Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/acpi.h>
11#include <linux/export.h>
12#include <linux/kernel.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_graph.h>
16#include <linux/of_irq.h>
17#include <linux/property.h>
18#include <linux/phy.h>
19
20struct fwnode_handle *__dev_fwnode(struct device *dev)
21{
22 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
23 of_fwnode_handle(dev->of_node) : dev->fwnode;
24}
25EXPORT_SYMBOL_GPL(__dev_fwnode);
26
27const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
28{
29 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
30 of_fwnode_handle(dev->of_node) : dev->fwnode;
31}
32EXPORT_SYMBOL_GPL(__dev_fwnode_const);
33
34/**
35 * device_property_present - check if a property of a device is present
36 * @dev: Device whose property is being checked
37 * @propname: Name of the property
38 *
39 * Check if property @propname is present in the device firmware description.
40 */
41bool device_property_present(struct device *dev, const char *propname)
42{
43 return fwnode_property_present(dev_fwnode(dev), propname);
44}
45EXPORT_SYMBOL_GPL(device_property_present);
46
47/**
48 * fwnode_property_present - check if a property of a firmware node is present
49 * @fwnode: Firmware node whose property to check
50 * @propname: Name of the property
51 */
52bool fwnode_property_present(const struct fwnode_handle *fwnode,
53 const char *propname)
54{
55 bool ret;
56
57 if (IS_ERR_OR_NULL(fwnode))
58 return false;
59
60 ret = fwnode_call_bool_op(fwnode, property_present, propname);
61 if (ret)
62 return ret;
63
64 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
65}
66EXPORT_SYMBOL_GPL(fwnode_property_present);
67
68/**
69 * device_property_read_u8_array - return a u8 array property of a device
70 * @dev: Device to get the property of
71 * @propname: Name of the property
72 * @val: The values are stored here or %NULL to return the number of values
73 * @nval: Size of the @val array
74 *
75 * Function reads an array of u8 properties with @propname from the device
76 * firmware description and stores them to @val if found.
77 *
78 * It's recommended to call device_property_count_u8() instead of calling
79 * this function with @val equals %NULL and @nval equals 0.
80 *
81 * Return: number of values if @val was %NULL,
82 * %0 if the property was found (success),
83 * %-EINVAL if given arguments are not valid,
84 * %-ENODATA if the property does not have a value,
85 * %-EPROTO if the property is not an array of numbers,
86 * %-EOVERFLOW if the size of the property is not as expected.
87 * %-ENXIO if no suitable firmware interface is present.
88 */
89int device_property_read_u8_array(struct device *dev, const char *propname,
90 u8 *val, size_t nval)
91{
92 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
93}
94EXPORT_SYMBOL_GPL(device_property_read_u8_array);
95
96/**
97 * device_property_read_u16_array - return a u16 array property of a device
98 * @dev: Device to get the property of
99 * @propname: Name of the property
100 * @val: The values are stored here or %NULL to return the number of values
101 * @nval: Size of the @val array
102 *
103 * Function reads an array of u16 properties with @propname from the device
104 * firmware description and stores them to @val if found.
105 *
106 * It's recommended to call device_property_count_u16() instead of calling
107 * this function with @val equals %NULL and @nval equals 0.
108 *
109 * Return: number of values if @val was %NULL,
110 * %0 if the property was found (success),
111 * %-EINVAL if given arguments are not valid,
112 * %-ENODATA if the property does not have a value,
113 * %-EPROTO if the property is not an array of numbers,
114 * %-EOVERFLOW if the size of the property is not as expected.
115 * %-ENXIO if no suitable firmware interface is present.
116 */
117int device_property_read_u16_array(struct device *dev, const char *propname,
118 u16 *val, size_t nval)
119{
120 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
121}
122EXPORT_SYMBOL_GPL(device_property_read_u16_array);
123
124/**
125 * device_property_read_u32_array - return a u32 array property of a device
126 * @dev: Device to get the property of
127 * @propname: Name of the property
128 * @val: The values are stored here or %NULL to return the number of values
129 * @nval: Size of the @val array
130 *
131 * Function reads an array of u32 properties with @propname from the device
132 * firmware description and stores them to @val if found.
133 *
134 * It's recommended to call device_property_count_u32() instead of calling
135 * this function with @val equals %NULL and @nval equals 0.
136 *
137 * Return: number of values if @val was %NULL,
138 * %0 if the property was found (success),
139 * %-EINVAL if given arguments are not valid,
140 * %-ENODATA if the property does not have a value,
141 * %-EPROTO if the property is not an array of numbers,
142 * %-EOVERFLOW if the size of the property is not as expected.
143 * %-ENXIO if no suitable firmware interface is present.
144 */
145int device_property_read_u32_array(struct device *dev, const char *propname,
146 u32 *val, size_t nval)
147{
148 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
149}
150EXPORT_SYMBOL_GPL(device_property_read_u32_array);
151
152/**
153 * device_property_read_u64_array - return a u64 array property of a device
154 * @dev: Device to get the property of
155 * @propname: Name of the property
156 * @val: The values are stored here or %NULL to return the number of values
157 * @nval: Size of the @val array
158 *
159 * Function reads an array of u64 properties with @propname from the device
160 * firmware description and stores them to @val if found.
161 *
162 * It's recommended to call device_property_count_u64() instead of calling
163 * this function with @val equals %NULL and @nval equals 0.
164 *
165 * Return: number of values if @val was %NULL,
166 * %0 if the property was found (success),
167 * %-EINVAL if given arguments are not valid,
168 * %-ENODATA if the property does not have a value,
169 * %-EPROTO if the property is not an array of numbers,
170 * %-EOVERFLOW if the size of the property is not as expected.
171 * %-ENXIO if no suitable firmware interface is present.
172 */
173int device_property_read_u64_array(struct device *dev, const char *propname,
174 u64 *val, size_t nval)
175{
176 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
177}
178EXPORT_SYMBOL_GPL(device_property_read_u64_array);
179
180/**
181 * device_property_read_string_array - return a string array property of device
182 * @dev: Device to get the property of
183 * @propname: Name of the property
184 * @val: The values are stored here or %NULL to return the number of values
185 * @nval: Size of the @val array
186 *
187 * Function reads an array of string properties with @propname from the device
188 * firmware description and stores them to @val if found.
189 *
190 * It's recommended to call device_property_string_array_count() instead of calling
191 * this function with @val equals %NULL and @nval equals 0.
192 *
193 * Return: number of values read on success if @val is non-NULL,
194 * number of values available on success if @val is NULL,
195 * %-EINVAL if given arguments are not valid,
196 * %-ENODATA if the property does not have a value,
197 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
198 * %-EOVERFLOW if the size of the property is not as expected.
199 * %-ENXIO if no suitable firmware interface is present.
200 */
201int device_property_read_string_array(struct device *dev, const char *propname,
202 const char **val, size_t nval)
203{
204 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
205}
206EXPORT_SYMBOL_GPL(device_property_read_string_array);
207
208/**
209 * device_property_read_string - return a string property of a device
210 * @dev: Device to get the property of
211 * @propname: Name of the property
212 * @val: The value is stored here
213 *
214 * Function reads property @propname from the device firmware description and
215 * stores the value into @val if found. The value is checked to be a string.
216 *
217 * Return: %0 if the property was found (success),
218 * %-EINVAL if given arguments are not valid,
219 * %-ENODATA if the property does not have a value,
220 * %-EPROTO or %-EILSEQ if the property type is not a string.
221 * %-ENXIO if no suitable firmware interface is present.
222 */
223int device_property_read_string(struct device *dev, const char *propname,
224 const char **val)
225{
226 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
227}
228EXPORT_SYMBOL_GPL(device_property_read_string);
229
230/**
231 * device_property_match_string - find a string in an array and return index
232 * @dev: Device to get the property of
233 * @propname: Name of the property holding the array
234 * @string: String to look for
235 *
236 * Find a given string in a string array and if it is found return the
237 * index back.
238 *
239 * Return: index, starting from %0, if the property was found (success),
240 * %-EINVAL if given arguments are not valid,
241 * %-ENODATA if the property does not have a value,
242 * %-EPROTO if the property is not an array of strings,
243 * %-ENXIO if no suitable firmware interface is present.
244 */
245int device_property_match_string(struct device *dev, const char *propname,
246 const char *string)
247{
248 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
249}
250EXPORT_SYMBOL_GPL(device_property_match_string);
251
252static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
253 const char *propname,
254 unsigned int elem_size, void *val,
255 size_t nval)
256{
257 int ret;
258
259 if (IS_ERR_OR_NULL(fwnode))
260 return -EINVAL;
261
262 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
263 elem_size, val, nval);
264 if (ret != -EINVAL)
265 return ret;
266
267 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
268 elem_size, val, nval);
269}
270
271/**
272 * fwnode_property_read_u8_array - return a u8 array property of firmware node
273 * @fwnode: Firmware node to get the property of
274 * @propname: Name of the property
275 * @val: The values are stored here or %NULL to return the number of values
276 * @nval: Size of the @val array
277 *
278 * Read an array of u8 properties with @propname from @fwnode and stores them to
279 * @val if found.
280 *
281 * It's recommended to call fwnode_property_count_u8() instead of calling
282 * this function with @val equals %NULL and @nval equals 0.
283 *
284 * Return: number of values if @val was %NULL,
285 * %0 if the property was found (success),
286 * %-EINVAL if given arguments are not valid,
287 * %-ENODATA if the property does not have a value,
288 * %-EPROTO if the property is not an array of numbers,
289 * %-EOVERFLOW if the size of the property is not as expected,
290 * %-ENXIO if no suitable firmware interface is present.
291 */
292int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
293 const char *propname, u8 *val, size_t nval)
294{
295 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
296 val, nval);
297}
298EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
299
300/**
301 * fwnode_property_read_u16_array - return a u16 array property of firmware node
302 * @fwnode: Firmware node to get the property of
303 * @propname: Name of the property
304 * @val: The values are stored here or %NULL to return the number of values
305 * @nval: Size of the @val array
306 *
307 * Read an array of u16 properties with @propname from @fwnode and store them to
308 * @val if found.
309 *
310 * It's recommended to call fwnode_property_count_u16() instead of calling
311 * this function with @val equals %NULL and @nval equals 0.
