Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2020 Intel Corporation
  4 */
  5
  6#include "i915_drv.h"
  7#include "i915_reg.h"
  8#include "intel_gt.h"
  9#include "intel_gt_clock_utils.h"
 
 10#include "intel_gt_regs.h"
 11
 12static u32 read_reference_ts_freq(struct intel_uncore *uncore)
 13{
 14	u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
 15	u32 base_freq, frac_freq;
 16
 17	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
 18		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
 19	base_freq *= 1000000;
 20
 21	frac_freq = ((ts_override &
 22		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
 23		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
 24	frac_freq = 1000000 / (frac_freq + 1);
 25
 26	return base_freq + frac_freq;
 27}
 28
 29static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
 30					u32 rpm_config_reg)
 31{
 32	u32 f19_2_mhz = 19200000;
 33	u32 f24_mhz = 24000000;
 34	u32 f25_mhz = 25000000;
 35	u32 f38_4_mhz = 38400000;
 36	u32 crystal_clock =
 37		(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 38		GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 39
 40	switch (crystal_clock) {
 41	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 42		return f24_mhz;
 43	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 44		return f19_2_mhz;
 45	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
 46		return f38_4_mhz;
 47	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
 48		return f25_mhz;
 49	default:
 50		MISSING_CASE(crystal_clock);
 51		return 0;
 52	}
 53}
 54
 55static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
 56{
 57	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
 58	u32 freq = 0;
 59
 60	/*
 61	 * Note that on gen11+, the clock frequency may be reconfigured.
 62	 * We do not, and we assume nobody else does.
 63	 *
 64	 * First figure out the reference frequency. There are 2 ways
 65	 * we can compute the frequency, either through the
 66	 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
 67	 * tells us which one we should use.
 68	 */
 69	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 70		freq = read_reference_ts_freq(uncore);
 71	} else {
 72		u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
 73
 74		freq = gen11_get_crystal_clock_freq(uncore, c0);
 75
 76		/*
 77		 * Now figure out how the command stream's timestamp
 78		 * register increments from this frequency (it might
 79		 * increment only every few clock cycle).
 80		 */
 81		freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
 82			      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
 83	}
 84
 85	return freq;
 86}
 87
 88static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
 89{
 90	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
 91	u32 freq = 0;
 92
 93	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 94		freq = read_reference_ts_freq(uncore);
 95	} else {
 96		freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
 97
 98		/*
 99		 * Now figure out how the command stream's timestamp
100		 * register increments from this frequency (it might
101		 * increment only every few clock cycle).
102		 */
103		freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
104			      CTC_SHIFT_PARAMETER_SHIFT);
105	}
106
107	return freq;
108}
109
110static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
111{
112	/*
113	 * PRMs say:
114	 *
115	 *     "The PCU TSC counts 10ns increments; this timestamp
116	 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
117	 *      rolling over every 1.5 hours).
118	 */
119	return 12500000;
120}
121
122static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
123{
124	/*
125	 * 63:32 increments every 1000 ns
126	 * 31:0 mbz
127	 */
128	return 1000000000 / 1000;
129}
130
131static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
132{
133	/*
134	 * 63:20 increments every 1/4 ns
135	 * 19:0 mbz
136	 *
137	 * -> 63:32 increments every 1024 ns
138	 */
139	return 1000000000 / 1024;
140}
141
142static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
143{
144	/*
145	 * PRMs say:
146	 *
147	 *     "The value in this register increments once every 16
148	 *      hclks." (through the “Clocking Configuration”
149	 *      (“CLKCFG”) MCHBAR register)
150	 *
151	 * Testing on actual hardware has shown there is no /16.
