Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/blk-integrity.h>
  14#include <linux/kmemleak.h>
  15#include <linux/mm.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/workqueue.h>
  19#include <linux/smp.h>
  20#include <linux/interrupt.h>
  21#include <linux/llist.h>
  22#include <linux/cpu.h>
  23#include <linux/cache.h>
  24#include <linux/sched/sysctl.h>
  25#include <linux/sched/topology.h>
  26#include <linux/sched/signal.h>
  27#include <linux/delay.h>
  28#include <linux/crash_dump.h>
  29#include <linux/prefetch.h>
  30#include <linux/blk-crypto.h>
  31#include <linux/part_stat.h>
  32
  33#include <trace/events/block.h>
  34
  35#include <linux/blk-mq.h>
  36#include <linux/t10-pi.h>
  37#include "blk.h"
  38#include "blk-mq.h"
  39#include "blk-mq-debugfs.h"
  40#include "blk-mq-tag.h"
  41#include "blk-pm.h"
  42#include "blk-stat.h"
  43#include "blk-mq-sched.h"
  44#include "blk-rq-qos.h"
  45#include "blk-ioprio.h"
  46
  47static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
 
  48
  49static void blk_mq_poll_stats_start(struct request_queue *q);
  50static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  51
  52static int blk_mq_poll_stats_bkt(const struct request *rq)
  53{
  54	int ddir, sectors, bucket;
  55
  56	ddir = rq_data_dir(rq);
  57	sectors = blk_rq_stats_sectors(rq);
  58
  59	bucket = ddir + 2 * ilog2(sectors);
  60
  61	if (bucket < 0)
  62		return -1;
  63	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  64		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  65
  66	return bucket;
  67}
  68
  69#define BLK_QC_T_SHIFT		16
  70#define BLK_QC_T_INTERNAL	(1U << 31)
  71
  72static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
  73		blk_qc_t qc)
  74{
  75	return xa_load(&q->hctx_table,
  76			(qc & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT);
  77}
  78
  79static inline struct request *blk_qc_to_rq(struct blk_mq_hw_ctx *hctx,
  80		blk_qc_t qc)
  81{
  82	unsigned int tag = qc & ((1U << BLK_QC_T_SHIFT) - 1);
  83
  84	if (qc & BLK_QC_T_INTERNAL)
  85		return blk_mq_tag_to_rq(hctx->sched_tags, tag);
  86	return blk_mq_tag_to_rq(hctx->tags, tag);
  87}
  88
  89static inline blk_qc_t blk_rq_to_qc(struct request *rq)
  90{
  91	return (rq->mq_hctx->queue_num << BLK_QC_T_SHIFT) |
  92		(rq->tag != -1 ?
  93		 rq->tag : (rq->internal_tag | BLK_QC_T_INTERNAL));
  94}
  95
  96/*
  97 * Check if any of the ctx, dispatch list or elevator
  98 * have pending work in this hardware queue.
  99 */
 100static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
 101{
 102	return !list_empty_careful(&hctx->dispatch) ||
 103		sbitmap_any_bit_set(&hctx->ctx_map) ||
 104			blk_mq_sched_has_work(hctx);
 105}
 106
 107/*
 108 * Mark this ctx as having pending work in this hardware queue
 109 */
 110static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
 111				     struct blk_mq_ctx *ctx)
 112{
 113	const int bit = ctx->index_hw[hctx->type];
 114
 115	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
 116		sbitmap_set_bit(&hctx->ctx_map, bit);
 117}
 118
 119static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
 120				      struct blk_mq_ctx *ctx)
 121{
 122	const int bit = ctx->index_hw[hctx->type];
 123
 124	sbitmap_clear_bit(&hctx->ctx_map, bit);
 125}
 126
 127struct mq_inflight {
 128	struct block_device *part;
 129	unsigned int inflight[2];
 130};
 131
 132static bool blk_mq_check_inflight(struct request *rq, void *priv)
 133{
 134	struct mq_inflight *mi = priv;
 135
 136	if (rq->part && blk_do_io_stat(rq) &&
 137	    (!mi->part->bd_partno || rq->part == mi->part) &&
 138	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
 139		mi->inflight[rq_data_dir(rq)]++;
 140
 141	return true;
 142}
 143
 144unsigned int blk_mq_in_flight(struct request_queue *q,
 145		struct block_device *part)
 146{
 147	struct mq_inflight mi = { .part = part };
 148
 149	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 150
 151	return mi.inflight[0] + mi.inflight[1];
 152}
 153
 154void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 155		unsigned int inflight[2])
 156{
 157	struct mq_inflight mi = { .part = part };
 158
 159	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 160	inflight[0] = mi.inflight[0];
 161	inflight[1] = mi.inflight[1];
 162}
 163
 164void blk_freeze_queue_start(struct request_queue *q)
 165{
 166	mutex_lock(&q->mq_freeze_lock);
 167	if (++q->mq_freeze_depth == 1) {
 168		percpu_ref_kill(&q->q_usage_counter);
 169		mutex_unlock(&q->mq_freeze_lock);
 170		if (queue_is_mq(q))
 171			blk_mq_run_hw_queues(q, false);
 172	} else {
 173		mutex_unlock(&q->mq_freeze_lock);
 174	}
 175}
 176EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 177
 178void blk_mq_freeze_queue_wait(struct request_queue *q)
 179{
 180	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 181}
 182EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 183
 184int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 185				     unsigned long timeout)
 186{
 187	return wait_event_timeout(q->mq_freeze_wq,
 188					percpu_ref_is_zero(&q->q_usage_counter),
 189					timeout);
 190}
 191EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 192
 193/*
 194 * Guarantee no request is in use, so we can change any data structure of
 195 * the queue afterward.
 196 */
 197void blk_freeze_queue(struct request_queue *q)
 198{
 199	/*
 200	 * In the !blk_mq case we are only calling this to kill the
 201	 * q_usage_counter, otherwise this increases the freeze depth
 202	 * and waits for it to return to zero.  For this reason there is
 203	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 204	 * exported to drivers as the only user for unfreeze is blk_mq.
 205	 */
 206	blk_freeze_queue_start(q);
 207	blk_mq_freeze_queue_wait(q);
 208}
 209
 210void blk_mq_freeze_queue(struct request_queue *q)
 211{
 212	/*
 213	 * ...just an alias to keep freeze and unfreeze actions balanced
 214	 * in the blk_mq_* namespace
 215	 */
 216	blk_freeze_queue(q);
 217}
 218EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 219
 220void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
 221{
 222	mutex_lock(&q->mq_freeze_lock);
 223	if (force_atomic)
 224		q->q_usage_counter.data->force_atomic = true;
 225	q->mq_freeze_depth--;
 226	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 227	if (!q->mq_freeze_depth) {
 228		percpu_ref_resurrect(&q->q_usage_counter);
 229		wake_up_all(&q->mq_freeze_wq);
 230	}
 231	mutex_unlock(&q->mq_freeze_lock);
 232}
 233
 234void blk_mq_unfreeze_queue(struct request_queue *q)
 235{
 236	__blk_mq_unfreeze_queue(q, false);
 237}
 238EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 239
 240/*
 241 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 242 * mpt3sas driver such that this function can be removed.
 243 */
 244void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 245{
 246	unsigned long flags;
 247
 248	spin_lock_irqsave(&q->queue_lock, flags);
 249	if (!q->quiesce_depth++)
 250		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 251	spin_unlock_irqrestore(&q->queue_lock, flags);
 252}
 253EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 254
 255/**
 256 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
 257 * @set: tag_set to wait on
 258 *
 259 * Note: it is driver's responsibility for making sure that quiesce has
 260 * been started on or more of the request_queues of the tag_set.  This
 261 * function only waits for the quiesce on those request_queues that had
 262 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
 263 */
 264void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
 265{
 266	if (set->flags & BLK_MQ_F_BLOCKING)
 267		synchronize_srcu(set->srcu);
 268	else
 269		synchronize_rcu();
 270}
 271EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
 272
 273/**
 274 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 275 * @q: request queue.
 276 *
 277 * Note: this function does not prevent that the struct request end_io()
 278 * callback function is invoked. Once this function is returned, we make
 279 * sure no dispatch can happen until the queue is unquiesced via
 280 * blk_mq_unquiesce_queue().
 281 */
 282void blk_mq_quiesce_queue(struct request_queue *q)
 283{
 284	blk_mq_quiesce_queue_nowait(q);
 285	/* nothing to wait for non-mq queues */
 286	if (queue_is_mq(q))
 287		blk_mq_wait_quiesce_done(q->tag_set);
 288}
 289EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 290
 291/*
 292 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 293 * @q: request queue.
 294 *
 295 * This function recovers queue into the state before quiescing
 296 * which is done by blk_mq_quiesce_queue.
 297 */
 298void blk_mq_unquiesce_queue(struct request_queue *q)
 299{
 300	unsigned long flags;
 301	bool run_queue = false;
 302
 303	spin_lock_irqsave(&q->queue_lock, flags);
 304	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
 305		;
 306	} else if (!--q->quiesce_depth) {
 307		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 308		run_queue = true;
 309	}
 310	spin_unlock_irqrestore(&q->queue_lock, flags);
 311
 312	/* dispatch requests which are inserted during quiescing */
 313	if (run_queue)
 314		blk_mq_run_hw_queues(q, true);
 315}
 316EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 317
 318void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
 319{
 320	struct request_queue *q;
 321
 322	mutex_lock(&set->tag_list_lock);
 323	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 324		if (!blk_queue_skip_tagset_quiesce(q))
 325			blk_mq_quiesce_queue_nowait(q);
 326	}
 327	blk_mq_wait_quiesce_done(set);
 328	mutex_unlock(&set->tag_list_lock);
 329}
 330EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
 331
 332void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
 333{
 334	struct request_queue *q;
 335
 336	mutex_lock(&set->tag_list_lock);
 337	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 338		if (!blk_queue_skip_tagset_quiesce(q))
 339			blk_mq_unquiesce_queue(q);
 340	}
 341	mutex_unlock(&set->tag_list_lock);
 342}
 343EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
 344
 345void blk_mq_wake_waiters(struct request_queue *q)
 346{
 347	struct blk_mq_hw_ctx *hctx;
 348	unsigned long i;
 349
 350	queue_for_each_hw_ctx(q, hctx, i)
 351		if (blk_mq_hw_queue_mapped(hctx))
 352			blk_mq_tag_wakeup_all(hctx->tags, true);
 353}
 354
 355void blk_rq_init(struct request_queue *q, struct request *rq)
 356{
 357	memset(rq, 0, sizeof(*rq));
 358
 359	INIT_LIST_HEAD(&rq->queuelist);
 360	rq->q = q;
 361	rq->__sector = (sector_t) -1;
 362	INIT_HLIST_NODE(&rq->hash);
 363	RB_CLEAR_NODE(&rq->rb_node);
 364	rq->tag = BLK_MQ_NO_TAG;
 365	rq->internal_tag = BLK_MQ_NO_TAG;
 366	rq->start_time_ns = ktime_get_ns();
 367	rq->part = NULL;
 368	blk_crypto_rq_set_defaults(rq);
 369}
 370EXPORT_SYMBOL(blk_rq_init);
 371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 373		struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
 374{
 375	struct blk_mq_ctx *ctx = data->ctx;
 376	struct blk_mq_hw_ctx *hctx = data->hctx;
 377	struct request_queue *q = data->q;
 378	struct request *rq = tags->static_rqs[tag];
 379
 380	rq->q = q;
 381	rq->mq_ctx = ctx;
 382	rq->mq_hctx = hctx;
 383	rq->cmd_flags = data->cmd_flags;
 384
 385	if (data->flags & BLK_MQ_REQ_PM)
 386		data->rq_flags |= RQF_PM;
 387	if (blk_queue_io_stat(q))
 388		data->rq_flags |= RQF_IO_STAT;
 389	rq->rq_flags = data->rq_flags;
 390
 391	if (!(data->rq_flags & RQF_ELV)) {
 392		rq->tag = tag;
 393		rq->internal_tag = BLK_MQ_NO_TAG;
 394	} else {
 395		rq->tag = BLK_MQ_NO_TAG;
 396		rq->internal_tag = tag;
 
 
 
 397	}
 398	rq->timeout = 0;
 399
 400	if (blk_mq_need_time_stamp(rq))
 401		rq->start_time_ns = ktime_get_ns();
 402	else
 403		rq->start_time_ns = 0;
 404	rq->part = NULL;
 405#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 406	rq->alloc_time_ns = alloc_time_ns;
 407#endif
 408	rq->io_start_time_ns = 0;
 409	rq->stats_sectors = 0;
 410	rq->nr_phys_segments = 0;
 411#if defined(CONFIG_BLK_DEV_INTEGRITY)
 412	rq->nr_integrity_segments = 0;
 413#endif
 414	rq->end_io = NULL;
 415	rq->end_io_data = NULL;
 416
 417	blk_crypto_rq_set_defaults(rq);
 418	INIT_LIST_HEAD(&rq->queuelist);
 419	/* tag was already set */
 420	WRITE_ONCE(rq->deadline, 0);
 421	req_ref_set(rq, 1);
 422
 423	if (rq->rq_flags & RQF_ELV) {
 424		struct elevator_queue *e = data->q->elevator;
 425
 426		INIT_HLIST_NODE(&rq->hash);
 427		RB_CLEAR_NODE(&rq->rb_node);
 428
 429		if (!op_is_flush(data->cmd_flags) &&
 430		    e->type->ops.prepare_request) {
 431			e->type->ops.prepare_request(rq);
 432			rq->rq_flags |= RQF_ELVPRIV;
 433		}
 434	}
 435
 436	return rq;
 437}
 438
 439static inline struct request *
 440__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
 441		u64 alloc_time_ns)
 442{
 443	unsigned int tag, tag_offset;
 444	struct blk_mq_tags *tags;
 445	struct request *rq;
 446	unsigned long tag_mask;
 447	int i, nr = 0;
 448
 449	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
 450	if (unlikely(!tag_mask))
 451		return NULL;
 452
 453	tags = blk_mq_tags_from_data(data);
 454	for (i = 0; tag_mask; i++) {
 455		if (!(tag_mask & (1UL << i)))
 456			continue;
 457		tag = tag_offset + i;
 458		prefetch(tags->static_rqs[tag]);
 459		tag_mask &= ~(1UL << i);
 460		rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
 461		rq_list_add(data->cached_rq, rq);
 462		nr++;
 463	}
 
 
 464	/* caller already holds a reference, add for remainder */
 465	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
 466	data->nr_tags -= nr;
 467
 468	return rq_list_pop(data->cached_rq);
 469}
 470
 471static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
 472{
 473	struct request_queue *q = data->q;
 474	u64 alloc_time_ns = 0;
 475	struct request *rq;
 476	unsigned int tag;
 477
 478	/* alloc_time includes depth and tag waits */
 479	if (blk_queue_rq_alloc_time(q))
 480		alloc_time_ns = ktime_get_ns();
 481
 482	if (data->cmd_flags & REQ_NOWAIT)
 483		data->flags |= BLK_MQ_REQ_NOWAIT;
 484
 485	if (q->elevator) {
 486		struct elevator_queue *e = q->elevator;
 487
 488		data->rq_flags |= RQF_ELV;
 
 
 489
 490		/*
 491		 * Flush/passthrough requests are special and go directly to the
 492		 * dispatch list. Don't include reserved tags in the
 493		 * limiting, as it isn't useful.
 494		 */
 495		if (!op_is_flush(data->cmd_flags) &&
 496		    !blk_op_is_passthrough(data->cmd_flags) &&
 497		    e->type->ops.limit_depth &&
 498		    !(data->flags & BLK_MQ_REQ_RESERVED))
 499			e->type->ops.limit_depth(data->cmd_flags, data);
 
 
 
 
 
 500	}
 501
 502retry:
 503	data->ctx = blk_mq_get_ctx(q);
 504	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 505	if (!(data->rq_flags & RQF_ELV))
 506		blk_mq_tag_busy(data->hctx);
 507
 508	if (data->flags & BLK_MQ_REQ_RESERVED)
 509		data->rq_flags |= RQF_RESV;
 510
 511	/*
 512	 * Try batched alloc if we want more than 1 tag.
 513	 */
 514	if (data->nr_tags > 1) {
 515		rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
 516		if (rq)
 
 517			return rq;
 
 518		data->nr_tags = 1;
 519	}
 520
 521	/*
 522	 * Waiting allocations only fail because of an inactive hctx.  In that
 523	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 524	 * should have migrated us to an online CPU by now.
 525	 */
 526	tag = blk_mq_get_tag(data);
 527	if (tag == BLK_MQ_NO_TAG) {
 528		if (data->flags & BLK_MQ_REQ_NOWAIT)
 529			return NULL;
 530		/*
 531		 * Give up the CPU and sleep for a random short time to
 532		 * ensure that thread using a realtime scheduling class
 533		 * are migrated off the CPU, and thus off the hctx that
 534		 * is going away.
 535		 */
 536		msleep(3);
 537		goto retry;
 538	}
 539
 540	return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
 541					alloc_time_ns);
 
 
 
 542}
 543
 544static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
 545					    struct blk_plug *plug,
 546					    blk_opf_t opf,
 547					    blk_mq_req_flags_t flags)
 548{
 549	struct blk_mq_alloc_data data = {
 550		.q		= q,
 551		.flags		= flags,
 552		.cmd_flags	= opf,
 553		.nr_tags	= plug->nr_ios,
 554		.cached_rq	= &plug->cached_rq,
 555	};
 556	struct request *rq;
 557
 558	if (blk_queue_enter(q, flags))
 559		return NULL;
 560
 561	plug->nr_ios = 1;
 562
 563	rq = __blk_mq_alloc_requests(&data);
 564	if (unlikely(!rq))
 565		blk_queue_exit(q);
 566	return rq;
 567}
 568
 569static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
 570						   blk_opf_t opf,
 571						   blk_mq_req_flags_t flags)
 572{
 573	struct blk_plug *plug = current->plug;
 574	struct request *rq;
 575
 576	if (!plug)
 577		return NULL;
 578
 579	if (rq_list_empty(plug->cached_rq)) {
 580		if (plug->nr_ios == 1)
 581			return NULL;
 582		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
 583		if (!rq)
 584			return NULL;
 585	} else {
 586		rq = rq_list_peek(&plug->cached_rq);
 587		if (!rq || rq->q != q)
 588			return NULL;
 589
 590		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
 591			return NULL;
 592		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
 593			return NULL;
 594
 595		plug->cached_rq = rq_list_next(rq);
 
 596	}
 597
 598	rq->cmd_flags = opf;
 599	INIT_LIST_HEAD(&rq->queuelist);
 600	return rq;
 601}
 602
 603struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
 604		blk_mq_req_flags_t flags)
 605{
 606	struct request *rq;
 607
 608	rq = blk_mq_alloc_cached_request(q, opf, flags);
 609	if (!rq) {
 610		struct blk_mq_alloc_data data = {
 611			.q		= q,
 612			.flags		= flags,
 613			.cmd_flags	= opf,
 614			.nr_tags	= 1,
 615		};
 616		int ret;
 617
 618		ret = blk_queue_enter(q, flags);
 619		if (ret)
 620			return ERR_PTR(ret);
 621
 622		rq = __blk_mq_alloc_requests(&data);
 623		if (!rq)
 624			goto out_queue_exit;
 625	}
 626	rq->__data_len = 0;
 627	rq->__sector = (sector_t) -1;
 628	rq->bio = rq->biotail = NULL;
 629	return rq;
 630out_queue_exit:
 631	blk_queue_exit(q);
 632	return ERR_PTR(-EWOULDBLOCK);
 633}
 634EXPORT_SYMBOL(blk_mq_alloc_request);
 635
 636struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 637	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 638{
 639	struct blk_mq_alloc_data data = {
 640		.q		= q,
 641		.flags		= flags,
 642		.cmd_flags	= opf,
 643		.nr_tags	= 1,
 644	};
 645	u64 alloc_time_ns = 0;
 646	struct request *rq;
 647	unsigned int cpu;
 648	unsigned int tag;
 649	int ret;
 650
 651	/* alloc_time includes depth and tag waits */
 652	if (blk_queue_rq_alloc_time(q))
 653		alloc_time_ns = ktime_get_ns();
 654
 655	/*
 656	 * If the tag allocator sleeps we could get an allocation for a
 657	 * different hardware context.  No need to complicate the low level
 658	 * allocator for this for the rare use case of a command tied to
 659	 * a specific queue.
 660	 */
 661	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
 
 662		return ERR_PTR(-EINVAL);
 663
 664	if (hctx_idx >= q->nr_hw_queues)
 665		return ERR_PTR(-EIO);
 666
 667	ret = blk_queue_enter(q, flags);
 668	if (ret)
 669		return ERR_PTR(ret);
 670
 671	/*
 672	 * Check if the hardware context is actually mapped to anything.
 673	 * If not tell the caller that it should skip this queue.
 674	 */
 675	ret = -EXDEV;
 676	data.hctx = xa_load(&q->hctx_table, hctx_idx);
 677	if (!blk_mq_hw_queue_mapped(data.hctx))
 678		goto out_queue_exit;
 679	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 680	if (cpu >= nr_cpu_ids)
 681		goto out_queue_exit;
 682	data.ctx = __blk_mq_get_ctx(q, cpu);
 683
 684	if (!q->elevator)
 685		blk_mq_tag_busy(data.hctx);
 686	else
 687		data.rq_flags |= RQF_ELV;
 688
 689	if (flags & BLK_MQ_REQ_RESERVED)
 690		data.rq_flags |= RQF_RESV;
 691
 692	ret = -EWOULDBLOCK;
 693	tag = blk_mq_get_tag(&data);
 694	if (tag == BLK_MQ_NO_TAG)
 695		goto out_queue_exit;
 696	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
 697					alloc_time_ns);
 
 
 698	rq->__data_len = 0;
 699	rq->__sector = (sector_t) -1;
 700	rq->bio = rq->biotail = NULL;
 701	return rq;
 702
 703out_queue_exit:
 704	blk_queue_exit(q);
 705	return ERR_PTR(ret);
 706}
 707EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709static void __blk_mq_free_request(struct request *rq)
 710{
 711	struct request_queue *q = rq->q;
 712	struct blk_mq_ctx *ctx = rq->mq_ctx;
 713	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 714	const int sched_tag = rq->internal_tag;
 715
 716	blk_crypto_free_request(rq);
 717	blk_pm_mark_last_busy(rq);
 718	rq->mq_hctx = NULL;
 719	if (rq->tag != BLK_MQ_NO_TAG)
 
 
 720		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 
 721	if (sched_tag != BLK_MQ_NO_TAG)
 722		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 723	blk_mq_sched_restart(hctx);
 724	blk_queue_exit(q);
 725}
 726
 727void blk_mq_free_request(struct request *rq)
 728{
 729	struct request_queue *q = rq->q;
 730	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 731
 732	if ((rq->rq_flags & RQF_ELVPRIV) &&
 733	    q->elevator->type->ops.finish_request)
 734		q->elevator->type->ops.finish_request(rq);
 735
 736	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 737		__blk_mq_dec_active_requests(hctx);
 738
 739	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 740		laptop_io_completion(q->disk->bdi);
 741
 742	rq_qos_done(q, rq);
 743
 744	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 745	if (req_ref_put_and_test(rq))
 746		__blk_mq_free_request(rq);
 747}
 748EXPORT_SYMBOL_GPL(blk_mq_free_request);
 749
 750void blk_mq_free_plug_rqs(struct blk_plug *plug)
 751{
 752	struct request *rq;
 753
 754	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
 755		blk_mq_free_request(rq);
 756}
 757
 758void blk_dump_rq_flags(struct request *rq, char *msg)
 759{
 760	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 761		rq->q->disk ? rq->q->disk->disk_name : "?",
 762		(__force unsigned long long) rq->cmd_flags);
 763
 764	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 765	       (unsigned long long)blk_rq_pos(rq),
 766	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 767	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 768	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 769}
 770EXPORT_SYMBOL(blk_dump_rq_flags);
 771
 772static void req_bio_endio(struct request *rq, struct bio *bio,
 773			  unsigned int nbytes, blk_status_t error)
 774{
 775	if (unlikely(error)) {
 776		bio->bi_status = error;
 777	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
 778		/*
 779		 * Partial zone append completions cannot be supported as the
 780		 * BIO fragments may end up not being written sequentially.
 781		 */
 782		if (bio->bi_iter.bi_size != nbytes)
 783			bio->bi_status = BLK_STS_IOERR;
 784		else
 785			bio->bi_iter.bi_sector = rq->__sector;
 786	}
 787
 788	bio_advance(bio, nbytes);
 789
 790	if (unlikely(rq->rq_flags & RQF_QUIET))
 791		bio_set_flag(bio, BIO_QUIET);
 792	/* don't actually finish bio if it's part of flush sequence */
 793	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 794		bio_endio(bio);
 795}
 796
 797static void blk_account_io_completion(struct request *req, unsigned int bytes)
 798{
 799	if (req->part && blk_do_io_stat(req)) {
 800		const int sgrp = op_stat_group(req_op(req));
 801
 802		part_stat_lock();
 803		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
 804		part_stat_unlock();
 805	}
 806}
 807
 808static void blk_print_req_error(struct request *req, blk_status_t status)
 809{
 810	printk_ratelimited(KERN_ERR
 811		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 812		"phys_seg %u prio class %u\n",
 813		blk_status_to_str(status),
 814		req->q->disk ? req->q->disk->disk_name : "?",
 815		blk_rq_pos(req), (__force u32)req_op(req),
 816		blk_op_str(req_op(req)),
 817		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
 818		req->nr_phys_segments,
 819		IOPRIO_PRIO_CLASS(req->ioprio));
 820}
 821
 822/*
 823 * Fully end IO on a request. Does not support partial completions, or
 824 * errors.
 825 */
 826static void blk_complete_request(struct request *req)
 827{
 828	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
 829	int total_bytes = blk_rq_bytes(req);
 830	struct bio *bio = req->bio;
 831
 832	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
 833
 834	if (!bio)
 835		return;
 836
 837#ifdef CONFIG_BLK_DEV_INTEGRITY
 838	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
 839		req->q->integrity.profile->complete_fn(req, total_bytes);
 840#endif
 841
 
 
 
 
 
 
 842	blk_account_io_completion(req, total_bytes);
 843
 844	do {
 845		struct bio *next = bio->bi_next;
 846
 847		/* Completion has already been traced */
 848		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 849
 850		if (req_op(req) == REQ_OP_ZONE_APPEND)
 851			bio->bi_iter.bi_sector = req->__sector;
 852
 853		if (!is_flush)
 854			bio_endio(bio);
 855		bio = next;
 856	} while (bio);
 857
 858	/*
 859	 * Reset counters so that the request stacking driver
 860	 * can find how many bytes remain in the request
 861	 * later.
 862	 */
 863	if (!req->end_io) {
 864		req->bio = NULL;
 865		req->__data_len = 0;
 866	}
 867}
 868
 869/**
 870 * blk_update_request - Complete multiple bytes without completing the request
 871 * @req:      the request being processed
 872 * @error:    block status code
 873 * @nr_bytes: number of bytes to complete for @req
 874 *
 875 * Description:
 876 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 877 *     the request structure even if @req doesn't have leftover.
 878 *     If @req has leftover, sets it up for the next range of segments.
 879 *
 880 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 881 *     %false return from this function.
 882 *
 883 * Note:
 884 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 885 *      except in the consistency check at the end of this function.
 886 *
 887 * Return:
 888 *     %false - this request doesn't have any more data
 889 *     %true  - this request has more data
 890 **/
 891bool blk_update_request(struct request *req, blk_status_t error,
 892		unsigned int nr_bytes)
 893{
 894	int total_bytes;
 895
 896	trace_block_rq_complete(req, error, nr_bytes);
 897
 898	if (!req->bio)
 899		return false;
 900
 901#ifdef CONFIG_BLK_DEV_INTEGRITY
 902	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 903	    error == BLK_STS_OK)
 904		req->q->integrity.profile->complete_fn(req, nr_bytes);
 905#endif
 906
 
 
 
 
 
 
 
 907	if (unlikely(error && !blk_rq_is_passthrough(req) &&
 908		     !(req->rq_flags & RQF_QUIET)) &&
 909		     !test_bit(GD_DEAD, &req->q->disk->state)) {
 910		blk_print_req_error(req, error);
 911		trace_block_rq_error(req, error, nr_bytes);
 912	}
 913
 914	blk_account_io_completion(req, nr_bytes);
 915
 916	total_bytes = 0;
 917	while (req->bio) {
 918		struct bio *bio = req->bio;
 919		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
 920
 921		if (bio_bytes == bio->bi_iter.bi_size)
 922			req->bio = bio->bi_next;
 923
 924		/* Completion has already been traced */
 925		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 926		req_bio_endio(req, bio, bio_bytes, error);
 927
 928		total_bytes += bio_bytes;
 929		nr_bytes -= bio_bytes;
 930
 931		if (!nr_bytes)
 932			break;
 933	}
 934
 935	/*
 936	 * completely done
 937	 */
 938	if (!req->bio) {
 939		/*
 940		 * Reset counters so that the request stacking driver
 941		 * can find how many bytes remain in the request
 942		 * later.
 943		 */
 944		req->__data_len = 0;
 945		return false;
 946	}
 947
 948	req->__data_len -= total_bytes;
 949
 950	/* update sector only for requests with clear definition of sector */
 951	if (!blk_rq_is_passthrough(req))
 952		req->__sector += total_bytes >> 9;
 953
 954	/* mixed attributes always follow the first bio */
 955	if (req->rq_flags & RQF_MIXED_MERGE) {
 956		req->cmd_flags &= ~REQ_FAILFAST_MASK;
 957		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
 958	}
 959
 960	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
 961		/*
 962		 * If total number of sectors is less than the first segment
 963		 * size, something has gone terribly wrong.
 964		 */
 965		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
 966			blk_dump_rq_flags(req, "request botched");
 967			req->__data_len = blk_rq_cur_bytes(req);
 968		}
 969
 970		/* recalculate the number of segments */
 971		req->nr_phys_segments = blk_recalc_rq_segments(req);
 972	}
 973
 974	return true;
 975}
 976EXPORT_SYMBOL_GPL(blk_update_request);
 977
 978static void __blk_account_io_done(struct request *req, u64 now)
 979{
 980	const int sgrp = op_stat_group(req_op(req));
 981
 982	part_stat_lock();
 983	update_io_ticks(req->part, jiffies, true);
 984	part_stat_inc(req->part, ios[sgrp]);
 985	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
 986	part_stat_unlock();
 987}
 988
 989static inline void blk_account_io_done(struct request *req, u64 now)
 990{
 
 
 991	/*
 992	 * Account IO completion.  flush_rq isn't accounted as a
 993	 * normal IO on queueing nor completion.  Accounting the
 994	 * containing request is enough.
 995	 */
 996	if (blk_do_io_stat(req) && req->part &&
 997	    !(req->rq_flags & RQF_FLUSH_SEQ))
 998		__blk_account_io_done(req, now);
 999}
1000
1001static void __blk_account_io_start(struct request *rq)
1002{
1003	/*
1004	 * All non-passthrough requests are created from a bio with one
1005	 * exception: when a flush command that is part of a flush sequence
1006	 * generated by the state machine in blk-flush.c is cloned onto the
1007	 * lower device by dm-multipath we can get here without a bio.
1008	 */
1009	if (rq->bio)
1010		rq->part = rq->bio->bi_bdev;
1011	else
1012		rq->part = rq->q->disk->part0;
1013
1014	part_stat_lock();
1015	update_io_ticks(rq->part, jiffies, false);
1016	part_stat_unlock();
 
 
 
 
 
1017}
1018
1019static inline void blk_account_io_start(struct request *req)
1020{
1021	if (blk_do_io_stat(req))
1022		__blk_account_io_start(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023}
1024
1025static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1026{
1027	if (rq->rq_flags & RQF_STATS) {
1028		blk_mq_poll_stats_start(rq->q);
1029		blk_stat_add(rq, now);
1030	}
1031
1032	blk_mq_sched_completed_request(rq, now);
1033	blk_account_io_done(rq, now);
1034}
1035
1036inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1037{
1038	if (blk_mq_need_time_stamp(rq))
1039		__blk_mq_end_request_acct(rq, ktime_get_ns());
 
 
1040
1041	if (rq->end_io) {
1042		rq_qos_done(rq->q, rq);
1043		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1044			blk_mq_free_request(rq);
1045	} else {
1046		blk_mq_free_request(rq);
1047	}
1048}
1049EXPORT_SYMBOL(__blk_mq_end_request);
1050
1051void blk_mq_end_request(struct request *rq, blk_status_t error)
1052{
1053	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1054		BUG();
1055	__blk_mq_end_request(rq, error);
1056}
1057EXPORT_SYMBOL(blk_mq_end_request);
1058
1059#define TAG_COMP_BATCH		32
1060
1061static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1062					  int *tag_array, int nr_tags)
1063{
1064	struct request_queue *q = hctx->queue;
1065
1066	/*
1067	 * All requests should have been marked as RQF_MQ_INFLIGHT, so
1068	 * update hctx->nr_active in batch
1069	 */
1070	if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1071		__blk_mq_sub_active_requests(hctx, nr_tags);
1072
1073	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1074	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1075}
1076
1077void blk_mq_end_request_batch(struct io_comp_batch *iob)
1078{
1079	int tags[TAG_COMP_BATCH], nr_tags = 0;
1080	struct blk_mq_hw_ctx *cur_hctx = NULL;
1081	struct request *rq;
1082	u64 now = 0;
1083
1084	if (iob->need_ts)
1085		now = ktime_get_ns();
1086
1087	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1088		prefetch(rq->bio);
1089		prefetch(rq->rq_next);
1090
1091		blk_complete_request(rq);
1092		if (iob->need_ts)
1093			__blk_mq_end_request_acct(rq, now);
1094
 