312 *
313 * Return: number of values if @val was %NULL,
314 * %0 if the property was found (success),
315 * %-EINVAL if given arguments are not valid,
316 * %-ENODATA if the property does not have a value,
317 * %-EPROTO if the property is not an array of numbers,
318 * %-EOVERFLOW if the size of the property is not as expected,
319 * %-ENXIO if no suitable firmware interface is present.
320 */
321int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
322 const char *propname, u16 *val, size_t nval)
323{
324 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
325 val, nval);
326}
327EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
328
329/**
330 * fwnode_property_read_u32_array - return a u32 array property of firmware node
331 * @fwnode: Firmware node to get the property of
332 * @propname: Name of the property
333 * @val: The values are stored here or %NULL to return the number of values
334 * @nval: Size of the @val array
335 *
336 * Read an array of u32 properties with @propname from @fwnode store them to
337 * @val if found.
338 *
339 * It's recommended to call fwnode_property_count_u32() instead of calling
340 * this function with @val equals %NULL and @nval equals 0.
341 *
342 * Return: number of values if @val was %NULL,
343 * %0 if the property was found (success),
344 * %-EINVAL if given arguments are not valid,
345 * %-ENODATA if the property does not have a value,
346 * %-EPROTO if the property is not an array of numbers,
347 * %-EOVERFLOW if the size of the property is not as expected,
348 * %-ENXIO if no suitable firmware interface is present.
349 */
350int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
351 const char *propname, u32 *val, size_t nval)
352{
353 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
354 val, nval);
355}
356EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
357
358/**
359 * fwnode_property_read_u64_array - return a u64 array property firmware node
360 * @fwnode: Firmware node to get the property of
361 * @propname: Name of the property
362 * @val: The values are stored here or %NULL to return the number of values
363 * @nval: Size of the @val array
364 *
365 * Read an array of u64 properties with @propname from @fwnode and store them to
366 * @val if found.
367 *
368 * It's recommended to call fwnode_property_count_u64() instead of calling
369 * this function with @val equals %NULL and @nval equals 0.
370 *
371 * Return: number of values if @val was %NULL,
372 * %0 if the property was found (success),
373 * %-EINVAL if given arguments are not valid,
374 * %-ENODATA if the property does not have a value,
375 * %-EPROTO if the property is not an array of numbers,
376 * %-EOVERFLOW if the size of the property is not as expected,
377 * %-ENXIO if no suitable firmware interface is present.
378 */
379int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
380 const char *propname, u64 *val, size_t nval)
381{
382 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
383 val, nval);
384}
385EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
386
387/**
388 * fwnode_property_read_string_array - return string array property of a node
389 * @fwnode: Firmware node to get the property of
390 * @propname: Name of the property
391 * @val: The values are stored here or %NULL to return the number of values
392 * @nval: Size of the @val array
393 *
394 * Read an string list property @propname from the given firmware node and store
395 * them to @val if found.
396 *
397 * It's recommended to call fwnode_property_string_array_count() instead of calling
398 * this function with @val equals %NULL and @nval equals 0.
399 *
400 * Return: number of values read on success if @val is non-NULL,
401 * number of values available on success if @val is NULL,
402 * %-EINVAL if given arguments are not valid,
403 * %-ENODATA if the property does not have a value,
404 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
405 * %-EOVERFLOW if the size of the property is not as expected,
406 * %-ENXIO if no suitable firmware interface is present.
407 */
408int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
409 const char *propname, const char **val,
410 size_t nval)
411{
412 int ret;
413
414 if (IS_ERR_OR_NULL(fwnode))
415 return -EINVAL;
416
417 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
418 val, nval);
419 if (ret != -EINVAL)
420 return ret;
421
422 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
423 val, nval);
424}
425EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
426
427/**
428 * fwnode_property_read_string - return a string property of a firmware node
429 * @fwnode: Firmware node to get the property of
430 * @propname: Name of the property
431 * @val: The value is stored here
432 *
433 * Read property @propname from the given firmware node and store the value into
434 * @val if found. The value is checked to be a string.
435 *
436 * Return: %0 if the property was found (success),
437 * %-EINVAL if given arguments are not valid,
438 * %-ENODATA if the property does not have a value,
439 * %-EPROTO or %-EILSEQ if the property is not a string,
440 * %-ENXIO if no suitable firmware interface is present.
441 */
442int fwnode_property_read_string(const struct fwnode_handle *fwnode,
443 const char *propname, const char **val)
444{
445 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
446
447 return ret < 0 ? ret : 0;
448}
449EXPORT_SYMBOL_GPL(fwnode_property_read_string);
450
451/**
452 * fwnode_property_match_string - find a string in an array and return index
453 * @fwnode: Firmware node to get the property of
454 * @propname: Name of the property holding the array
455 * @string: String to look for
456 *
457 * Find a given string in a string array and if it is found return the
458 * index back.
459 *
460 * Return: index, starting from %0, if the property was found (success),
461 * %-EINVAL if given arguments are not valid,
462 * %-ENODATA if the property does not have a value,
463 * %-EPROTO if the property is not an array of strings,
464 * %-ENXIO if no suitable firmware interface is present.
465 */
466int fwnode_property_match_string(const struct fwnode_handle *fwnode,
467 const char *propname, const char *string)
468{
469 const char **values;
470 int nval, ret;
471
472 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
473 if (nval < 0)
474 return nval;
475
476 if (nval == 0)
477 return -ENODATA;
478
479 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
480 if (!values)
481 return -ENOMEM;
482
483 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
484 if (ret < 0)
485 goto out_free;
486
487 ret = match_string(values, nval, string);
488 if (ret < 0)
489 ret = -ENODATA;
490
491out_free:
492 kfree(values);
493 return ret;
494}
495EXPORT_SYMBOL_GPL(fwnode_property_match_string);
496
497/**
498 * fwnode_property_get_reference_args() - Find a reference with arguments
499 * @fwnode: Firmware node where to look for the reference
500 * @prop: The name of the property
501 * @nargs_prop: The name of the property telling the number of
502 * arguments in the referred node. NULL if @nargs is known,
503 * otherwise @nargs is ignored. Only relevant on OF.
504 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
505 * @index: Index of the reference, from zero onwards.
506 * @args: Result structure with reference and integer arguments.
507 *
508 * Obtain a reference based on a named property in an fwnode, with
509 * integer arguments.
510 *
511 * Caller is responsible to call fwnode_handle_put() on the returned
512 * args->fwnode pointer.
513 *
514 * Returns: %0 on success
515 * %-ENOENT when the index is out of bounds, the index has an empty
516 * reference or the property was not found
517 * %-EINVAL on parse error
518 */
519int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
520 const char *prop, const char *nargs_prop,
521 unsigned int nargs, unsigned int index,
522 struct fwnode_reference_args *args)
523{
524 int ret;
525
526 if (IS_ERR_OR_NULL(fwnode))
527 return -ENOENT;
528
529 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
530 nargs, index, args);
531 if (ret == 0)
532 return ret;
533
534 if (IS_ERR_OR_NULL(fwnode->secondary))
535 return ret;
536
537 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
538 nargs, index, args);
539}
540EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
541
542/**
543 * fwnode_find_reference - Find named reference to a fwnode_handle
544 * @fwnode: Firmware node where to look for the reference
545 * @name: The name of the reference
546 * @index: Index of the reference
547 *
548 * @index can be used when the named reference holds a table of references.
549 *
550 * Returns pointer to the reference fwnode, or ERR_PTR. Caller is responsible to
551 * call fwnode_handle_put() on the returned fwnode pointer.
552 */
553struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
554 const char *name,
555 unsigned int index)
556{
557 struct fwnode_reference_args args;
558 int ret;
559
560 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
561 &args);
562 return ret ? ERR_PTR(ret) : args.fwnode;
563}
564EXPORT_SYMBOL_GPL(fwnode_find_reference);
565
566/**
567 * fwnode_get_name - Return the name of a node
568 * @fwnode: The firmware node
569 *
570 * Returns a pointer to the node name.
571 */
572const char *fwnode_get_name(const struct fwnode_handle *fwnode)
573{
574 return fwnode_call_ptr_op(fwnode, get_name);
575}
576EXPORT_SYMBOL_GPL(fwnode_get_name);
577
578/**
579 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
580 * @fwnode: The firmware node
581 *
582 * Returns the prefix of a node, intended to be printed right before the node.
583 * The prefix works also as a separator between the nodes.
584 */
585const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
586{
587 return fwnode_call_ptr_op(fwnode, get_name_prefix);
588}
589
590/**
591 * fwnode_get_parent - Return parent firwmare node
592 * @fwnode: Firmware whose parent is retrieved
593 *
594 * Return parent firmware node of the given node if possible or %NULL if no
595 * parent was available.
596 */
597struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
598{
599 return fwnode_call_ptr_op(fwnode, get_parent);
600}
601EXPORT_SYMBOL_GPL(fwnode_get_parent);
602
603/**
604 * fwnode_get_next_parent - Iterate to the node's parent
605 * @fwnode: Firmware whose parent is retrieved
606 *
607 * This is like fwnode_get_parent() except that it drops the refcount
608 * on the passed node, making it suitable for iterating through a
609 * node's parents.
610 *
611 * Returns a node pointer with refcount incremented, use
612 * fwnode_handle_put() on it when done.
613 */
614struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
615{
616 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
617
618 fwnode_handle_put(fwnode);
619
620 return parent;
621}
622EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
623
624/**
625 * fwnode_get_next_parent_dev - Find device of closest ancestor fwnode
626 * @fwnode: firmware node
627 *
628 * Given a firmware node (@fwnode), this function finds its closest ancestor
629 * firmware node that has a corresponding struct device and returns that struct
630 * device.
631 *
632 * The caller of this function is expected to call put_device() on the returned
633 * device when they are done.
634 */
635struct device *fwnode_get_next_parent_dev(struct fwnode_handle *fwnode)
636{
637 struct fwnode_handle *parent;
638 struct device *dev;
639
640 fwnode_for_each_parent_node(fwnode, parent) {
641 dev = get_dev_from_fwnode(parent);
642 if (dev) {
643 fwnode_handle_put(parent);
644 return dev;
645 }
646 }
647 return NULL;
648}
649
650/**
651 * fwnode_count_parents - Return the number of parents a node has
652 * @fwnode: The node the parents of which are to be counted
653 *
654 * Returns the number of parents a node has.