152	 */
153	return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000;
154}
155
156static u32 read_clock_frequency(struct intel_uncore *uncore)
157{
158	if (GRAPHICS_VER(uncore->i915) >= 11)
159		return gen11_read_clock_frequency(uncore);
160	else if (GRAPHICS_VER(uncore->i915) >= 9)
161		return gen9_read_clock_frequency(uncore);
162	else if (GRAPHICS_VER(uncore->i915) >= 6)
163		return gen6_read_clock_frequency(uncore);
164	else if (GRAPHICS_VER(uncore->i915) == 5)
165		return gen5_read_clock_frequency(uncore);
166	else if (IS_G4X(uncore->i915))
167		return g4x_read_clock_frequency(uncore);
168	else if (GRAPHICS_VER(uncore->i915) == 4)
169		return gen4_read_clock_frequency(uncore);
170	else
171		return 0;
172}
173
174void intel_gt_init_clock_frequency(struct intel_gt *gt)
175{
176	gt->clock_frequency = read_clock_frequency(gt->uncore);
177
178	/* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
179	if (GRAPHICS_VER(gt->i915) == 11)
180		gt->clock_period_ns = NSEC_PER_SEC / 13750000;
181	else if (gt->clock_frequency)
182		gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
183
184	GT_TRACE(gt,
185		 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
186		 gt->clock_frequency / 1000,
187		 gt->clock_period_ns,
188		 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
189			 USEC_PER_SEC));
190}
191
192#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
193void intel_gt_check_clock_frequency(const struct intel_gt *gt)
194{
195	if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
196		dev_err(gt->i915->drm.dev,
197			"GT clock frequency changed, was %uHz, now %uHz!\n",
198			gt->clock_frequency,
199			read_clock_frequency(gt->uncore));
200	}
201}
202#endif
203
204static u64 div_u64_roundup(u64 nom, u32 den)
205{
206	return div_u64(nom + den - 1, den);
207}
208
209u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
210{
211	return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
212}
213
214u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
215{
216	return intel_gt_clock_interval_to_ns(gt, 16 * count);
217}
218
219u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
220{
221	return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
222}
223
224u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
225{
226	u64 val;
227
228	/*
229	 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
230	 * 8300) freezing up around GPU hangs. Looks as if even
231	 * scheduling/timer interrupts start misbehaving if the RPS
232	 * EI/thresholds are "bad", leading to a very sluggish or even
233	 * frozen machine.
234	 */
235	val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
236	if (GRAPHICS_VER(gt->i915) == 6)
237		val = div_u64_roundup(val, 25) * 25;
238
239	return val;
240}
v6.9.4
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2020 Intel Corporation
  4 */
  5
  6#include "i915_drv.h"
  7#include "i915_reg.h"
  8#include "intel_gt.h"
  9#include "intel_gt_clock_utils.h"
 10#include "intel_gt_print.h"
 11#include "intel_gt_regs.h"
 12
 13static u32 read_reference_ts_freq(struct intel_uncore *uncore)
 14{
 15	u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
 16	u32 base_freq, frac_freq;
 17
 18	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
 19		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
 20	base_freq *= 1000000;
 21
 22	frac_freq = ((ts_override &
 23		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
 24		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
 25	frac_freq = 1000000 / (frac_freq + 1);
 26
 27	return base_freq + frac_freq;
 28}
 29
 30static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
 31					u32 rpm_config_reg)
 32{
 33	u32 f19_2_mhz = 19200000;
 34	u32 f24_mhz = 24000000;
 35	u32 f25_mhz = 25000000;
 36	u32 f38_4_mhz = 38400000;
 37	u32 crystal_clock =
 38		(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
 39		GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
 40
 41	switch (crystal_clock) {
 42	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
 43		return f24_mhz;
 44	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
 45		return f19_2_mhz;
 46	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
 47		return f38_4_mhz;
 48	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
 49		return f25_mhz;
 50	default:
 51		MISSING_CASE(crystal_clock);
 52		return 0;
 53	}
 54}
 55
 56static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
 57{
 58	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
 59	u32 freq = 0;
 60
 61	/*
 62	 * Note that on gen11+, the clock frequency may be reconfigured.
 63	 * We do not, and we assume nobody else does.
 64	 *
 65	 * First figure out the reference frequency. There are 2 ways
 66	 * we can compute the frequency, either through the
 67	 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
 68	 * tells us which one we should use.
 69	 */
 70	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 71		freq = read_reference_ts_freq(uncore);
 72	} else {
 73		u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
 74
 75		freq = gen11_get_crystal_clock_freq(uncore, c0);
 76
 77		/*
 78		 * Now figure out how the command stream's timestamp
 79		 * register increments from this frequency (it might
 80		 * increment only every few clock cycle).