 
1095		rq_qos_done(rq->q, rq);
1096
1097		/*
1098		 * If end_io handler returns NONE, then it still has
1099		 * ownership of the request.
1100		 */
1101		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1102			continue;
1103
1104		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1105		if (!req_ref_put_and_test(rq))
1106			continue;
1107
1108		blk_crypto_free_request(rq);
1109		blk_pm_mark_last_busy(rq);
1110
1111		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1112			if (cur_hctx)
1113				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1114			nr_tags = 0;
1115			cur_hctx = rq->mq_hctx;
1116		}
1117		tags[nr_tags++] = rq->tag;
1118	}
1119
1120	if (nr_tags)
1121		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1122}
1123EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1124
1125static void blk_complete_reqs(struct llist_head *list)
1126{
1127	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1128	struct request *rq, *next;
1129
1130	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1131		rq->q->mq_ops->complete(rq);
1132}
1133
1134static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1135{
1136	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1137}
1138
1139static int blk_softirq_cpu_dead(unsigned int cpu)
1140{
1141	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1142	return 0;
1143}
1144
1145static void __blk_mq_complete_request_remote(void *data)
1146{
1147	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1148}
1149
1150static inline bool blk_mq_complete_need_ipi(struct request *rq)
1151{
1152	int cpu = raw_smp_processor_id();
1153
1154	if (!IS_ENABLED(CONFIG_SMP) ||
1155	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1156		return false;
1157	/*
1158	 * With force threaded interrupts enabled, raising softirq from an SMP
1159	 * function call will always result in waking the ksoftirqd thread.
1160	 * This is probably worse than completing the request on a different
1161	 * cache domain.
1162	 */
1163	if (force_irqthreads())
1164		return false;
1165
1166	/* same CPU or cache domain?  Complete locally */
1167	if (cpu == rq->mq_ctx->cpu ||
1168	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1169	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
 
1170		return false;
1171
1172	/* don't try to IPI to an offline CPU */
1173	return cpu_online(rq->mq_ctx->cpu);
1174}
1175
1176static void blk_mq_complete_send_ipi(struct request *rq)
1177{
1178	struct llist_head *list;
1179	unsigned int cpu;
1180
1181	cpu = rq->mq_ctx->cpu;
1182	list = &per_cpu(blk_cpu_done, cpu);
1183	if (llist_add(&rq->ipi_list, list)) {
1184		INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1185		smp_call_function_single_async(cpu, &rq->csd);
1186	}
1187}
1188
1189static void blk_mq_raise_softirq(struct request *rq)
1190{
1191	struct llist_head *list;
1192
1193	preempt_disable();
1194	list = this_cpu_ptr(&blk_cpu_done);
1195	if (llist_add(&rq->ipi_list, list))
1196		raise_softirq(BLOCK_SOFTIRQ);
1197	preempt_enable();
1198}
1199
1200bool blk_mq_complete_request_remote(struct request *rq)
1201{
1202	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1203
1204	/*
1205	 * For request which hctx has only one ctx mapping,
1206	 * or a polled request, always complete locally,
1207	 * it's pointless to redirect the completion.
1208	 */
1209	if (rq->mq_hctx->nr_ctx == 1 ||
1210		rq->cmd_flags & REQ_POLLED)
 
1211		return false;
1212
1213	if (blk_mq_complete_need_ipi(rq)) {
1214		blk_mq_complete_send_ipi(rq);
1215		return true;
1216	}
1217
1218	if (rq->q->nr_hw_queues == 1) {
1219		blk_mq_raise_softirq(rq);
1220		return true;
1221	}
1222	return false;
1223}
1224EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226/**
1227 * blk_mq_complete_request - end I/O on a request
1228 * @rq:		the request being processed
1229 *
1230 * Description:
1231 *	Complete a request by scheduling the ->complete_rq operation.
1232 **/
1233void blk_mq_complete_request(struct request *rq)
1234{
1235	if (!blk_mq_complete_request_remote(rq))
1236		rq->q->mq_ops->complete(rq);
1237}
1238EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240/**
1241 * blk_mq_start_request - Start processing a request
1242 * @rq: Pointer to request to be started
1243 *
1244 * Function used by device drivers to notify the block layer that a request
1245 * is going to be processed now, so blk layer can do proper initializations
1246 * such as starting the timeout timer.
1247 */
1248void blk_mq_start_request(struct request *rq)
1249{
1250	struct request_queue *q = rq->q;
1251
1252	trace_block_rq_issue(rq);
1253
1254	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1255		rq->io_start_time_ns = ktime_get_ns();
 
1256		rq->stats_sectors = blk_rq_sectors(rq);
1257		rq->rq_flags |= RQF_STATS;
1258		rq_qos_issue(q, rq);
1259	}
1260
1261	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1262
1263	blk_add_timer(rq);
1264	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 
1265
1266#ifdef CONFIG_BLK_DEV_INTEGRITY
1267	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1268		q->integrity.profile->prepare_fn(rq);
1269#endif
1270	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1271	        WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1272}
1273EXPORT_SYMBOL(blk_mq_start_request);
1274
1275/*
1276 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1277 * queues. This is important for md arrays to benefit from merging
1278 * requests.
1279 */
1280static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1281{
1282	if (plug->multiple_queues)
1283		return BLK_MAX_REQUEST_COUNT * 2;
1284	return BLK_MAX_REQUEST_COUNT;
1285}
1286
1287static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1288{
1289	struct request *last = rq_list_peek(&plug->mq_list);
1290
1291	if (!plug->rq_count) {
1292		trace_block_plug(rq->q);
1293	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1294		   (!blk_queue_nomerges(rq->q) &&
1295		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1296		blk_mq_flush_plug_list(plug, false);
1297		last = NULL;
1298		trace_block_plug(rq->q);
1299	}
1300
1301	if (!plug->multiple_queues && last && last->q != rq->q)
1302		plug->multiple_queues = true;
1303	if (!plug->has_elevator && (rq->rq_flags & RQF_ELV))
 
 
 
 
1304		plug->has_elevator = true;
1305	rq->rq_next = NULL;
1306	rq_list_add(&plug->mq_list, rq);
1307	plug->rq_count++;
1308}
1309
1310/**
1311 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1312 * @rq:		request to insert
1313 * @at_head:    insert request at head or tail of queue
1314 *
1315 * Description:
1316 *    Insert a fully prepared request at the back of the I/O scheduler queue
1317 *    for execution.  Don't wait for completion.
1318 *
1319 * Note:
1320 *    This function will invoke @done directly if the queue is dead.
1321 */
1322void blk_execute_rq_nowait(struct request *rq, bool at_head)
1323{
 
 
1324	WARN_ON(irqs_disabled());
1325	WARN_ON(!blk_rq_is_passthrough(rq));
1326
1327	blk_account_io_start(rq);
1328
1329	/*
1330	 * As plugging can be enabled for passthrough requests on a zoned
1331	 * device, directly accessing the plug instead of using blk_mq_plug()
1332	 * should not have any consequences.
1333	 */
1334	if (current->plug)
1335		blk_add_rq_to_plug(current->plug, rq);
1336	else
1337		blk_mq_sched_insert_request(rq, at_head, true, false);
 
 
 
1338}
1339EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1340
1341struct blk_rq_wait {
1342	struct completion done;
1343	blk_status_t ret;
1344};
1345
1346static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1347{
1348	struct blk_rq_wait *wait = rq->end_io_data;
1349
1350	wait->ret = ret;
1351	complete(&wait->done);
1352	return RQ_END_IO_NONE;
1353}
1354
1355bool blk_rq_is_poll(struct request *rq)
1356{
1357	if (!rq->mq_hctx)
1358		return false;
1359	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1360		return false;
1361	if (WARN_ON_ONCE(!rq->bio))
1362		return false;
1363	return true;
1364}
1365EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1366
1367static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1368{
1369	do {
1370		bio_poll(rq->bio, NULL, 0);
1371		cond_resched();
1372	} while (!completion_done(wait));
1373}
1374
1375/**
1376 * blk_execute_rq - insert a request into queue for execution
1377 * @rq:		request to insert
1378 * @at_head:    insert request at head or tail of queue
1379 *
1380 * Description:
1381 *    Insert a fully prepared request at the back of the I/O scheduler queue
1382 *    for execution and wait for completion.
1383 * Return: The blk_status_t result provided to blk_mq_end_request().
1384 */
1385blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1386{
 
1387	struct blk_rq_wait wait = {
1388		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1389	};
1390
1391	WARN_ON(irqs_disabled());
1392	WARN_ON(!blk_rq_is_passthrough(rq));
1393
1394	rq->end_io_data = &wait;
1395	rq->end_io = blk_end_sync_rq;
1396
1397	blk_account_io_start(rq);
1398	blk_mq_sched_insert_request(rq, at_head, true, false);
 
1399
1400	if (blk_rq_is_poll(rq)) {
1401		blk_rq_poll_completion(rq, &wait.done);
1402	} else {
1403		/*
1404		 * Prevent hang_check timer from firing at us during very long
1405		 * I/O
1406		 */
1407		unsigned long hang_check = sysctl_hung_task_timeout_secs;
1408
1409		if (hang_check)
1410			while (!wait_for_completion_io_timeout(&wait.done,
1411					hang_check * (HZ/2)))
1412				;
1413		else
1414			wait_for_completion_io(&wait.done);
1415	}
1416
1417	return wait.ret;
1418}
1419EXPORT_SYMBOL(blk_execute_rq);
1420
1421static void __blk_mq_requeue_request(struct request *rq)
1422{
1423	struct request_queue *q = rq->q;
1424
1425	blk_mq_put_driver_tag(rq);
1426
1427	trace_block_rq_requeue(rq);
1428	rq_qos_requeue(q, rq);
1429
1430	if (blk_mq_request_started(rq)) {
1431		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1432		rq->rq_flags &= ~RQF_TIMED_OUT;
1433	}
1434}
1435
1436void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1437{
 
 
 
1438	__blk_mq_requeue_request(rq);
1439
1440	/* this request will be re-inserted to io scheduler queue */
1441	blk_mq_sched_requeue_request(rq);
1442
1443	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 
 
 
 
 
1444}
1445EXPORT_SYMBOL(blk_mq_requeue_request);
1446
1447static void blk_mq_requeue_work(struct work_struct *work)
1448{
1449	struct request_queue *q =
1450		container_of(work, struct request_queue, requeue_work.work);
1451	LIST_HEAD(rq_list);
1452	struct request *rq, *next;
 
1453
1454	spin_lock_irq(&q->requeue_lock);
1455	list_splice_init(&q->requeue_list, &rq_list);
 
1456	spin_unlock_irq(&q->requeue_lock);
1457
1458	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1459		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
1460			continue;
1461
1462		rq->rq_flags &= ~RQF_SOFTBARRIER;
1463		list_del_init(&rq->queuelist);
1464		/*
1465		 * If RQF_DONTPREP, rq has contained some driver specific
1466		 * data, so insert it to hctx dispatch list to avoid any
1467		 * merge.
 
1468		 */
1469		if (rq->rq_flags & RQF_DONTPREP)
1470			blk_mq_request_bypass_insert(rq, false, false);
1471		else
1472			blk_mq_sched_insert_request(rq, true, false, false);
 
 
 
1473	}
1474
1475	while (!list_empty(&rq_list)) {
1476		rq = list_entry(rq_list.next, struct request, queuelist);
1477		list_del_init(&rq->queuelist);
1478		blk_mq_sched_insert_request(rq, false, false, false);
1479	}
1480
1481	blk_mq_run_hw_queues(q, false);
1482}
1483
1484void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
1485				bool kick_requeue_list)
1486{
1487	struct request_queue *q = rq->q;
1488	unsigned long flags;
1489
1490	/*
1491	 * We abuse this flag that is otherwise used by the I/O scheduler to
1492	 * request head insertion from the workqueue.
1493	 */
1494	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1495
1496	spin_lock_irqsave(&q->requeue_lock, flags);
1497	if (at_head) {
1498		rq->rq_flags |= RQF_SOFTBARRIER;
1499		list_add(&rq->queuelist, &q->requeue_list);
1500	} else {
1501		list_add_tail(&rq->queuelist, &q->requeue_list);
1502	}
1503	spin_unlock_irqrestore(&q->requeue_lock, flags);
1504
1505	if (kick_requeue_list)
1506		blk_mq_kick_requeue_list(q);
1507}
1508
1509void blk_mq_kick_requeue_list(struct request_queue *q)
1510{
1511	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1512}
1513EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1514
1515void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1516				    unsigned long msecs)
1517{
1518	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1519				    msecs_to_jiffies(msecs));
1520}
1521EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1522
 
 
 
 
 
1523static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1524{
1525	/*
1526	 * If we find a request that isn't idle we know the queue is busy
1527	 * as it's checked in the iter.
1528	 * Return false to stop the iteration.
1529	 */
1530	if (blk_mq_request_started(rq)) {
 
 
 
 
 
 
 
1531		bool *busy = priv;
1532
1533		*busy = true;
1534		return false;
1535	}
1536
1537	return true;
1538}
1539
1540bool blk_mq_queue_inflight(struct request_queue *q)
1541{
1542	bool busy = false;
1543
1544	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1545	return busy;
1546}
1547EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1548
1549static void blk_mq_rq_timed_out(struct request *req)
1550{
1551	req->rq_flags |= RQF_TIMED_OUT;
1552	if (req->q->mq_ops->timeout) {
1553		enum blk_eh_timer_return ret;
1554
1555		ret = req->q->mq_ops->timeout(req);
1556		if (ret == BLK_EH_DONE)
1557			return;
1558		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1559	}
1560
1561	blk_add_timer(req);
1562}
1563
1564struct blk_expired_data {
1565	bool has_timedout_rq;
1566	unsigned long next;
1567	unsigned long timeout_start;
1568};
1569
1570static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1571{
1572	unsigned long deadline;
1573
1574	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1575		return false;
1576	if (rq->rq_flags & RQF_TIMED_OUT)
1577		return false;
1578
1579	deadline = READ_ONCE(rq->deadline);
1580	if (time_after_eq(expired->timeout_start, deadline))
1581		return true;
1582
1583	if (expired->next == 0)
1584		expired->next = deadline;
1585	else if (time_after(expired->next, deadline))
1586		expired->next = deadline;
1587	return false;
1588}
1589
1590void blk_mq_put_rq_ref(struct request *rq)
1591{
1592	if (is_flush_rq(rq)) {
1593		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1594			blk_mq_free_request(rq);
1595	} else if (req_ref_put_and_test(rq)) {
1596		__blk_mq_free_request(rq);
1597	}
1598}
1599
1600static bool blk_mq_check_expired(struct request *rq, void *priv)
1601{
1602	struct blk_expired_data *expired = priv;
1603
1604	/*
1605	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1606	 * be reallocated underneath the timeout handler's processing, then
1607	 * the expire check is reliable. If the request is not expired, then
1608	 * it was completed and reallocated as a new request after returning
1609	 * from blk_mq_check_expired().
1610	 */
1611	if (blk_mq_req_expired(rq, expired)) {
1612		expired->has_timedout_rq = true;
1613		return false;
1614	}
1615	return true;
1616}
1617
1618static bool blk_mq_handle_expired(struct request *rq, void *priv)
1619{
1620	struct blk_expired_data *expired = priv;
1621
1622	if (blk_mq_req_expired(rq, expired))
1623		blk_mq_rq_timed_out(rq);
1624	return true;
1625}
1626
1627static void blk_mq_timeout_work(struct work_struct *work)
1628{
1629	struct request_queue *q =
1630		container_of(work, struct request_queue, timeout_work);
1631	struct blk_expired_data expired = {
1632		.timeout_start = jiffies,
1633	};
1634	struct blk_mq_hw_ctx *hctx;
1635	unsigned long i;
1636
1637	/* A deadlock might occur if a request is stuck requiring a
1638	 * timeout at the same time a queue freeze is waiting
1639	 * completion, since the timeout code would not be able to
1640	 * acquire the queue reference here.
1641	 *
1642	 * That's why we don't use blk_queue_enter here; instead, we use
1643	 * percpu_ref_tryget directly, because we need to be able to
1644	 * obtain a reference even in the short window between the queue
1645	 * starting to freeze, by dropping the first reference in
1646	 * blk_freeze_queue_start, and the moment the last request is
1647	 * consumed, marked by the instant q_usage_counter reaches
1648	 * zero.
1649	 */
1650	if (!percpu_ref_tryget(&q->q_usage_counter))
1651		return;
1652
1653	/* check if there is any timed-out request */
1654	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1655	if (expired.has_timedout_rq) {
1656		/*
1657		 * Before walking tags, we must ensure any submit started
1658		 * before the current time has finished. Since the submit
1659		 * uses srcu or rcu, wait for a synchronization point to
1660		 * ensure all running submits have finished
1661		 */
1662		blk_mq_wait_quiesce_done(q->tag_set);
1663
1664		expired.next = 0;
1665		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1666	}
1667
1668	if (expired.next != 0) {
1669		mod_timer(&q->timeout, expired.next);
1670	} else {
1671		/*
1672		 * Request timeouts are handled as a forward rolling timer. If
1673		 * we end up here it means that no requests are pending and
1674		 * also that no request has been pending for a while. Mark
1675		 * each hctx as idle.
1676		 */
1677		queue_for_each_hw_ctx(q, hctx, i) {
1678			/* the hctx may be unmapped, so check it here */
1679			if (blk_mq_hw_queue_mapped(hctx))
1680				blk_mq_tag_idle(hctx);
1681		}
1682	}
1683	blk_queue_exit(q);
1684}
1685
1686struct flush_busy_ctx_data {
1687	struct blk_mq_hw_ctx *hctx;
1688	struct list_head *list;
1689};
1690
1691static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1692{
1693	struct flush_busy_ctx_data *flush_data = data;
1694	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1695	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1696	enum hctx_type type = hctx->type;
1697
1698	spin_lock(&ctx->lock);
1699	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1700	sbitmap_clear_bit(sb, bitnr);
1701	spin_unlock(&ctx->lock);
1702	return true;
1703}
1704
1705/*
1706 * Process software queues that have been marked busy, splicing them
1707 * to the for-dispatch
1708 */
1709void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1710{
1711	struct flush_busy_ctx_data data = {
1712		.hctx = hctx,
1713		.list = list,
1714	};
1715
1716	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1717}
1718EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1719
1720struct dispatch_rq_data {
1721	struct blk_mq_hw_ctx *hctx;
1722	struct request *rq;
1723};
1724
1725static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1726		void *data)
1727{
1728	struct dispatch_rq_data *dispatch_data = data;
1729	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1730	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1731	enum hctx_type type = hctx->type;
1732
1733	spin_lock(&ctx->lock);
1734	if (!list_empty(&ctx->rq_lists[type])) {
1735		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1736		list_del_init(&dispatch_data->rq->queuelist);
1737		if (list_empty(&ctx->rq_lists[type]))
1738			sbitmap_clear_bit(sb, bitnr);
1739	}
1740	spin_unlock(&ctx->lock);
1741
1742	return !dispatch_data->rq;
1743}
1744
1745struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1746					struct blk_mq_ctx *start)
1747{
1748	unsigned off = start ? start->index_hw[hctx->type] : 0;
1749	struct dispatch_rq_data data = {
1750		.hctx = hctx,
1751		.rq   = NULL,
1752	};
1753
1754	__sbitmap_for_each_set(&hctx->ctx_map, off,
1755			       dispatch_rq_from_ctx, &data);
1756
1757	return data.rq;
1758}
1759
1760static bool __blk_mq_alloc_driver_tag(struct request *rq)
1761{
1762	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1763	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1764	int tag;
1765
1766	blk_mq_tag_busy(rq->mq_hctx);
1767
1768	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1769		bt = &rq->mq_hctx->tags->breserved_tags;
1770		tag_offset = 0;
1771	} else {
1772		if (!hctx_may_queue(rq->mq_hctx, bt))
1773			return false;
1774	}
1775
1776	tag = __sbitmap_queue_get(bt);
1777	if (tag == BLK_MQ_NO_TAG)
1778		return false;
1779
1780	rq->tag = tag + tag_offset;
1781	return true;
1782}
1783
1784bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1785{
1786	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1787		return false;
1788
1789	if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1790			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1791		rq->rq_flags |= RQF_MQ_INFLIGHT;
1792		__blk_mq_inc_active_requests(hctx);
1793	}
1794	hctx->tags->rqs[rq->tag] = rq;
1795	return true;
1796}
1797
1798static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1799				int flags, void *key)
1800{
1801	struct blk_mq_hw_ctx *hctx;
1802
1803	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1804
1805	spin_lock(&hctx->dispatch_wait_lock);
1806	if (!list_empty(&wait->entry)) {
1807		struct sbitmap_queue *sbq;
1808
1809		list_del_init(&wait->entry);
1810		sbq = &hctx->tags->bitmap_tags;
1811		atomic_dec(&sbq->ws_active);
1812	}
1813	spin_unlock(&hctx->dispatch_wait_lock);
1814
1815	blk_mq_run_hw_queue(hctx, true);
1816	return 1;
1817}
1818
1819/*
1820 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1821 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1822 * restart. For both cases, take care to check the condition again after
1823 * marking us as waiting.
1824 */
1825static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1826				 struct request *rq)
1827{
1828	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1829	struct wait_queue_head *wq;
1830	wait_queue_entry_t *wait;
1831	bool ret;
1832
1833	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
 
1834		blk_mq_sched_mark_restart_hctx(hctx);
1835
1836		/*
1837		 * It's possible that a tag was freed in the window between the
1838		 * allocation failure and adding the hardware queue to the wait
1839		 * queue.
1840		 *
1841		 * Don't clear RESTART here, someone else could have set it.
1842		 * At most this will cost an extra queue run.
1843		 */
1844		return blk_mq_get_driver_tag(rq);
1845	}
1846
1847	wait = &hctx->dispatch_wait;
1848	if (!list_empty_careful(&wait->entry))
1849		return false;
1850
 
 
 
 
1851	wq = &bt_wait_ptr(sbq, hctx)->wait;
1852
1853	spin_lock_irq(&wq->lock);
1854	spin_lock(&hctx->dispatch_wait_lock);
1855	if (!list_empty(&wait->entry)) {
1856		spin_unlock(&hctx->dispatch_wait_lock);
1857		spin_unlock_irq(&wq->lock);
1858		return false;
1859	}
1860
1861	atomic_inc(&sbq->ws_active);
1862	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1863	__add_wait_queue(wq, wait);
1864
1865	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1866	 * It's possible that a tag was freed in the window between the
1867	 * allocation failure and adding the hardware queue to the wait
1868	 * queue.
1869	 */
1870	ret = blk_mq_get_driver_tag(rq);
1871	if (!ret) {
1872		spin_unlock(&hctx->dispatch_wait_lock);
1873		spin_unlock_irq(&wq->lock);
1874		return false;
1875	}
1876
1877	/*
1878	 * We got a tag, remove ourselves from the wait queue to ensure
1879	 * someone else gets the wakeup.
1880	 */
1881	list_del_init(&wait->entry);
1882	atomic_dec(&sbq->ws_active);
1883	spin_unlock(&hctx->dispatch_wait_lock);
1884	spin_unlock_irq(&wq->lock);
1885
1886	return true;
1887}
1888
1889#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1890#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1891/*
1892 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1893 * - EWMA is one simple way to compute running average value
1894 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1895 * - take 4 as factor for avoiding to get too small(0) result, and this
1896 *   factor doesn't matter because EWMA decreases exponentially
1897 */
1898static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1899{
1900	unsigned int ewma;
1901
1902	ewma = hctx->dispatch_busy;
1903
1904	if (!ewma && !busy)
1905		return;
1906
1907	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1908	if (busy)
1909		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1910	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1911
1912	hctx->dispatch_busy = ewma;
1913}
1914
1915#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1916
1917static void blk_mq_handle_dev_resource(struct request *rq,
1918				       struct list_head *list)
1919{
1920	struct request *next =
1921		list_first_entry_or_null(list, struct request, queuelist);
1922
1923	/*
1924	 * If an I/O scheduler has been configured and we got a driver tag for
1925	 * the next request already, free it.
1926	 */
1927	if (next)
1928		blk_mq_put_driver_tag(next);
1929
1930	list_add(&rq->queuelist, list);
1931	__blk_mq_requeue_request(rq);
1932}
1933
1934static void blk_mq_handle_zone_resource(struct request *rq,
1935					struct list_head *zone_list)
1936{
1937	/*
1938	 * If we end up here it is because we cannot dispatch a request to a
1939	 * specific zone due to LLD level zone-write locking or other zone
1940	 * related resource not being available. In this case, set the request
1941	 * aside in zone_list for retrying it later.
1942	 */
1943	list_add(&rq->queuelist, zone_list);
1944	__blk_mq_requeue_request(rq);
1945}
1946
1947enum prep_dispatch {
1948	PREP_DISPATCH_OK,
1949	PREP_DISPATCH_NO_TAG,
1950	PREP_DISPATCH_NO_BUDGET,
1951};
1952
1953static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1954						  bool need_budget)
1955{
1956	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1957	int budget_token = -1;
1958
1959	if (need_budget) {
1960		budget_token = blk_mq_get_dispatch_budget(rq->q);
1961		if (budget_token < 0) {
1962			blk_mq_put_driver_tag(rq);
1963			return PREP_DISPATCH_NO_BUDGET;
1964		}
1965		blk_mq_set_rq_budget_token(rq, budget_token);
1966	}
1967
1968	if (!blk_mq_get_driver_tag(rq)) {
1969		/*
1970		 * The initial allocation attempt failed, so we need to
1971		 * rerun the hardware queue when a tag is freed. The
1972		 * waitqueue takes care of that. If the queue is run
1973		 * before we add this entry back on the dispatch list,
1974		 * we'll re-run it below.
1975		 */
1976		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1977			/*
1978			 * All budgets not got from this function will be put
1979			 * together during handling partial dispatch
1980			 */
1981			if (need_budget)
1982				blk_mq_put_dispatch_budget(rq->q, budget_token);
1983			return PREP_DISPATCH_NO_TAG;
1984		}
1985	}
1986
1987	return PREP_DISPATCH_OK;
1988}
1989
1990/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1991static void blk_mq_release_budgets(struct request_queue *q,
1992		struct list_head *list)
1993{
1994	struct request *rq;
1995
1996	list_for_each_entry(rq, list, queuelist) {
1997		int budget_token = blk_mq_get_rq_budget_token(rq);
1998
1999		if (budget_token >= 0)
2000			blk_mq_put_dispatch_budget(q, budget_token);
2001	}
2002}
2003
2004/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005 * Returns true if we did some work AND can potentially do more.
2006 */
2007bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2008			     unsigned int nr_budgets)
2009{
2010	enum prep_dispatch prep;
2011	struct request_queue *q = hctx->queue;
2012	struct request *rq, *nxt;
2013	int errors, queued;
2014	blk_status_t ret = BLK_STS_OK;
2015	LIST_HEAD(zone_list);
2016	bool needs_resource = false;
2017
2018	if (list_empty(list))
2019		return false;
2020
2021	/*
2022	 * Now process all the entries, sending them to the driver.
2023	 */
2024	errors = queued = 0;
2025	do {
2026		struct blk_mq_queue_data bd;
2027
2028		rq = list_first_entry(list, struct request, queuelist);
2029
2030		WARN_ON_ONCE(hctx != rq->mq_hctx);
2031		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2032		if (prep != PREP_DISPATCH_OK)
2033			break;
2034
2035		list_del_init(&rq->queuelist);
2036
2037		bd.rq = rq;
2038
2039		/*
2040		 * Flag last if we have no more requests, or if we have more
2041		 * but can't assign a driver tag to it.
2042		 */
2043		if (list_empty(list))
2044			bd.last = true;
2045		else {
2046			nxt = list_first_entry(list, struct request, queuelist);
2047			bd.last = !blk_mq_get_driver_tag(nxt);
2048		}
2049
2050		/*
2051		 * once the request is queued to lld, no need to cover the
2052		 * budget any more
2053		 */
2054		if (nr_budgets)
2055			nr_budgets--;
2056		ret = q->mq_ops->queue_rq(hctx, &bd);
2057		switch (ret) {
2058		case BLK_STS_OK:
2059			queued++;
2060			break;
2061		case BLK_STS_RESOURCE:
2062			needs_resource = true;
2063			fallthrough;
2064		case BLK_STS_DEV_RESOURCE:
2065			blk_mq_handle_dev_resource(rq, list);
2066			goto out;
2067		case BLK_STS_ZONE_RESOURCE:
2068			/*
2069			 * Move the request to zone_list and keep going through
2070			 * the dispatch list to find more requests the drive can
2071			 * accept.
2072			 */
2073			blk_mq_handle_zone_resource(rq, &zone_list);
2074			needs_resource = true;
2075			break;
2076		default:
2077			errors++;
2078			blk_mq_end_request(rq, ret);
2079		}
2080	} while (!list_empty(list));
2081out:
2082	if (!list_empty(&zone_list))
2083		list_splice_tail_init(&zone_list, list);
2084
2085	/* If we didn't flush the entire list, we could have told the driver
2086	 * there was more coming, but that turned out to be a lie.
2087	 */
2088	if ((!list_empty(list) || errors || needs_resource ||
2089	     ret == BLK_STS_DEV_RESOURCE) && q->mq_ops->commit_rqs && queued)
2090		q->mq_ops->commit_rqs(hctx);
2091	/*
2092	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2093	 * that is where we will continue on next queue run.
2094	 */
2095	if (!list_empty(list)) {
2096		bool needs_restart;
2097		/* For non-shared tags, the RESTART check will suffice */
2098		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099			(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED);
 
2100
2101		if (nr_budgets)
2102			blk_mq_release_budgets(q, list);
2103
2104		spin_lock(&hctx->lock);
2105		list_splice_tail_init(list, &hctx->dispatch);
2106		spin_unlock(&hctx->lock);
2107
2108		/*
2109		 * Order adding requests to hctx->dispatch and checking
2110		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2111		 * in blk_mq_sched_restart(). Avoid restart code path to
2112		 * miss the new added requests to hctx->dispatch, meantime
2113		 * SCHED_RESTART is observed here.
2114		 */
2115		smp_mb();
2116
2117		/*
2118		 * If SCHED_RESTART was set by the caller of this function and
2119		 * it is no longer set that means that it was cleared by another
2120		 * thread and hence that a queue rerun is needed.
2121		 *
2122		 * If 'no_tag' is set, that means that we failed getting
2123		 * a driver tag with an I/O scheduler attached. If our dispatch
2124		 * waitqueue is no longer active, ensure that we run the queue
2125		 * AFTER adding our entries back to the list.
2126		 *
2127		 * If no I/O scheduler has been configured it is possible that
2128		 * the hardware queue got stopped and restarted before requests
2129		 * were pushed back onto the dispatch list. Rerun the queue to
2130		 * avoid starvation. Notes:
2131		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2132		 *   been stopped before rerunning a queue.
2133		 * - Some but not all block drivers stop a queue before
2134		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2135		 *   and dm-rq.
2136		 *
2137		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2138		 * bit is set, run queue after a delay to avoid IO stalls
2139		 * that could otherwise occur if the queue is idle.  We'll do
2140		 * similar if we couldn't get budget or couldn't lock a zone
2141		 * and SCHED_RESTART is set.
2142		 */
2143		needs_restart = blk_mq_sched_needs_restart(hctx);
2144		if (prep == PREP_DISPATCH_NO_BUDGET)
2145			needs_resource = true;
2146		if (!needs_restart ||
2147		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2148			blk_mq_run_hw_queue(hctx, true);
2149		else if (needs_resource)
2150			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2151
2152		blk_mq_update_dispatch_busy(hctx, true);
2153		return false;
2154	} else
2155		blk_mq_update_dispatch_busy(hctx, false);
2156
2157	return (queued + errors) != 0;
2158}
2159
2160/**
2161 * __blk_mq_run_hw_queue - Run a hardware queue.
2162 * @hctx: Pointer to the hardware queue to run.
2163 *
2164 * Send pending requests to the hardware.
2165 */
2166static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
2167{
2168	/*
2169	 * We can't run the queue inline with ints disabled. Ensure that
2170	 * we catch bad users of this early.
2171	 */
2172	WARN_ON_ONCE(in_interrupt());
2173
2174	blk_mq_run_dispatch_ops(hctx->queue,
2175			blk_mq_sched_dispatch_requests(hctx));
2176}
2177
2178static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2179{
2180	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2181
2182	if (cpu >= nr_cpu_ids)
2183		cpu = cpumask_first(hctx->cpumask);
2184	return cpu;
2185}
2186
2187/*
2188 * It'd be great if the workqueue API had a way to pass
2189 * in a mask and had some smarts for more clever placement.
2190 * For now we just round-robin here, switching for every
2191 * BLK_MQ_CPU_WORK_BATCH queued items.
2192 */
2193static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2194{
2195	bool tried = false;
2196	int next_cpu = hctx->next_cpu;
2197
2198	if (hctx->queue->nr_hw_queues == 1)
2199		return WORK_CPU_UNBOUND;
2200
2201	if (--hctx->next_cpu_batch <= 0) {
2202select_cpu:
2203		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2204				cpu_online_mask);
2205		if (next_cpu >= nr_cpu_ids)
2206			next_cpu = blk_mq_first_mapped_cpu(hctx);
2207		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2208	}
2209
2210	/*
2211	 * Do unbound schedule if we can't find a online CPU for this hctx,
2212	 * and it should only happen in the path of handling CPU DEAD.
2213	 */
2214	if (!cpu_online(next_cpu)) {
2215		if (!tried) {
2216			tried = true;
2217			goto select_cpu;
2218		}
2219
2220		/*
2221		 * Make sure to re-select CPU next time once after CPUs
2222		 * in hctx->cpumask become online again.
2223		 */
2224		hctx->next_cpu = next_cpu;
2225		hctx->next_cpu_batch = 1;
2226		return WORK_CPU_UNBOUND;
2227	}
2228
2229	hctx->next_cpu = next_cpu;
2230	return next_cpu;
2231}
2232
2233/**
2234 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
2235 * @hctx: Pointer to the hardware queue to run.
2236 * @async: If we want to run the queue asynchronously.
2237 * @msecs: Milliseconds of delay to wait before running the queue.
2238 *
2239 * If !@async, try to run the queue now. Else, run the queue asynchronously and
2240 * with a delay of @msecs.
2241 */
2242static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
2243					unsigned long msecs)
2244{
2245	if (unlikely(blk_mq_hctx_stopped(hctx)))
2246		return;
2247
2248	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2249		if (cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2250			__blk_mq_run_hw_queue(hctx);
2251			return;
2252		}
2253	}
2254
2255	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2256				    msecs_to_jiffies(msecs));
2257}
2258
2259/**
2260 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2261 * @hctx: Pointer to the hardware queue to run.
2262 * @msecs: Milliseconds of delay to wait before running the queue.
2263 *
2264 * Run a hardware queue asynchronously with a delay of @msecs.
2265 */
2266void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2267{
2268	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
2269}
2270EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2271
2272/**
2273 * blk_mq_run_hw_queue - Start to run a hardware queue.
2274 * @hctx: Pointer to the hardware queue to run.
2275 * @async: If we want to run the queue asynchronously.
2276 *
2277 * Check if the request queue is not in a quiesced state and if there are
2278 * pending requests to be sent. If this is true, run the queue to send requests
2279 * to hardware.
2280 */
2281void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2282{
2283	bool need_run;
2284
2285	/*
 