655 */
656unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
657{
658 struct fwnode_handle *parent;
659 unsigned int count = 0;
660
661 fwnode_for_each_parent_node(fwnode, parent)
662 count++;
663
664 return count;
665}
666EXPORT_SYMBOL_GPL(fwnode_count_parents);
667
668/**
669 * fwnode_get_nth_parent - Return an nth parent of a node
670 * @fwnode: The node the parent of which is requested
671 * @depth: Distance of the parent from the node
672 *
673 * Returns the nth parent of a node. If there is no parent at the requested
674 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
675 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
676 *
677 * The caller is responsible for calling fwnode_handle_put() for the returned
678 * node.
679 */
680struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
681 unsigned int depth)
682{
683 struct fwnode_handle *parent;
684
685 if (depth == 0)
686 return fwnode_handle_get(fwnode);
687
688 fwnode_for_each_parent_node(fwnode, parent) {
689 if (--depth == 0)
690 return parent;
691 }
692 return NULL;
693}
694EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
695
696/**
697 * fwnode_is_ancestor_of - Test if @ancestor is ancestor of @child
698 * @ancestor: Firmware which is tested for being an ancestor
699 * @child: Firmware which is tested for being the child
700 *
701 * A node is considered an ancestor of itself too.
702 *
703 * Returns true if @ancestor is an ancestor of @child. Otherwise, returns false.
704 */
705bool fwnode_is_ancestor_of(struct fwnode_handle *ancestor, struct fwnode_handle *child)
706{
707 struct fwnode_handle *parent;
708
709 if (IS_ERR_OR_NULL(ancestor))
710 return false;
711
712 if (child == ancestor)
713 return true;
714
715 fwnode_for_each_parent_node(child, parent) {
716 if (parent == ancestor) {
717 fwnode_handle_put(parent);
718 return true;
719 }
720 }
721 return false;
722}
723
724/**
725 * fwnode_get_next_child_node - Return the next child node handle for a node
726 * @fwnode: Firmware node to find the next child node for.
727 * @child: Handle to one of the node's child nodes or a %NULL handle.
728 */
729struct fwnode_handle *
730fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
731 struct fwnode_handle *child)
732{
733 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
734}
735EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
736
737/**
738 * fwnode_get_next_available_child_node - Return the next
739 * available child node handle for a node
740 * @fwnode: Firmware node to find the next child node for.
741 * @child: Handle to one of the node's child nodes or a %NULL handle.
742 */
743struct fwnode_handle *
744fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
745 struct fwnode_handle *child)
746{
747 struct fwnode_handle *next_child = child;
748
749 if (IS_ERR_OR_NULL(fwnode))
750 return NULL;
751
752 do {
753 next_child = fwnode_get_next_child_node(fwnode, next_child);
754 if (!next_child)
755 return NULL;
756 } while (!fwnode_device_is_available(next_child));
757
758 return next_child;
759}
760EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
761
762/**
763 * device_get_next_child_node - Return the next child node handle for a device
764 * @dev: Device to find the next child node for.
765 * @child: Handle to one of the device's child nodes or a null handle.
766 */
767struct fwnode_handle *device_get_next_child_node(const struct device *dev,
768 struct fwnode_handle *child)
769{
770 const struct fwnode_handle *fwnode = dev_fwnode(dev);
771 struct fwnode_handle *next;
772
773 if (IS_ERR_OR_NULL(fwnode))
774 return NULL;
775
776 /* Try to find a child in primary fwnode */
777 next = fwnode_get_next_child_node(fwnode, child);
778 if (next)
779 return next;
780
781 /* When no more children in primary, continue with secondary */
782 return fwnode_get_next_child_node(fwnode->secondary, child);
783}
784EXPORT_SYMBOL_GPL(device_get_next_child_node);
785
786/**
787 * fwnode_get_named_child_node - Return first matching named child node handle
788 * @fwnode: Firmware node to find the named child node for.
789 * @childname: String to match child node name against.
790 */
791struct fwnode_handle *
792fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
793 const char *childname)
794{
795 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
796}
797EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
798
799/**
800 * device_get_named_child_node - Return first matching named child node handle
801 * @dev: Device to find the named child node for.
802 * @childname: String to match child node name against.
803 */
804struct fwnode_handle *device_get_named_child_node(const struct device *dev,
805 const char *childname)
806{
807 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
808}
809EXPORT_SYMBOL_GPL(device_get_named_child_node);
810
811/**
812 * fwnode_handle_get - Obtain a reference to a device node
813 * @fwnode: Pointer to the device node to obtain the reference to.
814 *
815 * Returns the fwnode handle.
816 */
817struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
818{
819 if (!fwnode_has_op(fwnode, get))
820 return fwnode;
821
822 return fwnode_call_ptr_op(fwnode, get);
823}
824EXPORT_SYMBOL_GPL(fwnode_handle_get);
825
826/**
827 * fwnode_handle_put - Drop reference to a device node
828 * @fwnode: Pointer to the device node to drop the reference to.
829 *
830 * This has to be used when terminating device_for_each_child_node() iteration
831 * with break or return to prevent stale device node references from being left
832 * behind.
833 */
834void fwnode_handle_put(struct fwnode_handle *fwnode)
835{
836 fwnode_call_void_op(fwnode, put);
837}
838EXPORT_SYMBOL_GPL(fwnode_handle_put);
839
840/**
841 * fwnode_device_is_available - check if a device is available for use
842 * @fwnode: Pointer to the fwnode of the device.
843 *
844 * For fwnode node types that don't implement the .device_is_available()
845 * operation, this function returns true.
846 */
847bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
848{
849 if (IS_ERR_OR_NULL(fwnode))
850 return false;
851
852 if (!fwnode_has_op(fwnode, device_is_available))
853 return true;
854
855 return fwnode_call_bool_op(fwnode, device_is_available);
856}
857EXPORT_SYMBOL_GPL(fwnode_device_is_available);
858
859/**
860 * device_get_child_node_count - return the number of child nodes for device
861 * @dev: Device to cound the child nodes for
862 */
863unsigned int device_get_child_node_count(const struct device *dev)
864{
865 struct fwnode_handle *child;
866 unsigned int count = 0;
867
868 device_for_each_child_node(dev, child)
869 count++;
870
871 return count;
872}
873EXPORT_SYMBOL_GPL(device_get_child_node_count);
874
875bool device_dma_supported(const struct device *dev)
876{
877 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
878}
879EXPORT_SYMBOL_GPL(device_dma_supported);
880
881enum dev_dma_attr device_get_dma_attr(const struct device *dev)
882{
883 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
884 return DEV_DMA_NOT_SUPPORTED;
885
886 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
887}
888EXPORT_SYMBOL_GPL(device_get_dma_attr);
889
890/**
891 * fwnode_get_phy_mode - Get phy mode for given firmware node
892 * @fwnode: Pointer to the given node
893 *
894 * The function gets phy interface string from property 'phy-mode' or
895 * 'phy-connection-type', and return its index in phy_modes table, or errno in
896 * error case.
897 */
898int fwnode_get_phy_mode(struct fwnode_handle *fwnode)
899{
900 const char *pm;
901 int err, i;
902
903 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
904 if (err < 0)
905 err = fwnode_property_read_string(fwnode,
906 "phy-connection-type", &pm);
907 if (err < 0)
908 return err;
909
910 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
911 if (!strcasecmp(pm, phy_modes(i)))
912 return i;
913
914 return -ENODEV;
915}
916EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
917
918/**
919 * device_get_phy_mode - Get phy mode for given device
920 * @dev: Pointer to the given device
921 *
922 * The function gets phy interface string from property 'phy-mode' or
923 * 'phy-connection-type', and return its index in phy_modes table, or errno in
924 * error case.
925 */
926int device_get_phy_mode(struct device *dev)
927{
928 return fwnode_get_phy_mode(dev_fwnode(dev));
929}
930EXPORT_SYMBOL_GPL(device_get_phy_mode);
931
932/**
933 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
934 * @fwnode: Pointer to the firmware node
935 * @index: Index of the IO range
936 *
937 * Returns a pointer to the mapped memory.
938 */
939void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
940{
941 return fwnode_call_ptr_op(fwnode, iomap, index);
942}
943EXPORT_SYMBOL(fwnode_iomap);
944
945/**
946 * fwnode_irq_get - Get IRQ directly from a fwnode
947 * @fwnode: Pointer to the firmware node
948 * @index: Zero-based index of the IRQ
949 *
950 * Returns Linux IRQ number on success. Other values are determined
951 * accordingly to acpi_/of_ irq_get() operation.
952 */
953int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
954{
955 return fwnode_call_int_op(fwnode, irq_get, index);
956}
957EXPORT_SYMBOL(fwnode_irq_get);
958
959/**
960 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
961 * @fwnode: Pointer to the firmware node
962 * @name: IRQ name
963 *
964 * Description:
965 * Find a match to the string @name in the 'interrupt-names' string array
966 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
967 * number of the IRQ resource corresponding to the index of the matched
968 * string.
969 *
970 * Return:
971 * Linux IRQ number on success, or negative errno otherwise.
972 */
973int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
974{
975 int index;
976
977 if (!name)
978 return -EINVAL;
979
980 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
981 if (index < 0)
982 return index;
983
984 return fwnode_irq_get(fwnode, index);
985}
986EXPORT_SYMBOL(fwnode_irq_get_byname);
987
988/**
989 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
990 * @fwnode: Pointer to the parent firmware node
991 * @prev: Previous endpoint node or %NULL to get the first
992 *
993 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
994 * are available.
995 */
996struct fwnode_handle *
997fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
998 struct fwnode_handle *prev)
999{
1000 struct fwnode_handle *ep, *port_parent = NULL;
1001 const struct fwnode_handle *parent;
1002
1003 /*
1004 * If this function is in a loop and the previous iteration returned
1005 * an endpoint from fwnode->secondary, then we need to use the secondary
1006 * as parent rather than @fwnode.
1007 */
1008 if (prev) {
1009 port_parent = fwnode_graph_get_port_parent(prev);
1010 parent = port_parent;
1011 } else {
1012 parent = fwnode;
1013 }
1014 if (IS_ERR_OR_NULL(parent))
1015 return NULL;
1016
1017 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1018 if (ep)
1019 goto out_put_port_parent;
1020
1021 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1022
1023out_put_port_parent:
1024 fwnode_handle_put(port_parent);
1025 return ep;
1026}
1027EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1028
1029/**
1030 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1031 * @endpoint: Endpoint firmware node of the port
1032 *
1033 * Return: the firmware node of the device the @endpoint belongs to.