 81		 */
 82		freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
 83			      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
 84	}
 85
 86	return freq;
 87}
 88
 89static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
 90{
 91	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
 92	u32 freq = 0;
 93
 94	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
 95		freq = read_reference_ts_freq(uncore);
 96	} else {
 97		freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
 98
 99		/*
100		 * Now figure out how the command stream's timestamp
101		 * register increments from this frequency (it might
102		 * increment only every few clock cycle).
103		 */
104		freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
105			      CTC_SHIFT_PARAMETER_SHIFT);
106	}
107
108	return freq;
109}
110
111static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
112{
113	/*
114	 * PRMs say:
115	 *
116	 *     "The PCU TSC counts 10ns increments; this timestamp
117	 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
118	 *      rolling over every 1.5 hours).
119	 */
120	return 12500000;
121}
122
123static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
124{
125	/*
126	 * 63:32 increments every 1000 ns
127	 * 31:0 mbz
128	 */
129	return 1000000000 / 1000;
130}
131
132static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
133{
134	/*
135	 * 63:20 increments every 1/4 ns
136	 * 19:0 mbz
137	 *
138	 * -> 63:32 increments every 1024 ns
139	 */
140	return 1000000000 / 1024;
141}
142
143static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
144{
145	/*
146	 * PRMs say:
147	 *
148	 *     "The value in this register increments once every 16
149	 *      hclks." (through the “Clocking Configuration”
150	 *      (“CLKCFG”) MCHBAR register)
151	 *
152	 * Testing on actual hardware has shown there is no /16.
153	 */
154	return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000;
155}
156
157static u32 read_clock_frequency(struct intel_uncore *uncore)
158{
159	if (GRAPHICS_VER(uncore->i915) >= 11)
160		return gen11_read_clock_frequency(uncore);
161	else if (GRAPHICS_VER(uncore->i915) >= 9)
162		return gen9_read_clock_frequency(uncore);
163	else if (GRAPHICS_VER(uncore->i915) >= 6)
164		return gen6_read_clock_frequency(uncore);
165	else if (GRAPHICS_VER(uncore->i915) == 5)
166		return gen5_read_clock_frequency(uncore);
167	else if (IS_G4X(uncore->i915))
168		return g4x_read_clock_frequency(uncore);
169	else if (GRAPHICS_VER(uncore->i915) == 4)
170		return gen4_read_clock_frequency(uncore);
171	else
172		return 0;
173}
174
175void intel_gt_init_clock_frequency(struct intel_gt *gt)
176{
177	gt->clock_frequency = read_clock_frequency(gt->uncore);
178
179	/* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
180	if (GRAPHICS_VER(gt->i915) == 11)
181		gt->clock_period_ns = NSEC_PER_SEC / 13750000;
182	else if (gt->clock_frequency)
183		gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
184
185	GT_TRACE(gt,
186		 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
187		 gt->clock_frequency / 1000,
188		 gt->clock_period_ns,
189		 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
190			 USEC_PER_SEC));
191}
192
193#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
194void intel_gt_check_clock_frequency(const struct intel_gt *gt)
195{
196	if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
197		gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
198		       gt->clock_frequency,
199		       read_clock_frequency(gt->uncore));
 
200	}
201}
202#endif
203
204static u64 div_u64_roundup(u64 nom, u32 den)
205{
206	return div_u64(nom + den - 1, den);
207}
208
209u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
210{
211	return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
212}
213
214u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
215{
216	return intel_gt_clock_interval_to_ns(gt, 16 * count);
217}
218
219u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
220{
221	return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
222}
223
224u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
225{
226	u64 val;
227
228	/*
229	 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
230	 * 8300) freezing up around GPU hangs. Looks as if even
231	 * scheduling/timer interrupts start misbehaving if the RPS
232	 * EI/thresholds are "bad", leading to a very sluggish or even
233	 * frozen machine.
234	 */
235	val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
236	if (GRAPHICS_VER(gt->i915) == 6)
237		val = div_u64_roundup(val, 25) * 25;
238
239	return val;
240}