 
 
 
 
 
 
2286	 * When queue is quiesced, we may be switching io scheduler, or
2287	 * updating nr_hw_queues, or other things, and we can't run queue
2288	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2289	 *
2290	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2291	 * quiesced.
2292	 */
2293	__blk_mq_run_dispatch_ops(hctx->queue, false,
2294		need_run = !blk_queue_quiesced(hctx->queue) &&
2295		blk_mq_hctx_has_pending(hctx));
2296
2297	if (need_run)
2298		__blk_mq_delay_run_hw_queue(hctx, async, 0);
 
 
 
 
 
 
 
 
2299}
2300EXPORT_SYMBOL(blk_mq_run_hw_queue);
2301
2302/*
2303 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2304 * scheduler.
2305 */
2306static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2307{
2308	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2309	/*
2310	 * If the IO scheduler does not respect hardware queues when
2311	 * dispatching, we just don't bother with multiple HW queues and
2312	 * dispatch from hctx for the current CPU since running multiple queues
2313	 * just causes lock contention inside the scheduler and pointless cache
2314	 * bouncing.
2315	 */
2316	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2317
2318	if (!blk_mq_hctx_stopped(hctx))
2319		return hctx;
2320	return NULL;
2321}
2322
2323/**
2324 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2325 * @q: Pointer to the request queue to run.
2326 * @async: If we want to run the queue asynchronously.
2327 */
2328void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2329{
2330	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2331	unsigned long i;
2332
2333	sq_hctx = NULL;
2334	if (blk_queue_sq_sched(q))
2335		sq_hctx = blk_mq_get_sq_hctx(q);
2336	queue_for_each_hw_ctx(q, hctx, i) {
2337		if (blk_mq_hctx_stopped(hctx))
2338			continue;
2339		/*
2340		 * Dispatch from this hctx either if there's no hctx preferred
2341		 * by IO scheduler or if it has requests that bypass the
2342		 * scheduler.
2343		 */
2344		if (!sq_hctx || sq_hctx == hctx ||
2345		    !list_empty_careful(&hctx->dispatch))
2346			blk_mq_run_hw_queue(hctx, async);
2347	}
2348}
2349EXPORT_SYMBOL(blk_mq_run_hw_queues);
2350
2351/**
2352 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2353 * @q: Pointer to the request queue to run.
2354 * @msecs: Milliseconds of delay to wait before running the queues.
2355 */
2356void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2357{
2358	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2359	unsigned long i;
2360
2361	sq_hctx = NULL;
2362	if (blk_queue_sq_sched(q))
2363		sq_hctx = blk_mq_get_sq_hctx(q);
2364	queue_for_each_hw_ctx(q, hctx, i) {
2365		if (blk_mq_hctx_stopped(hctx))
2366			continue;
2367		/*
2368		 * If there is already a run_work pending, leave the
2369		 * pending delay untouched. Otherwise, a hctx can stall
2370		 * if another hctx is re-delaying the other's work
2371		 * before the work executes.
2372		 */
2373		if (delayed_work_pending(&hctx->run_work))
2374			continue;
2375		/*
2376		 * Dispatch from this hctx either if there's no hctx preferred
2377		 * by IO scheduler or if it has requests that bypass the
2378		 * scheduler.
2379		 */
2380		if (!sq_hctx || sq_hctx == hctx ||
2381		    !list_empty_careful(&hctx->dispatch))
2382			blk_mq_delay_run_hw_queue(hctx, msecs);
2383	}
2384}
2385EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2386
2387/*
2388 * This function is often used for pausing .queue_rq() by driver when
2389 * there isn't enough resource or some conditions aren't satisfied, and
2390 * BLK_STS_RESOURCE is usually returned.
2391 *
2392 * We do not guarantee that dispatch can be drained or blocked
2393 * after blk_mq_stop_hw_queue() returns. Please use
2394 * blk_mq_quiesce_queue() for that requirement.
2395 */
2396void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2397{
2398	cancel_delayed_work(&hctx->run_work);
2399
2400	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401}
2402EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2403
2404/*
2405 * This function is often used for pausing .queue_rq() by driver when
2406 * there isn't enough resource or some conditions aren't satisfied, and
2407 * BLK_STS_RESOURCE is usually returned.
2408 *
2409 * We do not guarantee that dispatch can be drained or blocked
2410 * after blk_mq_stop_hw_queues() returns. Please use
2411 * blk_mq_quiesce_queue() for that requirement.
2412 */
2413void blk_mq_stop_hw_queues(struct request_queue *q)
2414{
2415	struct blk_mq_hw_ctx *hctx;
2416	unsigned long i;
2417
2418	queue_for_each_hw_ctx(q, hctx, i)
2419		blk_mq_stop_hw_queue(hctx);
2420}
2421EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2422
2423void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2424{
2425	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2426
2427	blk_mq_run_hw_queue(hctx, false);
2428}
2429EXPORT_SYMBOL(blk_mq_start_hw_queue);
2430
2431void blk_mq_start_hw_queues(struct request_queue *q)
2432{
2433	struct blk_mq_hw_ctx *hctx;
2434	unsigned long i;
2435
2436	queue_for_each_hw_ctx(q, hctx, i)
2437		blk_mq_start_hw_queue(hctx);
2438}
2439EXPORT_SYMBOL(blk_mq_start_hw_queues);
2440
2441void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2442{
2443	if (!blk_mq_hctx_stopped(hctx))
2444		return;
2445
2446	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2447	blk_mq_run_hw_queue(hctx, async);
2448}
2449EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2450
2451void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2452{
2453	struct blk_mq_hw_ctx *hctx;
2454	unsigned long i;
2455
2456	queue_for_each_hw_ctx(q, hctx, i)
2457		blk_mq_start_stopped_hw_queue(hctx, async);
 
2458}
2459EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2460
2461static void blk_mq_run_work_fn(struct work_struct *work)
2462{
2463	struct blk_mq_hw_ctx *hctx;
2464
2465	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
2466
2467	/*
2468	 * If we are stopped, don't run the queue.
2469	 */
2470	if (blk_mq_hctx_stopped(hctx))
2471		return;
2472
2473	__blk_mq_run_hw_queue(hctx);
2474}
2475
2476static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
2477					    struct request *rq,
2478					    bool at_head)
2479{
2480	struct blk_mq_ctx *ctx = rq->mq_ctx;
2481	enum hctx_type type = hctx->type;
2482
2483	lockdep_assert_held(&ctx->lock);
2484
2485	trace_block_rq_insert(rq);
2486
2487	if (at_head)
2488		list_add(&rq->queuelist, &ctx->rq_lists[type]);
2489	else
2490		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
2491}
2492
2493void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
2494			     bool at_head)
2495{
2496	struct blk_mq_ctx *ctx = rq->mq_ctx;
2497
2498	lockdep_assert_held(&ctx->lock);
2499
2500	__blk_mq_insert_req_list(hctx, rq, at_head);
2501	blk_mq_hctx_mark_pending(hctx, ctx);
2502}
2503
2504/**
2505 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2506 * @rq: Pointer to request to be inserted.
2507 * @at_head: true if the request should be inserted at the head of the list.
2508 * @run_queue: If we should run the hardware queue after inserting the request.
2509 *
2510 * Should only be used carefully, when the caller knows we want to
2511 * bypass a potential IO scheduler on the target device.
2512 */
2513void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
2514				  bool run_queue)
2515{
2516	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2517
2518	spin_lock(&hctx->lock);
2519	if (at_head)
2520		list_add(&rq->queuelist, &hctx->dispatch);
2521	else
2522		list_add_tail(&rq->queuelist, &hctx->dispatch);
2523	spin_unlock(&hctx->lock);
2524
2525	if (run_queue)
2526		blk_mq_run_hw_queue(hctx, false);
2527}
2528
2529void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
2530			    struct list_head *list)
2531
2532{
2533	struct request *rq;
2534	enum hctx_type type = hctx->type;
2535
2536	/*
 
 
 
 
 
 
 
 
 
 
 
2537	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2538	 * offline now
2539	 */
2540	list_for_each_entry(rq, list, queuelist) {
2541		BUG_ON(rq->mq_ctx != ctx);
2542		trace_block_rq_insert(rq);
 
 
2543	}
2544
2545	spin_lock(&ctx->lock);
2546	list_splice_tail_init(list, &ctx->rq_lists[type]);
2547	blk_mq_hctx_mark_pending(hctx, ctx);
2548	spin_unlock(&ctx->lock);
 
 
2549}
2550
2551static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int *queued,
2552			      bool from_schedule)
2553{
2554	if (hctx->queue->mq_ops->commit_rqs) {
2555		trace_block_unplug(hctx->queue, *queued, !from_schedule);
2556		hctx->queue->mq_ops->commit_rqs(hctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557	}
2558	*queued = 0;
2559}
2560
2561static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2562		unsigned int nr_segs)
2563{
2564	int err;
2565
2566	if (bio->bi_opf & REQ_RAHEAD)
2567		rq->cmd_flags |= REQ_FAILFAST_MASK;
2568
2569	rq->__sector = bio->bi_iter.bi_sector;
 
2570	blk_rq_bio_prep(rq, bio, nr_segs);
2571
2572	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2573	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2574	WARN_ON_ONCE(err);
2575
2576	blk_account_io_start(rq);
2577}
2578
2579static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2580					    struct request *rq, bool last)
2581{
2582	struct request_queue *q = rq->q;
2583	struct blk_mq_queue_data bd = {
2584		.rq = rq,
2585		.last = last,
2586	};
2587	blk_status_t ret;
2588
2589	/*
2590	 * For OK queue, we are done. For error, caller may kill it.
2591	 * Any other error (busy), just add it to our list as we
2592	 * previously would have done.
2593	 */
2594	ret = q->mq_ops->queue_rq(hctx, &bd);
2595	switch (ret) {
2596	case BLK_STS_OK:
2597		blk_mq_update_dispatch_busy(hctx, false);
2598		break;
2599	case BLK_STS_RESOURCE:
2600	case BLK_STS_DEV_RESOURCE:
2601		blk_mq_update_dispatch_busy(hctx, true);
2602		__blk_mq_requeue_request(rq);
2603		break;
2604	default:
2605		blk_mq_update_dispatch_busy(hctx, false);
2606		break;
2607	}
2608
2609	return ret;
2610}
2611
2612static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2613						struct request *rq,
2614						bool bypass_insert, bool last)
2615{
2616	struct request_queue *q = rq->q;
2617	bool run_queue = true;
2618	int budget_token;
2619
2620	/*
2621	 * RCU or SRCU read lock is needed before checking quiesced flag.
2622	 *
2623	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2624	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2625	 * and avoid driver to try to dispatch again.
2626	 */
2627	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2628		run_queue = false;
2629		bypass_insert = false;
2630		goto insert;
2631	}
2632
2633	if ((rq->rq_flags & RQF_ELV) && !bypass_insert)
2634		goto insert;
2635
2636	budget_token = blk_mq_get_dispatch_budget(q);
2637	if (budget_token < 0)
2638		goto insert;
2639
2640	blk_mq_set_rq_budget_token(rq, budget_token);
2641
2642	if (!blk_mq_get_driver_tag(rq)) {
2643		blk_mq_put_dispatch_budget(q, budget_token);
2644		goto insert;
2645	}
2646
2647	return __blk_mq_issue_directly(hctx, rq, last);
2648insert:
2649	if (bypass_insert)
2650		return BLK_STS_RESOURCE;
2651
2652	blk_mq_sched_insert_request(rq, false, run_queue, false);
2653
2654	return BLK_STS_OK;
2655}
2656
2657/**
2658 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2659 * @hctx: Pointer of the associated hardware queue.
2660 * @rq: Pointer to request to be sent.
2661 *
2662 * If the device has enough resources to accept a new request now, send the
2663 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2664 * we can try send it another time in the future. Requests inserted at this
2665 * queue have higher priority.
2666 */
2667static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2668		struct request *rq)
2669{
2670	blk_status_t ret =
2671		__blk_mq_try_issue_directly(hctx, rq, false, true);
 
 
 
 
2672
2673	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2674		blk_mq_request_bypass_insert(rq, false, true);
2675	else if (ret != BLK_STS_OK)
 
 
 
 
 
 
 
 
 
 
 
 
 
2676		blk_mq_end_request(rq, ret);
 
 
2677}
2678
2679static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2680{
2681	return __blk_mq_try_issue_directly(rq->mq_hctx, rq, true, last);
 
 
 
 
 
 
 
 
 
2682}
2683
2684static void blk_mq_plug_issue_direct(struct blk_plug *plug, bool from_schedule)
2685{
2686	struct blk_mq_hw_ctx *hctx = NULL;
2687	struct request *rq;
2688	int queued = 0;
2689	int errors = 0;
2690
2691	while ((rq = rq_list_pop(&plug->mq_list))) {
2692		bool last = rq_list_empty(plug->mq_list);
2693		blk_status_t ret;
2694
2695		if (hctx != rq->mq_hctx) {
2696			if (hctx)
2697				blk_mq_commit_rqs(hctx, &queued, from_schedule);
 
 
2698			hctx = rq->mq_hctx;
2699		}
2700
2701		ret = blk_mq_request_issue_directly(rq, last);
2702		switch (ret) {
2703		case BLK_STS_OK:
2704			queued++;
2705			break;
2706		case BLK_STS_RESOURCE:
2707		case BLK_STS_DEV_RESOURCE:
2708			blk_mq_request_bypass_insert(rq, false, true);
2709			blk_mq_commit_rqs(hctx, &queued, from_schedule);
2710			return;
2711		default:
2712			blk_mq_end_request(rq, ret);
2713			errors++;
2714			break;
2715		}
2716	}
2717
2718	/*
2719	 * If we didn't flush the entire list, we could have told the driver
2720	 * there was more coming, but that turned out to be a lie.
2721	 */
2722	if (errors)
2723		blk_mq_commit_rqs(hctx, &queued, from_schedule);
2724}
2725
2726static void __blk_mq_flush_plug_list(struct request_queue *q,
2727				     struct blk_plug *plug)
2728{
2729	if (blk_queue_quiesced(q))
2730		return;
2731	q->mq_ops->queue_rqs(&plug->mq_list);
2732}
2733
2734static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2735{
2736	struct blk_mq_hw_ctx *this_hctx = NULL;
2737	struct blk_mq_ctx *this_ctx = NULL;
2738	struct request *requeue_list = NULL;
 
2739	unsigned int depth = 0;
 
2740	LIST_HEAD(list);
2741
2742	do {
2743		struct request *rq = rq_list_pop(&plug->mq_list);
2744
2745		if (!this_hctx) {
2746			this_hctx = rq->mq_hctx;
2747			this_ctx = rq->mq_ctx;
2748		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx) {
2749			rq_list_add(&requeue_list, rq);
 
 
2750			continue;
2751		}
2752		list_add_tail(&rq->queuelist, &list);
2753		depth++;
2754	} while (!rq_list_empty(plug->mq_list));
2755
2756	plug->mq_list = requeue_list;
2757	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2758	blk_mq_sched_insert_requests(this_hctx, this_ctx, &list, from_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2759}
2760
2761void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2762{
2763	struct request *rq;
2764
2765	if (rq_list_empty(plug->mq_list))
 
 
 
 
 
 
 
2766		return;
2767	plug->rq_count = 0;
2768
2769	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2770		struct request_queue *q;
2771
2772		rq = rq_list_peek(&plug->mq_list);
2773		q = rq->q;
2774
2775		/*
2776		 * Peek first request and see if we have a ->queue_rqs() hook.
2777		 * If we do, we can dispatch the whole plug list in one go. We
2778		 * already know at this point that all requests belong to the
2779		 * same queue, caller must ensure that's the case.
2780		 *
2781		 * Since we pass off the full list to the driver at this point,
2782		 * we do not increment the active request count for the queue.
2783		 * Bypass shared tags for now because of that.
2784		 */
2785		if (q->mq_ops->queue_rqs &&
2786		    !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2787			blk_mq_run_dispatch_ops(q,
2788				__blk_mq_flush_plug_list(q, plug));
2789			if (rq_list_empty(plug->mq_list))
2790				return;
2791		}
2792
2793		blk_mq_run_dispatch_ops(q,
2794				blk_mq_plug_issue_direct(plug, false));
2795		if (rq_list_empty(plug->mq_list))
2796			return;
2797	}
2798
2799	do {
2800		blk_mq_dispatch_plug_list(plug, from_schedule);
2801	} while (!rq_list_empty(plug->mq_list));
2802}
2803
2804void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2805		struct list_head *list)
2806{
2807	int queued = 0;
2808	int errors = 0;
2809
2810	while (!list_empty(list)) {
2811		blk_status_t ret;
2812		struct request *rq = list_first_entry(list, struct request,
2813				queuelist);
2814
2815		list_del_init(&rq->queuelist);
2816		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2817		if (ret != BLK_STS_OK) {
2818			errors++;
2819			if (ret == BLK_STS_RESOURCE ||
2820					ret == BLK_STS_DEV_RESOURCE) {
2821				blk_mq_request_bypass_insert(rq, false,
2822							list_empty(list));
2823				break;
2824			}
2825			blk_mq_end_request(rq, ret);
2826		} else
2827			queued++;
 
 
 
 
 
 
 
 
 
 
 
2828	}
2829
2830	/*
2831	 * If we didn't flush the entire list, we could have told
2832	 * the driver there was more coming, but that turned out to
2833	 * be a lie.
2834	 */
2835	if ((!list_empty(list) || errors) &&
2836	     hctx->queue->mq_ops->commit_rqs && queued)
2837		hctx->queue->mq_ops->commit_rqs(hctx);
2838}
2839
2840static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2841				     struct bio *bio, unsigned int nr_segs)
2842{
2843	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2844		if (blk_attempt_plug_merge(q, bio, nr_segs))
2845			return true;
2846		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2847			return true;
2848	}
2849	return false;
2850}
2851
2852static struct request *blk_mq_get_new_requests(struct request_queue *q,
2853					       struct blk_plug *plug,
2854					       struct bio *bio,
2855					       unsigned int nsegs)
2856{
2857	struct blk_mq_alloc_data data = {
2858		.q		= q,
2859		.nr_tags	= 1,
2860		.cmd_flags	= bio->bi_opf,
2861	};
2862	struct request *rq;
2863
2864	if (unlikely(bio_queue_enter(bio)))
2865		return NULL;
2866
2867	if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2868		goto queue_exit;
2869
2870	rq_qos_throttle(q, bio);
2871
2872	if (plug) {
2873		data.nr_tags = plug->nr_ios;
2874		plug->nr_ios = 1;
2875		data.cached_rq = &plug->cached_rq;
2876	}
2877
2878	rq = __blk_mq_alloc_requests(&data);
2879	if (rq)
2880		return rq;
2881	rq_qos_cleanup(q, bio);
2882	if (bio->bi_opf & REQ_NOWAIT)
2883		bio_wouldblock_error(bio);
2884queue_exit:
2885	blk_queue_exit(q);
2886	return NULL;
2887}
2888
2889static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2890		struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
 
 
 
2891{
 
2892	struct request *rq;
2893	enum hctx_type type, hctx_type;
2894
2895	if (!plug)
2896		return NULL;
2897	rq = rq_list_peek(&plug->cached_rq);
2898	if (!rq || rq->q != q)
2899		return NULL;
2900
2901	if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2902		*bio = NULL;
2903		return NULL;
2904	}
2905
2906	type = blk_mq_get_hctx_type((*bio)->bi_opf);
2907	hctx_type = rq->mq_hctx->type;
2908	if (type != hctx_type &&
2909	    !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2910		return NULL;
2911	if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2912		return NULL;
 
 
 
 
 
 
 
2913
2914	/*
2915	 * If any qos ->throttle() end up blocking, we will have flushed the
2916	 * plug and hence killed the cached_rq list as well. Pop this entry
2917	 * before we throttle.
2918	 */
2919	plug->cached_rq = rq_list_next(rq);
2920	rq_qos_throttle(q, *bio);
2921
2922	rq->cmd_flags = (*bio)->bi_opf;
 
2923	INIT_LIST_HEAD(&rq->queuelist);
2924	return rq;
2925}
2926
2927static void bio_set_ioprio(struct bio *bio)
2928{
2929	/* Nobody set ioprio so far? Initialize it based on task's nice value */
2930	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2931		bio->bi_ioprio = get_current_ioprio();
2932	blkcg_set_ioprio(bio);
2933}
2934
2935/**
2936 * blk_mq_submit_bio - Create and send a request to block device.
2937 * @bio: Bio pointer.
2938 *
2939 * Builds up a request structure from @q and @bio and send to the device. The
2940 * request may not be queued directly to hardware if:
2941 * * This request can be merged with another one
2942 * * We want to place request at plug queue for possible future merging
2943 * * There is an IO scheduler active at this queue
2944 *
2945 * It will not queue the request if there is an error with the bio, or at the
2946 * request creation.
2947 */
2948void blk_mq_submit_bio(struct bio *bio)
2949{
2950	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2951	struct blk_plug *plug = blk_mq_plug(bio);
2952	const int is_sync = op_is_sync(bio->bi_opf);
2953	struct request *rq;
2954	unsigned int nr_segs = 1;
 
2955	blk_status_t ret;
2956
2957	bio = blk_queue_bounce(bio, q);
2958	if (bio_may_exceed_limits(bio, &q->limits)) {
2959		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2960		if (!bio)
 
 
 
 
 
 
 
2961			return;
2962	}
2963
 
 
 
 
 
2964	if (!bio_integrity_prep(bio))
2965		return;
2966
2967	bio_set_ioprio(bio);
 
2968
2969	rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2970	if (!rq) {
2971		if (!bio)
2972			return;
2973		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2974		if (unlikely(!rq))
2975			return;
 
 
2976	}
2977
2978	trace_block_getrq(bio);
2979
2980	rq_qos_track(q, rq, bio);
2981
2982	blk_mq_bio_to_request(rq, bio, nr_segs);
2983
2984	ret = blk_crypto_init_request(rq);
2985	if (ret != BLK_STS_OK) {
2986		bio->bi_status = ret;
2987		bio_endio(bio);
2988		blk_mq_free_request(rq);
2989		return;
2990	}
2991
2992	if (op_is_flush(bio->bi_opf)) {
2993		blk_insert_flush(rq);
2994		return;
2995	}
2996
2997	if (plug)
2998		blk_add_rq_to_plug(plug, rq);
2999	else if ((rq->rq_flags & RQF_ELV) ||
3000		 (rq->mq_hctx->dispatch_busy &&
3001		  (q->nr_hw_queues == 1 || !is_sync)))
3002		blk_mq_sched_insert_request(rq, false, true, true);
3003	else
3004		blk_mq_run_dispatch_ops(rq->q,
3005				blk_mq_try_issue_directly(rq->mq_hctx, rq));
 
 
 
 
 
 
 
 
 
 
 
 
 
3006}
3007
3008#ifdef CONFIG_BLK_MQ_STACKING
3009/**
3010 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3011 * @rq: the request being queued
3012 */
3013blk_status_t blk_insert_cloned_request(struct request *rq)
3014{
3015	struct request_queue *q = rq->q;
3016	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
 
3017	blk_status_t ret;
3018
3019	if (blk_rq_sectors(rq) > max_sectors) {
3020		/*
3021		 * SCSI device does not have a good way to return if
3022		 * Write Same/Zero is actually supported. If a device rejects
3023		 * a non-read/write command (discard, write same,etc.) the
3024		 * low-level device driver will set the relevant queue limit to
3025		 * 0 to prevent blk-lib from issuing more of the offending
3026		 * operations. Commands queued prior to the queue limit being
3027		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3028		 * errors being propagated to upper layers.
3029		 */
3030		if (max_sectors == 0)
3031			return BLK_STS_NOTSUPP;
3032
3033		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3034			__func__, blk_rq_sectors(rq), max_sectors);
3035		return BLK_STS_IOERR;
3036	}
3037
3038	/*
3039	 * The queue settings related to segment counting may differ from the
3040	 * original queue.
3041	 */
3042	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3043	if (rq->nr_phys_segments > queue_max_segments(q)) {
3044		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
3045			__func__, rq->nr_phys_segments, queue_max_segments(q));
3046		return BLK_STS_IOERR;
3047	}
3048
3049	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3050		return BLK_STS_IOERR;
3051
3052	if (blk_crypto_insert_cloned_request(rq))
3053		return BLK_STS_IOERR;
 
3054
3055	blk_account_io_start(rq);
3056
3057	/*
3058	 * Since we have a scheduler attached on the top device,
3059	 * bypass a potential scheduler on the bottom device for
3060	 * insert.
3061	 */
3062	blk_mq_run_dispatch_ops(q,
3063			ret = blk_mq_request_issue_directly(rq, true));
3064	if (ret)
3065		blk_account_io_done(rq, ktime_get_ns());
3066	return ret;
3067}
3068EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3069
3070/**
3071 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3072 * @rq: the clone request to be cleaned up
3073 *
3074 * Description:
3075 *     Free all bios in @rq for a cloned request.
3076 */
3077void blk_rq_unprep_clone(struct request *rq)
3078{
3079	struct bio *bio;
3080
3081	while ((bio = rq->bio) != NULL) {
3082		rq->bio = bio->bi_next;
3083
3084		bio_put(bio);
3085	}
3086}
3087EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3088
3089/**
3090 * blk_rq_prep_clone - Helper function to setup clone request
3091 * @rq: the request to be setup
3092 * @rq_src: original request to be cloned
3093 * @bs: bio_set that bios for clone are allocated from
3094 * @gfp_mask: memory allocation mask for bio
3095 * @bio_ctr: setup function to be called for each clone bio.
3096 *           Returns %0 for success, non %0 for failure.
3097 * @data: private data to be passed to @bio_ctr
3098 *
3099 * Description:
3100 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3101 *     Also, pages which the original bios are pointing to are not copied
3102 *     and the cloned bios just point same pages.
3103 *     So cloned bios must be completed before original bios, which means
3104 *     the caller must complete @rq before @rq_src.
3105 */
3106int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3107		      struct bio_set *bs, gfp_t gfp_mask,
3108		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3109		      void *data)
3110{
3111	struct bio *bio, *bio_src;
3112
3113	if (!bs)
3114		bs = &fs_bio_set;
3115
3116	__rq_for_each_bio(bio_src, rq_src) {
3117		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3118				      bs);
3119		if (!bio)
3120			goto free_and_out;
3121
3122		if (bio_ctr && bio_ctr(bio, bio_src, data))
3123			goto free_and_out;
3124
3125		if (rq->bio) {
3126			rq->biotail->bi_next = bio;
3127			rq->biotail = bio;
3128		} else {
3129			rq->bio = rq->biotail = bio;
3130		}
3131		bio = NULL;
3132	}
3133
3134	/* Copy attributes of the original request to the clone request. */
3135	rq->__sector = blk_rq_pos(rq_src);
3136	rq->__data_len = blk_rq_bytes(rq_src);
3137	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3138		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3139		rq->special_vec = rq_src->special_vec;
3140	}
3141	rq->nr_phys_segments = rq_src->nr_phys_segments;
3142	rq->ioprio = rq_src->ioprio;
 