1034 */
1035struct fwnode_handle *
1036fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1037{
1038 struct fwnode_handle *port, *parent;
1039
1040 port = fwnode_get_parent(endpoint);
1041 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1042
1043 fwnode_handle_put(port);
1044
1045 return parent;
1046}
1047EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1048
1049/**
1050 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1051 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1052 *
1053 * Extracts firmware node of a remote device the @fwnode points to.
1054 */
1055struct fwnode_handle *
1056fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1057{
1058 struct fwnode_handle *endpoint, *parent;
1059
1060 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1061 parent = fwnode_graph_get_port_parent(endpoint);
1062
1063 fwnode_handle_put(endpoint);
1064
1065 return parent;
1066}
1067EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1068
1069/**
1070 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1071 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1072 *
1073 * Extracts firmware node of a remote port the @fwnode points to.
1074 */
1075struct fwnode_handle *
1076fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1077{
1078 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1079}
1080EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1081
1082/**
1083 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1084 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1085 *
1086 * Extracts firmware node of a remote endpoint the @fwnode points to.
1087 */
1088struct fwnode_handle *
1089fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1090{
1091 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1092}
1093EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1094
1095static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1096{
1097 struct fwnode_handle *dev_node;
1098 bool available;
1099
1100 dev_node = fwnode_graph_get_remote_port_parent(ep);
1101 available = fwnode_device_is_available(dev_node);
1102 fwnode_handle_put(dev_node);
1103
1104 return available;
1105}
1106
1107/**
1108 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1109 * @fwnode: parent fwnode_handle containing the graph
1110 * @port: identifier of the port node
1111 * @endpoint: identifier of the endpoint node under the port node
1112 * @flags: fwnode lookup flags
1113 *
1114 * Return the fwnode handle of the local endpoint corresponding the port and
1115 * endpoint IDs or NULL if not found.
1116 *
1117 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1118 * has not been found, look for the closest endpoint ID greater than the
1119 * specified one and return the endpoint that corresponds to it, if present.
1120 *
1121 * Does not return endpoints that belong to disabled devices or endpoints that
1122 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1123 *
1124 * The returned endpoint needs to be released by calling fwnode_handle_put() on
1125 * it when it is not needed any more.
1126 */
1127struct fwnode_handle *
1128fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1129 u32 port, u32 endpoint, unsigned long flags)
1130{
1131 struct fwnode_handle *ep, *best_ep = NULL;
1132 unsigned int best_ep_id = 0;
1133 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1134 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1135
1136 fwnode_graph_for_each_endpoint(fwnode, ep) {
1137 struct fwnode_endpoint fwnode_ep = { 0 };
1138 int ret;
1139
1140 if (enabled_only && !fwnode_graph_remote_available(ep))
1141 continue;
1142
1143 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1144 if (ret < 0)
1145 continue;
1146
1147 if (fwnode_ep.port != port)
1148 continue;
1149
1150 if (fwnode_ep.id == endpoint)
1151 return ep;
1152
1153 if (!endpoint_next)
1154 continue;
1155
1156 /*
1157 * If the endpoint that has just been found is not the first
1158 * matching one and the ID of the one found previously is closer
1159 * to the requested endpoint ID, skip it.
1160 */
1161 if (fwnode_ep.id < endpoint ||
1162 (best_ep && best_ep_id < fwnode_ep.id))
1163 continue;
1164
1165 fwnode_handle_put(best_ep);
1166 best_ep = fwnode_handle_get(ep);
1167 best_ep_id = fwnode_ep.id;
1168 }
1169
1170 return best_ep;
1171}
1172EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1173
1174/**
1175 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1176 * @fwnode: The node related to a device
1177 * @flags: fwnode lookup flags
1178 * Count endpoints in a device node.
1179 *
1180 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1181 * and endpoints connected to disabled devices are counted.
1182 */
1183unsigned int fwnode_graph_get_endpoint_count(struct fwnode_handle *fwnode,
1184 unsigned long flags)
1185{
1186 struct fwnode_handle *ep;
1187 unsigned int count = 0;
1188
1189 fwnode_graph_for_each_endpoint(fwnode, ep) {
1190 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1191 fwnode_graph_remote_available(ep))
1192 count++;
1193 }
1194
1195 return count;
1196}
1197EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1198
1199/**
1200 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1201 * @fwnode: pointer to endpoint fwnode_handle
1202 * @endpoint: pointer to the fwnode endpoint data structure
1203 *
1204 * Parse @fwnode representing a graph endpoint node and store the
1205 * information in @endpoint. The caller must hold a reference to
1206 * @fwnode.
1207 */
1208int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1209 struct fwnode_endpoint *endpoint)
1210{
1211 memset(endpoint, 0, sizeof(*endpoint));
1212
1213 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1214}
1215EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1216
1217const void *device_get_match_data(const struct device *dev)
1218{
1219 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1220}
1221EXPORT_SYMBOL_GPL(device_get_match_data);
1222
1223static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1224 const char *con_id, void *data,
1225 devcon_match_fn_t match,
1226 void **matches,
1227 unsigned int matches_len)
1228{
1229 struct fwnode_handle *node;
1230 struct fwnode_handle *ep;
1231 unsigned int count = 0;
1232 void *ret;
1233
1234 fwnode_graph_for_each_endpoint(fwnode, ep) {
1235 if (matches && count >= matches_len) {
1236 fwnode_handle_put(ep);
1237 break;
1238 }
1239
1240 node = fwnode_graph_get_remote_port_parent(ep);
1241 if (!fwnode_device_is_available(node)) {
1242 fwnode_handle_put(node);
1243 continue;
1244 }
1245
1246 ret = match(node, con_id, data);
1247 fwnode_handle_put(node);
1248 if (ret) {
1249 if (matches)
1250 matches[count] = ret;
1251 count++;
1252 }
1253 }
1254 return count;
1255}
1256
1257static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1258 const char *con_id, void *data,
1259 devcon_match_fn_t match,
1260 void **matches,
1261 unsigned int matches_len)
1262{
1263 struct fwnode_handle *node;
1264 unsigned int count = 0;
1265 unsigned int i;
1266 void *ret;
1267
1268 for (i = 0; ; i++) {
1269 if (matches && count >= matches_len)
1270 break;
1271
1272 node = fwnode_find_reference(fwnode, con_id, i);
1273 if (IS_ERR(node))
1274 break;
1275
1276 ret = match(node, NULL, data);
1277 fwnode_handle_put(node);
1278 if (ret) {
1279 if (matches)
1280 matches[count] = ret;
1281 count++;
1282 }
1283 }
1284
1285 return count;
1286}
1287
1288/**
1289 * fwnode_connection_find_match - Find connection from a device node
1290 * @fwnode: Device node with the connection
1291 * @con_id: Identifier for the connection
1292 * @data: Data for the match function
1293 * @match: Function to check and convert the connection description
1294 *
1295 * Find a connection with unique identifier @con_id between @fwnode and another
1296 * device node. @match will be used to convert the connection description to
1297 * data the caller is expecting to be returned.
1298 */
1299void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1300 const char *con_id, void *data,
1301 devcon_match_fn_t match)
1302{
1303 unsigned int count;
1304 void *ret;
1305
1306 if (!fwnode || !match)
1307 return NULL;
1308
1309 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1310 if (count)
1311 return ret;
1312
1313 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1314 return count ? ret : NULL;
1315}
1316EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1317
1318/**
1319 * fwnode_connection_find_matches - Find connections from a device node
1320 * @fwnode: Device node with the connection
1321 * @con_id: Identifier for the connection
1322 * @data: Data for the match function
1323 * @match: Function to check and convert the connection description
1324 * @matches: (Optional) array of pointers to fill with matches
1325 * @matches_len: Length of @matches
1326 *
1327 * Find up to @matches_len connections with unique identifier @con_id between
1328 * @fwnode and other device nodes. @match will be used to convert the
1329 * connection description to data the caller is expecting to be returned
1330 * through the @matches array.
1331 * If @matches is NULL @matches_len is ignored and the total number of resolved
1332 * matches is returned.
1333 *
1334 * Return: Number of matches resolved, or negative errno.
1335 */
1336int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1337 const char *con_id, void *data,
1338 devcon_match_fn_t match,
1339 void **matches, unsigned int matches_len)
1340{
1341 unsigned int count_graph;
1342 unsigned int count_ref;
1343
1344 if (!fwnode || !match)
1345 return -EINVAL;
1346
1347 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1348 matches, matches_len);
1349
1350 if (matches) {
1351 matches += count_graph;
1352 matches_len -= count_graph;
1353 }
1354
1355 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1356 matches, matches_len);
1357
1358 return count_graph + count_ref;
1359}
1360EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * property.c - Unified device property interface.
4 *
5 * Copyright (C) 2014, Intel Corporation
6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/export.h>
13#include <linux/kconfig.h>
14#include <linux/of.h>
15#include <linux/property.h>
16#include <linux/phy.h>
17#include <linux/slab.h>
18#include <linux/string.h>
19#include <linux/types.h>
20
21struct fwnode_handle *__dev_fwnode(struct device *dev)
22{
23 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
24 of_fwnode_handle(dev->of_node) : dev->fwnode;
25}
26EXPORT_SYMBOL_GPL(__dev_fwnode);
27
28const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
29{
30 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
31 of_fwnode_handle(dev->of_node) : dev->fwnode;
32}
33EXPORT_SYMBOL_GPL(__dev_fwnode_const);
34
35/**
36 * device_property_present - check if a property of a device is present
37 * @dev: Device whose property is being checked
38 * @propname: Name of the property
39 *
40 * Check if property @propname is present in the device firmware description.
41 *
42 * Return: true if property @propname is present. Otherwise, returns false.
43 */
44bool device_property_present(const struct device *dev, const char *propname)
45{
46 return fwnode_property_present(dev_fwnode(dev), propname);
47}
48EXPORT_SYMBOL_GPL(device_property_present);
49
50/**
51 * fwnode_property_present - check if a property of a firmware node is present
52 * @fwnode: Firmware node whose property to check
53 * @propname: Name of the property
54 *
55 * Return: true if property @propname is present. Otherwise, returns false.
