
1238
1239 klp_for_each_patch(patch) {
1240 klp_for_each_object(patch, obj) {
1241 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1242 continue;
1243
1244 obj->mod = mod;
1245
1246 ret = klp_init_object_loaded(patch, obj);
1247 if (ret) {
1248 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1249 patch->mod->name, obj->mod->name, ret);
1250 goto err;
1251 }
1252
1253 pr_notice("applying patch '%s' to loading module '%s'\n",
1254 patch->mod->name, obj->mod->name);
1255
1256 ret = klp_pre_patch_callback(obj);
1257 if (ret) {
1258 pr_warn("pre-patch callback failed for object '%s'\n",
1259 obj->name);
1260 goto err;
1261 }
1262
1263 ret = klp_patch_object(obj);
1264 if (ret) {
1265 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1266 patch->mod->name, obj->mod->name, ret);
1267
1268 klp_post_unpatch_callback(obj);
1269 goto err;
1270 }
1271
1272 if (patch != klp_transition_patch)
1273 klp_post_patch_callback(obj);
1274
1275 break;
1276 }
1277 }
1278
1279 mutex_unlock(&klp_mutex);
1280
1281 return 0;
1282
1283err:
1284 /*
1285 * If a patch is unsuccessfully applied, return
1286 * error to the module loader.
1287 */
1288 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1289 patch->mod->name, obj->mod->name, obj->mod->name);
1290 mod->klp_alive = false;
1291 obj->mod = NULL;
1292 klp_cleanup_module_patches_limited(mod, patch);
1293 mutex_unlock(&klp_mutex);
1294
1295 return ret;
1296}
1297
1298void klp_module_going(struct module *mod)
1299{
1300 if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1301 mod->state != MODULE_STATE_COMING))
1302 return;
1303
1304 mutex_lock(&klp_mutex);
1305 /*
1306 * Each module has to know that klp_module_going()
1307 * has been called. We never know what module will
1308 * get patched by a new patch.
1309 */
1310 mod->klp_alive = false;
1311
1312 klp_cleanup_module_patches_limited(mod, NULL);
1313
1314 mutex_unlock(&klp_mutex);
1315}
1316
1317static int __init klp_init(void)
1318{
1319 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1320 if (!klp_root_kobj)
1321 return -ENOMEM;
1322
1323 return 0;
1324}
1325
1326module_init(klp_init);