3143
3144	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3145		goto free_and_out;
3146
3147	return 0;
3148
3149free_and_out:
3150	if (bio)
3151		bio_put(bio);
3152	blk_rq_unprep_clone(rq);
3153
3154	return -ENOMEM;
3155}
3156EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3157#endif /* CONFIG_BLK_MQ_STACKING */
3158
3159/*
3160 * Steal bios from a request and add them to a bio list.
3161 * The request must not have been partially completed before.
3162 */
3163void blk_steal_bios(struct bio_list *list, struct request *rq)
3164{
3165	if (rq->bio) {
3166		if (list->tail)
3167			list->tail->bi_next = rq->bio;
3168		else
3169			list->head = rq->bio;
3170		list->tail = rq->biotail;
3171
3172		rq->bio = NULL;
3173		rq->biotail = NULL;
3174	}
3175
3176	rq->__data_len = 0;
3177}
3178EXPORT_SYMBOL_GPL(blk_steal_bios);
3179
3180static size_t order_to_size(unsigned int order)
3181{
3182	return (size_t)PAGE_SIZE << order;
3183}
3184
3185/* called before freeing request pool in @tags */
3186static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3187				    struct blk_mq_tags *tags)
3188{
3189	struct page *page;
3190	unsigned long flags;
3191
3192	/*
3193	 * There is no need to clear mapping if driver tags is not initialized
3194	 * or the mapping belongs to the driver tags.
3195	 */
3196	if (!drv_tags || drv_tags == tags)
3197		return;
3198
3199	list_for_each_entry(page, &tags->page_list, lru) {
3200		unsigned long start = (unsigned long)page_address(page);
3201		unsigned long end = start + order_to_size(page->private);
3202		int i;
3203
3204		for (i = 0; i < drv_tags->nr_tags; i++) {
3205			struct request *rq = drv_tags->rqs[i];
3206			unsigned long rq_addr = (unsigned long)rq;
3207
3208			if (rq_addr >= start && rq_addr < end) {
3209				WARN_ON_ONCE(req_ref_read(rq) != 0);
3210				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3211			}
3212		}
3213	}
3214
3215	/*
3216	 * Wait until all pending iteration is done.
3217	 *
3218	 * Request reference is cleared and it is guaranteed to be observed
3219	 * after the ->lock is released.
3220	 */
3221	spin_lock_irqsave(&drv_tags->lock, flags);
3222	spin_unlock_irqrestore(&drv_tags->lock, flags);
3223}
3224
3225void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3226		     unsigned int hctx_idx)
3227{
3228	struct blk_mq_tags *drv_tags;
3229	struct page *page;
3230
3231	if (list_empty(&tags->page_list))
3232		return;
3233
3234	if (blk_mq_is_shared_tags(set->flags))
3235		drv_tags = set->shared_tags;
3236	else
3237		drv_tags = set->tags[hctx_idx];
3238
3239	if (tags->static_rqs && set->ops->exit_request) {
3240		int i;
3241
3242		for (i = 0; i < tags->nr_tags; i++) {
3243			struct request *rq = tags->static_rqs[i];
3244
3245			if (!rq)
3246				continue;
3247			set->ops->exit_request(set, rq, hctx_idx);
3248			tags->static_rqs[i] = NULL;
3249		}
3250	}
3251
3252	blk_mq_clear_rq_mapping(drv_tags, tags);
3253
3254	while (!list_empty(&tags->page_list)) {
3255		page = list_first_entry(&tags->page_list, struct page, lru);
3256		list_del_init(&page->lru);
3257		/*
3258		 * Remove kmemleak object previously allocated in
3259		 * blk_mq_alloc_rqs().
3260		 */
3261		kmemleak_free(page_address(page));
3262		__free_pages(page, page->private);
3263	}
3264}
3265
3266void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3267{
3268	kfree(tags->rqs);
3269	tags->rqs = NULL;
3270	kfree(tags->static_rqs);
3271	tags->static_rqs = NULL;
3272
3273	blk_mq_free_tags(tags);
3274}
3275
3276static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3277		unsigned int hctx_idx)
3278{
3279	int i;
3280
3281	for (i = 0; i < set->nr_maps; i++) {
3282		unsigned int start = set->map[i].queue_offset;
3283		unsigned int end = start + set->map[i].nr_queues;
3284
3285		if (hctx_idx >= start && hctx_idx < end)
3286			break;
3287	}
3288
3289	if (i >= set->nr_maps)
3290		i = HCTX_TYPE_DEFAULT;
3291
3292	return i;
3293}
3294
3295static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3296		unsigned int hctx_idx)
3297{
3298	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3299
3300	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3301}
3302
3303static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3304					       unsigned int hctx_idx,
3305					       unsigned int nr_tags,
3306					       unsigned int reserved_tags)
3307{
3308	int node = blk_mq_get_hctx_node(set, hctx_idx);
3309	struct blk_mq_tags *tags;
3310
3311	if (node == NUMA_NO_NODE)
3312		node = set->numa_node;
3313
3314	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3315				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3316	if (!tags)
3317		return NULL;
3318
3319	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3320				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3321				 node);
3322	if (!tags->rqs)
3323		goto err_free_tags;
3324
3325	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3326					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3327					node);
3328	if (!tags->static_rqs)
3329		goto err_free_rqs;
3330
3331	return tags;
3332
3333err_free_rqs:
3334	kfree(tags->rqs);
3335err_free_tags:
3336	blk_mq_free_tags(tags);
3337	return NULL;
3338}
3339
3340static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3341			       unsigned int hctx_idx, int node)
3342{
3343	int ret;
3344
3345	if (set->ops->init_request) {
3346		ret = set->ops->init_request(set, rq, hctx_idx, node);
3347		if (ret)
3348			return ret;
3349	}
3350
3351	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3352	return 0;
3353}
3354
3355static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3356			    struct blk_mq_tags *tags,
3357			    unsigned int hctx_idx, unsigned int depth)
3358{
3359	unsigned int i, j, entries_per_page, max_order = 4;
3360	int node = blk_mq_get_hctx_node(set, hctx_idx);
3361	size_t rq_size, left;
3362
3363	if (node == NUMA_NO_NODE)
3364		node = set->numa_node;
3365
3366	INIT_LIST_HEAD(&tags->page_list);
3367
3368	/*
3369	 * rq_size is the size of the request plus driver payload, rounded
3370	 * to the cacheline size
3371	 */
3372	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3373				cache_line_size());
3374	left = rq_size * depth;
3375
3376	for (i = 0; i < depth; ) {
3377		int this_order = max_order;
3378		struct page *page;
3379		int to_do;
3380		void *p;
3381
3382		while (this_order && left < order_to_size(this_order - 1))
3383			this_order--;
3384
3385		do {
3386			page = alloc_pages_node(node,
3387				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3388				this_order);
3389			if (page)
3390				break;
3391			if (!this_order--)
3392				break;
3393			if (order_to_size(this_order) < rq_size)
3394				break;
3395		} while (1);
3396
3397		if (!page)
3398			goto fail;
3399
3400		page->private = this_order;
3401		list_add_tail(&page->lru, &tags->page_list);
3402
3403		p = page_address(page);
3404		/*
3405		 * Allow kmemleak to scan these pages as they contain pointers
3406		 * to additional allocations like via ops->init_request().
3407		 */
3408		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3409		entries_per_page = order_to_size(this_order) / rq_size;
3410		to_do = min(entries_per_page, depth - i);
3411		left -= to_do * rq_size;
3412		for (j = 0; j < to_do; j++) {
3413			struct request *rq = p;
3414
3415			tags->static_rqs[i] = rq;
3416			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3417				tags->static_rqs[i] = NULL;
3418				goto fail;
3419			}
3420
3421			p += rq_size;
3422			i++;
3423		}
3424	}
3425	return 0;
3426
3427fail:
3428	blk_mq_free_rqs(set, tags, hctx_idx);
3429	return -ENOMEM;
3430}
3431
3432struct rq_iter_data {
3433	struct blk_mq_hw_ctx *hctx;
3434	bool has_rq;
3435};
3436
3437static bool blk_mq_has_request(struct request *rq, void *data)
3438{
3439	struct rq_iter_data *iter_data = data;
3440
3441	if (rq->mq_hctx != iter_data->hctx)
3442		return true;
3443	iter_data->has_rq = true;
3444	return false;
3445}
3446
3447static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3448{
3449	struct blk_mq_tags *tags = hctx->sched_tags ?
3450			hctx->sched_tags : hctx->tags;
3451	struct rq_iter_data data = {
3452		.hctx	= hctx,
3453	};
3454
3455	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3456	return data.has_rq;
3457}
3458
3459static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3460		struct blk_mq_hw_ctx *hctx)
3461{
3462	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3463		return false;
3464	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3465		return false;
3466	return true;
3467}
3468
3469static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3470{
3471	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3472			struct blk_mq_hw_ctx, cpuhp_online);
3473
3474	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3475	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3476		return 0;
3477
3478	/*
3479	 * Prevent new request from being allocated on the current hctx.
3480	 *
3481	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3482	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3483	 * seen once we return from the tag allocator.
3484	 */
3485	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3486	smp_mb__after_atomic();
3487
3488	/*
3489	 * Try to grab a reference to the queue and wait for any outstanding
3490	 * requests.  If we could not grab a reference the queue has been
3491	 * frozen and there are no requests.
3492	 */
3493	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3494		while (blk_mq_hctx_has_requests(hctx))
3495			msleep(5);
3496		percpu_ref_put(&hctx->queue->q_usage_counter);
3497	}
3498
3499	return 0;
3500}
3501
3502static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3503{
3504	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3505			struct blk_mq_hw_ctx, cpuhp_online);
3506
3507	if (cpumask_test_cpu(cpu, hctx->cpumask))
3508		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3509	return 0;
3510}
3511
3512/*
3513 * 'cpu' is going away. splice any existing rq_list entries from this
3514 * software queue to the hw queue dispatch list, and ensure that it
3515 * gets run.
3516 */
3517static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3518{
3519	struct blk_mq_hw_ctx *hctx;
3520	struct blk_mq_ctx *ctx;
3521	LIST_HEAD(tmp);
3522	enum hctx_type type;
3523
3524	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3525	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3526		return 0;
3527
3528	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3529	type = hctx->type;
3530
3531	spin_lock(&ctx->lock);
3532	if (!list_empty(&ctx->rq_lists[type])) {
3533		list_splice_init(&ctx->rq_lists[type], &tmp);
3534		blk_mq_hctx_clear_pending(hctx, ctx);
3535	}
3536	spin_unlock(&ctx->lock);
3537
3538	if (list_empty(&tmp))
3539		return 0;
3540
3541	spin_lock(&hctx->lock);
3542	list_splice_tail_init(&tmp, &hctx->dispatch);
3543	spin_unlock(&hctx->lock);
3544
3545	blk_mq_run_hw_queue(hctx, true);
3546	return 0;
3547}
3548
3549static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3550{
3551	if (!(hctx->flags & BLK_MQ_F_STACKING))
3552		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3553						    &hctx->cpuhp_online);
3554	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3555					    &hctx->cpuhp_dead);
3556}
3557
3558/*
3559 * Before freeing hw queue, clearing the flush request reference in
3560 * tags->rqs[] for avoiding potential UAF.
3561 */
3562static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3563		unsigned int queue_depth, struct request *flush_rq)
3564{
3565	int i;
3566	unsigned long flags;
3567
3568	/* The hw queue may not be mapped yet */
3569	if (!tags)
3570		return;
3571
3572	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3573
3574	for (i = 0; i < queue_depth; i++)
3575		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3576
3577	/*
3578	 * Wait until all pending iteration is done.
3579	 *
3580	 * Request reference is cleared and it is guaranteed to be observed
3581	 * after the ->lock is released.
3582	 */
3583	spin_lock_irqsave(&tags->lock, flags);
3584	spin_unlock_irqrestore(&tags->lock, flags);
3585}
3586
3587/* hctx->ctxs will be freed in queue's release handler */
3588static void blk_mq_exit_hctx(struct request_queue *q,
3589		struct blk_mq_tag_set *set,
3590		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3591{
3592	struct request *flush_rq = hctx->fq->flush_rq;
3593
3594	if (blk_mq_hw_queue_mapped(hctx))
3595		blk_mq_tag_idle(hctx);
3596
3597	if (blk_queue_init_done(q))
3598		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3599				set->queue_depth, flush_rq);
3600	if (set->ops->exit_request)
3601		set->ops->exit_request(set, flush_rq, hctx_idx);
3602
3603	if (set->ops->exit_hctx)
3604		set->ops->exit_hctx(hctx, hctx_idx);
3605
3606	blk_mq_remove_cpuhp(hctx);
3607
3608	xa_erase(&q->hctx_table, hctx_idx);
3609
3610	spin_lock(&q->unused_hctx_lock);
3611	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3612	spin_unlock(&q->unused_hctx_lock);
3613}
3614
3615static void blk_mq_exit_hw_queues(struct request_queue *q,
3616		struct blk_mq_tag_set *set, int nr_queue)
3617{
3618	struct blk_mq_hw_ctx *hctx;
3619	unsigned long i;
3620
3621	queue_for_each_hw_ctx(q, hctx, i) {
3622		if (i == nr_queue)
3623			break;
3624		blk_mq_exit_hctx(q, set, hctx, i);
3625	}
3626}
3627
3628static int blk_mq_init_hctx(struct request_queue *q,
3629		struct blk_mq_tag_set *set,
3630		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3631{
3632	hctx->queue_num = hctx_idx;
3633
3634	if (!(hctx->flags & BLK_MQ_F_STACKING))
3635		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3636				&hctx->cpuhp_online);
3637	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3638
3639	hctx->tags = set->tags[hctx_idx];
3640
3641	if (set->ops->init_hctx &&
3642	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3643		goto unregister_cpu_notifier;
3644
3645	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3646				hctx->numa_node))
3647		goto exit_hctx;
3648
3649	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3650		goto exit_flush_rq;
3651
3652	return 0;
3653
3654 exit_flush_rq:
3655	if (set->ops->exit_request)
3656		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3657 exit_hctx:
3658	if (set->ops->exit_hctx)
3659		set->ops->exit_hctx(hctx, hctx_idx);
3660 unregister_cpu_notifier:
3661	blk_mq_remove_cpuhp(hctx);
3662	return -1;
3663}
3664
3665static struct blk_mq_hw_ctx *
3666blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3667		int node)
3668{
3669	struct blk_mq_hw_ctx *hctx;
3670	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3671
3672	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3673	if (!hctx)
3674		goto fail_alloc_hctx;
3675
3676	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3677		goto free_hctx;
3678
3679	atomic_set(&hctx->nr_active, 0);
3680	if (node == NUMA_NO_NODE)
3681		node = set->numa_node;
3682	hctx->numa_node = node;
3683
3684	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3685	spin_lock_init(&hctx->lock);
3686	INIT_LIST_HEAD(&hctx->dispatch);
3687	hctx->queue = q;
3688	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3689
3690	INIT_LIST_HEAD(&hctx->hctx_list);
3691
3692	/*
3693	 * Allocate space for all possible cpus to avoid allocation at
3694	 * runtime
3695	 */
3696	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3697			gfp, node);
3698	if (!hctx->ctxs)
3699		goto free_cpumask;
3700
3701	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3702				gfp, node, false, false))
3703		goto free_ctxs;
3704	hctx->nr_ctx = 0;
3705
3706	spin_lock_init(&hctx->dispatch_wait_lock);
3707	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3708	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3709
3710	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3711	if (!hctx->fq)
3712		goto free_bitmap;
3713
3714	blk_mq_hctx_kobj_init(hctx);
3715
3716	return hctx;
3717
3718 free_bitmap:
3719	sbitmap_free(&hctx->ctx_map);
3720 free_ctxs:
3721	kfree(hctx->ctxs);
3722 free_cpumask:
3723	free_cpumask_var(hctx->cpumask);
3724 free_hctx:
3725	kfree(hctx);
3726 fail_alloc_hctx:
3727	return NULL;
3728}
3729
3730static void blk_mq_init_cpu_queues(struct request_queue *q,
3731				   unsigned int nr_hw_queues)
3732{
3733	struct blk_mq_tag_set *set = q->tag_set;
3734	unsigned int i, j;
3735
3736	for_each_possible_cpu(i) {
3737		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3738		struct blk_mq_hw_ctx *hctx;
3739		int k;
3740
3741		__ctx->cpu = i;
3742		spin_lock_init(&__ctx->lock);
3743		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3744			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3745
3746		__ctx->queue = q;
3747
3748		/*
3749		 * Set local node, IFF we have more than one hw queue. If
3750		 * not, we remain on the home node of the device
3751		 */
3752		for (j = 0; j < set->nr_maps; j++) {
3753			hctx = blk_mq_map_queue_type(q, j, i);
3754			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3755				hctx->numa_node = cpu_to_node(i);
3756		}
3757	}
3758}
3759
3760struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3761					     unsigned int hctx_idx,
3762					     unsigned int depth)
3763{
3764	struct blk_mq_tags *tags;
3765	int ret;
3766
3767	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3768	if (!tags)
3769		return NULL;
3770
3771	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3772	if (ret) {
3773		blk_mq_free_rq_map(tags);
3774		return NULL;
3775	}
3776
3777	return tags;
3778}
3779
3780static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3781				       int hctx_idx)
3782{
3783	if (blk_mq_is_shared_tags(set->flags)) {
3784		set->tags[hctx_idx] = set->shared_tags;
3785
3786		return true;
3787	}
3788
3789	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3790						       set->queue_depth);
3791
3792	return set->tags[hctx_idx];
3793}
3794
3795void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3796			     struct blk_mq_tags *tags,
3797			     unsigned int hctx_idx)
3798{
3799	if (tags) {
3800		blk_mq_free_rqs(set, tags, hctx_idx);
3801		blk_mq_free_rq_map(tags);
3802	}
3803}
3804
3805static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3806				      unsigned int hctx_idx)
3807{
3808	if (!blk_mq_is_shared_tags(set->flags))
3809		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3810
3811	set->tags[hctx_idx] = NULL;
3812}
3813
3814static void blk_mq_map_swqueue(struct request_queue *q)
3815{
3816	unsigned int j, hctx_idx;
3817	unsigned long i;
3818	struct blk_mq_hw_ctx *hctx;
3819	struct blk_mq_ctx *ctx;
3820	struct blk_mq_tag_set *set = q->tag_set;
3821
3822	queue_for_each_hw_ctx(q, hctx, i) {
3823		cpumask_clear(hctx->cpumask);
3824		hctx->nr_ctx = 0;
3825		hctx->dispatch_from = NULL;
3826	}
3827
3828	/*
3829	 * Map software to hardware queues.
3830	 *
3831	 * If the cpu isn't present, the cpu is mapped to first hctx.
3832	 */
3833	for_each_possible_cpu(i) {
3834
3835		ctx = per_cpu_ptr(q->queue_ctx, i);
3836		for (j = 0; j < set->nr_maps; j++) {
3837			if (!set->map[j].nr_queues) {
3838				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3839						HCTX_TYPE_DEFAULT, i);
3840				continue;
3841			}
3842			hctx_idx = set->map[j].mq_map[i];
3843			/* unmapped hw queue can be remapped after CPU topo changed */
3844			if (!set->tags[hctx_idx] &&
3845			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3846				/*
3847				 * If tags initialization fail for some hctx,
3848				 * that hctx won't be brought online.  In this
3849				 * case, remap the current ctx to hctx[0] which
3850				 * is guaranteed to always have tags allocated
3851				 */
3852				set->map[j].mq_map[i] = 0;
3853			}
3854
3855			hctx = blk_mq_map_queue_type(q, j, i);
3856			ctx->hctxs[j] = hctx;
3857			/*
3858			 * If the CPU is already set in the mask, then we've
3859			 * mapped this one already. This can happen if
3860			 * devices share queues across queue maps.
3861			 */
3862			if (cpumask_test_cpu(i, hctx->cpumask))
3863				continue;
3864
3865			cpumask_set_cpu(i, hctx->cpumask);
3866			hctx->type = j;
3867			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3868			hctx->ctxs[hctx->nr_ctx++] = ctx;
3869
3870			/*
3871			 * If the nr_ctx type overflows, we have exceeded the
3872			 * amount of sw queues we can support.
3873			 */
3874			BUG_ON(!hctx->nr_ctx);
3875		}
3876
3877		for (; j < HCTX_MAX_TYPES; j++)
3878			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3879					HCTX_TYPE_DEFAULT, i);
3880	}
3881
3882	queue_for_each_hw_ctx(q, hctx, i) {
3883		/*
3884		 * If no software queues are mapped to this hardware queue,
3885		 * disable it and free the request entries.
3886		 */
3887		if (!hctx->nr_ctx) {
3888			/* Never unmap queue 0.  We need it as a
3889			 * fallback in case of a new remap fails
3890			 * allocation
3891			 */
3892			if (i)
3893				__blk_mq_free_map_and_rqs(set, i);
3894
3895			hctx->tags = NULL;
3896			continue;
3897		}
3898
3899		hctx->tags = set->tags[i];
3900		WARN_ON(!hctx->tags);
3901
3902		/*
3903		 * Set the map size to the number of mapped software queues.
3904		 * This is more accurate and more efficient than looping
3905		 * over all possibly mapped software queues.
3906		 */
3907		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3908
3909		/*
3910		 * Initialize batch roundrobin counts
3911		 */
3912		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3913		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3914	}
3915}
3916
3917/*
3918 * Caller needs to ensure that we're either frozen/quiesced, or that
3919 * the queue isn't live yet.
3920 */
3921static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3922{
3923	struct blk_mq_hw_ctx *hctx;
3924	unsigned long i;
3925
3926	queue_for_each_hw_ctx(q, hctx, i) {
3927		if (shared) {
3928			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3929		} else {
3930			blk_mq_tag_idle(hctx);
3931			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3932		}
3933	}
3934}
3935
3936static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3937					 bool shared)
3938{
3939	struct request_queue *q;
3940
3941	lockdep_assert_held(&set->tag_list_lock);
3942
3943	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3944		blk_mq_freeze_queue(q);
3945		queue_set_hctx_shared(q, shared);
3946		blk_mq_unfreeze_queue(q);
3947	}
3948}
3949
3950static void blk_mq_del_queue_tag_set(struct request_queue *q)
3951{
3952	struct blk_mq_tag_set *set = q->tag_set;
3953
3954	mutex_lock(&set->tag_list_lock);
3955	list_del(&q->tag_set_list);
3956	if (list_is_singular(&set->tag_list)) {
3957		/* just transitioned to unshared */
3958		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3959		/* update existing queue */
3960		blk_mq_update_tag_set_shared(set, false);
3961	}
3962	mutex_unlock(&set->tag_list_lock);
3963	INIT_LIST_HEAD(&q->tag_set_list);
3964}
3965
3966static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3967				     struct request_queue *q)
3968{
3969	mutex_lock(&set->tag_list_lock);
3970
3971	/*
3972	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
3973	 */
3974	if (!list_empty(&set->tag_list) &&
3975	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3976		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3977		/* update existing queue */
3978		blk_mq_update_tag_set_shared(set, true);
3979	}
3980	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3981		queue_set_hctx_shared(q, true);
3982	list_add_tail(&q->tag_set_list, &set->tag_list);
3983
3984	mutex_unlock(&set->tag_list_lock);
3985}
3986
3987/* All allocations will be freed in release handler of q->mq_kobj */
3988static int blk_mq_alloc_ctxs(struct request_queue *q)
3989{
3990	struct blk_mq_ctxs *ctxs;
3991	int cpu;
3992
3993	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3994	if (!ctxs)
3995		return -ENOMEM;
3996
3997	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3998	if (!ctxs->queue_ctx)
3999		goto fail;
4000
4001	for_each_possible_cpu(cpu) {
4002		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4003		ctx->ctxs = ctxs;
4004	}
4005
4006	q->mq_kobj = &ctxs->kobj;
4007	q->queue_ctx = ctxs->queue_ctx;
4008
4009	return 0;
4010 fail:
4011	kfree(ctxs);
4012	return -ENOMEM;
4013}
4014
4015/*
4016 * It is the actual release handler for mq, but we do it from
4017 * request queue's release handler for avoiding use-after-free
4018 * and headache because q->mq_kobj shouldn't have been introduced,
4019 * but we can't group ctx/kctx kobj without it.
4020 */
4021void blk_mq_release(struct request_queue *q)
4022{
4023	struct blk_mq_hw_ctx *hctx, *next;
4024	unsigned long i;
4025
4026	queue_for_each_hw_ctx(q, hctx, i)
4027		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4028
4029	/* all hctx are in .unused_hctx_list now */
4030	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4031		list_del_init(&hctx->hctx_list);
4032		kobject_put(&hctx->kobj);
4033	}
4034
4035	xa_destroy(&q->hctx_table);
4036
4037	/*
4038	 * release .mq_kobj and sw queue's kobject now because
4039	 * both share lifetime with request queue.
4040	 */
4041	blk_mq_sysfs_deinit(q);
4042}
4043
4044static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4045		void *queuedata)
4046{
 
4047	struct request_queue *q;
4048	int ret;
4049
4050	q = blk_alloc_queue(set->numa_node);
4051	if (!q)
4052		return ERR_PTR(-ENOMEM);
4053	q->queuedata = queuedata;
4054	ret = blk_mq_init_allocated_queue(set, q);
4055	if (ret) {
4056		blk_put_queue(q);
4057		return ERR_PTR(ret);
4058	}
4059	return q;
4060}
4061
4062struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4063{
4064	return blk_mq_init_queue_data(set, NULL);
4065}
4066EXPORT_SYMBOL(blk_mq_init_queue);
4067
4068/**
4069 * blk_mq_destroy_queue - shutdown a request queue
4070 * @q: request queue to shutdown
4071 *
4072 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4073 * requests will be failed with -ENODEV. The caller is responsible for dropping
4074 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4075 *
4076 * Context: can sleep
4077 */
4078void blk_mq_destroy_queue(struct request_queue *q)
4079{
4080	WARN_ON_ONCE(!queue_is_mq(q));
4081	WARN_ON_ONCE(blk_queue_registered(q));
4082
4083	might_sleep();
4084
4085	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4086	blk_queue_start_drain(q);
4087	blk_mq_freeze_queue_wait(q);
4088
4089	blk_sync_queue(q);
4090	blk_mq_cancel_work_sync(q);
4091	blk_mq_exit_queue(q);
4092}
4093EXPORT_SYMBOL(blk_mq_destroy_queue);
4094
4095struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
 
4096		struct lock_class_key *lkclass)
4097{
4098	struct request_queue *q;
4099	struct gendisk *disk;
4100
4101	q = blk_mq_init_queue_data(set, queuedata);
4102	if (IS_ERR(q))
4103		return ERR_CAST(q);
4104
4105	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4106	if (!disk) {
4107		blk_mq_destroy_queue(q);
4108		blk_put_queue(q);
4109		return ERR_PTR(-ENOMEM);
4110	}
4111	set_bit(GD_OWNS_QUEUE, &disk->state);
4112	return disk;
4113}
4114EXPORT_SYMBOL(__blk_mq_alloc_disk);
4115
4116struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4117		struct lock_class_key *lkclass)
4118{
4119	struct gendisk *disk;
4120
4121	if (!blk_get_queue(q))
4122		return NULL;
4123	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4124	if (!disk)
4125		blk_put_queue(q);
4126	return disk;
4127}
4128EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4129
4130static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4131		struct blk_mq_tag_set *set, struct request_queue *q,
4132		int hctx_idx, int node)
4133{
4134	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4135
4136	/* reuse dead hctx first */
4137	spin_lock(&q->unused_hctx_lock);
4138	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4139		if (tmp->numa_node == node) {
4140			hctx = tmp;
4141			break;
4142		}
4143	}
4144	if (hctx)
4145		list_del_init(&hctx->hctx_list);
4146	spin_unlock(&q->unused_hctx_lock);
4147
4148	if (!hctx)
4149		hctx = blk_mq_alloc_hctx(q, set, node);
4150	if (!hctx)
4151		goto fail;
4152
4153	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4154		goto free_hctx;
4155
4156	return hctx;
4157
4158 free_hctx:
4159	kobject_put(&hctx->kobj);
4160 fail:
4161	return NULL;
4162}
4163
4164static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4165						struct request_queue *q)
4166{
4167	struct blk_mq_hw_ctx *hctx;
4168	unsigned long i, j;
4169
4170	/* protect against switching io scheduler  */
4171	mutex_lock(&q->sysfs_lock);
4172	for (i = 0; i < set->nr_hw_queues; i++) {
4173		int old_node;
4174		int node = blk_mq_get_hctx_node(set, i);
4175		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4176
4177		if (old_hctx) {
4178			old_node = old_hctx->numa_node;
4179			blk_mq_exit_hctx(q, set, old_hctx, i);
4180		}
4181
4182		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4183			if (!old_hctx)
4184				break;
4185			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4186					node, old_node);
4187			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4188			WARN_ON_ONCE(!hctx);
4189		}
4190	}
4191	/*
4192	 * Increasing nr_hw_queues fails. Free the newly allocated
4193	 * hctxs and keep the previous q->nr_hw_queues.
4194	 */
4195	if (i != set->nr_hw_queues) {
4196		j = q->nr_hw_queues;
4197	} else {
4198		j = i;
4199		q->nr_hw_queues = set->nr_hw_queues;
4200	}
4201
4202	xa_for_each_start(&q->hctx_table, j, hctx, j)
4203		blk_mq_exit_hctx(q, set, hctx, j);
4204	mutex_unlock(&q->sysfs_lock);
4205}
4206
4207static void blk_mq_update_poll_flag(struct request_queue *q)
4208{
4209	struct blk_mq_tag_set *set = q->tag_set;
4210
4211	if (set->nr_maps > HCTX_TYPE_POLL &&
4212	    set->map[HCTX_TYPE_POLL].nr_queues)
4213		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4214	else
4215		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4216}
4217
4218int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4219		struct request_queue *q)
4220{
4221	/* mark the queue as mq asap */
4222	q->mq_ops = set->ops;
4223
4224	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
4225					     blk_mq_poll_stats_bkt,
4226					     BLK_MQ_POLL_STATS_BKTS, q);
4227	if (!q->poll_cb)
4228		goto err_exit;
4229
4230	if (blk_mq_alloc_ctxs(q))
4231		goto err_poll;
4232
4233	/* init q->mq_kobj and sw queues' kobjects */
4234	blk_mq_sysfs_init(q);
4235
4236	INIT_LIST_HEAD(&q->unused_hctx_list);
4237	spin_lock_init(&q->unused_hctx_lock);
4238
4239	xa_init(&q->hctx_table);
4240
4241	blk_mq_realloc_hw_ctxs(set, q);
4242	if (!q->nr_hw_queues)
4243		goto err_hctxs;
4244
4245	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4246	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4247
4248	q->tag_set = set;
4249
4250	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4251	blk_mq_update_poll_flag(q);
4252
4253	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
 
4254	INIT_LIST_HEAD(&q->requeue_list);
4255	spin_lock_init(&q->requeue_lock);
4256
4257	q->nr_requests = set->queue_depth;
4258
4259	/*
4260	 * Default to classic polling
4261	 */
4262	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
4263
4264	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4265	blk_mq_add_queue_tag_set(set, q);
4266	blk_mq_map_swqueue(q);
4267	return 0;
4268
4269err_hctxs:
4270	blk_mq_release(q);
4271err_poll:
4272	blk_stat_free_callback(q->poll_cb);
4273	q->poll_cb = NULL;
4274err_exit:
4275	q->mq_ops = NULL;
4276	return -ENOMEM;
4277}
4278EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4279
4280/* tags can _not_ be used after returning from blk_mq_exit_queue */
4281void blk_mq_exit_queue(struct request_queue *q)
4282{
4283	struct blk_mq_tag_set *set = q->tag_set;
4284
4285	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4286	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4287	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4288	blk_mq_del_queue_tag_set(q);
4289}
4290
4291static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4292{
4293	int i;
4294
4295	if (blk_mq_is_shared_tags(set->flags)) {
4296		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4297						BLK_MQ_NO_HCTX_IDX,
4298						set->queue_depth);
4299		if (!set->shared_tags)
4300			return -ENOMEM;
4301	}
4302
4303	for (i = 0; i < set->nr_hw_queues; i++) {
4304		if (!__blk_mq_alloc_map_and_rqs(set, i))
4305			goto out_unwind;
4306		cond_resched();
4307	}
4308
4309	return 0;
4310
4311out_unwind:
4312	while (--i >= 0)
4313		__blk_mq_free_map_and_rqs(set, i);
4314
4315	if (blk_mq_is_shared_tags(set->flags)) {
4316		blk_mq_free_map_and_rqs(set, set->shared_tags,
4317					BLK_MQ_NO_HCTX_IDX);
4318	}
4319
4320	return -ENOMEM;
4321}
4322
4323/*
4324 * Allocate the request maps associated with this tag_set. Note that this
4325 * may reduce the depth asked for, if memory is tight. set->queue_depth
4326 * will be updated to reflect the allocated depth.
4327 */
4328static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4329{
4330	unsigned int depth;
4331	int err;
4332
4333	depth = set->queue_depth;
4334	do {
4335		err = __blk_mq_alloc_rq_maps(set);
4336		if (!err)
4337			break;
4338
4339		set->queue_depth >>= 1;
4340		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4341			err = -ENOMEM;
4342			break;
4343		}
4344	} while (set->queue_depth);
4345
4346	if (!set->queue_depth || err) {
4347		pr_err("blk-mq: failed to allocate request map\n");
4348		return -ENOMEM;
4349	}
4350
4351	if (depth != set->queue_depth)
4352		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4353						depth, set->queue_depth);
4354
4355	return 0;
4356}
4357
4358static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4359{
4360	/*
4361	 * blk_mq_map_queues() and multiple .map_queues() implementations
4362	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4363	 * number of hardware queues.
4364	 */
4365	if (set->nr_maps == 1)
4366		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4367
4368	if (set->ops->map_queues && !is_kdump_kernel()) {
4369		int i;
4370
4371		/*
4372		 * transport .map_queues is usually done in the following
4373		 * way:
4374		 *
4375		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4376		 * 	mask = get_cpu_mask(queue)
4377		 * 	for_each_cpu(cpu, mask)
4378		 * 		set->map[x].mq_map[cpu] = queue;
4379		 * }
4380		 *
4381		 * When we need to remap, the table has to be cleared for
4382		 * killing stale mapping since one CPU may not be mapped
4383		 * to any hw queue.
4384		 */
4385		for (i = 0; i < set->nr_maps; i++)
4386			blk_mq_clear_mq_map(&set->map[i]);
4387
4388		set->ops->map_queues(set);
4389	} else {
4390		BUG_ON(set->nr_maps > 1);
4391		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4392	}
4393}
4394
4395static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4396				       int new_nr_hw_queues)
4397{
4398	struct blk_mq_tags **new_tags;
 
4399
4400	if (set->nr_hw_queues >= new_nr_hw_queues)
4401		goto done;
4402
4403	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4404				GFP_KERNEL, set->numa_node);
4405	if (!new_tags)
4406		return -ENOMEM;
4407
4408	if (set->tags)
4409		memcpy(new_tags, set->tags, set->nr_hw_queues *
4410		       sizeof(*set->tags));
4411	kfree(set->tags);
4412	set->tags = new_tags;
 
 
 
 
 
 
 
 
 
 
4413done:
4414	set->nr_hw_queues = new_nr_hw_queues;
4415	return 0;
4416}
4417
4418/*
4419 * Alloc a tag set to be associated with one or more request queues.
4420 * May fail with EINVAL for various error conditions. May adjust the
4421 * requested depth down, if it's too large. In that case, the set
4422 * value will be stored in set->queue_depth.
4423 */
4424int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4425{
4426	int i, ret;
4427
4428	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4429
4430	if (!set->nr_hw_queues)
4431		return -EINVAL;
4432	if (!set->queue_depth)
4433		return -EINVAL;
4434	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4435		return -EINVAL;
4436
4437	if (!set->ops->queue_rq)
4438		return -EINVAL;
4439
4440	if (!set->ops->get_budget ^ !set->ops->put_budget)
4441		return -EINVAL;
4442
4443	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4444		pr_info("blk-mq: reduced tag depth to %u\n",
4445			BLK_MQ_MAX_DEPTH);
4446		set->queue_depth = BLK_MQ_MAX_DEPTH;
4447	}
4448
4449	if (!set->nr_maps)
4450		set->nr_maps = 1;
4451	else if (set->nr_maps > HCTX_MAX_TYPES)
4452		return -EINVAL;
4453
4454	/*
4455	 * If a crashdump is active, then we are potentially in a very
4456	 * memory constrained environment. Limit us to 1 queue and
4457	 * 64 tags to prevent using too much memory.
4458	 */
4459	if (is_kdump_kernel()) {
4460		set->nr_hw_queues = 1;
4461		set->nr_maps = 1;
4462		set->queue_depth = min(64U, set->queue_depth);
4463	}
4464	/*
4465	 * There is no use for more h/w queues than cpus if we just have
4466	 * a single map
4467	 */
4468	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4469		set->nr_hw_queues = nr_cpu_ids;
4470
4471	if (set->flags & BLK_MQ_F_BLOCKING) {
4472		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4473		if (!set->srcu)
4474			return -ENOMEM;
4475		ret = init_srcu_struct(set->srcu);
4476		if (ret)
4477			goto out_free_srcu;
4478	}
4479
4480	ret = -ENOMEM;
4481	set->tags = kcalloc_node(set->nr_hw_queues,
4482				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4483				 set->numa_node);
4484	if (!set->tags)
4485		goto out_cleanup_srcu;
4486
4487	for (i = 0; i < set->nr_maps; i++) {
4488		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4489						  sizeof(set->map[i].mq_map[0]),
4490						  GFP_KERNEL, set->numa_node);
4491		if (!set->map[i].mq_map)
4492			goto out_free_mq_map;
4493		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4494	}
4495
4496	blk_mq_update_queue_map(set);
4497
4498	ret = blk_mq_alloc_set_map_and_rqs(set);
4499	if (ret)
4500		goto out_free_mq_map;
4501
4502	mutex_init(&set->tag_list_lock);
4503	INIT_LIST_HEAD(&set->tag_list);
4504
4505	return 0;
4506
4507out_free_mq_map:
4508	for (i = 0; i < set->nr_maps; i++) {
4509		kfree(set->map[i].mq_map);
4510		set->map[i].mq_map = NULL;
4511	}
4512	kfree(set->tags);
4513	set->tags = NULL;
4514out_cleanup_srcu:
4515	if (set->flags & BLK_MQ_F_BLOCKING)
4516		cleanup_srcu_struct(set->srcu);
4517out_free_srcu:
4518	if (set->flags & BLK_MQ_F_BLOCKING)
4519		kfree(set->srcu);
4520	return ret;
4521}
4522EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4523
4524/* allocate and initialize a tagset for a simple single-queue device */
4525int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4526		const struct blk_mq_ops *ops, unsigned int queue_depth,
4527		unsigned int set_flags)
4528{
4529	memset(set, 0, sizeof(*set));
4530	set->ops = ops;
4531	set->nr_hw_queues = 1;
4532	set->nr_maps = 1;
4533	set->queue_depth = queue_depth;
4534	set->numa_node = NUMA_NO_NODE;
4535	set->flags = set_flags;
4536	return blk_mq_alloc_tag_set(set);
4537}
4538EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4539
4540void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4541{
4542	int i, j;
4543
4544	for (i = 0; i < set->nr_hw_queues; i++)
4545		__blk_mq_free_map_and_rqs(set, i);
4546
4547	if (blk_mq_is_shared_tags(set->flags)) {
4548		blk_mq_free_map_and_rqs(set, set->shared_tags,
4549					BLK_MQ_NO_HCTX_IDX);
4550	}
4551
4552	for (j = 0; j < set->nr_maps; j++) {
4553		kfree(set->map[j].mq_map);
4554		set->map[j].mq_map = NULL;
4555	}
4556
4557	kfree(set->tags);
4558	set->tags = NULL;
4559	if (set->flags & BLK_MQ_F_BLOCKING) {
4560		cleanup_srcu_struct(set->srcu);
4561		kfree(set->srcu);
4562	}
4563}
4564EXPORT_SYMBOL(blk_mq_free_tag_set);
4565
4566int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4567{
4568	struct blk_mq_tag_set *set = q->tag_set;
4569	struct blk_mq_hw_ctx *hctx;
4570	int ret;
4571	unsigned long i;
4572
4573	if (!set)
4574		return -EINVAL;
4575
4576	if (q->nr_requests == nr)
4577		return 0;
4578
4579	blk_mq_freeze_queue(q);
4580	blk_mq_quiesce_queue(q);
4581
4582	ret = 0;
4583	queue_for_each_hw_ctx(q, hctx, i) {
4584		if (!hctx->tags)
4585			continue;
4586		/*
4587		 * If we're using an MQ scheduler, just update the scheduler
4588		 * queue depth. This is similar to what the old code would do.
4589		 */
4590		if (hctx->sched_tags) {
4591			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4592						      nr, true);
4593		} else {
4594			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4595						      false);
4596		}
4597		if (ret)
4598			break;
4599		if (q->elevator && q->elevator->type->ops.depth_updated)
4600			q->elevator->type->ops.depth_updated(hctx);
4601	}
4602	if (!ret) {
4603		q->nr_requests = nr;
4604		if (blk_mq_is_shared_tags(set->flags)) {
4605			if (q->elevator)
4606				blk_mq_tag_update_sched_shared_tags(q);
4607			else
4608				blk_mq_tag_resize_shared_tags(set, nr);
4609		}
4610	}
4611
4612	blk_mq_unquiesce_queue(q);
4613	blk_mq_unfreeze_queue(q);
4614
4615	return ret;
4616}
4617
4618/*
4619 * request_queue and elevator_type pair.
4620 * It is just used by __blk_mq_update_nr_hw_queues to cache
4621 * the elevator_type associated with a request_queue.
4622 */
4623struct blk_mq_qe_pair {
4624	struct list_head node;
4625	struct request_queue *q;
4626	struct elevator_type *type;
4627};
4628
4629/*
4630 * Cache the elevator_type in qe pair list and switch the
4631 * io scheduler to 'none'
4632 */
4633static bool blk_mq_elv_switch_none(struct list_head *head,
4634		struct request_queue *q)
4635{
4636	struct blk_mq_qe_pair *qe;
4637
4638	if (!q->elevator)
4639		return true;
4640
4641	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4642	if (!qe)
4643		return false;
4644
4645	/* q->elevator needs protection from ->sysfs_lock */
4646	mutex_lock(&q->sysfs_lock);
4647
 