56 */
57bool fwnode_property_present(const struct fwnode_handle *fwnode,
58 const char *propname)
59{
60 bool ret;
61
62 if (IS_ERR_OR_NULL(fwnode))
63 return false;
64
65 ret = fwnode_call_bool_op(fwnode, property_present, propname);
66 if (ret)
67 return ret;
68
69 return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
70}
71EXPORT_SYMBOL_GPL(fwnode_property_present);
72
73/**
74 * device_property_read_u8_array - return a u8 array property of a device
75 * @dev: Device to get the property of
76 * @propname: Name of the property
77 * @val: The values are stored here or %NULL to return the number of values
78 * @nval: Size of the @val array
79 *
80 * Function reads an array of u8 properties with @propname from the device
81 * firmware description and stores them to @val if found.
82 *
83 * It's recommended to call device_property_count_u8() instead of calling
84 * this function with @val equals %NULL and @nval equals 0.
85 *
86 * Return: number of values if @val was %NULL,
87 * %0 if the property was found (success),
88 * %-EINVAL if given arguments are not valid,
89 * %-ENODATA if the property does not have a value,
90 * %-EPROTO if the property is not an array of numbers,
91 * %-EOVERFLOW if the size of the property is not as expected.
92 * %-ENXIO if no suitable firmware interface is present.
93 */
94int device_property_read_u8_array(const struct device *dev, const char *propname,
95 u8 *val, size_t nval)
96{
97 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
98}
99EXPORT_SYMBOL_GPL(device_property_read_u8_array);
100
101/**
102 * device_property_read_u16_array - return a u16 array property of a device
103 * @dev: Device to get the property of
104 * @propname: Name of the property
105 * @val: The values are stored here or %NULL to return the number of values
106 * @nval: Size of the @val array
107 *
108 * Function reads an array of u16 properties with @propname from the device
109 * firmware description and stores them to @val if found.
110 *
111 * It's recommended to call device_property_count_u16() instead of calling
112 * this function with @val equals %NULL and @nval equals 0.
113 *
114 * Return: number of values if @val was %NULL,
115 * %0 if the property was found (success),
116 * %-EINVAL if given arguments are not valid,
117 * %-ENODATA if the property does not have a value,
118 * %-EPROTO if the property is not an array of numbers,
119 * %-EOVERFLOW if the size of the property is not as expected.
120 * %-ENXIO if no suitable firmware interface is present.
121 */
122int device_property_read_u16_array(const struct device *dev, const char *propname,
123 u16 *val, size_t nval)
124{
125 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
126}
127EXPORT_SYMBOL_GPL(device_property_read_u16_array);
128
129/**
130 * device_property_read_u32_array - return a u32 array property of a device
131 * @dev: Device to get the property of
132 * @propname: Name of the property
133 * @val: The values are stored here or %NULL to return the number of values
134 * @nval: Size of the @val array
135 *
136 * Function reads an array of u32 properties with @propname from the device
137 * firmware description and stores them to @val if found.
138 *
139 * It's recommended to call device_property_count_u32() instead of calling
140 * this function with @val equals %NULL and @nval equals 0.
141 *
142 * Return: number of values if @val was %NULL,
143 * %0 if the property was found (success),
144 * %-EINVAL if given arguments are not valid,
145 * %-ENODATA if the property does not have a value,
146 * %-EPROTO if the property is not an array of numbers,
147 * %-EOVERFLOW if the size of the property is not as expected.
148 * %-ENXIO if no suitable firmware interface is present.
149 */
150int device_property_read_u32_array(const struct device *dev, const char *propname,
151 u32 *val, size_t nval)
152{
153 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
154}
155EXPORT_SYMBOL_GPL(device_property_read_u32_array);
156
157/**
158 * device_property_read_u64_array - return a u64 array property of a device
159 * @dev: Device to get the property of
160 * @propname: Name of the property
161 * @val: The values are stored here or %NULL to return the number of values
162 * @nval: Size of the @val array
163 *
164 * Function reads an array of u64 properties with @propname from the device
165 * firmware description and stores them to @val if found.
166 *
167 * It's recommended to call device_property_count_u64() instead of calling
168 * this function with @val equals %NULL and @nval equals 0.
169 *
170 * Return: number of values if @val was %NULL,
171 * %0 if the property was found (success),
172 * %-EINVAL if given arguments are not valid,
173 * %-ENODATA if the property does not have a value,
174 * %-EPROTO if the property is not an array of numbers,
175 * %-EOVERFLOW if the size of the property is not as expected.
176 * %-ENXIO if no suitable firmware interface is present.
177 */
178int device_property_read_u64_array(const struct device *dev, const char *propname,
179 u64 *val, size_t nval)
180{
181 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
182}
183EXPORT_SYMBOL_GPL(device_property_read_u64_array);
184
185/**
186 * device_property_read_string_array - return a string array property of device
187 * @dev: Device to get the property of
188 * @propname: Name of the property
189 * @val: The values are stored here or %NULL to return the number of values
190 * @nval: Size of the @val array
191 *
192 * Function reads an array of string properties with @propname from the device
193 * firmware description and stores them to @val if found.
194 *
195 * It's recommended to call device_property_string_array_count() instead of calling
196 * this function with @val equals %NULL and @nval equals 0.
197 *
198 * Return: number of values read on success if @val is non-NULL,
199 * number of values available on success if @val is NULL,
200 * %-EINVAL if given arguments are not valid,
201 * %-ENODATA if the property does not have a value,
202 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
203 * %-EOVERFLOW if the size of the property is not as expected.
204 * %-ENXIO if no suitable firmware interface is present.
205 */
206int device_property_read_string_array(const struct device *dev, const char *propname,
207 const char **val, size_t nval)
208{
209 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
210}
211EXPORT_SYMBOL_GPL(device_property_read_string_array);
212
213/**
214 * device_property_read_string - return a string property of a device
215 * @dev: Device to get the property of
216 * @propname: Name of the property
217 * @val: The value is stored here
218 *
219 * Function reads property @propname from the device firmware description and
220 * stores the value into @val if found. The value is checked to be a string.
221 *
222 * Return: %0 if the property was found (success),
223 * %-EINVAL if given arguments are not valid,
224 * %-ENODATA if the property does not have a value,
225 * %-EPROTO or %-EILSEQ if the property type is not a string.
226 * %-ENXIO if no suitable firmware interface is present.
227 */
228int device_property_read_string(const struct device *dev, const char *propname,
229 const char **val)
230{
231 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
232}
233EXPORT_SYMBOL_GPL(device_property_read_string);
234
235/**
236 * device_property_match_string - find a string in an array and return index
237 * @dev: Device to get the property of
238 * @propname: Name of the property holding the array
239 * @string: String to look for
240 *
241 * Find a given string in a string array and if it is found return the
242 * index back.
243 *
244 * Return: index, starting from %0, if the property was found (success),
245 * %-EINVAL if given arguments are not valid,
246 * %-ENODATA if the property does not have a value,
247 * %-EPROTO if the property is not an array of strings,
248 * %-ENXIO if no suitable firmware interface is present.
249 */
250int device_property_match_string(const struct device *dev, const char *propname,
251 const char *string)
252{
253 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
254}
255EXPORT_SYMBOL_GPL(device_property_match_string);
256
257static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
258 const char *propname,
259 unsigned int elem_size, void *val,
260 size_t nval)
261{
262 int ret;
263
264 if (IS_ERR_OR_NULL(fwnode))
265 return -EINVAL;
266
267 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
268 elem_size, val, nval);
269 if (ret != -EINVAL)
270 return ret;
271
272 return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
273 elem_size, val, nval);
274}
275
276/**
277 * fwnode_property_read_u8_array - return a u8 array property of firmware node
278 * @fwnode: Firmware node to get the property of
279 * @propname: Name of the property
280 * @val: The values are stored here or %NULL to return the number of values
281 * @nval: Size of the @val array
282 *
283 * Read an array of u8 properties with @propname from @fwnode and stores them to
284 * @val if found.
285 *
286 * It's recommended to call fwnode_property_count_u8() instead of calling
287 * this function with @val equals %NULL and @nval equals 0.
288 *
289 * Return: number of values if @val was %NULL,
290 * %0 if the property was found (success),
291 * %-EINVAL if given arguments are not valid,
292 * %-ENODATA if the property does not have a value,
293 * %-EPROTO if the property is not an array of numbers,
294 * %-EOVERFLOW if the size of the property is not as expected,
295 * %-ENXIO if no suitable firmware interface is present.
296 */
297int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
298 const char *propname, u8 *val, size_t nval)
299{
300 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
301 val, nval);
302}
303EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
304
305/**
306 * fwnode_property_read_u16_array - return a u16 array property of firmware node
307 * @fwnode: Firmware node to get the property of
308 * @propname: Name of the property
309 * @val: The values are stored here or %NULL to return the number of values
310 * @nval: Size of the @val array
311 *
312 * Read an array of u16 properties with @propname from @fwnode and store them to
313 * @val if found.
314 *
315 * It's recommended to call fwnode_property_count_u16() instead of calling
316 * this function with @val equals %NULL and @nval equals 0.
317 *
318 * Return: number of values if @val was %NULL,
319 * %0 if the property was found (success),
320 * %-EINVAL if given arguments are not valid,
321 * %-ENODATA if the property does not have a value,
322 * %-EPROTO if the property is not an array of numbers,
323 * %-EOVERFLOW if the size of the property is not as expected,
324 * %-ENXIO if no suitable firmware interface is present.
325 */
326int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
327 const char *propname, u16 *val, size_t nval)
328{
329 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
330 val, nval);
331}
332EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
333
334/**
335 * fwnode_property_read_u32_array - return a u32 array property of firmware node
336 * @fwnode: Firmware node to get the property of
337 * @propname: Name of the property
338 * @val: The values are stored here or %NULL to return the number of values
339 * @nval: Size of the @val array
340 *
341 * Read an array of u32 properties with @propname from @fwnode store them to
342 * @val if found.
343 *
344 * It's recommended to call fwnode_property_count_u32() instead of calling
345 * this function with @val equals %NULL and @nval equals 0.
346 *
347 * Return: number of values if @val was %NULL,
348 * %0 if the property was found (success),
349 * %-EINVAL if given arguments are not valid,
350 * %-ENODATA if the property does not have a value,
351 * %-EPROTO if the property is not an array of numbers,
352 * %-EOVERFLOW if the size of the property is not as expected,
353 * %-ENXIO if no suitable firmware interface is present.
354 */
355int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
356 const char *propname, u32 *val, size_t nval)
357{
358 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
359 val, nval);
360}
361EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
362
363/**
364 * fwnode_property_read_u64_array - return a u64 array property firmware node
365 * @fwnode: Firmware node to get the property of
366 * @propname: Name of the property
367 * @val: The values are stored here or %NULL to return the number of values
368 * @nval: Size of the @val array
369 *
370 * Read an array of u64 properties with @propname from @fwnode and store them to
371 * @val if found.
372 *
373 * It's recommended to call fwnode_property_count_u64() instead of calling
374 * this function with @val equals %NULL and @nval equals 0.
375 *
376 * Return: number of values if @val was %NULL,
377 * %0 if the property was found (success),
378 * %-EINVAL if given arguments are not valid,
379 * %-ENODATA if the property does not have a value,
380 * %-EPROTO if the property is not an array of numbers,
381 * %-EOVERFLOW if the size of the property is not as expected,
382 * %-ENXIO if no suitable firmware interface is present.
383 */
384int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
385 const char *propname, u64 *val, size_t nval)
386{
387 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
388 val, nval);
389}
390EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
391
392/**
393 * fwnode_property_read_string_array - return string array property of a node
394 * @fwnode: Firmware node to get the property of
395 * @propname: Name of the property
396 * @val: The values are stored here or %NULL to return the number of values
397 * @nval: Size of the @val array
398 *
399 * Read an string list property @propname from the given firmware node and store
400 * them to @val if found.
401 *
402 * It's recommended to call fwnode_property_string_array_count() instead of calling
403 * this function with @val equals %NULL and @nval equals 0.
404 *
405 * Return: number of values read on success if @val is non-NULL,
406 * number of values available on success if @val is NULL,
407 * %-EINVAL if given arguments are not valid,
408 * %-ENODATA if the property does not have a value,
409 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
410 * %-EOVERFLOW if the size of the property is not as expected,
411 * %-ENXIO if no suitable firmware interface is present.
412 */
413int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
414 const char *propname, const char **val,
415 size_t nval)
416{
417 int ret;
418
419 if (IS_ERR_OR_NULL(fwnode))
420 return -EINVAL;
421
422 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
423 val, nval);
424 if (ret != -EINVAL)
425 return ret;
426
427 return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
428 val, nval);
429}
430EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
431
432/**
433 * fwnode_property_read_string - return a string property of a firmware node
434 * @fwnode: Firmware node to get the property of
435 * @propname: Name of the property
436 * @val: The value is stored here
437 *
438 * Read property @propname from the given firmware node and store the value into
439 * @val if found. The value is checked to be a string.
440 *
441 * Return: %0 if the property was found (success),
442 * %-EINVAL if given arguments are not valid,
443 * %-ENODATA if the property does not have a value,
444 * %-EPROTO or %-EILSEQ if the property is not a string,
445 * %-ENXIO if no suitable firmware interface is present.
446 */
447int fwnode_property_read_string(const struct fwnode_handle *fwnode,
448 const char *propname, const char **val)
449{
450 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
451
452 return ret < 0 ? ret : 0;
453}
454EXPORT_SYMBOL_GPL(fwnode_property_read_string);
455
456/**
457 * fwnode_property_match_string - find a string in an array and return index
458 * @fwnode: Firmware node to get the property of
459 * @propname: Name of the property holding the array
460 * @string: String to look for
461 *
462 * Find a given string in a string array and if it is found return the
463 * index back.
464 *
465 * Return: index, starting from %0, if the property was found (success),
466 * %-EINVAL if given arguments are not valid,
467 * %-ENODATA if the property does not have a value,
468 * %-EPROTO if the property is not an array of strings,
469 * %-ENXIO if no suitable firmware interface is present.
470 */
471int fwnode_property_match_string(const struct fwnode_handle *fwnode,
472 const char *propname, const char *string)
473{
474 const char **values;
475 int nval, ret;
476
477 nval = fwnode_property_string_array_count(fwnode, propname);
478 if (nval < 0)
479 return nval;
480
481 if (nval == 0)
482 return -ENODATA;
483
484 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
485 if (!values)
486 return -ENOMEM;
487
488 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
489 if (ret < 0)
490 goto out_free;
491
492 ret = match_string(values, nval, string);
493 if (ret < 0)
494 ret = -ENODATA;
495
496out_free:
497 kfree(values);
498 return ret;
499}
500EXPORT_SYMBOL_GPL(fwnode_property_match_string);
501
502/**
503 * fwnode_property_match_property_string - find a property string value in an array and return index
504 * @fwnode: Firmware node to get the property of
505 * @propname: Name of the property holding the string value
506 * @array: String array to search in
507 * @n: Size of the @array
508 *
509 * Find a property string value in a given @array and if it is found return
510 * the index back.
511 *
512 * Return: index, starting from %0, if the string value was found in the @array (success),
513 * %-ENOENT when the string value was not found in the @array,
514 * %-EINVAL if given arguments are not valid,
515 * %-ENODATA if the property does not have a value,
516 * %-EPROTO or %-EILSEQ if the property is not a string,
517 * %-ENXIO if no suitable firmware interface is present.
518 */
519int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
520 const char *propname, const char * const *array, size_t n)
521{
522 const char *string;
523 int ret;
524
525 ret = fwnode_property_read_string(fwnode, propname, &string);
526 if (ret)
527 return ret;
528
529 ret = match_string(array, n, string);
530 if (ret < 0)
531 ret = -ENOENT;
532
533 return ret;
534}
535EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
536
537/**
538 * fwnode_property_get_reference_args() - Find a reference with arguments
539 * @fwnode: Firmware node where to look for the reference
540 * @prop: The name of the property
541 * @nargs_prop: The name of the property telling the number of
542 * arguments in the referred node. NULL if @nargs is known,
543 * otherwise @nargs is ignored. Only relevant on OF.
544 * @nargs: Number of arguments. Ignored if @nargs_prop is non-NULL.
545 * @index: Index of the reference, from zero onwards.
546 * @args: Result structure with reference and integer arguments.
547 * May be NULL.
548 *
549 * Obtain a reference based on a named property in an fwnode, with
550 * integer arguments.
551 *
552 * The caller is responsible for calling fwnode_handle_put() on the returned
553 * @args->fwnode pointer.
554 *
555 * Return: %0 on success
556 * %-ENOENT when the index is out of bounds, the index has an empty
557 * reference or the property was not found
558 * %-EINVAL on parse error
559 */
560int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
561 const char *prop, const char *nargs_prop,
562 unsigned int nargs, unsigned int index,
563 struct fwnode_reference_args *args)
564{
565 int ret;
566
567 if (IS_ERR_OR_NULL(fwnode))
568 return -ENOENT;
569
570 ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
571 nargs, index, args);
572 if (ret == 0)
573 return ret;
574
575 if (IS_ERR_OR_NULL(fwnode->secondary))
576 return ret;
577
578 return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
579 nargs, index, args);
580}
581EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
582
583/**
584 * fwnode_find_reference - Find named reference to a fwnode_handle
585 * @fwnode: Firmware node where to look for the reference
586 * @name: The name of the reference
587 * @index: Index of the reference
588 *
589 * @index can be used when the named reference holds a table of references.
590 *
591 * The caller is responsible for calling fwnode_handle_put() on the returned
592 * fwnode pointer.
593 *
594 * Return: a pointer to the reference fwnode, when found. Otherwise,
595 * returns an error pointer.
596 */
597struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
598 const char *name,
599 unsigned int index)
600{
601 struct fwnode_reference_args args;
602 int ret;
603
604 ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
605 &args);
606 return ret ? ERR_PTR(ret) : args.fwnode;
607}
608EXPORT_SYMBOL_GPL(fwnode_find_reference);
609
610/**
611 * fwnode_get_name - Return the name of a node
612 * @fwnode: The firmware node
613 *
614 * Return: a pointer to the node name, or %NULL.
615 */
616const char *fwnode_get_name(const struct fwnode_handle *fwnode)
617{
618 return fwnode_call_ptr_op(fwnode, get_name);
619}
620EXPORT_SYMBOL_GPL(fwnode_get_name);
621
622/**
623 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
624 * @fwnode: The firmware node
625 *
626 * Return: the prefix of a node, intended to be printed right before the node.
627 * The prefix works also as a separator between the nodes.
628 */
629const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
630{
631 return fwnode_call_ptr_op(fwnode, get_name_prefix);
632}
633
634/**
635 * fwnode_name_eq - Return true if node name is equal
636 * @fwnode: The firmware node
637 * @name: The name to which to compare the node name
638 *
639 * Compare the name provided as an argument to the name of the node, stopping
640 * the comparison at either NUL or '@' character, whichever comes first. This
641 * function is generally used for comparing node names while ignoring the
642 * possible unit address of the node.
643 *
644 * Return: true if the node name matches with the name provided in the @name
645 * argument, false otherwise.
646 */
647bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
648{
649 const char *node_name;
650 ptrdiff_t len;
651
652 node_name = fwnode_get_name(fwnode);
653 if (!node_name)
654 return false;
655
656 len = strchrnul(node_name, '@') - node_name;
657
658 return str_has_prefix(node_name, name) == len;
659}
660EXPORT_SYMBOL_GPL(fwnode_name_eq);
661
662/**
663 * fwnode_get_parent - Return parent firwmare node
664 * @fwnode: Firmware whose parent is retrieved
665 *
666 * The caller is responsible for calling fwnode_handle_put() on the returned
667 * fwnode pointer.
668 *
669 * Return: parent firmware node of the given node if possible or %NULL if no
670 * parent was available.
671 */
672struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
673{
674 return fwnode_call_ptr_op(fwnode, get_parent);
675}
676EXPORT_SYMBOL_GPL(fwnode_get_parent);
677
678/**
679 * fwnode_get_next_parent - Iterate to the node's parent
680 * @fwnode: Firmware whose parent is retrieved
681 *
682 * This is like fwnode_get_parent() except that it drops the refcount
683 * on the passed node, making it suitable for iterating through a
684 * node's parents.