 
 
 
 
 
4648	INIT_LIST_HEAD(&qe->node);
4649	qe->q = q;
4650	qe->type = q->elevator->type;
4651	/* keep a reference to the elevator module as we'll switch back */
4652	__elevator_get(qe->type);
4653	list_add(&qe->node, head);
4654	elevator_disable(q);
 
4655	mutex_unlock(&q->sysfs_lock);
4656
4657	return true;
4658}
4659
4660static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4661						struct request_queue *q)
4662{
4663	struct blk_mq_qe_pair *qe;
4664
4665	list_for_each_entry(qe, head, node)
4666		if (qe->q == q)
4667			return qe;
4668
4669	return NULL;
4670}
4671
4672static void blk_mq_elv_switch_back(struct list_head *head,
4673				  struct request_queue *q)
4674{
4675	struct blk_mq_qe_pair *qe;
4676	struct elevator_type *t;
4677
4678	qe = blk_lookup_qe_pair(head, q);
4679	if (!qe)
4680		return;
4681	t = qe->type;
4682	list_del(&qe->node);
4683	kfree(qe);
4684
4685	mutex_lock(&q->sysfs_lock);
4686	elevator_switch(q, t);
4687	/* drop the reference acquired in blk_mq_elv_switch_none */
4688	elevator_put(t);
4689	mutex_unlock(&q->sysfs_lock);
4690}
4691
4692static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4693							int nr_hw_queues)
4694{
4695	struct request_queue *q;
4696	LIST_HEAD(head);
4697	int prev_nr_hw_queues;
 
4698
4699	lockdep_assert_held(&set->tag_list_lock);
4700
4701	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4702		nr_hw_queues = nr_cpu_ids;
4703	if (nr_hw_queues < 1)
4704		return;
4705	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4706		return;
4707
4708	list_for_each_entry(q, &set->tag_list, tag_set_list)
4709		blk_mq_freeze_queue(q);
4710	/*
4711	 * Switch IO scheduler to 'none', cleaning up the data associated
4712	 * with the previous scheduler. We will switch back once we are done
4713	 * updating the new sw to hw queue mappings.
4714	 */
4715	list_for_each_entry(q, &set->tag_list, tag_set_list)
4716		if (!blk_mq_elv_switch_none(&head, q))
4717			goto switch_back;
4718
4719	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4720		blk_mq_debugfs_unregister_hctxs(q);
4721		blk_mq_sysfs_unregister_hctxs(q);
4722	}
4723
4724	prev_nr_hw_queues = set->nr_hw_queues;
4725	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4726		goto reregister;
4727
4728fallback:
4729	blk_mq_update_queue_map(set);
4730	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4731		blk_mq_realloc_hw_ctxs(set, q);
4732		blk_mq_update_poll_flag(q);
4733		if (q->nr_hw_queues != set->nr_hw_queues) {
4734			int i = prev_nr_hw_queues;
4735
4736			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4737					nr_hw_queues, prev_nr_hw_queues);
4738			for (; i < set->nr_hw_queues; i++)
4739				__blk_mq_free_map_and_rqs(set, i);
4740
4741			set->nr_hw_queues = prev_nr_hw_queues;
4742			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4743			goto fallback;
4744		}
4745		blk_mq_map_swqueue(q);
4746	}
4747
4748reregister:
4749	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4750		blk_mq_sysfs_register_hctxs(q);
4751		blk_mq_debugfs_register_hctxs(q);
4752	}
4753
4754switch_back:
4755	list_for_each_entry(q, &set->tag_list, tag_set_list)
4756		blk_mq_elv_switch_back(&head, q);
4757
4758	list_for_each_entry(q, &set->tag_list, tag_set_list)
4759		blk_mq_unfreeze_queue(q);
 
 
 
 
4760}
4761
4762void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4763{
4764	mutex_lock(&set->tag_list_lock);
4765	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4766	mutex_unlock(&set->tag_list_lock);
4767}
4768EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4769
4770/* Enable polling stats and return whether they were already enabled. */
4771static bool blk_poll_stats_enable(struct request_queue *q)
4772{
4773	if (q->poll_stat)
4774		return true;
4775
4776	return blk_stats_alloc_enable(q);
4777}
4778
4779static void blk_mq_poll_stats_start(struct request_queue *q)
4780{
4781	/*
4782	 * We don't arm the callback if polling stats are not enabled or the
4783	 * callback is already active.
4784	 */
4785	if (!q->poll_stat || blk_stat_is_active(q->poll_cb))
4786		return;
4787
4788	blk_stat_activate_msecs(q->poll_cb, 100);
4789}
4790
4791static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
4792{
4793	struct request_queue *q = cb->data;
4794	int bucket;
4795
4796	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
4797		if (cb->stat[bucket].nr_samples)
4798			q->poll_stat[bucket] = cb->stat[bucket];
4799	}
4800}
4801
4802static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
4803				       struct request *rq)
4804{
4805	unsigned long ret = 0;
4806	int bucket;
4807
4808	/*
4809	 * If stats collection isn't on, don't sleep but turn it on for
4810	 * future users
4811	 */
4812	if (!blk_poll_stats_enable(q))
4813		return 0;
4814
4815	/*
4816	 * As an optimistic guess, use half of the mean service time
4817	 * for this type of request. We can (and should) make this smarter.
4818	 * For instance, if the completion latencies are tight, we can
4819	 * get closer than just half the mean. This is especially
4820	 * important on devices where the completion latencies are longer
4821	 * than ~10 usec. We do use the stats for the relevant IO size
4822	 * if available which does lead to better estimates.
4823	 */
4824	bucket = blk_mq_poll_stats_bkt(rq);
4825	if (bucket < 0)
4826		return ret;
4827
4828	if (q->poll_stat[bucket].nr_samples)
4829		ret = (q->poll_stat[bucket].mean + 1) / 2;
4830
4831	return ret;
4832}
4833
4834static bool blk_mq_poll_hybrid(struct request_queue *q, blk_qc_t qc)
4835{
4836	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, qc);
4837	struct request *rq = blk_qc_to_rq(hctx, qc);
4838	struct hrtimer_sleeper hs;
4839	enum hrtimer_mode mode;
4840	unsigned int nsecs;
4841	ktime_t kt;
4842
4843	/*
4844	 * If a request has completed on queue that uses an I/O scheduler, we
4845	 * won't get back a request from blk_qc_to_rq.
4846	 */
4847	if (!rq || (rq->rq_flags & RQF_MQ_POLL_SLEPT))
4848		return false;
4849
4850	/*
4851	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
4852	 *
4853	 *  0:	use half of prev avg
4854	 * >0:	use this specific value
4855	 */
4856	if (q->poll_nsec > 0)
4857		nsecs = q->poll_nsec;
4858	else
4859		nsecs = blk_mq_poll_nsecs(q, rq);
4860
4861	if (!nsecs)
4862		return false;
4863
4864	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
4865
4866	/*
4867	 * This will be replaced with the stats tracking code, using
4868	 * 'avg_completion_time / 2' as the pre-sleep target.
4869	 */
4870	kt = nsecs;
4871
4872	mode = HRTIMER_MODE_REL;
4873	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
4874	hrtimer_set_expires(&hs.timer, kt);
4875
4876	do {
4877		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
4878			break;
4879		set_current_state(TASK_UNINTERRUPTIBLE);
4880		hrtimer_sleeper_start_expires(&hs, mode);
4881		if (hs.task)
4882			io_schedule();
4883		hrtimer_cancel(&hs.timer);
4884		mode = HRTIMER_MODE_ABS;
4885	} while (hs.task && !signal_pending(current));
4886
4887	__set_current_state(TASK_RUNNING);
4888	destroy_hrtimer_on_stack(&hs.timer);
4889
4890	/*
4891	 * If we sleep, have the caller restart the poll loop to reset the
4892	 * state.  Like for the other success return cases, the caller is
4893	 * responsible for checking if the IO completed.  If the IO isn't
4894	 * complete, we'll get called again and will go straight to the busy
4895	 * poll loop.
4896	 */
4897	return true;
4898}
4899
4900static int blk_mq_poll_classic(struct request_queue *q, blk_qc_t cookie,
4901			       struct io_comp_batch *iob, unsigned int flags)
4902{
4903	struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4904	long state = get_current_state();
4905	int ret;
4906
4907	do {
4908		ret = q->mq_ops->poll(hctx, iob);
4909		if (ret > 0) {
4910			__set_current_state(TASK_RUNNING);
4911			return ret;
4912		}
4913
4914		if (signal_pending_state(state, current))
4915			__set_current_state(TASK_RUNNING);
4916		if (task_is_running(current))
4917			return 1;
4918
4919		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4920			break;
4921		cpu_relax();
4922	} while (!need_resched());
4923
4924	__set_current_state(TASK_RUNNING);
4925	return 0;
4926}
4927
4928int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4929		unsigned int flags)
4930{
4931	if (!(flags & BLK_POLL_NOSLEEP) &&
4932	    q->poll_nsec != BLK_MQ_POLL_CLASSIC) {
4933		if (blk_mq_poll_hybrid(q, cookie))
4934			return 1;
4935	}
4936	return blk_mq_poll_classic(q, cookie, iob, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4937}
 
4938
4939unsigned int blk_mq_rq_cpu(struct request *rq)
4940{
4941	return rq->mq_ctx->cpu;
4942}
4943EXPORT_SYMBOL(blk_mq_rq_cpu);
4944
4945void blk_mq_cancel_work_sync(struct request_queue *q)
4946{
4947	struct blk_mq_hw_ctx *hctx;
4948	unsigned long i;
4949
4950	cancel_delayed_work_sync(&q->requeue_work);
4951
4952	queue_for_each_hw_ctx(q, hctx, i)
4953		cancel_delayed_work_sync(&hctx->run_work);
4954}
4955
4956static int __init blk_mq_init(void)
4957{
4958	int i;
4959
4960	for_each_possible_cpu(i)
4961		init_llist_head(&per_cpu(blk_cpu_done, i));
 
 
 
4962	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4963
4964	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4965				  "block/softirq:dead", NULL,
4966				  blk_softirq_cpu_dead);
4967	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4968				blk_mq_hctx_notify_dead);
4969	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4970				blk_mq_hctx_notify_online,
4971				blk_mq_hctx_notify_offline);
4972	return 0;
4973}
4974subsys_initcall(blk_mq_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/blk-integrity.h>
  14#include <linux/kmemleak.h>
  15#include <linux/mm.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/workqueue.h>
  19#include <linux/smp.h>
  20#include <linux/interrupt.h>
  21#include <linux/llist.h>
  22#include <linux/cpu.h>
  23#include <linux/cache.h>
 
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29#include <linux/blk-crypto.h>
  30#include <linux/part_stat.h>
  31
  32#include <trace/events/block.h>
  33
 
  34#include <linux/t10-pi.h>
  35#include "blk.h"
  36#include "blk-mq.h"
  37#include "blk-mq-debugfs.h"
 
  38#include "blk-pm.h"
  39#include "blk-stat.h"
  40#include "blk-mq-sched.h"
  41#include "blk-rq-qos.h"
 
  42
  43static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
  44static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
  45
  46static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
  47static void blk_mq_request_bypass_insert(struct request *rq,
  48		blk_insert_t flags);
  49static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
  50		struct list_head *list);
  51static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
  52			 struct io_comp_batch *iob, unsigned int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53
  54/*
  55 * Check if any of the ctx, dispatch list or elevator
  56 * have pending work in this hardware queue.
  57 */
  58static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  59{
  60	return !list_empty_careful(&hctx->dispatch) ||
  61		sbitmap_any_bit_set(&hctx->ctx_map) ||
  62			blk_mq_sched_has_work(hctx);
  63}
  64
  65/*
  66 * Mark this ctx as having pending work in this hardware queue
  67 */
  68static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  69				     struct blk_mq_ctx *ctx)
  70{
  71	const int bit = ctx->index_hw[hctx->type];
  72
  73	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  74		sbitmap_set_bit(&hctx->ctx_map, bit);
  75}
  76
  77static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  78				      struct blk_mq_ctx *ctx)
  79{
  80	const int bit = ctx->index_hw[hctx->type];
  81
  82	sbitmap_clear_bit(&hctx->ctx_map, bit);
  83}
  84
  85struct mq_inflight {
  86	struct block_device *part;
  87	unsigned int inflight[2];
  88};
  89
  90static bool blk_mq_check_inflight(struct request *rq, void *priv)
  91{
  92	struct mq_inflight *mi = priv;
  93
  94	if (rq->part && blk_do_io_stat(rq) &&
  95	    (!mi->part->bd_partno || rq->part == mi->part) &&
  96	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
  97		mi->inflight[rq_data_dir(rq)]++;
  98
  99	return true;
 100}
 101
 102unsigned int blk_mq_in_flight(struct request_queue *q,
 103		struct block_device *part)
 104{
 105	struct mq_inflight mi = { .part = part };
 106
 107	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 108
 109	return mi.inflight[0] + mi.inflight[1];
 110}
 111
 112void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 113		unsigned int inflight[2])
 114{
 115	struct mq_inflight mi = { .part = part };
 116
 117	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 118	inflight[0] = mi.inflight[0];
 119	inflight[1] = mi.inflight[1];
 120}
 121
 122void blk_freeze_queue_start(struct request_queue *q)
 123{
 124	mutex_lock(&q->mq_freeze_lock);
 125	if (++q->mq_freeze_depth == 1) {
 126		percpu_ref_kill(&q->q_usage_counter);
 127		mutex_unlock(&q->mq_freeze_lock);
 128		if (queue_is_mq(q))
 129			blk_mq_run_hw_queues(q, false);
 130	} else {
 131		mutex_unlock(&q->mq_freeze_lock);
 132	}
 133}
 134EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 135
 136void blk_mq_freeze_queue_wait(struct request_queue *q)
 137{
 138	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 139}
 140EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 141
 142int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 143				     unsigned long timeout)
 144{
 145	return wait_event_timeout(q->mq_freeze_wq,
 146					percpu_ref_is_zero(&q->q_usage_counter),
 147					timeout);
 148}
 149EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 150
 151/*
 152 * Guarantee no request is in use, so we can change any data structure of
 153 * the queue afterward.
 154 */
 155void blk_freeze_queue(struct request_queue *q)
 156{
 157	/*
 158	 * In the !blk_mq case we are only calling this to kill the
 159	 * q_usage_counter, otherwise this increases the freeze depth
 160	 * and waits for it to return to zero.  For this reason there is
 161	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 162	 * exported to drivers as the only user for unfreeze is blk_mq.
 163	 */
 164	blk_freeze_queue_start(q);
 165	blk_mq_freeze_queue_wait(q);
 166}
 167
 168void blk_mq_freeze_queue(struct request_queue *q)
 169{
 170	/*
 171	 * ...just an alias to keep freeze and unfreeze actions balanced
 172	 * in the blk_mq_* namespace
 173	 */
 174	blk_freeze_queue(q);
 175}
 176EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 177
 178void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
 179{
 180	mutex_lock(&q->mq_freeze_lock);
 181	if (force_atomic)
 182		q->q_usage_counter.data->force_atomic = true;
 183	q->mq_freeze_depth--;
 184	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 185	if (!q->mq_freeze_depth) {
 186		percpu_ref_resurrect(&q->q_usage_counter);
 187		wake_up_all(&q->mq_freeze_wq);
 188	}
 189	mutex_unlock(&q->mq_freeze_lock);
 190}
 191
 192void blk_mq_unfreeze_queue(struct request_queue *q)
 193{
 194	__blk_mq_unfreeze_queue(q, false);
 195}
 196EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 197
 198/*
 199 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 200 * mpt3sas driver such that this function can be removed.
 201 */
 202void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 203{
 204	unsigned long flags;
 205
 206	spin_lock_irqsave(&q->queue_lock, flags);
 207	if (!q->quiesce_depth++)
 208		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 209	spin_unlock_irqrestore(&q->queue_lock, flags);
 210}
 211EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 212
 213/**
 214 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
 215 * @set: tag_set to wait on
 216 *
 217 * Note: it is driver's responsibility for making sure that quiesce has
 218 * been started on or more of the request_queues of the tag_set.  This
 219 * function only waits for the quiesce on those request_queues that had
 220 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
 221 */
 222void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
 223{
 224	if (set->flags & BLK_MQ_F_BLOCKING)
 225		synchronize_srcu(set->srcu);
 226	else
 227		synchronize_rcu();
 228}
 229EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
 230
 231/**
 232 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 233 * @q: request queue.
 234 *
 235 * Note: this function does not prevent that the struct request end_io()
 236 * callback function is invoked. Once this function is returned, we make
 237 * sure no dispatch can happen until the queue is unquiesced via
 238 * blk_mq_unquiesce_queue().
 239 */
 240void blk_mq_quiesce_queue(struct request_queue *q)
 241{
 242	blk_mq_quiesce_queue_nowait(q);
 243	/* nothing to wait for non-mq queues */
 244	if (queue_is_mq(q))
 245		blk_mq_wait_quiesce_done(q->tag_set);
 246}
 247EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 248
 249/*
 250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 251 * @q: request queue.
 252 *
 253 * This function recovers queue into the state before quiescing
 254 * which is done by blk_mq_quiesce_queue.
 255 */
 256void blk_mq_unquiesce_queue(struct request_queue *q)
 257{
 258	unsigned long flags;
 259	bool run_queue = false;
 260
 261	spin_lock_irqsave(&q->queue_lock, flags);
 262	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
 263		;
 264	} else if (!--q->quiesce_depth) {
 265		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 266		run_queue = true;
 267	}
 268	spin_unlock_irqrestore(&q->queue_lock, flags);
 269
 270	/* dispatch requests which are inserted during quiescing */
 271	if (run_queue)
 272		blk_mq_run_hw_queues(q, true);
 273}
 274EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 275
 276void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
 277{
 278	struct request_queue *q;
 279
 280	mutex_lock(&set->tag_list_lock);
 281	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 282		if (!blk_queue_skip_tagset_quiesce(q))
 283			blk_mq_quiesce_queue_nowait(q);
 284	}
 285	blk_mq_wait_quiesce_done(set);
 286	mutex_unlock(&set->tag_list_lock);
 287}
 288EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
 289
 290void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
 291{
 292	struct request_queue *q;
 293
 294	mutex_lock(&set->tag_list_lock);
 295	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 296		if (!blk_queue_skip_tagset_quiesce(q))
 297			blk_mq_unquiesce_queue(q);
 298	}
 299	mutex_unlock(&set->tag_list_lock);
 300}
 301EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
 302
 303void blk_mq_wake_waiters(struct request_queue *q)
 304{
 305	struct blk_mq_hw_ctx *hctx;
 306	unsigned long i;
 307
 308	queue_for_each_hw_ctx(q, hctx, i)
 309		if (blk_mq_hw_queue_mapped(hctx))
 310			blk_mq_tag_wakeup_all(hctx->tags, true);
 311}
 312
 313void blk_rq_init(struct request_queue *q, struct request *rq)
 314{
 315	memset(rq, 0, sizeof(*rq));
 316
 317	INIT_LIST_HEAD(&rq->queuelist);
 318	rq->q = q;
 319	rq->__sector = (sector_t) -1;
 320	INIT_HLIST_NODE(&rq->hash);
 321	RB_CLEAR_NODE(&rq->rb_node);
 322	rq->tag = BLK_MQ_NO_TAG;
 323	rq->internal_tag = BLK_MQ_NO_TAG;
 324	rq->start_time_ns = blk_time_get_ns();
 325	rq->part = NULL;
 326	blk_crypto_rq_set_defaults(rq);
 327}
 328EXPORT_SYMBOL(blk_rq_init);
 329
 330/* Set start and alloc time when the allocated request is actually used */
 331static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
 332{
 333	if (blk_mq_need_time_stamp(rq))
 334		rq->start_time_ns = blk_time_get_ns();
 335	else
 336		rq->start_time_ns = 0;
 337
 338#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 339	if (blk_queue_rq_alloc_time(rq->q))
 340		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
 341	else
 342		rq->alloc_time_ns = 0;
 343#endif
 344}
 345
 346static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 347		struct blk_mq_tags *tags, unsigned int tag)
 348{
 349	struct blk_mq_ctx *ctx = data->ctx;
 350	struct blk_mq_hw_ctx *hctx = data->hctx;
 351	struct request_queue *q = data->q;
 352	struct request *rq = tags->static_rqs[tag];
 353
 354	rq->q = q;
 355	rq->mq_ctx = ctx;
 356	rq->mq_hctx = hctx;
 357	rq->cmd_flags = data->cmd_flags;
 358
 359	if (data->flags & BLK_MQ_REQ_PM)
 360		data->rq_flags |= RQF_PM;
 361	if (blk_queue_io_stat(q))
 362		data->rq_flags |= RQF_IO_STAT;
 363	rq->rq_flags = data->rq_flags;
 364
 365	if (data->rq_flags & RQF_SCHED_TAGS) {
 
 
 
 366		rq->tag = BLK_MQ_NO_TAG;
 367		rq->internal_tag = tag;
 368	} else {
 369		rq->tag = tag;
 370		rq->internal_tag = BLK_MQ_NO_TAG;
 371	}
 372	rq->timeout = 0;
 373
 
 
 
 
 374	rq->part = NULL;
 
 
 
 375	rq->io_start_time_ns = 0;
 376	rq->stats_sectors = 0;
 377	rq->nr_phys_segments = 0;
 378#if defined(CONFIG_BLK_DEV_INTEGRITY)
 379	rq->nr_integrity_segments = 0;
 380#endif
 381	rq->end_io = NULL;
 382	rq->end_io_data = NULL;
 383
 384	blk_crypto_rq_set_defaults(rq);
 385	INIT_LIST_HEAD(&rq->queuelist);
 386	/* tag was already set */
 387	WRITE_ONCE(rq->deadline, 0);
 388	req_ref_set(rq, 1);
 389
 390	if (rq->rq_flags & RQF_USE_SCHED) {
 391		struct elevator_queue *e = data->q->elevator;
 392
 393		INIT_HLIST_NODE(&rq->hash);
 394		RB_CLEAR_NODE(&rq->rb_node);
 395
 396		if (e->type->ops.prepare_request)
 
 397			e->type->ops.prepare_request(rq);
 
 
 398	}
 399
 400	return rq;
 401}
 402
 403static inline struct request *
 404__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
 
 405{
 406	unsigned int tag, tag_offset;
 407	struct blk_mq_tags *tags;
 408	struct request *rq;
 409	unsigned long tag_mask;
 410	int i, nr = 0;
 411
 412	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
 413	if (unlikely(!tag_mask))
 414		return NULL;
 415
 416	tags = blk_mq_tags_from_data(data);
 417	for (i = 0; tag_mask; i++) {
 418		if (!(tag_mask & (1UL << i)))
 419			continue;
 420		tag = tag_offset + i;
 421		prefetch(tags->static_rqs[tag]);
 422		tag_mask &= ~(1UL << i);
 423		rq = blk_mq_rq_ctx_init(data, tags, tag);
 424		rq_list_add(data->cached_rq, rq);
 425		nr++;
 426	}
 427	if (!(data->rq_flags & RQF_SCHED_TAGS))
 428		blk_mq_add_active_requests(data->hctx, nr);
 429	/* caller already holds a reference, add for remainder */
 430	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
 431	data->nr_tags -= nr;
 432
 433	return rq_list_pop(data->cached_rq);
 434}
 435
 436static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
 437{
 438	struct request_queue *q = data->q;
 439	u64 alloc_time_ns = 0;
 440	struct request *rq;
 441	unsigned int tag;
 442
 443	/* alloc_time includes depth and tag waits */
 444	if (blk_queue_rq_alloc_time(q))
 445		alloc_time_ns = blk_time_get_ns();
 446
 447	if (data->cmd_flags & REQ_NOWAIT)
 448		data->flags |= BLK_MQ_REQ_NOWAIT;
 449
 450	if (q->elevator) {
 451		/*
 452		 * All requests use scheduler tags when an I/O scheduler is
 453		 * enabled for the queue.
 454		 */
 455		data->rq_flags |= RQF_SCHED_TAGS;
 456
 457		/*
 458		 * Flush/passthrough requests are special and go directly to the
 459		 * dispatch list.
 
 460		 */
 461		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
 462		    !blk_op_is_passthrough(data->cmd_flags)) {
 463			struct elevator_mq_ops *ops = &q->elevator->type->ops;
 464
 465			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
 466
 467			data->rq_flags |= RQF_USE_SCHED;
 468			if (ops->limit_depth)
 469				ops->limit_depth(data->cmd_flags, data);
 470		}
 471	}
 472
 473retry:
 474	data->ctx = blk_mq_get_ctx(q);
 475	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 476	if (!(data->rq_flags & RQF_SCHED_TAGS))
 477		blk_mq_tag_busy(data->hctx);
 478
 479	if (data->flags & BLK_MQ_REQ_RESERVED)
 480		data->rq_flags |= RQF_RESV;
 481
 482	/*
 483	 * Try batched alloc if we want more than 1 tag.
 484	 */
 485	if (data->nr_tags > 1) {
 486		rq = __blk_mq_alloc_requests_batch(data);
 487		if (rq) {
 488			blk_mq_rq_time_init(rq, alloc_time_ns);
 489			return rq;
 490		}
 491		data->nr_tags = 1;
 492	}
 493
 494	/*
 495	 * Waiting allocations only fail because of an inactive hctx.  In that
 496	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 497	 * should have migrated us to an online CPU by now.
 498	 */
 499	tag = blk_mq_get_tag(data);
 500	if (tag == BLK_MQ_NO_TAG) {
 501		if (data->flags & BLK_MQ_REQ_NOWAIT)
 502			return NULL;
 503		/*
 504		 * Give up the CPU and sleep for a random short time to
 505		 * ensure that thread using a realtime scheduling class
 506		 * are migrated off the CPU, and thus off the hctx that
 507		 * is going away.
 508		 */
 509		msleep(3);
 510		goto retry;
 511	}
 512
 513	if (!(data->rq_flags & RQF_SCHED_TAGS))
 514		blk_mq_inc_active_requests(data->hctx);
 515	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
 516	blk_mq_rq_time_init(rq, alloc_time_ns);
 517	return rq;
 518}
 519
 520static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
 521					    struct blk_plug *plug,
 522					    blk_opf_t opf,
 523					    blk_mq_req_flags_t flags)
 524{
 525	struct blk_mq_alloc_data data = {
 526		.q		= q,
 527		.flags		= flags,
 528		.cmd_flags	= opf,
 529		.nr_tags	= plug->nr_ios,
 530		.cached_rq	= &plug->cached_rq,
 531	};
 532	struct request *rq;
 533
 534	if (blk_queue_enter(q, flags))
 535		return NULL;
 536
 537	plug->nr_ios = 1;
 538
 539	rq = __blk_mq_alloc_requests(&data);
 540	if (unlikely(!rq))
 541		blk_queue_exit(q);
 542	return rq;
 543}
 544
 545static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
 546						   blk_opf_t opf,
 547						   blk_mq_req_flags_t flags)
 548{
 549	struct blk_plug *plug = current->plug;
 550	struct request *rq;
 551
 552	if (!plug)
 553		return NULL;
 554
 555	if (rq_list_empty(plug->cached_rq)) {
 556		if (plug->nr_ios == 1)
 557			return NULL;
 558		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
 559		if (!rq)
 560			return NULL;
 561	} else {
 562		rq = rq_list_peek(&plug->cached_rq);
 563		if (!rq || rq->q != q)
 564			return NULL;
 565
 566		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
 567			return NULL;
 568		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
 569			return NULL;
 570
 571		plug->cached_rq = rq_list_next(rq);
 572		blk_mq_rq_time_init(rq, 0);
 573	}
 574
 575	rq->cmd_flags = opf;
 576	INIT_LIST_HEAD(&rq->queuelist);
 577	return rq;
 578}
 579
 580struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
 581		blk_mq_req_flags_t flags)
 582{
 583	struct request *rq;
 584
 585	rq = blk_mq_alloc_cached_request(q, opf, flags);
 586	if (!rq) {
 587		struct blk_mq_alloc_data data = {
 588			.q		= q,
 589			.flags		= flags,
 590			.cmd_flags	= opf,
 591			.nr_tags	= 1,
 592		};
 593		int ret;
 594
 595		ret = blk_queue_enter(q, flags);
 596		if (ret)
 597			return ERR_PTR(ret);
 598
 599		rq = __blk_mq_alloc_requests(&data);
 600		if (!rq)
 601			goto out_queue_exit;
 602	}
 603	rq->__data_len = 0;
 604	rq->__sector = (sector_t) -1;
 605	rq->bio = rq->biotail = NULL;
 606	return rq;
 607out_queue_exit:
 608	blk_queue_exit(q);
 609	return ERR_PTR(-EWOULDBLOCK);
 610}
 611EXPORT_SYMBOL(blk_mq_alloc_request);
 612
 613struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 614	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 615{
 616	struct blk_mq_alloc_data data = {
 617		.q		= q,
 618		.flags		= flags,
 619		.cmd_flags	= opf,
 620		.nr_tags	= 1,
 621	};
 622	u64 alloc_time_ns = 0;
 623	struct request *rq;
 624	unsigned int cpu;
 625	unsigned int tag;
 626	int ret;
 627
 628	/* alloc_time includes depth and tag waits */
 629	if (blk_queue_rq_alloc_time(q))
 630		alloc_time_ns = blk_time_get_ns();
 631
 632	/*
 633	 * If the tag allocator sleeps we could get an allocation for a
 634	 * different hardware context.  No need to complicate the low level
 635	 * allocator for this for the rare use case of a command tied to
 636	 * a specific queue.
 637	 */
 638	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
 639	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
 640		return ERR_PTR(-EINVAL);
 641
 642	if (hctx_idx >= q->nr_hw_queues)
 643		return ERR_PTR(-EIO);
 644
 645	ret = blk_queue_enter(q, flags);
 646	if (ret)
 647		return ERR_PTR(ret);
 648
 649	/*
 650	 * Check if the hardware context is actually mapped to anything.
 651	 * If not tell the caller that it should skip this queue.
 652	 */
 653	ret = -EXDEV;
 654	data.hctx = xa_load(&q->hctx_table, hctx_idx);
 655	if (!blk_mq_hw_queue_mapped(data.hctx))
 656		goto out_queue_exit;
 657	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 658	if (cpu >= nr_cpu_ids)
 659		goto out_queue_exit;
 660	data.ctx = __blk_mq_get_ctx(q, cpu);
 661
 662	if (q->elevator)
 663		data.rq_flags |= RQF_SCHED_TAGS;
 664	else
 665		blk_mq_tag_busy(data.hctx);
 666
 667	if (flags & BLK_MQ_REQ_RESERVED)
 668		data.rq_flags |= RQF_RESV;
 669
 670	ret = -EWOULDBLOCK;
 671	tag = blk_mq_get_tag(&data);
 672	if (tag == BLK_MQ_NO_TAG)
 673		goto out_queue_exit;
 674	if (!(data.rq_flags & RQF_SCHED_TAGS))
 675		blk_mq_inc_active_requests(data.hctx);
 676	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
 677	blk_mq_rq_time_init(rq, alloc_time_ns);
 678	rq->__data_len = 0;
 679	rq->__sector = (sector_t) -1;
 680	rq->bio = rq->biotail = NULL;
 681	return rq;
 682
 683out_queue_exit:
 684	blk_queue_exit(q);
 685	return ERR_PTR(ret);
 686}
 687EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 688
 689static void blk_mq_finish_request(struct request *rq)
 690{
 691	struct request_queue *q = rq->q;
 692
 693	if (rq->rq_flags & RQF_USE_SCHED) {
 694		q->elevator->type->ops.finish_request(rq);
 695		/*
 696		 * For postflush request that may need to be
 697		 * completed twice, we should clear this flag
 698		 * to avoid double finish_request() on the rq.
 699		 */
 700		rq->rq_flags &= ~RQF_USE_SCHED;
 701	}
 702}
 703
 704static void __blk_mq_free_request(struct request *rq)
 705{
 706	struct request_queue *q = rq->q;
 707	struct blk_mq_ctx *ctx = rq->mq_ctx;
 708	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 709	const int sched_tag = rq->internal_tag;
 710
 711	blk_crypto_free_request(rq);
 712	blk_pm_mark_last_busy(rq);
 713	rq->mq_hctx = NULL;
 714
 715	if (rq->tag != BLK_MQ_NO_TAG) {
 716		blk_mq_dec_active_requests(hctx);
 717		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 718	}
 719	if (sched_tag != BLK_MQ_NO_TAG)
 720		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 721	blk_mq_sched_restart(hctx);
 722	blk_queue_exit(q);
 723}
 724
 725void blk_mq_free_request(struct request *rq)
 726{
 727	struct request_queue *q = rq->q;
 
 
 
 
 
 728
 729	blk_mq_finish_request(rq);
 