685 *
686 * The caller is responsible for calling fwnode_handle_put() on the returned
687 * fwnode pointer. Note that this function also puts a reference to @fwnode
688 * unconditionally.
689 *
690 * Return: parent firmware node of the given node if possible or %NULL if no
691 * parent was available.
692 */
693struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
694{
695 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
696
697 fwnode_handle_put(fwnode);
698
699 return parent;
700}
701EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
702
703/**
704 * fwnode_count_parents - Return the number of parents a node has
705 * @fwnode: The node the parents of which are to be counted
706 *
707 * Return: the number of parents a node has.
708 */
709unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
710{
711 struct fwnode_handle *parent;
712 unsigned int count = 0;
713
714 fwnode_for_each_parent_node(fwnode, parent)
715 count++;
716
717 return count;
718}
719EXPORT_SYMBOL_GPL(fwnode_count_parents);
720
721/**
722 * fwnode_get_nth_parent - Return an nth parent of a node
723 * @fwnode: The node the parent of which is requested
724 * @depth: Distance of the parent from the node
725 *
726 * The caller is responsible for calling fwnode_handle_put() on the returned
727 * fwnode pointer.
728 *
729 * Return: the nth parent of a node. If there is no parent at the requested
730 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
731 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
732 */
733struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
734 unsigned int depth)
735{
736 struct fwnode_handle *parent;
737
738 if (depth == 0)
739 return fwnode_handle_get(fwnode);
740
741 fwnode_for_each_parent_node(fwnode, parent) {
742 if (--depth == 0)
743 return parent;
744 }
745 return NULL;
746}
747EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
748
749/**
750 * fwnode_get_next_child_node - Return the next child node handle for a node
751 * @fwnode: Firmware node to find the next child node for.
752 * @child: Handle to one of the node's child nodes or a %NULL handle.
753 *
754 * The caller is responsible for calling fwnode_handle_put() on the returned
755 * fwnode pointer. Note that this function also puts a reference to @child
756 * unconditionally.
757 */
758struct fwnode_handle *
759fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
760 struct fwnode_handle *child)
761{
762 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
763}
764EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
765
766/**
767 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
768 * @fwnode: Firmware node to find the next child node for.
769 * @child: Handle to one of the node's child nodes or a %NULL handle.
770 *
771 * The caller is responsible for calling fwnode_handle_put() on the returned
772 * fwnode pointer. Note that this function also puts a reference to @child
773 * unconditionally.
774 */
775struct fwnode_handle *
776fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
777 struct fwnode_handle *child)
778{
779 struct fwnode_handle *next_child = child;
780
781 if (IS_ERR_OR_NULL(fwnode))
782 return NULL;
783
784 do {
785 next_child = fwnode_get_next_child_node(fwnode, next_child);
786 if (!next_child)
787 return NULL;
788 } while (!fwnode_device_is_available(next_child));
789
790 return next_child;
791}
792EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
793
794/**
795 * device_get_next_child_node - Return the next child node handle for a device
796 * @dev: Device to find the next child node for.
797 * @child: Handle to one of the device's child nodes or a %NULL handle.
798 *
799 * The caller is responsible for calling fwnode_handle_put() on the returned
800 * fwnode pointer. Note that this function also puts a reference to @child
801 * unconditionally.
802 */
803struct fwnode_handle *device_get_next_child_node(const struct device *dev,
804 struct fwnode_handle *child)
805{
806 const struct fwnode_handle *fwnode = dev_fwnode(dev);
807 struct fwnode_handle *next;
808
809 if (IS_ERR_OR_NULL(fwnode))
810 return NULL;
811
812 /* Try to find a child in primary fwnode */
813 next = fwnode_get_next_child_node(fwnode, child);
814 if (next)
815 return next;
816
817 /* When no more children in primary, continue with secondary */
818 return fwnode_get_next_child_node(fwnode->secondary, child);
819}
820EXPORT_SYMBOL_GPL(device_get_next_child_node);
821
822/**
823 * fwnode_get_named_child_node - Return first matching named child node handle
824 * @fwnode: Firmware node to find the named child node for.
825 * @childname: String to match child node name against.
826 *
827 * The caller is responsible for calling fwnode_handle_put() on the returned
828 * fwnode pointer.
829 */
830struct fwnode_handle *
831fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
832 const char *childname)
833{
834 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
835}
836EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
837
838/**
839 * device_get_named_child_node - Return first matching named child node handle
840 * @dev: Device to find the named child node for.
841 * @childname: String to match child node name against.
842 *
843 * The caller is responsible for calling fwnode_handle_put() on the returned
844 * fwnode pointer.
845 */
846struct fwnode_handle *device_get_named_child_node(const struct device *dev,
847 const char *childname)
848{
849 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
850}
851EXPORT_SYMBOL_GPL(device_get_named_child_node);
852
853/**
854 * fwnode_handle_get - Obtain a reference to a device node
855 * @fwnode: Pointer to the device node to obtain the reference to.
856 *
857 * The caller is responsible for calling fwnode_handle_put() on the returned
858 * fwnode pointer.
859 *
860 * Return: the fwnode handle.
861 */
862struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
863{
864 if (!fwnode_has_op(fwnode, get))
865 return fwnode;
866
867 return fwnode_call_ptr_op(fwnode, get);
868}
869EXPORT_SYMBOL_GPL(fwnode_handle_get);
870
871/**
872 * fwnode_handle_put - Drop reference to a device node
873 * @fwnode: Pointer to the device node to drop the reference to.
874 *
875 * This has to be used when terminating device_for_each_child_node() iteration
876 * with break or return to prevent stale device node references from being left
877 * behind.
878 */
879void fwnode_handle_put(struct fwnode_handle *fwnode)
880{
881 fwnode_call_void_op(fwnode, put);
882}
883EXPORT_SYMBOL_GPL(fwnode_handle_put);
884
885/**
886 * fwnode_device_is_available - check if a device is available for use
887 * @fwnode: Pointer to the fwnode of the device.
888 *
889 * Return: true if device is available for use. Otherwise, returns false.
890 *
891 * For fwnode node types that don't implement the .device_is_available()
892 * operation, this function returns true.
893 */
894bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
895{
896 if (IS_ERR_OR_NULL(fwnode))
897 return false;
898
899 if (!fwnode_has_op(fwnode, device_is_available))
900 return true;
901
902 return fwnode_call_bool_op(fwnode, device_is_available);
903}
904EXPORT_SYMBOL_GPL(fwnode_device_is_available);
905
906/**
907 * device_get_child_node_count - return the number of child nodes for device
908 * @dev: Device to cound the child nodes for
909 *
910 * Return: the number of child nodes for a given device.
911 */
912unsigned int device_get_child_node_count(const struct device *dev)
913{
914 struct fwnode_handle *child;
915 unsigned int count = 0;
916
917 device_for_each_child_node(dev, child)
918 count++;
919
920 return count;
921}
922EXPORT_SYMBOL_GPL(device_get_child_node_count);
923
924bool device_dma_supported(const struct device *dev)
925{
926 return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
927}
928EXPORT_SYMBOL_GPL(device_dma_supported);
929
930enum dev_dma_attr device_get_dma_attr(const struct device *dev)
931{
932 if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
933 return DEV_DMA_NOT_SUPPORTED;
934
935 return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
936}
937EXPORT_SYMBOL_GPL(device_get_dma_attr);
938
939/**
940 * fwnode_get_phy_mode - Get phy mode for given firmware node
941 * @fwnode: Pointer to the given node
942 *
943 * The function gets phy interface string from property 'phy-mode' or
944 * 'phy-connection-type', and return its index in phy_modes table, or errno in
945 * error case.
946 */
947int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
948{
949 const char *pm;
950 int err, i;
951
952 err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
953 if (err < 0)
954 err = fwnode_property_read_string(fwnode,
955 "phy-connection-type", &pm);
956 if (err < 0)
957 return err;
958
959 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
960 if (!strcasecmp(pm, phy_modes(i)))
961 return i;
962
963 return -ENODEV;
964}
965EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
966
967/**
968 * device_get_phy_mode - Get phy mode for given device
969 * @dev: Pointer to the given device
970 *
971 * The function gets phy interface string from property 'phy-mode' or
972 * 'phy-connection-type', and return its index in phy_modes table, or errno in
973 * error case.
974 */
975int device_get_phy_mode(struct device *dev)
976{
977 return fwnode_get_phy_mode(dev_fwnode(dev));
978}
979EXPORT_SYMBOL_GPL(device_get_phy_mode);
980
981/**
982 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
983 * @fwnode: Pointer to the firmware node
984 * @index: Index of the IO range
985 *
986 * Return: a pointer to the mapped memory.
987 */
988void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
989{
990 return fwnode_call_ptr_op(fwnode, iomap, index);
991}
992EXPORT_SYMBOL(fwnode_iomap);
993
994/**
995 * fwnode_irq_get - Get IRQ directly from a fwnode
996 * @fwnode: Pointer to the firmware node
997 * @index: Zero-based index of the IRQ
998 *
999 * Return: Linux IRQ number on success. Negative errno on failure.
1000 */
1001int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
1002{
1003 int ret;
1004
1005 ret = fwnode_call_int_op(fwnode, irq_get, index);
1006 /* We treat mapping errors as invalid case */
1007 if (ret == 0)
1008 return -EINVAL;
1009
1010 return ret;
1011}
1012EXPORT_SYMBOL(fwnode_irq_get);
1013
1014/**
1015 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1016 * @fwnode: Pointer to the firmware node
1017 * @name: IRQ name
1018 *
1019 * Description:
1020 * Find a match to the string @name in the 'interrupt-names' string array
1021 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1022 * number of the IRQ resource corresponding to the index of the matched
1023 * string.
1024 *
1025 * Return: Linux IRQ number on success, or negative errno otherwise.
1026 */
1027int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1028{
1029 int index;
1030
1031 if (!name)
1032 return -EINVAL;
1033
1034 index = fwnode_property_match_string(fwnode, "interrupt-names", name);
1035 if (index < 0)
1036 return index;
1037
1038 return fwnode_irq_get(fwnode, index);
1039}
1040EXPORT_SYMBOL(fwnode_irq_get_byname);
1041
1042/**
1043 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1044 * @fwnode: Pointer to the parent firmware node
1045 * @prev: Previous endpoint node or %NULL to get the first
1046 *
1047 * The caller is responsible for calling fwnode_handle_put() on the returned
1048 * fwnode pointer. Note that this function also puts a reference to @prev
1049 * unconditionally.
1050 *
1051 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1052 * are available.
1053 */
1054struct fwnode_handle *
1055fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1056 struct fwnode_handle *prev)
1057{
1058 struct fwnode_handle *ep, *port_parent = NULL;
1059 const struct fwnode_handle *parent;
1060
1061 /*
1062 * If this function is in a loop and the previous iteration returned
1063 * an endpoint from fwnode->secondary, then we need to use the secondary
1064 * as parent rather than @fwnode.
1065 */
1066 if (prev) {
1067 port_parent = fwnode_graph_get_port_parent(prev);
1068 parent = port_parent;
1069 } else {
1070 parent = fwnode;
1071 }
1072 if (IS_ERR_OR_NULL(parent))
1073 return NULL;
1074
1075 ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1076 if (ep)
1077 goto out_put_port_parent;
1078
1079 ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1080
1081out_put_port_parent:
1082 fwnode_handle_put(port_parent);
1083 return ep;
1084}
1085EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1086
1087/**
1088 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1089 * @endpoint: Endpoint firmware node of the port
1090 *
1091 * The caller is responsible for calling fwnode_handle_put() on the returned
1092 * fwnode pointer.
1093 *
1094 * Return: the firmware node of the device the @endpoint belongs to.
1095 */
1096struct fwnode_handle *
1097fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1098{
1099 struct fwnode_handle *port, *parent;
1100
1101 port = fwnode_get_parent(endpoint);
1102 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1103
1104 fwnode_handle_put(port);
1105
1106 return parent;
1107}
1108EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1109
1110/**
1111 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1112 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1113 *
1114 * Extracts firmware node of a remote device the @fwnode points to.
1115 *
1116 * The caller is responsible for calling fwnode_handle_put() on the returned
1117 * fwnode pointer.
1118 */
1119struct fwnode_handle *
1120fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1121{
1122 struct fwnode_handle *endpoint, *parent;
1123
1124 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1125 parent = fwnode_graph_get_port_parent(endpoint);
1126
1127 fwnode_handle_put(endpoint);
1128
1129 return parent;
1130}
1131EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1132
1133/**
1134 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1135 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1136 *
1137 * Extracts firmware node of a remote port the @fwnode points to.
1138 *
1139 * The caller is responsible for calling fwnode_handle_put() on the returned
1140 * fwnode pointer.
1141 */
1142struct fwnode_handle *
1143fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1144{
1145 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1146}
1147EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1148
1149/**
1150 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1151 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1152 *
1153 * Extracts firmware node of a remote endpoint the @fwnode points to.
1154 *
1155 * The caller is responsible for calling fwnode_handle_put() on the returned
1156 * fwnode pointer.
1157 */
1158struct fwnode_handle *
1159fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1160{
1161 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1162}
1163EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1164
1165static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1166{
1167 struct fwnode_handle *dev_node;
1168 bool available;
1169
1170 dev_node = fwnode_graph_get_remote_port_parent(ep);
1171 available = fwnode_device_is_available(dev_node);
1172 fwnode_handle_put(dev_node);
1173
1174 return available;
1175}
1176
1177/**
1178 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1179 * @fwnode: parent fwnode_handle containing the graph
1180 * @port: identifier of the port node
1181 * @endpoint: identifier of the endpoint node under the port node
1182 * @flags: fwnode lookup flags
1183 *
1184 * The caller is responsible for calling fwnode_handle_put() on the returned
1185 * fwnode pointer.
1186 *
1187 * Return: the fwnode handle of the local endpoint corresponding the port and
1188 * endpoint IDs or %NULL if not found.
1189 *
1190 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1191 * has not been found, look for the closest endpoint ID greater than the
1192 * specified one and return the endpoint that corresponds to it, if present.
1193 *
1194 * Does not return endpoints that belong to disabled devices or endpoints that
1195 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1196 */
1197struct fwnode_handle *
1198fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1199 u32 port, u32 endpoint, unsigned long flags)
1200{
1201 struct fwnode_handle *ep, *best_ep = NULL;
1202 unsigned int best_ep_id = 0;
1203 bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1204 bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1205
1206 fwnode_graph_for_each_endpoint(fwnode, ep) {
1207 struct fwnode_endpoint fwnode_ep = { 0 };
1208 int ret;
1209
1210 if (enabled_only && !fwnode_graph_remote_available(ep))
1211 continue;
1212
1213 ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1214 if (ret < 0)
1215 continue;
1216
1217 if (fwnode_ep.port != port)
1218 continue;
1219
1220 if (fwnode_ep.id == endpoint)
1221 return ep;
1222
1223 if (!endpoint_next)
1224 continue;
1225
1226 /*
1227 * If the endpoint that has just been found is not the first
1228 * matching one and the ID of the one found previously is closer
1229 * to the requested endpoint ID, skip it.
1230 */
1231 if (fwnode_ep.id < endpoint ||
1232 (best_ep && best_ep_id < fwnode_ep.id))
1233 continue;
1234
1235 fwnode_handle_put(best_ep);
1236 best_ep = fwnode_handle_get(ep);
1237 best_ep_id = fwnode_ep.id;
1238 }
1239
1240 return best_ep;
1241}
1242EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1243
1244/**
1245 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1246 * @fwnode: The node related to a device
1247 * @flags: fwnode lookup flags
1248 * Count endpoints in a device node.
1249 *
1250 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1251 * and endpoints connected to disabled devices are counted.
1252 */
1253unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1254 unsigned long flags)
1255{
1256 struct fwnode_handle *ep;
1257 unsigned int count = 0;
1258
1259 fwnode_graph_for_each_endpoint(fwnode, ep) {
1260 if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1261 fwnode_graph_remote_available(ep))
1262 count++;
1263 }
1264
1265 return count;
1266}
1267EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1268
1269/**
1270 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1271 * @fwnode: pointer to endpoint fwnode_handle
1272 * @endpoint: pointer to the fwnode endpoint data structure
1273 *
1274 * Parse @fwnode representing a graph endpoint node and store the
1275 * information in @endpoint. The caller must hold a reference to
1276 * @fwnode.
1277 */
1278int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1279 struct fwnode_endpoint *endpoint)
1280{
1281 memset(endpoint, 0, sizeof(*endpoint));
1282
1283 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1284}
1285EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1286
1287const void *device_get_match_data(const struct device *dev)
1288{
1289 return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1290}
1291EXPORT_SYMBOL_GPL(device_get_match_data);
1292
1293static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1294 const char *con_id, void *data,
1295 devcon_match_fn_t match,
1296 void **matches,
1297 unsigned int matches_len)
1298{
1299 struct fwnode_handle *node;
1300 struct fwnode_handle *ep;
1301 unsigned int count = 0;
1302 void *ret;
1303
1304 fwnode_graph_for_each_endpoint(fwnode, ep) {
1305 if (matches && count >= matches_len) {
1306 fwnode_handle_put(ep);
1307 break;
1308 }
1309
1310 node = fwnode_graph_get_remote_port_parent(ep);
1311 if (!fwnode_device_is_available(node)) {
1312 fwnode_handle_put(node);
1313 continue;
1314 }
1315
1316 ret = match(node, con_id, data);
1317 fwnode_handle_put(node);
1318 if (ret) {
1319 if (matches)
1320 matches[count] = ret;
1321 count++;
1322 }
1323 }
1324 return count;
1325}
1326
1327static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1328 const char *con_id, void *data,
1329 devcon_match_fn_t match,
1330 void **matches,
1331 unsigned int matches_len)
1332{
1333 struct fwnode_handle *node;
1334 unsigned int count = 0;
1335 unsigned int i;
1336 void *ret;
1337
1338 for (i = 0; ; i++) {
1339 if (matches && count >= matches_len)
1340 break;
1341
1342 node = fwnode_find_reference(fwnode, con_id, i);
1343 if (IS_ERR(node))
1344 break;
1345
1346 ret = match(node, NULL, data);
1347 fwnode_handle_put(node);
1348 if (ret) {
1349 if (matches)
1350 matches[count] = ret;
1351 count++;
1352 }
1353 }
1354
1355 return count;
1356}
1357
1358/**
1359 * fwnode_connection_find_match - Find connection from a device node
1360 * @fwnode: Device node with the connection
1361 * @con_id: Identifier for the connection
1362 * @data: Data for the match function
1363 * @match: Function to check and convert the connection description
1364 *
1365 * Find a connection with unique identifier @con_id between @fwnode and another
1366 * device node. @match will be used to convert the connection description to
1367 * data the caller is expecting to be returned.
1368 */
1369void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1370 const char *con_id, void *data,
1371 devcon_match_fn_t match)
1372{
1373 unsigned int count;
1374 void *ret;
1375
1376 if (!fwnode || !match)
1377 return NULL;
1378
1379 count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1380 if (count)
1381 return ret;
1382
1383 count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1384 return count ? ret : NULL;
1385}
1386EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1387
1388/**
1389 * fwnode_connection_find_matches - Find connections from a device node
1390 * @fwnode: Device node with the connection
1391 * @con_id: Identifier for the connection
1392 * @data: Data for the match function
1393 * @match: Function to check and convert the connection description
1394 * @matches: (Optional) array of pointers to fill with matches
1395 * @matches_len: Length of @matches
1396 *
1397 * Find up to @matches_len connections with unique identifier @con_id between
1398 * @fwnode and other device nodes. @match will be used to convert the
1399 * connection description to data the caller is expecting to be returned
1400 * through the @matches array.
1401 *
1402 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1403 * matches is returned.
1404 *
1405 * Return: Number of matches resolved, or negative errno.
1406 */
1407int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1408 const char *con_id, void *data,
1409 devcon_match_fn_t match,
1410 void **matches, unsigned int matches_len)
1411{
1412 unsigned int count_graph;
1413 unsigned int count_ref;
1414
1415 if (!fwnode || !match)
1416 return -EINVAL;
1417
1418 count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1419 matches, matches_len);
1420
1421 if (matches) {
1422 matches += count_graph;
1423 matches_len -= count_graph;
1424 }
1425
1426 count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1427 matches, matches_len);
1428
1429 return count_graph + count_ref;
1430}
1431EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);