 730
 731	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 732		laptop_io_completion(q->disk->bdi);
 733
 734	rq_qos_done(q, rq);
 735
 736	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 737	if (req_ref_put_and_test(rq))
 738		__blk_mq_free_request(rq);
 739}
 740EXPORT_SYMBOL_GPL(blk_mq_free_request);
 741
 742void blk_mq_free_plug_rqs(struct blk_plug *plug)
 743{
 744	struct request *rq;
 745
 746	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
 747		blk_mq_free_request(rq);
 748}
 749
 750void blk_dump_rq_flags(struct request *rq, char *msg)
 751{
 752	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 753		rq->q->disk ? rq->q->disk->disk_name : "?",
 754		(__force unsigned long long) rq->cmd_flags);
 755
 756	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 757	       (unsigned long long)blk_rq_pos(rq),
 758	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 759	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 760	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 761}
 762EXPORT_SYMBOL(blk_dump_rq_flags);
 763
 764static void req_bio_endio(struct request *rq, struct bio *bio,
 765			  unsigned int nbytes, blk_status_t error)
 766{
 767	if (unlikely(error)) {
 768		bio->bi_status = error;
 769	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
 770		/*
 771		 * Partial zone append completions cannot be supported as the
 772		 * BIO fragments may end up not being written sequentially.
 773		 */
 774		if (bio->bi_iter.bi_size != nbytes)
 775			bio->bi_status = BLK_STS_IOERR;
 776		else
 777			bio->bi_iter.bi_sector = rq->__sector;
 778	}
 779
 780	bio_advance(bio, nbytes);
 781
 782	if (unlikely(rq->rq_flags & RQF_QUIET))
 783		bio_set_flag(bio, BIO_QUIET);
 784	/* don't actually finish bio if it's part of flush sequence */
 785	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 786		bio_endio(bio);
 787}
 788
 789static void blk_account_io_completion(struct request *req, unsigned int bytes)
 790{
 791	if (req->part && blk_do_io_stat(req)) {
 792		const int sgrp = op_stat_group(req_op(req));
 793
 794		part_stat_lock();
 795		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
 796		part_stat_unlock();
 797	}
 798}
 799
 800static void blk_print_req_error(struct request *req, blk_status_t status)
 801{
 802	printk_ratelimited(KERN_ERR
 803		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 804		"phys_seg %u prio class %u\n",
 805		blk_status_to_str(status),
 806		req->q->disk ? req->q->disk->disk_name : "?",
 807		blk_rq_pos(req), (__force u32)req_op(req),
 808		blk_op_str(req_op(req)),
 809		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
 810		req->nr_phys_segments,
 811		IOPRIO_PRIO_CLASS(req->ioprio));
 812}
 813
 814/*
 815 * Fully end IO on a request. Does not support partial completions, or
 816 * errors.
 817 */
 818static void blk_complete_request(struct request *req)
 819{
 820	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
 821	int total_bytes = blk_rq_bytes(req);
 822	struct bio *bio = req->bio;
 823
 824	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
 825
 826	if (!bio)
 827		return;
 828
 829#ifdef CONFIG_BLK_DEV_INTEGRITY
 830	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
 831		req->q->integrity.profile->complete_fn(req, total_bytes);
 832#endif
 833
 834	/*
 835	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 836	 * bio_endio().  Therefore, the keyslot must be released before that.
 837	 */
 838	blk_crypto_rq_put_keyslot(req);
 839
 840	blk_account_io_completion(req, total_bytes);
 841
 842	do {
 843		struct bio *next = bio->bi_next;
 844
 845		/* Completion has already been traced */
 846		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 847
 848		if (req_op(req) == REQ_OP_ZONE_APPEND)
 849			bio->bi_iter.bi_sector = req->__sector;
 850
 851		if (!is_flush)
 852			bio_endio(bio);
 853		bio = next;
 854	} while (bio);
 855
 856	/*
 857	 * Reset counters so that the request stacking driver
 858	 * can find how many bytes remain in the request
 859	 * later.
 860	 */
 861	if (!req->end_io) {
 862		req->bio = NULL;
 863		req->__data_len = 0;
 864	}
 865}
 866
 867/**
 868 * blk_update_request - Complete multiple bytes without completing the request
 869 * @req:      the request being processed
 870 * @error:    block status code
 871 * @nr_bytes: number of bytes to complete for @req
 872 *
 873 * Description:
 874 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 875 *     the request structure even if @req doesn't have leftover.
 876 *     If @req has leftover, sets it up for the next range of segments.
 877 *
 878 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 879 *     %false return from this function.
 880 *
 881 * Note:
 882 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 883 *      except in the consistency check at the end of this function.
 884 *
 885 * Return:
 886 *     %false - this request doesn't have any more data
 887 *     %true  - this request has more data
 888 **/
 889bool blk_update_request(struct request *req, blk_status_t error,
 890		unsigned int nr_bytes)
 891{
 892	int total_bytes;
 893
 894	trace_block_rq_complete(req, error, nr_bytes);
 895
 896	if (!req->bio)
 897		return false;
 898
 899#ifdef CONFIG_BLK_DEV_INTEGRITY
 900	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 901	    error == BLK_STS_OK)
 902		req->q->integrity.profile->complete_fn(req, nr_bytes);
 903#endif
 904
 905	/*
 906	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 907	 * bio_endio().  Therefore, the keyslot must be released before that.
 908	 */
 909	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
 910		__blk_crypto_rq_put_keyslot(req);
 911
 912	if (unlikely(error && !blk_rq_is_passthrough(req) &&
 913		     !(req->rq_flags & RQF_QUIET)) &&
 914		     !test_bit(GD_DEAD, &req->q->disk->state)) {
 915		blk_print_req_error(req, error);
 916		trace_block_rq_error(req, error, nr_bytes);
 917	}
 918
 919	blk_account_io_completion(req, nr_bytes);
 920
 921	total_bytes = 0;
 922	while (req->bio) {
 923		struct bio *bio = req->bio;
 924		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
 925
 926		if (bio_bytes == bio->bi_iter.bi_size)
 927			req->bio = bio->bi_next;
 928
 929		/* Completion has already been traced */
 930		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 931		req_bio_endio(req, bio, bio_bytes, error);
 932
 933		total_bytes += bio_bytes;
 934		nr_bytes -= bio_bytes;
 935
 936		if (!nr_bytes)
 937			break;
 938	}
 939
 940	/*
 941	 * completely done
 942	 */
 943	if (!req->bio) {
 944		/*
 945		 * Reset counters so that the request stacking driver
 946		 * can find how many bytes remain in the request
 947		 * later.
 948		 */
 949		req->__data_len = 0;
 950		return false;
 951	}
 952
 953	req->__data_len -= total_bytes;
 954
 955	/* update sector only for requests with clear definition of sector */
 956	if (!blk_rq_is_passthrough(req))
 957		req->__sector += total_bytes >> 9;
 958
 959	/* mixed attributes always follow the first bio */
 960	if (req->rq_flags & RQF_MIXED_MERGE) {
 961		req->cmd_flags &= ~REQ_FAILFAST_MASK;
 962		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
 963	}
 964
 965	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
 966		/*
 967		 * If total number of sectors is less than the first segment
 968		 * size, something has gone terribly wrong.
 969		 */
 970		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
 971			blk_dump_rq_flags(req, "request botched");
 972			req->__data_len = blk_rq_cur_bytes(req);
 973		}
 974
 975		/* recalculate the number of segments */
 976		req->nr_phys_segments = blk_recalc_rq_segments(req);
 977	}
 978
 979	return true;
 980}
 981EXPORT_SYMBOL_GPL(blk_update_request);
 982
 
 
 
 
 
 
 
 
 
 
 
 983static inline void blk_account_io_done(struct request *req, u64 now)
 984{
 985	trace_block_io_done(req);
 986
 987	/*
 988	 * Account IO completion.  flush_rq isn't accounted as a
 989	 * normal IO on queueing nor completion.  Accounting the
 990	 * containing request is enough.
 991	 */
 992	if (blk_do_io_stat(req) && req->part &&
 993	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
 994		const int sgrp = op_stat_group(req_op(req));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995
 996		part_stat_lock();
 997		update_io_ticks(req->part, jiffies, true);
 998		part_stat_inc(req->part, ios[sgrp]);
 999		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1000		part_stat_local_dec(req->part,
1001				    in_flight[op_is_write(req_op(req))]);
1002		part_stat_unlock();
1003	}
1004}
1005
1006static inline void blk_account_io_start(struct request *req)
1007{
1008	trace_block_io_start(req);
1009
1010	if (blk_do_io_stat(req)) {
1011		/*
1012		 * All non-passthrough requests are created from a bio with one
1013		 * exception: when a flush command that is part of a flush sequence
1014		 * generated by the state machine in blk-flush.c is cloned onto the
1015		 * lower device by dm-multipath we can get here without a bio.
1016		 */
1017		if (req->bio)
1018			req->part = req->bio->bi_bdev;
1019		else
1020			req->part = req->q->disk->part0;
1021
1022		part_stat_lock();
1023		update_io_ticks(req->part, jiffies, false);
1024		part_stat_local_inc(req->part,
1025				    in_flight[op_is_write(req_op(req))]);
1026		part_stat_unlock();
1027	}
1028}
1029
1030static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1031{
1032	if (rq->rq_flags & RQF_STATS)
 
1033		blk_stat_add(rq, now);
 
1034
1035	blk_mq_sched_completed_request(rq, now);
1036	blk_account_io_done(rq, now);
1037}
1038
1039inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1040{
1041	if (blk_mq_need_time_stamp(rq))
1042		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1043
1044	blk_mq_finish_request(rq);
1045
1046	if (rq->end_io) {
1047		rq_qos_done(rq->q, rq);
1048		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1049			blk_mq_free_request(rq);
1050	} else {
1051		blk_mq_free_request(rq);
1052	}
1053}
1054EXPORT_SYMBOL(__blk_mq_end_request);
1055
1056void blk_mq_end_request(struct request *rq, blk_status_t error)
1057{
1058	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1059		BUG();
1060	__blk_mq_end_request(rq, error);
1061}
1062EXPORT_SYMBOL(blk_mq_end_request);
1063
1064#define TAG_COMP_BATCH		32
1065
1066static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1067					  int *tag_array, int nr_tags)
1068{
1069	struct request_queue *q = hctx->queue;
1070
1071	blk_mq_sub_active_requests(hctx, nr_tags);
 
 
 
 
 
1072
1073	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1074	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1075}
1076
1077void blk_mq_end_request_batch(struct io_comp_batch *iob)
1078{
1079	int tags[TAG_COMP_BATCH], nr_tags = 0;
1080	struct blk_mq_hw_ctx *cur_hctx = NULL;
1081	struct request *rq;
1082	u64 now = 0;
1083
1084	if (iob->need_ts)
1085		now = blk_time_get_ns();
1086
1087	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1088		prefetch(rq->bio);
1089		prefetch(rq->rq_next);
1090
1091		blk_complete_request(rq);
1092		if (iob->need_ts)
1093			__blk_mq_end_request_acct(rq, now);
1094
1095		blk_mq_finish_request(rq);
1096
1097		rq_qos_done(rq->q, rq);
1098
1099		/*
1100		 * If end_io handler returns NONE, then it still has
1101		 * ownership of the request.
1102		 */
1103		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1104			continue;
1105
1106		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1107		if (!req_ref_put_and_test(rq))
1108			continue;
1109
1110		blk_crypto_free_request(rq);
1111		blk_pm_mark_last_busy(rq);
1112
1113		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1114			if (cur_hctx)
1115				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1116			nr_tags = 0;
1117			cur_hctx = rq->mq_hctx;
1118		}
1119		tags[nr_tags++] = rq->tag;
1120	}
1121
1122	if (nr_tags)
1123		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1124}
1125EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1126
1127static void blk_complete_reqs(struct llist_head *list)
1128{
1129	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1130	struct request *rq, *next;
1131
1132	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1133		rq->q->mq_ops->complete(rq);
1134}
1135
1136static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1137{
1138	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1139}
1140
1141static int blk_softirq_cpu_dead(unsigned int cpu)
1142{
1143	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1144	return 0;
1145}
1146
1147static void __blk_mq_complete_request_remote(void *data)
1148{
1149	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1150}
1151
1152static inline bool blk_mq_complete_need_ipi(struct request *rq)
1153{
1154	int cpu = raw_smp_processor_id();
1155
1156	if (!IS_ENABLED(CONFIG_SMP) ||
1157	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1158		return false;
1159	/*
1160	 * With force threaded interrupts enabled, raising softirq from an SMP
1161	 * function call will always result in waking the ksoftirqd thread.
1162	 * This is probably worse than completing the request on a different
1163	 * cache domain.
1164	 */
1165	if (force_irqthreads())
1166		return false;
1167
1168	/* same CPU or cache domain and capacity?  Complete locally */
1169	if (cpu == rq->mq_ctx->cpu ||
1170	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1171	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1172	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1173		return false;
1174
1175	/* don't try to IPI to an offline CPU */
1176	return cpu_online(rq->mq_ctx->cpu);
1177}
1178
1179static void blk_mq_complete_send_ipi(struct request *rq)
1180{
 
1181	unsigned int cpu;
1182
1183	cpu = rq->mq_ctx->cpu;
1184	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1185		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
 
 
 
1186}
1187
1188static void blk_mq_raise_softirq(struct request *rq)
1189{
1190	struct llist_head *list;
1191
1192	preempt_disable();
1193	list = this_cpu_ptr(&blk_cpu_done);
1194	if (llist_add(&rq->ipi_list, list))
1195		raise_softirq(BLOCK_SOFTIRQ);
1196	preempt_enable();
1197}
1198
1199bool blk_mq_complete_request_remote(struct request *rq)
1200{
1201	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1202
1203	/*
1204	 * For request which hctx has only one ctx mapping,
1205	 * or a polled request, always complete locally,
1206	 * it's pointless to redirect the completion.
1207	 */
1208	if ((rq->mq_hctx->nr_ctx == 1 &&
1209	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1210	     rq->cmd_flags & REQ_POLLED)
1211		return false;
1212
1213	if (blk_mq_complete_need_ipi(rq)) {
1214		blk_mq_complete_send_ipi(rq);
1215		return true;
1216	}
1217
1218	if (rq->q->nr_hw_queues == 1) {
1219		blk_mq_raise_softirq(rq);
1220		return true;
1221	}
1222	return false;
1223}
1224EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226/**
1227 * blk_mq_complete_request - end I/O on a request
1228 * @rq:		the request being processed
1229 *
1230 * Description:
1231 *	Complete a request by scheduling the ->complete_rq operation.
1232 **/
1233void blk_mq_complete_request(struct request *rq)
1234{
1235	if (!blk_mq_complete_request_remote(rq))
1236		rq->q->mq_ops->complete(rq);
1237}
1238EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240/**
1241 * blk_mq_start_request - Start processing a request
1242 * @rq: Pointer to request to be started
1243 *
1244 * Function used by device drivers to notify the block layer that a request
1245 * is going to be processed now, so blk layer can do proper initializations
1246 * such as starting the timeout timer.
1247 */
1248void blk_mq_start_request(struct request *rq)
1249{
1250	struct request_queue *q = rq->q;
1251
1252	trace_block_rq_issue(rq);
1253
1254	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1255	    !blk_rq_is_passthrough(rq)) {
1256		rq->io_start_time_ns = blk_time_get_ns();
1257		rq->stats_sectors = blk_rq_sectors(rq);
1258		rq->rq_flags |= RQF_STATS;
1259		rq_qos_issue(q, rq);
1260	}
1261
1262	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1263
1264	blk_add_timer(rq);
1265	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1267
1268#ifdef CONFIG_BLK_DEV_INTEGRITY
1269	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1270		q->integrity.profile->prepare_fn(rq);
1271#endif
1272	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1273	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1274}
1275EXPORT_SYMBOL(blk_mq_start_request);
1276
1277/*
1278 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1279 * queues. This is important for md arrays to benefit from merging
1280 * requests.
1281 */
1282static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1283{
1284	if (plug->multiple_queues)
1285		return BLK_MAX_REQUEST_COUNT * 2;
1286	return BLK_MAX_REQUEST_COUNT;
1287}
1288
1289static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1290{
1291	struct request *last = rq_list_peek(&plug->mq_list);
1292
1293	if (!plug->rq_count) {
1294		trace_block_plug(rq->q);
1295	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1296		   (!blk_queue_nomerges(rq->q) &&
1297		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1298		blk_mq_flush_plug_list(plug, false);
1299		last = NULL;
1300		trace_block_plug(rq->q);
1301	}
1302
1303	if (!plug->multiple_queues && last && last->q != rq->q)
1304		plug->multiple_queues = true;
1305	/*
1306	 * Any request allocated from sched tags can't be issued to
1307	 * ->queue_rqs() directly
1308	 */
1309	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1310		plug->has_elevator = true;
1311	rq->rq_next = NULL;
1312	rq_list_add(&plug->mq_list, rq);
1313	plug->rq_count++;
1314}
1315
1316/**
1317 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1318 * @rq:		request to insert
1319 * @at_head:    insert request at head or tail of queue
1320 *
1321 * Description:
1322 *    Insert a fully prepared request at the back of the I/O scheduler queue
1323 *    for execution.  Don't wait for completion.
1324 *
1325 * Note:
1326 *    This function will invoke @done directly if the queue is dead.
1327 */
1328void blk_execute_rq_nowait(struct request *rq, bool at_head)
1329{
1330	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1331
1332	WARN_ON(irqs_disabled());
1333	WARN_ON(!blk_rq_is_passthrough(rq));
1334
1335	blk_account_io_start(rq);
1336
1337	/*
1338	 * As plugging can be enabled for passthrough requests on a zoned
1339	 * device, directly accessing the plug instead of using blk_mq_plug()
1340	 * should not have any consequences.
1341	 */
1342	if (current->plug && !at_head) {
1343		blk_add_rq_to_plug(current->plug, rq);
1344		return;
1345	}
1346
1347	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1348	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1349}
1350EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1351
1352struct blk_rq_wait {
1353	struct completion done;
1354	blk_status_t ret;
1355};
1356
1357static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1358{
1359	struct blk_rq_wait *wait = rq->end_io_data;
1360
1361	wait->ret = ret;
1362	complete(&wait->done);
1363	return RQ_END_IO_NONE;
1364}
1365
1366bool blk_rq_is_poll(struct request *rq)
1367{
1368	if (!rq->mq_hctx)
1369		return false;
1370	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1371		return false;
 
 
1372	return true;
1373}
1374EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1375
1376static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1377{
1378	do {
1379		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1380		cond_resched();
1381	} while (!completion_done(wait));
1382}
1383
1384/**
1385 * blk_execute_rq - insert a request into queue for execution
1386 * @rq:		request to insert
1387 * @at_head:    insert request at head or tail of queue
1388 *
1389 * Description:
1390 *    Insert a fully prepared request at the back of the I/O scheduler queue
1391 *    for execution and wait for completion.
1392 * Return: The blk_status_t result provided to blk_mq_end_request().
1393 */
1394blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1395{
1396	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1397	struct blk_rq_wait wait = {
1398		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1399	};
1400
1401	WARN_ON(irqs_disabled());
1402	WARN_ON(!blk_rq_is_passthrough(rq));
1403
1404	rq->end_io_data = &wait;
1405	rq->end_io = blk_end_sync_rq;
1406
1407	blk_account_io_start(rq);
1408	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1409	blk_mq_run_hw_queue(hctx, false);
1410
1411	if (blk_rq_is_poll(rq))
1412		blk_rq_poll_completion(rq, &wait.done);
1413	else
1414		blk_wait_io(&wait.done);
 
 
 
 
 
 
 
 
 
 
 
 
1415
1416	return wait.ret;
1417}
1418EXPORT_SYMBOL(blk_execute_rq);
1419
1420static void __blk_mq_requeue_request(struct request *rq)
1421{
1422	struct request_queue *q = rq->q;
1423
1424	blk_mq_put_driver_tag(rq);
1425
1426	trace_block_rq_requeue(rq);
1427	rq_qos_requeue(q, rq);
1428
1429	if (blk_mq_request_started(rq)) {
1430		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1431		rq->rq_flags &= ~RQF_TIMED_OUT;
1432	}
1433}
1434
1435void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1436{
1437	struct request_queue *q = rq->q;
1438	unsigned long flags;
1439
1440	__blk_mq_requeue_request(rq);
1441
1442	/* this request will be re-inserted to io scheduler queue */
1443	blk_mq_sched_requeue_request(rq);
1444
1445	spin_lock_irqsave(&q->requeue_lock, flags);
1446	list_add_tail(&rq->queuelist, &q->requeue_list);
1447	spin_unlock_irqrestore(&q->requeue_lock, flags);
1448
1449	if (kick_requeue_list)
1450		blk_mq_kick_requeue_list(q);
1451}
1452EXPORT_SYMBOL(blk_mq_requeue_request);
1453
1454static void blk_mq_requeue_work(struct work_struct *work)
1455{
1456	struct request_queue *q =
1457		container_of(work, struct request_queue, requeue_work.work);
1458	LIST_HEAD(rq_list);
1459	LIST_HEAD(flush_list);
1460	struct request *rq;
1461
1462	spin_lock_irq(&q->requeue_lock);
1463	list_splice_init(&q->requeue_list, &rq_list);
1464	list_splice_init(&q->flush_list, &flush_list);
1465	spin_unlock_irq(&q->requeue_lock);
1466
1467	while (!list_empty(&rq_list)) {
1468		rq = list_entry(rq_list.next, struct request, queuelist);
 
 
 
 
1469		/*
1470		 * If RQF_DONTPREP ist set, the request has been started by the
1471		 * driver already and might have driver-specific data allocated
1472		 * already.  Insert it into the hctx dispatch list to avoid
1473		 * block layer merges for the request.
1474		 */
1475		if (rq->rq_flags & RQF_DONTPREP) {
1476			list_del_init(&rq->queuelist);
1477			blk_mq_request_bypass_insert(rq, 0);
1478		} else {
1479			list_del_init(&rq->queuelist);
1480			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1481		}
1482	}
1483
1484	while (!list_empty(&flush_list)) {
1485		rq = list_entry(flush_list.next, struct request, queuelist);
1486		list_del_init(&rq->queuelist);
1487		blk_mq_insert_request(rq, 0);
1488	}
1489
1490	blk_mq_run_hw_queues(q, false);
1491}
1492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493void blk_mq_kick_requeue_list(struct request_queue *q)
1494{
1495	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1496}
1497EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1498
1499void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1500				    unsigned long msecs)
1501{
1502	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1503				    msecs_to_jiffies(msecs));
1504}
1505EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1506
1507static bool blk_is_flush_data_rq(struct request *rq)
1508{
1509	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1510}
1511
1512static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1513{
1514	/*
1515	 * If we find a request that isn't idle we know the queue is busy
1516	 * as it's checked in the iter.
1517	 * Return false to stop the iteration.
1518	 *
1519	 * In case of queue quiesce, if one flush data request is completed,
1520	 * don't count it as inflight given the flush sequence is suspended,
1521	 * and the original flush data request is invisible to driver, just
1522	 * like other pending requests because of quiesce
1523	 */
1524	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1525				blk_is_flush_data_rq(rq) &&
1526				blk_mq_request_completed(rq))) {
1527		bool *busy = priv;
1528
1529		*busy = true;
1530		return false;
1531	}
1532
1533	return true;
1534}
1535
1536bool blk_mq_queue_inflight(struct request_queue *q)
1537{
1538	bool busy = false;
1539
1540	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1541	return busy;
1542}
1543EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1544
1545static void blk_mq_rq_timed_out(struct request *req)
1546{
1547	req->rq_flags |= RQF_TIMED_OUT;
1548	if (req->q->mq_ops->timeout) {
1549		enum blk_eh_timer_return ret;
1550
1551		ret = req->q->mq_ops->timeout(req);
1552		if (ret == BLK_EH_DONE)
1553			return;
1554		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1555	}
1556
1557	blk_add_timer(req);
1558}
1559
1560struct blk_expired_data {
1561	bool has_timedout_rq;
1562	unsigned long next;
1563	unsigned long timeout_start;
1564};
1565
1566static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1567{
1568	unsigned long deadline;
1569
1570	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1571		return false;
1572	if (rq->rq_flags & RQF_TIMED_OUT)
1573		return false;
1574
1575	deadline = READ_ONCE(rq->deadline);
1576	if (time_after_eq(expired->timeout_start, deadline))
1577		return true;
1578
1579	if (expired->next == 0)
1580		expired->next = deadline;
1581	else if (time_after(expired->next, deadline))
1582		expired->next = deadline;
1583	return false;
1584}
1585
1586void blk_mq_put_rq_ref(struct request *rq)
1587{
1588	if (is_flush_rq(rq)) {
1589		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1590			blk_mq_free_request(rq);
1591	} else if (req_ref_put_and_test(rq)) {
1592		__blk_mq_free_request(rq);
1593	}
1594}
1595
1596static bool blk_mq_check_expired(struct request *rq, void *priv)
1597{
1598	struct blk_expired_data *expired = priv;
1599
1600	/*
1601	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1602	 * be reallocated underneath the timeout handler's processing, then
1603	 * the expire check is reliable. If the request is not expired, then
1604	 * it was completed and reallocated as a new request after returning
1605	 * from blk_mq_check_expired().
1606	 */
1607	if (blk_mq_req_expired(rq, expired)) {
1608		expired->has_timedout_rq = true;
1609		return false;
1610	}
1611	return true;
1612}
1613
1614static bool blk_mq_handle_expired(struct request *rq, void *priv)
1615{
1616	struct blk_expired_data *expired = priv;
1617
1618	if (blk_mq_req_expired(rq, expired))
1619		blk_mq_rq_timed_out(rq);
1620	return true;
1621}
1622
1623static void blk_mq_timeout_work(struct work_struct *work)
1624{
1625	struct request_queue *q =
1626		container_of(work, struct request_queue, timeout_work);
1627	struct blk_expired_data expired = {
1628		.timeout_start = jiffies,
1629	};
1630	struct blk_mq_hw_ctx *hctx;
1631	unsigned long i;
1632
1633	/* A deadlock might occur if a request is stuck requiring a
1634	 * timeout at the same time a queue freeze is waiting
1635	 * completion, since the timeout code would not be able to
1636	 * acquire the queue reference here.
1637	 *
1638	 * That's why we don't use blk_queue_enter here; instead, we use
1639	 * percpu_ref_tryget directly, because we need to be able to
1640	 * obtain a reference even in the short window between the queue
1641	 * starting to freeze, by dropping the first reference in
1642	 * blk_freeze_queue_start, and the moment the last request is
1643	 * consumed, marked by the instant q_usage_counter reaches
1644	 * zero.
1645	 */
1646	if (!percpu_ref_tryget(&q->q_usage_counter))
1647		return;
1648
1649	/* check if there is any timed-out request */
1650	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1651	if (expired.has_timedout_rq) {
1652		/*
1653		 * Before walking tags, we must ensure any submit started
1654		 * before the current time has finished. Since the submit
1655		 * uses srcu or rcu, wait for a synchronization point to
1656		 * ensure all running submits have finished
1657		 */
1658		blk_mq_wait_quiesce_done(q->tag_set);
1659
1660		expired.next = 0;
1661		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1662	}
1663
1664	if (expired.next != 0) {
1665		mod_timer(&q->timeout, expired.next);
1666	} else {
1667		/*
1668		 * Request timeouts are handled as a forward rolling timer. If
1669		 * we end up here it means that no requests are pending and
1670		 * also that no request has been pending for a while. Mark
1671		 * each hctx as idle.
1672		 */
1673		queue_for_each_hw_ctx(q, hctx, i) {
1674			/* the hctx may be unmapped, so check it here */
1675			if (blk_mq_hw_queue_mapped(hctx))
1676				blk_mq_tag_idle(hctx);
1677		}
1678	}
1679	blk_queue_exit(q);
1680}
1681
1682struct flush_busy_ctx_data {
1683	struct blk_mq_hw_ctx *hctx;
1684	struct list_head *list;
1685};
1686
1687static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1688{
1689	struct flush_busy_ctx_data *flush_data = data;
1690	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1691	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1692	enum hctx_type type = hctx->type;
1693
1694	spin_lock(&ctx->lock);
1695	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1696	sbitmap_clear_bit(sb, bitnr);
1697	spin_unlock(&ctx->lock);
1698	return true;
1699}
1700
1701/*
1702 * Process software queues that have been marked busy, splicing them
1703 * to the for-dispatch
1704 */
1705void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1706{
1707	struct flush_busy_ctx_data data = {
1708		.hctx = hctx,
1709		.list = list,
1710	};
1711
1712	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1713}
1714EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1715
1716struct dispatch_rq_data {
1717	struct blk_mq_hw_ctx *hctx;
1718	struct request *rq;
1719};
1720
1721static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1722		void *data)
1723{
1724	struct dispatch_rq_data *dispatch_data = data;
1725	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1726	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1727	enum hctx_type type = hctx->type;
1728
1729	spin_lock(&ctx->lock);
1730	if (!list_empty(&ctx->rq_lists[type])) {
1731		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1732		list_del_init(&dispatch_data->rq->queuelist);
1733		if (list_empty(&ctx->rq_lists[type]))
1734			sbitmap_clear_bit(sb, bitnr);
1735	}
1736	spin_unlock(&ctx->lock);
1737
1738	return !dispatch_data->rq;
1739}
1740
1741struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1742					struct blk_mq_ctx *start)
1743{
1744	unsigned off = start ? start->index_hw[hctx->type] : 0;
1745	struct dispatch_rq_data data = {
1746		.hctx = hctx,
1747		.rq   = NULL,
1748	};
1749
1750	__sbitmap_for_each_set(&hctx->ctx_map, off,
1751			       dispatch_rq_from_ctx, &data);
1752
1753	return data.rq;
1754}
1755
1756bool __blk_mq_alloc_driver_tag(struct request *rq)
1757{
1758	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1759	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1760	int tag;
1761
1762	blk_mq_tag_busy(rq->mq_hctx);
1763
1764	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1765		bt = &rq->mq_hctx->tags->breserved_tags;
1766		tag_offset = 0;
1767	} else {
1768		if (!hctx_may_queue(rq->mq_hctx, bt))
1769			return false;
1770	}
1771
1772	tag = __sbitmap_queue_get(bt);
1773	if (tag == BLK_MQ_NO_TAG)
1774		return false;
1775
1776	rq->tag = tag + tag_offset;
1777	blk_mq_inc_active_requests(rq->mq_hctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
1778	return true;
1779}
1780
1781static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1782				int flags, void *key)
1783{
1784	struct blk_mq_hw_ctx *hctx;
1785
1786	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1787
1788	spin_lock(&hctx->dispatch_wait_lock);
1789	if (!list_empty(&wait->entry)) {
1790		struct sbitmap_queue *sbq;
1791
1792		list_del_init(&wait->entry);
1793		sbq = &hctx->tags->bitmap_tags;
1794		atomic_dec(&sbq->ws_active);
1795	}
1796	spin_unlock(&hctx->dispatch_wait_lock);
1797
1798	blk_mq_run_hw_queue(hctx, true);
1799	return 1;
1800}
1801
1802/*
1803 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1804 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1805 * restart. For both cases, take care to check the condition again after
1806 * marking us as waiting.
1807 */
1808static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1809				 struct request *rq)
1810{
1811	struct sbitmap_queue *sbq;
1812	struct wait_queue_head *wq;
1813	wait_queue_entry_t *wait;
1814	bool ret;
1815
1816	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1817	    !(blk_mq_is_shared_tags(hctx->flags))) {
1818		blk_mq_sched_mark_restart_hctx(hctx);
1819
1820		/*
1821		 * It's possible that a tag was freed in the window between the
1822		 * allocation failure and adding the hardware queue to the wait
1823		 * queue.
1824		 *
1825		 * Don't clear RESTART here, someone else could have set it.
1826		 * At most this will cost an extra queue run.
1827		 */
1828		return blk_mq_get_driver_tag(rq);
1829	}
1830
1831	wait = &hctx->dispatch_wait;
1832	if (!list_empty_careful(&wait->entry))
1833		return false;
1834
1835	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1836		sbq = &hctx->tags->breserved_tags;
1837	else
1838		sbq = &hctx->tags->bitmap_tags;
1839	wq = &bt_wait_ptr(sbq, hctx)->wait;
1840
1841	spin_lock_irq(&wq->lock);
1842	spin_lock(&hctx->dispatch_wait_lock);
1843	if (!list_empty(&wait->entry)) {
1844		spin_unlock(&hctx->dispatch_wait_lock);
1845		spin_unlock_irq(&wq->lock);
1846		return false;
1847	}
1848
1849	atomic_inc(&sbq->ws_active);
1850	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1851	__add_wait_queue(wq, wait);
1852
1853	/*
1854	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1855	 * not imply barrier in case of failure.
1856	 *
1857	 * Order adding us to wait queue and allocating driver tag.
1858	 *
1859	 * The pair is the one implied in sbitmap_queue_wake_up() which
1860	 * orders clearing sbitmap tag bits and waitqueue_active() in
1861	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1862	 *
1863	 * Otherwise, re-order of adding wait queue and getting driver tag
1864	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1865	 * the waitqueue_active() may not observe us in wait queue.
1866	 */
1867	smp_mb();
1868
1869	/*
1870	 * It's possible that a tag was freed in the window between the
1871	 * allocation failure and adding the hardware queue to the wait
1872	 * queue.
1873	 */
1874	ret = blk_mq_get_driver_tag(rq);
1875	if (!ret) {
1876		spin_unlock(&hctx->dispatch_wait_lock);
1877		spin_unlock_irq(&wq->lock);
1878		return false;
1879	}
1880
1881	/*
1882	 * We got a tag, remove ourselves from the wait queue to ensure
1883	 * someone else gets the wakeup.
1884	 */
1885	list_del_init(&wait->entry);
1886	atomic_dec(&sbq->ws_active);
1887	spin_unlock(&hctx->dispatch_wait_lock);
1888	spin_unlock_irq(&wq->lock);
1889
1890	return true;
1891}
1892
1893#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1894#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1895/*
1896 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1897 * - EWMA is one simple way to compute running average value
1898 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1899 * - take 4 as factor for avoiding to get too small(0) result, and this
1900 *   factor doesn't matter because EWMA decreases exponentially
1901 */
1902static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1903{
1904	unsigned int ewma;
1905
1906	ewma = hctx->dispatch_busy;
1907
1908	if (!ewma && !busy)
1909		return;
1910
1911	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1912	if (busy)
1913		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1914	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1915
1916	hctx->dispatch_busy = ewma;
1917}
1918
1919#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1920
1921static void blk_mq_handle_dev_resource(struct request *rq,
1922				       struct list_head *list)
1923{
 
 
 
 
 
 
 
 
 
 
1924	list_add(&rq->queuelist, list);
1925	__blk_mq_requeue_request(rq);
1926}
1927
1928static void blk_mq_handle_zone_resource(struct request *rq,
1929					struct list_head *zone_list)
1930{
1931	/*
1932	 * If we end up here it is because we cannot dispatch a request to a
1933	 * specific zone due to LLD level zone-write locking or other zone
1934	 * related resource not being available. In this case, set the request
1935	 * aside in zone_list for retrying it later.
1936	 */
1937	list_add(&rq->queuelist, zone_list);
1938	__blk_mq_requeue_request(rq);
1939}
1940
1941enum prep_dispatch {
1942	PREP_DISPATCH_OK,
1943	PREP_DISPATCH_NO_TAG,
1944	PREP_DISPATCH_NO_BUDGET,
1945};
1946
1947static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1948						  bool need_budget)
1949{
1950	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1951	int budget_token = -1;
1952
1953	if (need_budget) {
1954		budget_token = blk_mq_get_dispatch_budget(rq->q);
1955		if (budget_token < 0) {
1956			blk_mq_put_driver_tag(rq);
1957			return PREP_DISPATCH_NO_BUDGET;
1958		}
1959		blk_mq_set_rq_budget_token(rq, budget_token);
1960	}
1961
1962	if (!blk_mq_get_driver_tag(rq)) {
1963		/*
1964		 * The initial allocation attempt failed, so we need to
1965		 * rerun the hardware queue when a tag is freed. The
1966		 * waitqueue takes care of that. If the queue is run
1967		 * before we add this entry back on the dispatch list,
1968		 * we'll re-run it below.
1969		 */
1970		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1971			/*
1972			 * All budgets not got from this function will be put
1973			 * together during handling partial dispatch
1974			 */
1975			if (need_budget)
1976				blk_mq_put_dispatch_budget(rq->q, budget_token);
1977			return PREP_DISPATCH_NO_TAG;
1978		}
1979	}
1980
1981	return PREP_DISPATCH_OK;
1982}
1983
1984/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1985static void blk_mq_release_budgets(struct request_queue *q,
1986		struct list_head *list)
1987{
1988	struct request *rq;
1989
1990	list_for_each_entry(rq, list, queuelist) {
1991		int budget_token = blk_mq_get_rq_budget_token(rq);
1992
1993		if (budget_token >= 0)
1994			blk_mq_put_dispatch_budget(q, budget_token);
1995	}
1996}
1997
1998/*
1999 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2000 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2001 * details)
2002 * Attention, we should explicitly call this in unusual cases:
2003 *  1) did not queue everything initially scheduled to queue
2004 *  2) the last attempt to queue a request failed
2005 */
2006static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2007			      bool from_schedule)
2008{
2009	if (hctx->queue->mq_ops->commit_rqs && queued) {
2010		trace_block_unplug(hctx->queue, queued, !from_schedule);
2011		hctx->queue->mq_ops->commit_rqs(hctx);
2012	}
2013}
2014
2015/*
2016 * Returns true if we did some work AND can potentially do more.
2017 */
2018bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2019			     unsigned int nr_budgets)
2020{
2021	enum prep_dispatch prep;
2022	struct request_queue *q = hctx->queue;
2023	struct request *rq;
2024	int queued;
2025	blk_status_t ret = BLK_STS_OK;
2026	LIST_HEAD(zone_list);
2027	bool needs_resource = false;
2028
2029	if (list_empty(list))
2030		return false;
2031
2032	/*
2033	 * Now process all the entries, sending them to the driver.
2034	 */
2035	queued = 0;
2036	do {
2037		struct blk_mq_queue_data bd;
2038
2039		rq = list_first_entry(list, struct request, queuelist);
2040
2041		WARN_ON_ONCE(hctx != rq->mq_hctx);
2042		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2043		if (prep != PREP_DISPATCH_OK)
2044			break;
2045
2046		list_del_init(&rq->queuelist);
2047
2048		bd.rq = rq;
2049		bd.last = list_empty(list);
 
 
 
 
 
 
 
 
 
 
2050
2051		/*
2052		 * once the request is queued to lld, no need to cover the
2053		 * budget any more
2054		 */
2055		if (nr_budgets)
2056			nr_budgets--;
2057		ret = q->mq_ops->queue_rq(hctx, &bd);
2058		switch (ret) {
2059		case BLK_STS_OK:
2060			queued++;
2061			break;
2062		case BLK_STS_RESOURCE:
2063			needs_resource = true;
2064			fallthrough;
2065		case BLK_STS_DEV_RESOURCE:
2066			blk_mq_handle_dev_resource(rq, list);
2067			goto out;
2068		case BLK_STS_ZONE_RESOURCE:
2069			/*
2070			 * Move the request to zone_list and keep going through
2071			 * the dispatch list to find more requests the drive can
2072			 * accept.
2073			 */
2074			blk_mq_handle_zone_resource(rq, &zone_list);
2075			needs_resource = true;
2076			break;
2077		default:
 
2078			blk_mq_end_request(rq, ret);
2079		}
2080	} while (!list_empty(list));
2081out:
2082	if (!list_empty(&zone_list))
2083		list_splice_tail_init(&zone_list, list);
2084
2085	/* If we didn't flush the entire list, we could have told the driver
2086	 * there was more coming, but that turned out to be a lie.
2087	 */
2088	if (!list_empty(list) || ret != BLK_STS_OK)
2089		blk_mq_commit_rqs(hctx, queued, false);
2090
2091	/*
2092	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2093	 * that is where we will continue on next queue run.
2094	 */
2095	if (!list_empty(list)) {
2096		bool needs_restart;
2097		/* For non-shared tags, the RESTART check will suffice */
2098		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2100			blk_mq_is_shared_tags(hctx->flags));
2101
2102		if (nr_budgets)
2103			blk_mq_release_budgets(q, list);
2104
2105		spin_lock(&hctx->lock);
2106		list_splice_tail_init(list, &hctx->dispatch);
2107		spin_unlock(&hctx->lock);
2108
2109		/*
2110		 * Order adding requests to hctx->dispatch and checking
2111		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2112		 * in blk_mq_sched_restart(). Avoid restart code path to
2113		 * miss the new added requests to hctx->dispatch, meantime
2114		 * SCHED_RESTART is observed here.
2115		 */
2116		smp_mb();
2117
2118		/*
2119		 * If SCHED_RESTART was set by the caller of this function and
2120		 * it is no longer set that means that it was cleared by another
2121		 * thread and hence that a queue rerun is needed.
2122		 *
2123		 * If 'no_tag' is set, that means that we failed getting
2124		 * a driver tag with an I/O scheduler attached. If our dispatch
2125		 * waitqueue is no longer active, ensure that we run the queue
2126		 * AFTER adding our entries back to the list.
2127		 *
2128		 * If no I/O scheduler has been configured it is possible that
2129		 * the hardware queue got stopped and restarted before requests
2130		 * were pushed back onto the dispatch list. Rerun the queue to
2131		 * avoid starvation. Notes:
2132		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2133		 *   been stopped before rerunning a queue.
2134		 * - Some but not all block drivers stop a queue before
2135		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2136		 *   and dm-rq.
2137		 *
2138		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2139		 * bit is set, run queue after a delay to avoid IO stalls
2140		 * that could otherwise occur if the queue is idle.  We'll do
2141		 * similar if we couldn't get budget or couldn't lock a zone
2142		 * and SCHED_RESTART is set.
2143		 */
2144		needs_restart = blk_mq_sched_needs_restart(hctx);
2145		if (prep == PREP_DISPATCH_NO_BUDGET)
2146			needs_resource = true;
2147		if (!needs_restart ||
2148		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2149			blk_mq_run_hw_queue(hctx, true);
2150		else if (needs_resource)
2151			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2152
2153		blk_mq_update_dispatch_busy(hctx, true);
2154		return false;
2155	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156
2157	blk_mq_update_dispatch_busy(hctx, false);
2158	return true;
2159}
2160
2161static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2162{
2163	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2164
2165	if (cpu >= nr_cpu_ids)
2166		cpu = cpumask_first(hctx->cpumask);
2167	return cpu;
2168}
2169
2170/*
2171 * It'd be great if the workqueue API had a way to pass
2172 * in a mask and had some smarts for more clever placement.
2173 * For now we just round-robin here, switching for every
2174 * BLK_MQ_CPU_WORK_BATCH queued items.
2175 */
2176static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2177{
2178	bool tried = false;
2179	int next_cpu = hctx->next_cpu;
2180
2181	if (hctx->queue->nr_hw_queues == 1)
2182		return WORK_CPU_UNBOUND;
2183
2184	if (--hctx->next_cpu_batch <= 0) {
2185select_cpu:
2186		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2187				cpu_online_mask);
2188		if (next_cpu >= nr_cpu_ids)
2189			next_cpu = blk_mq_first_mapped_cpu(hctx);
2190		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2191	}
2192
2193	/*
2194	 * Do unbound schedule if we can't find a online CPU for this hctx,
2195	 * and it should only happen in the path of handling CPU DEAD.
2196	 */
2197	if (!cpu_online(next_cpu)) {
2198		if (!tried) {
2199			tried = true;
2200			goto select_cpu;
2201		}
2202
2203		/*
2204		 * Make sure to re-select CPU next time once after CPUs
2205		 * in hctx->cpumask become online again.
2206		 */
2207		hctx->next_cpu = next_cpu;
2208		hctx->next_cpu_batch = 1;
2209		return WORK_CPU_UNBOUND;
2210	}
2211
2212	hctx->next_cpu = next_cpu;
2213	return next_cpu;
2214}
2215
2216/**
2217 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2218 * @hctx: Pointer to the hardware queue to run.
 
2219 * @msecs: Milliseconds of delay to wait before running the queue.
2220 *
2221 * Run a hardware queue asynchronously with a delay of @msecs.
 
2222 */
2223void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
 
2224{
2225	if (unlikely(blk_mq_hctx_stopped(hctx)))
2226		return;
 
 
 
 
 
 
 
 
2227	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2228				    msecs_to_jiffies(msecs));
2229}
 
 
 
 
 
 
 
 
 
 
 
 
2230EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2231
2232/**
2233 * blk_mq_run_hw_queue - Start to run a hardware queue.
2234 * @hctx: Pointer to the hardware queue to run.
2235 * @async: If we want to run the queue asynchronously.
2236 *
2237 * Check if the request queue is not in a quiesced state and if there are
2238 * pending requests to be sent. If this is true, run the queue to send requests
2239 * to hardware.
2240 */
2241void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2242{
2243	bool need_run;
2244
2245	/*
2246	 * We can't run the queue inline with interrupts disabled.
2247	 */
2248	WARN_ON_ONCE(!async && in_interrupt());
2249
2250	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2251
2252	/*
2253	 * When queue is quiesced, we may be switching io scheduler, or
2254	 * updating nr_hw_queues, or other things, and we can't run queue
2255	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2256	 *
2257	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2258	 * quiesced.
2259	 */
2260	__blk_mq_run_dispatch_ops(hctx->queue, false,
2261		need_run = !blk_queue_quiesced(hctx->queue) &&
2262		blk_mq_hctx_has_pending(hctx));
2263
2264	if (!need_run)
2265		return;
2266
2267	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2268		blk_mq_delay_run_hw_queue(hctx, 0);
2269		return;
2270	}
2271
2272	blk_mq_run_dispatch_ops(hctx->queue,
2273				blk_mq_sched_dispatch_requests(hctx));
2274}
2275EXPORT_SYMBOL(blk_mq_run_hw_queue);
2276
2277/*
2278 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2279 * scheduler.
2280 */
2281static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2282{
2283	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2284	/*
2285	 * If the IO scheduler does not respect hardware queues when
2286	 * dispatching, we just don't bother with multiple HW queues and
2287	 * dispatch from hctx for the current CPU since running multiple queues
2288	 * just causes lock contention inside the scheduler and pointless cache
2289	 * bouncing.
2290	 */
2291	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2292
2293	if (!blk_mq_hctx_stopped(hctx))
2294		return hctx;
2295	return NULL;
2296}
2297
2298/**
2299 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2300 * @q: Pointer to the request queue to run.
2301 * @async: If we want to run the queue asynchronously.
2302 */
2303void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2304{
2305	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2306	unsigned long i;
2307
2308	sq_hctx = NULL;
2309	if (blk_queue_sq_sched(q))
2310		sq_hctx = blk_mq_get_sq_hctx(q);
2311	queue_for_each_hw_ctx(q, hctx, i) {
2312		if (blk_mq_hctx_stopped(hctx))
2313			continue;
2314		/*
2315		 * Dispatch from this hctx either if there's no hctx preferred
2316		 * by IO scheduler or if it has requests that bypass the
2317		 * scheduler.
2318		 */
2319		if (!sq_hctx || sq_hctx == hctx ||
2320		    !list_empty_careful(&hctx->dispatch))
2321			blk_mq_run_hw_queue(hctx, async);
2322	}
2323}
2324EXPORT_SYMBOL(blk_mq_run_hw_queues);
2325
2326/**
2327 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2328 * @q: Pointer to the request queue to run.
2329 * @msecs: Milliseconds of delay to wait before running the queues.
2330 */
2331void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2332{
2333	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334	unsigned long i;
2335
2336	sq_hctx = NULL;
2337	if (blk_queue_sq_sched(q))
2338		sq_hctx = blk_mq_get_sq_hctx(q);
2339	queue_for_each_hw_ctx(q, hctx, i) {
2340		if (blk_mq_hctx_stopped(hctx))
2341			continue;
2342		/*
2343		 * If there is already a run_work pending, leave the
2344		 * pending delay untouched. Otherwise, a hctx can stall
2345		 * if another hctx is re-delaying the other's work
2346		 * before the work executes.
2347		 */
2348		if (delayed_work_pending(&hctx->run_work))
2349			continue;
2350		/*
2351		 * Dispatch from this hctx either if there's no hctx preferred
2352		 * by IO scheduler or if it has requests that bypass the
2353		 * scheduler.
2354		 */
2355		if (!sq_hctx || sq_hctx == hctx ||
2356		    !list_empty_careful(&hctx->dispatch))
2357			blk_mq_delay_run_hw_queue(hctx, msecs);
2358	}
2359}
2360EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2361
2362/*
2363 * This function is often used for pausing .queue_rq() by driver when
2364 * there isn't enough resource or some conditions aren't satisfied, and
2365 * BLK_STS_RESOURCE is usually returned.
2366 *
2367 * We do not guarantee that dispatch can be drained or blocked
2368 * after blk_mq_stop_hw_queue() returns. Please use
2369 * blk_mq_quiesce_queue() for that requirement.
2370 */
2371void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2372{
2373	cancel_delayed_work(&hctx->run_work);
2374
2375	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2376}
2377EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2378
2379/*
2380 * This function is often used for pausing .queue_rq() by driver when
2381 * there isn't enough resource or some conditions aren't satisfied, and
2382 * BLK_STS_RESOURCE is usually returned.
2383 *
2384 * We do not guarantee that dispatch can be drained or blocked
2385 * after blk_mq_stop_hw_queues() returns. Please use
2386 * blk_mq_quiesce_queue() for that requirement.
2387 */
2388void blk_mq_stop_hw_queues(struct request_queue *q)
2389{
2390	struct blk_mq_hw_ctx *hctx;
2391	unsigned long i;
2392
2393	queue_for_each_hw_ctx(q, hctx, i)
2394		blk_mq_stop_hw_queue(hctx);
2395}
2396EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2397
2398void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2399{
2400	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401
2402	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2403}
2404EXPORT_SYMBOL(blk_mq_start_hw_queue);
2405
2406void blk_mq_start_hw_queues(struct request_queue *q)
2407{
2408	struct blk_mq_hw_ctx *hctx;
2409	unsigned long i;
2410
2411	queue_for_each_hw_ctx(q, hctx, i)
2412		blk_mq_start_hw_queue(hctx);
2413}
2414EXPORT_SYMBOL(blk_mq_start_hw_queues);
2415
2416void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2417{
2418	if (!blk_mq_hctx_stopped(hctx))
2419		return;
2420
2421	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2422	blk_mq_run_hw_queue(hctx, async);
2423}
2424EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2425
2426void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2427{
2428	struct blk_mq_hw_ctx *hctx;
2429	unsigned long i;
2430
2431	queue_for_each_hw_ctx(q, hctx, i)
2432		blk_mq_start_stopped_hw_queue(hctx, async ||
2433					(hctx->flags & BLK_MQ_F_BLOCKING));
2434}
2435EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2436
2437static void blk_mq_run_work_fn(struct work_struct *work)
2438{
2439	struct blk_mq_hw_ctx *hctx =
2440		container_of(work, struct blk_mq_hw_ctx, run_work.work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441
2442	blk_mq_run_dispatch_ops(hctx->queue,
2443				blk_mq_sched_dispatch_requests(hctx));
 
 
2444}
2445
2446/**
2447 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2448 * @rq: Pointer to request to be inserted.
2449 * @flags: BLK_MQ_INSERT_*
 
2450 *
2451 * Should only be used carefully, when the caller knows we want to
2452 * bypass a potential IO scheduler on the target device.
2453 */
2454static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
 
2455{
2456	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2457
2458	spin_lock(&hctx->lock);
2459	if (flags & BLK_MQ_INSERT_AT_HEAD)
2460		list_add(&rq->queuelist, &hctx->dispatch);
2461	else
2462		list_add_tail(&rq->queuelist, &hctx->dispatch);
2463	spin_unlock(&hctx->lock);
 
 
 
2464}
2465
2466static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2467		struct blk_mq_ctx *ctx, struct list_head *list,
2468		bool run_queue_async)
2469{
2470	struct request *rq;
2471	enum hctx_type type = hctx->type;
2472
2473	/*
2474	 * Try to issue requests directly if the hw queue isn't busy to save an
2475	 * extra enqueue & dequeue to the sw queue.
2476	 */
2477	if (!hctx->dispatch_busy && !run_queue_async) {
2478		blk_mq_run_dispatch_ops(hctx->queue,
2479			blk_mq_try_issue_list_directly(hctx, list));
2480		if (list_empty(list))
2481			goto out;
2482	}
2483
2484	/*
2485	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2486	 * offline now
2487	 */
2488	list_for_each_entry(rq, list, queuelist) {
2489		BUG_ON(rq->mq_ctx != ctx);
2490		trace_block_rq_insert(rq);
2491		if (rq->cmd_flags & REQ_NOWAIT)
2492			run_queue_async = true;
2493	}
2494
2495	spin_lock(&ctx->lock);
2496	list_splice_tail_init(list, &ctx->rq_lists[type]);
2497	blk_mq_hctx_mark_pending(hctx, ctx);
2498	spin_unlock(&ctx->lock);
2499out:
2500	blk_mq_run_hw_queue(hctx, run_queue_async);
2501}
2502
2503static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
 
2504{
2505	struct request_queue *q = rq->q;
2506	struct blk_mq_ctx *ctx = rq->mq_ctx;
2507	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2508
2509	if (blk_rq_is_passthrough(rq)) {
2510		/*
2511		 * Passthrough request have to be added to hctx->dispatch
2512		 * directly.  The device may be in a situation where it can't
2513		 * handle FS request, and always returns BLK_STS_RESOURCE for
2514		 * them, which gets them added to hctx->dispatch.
2515		 *
2516		 * If a passthrough request is required to unblock the queues,
2517		 * and it is added to the scheduler queue, there is no chance to
2518		 * dispatch it given we prioritize requests in hctx->dispatch.
2519		 */
2520		blk_mq_request_bypass_insert(rq, flags);
2521	} else if (req_op(rq) == REQ_OP_FLUSH) {
2522		/*
2523		 * Firstly normal IO request is inserted to scheduler queue or
2524		 * sw queue, meantime we add flush request to dispatch queue(
2525		 * hctx->dispatch) directly and there is at most one in-flight
2526		 * flush request for each hw queue, so it doesn't matter to add
2527		 * flush request to tail or front of the dispatch queue.
2528		 *
2529		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2530		 * command, and queueing it will fail when there is any
2531		 * in-flight normal IO request(NCQ command). When adding flush
2532		 * rq to the front of hctx->dispatch, it is easier to introduce
2533		 * extra time to flush rq's latency because of S_SCHED_RESTART
2534		 * compared with adding to the tail of dispatch queue, then
2535		 * chance of flush merge is increased, and less flush requests
2536		 * will be issued to controller. It is observed that ~10% time
2537		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2538		 * drive when adding flush rq to the front of hctx->dispatch.
2539		 *
2540		 * Simply queue flush rq to the front of hctx->dispatch so that
2541		 * intensive flush workloads can benefit in case of NCQ HW.
2542		 */
2543		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2544	} else if (q->elevator) {
2545		LIST_HEAD(list);
2546
2547		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2548
2549		list_add(&rq->queuelist, &list);
2550		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2551	} else {
2552		trace_block_rq_insert(rq);
2553
2554		spin_lock(&ctx->lock);
2555		if (flags & BLK_MQ_INSERT_AT_HEAD)
2556			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2557		else
2558			list_add_tail(&rq->queuelist,
2559				      &ctx->rq_lists[hctx->type]);
2560		blk_mq_hctx_mark_pending(hctx, ctx);
2561		spin_unlock(&ctx->lock);
2562	}
 
2563}
2564
2565static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2566		unsigned int nr_segs)
2567{
2568	int err;
2569
2570	if (bio->bi_opf & REQ_RAHEAD)
2571		rq->cmd_flags |= REQ_FAILFAST_MASK;
2572
2573	rq->__sector = bio->bi_iter.bi_sector;
2574	rq->write_hint = bio->bi_write_hint;
2575	blk_rq_bio_prep(rq, bio, nr_segs);
2576
2577	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2578	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2579	WARN_ON_ONCE(err);
2580
2581	blk_account_io_start(rq);
2582}
2583
2584static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2585					    struct request *rq, bool last)
2586{
2587	struct request_queue *q = rq->q;
2588	struct blk_mq_queue_data bd = {
2589		.rq = rq,
2590		.last = last,
2591	};
2592	blk_status_t ret;
2593
2594	/*
2595	 * For OK queue, we are done. For error, caller may kill it.
2596	 * Any other error (busy), just add it to our list as we
2597	 * previously would have done.
2598	 */
2599	ret = q->mq_ops->queue_rq(hctx, &bd);
2600	switch (ret) {
2601	case BLK_STS_OK:
2602		blk_mq_update_dispatch_busy(hctx, false);
2603		break;
2604	case BLK_STS_RESOURCE:
2605	case BLK_STS_DEV_RESOURCE:
2606		blk_mq_update_dispatch_busy(hctx, true);
2607		__blk_mq_requeue_request(rq);
2608		break;
2609	default:
2610		blk_mq_update_dispatch_busy(hctx, false);
2611		break;
2612	}
2613
2614	return ret;
2615}
2616
2617static bool blk_mq_get_budget_and_tag(struct request *rq)
 
 
2618{
 
 
2619	int budget_token;
2620
2621	budget_token = blk_mq_get_dispatch_budget(rq->q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622	if (budget_token < 0)
2623		return false;
 
2624	blk_mq_set_rq_budget_token(rq, budget_token);
 
2625	if (!blk_mq_get_driver_tag(rq)) {
2626		blk_mq_put_dispatch_budget(rq->q, budget_token);
2627		return false;
2628	}
2629	return true;
 
 
 
 
 
 
 
 
2630}
2631
2632/**
2633 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2634 * @hctx: Pointer of the associated hardware queue.
2635 * @rq: Pointer to request to be sent.
2636 *
2637 * If the device has enough resources to accept a new request now, send the
2638 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2639 * we can try send it another time in the future. Requests inserted at this
2640 * queue have higher priority.
2641 */
2642static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2643		struct request *rq)
2644{
2645	blk_status_t ret;
2646
2647	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2648		blk_mq_insert_request(rq, 0);
2649		return;
2650	}
2651
2652	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2653		blk_mq_insert_request(rq, 0);
2654		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2655		return;
2656	}
2657
2658	ret = __blk_mq_issue_directly(hctx, rq, true);
2659	switch (ret) {
2660	case BLK_STS_OK:
2661		break;
2662	case BLK_STS_RESOURCE:
2663	case BLK_STS_DEV_RESOURCE:
2664		blk_mq_request_bypass_insert(rq, 0);
2665		blk_mq_run_hw_queue(hctx, false);
2666		break;
2667	default:
2668		blk_mq_end_request(rq, ret);
2669		break;
2670	}
2671}
2672
2673static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2674{
2675	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2676
2677	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2678		blk_mq_insert_request(rq, 0);
2679		return BLK_STS_OK;
2680	}
2681
2682	if (!blk_mq_get_budget_and_tag(rq))
2683		return BLK_STS_RESOURCE;
2684	return __blk_mq_issue_directly(hctx, rq, last);
2685}
2686
2687static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2688{
2689	struct blk_mq_hw_ctx *hctx = NULL;
2690	struct request *rq;
2691	int queued = 0;
2692	blk_status_t ret = BLK_STS_OK;
2693
2694	while ((rq = rq_list_pop(&plug->mq_list))) {
2695		bool last = rq_list_empty(plug->mq_list);
 
2696
2697		if (hctx != rq->mq_hctx) {
2698			if (hctx) {
2699				blk_mq_commit_rqs(hctx, queued, false);
2700				queued = 0;
2701			}
2702			hctx = rq->mq_hctx;
2703		}
2704
2705		ret = blk_mq_request_issue_directly(rq, last);
2706		switch (ret) {
2707		case BLK_STS_OK:
2708			queued++;
2709			break;
2710		case BLK_STS_RESOURCE:
2711		case BLK_STS_DEV_RESOURCE:
2712			blk_mq_request_bypass_insert(rq, 0);
2713			blk_mq_run_hw_queue(hctx, false);
2714			goto out;
2715		default:
2716			blk_mq_end_request(rq, ret);
 
2717			break;
2718		}
2719	}
2720
2721out:
2722	if (ret != BLK_STS_OK)
2723		blk_mq_commit_rqs(hctx, queued, false);
 
 
 
2724}
2725
2726static void __blk_mq_flush_plug_list(struct request_queue *q,
2727				     struct blk_plug *plug)
2728{
2729	if (blk_queue_quiesced(q))
2730		return;
2731	q->mq_ops->queue_rqs(&plug->mq_list);
2732}
2733
2734static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2735{
2736	struct blk_mq_hw_ctx *this_hctx = NULL;
2737	struct blk_mq_ctx *this_ctx = NULL;
2738	struct request *requeue_list = NULL;
2739	struct request **requeue_lastp = &requeue_list;
2740	unsigned int depth = 0;
2741	bool is_passthrough = false;
2742	LIST_HEAD(list);
2743
2744	do {
2745		struct request *rq = rq_list_pop(&plug->mq_list);
2746
2747		if (!this_hctx) {
2748			this_hctx = rq->mq_hctx;
2749			this_ctx = rq->mq_ctx;
2750			is_passthrough = blk_rq_is_passthrough(rq);
2751		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2752			   is_passthrough != blk_rq_is_passthrough(rq)) {
2753			rq_list_add_tail(&requeue_lastp, rq);
2754			continue;
2755		}
2756		list_add(&rq->queuelist, &list);
2757		depth++;
2758	} while (!rq_list_empty(plug->mq_list));
2759
2760	plug->mq_list = requeue_list;
2761	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2762
2763	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2764	/* passthrough requests should never be issued to the I/O scheduler */
2765	if (is_passthrough) {
2766		spin_lock(&this_hctx->lock);
2767		list_splice_tail_init(&list, &this_hctx->dispatch);
2768		spin_unlock(&this_hctx->lock);
2769		blk_mq_run_hw_queue(this_hctx, from_sched);
2770	} else if (this_hctx->queue->elevator) {
2771		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2772				&list, 0);
2773		blk_mq_run_hw_queue(this_hctx, from_sched);
2774	} else {
2775		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2776	}
2777	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2778}
2779
2780void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2781{
2782	struct request *rq;
2783
2784	/*
2785	 * We may have been called recursively midway through handling
2786	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2787	 * To avoid mq_list changing under our feet, clear rq_count early and
2788	 * bail out specifically if rq_count is 0 rather than checking
2789	 * whether the mq_list is empty.
2790	 */
2791	if (plug->rq_count == 0)
2792		return;
2793	plug->rq_count = 0;
2794
2795	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2796		struct request_queue *q;
2797
2798		rq = rq_list_peek(&plug->mq_list);
2799		q = rq->q;
2800
2801		/*
2802		 * Peek first request and see if we have a ->queue_rqs() hook.
2803		 * If we do, we can dispatch the whole plug list in one go. We
2804		 * already know at this point that all requests belong to the
2805		 * same queue, caller must ensure that's the case.
 
 
 
 
2806		 */
2807		if (q->mq_ops->queue_rqs) {
 
2808			blk_mq_run_dispatch_ops(q,
2809				__blk_mq_flush_plug_list(q, plug));
2810			if (rq_list_empty(plug->mq_list))
2811				return;
2812		}
2813
2814		blk_mq_run_dispatch_ops(q,
2815				blk_mq_plug_issue_direct(plug));
2816		if (rq_list_empty(plug->mq_list))
2817			return;
2818	}
2819
2820	do {
2821		blk_mq_dispatch_plug_list(plug, from_schedule);
2822	} while (!rq_list_empty(plug->mq_list));
2823}
2824
2825static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2826		struct list_head *list)
2827{
2828	int queued = 0;
2829	blk_status_t ret = BLK_STS_OK;
2830
2831	while (!list_empty(list)) {
 
2832		struct request *rq = list_first_entry(list, struct request,
2833				queuelist);
2834
2835		list_del_init(&rq->queuelist);
2836		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2837		switch (ret) {
2838		case BLK_STS_OK:
 
 
 
 
 
 
 
 
2839			queued++;
2840			break;
2841		case BLK_STS_RESOURCE:
2842		case BLK_STS_DEV_RESOURCE:
2843			blk_mq_request_bypass_insert(rq, 0);
2844			if (list_empty(list))
2845				blk_mq_run_hw_queue(hctx, false);
2846			goto out;
2847		default:
2848			blk_mq_end_request(rq, ret);
2849			break;
2850		}
2851	}
2852
2853out:
2854	if (ret != BLK_STS_OK)
2855		blk_mq_commit_rqs(hctx, queued, false);
 
 
 
 
 
2856}
2857
2858static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2859				     struct bio *bio, unsigned int nr_segs)
2860{
2861	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2862		if (blk_attempt_plug_merge(q, bio, nr_segs))
2863			return true;
2864		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2865			return true;
2866	}
2867	return false;
2868}
2869
2870static struct request *blk_mq_get_new_requests(struct request_queue *q,
2871					       struct blk_plug *plug,
2872					       struct bio *bio,
2873					       unsigned int nsegs)
2874{
2875	struct blk_mq_alloc_data data = {
2876		.q		= q,
2877		.nr_tags	= 1,
2878		.cmd_flags	= bio->bi_opf,
2879	};
2880	struct request *rq;
2881
 
 
 
 
 
 
2882	rq_qos_throttle(q, bio);
2883
2884	if (plug) {
2885		data.nr_tags = plug->nr_ios;
2886		plug->nr_ios = 1;
2887		data.cached_rq = &plug->cached_rq;
2888	}
2889
2890	rq = __blk_mq_alloc_requests(&data);
2891	if (rq)
2892		return rq;
2893	rq_qos_cleanup(q, bio);
2894	if (bio->bi_opf & REQ_NOWAIT)
2895		bio_wouldblock_error(bio);
 
 
2896	return NULL;
2897}
2898
2899/*
2900 * Check if there is a suitable cached request and return it.
2901 */
2902static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2903		struct request_queue *q, blk_opf_t opf)
2904{
2905	enum hctx_type type = blk_mq_get_hctx_type(opf);
2906	struct request *rq;
 
2907
2908	if (!plug)
2909		return NULL;
2910	rq = rq_list_peek(&plug->cached_rq);
2911	if (!rq || rq->q != q)
2912		return NULL;
2913	if (type != rq->mq_hctx->type &&
2914	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
 
 
 
 
 
 
 
 
2915		return NULL;
2916	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2917		return NULL;
2918	return rq;
2919}
2920
2921static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2922		struct bio *bio)
2923{
2924	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2925
2926	/*
2927	 * If any qos ->throttle() end up blocking, we will have flushed the
2928	 * plug and hence killed the cached_rq list as well. Pop this entry
2929	 * before we throttle.
2930	 */
2931	plug->cached_rq = rq_list_next(rq);
2932	rq_qos_throttle(rq->q, bio);
2933
2934	blk_mq_rq_time_init(rq, 0);
2935	rq->cmd_flags = bio->bi_opf;
2936	INIT_LIST_HEAD(&rq->queuelist);
 
 
 
 
 
 
 
 
 
2937}
2938
2939/**
2940 * blk_mq_submit_bio - Create and send a request to block device.
2941 * @bio: Bio pointer.
2942 *
2943 * Builds up a request structure from @q and @bio and send to the device. The
2944 * request may not be queued directly to hardware if:
2945 * * This request can be merged with another one
2946 * * We want to place request at plug queue for possible future merging
2947 * * There is an IO scheduler active at this queue
2948 *
2949 * It will not queue the request if there is an error with the bio, or at the
2950 * request creation.
2951 */
2952void blk_mq_submit_bio(struct bio *bio)
2953{
2954	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2955	struct blk_plug *plug = blk_mq_plug(bio);
2956	const int is_sync = op_is_sync(bio->bi_opf);
2957	struct blk_mq_hw_ctx *hctx;
2958	unsigned int nr_segs = 1;
2959	struct request *rq;
2960	blk_status_t ret;
2961
2962	bio = blk_queue_bounce(bio, q);
2963
2964	/*
2965	 * If the plug has a cached request for this queue, try use it.
2966	 *
2967	 * The cached request already holds a q_usage_counter reference and we
2968	 * don't have to acquire a new one if we use it.
2969	 */
2970	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2971	if (!rq) {
2972		if (unlikely(bio_queue_enter(bio)))
2973			return;
2974	}
2975
2976	if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2977		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2978		if (!bio)
2979			goto queue_exit;
2980	}
2981	if (!bio_integrity_prep(bio))
2982		goto queue_exit;
2983
2984	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2985		goto queue_exit;
2986
 
2987	if (!rq) {
 
 
2988		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2989		if (unlikely(!rq))
2990			goto queue_exit;
2991	} else {
2992		blk_mq_use_cached_rq(rq, plug, bio);
2993	}
2994
2995	trace_block_getrq(bio);
2996
2997	rq_qos_track(q, rq, bio);
2998
2999	blk_mq_bio_to_request(rq, bio, nr_segs);
3000
3001	ret = blk_crypto_rq_get_keyslot(rq);
3002	if (ret != BLK_STS_OK) {
3003		bio->bi_status = ret;
3004		bio_endio(bio);
3005		blk_mq_free_request(rq);
3006		return;
3007	}
3008
3009	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
 
3010		return;
 
3011
3012	if (plug) {
3013		blk_add_rq_to_plug(plug, rq);
3014		return;
3015	}
3016
3017	hctx = rq->mq_hctx;
3018	if ((rq->rq_flags & RQF_USE_SCHED) ||
3019	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3020		blk_mq_insert_request(rq, 0);
3021		blk_mq_run_hw_queue(hctx, true);
3022	} else {
3023		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3024	}
3025	return;
3026
3027queue_exit:
3028	/*
3029	 * Don't drop the queue reference if we were trying to use a cached
3030	 * request and thus didn't acquire one.
3031	 */
3032	if (!rq)
3033		blk_queue_exit(q);
3034}
3035
3036#ifdef CONFIG_BLK_MQ_STACKING
3037/**
3038 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3039 * @rq: the request being queued
3040 */
3041blk_status_t blk_insert_cloned_request(struct request *rq)
3042{
3043	struct request_queue *q = rq->q;
3044	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3045	unsigned int max_segments = blk_rq_get_max_segments(rq);
3046	blk_status_t ret;
3047
3048	if (blk_rq_sectors(rq) > max_sectors) {
3049		/*
3050		 * SCSI device does not have a good way to return if
3051		 * Write Same/Zero is actually supported. If a device rejects
3052		 * a non-read/write command (discard, write same,etc.) the
3053		 * low-level device driver will set the relevant queue limit to
3054		 * 0 to prevent blk-lib from issuing more of the offending
3055		 * operations. Commands queued prior to the queue limit being
3056		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3057		 * errors being propagated to upper layers.
3058		 */
3059		if (max_sectors == 0)
3060			return BLK_STS_NOTSUPP;
3061
3062		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3063			__func__, blk_rq_sectors(rq), max_sectors);
3064		return BLK_STS_IOERR;
3065	}
3066
3067	/*
3068	 * The queue settings related to segment counting may differ from the
3069	 * original queue.
3070	 */
3071	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3072	if (rq->nr_phys_segments > max_segments) {
3073		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3074			__func__, rq->nr_phys_segments, max_segments);
3075		return BLK_STS_IOERR;
3076	}
3077
3078	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3079		return BLK_STS_IOERR;
3080
3081	ret = blk_crypto_rq_get_keyslot(rq);
3082	if (ret != BLK_STS_OK)
3083		return ret;
3084
3085	blk_account_io_start(rq);
3086
3087	/*
3088	 * Since we have a scheduler attached on the top device,
3089	 * bypass a potential scheduler on the bottom device for
3090	 * insert.
3091	 */
3092	blk_mq_run_dispatch_ops(q,
3093			ret = blk_mq_request_issue_directly(rq, true));
3094	if (ret)
3095		blk_account_io_done(rq, blk_time_get_ns());
3096	return ret;
3097}
3098EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3099
3100/**
3101 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3102 * @rq: the clone request to be cleaned up
3103 *
3104 * Description:
3105 *     Free all bios in @rq for a cloned request.
3106 */
3107void blk_rq_unprep_clone(struct request *rq)
3108{
3109	struct bio *bio;
3110
3111	while ((bio = rq->bio) != NULL) {
3112		rq->bio = bio->bi_next;
3113
3114		bio_put(bio);
3115	}
3116}
3117EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3118
3119/**
3120 * blk_rq_prep_clone - Helper function to setup clone request
3121 * @rq: the request to be setup
3122 * @rq_src: original request to be cloned
3123 * @bs: bio_set that bios for clone are allocated from
3124 * @gfp_mask: memory allocation mask for bio
3125 * @bio_ctr: setup function to be called for each clone bio.
3126 *           Returns %0 for success, non %0 for failure.
3127 * @data: private data to be passed to @bio_ctr
3128 *
3129 * Description:
3130 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3131 *     Also, pages which the original bios are pointing to are not copied
3132 *     and the cloned bios just point same pages.
3133 *     So cloned bios must be completed before original bios, which means
3134 *     the caller must complete @rq before @rq_src.
3135 */
3136int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3137		      struct bio_set *bs, gfp_t gfp_mask,
3138		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3139		      void *data)
3140{
3141	struct bio *bio, *bio_src;
3142
3143	if (!bs)
3144		bs = &fs_bio_set;
3145
3146	__rq_for_each_bio(bio_src, rq_src) {
3147		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3148				      bs);
3149		if (!bio)
3150			goto free_and_out;
3151
3152		if (bio_ctr && bio_ctr(bio, bio_src, data))
3153			goto free_and_out;
3154
3155		if (rq->bio) {
3156			rq->biotail->bi_next = bio;
3157			rq->biotail = bio;
3158		} else {
3159			rq->bio = rq->biotail = bio;
3160		}
3161		bio = NULL;
3162	}
3163
3164	/* Copy attributes of the original request to the clone request. */
3165	rq->__sector = blk_rq_pos(rq_src);
3166	rq->__data_len = blk_rq_bytes(rq_src);
3167	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3168		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3169		rq->special_vec = rq_src->special_vec;
3170	}
3171	rq->nr_phys_segments = rq_src->nr_phys_segments;
3172	rq->ioprio = rq_src->ioprio;
3173	rq->write_hint = rq_src->write_hint;
3174
3175	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3176		goto free_and_out;
3177
3178	return 0;
3179
3180free_and_out:
3181	if (bio)
3182		bio_put(bio);
3183	blk_rq_unprep_clone(rq);
3184
3185	return -ENOMEM;
3186}
3187EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3188#endif /* CONFIG_BLK_MQ_STACKING */
3189
3190/*
3191 * Steal bios from a request and add them to a bio list.
3192 * The request must not have been partially completed before.
3193 */
3194void blk_steal_bios(struct bio_list *list, struct request *rq)
3195{
3196	if (rq->bio) {
3197		if (list->tail)
3198			list->tail->bi_next = rq->bio;
3199		else
3200			list->head = rq->bio;
3201		list->tail = rq->biotail;
3202
3203		rq->bio = NULL;
3204		rq->biotail = NULL;
3205	}
3206
3207	rq->__data_len = 0;
3208}
3209EXPORT_SYMBOL_GPL(blk_steal_bios);
3210
3211static size_t order_to_size(unsigned int order)
3212{
3213	return (size_t)PAGE_SIZE << order;
3214}
3215
3216/* called before freeing request pool in @tags */
3217static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3218				    struct blk_mq_tags *tags)
3219{
3220	struct page *page;
3221	unsigned long flags;
3222
3223	/*
3224	 * There is no need to clear mapping if driver tags is not initialized
3225	 * or the mapping belongs to the driver tags.
3226	 */
3227	if (!drv_tags || drv_tags == tags)
3228		return;
3229
3230	list_for_each_entry(page, &tags->page_list, lru) {
3231		unsigned long start = (unsigned long)page_address(page);
3232		unsigned long end = start + order_to_size(page->private);
3233		int i;
3234
3235		for (i = 0; i < drv_tags->nr_tags; i++) {
3236			struct request *rq = drv_tags->rqs[i];
3237			unsigned long rq_addr = (unsigned long)rq;
3238
3239			if (rq_addr >= start && rq_addr < end) {
3240				WARN_ON_ONCE(req_ref_read(rq) != 0);
3241				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3242			}
3243		}
3244	}
3245
3246	/*
3247	 * Wait until all pending iteration is done.
3248	 *
3249	 * Request reference is cleared and it is guaranteed to be observed
3250	 * after the ->lock is released.
3251	 */
3252	spin_lock_irqsave(&drv_tags->lock, flags);
3253	spin_unlock_irqrestore(&drv_tags->lock, flags);
3254}
3255
3256void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3257		     unsigned int hctx_idx)
3258{
3259	struct blk_mq_tags *drv_tags;
3260	struct page *page;
3261
3262	if (list_empty(&tags->page_list))
3263		return;
3264
3265	if (blk_mq_is_shared_tags(set->flags))
3266		drv_tags = set->shared_tags;
3267	else
3268		drv_tags = set->tags[hctx_idx];
3269
3270	if (tags->static_rqs && set->ops->exit_request) {
3271		int i;
3272
3273		for (i = 0; i < tags->nr_tags; i++) {
3274			struct request *rq = tags->static_rqs[i];
3275
3276			if (!rq)
3277				continue;
3278			set->ops->exit_request(set, rq, hctx_idx);
3279			tags->static_rqs[i] = NULL;
3280		}
3281	}
3282
3283	blk_mq_clear_rq_mapping(drv_tags, tags);
3284
3285	while (!list_empty(&tags->page_list)) {
3286		page = list_first_entry(&tags->page_list, struct page, lru);
3287		list_del_init(&page->lru);
3288		/*
3289		 * Remove kmemleak object previously allocated in
3290		 * blk_mq_alloc_rqs().
3291		 */
3292		kmemleak_free(page_address(page));
3293		__free_pages(page, page->private);
3294	}
3295}
3296
3297void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3298{
3299	kfree(tags->rqs);
3300	tags->rqs = NULL;
3301	kfree(tags->static_rqs);
3302	tags->static_rqs = NULL;
3303
3304	blk_mq_free_tags(tags);
3305}
3306
3307static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3308		unsigned int hctx_idx)
3309{
3310	int i;
3311
3312	for (i = 0; i < set->nr_maps; i++) {
3313		unsigned int start = set->map[i].queue_offset;
3314		unsigned int end = start + set->map[i].nr_queues;
3315
3316		if (hctx_idx >= start && hctx_idx < end)
3317			break;
3318	}
3319
3320	if (i >= set->nr_maps)
3321		i = HCTX_TYPE_DEFAULT;
3322
3323	return i;
3324}
3325
3326static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3327		unsigned int hctx_idx)
3328{
3329	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3330
3331	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3332}
3333
3334static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3335					       unsigned int hctx_idx,
3336					       unsigned int nr_tags,
3337					       unsigned int reserved_tags)
3338{
3339	int node = blk_mq_get_hctx_node(set, hctx_idx);
3340	struct blk_mq_tags *tags;
3341
3342	if (node == NUMA_NO_NODE)
3343		node = set->numa_node;
3344
3345	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3346				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3347	if (!tags)
3348		return NULL;
3349
3350	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3351				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3352				 node);
3353	if (!tags->rqs)
3354		goto err_free_tags;
3355
3356	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3357					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3358					node);
3359	if (!tags->static_rqs)
3360		goto err_free_rqs;
3361
3362	return tags;
3363
3364err_free_rqs:
3365	kfree(tags->rqs);
3366err_free_tags:
3367	blk_mq_free_tags(tags);
3368	return NULL;
3369}
3370
3371static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3372			       unsigned int hctx_idx, int node)
3373{
3374	int ret;
3375
3376	if (set->ops->init_request) {
3377		ret = set->ops->init_request(set, rq, hctx_idx, node);
3378		if (ret)
3379			return ret;
3380	}
3381
3382	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3383	return 0;
3384}
3385
3386static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3387			    struct blk_mq_tags *tags,
3388			    unsigned int hctx_idx, unsigned int depth)
3389{
3390	unsigned int i, j, entries_per_page, max_order = 4;
3391	int node = blk_mq_get_hctx_node(set, hctx_idx);
3392	size_t rq_size, left;
3393
3394	if (node == NUMA_NO_NODE)
3395		node = set->numa_node;
3396
3397	INIT_LIST_HEAD(&tags->page_list);
3398
3399	/*
3400	 * rq_size is the size of the request plus driver payload, rounded
3401	 * to the cacheline size
3402	 */
3403	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3404				cache_line_size());
3405	left = rq_size * depth;
3406
3407	for (i = 0; i < depth; ) {
3408		int this_order = max_order;
3409		struct page *page;
3410		int to_do;
3411		void *p;
3412
3413		while (this_order && left < order_to_size(this_order - 1))
3414			this_order--;
3415
3416		do {
3417			page = alloc_pages_node(node,
3418				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3419				this_order);
3420			if (page)
3421				break;
3422			if (!this_order--)
3423				break;
3424			if (order_to_size(this_order) < rq_size)
3425				break;
3426		} while (1);
3427
3428		if (!page)
3429			goto fail;
3430
3431		page->private = this_order;
3432		list_add_tail(&page->lru, &tags->page_list);
3433
3434		p = page_address(page);
3435		/*
3436		 * Allow kmemleak to scan these pages as they contain pointers
3437		 * to additional allocations like via ops->init_request().
3438		 */
3439		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3440		entries_per_page = order_to_size(this_order) / rq_size;
3441		to_do = min(entries_per_page, depth - i);
3442		left -= to_do * rq_size;
3443		for (j = 0; j < to_do; j++) {
3444			struct request *rq = p;
3445
3446			tags->static_rqs[i] = rq;
3447			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3448				tags->static_rqs[i] = NULL;
3449				goto fail;
3450			}
3451
3452			p += rq_size;
3453			i++;
3454		}
3455	}
3456	return 0;
3457
3458fail:
3459	blk_mq_free_rqs(set, tags, hctx_idx);
3460	return -ENOMEM;
3461}
3462
3463struct rq_iter_data {
3464	struct blk_mq_hw_ctx *hctx;
3465	bool has_rq;
3466};
3467
3468static bool blk_mq_has_request(struct request *rq, void *data)
3469{
3470	struct rq_iter_data *iter_data = data;
3471
3472	if (rq->mq_hctx != iter_data->hctx)
3473		return true;
3474	iter_data->has_rq = true;
3475	return false;
3476}
3477
3478static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3479{
3480	struct blk_mq_tags *tags = hctx->sched_tags ?
3481			hctx->sched_tags : hctx->tags;
3482	struct rq_iter_data data = {
3483		.hctx	= hctx,
3484	};
3485
3486	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3487	return data.has_rq;
3488}
3489
3490static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3491		struct blk_mq_hw_ctx *hctx)
3492{
3493	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3494		return false;
3495	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3496		return false;
3497	return true;
3498}
3499
3500static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3501{
3502	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3503			struct blk_mq_hw_ctx, cpuhp_online);
3504
3505	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3506	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3507		return 0;
3508
3509	/*
3510	 * Prevent new request from being allocated on the current hctx.
3511	 *
3512	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3513	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3514	 * seen once we return from the tag allocator.
3515	 */
3516	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3517	smp_mb__after_atomic();
3518
3519	/*
3520	 * Try to grab a reference to the queue and wait for any outstanding
3521	 * requests.  If we could not grab a reference the queue has been
3522	 * frozen and there are no requests.
3523	 */
3524	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3525		while (blk_mq_hctx_has_requests(hctx))
3526			msleep(5);
3527		percpu_ref_put(&hctx->queue->q_usage_counter);
3528	}
3529
3530	return 0;
3531}
3532
3533static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3534{
3535	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3536			struct blk_mq_hw_ctx, cpuhp_online);
3537
3538	if (cpumask_test_cpu(cpu, hctx->cpumask))
3539		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3540	return 0;
3541}
3542
3543/*
3544 * 'cpu' is going away. splice any existing rq_list entries from this
3545 * software queue to the hw queue dispatch list, and ensure that it
3546 * gets run.
3547 */
3548static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3549{
3550	struct blk_mq_hw_ctx *hctx;
3551	struct blk_mq_ctx *ctx;
3552	LIST_HEAD(tmp);
3553	enum hctx_type type;
3554
3555	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3556	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3557		return 0;
3558
3559	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3560	type = hctx->type;
3561
3562	spin_lock(&ctx->lock);
3563	if (!list_empty(&ctx->rq_lists[type])) {
3564		list_splice_init(&ctx->rq_lists[type], &tmp);
3565		blk_mq_hctx_clear_pending(hctx, ctx);
3566	}
3567	spin_unlock(&ctx->lock);
3568
3569	if (list_empty(&tmp))
3570		return 0;
3571
3572	spin_lock(&hctx->lock);
3573	list_splice_tail_init(&tmp, &hctx->dispatch);
3574	spin_unlock(&hctx->lock);
3575
3576	blk_mq_run_hw_queue(hctx, true);
3577	return 0;
3578}
3579
3580static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3581{
3582	if (!(hctx->flags & BLK_MQ_F_STACKING))
3583		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3584						    &hctx->cpuhp_online);
3585	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3586					    &hctx->cpuhp_dead);
3587}
3588
3589/*
3590 * Before freeing hw queue, clearing the flush request reference in
3591 * tags->rqs[] for avoiding potential UAF.
3592 */
3593static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3594		unsigned int queue_depth, struct request *flush_rq)
3595{
3596	int i;
3597	unsigned long flags;
3598
3599	/* The hw queue may not be mapped yet */
3600	if (!tags)
3601		return;
3602
3603	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3604
3605	for (i = 0; i < queue_depth; i++)
3606		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3607
3608	/*
3609	 * Wait until all pending iteration is done.
3610	 *
3611	 * Request reference is cleared and it is guaranteed to be observed
3612	 * after the ->lock is released.
3613	 */
3614	spin_lock_irqsave(&tags->lock, flags);
3615	spin_unlock_irqrestore(&tags->lock, flags);
3616}
3617
3618/* hctx->ctxs will be freed in queue's release handler */
3619static void blk_mq_exit_hctx(struct request_queue *q,
3620		struct blk_mq_tag_set *set,
3621		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3622{
3623	struct request *flush_rq = hctx->fq->flush_rq;
3624
3625	if (blk_mq_hw_queue_mapped(hctx))
3626		blk_mq_tag_idle(hctx);
3627
3628	if (blk_queue_init_done(q))
3629		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3630				set->queue_depth, flush_rq);
3631	if (set->ops->exit_request)
3632		set->ops->exit_request(set, flush_rq, hctx_idx);
3633
3634	if (set->ops->exit_hctx)
3635		set->ops->exit_hctx(hctx, hctx_idx);
3636
3637	blk_mq_remove_cpuhp(hctx);
3638
3639	xa_erase(&q->hctx_table, hctx_idx);
3640
3641	spin_lock(&q->unused_hctx_lock);
3642	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3643	spin_unlock(&q->unused_hctx_lock);
3644}
3645
3646static void blk_mq_exit_hw_queues(struct request_queue *q,
3647		struct blk_mq_tag_set *set, int nr_queue)
3648{
3649	struct blk_mq_hw_ctx *hctx;
3650	unsigned long i;
3651
3652	queue_for_each_hw_ctx(q, hctx, i) {
3653		if (i == nr_queue)
3654			break;
3655		blk_mq_exit_hctx(q, set, hctx, i);
3656	}
3657}
3658
3659static int blk_mq_init_hctx(struct request_queue *q,
3660		struct blk_mq_tag_set *set,
3661		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3662{
3663	hctx->queue_num = hctx_idx;
3664
3665	if (!(hctx->flags & BLK_MQ_F_STACKING))
3666		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3667				&hctx->cpuhp_online);
3668	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3669
3670	hctx->tags = set->tags[hctx_idx];
3671
3672	if (set->ops->init_hctx &&
3673	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3674		goto unregister_cpu_notifier;
3675
3676	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3677				hctx->numa_node))
3678		goto exit_hctx;
3679
3680	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3681		goto exit_flush_rq;
3682
3683	return 0;
3684
3685 exit_flush_rq:
3686	if (set->ops->exit_request)
3687		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3688 exit_hctx:
3689	if (set->ops->exit_hctx)
3690		set->ops->exit_hctx(hctx, hctx_idx);
3691 unregister_cpu_notifier:
3692	blk_mq_remove_cpuhp(hctx);
3693	return -1;
3694}
3695
3696static struct blk_mq_hw_ctx *
3697blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3698		int node)
3699{
3700	struct blk_mq_hw_ctx *hctx;
3701	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3702
3703	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3704	if (!hctx)
3705		goto fail_alloc_hctx;
3706
3707	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3708		goto free_hctx;
3709
3710	atomic_set(&hctx->nr_active, 0);
3711	if (node == NUMA_NO_NODE)
3712		node = set->numa_node;
3713	hctx->numa_node = node;
3714
3715	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3716	spin_lock_init(&hctx->lock);
3717	INIT_LIST_HEAD(&hctx->dispatch);
3718	hctx->queue = q;
3719	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3720
3721	INIT_LIST_HEAD(&hctx->hctx_list);
3722
3723	/*
3724	 * Allocate space for all possible cpus to avoid allocation at
3725	 * runtime
3726	 */
3727	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3728			gfp, node);
3729	if (!hctx->ctxs)
3730		goto free_cpumask;
3731
3732	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3733				gfp, node, false, false))
3734		goto free_ctxs;
3735	hctx->nr_ctx = 0;
3736
3737	spin_lock_init(&hctx->dispatch_wait_lock);
3738	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3739	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3740
3741	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3742	if (!hctx->fq)
3743		goto free_bitmap;
3744
3745	blk_mq_hctx_kobj_init(hctx);
3746
3747	return hctx;
3748
3749 free_bitmap:
3750	sbitmap_free(&hctx->ctx_map);
3751 free_ctxs:
3752	kfree(hctx->ctxs);
3753 free_cpumask:
3754	free_cpumask_var(hctx->cpumask);
3755 free_hctx:
3756	kfree(hctx);
3757 fail_alloc_hctx:
3758	return NULL;
3759}
3760
3761static void blk_mq_init_cpu_queues(struct request_queue *q,
3762				   unsigned int nr_hw_queues)
3763{
3764	struct blk_mq_tag_set *set = q->tag_set;
3765	unsigned int i, j;
3766
3767	for_each_possible_cpu(i) {
3768		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3769		struct blk_mq_hw_ctx *hctx;
3770		int k;
3771
3772		__ctx->cpu = i;
3773		spin_lock_init(&__ctx->lock);
3774		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3775			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3776
3777		__ctx->queue = q;
3778
3779		/*
3780		 * Set local node, IFF we have more than one hw queue. If
3781		 * not, we remain on the home node of the device
3782		 */
3783		for (j = 0; j < set->nr_maps; j++) {
3784			hctx = blk_mq_map_queue_type(q, j, i);
3785			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3786				hctx->numa_node = cpu_to_node(i);
3787		}
3788	}
3789}
3790
3791struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3792					     unsigned int hctx_idx,
3793					     unsigned int depth)
3794{
3795	struct blk_mq_tags *tags;
3796	int ret;
3797
3798	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3799	if (!tags)
3800		return NULL;
3801
3802	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3803	if (ret) {
3804		blk_mq_free_rq_map(tags);
3805		return NULL;
3806	}
3807
3808	return tags;
3809}
3810
3811static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3812				       int hctx_idx)
3813{
3814	if (blk_mq_is_shared_tags(set->flags)) {
3815		set->tags[hctx_idx] = set->shared_tags;
3816
3817		return true;
3818	}
3819
3820	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3821						       set->queue_depth);
3822
3823	return set->tags[hctx_idx];
3824}
3825
3826void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3827			     struct blk_mq_tags *tags,
3828			     unsigned int hctx_idx)
3829{
3830	if (tags) {
3831		blk_mq_free_rqs(set, tags, hctx_idx);
3832		blk_mq_free_rq_map(tags);
3833	}
3834}
3835
3836static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3837				      unsigned int hctx_idx)
3838{
3839	if (!blk_mq_is_shared_tags(set->flags))
3840		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3841
3842	set->tags[hctx_idx] = NULL;
3843}
3844
3845static void blk_mq_map_swqueue(struct request_queue *q)
3846{
3847	unsigned int j, hctx_idx;
3848	unsigned long i;
3849	struct blk_mq_hw_ctx *hctx;
3850	struct blk_mq_ctx *ctx;
3851	struct blk_mq_tag_set *set = q->tag_set;
3852
3853	queue_for_each_hw_ctx(q, hctx, i) {
3854		cpumask_clear(hctx->cpumask);
3855		hctx->nr_ctx = 0;
3856		hctx->dispatch_from = NULL;
3857	}
3858
3859	/*
3860	 * Map software to hardware queues.
3861	 *
3862	 * If the cpu isn't present, the cpu is mapped to first hctx.
3863	 */
3864	for_each_possible_cpu(i) {
3865
3866		ctx = per_cpu_ptr(q->queue_ctx, i);
3867		for (j = 0; j < set->nr_maps; j++) {
3868			if (!set->map[j].nr_queues) {
3869				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3870						HCTX_TYPE_DEFAULT, i);
3871				continue;
3872			}
3873			hctx_idx = set->map[j].mq_map[i];
3874			/* unmapped hw queue can be remapped after CPU topo changed */
3875			if (!set->tags[hctx_idx] &&
3876			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3877				/*
3878				 * If tags initialization fail for some hctx,
3879				 * that hctx won't be brought online.  In this
3880				 * case, remap the current ctx to hctx[0] which
3881				 * is guaranteed to always have tags allocated
3882				 */
3883				set->map[j].mq_map[i] = 0;
3884			}
3885
3886			hctx = blk_mq_map_queue_type(q, j, i);
3887			ctx->hctxs[j] = hctx;
3888			/*
3889			 * If the CPU is already set in the mask, then we've
3890			 * mapped this one already. This can happen if
3891			 * devices share queues across queue maps.
3892			 */
3893			if (cpumask_test_cpu(i, hctx->cpumask))
3894				continue;
3895
3896			cpumask_set_cpu(i, hctx->cpumask);
3897			hctx->type = j;
3898			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3899			hctx->ctxs[hctx->nr_ctx++] = ctx;
3900
3901			/*
3902			 * If the nr_ctx type overflows, we have exceeded the
3903			 * amount of sw queues we can support.
3904			 */
3905			BUG_ON(!hctx->nr_ctx);
3906		}
3907
3908		for (; j < HCTX_MAX_TYPES; j++)
3909			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3910					HCTX_TYPE_DEFAULT, i);
3911	}
3912
3913	queue_for_each_hw_ctx(q, hctx, i) {
3914		/*
3915		 * If no software queues are mapped to this hardware queue,
3916		 * disable it and free the request entries.
3917		 */
3918		if (!hctx->nr_ctx) {
3919			/* Never unmap queue 0.  We need it as a
3920			 * fallback in case of a new remap fails
3921			 * allocation
3922			 */
3923			if (i)
3924				__blk_mq_free_map_and_rqs(set, i);
3925
3926			hctx->tags = NULL;
3927			continue;
3928		}
3929
3930		hctx->tags = set->tags[i];
3931		WARN_ON(!hctx->tags);
3932
3933		/*
3934		 * Set the map size to the number of mapped software queues.
3935		 * This is more accurate and more efficient than looping
3936		 * over all possibly mapped software queues.
3937		 */
3938		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3939
3940		/*
3941		 * Initialize batch roundrobin counts
3942		 */
3943		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3944		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3945	}
3946}
3947
3948/*
3949 * Caller needs to ensure that we're either frozen/quiesced, or that
3950 * the queue isn't live yet.
3951 */
3952static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3953{
3954	struct blk_mq_hw_ctx *hctx;
3955	unsigned long i;
3956
3957	queue_for_each_hw_ctx(q, hctx, i) {
3958		if (shared) {
3959			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3960		} else {
3961			blk_mq_tag_idle(hctx);
3962			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3963		}
3964	}
3965}
3966
3967static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3968					 bool shared)
3969{
3970	struct request_queue *q;
3971
3972	lockdep_assert_held(&set->tag_list_lock);
3973
3974	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3975		blk_mq_freeze_queue(q);
3976		queue_set_hctx_shared(q, shared);
3977		blk_mq_unfreeze_queue(q);
3978	}
3979}
3980
3981static void blk_mq_del_queue_tag_set(struct request_queue *q)
3982{
3983	struct blk_mq_tag_set *set = q->tag_set;
3984
3985	mutex_lock(&set->tag_list_lock);
3986	list_del(&q->tag_set_list);
3987	if (list_is_singular(&set->tag_list)) {
3988		/* just transitioned to unshared */
3989		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3990		/* update existing queue */
3991		blk_mq_update_tag_set_shared(set, false);
3992	}
3993	mutex_unlock(&set->tag_list_lock);
3994	INIT_LIST_HEAD(&q->tag_set_list);
3995}
3996
3997static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3998				     struct request_queue *q)
3999{
4000	mutex_lock(&set->tag_list_lock);
4001
4002	/*
4003	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4004	 */
4005	if (!list_empty(&set->tag_list) &&
4006	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4007		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4008		/* update existing queue */
4009		blk_mq_update_tag_set_shared(set, true);
4010	}
4011	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4012		queue_set_hctx_shared(q, true);
4013	list_add_tail(&q->tag_set_list, &set->tag_list);
4014
4015	mutex_unlock(&set->tag_list_lock);
4016}
4017
4018/* All allocations will be freed in release handler of q->mq_kobj */
4019static int blk_mq_alloc_ctxs(struct request_queue *q)
4020{
4021	struct blk_mq_ctxs *ctxs;
4022	int cpu;
4023
4024	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4025	if (!ctxs)
4026		return -ENOMEM;
4027
4028	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4029	if (!ctxs->queue_ctx)
4030		goto fail;
4031
4032	for_each_possible_cpu(cpu) {
4033		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4034		ctx->ctxs = ctxs;
4035	}
4036
4037	q->mq_kobj = &ctxs->kobj;
4038	q->queue_ctx = ctxs->queue_ctx;
4039
4040	return 0;
4041 fail:
4042	kfree(ctxs);
4043	return -ENOMEM;
4044}
4045
4046/*
4047 * It is the actual release handler for mq, but we do it from
4048 * request queue's release handler for avoiding use-after-free
4049 * and headache because q->mq_kobj shouldn't have been introduced,
4050 * but we can't group ctx/kctx kobj without it.
4051 */
4052void blk_mq_release(struct request_queue *q)
4053{
4054	struct blk_mq_hw_ctx *hctx, *next;
4055	unsigned long i;
4056
4057	queue_for_each_hw_ctx(q, hctx, i)
4058		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4059
4060	/* all hctx are in .unused_hctx_list now */
4061	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4062		list_del_init(&hctx->hctx_list);
4063		kobject_put(&hctx->kobj);
4064	}
4065
4066	xa_destroy(&q->hctx_table);
4067
4068	/*
4069	 * release .mq_kobj and sw queue's kobject now because
4070	 * both share lifetime with request queue.
4071	 */
4072	blk_mq_sysfs_deinit(q);
4073}
4074
4075struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4076		struct queue_limits *lim, void *queuedata)
4077{
4078	struct queue_limits default_lim = { };
4079	struct request_queue *q;
4080	int ret;
4081
4082	q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4083	if (IS_ERR(q))
4084		return q;
4085	q->queuedata = queuedata;
4086	ret = blk_mq_init_allocated_queue(set, q);
4087	if (ret) {
4088		blk_put_queue(q);
4089		return ERR_PTR(ret);
4090	}
4091	return q;
4092}
4093EXPORT_SYMBOL(blk_mq_alloc_queue);
 
 
 
 
 
4094
4095/**
4096 * blk_mq_destroy_queue - shutdown a request queue
4097 * @q: request queue to shutdown
4098 *
4099 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4100 * requests will be failed with -ENODEV. The caller is responsible for dropping
4101 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4102 *
4103 * Context: can sleep
4104 */
4105void blk_mq_destroy_queue(struct request_queue *q)
4106{
4107	WARN_ON_ONCE(!queue_is_mq(q));
4108	WARN_ON_ONCE(blk_queue_registered(q));
4109
4110	might_sleep();
4111
4112	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4113	blk_queue_start_drain(q);
4114	blk_mq_freeze_queue_wait(q);
4115
4116	blk_sync_queue(q);
4117	blk_mq_cancel_work_sync(q);
4118	blk_mq_exit_queue(q);
4119}
4120EXPORT_SYMBOL(blk_mq_destroy_queue);
4121
4122struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4123		struct queue_limits *lim, void *queuedata,
4124		struct lock_class_key *lkclass)
4125{
4126	struct request_queue *q;
4127	struct gendisk *disk;
4128
4129	q = blk_mq_alloc_queue(set, lim, queuedata);
4130	if (IS_ERR(q))
4131		return ERR_CAST(q);
4132
4133	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4134	if (!disk) {
4135		blk_mq_destroy_queue(q);
4136		blk_put_queue(q);
4137		return ERR_PTR(-ENOMEM);
4138	}
4139	set_bit(GD_OWNS_QUEUE, &disk->state);
4140	return disk;
4141}
4142EXPORT_SYMBOL(__blk_mq_alloc_disk);
4143
4144struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4145		struct lock_class_key *lkclass)
4146{
4147	struct gendisk *disk;
4148
4149	if (!blk_get_queue(q))
4150		return NULL;
4151	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4152	if (!disk)
4153		blk_put_queue(q);
4154	return disk;
4155}
4156EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4157
4158static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4159		struct blk_mq_tag_set *set, struct request_queue *q,
4160		int hctx_idx, int node)
4161{
4162	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4163
4164	/* reuse dead hctx first */
4165	spin_lock(&q->unused_hctx_lock);
4166	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4167		if (tmp->numa_node == node) {
4168			hctx = tmp;
4169			break;
4170		}
4171	}
4172	if (hctx)
4173		list_del_init(&hctx->hctx_list);
4174	spin_unlock(&q->unused_hctx_lock);
4175
4176	if (!hctx)
4177		hctx = blk_mq_alloc_hctx(q, set, node);
4178	if (!hctx)
4179		goto fail;
4180
4181	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4182		goto free_hctx;
4183
4184	return hctx;
4185
4186 free_hctx:
4187	kobject_put(&hctx->kobj);
4188 fail:
4189	return NULL;
4190}
4191
4192static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4193						struct request_queue *q)
4194{
4195	struct blk_mq_hw_ctx *hctx;
4196	unsigned long i, j;
4197
4198	/* protect against switching io scheduler  */
4199	mutex_lock(&q->sysfs_lock);
4200	for (i = 0; i < set->nr_hw_queues; i++) {
4201		int old_node;
4202		int node = blk_mq_get_hctx_node(set, i);
4203		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4204
4205		if (old_hctx) {
4206			old_node = old_hctx->numa_node;
4207			blk_mq_exit_hctx(q, set, old_hctx, i);
4208		}
4209
4210		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4211			if (!old_hctx)
4212				break;
4213			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4214					node, old_node);
4215			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4216			WARN_ON_ONCE(!hctx);
4217		}
4218	}
4219	/*
4220	 * Increasing nr_hw_queues fails. Free the newly allocated
4221	 * hctxs and keep the previous q->nr_hw_queues.
4222	 */
4223	if (i != set->nr_hw_queues) {
4224		j = q->nr_hw_queues;
4225	} else {
4226		j = i;
4227		q->nr_hw_queues = set->nr_hw_queues;
4228	}
4229
4230	xa_for_each_start(&q->hctx_table, j, hctx, j)
4231		blk_mq_exit_hctx(q, set, hctx, j);
4232	mutex_unlock(&q->sysfs_lock);
4233}
4234
4235static void blk_mq_update_poll_flag(struct request_queue *q)
4236{
4237	struct blk_mq_tag_set *set = q->tag_set;
4238
4239	if (set->nr_maps > HCTX_TYPE_POLL &&
4240	    set->map[HCTX_TYPE_POLL].nr_queues)
4241		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4242	else
4243		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4244}
4245
4246int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4247		struct request_queue *q)
4248{
4249	/* mark the queue as mq asap */
4250	q->mq_ops = set->ops;
4251
 
 
 
 
 
 
4252	if (blk_mq_alloc_ctxs(q))
4253		goto err_exit;
4254
4255	/* init q->mq_kobj and sw queues' kobjects */
4256	blk_mq_sysfs_init(q);
4257
4258	INIT_LIST_HEAD(&q->unused_hctx_list);
4259	spin_lock_init(&q->unused_hctx_lock);
4260
4261	xa_init(&q->hctx_table);
4262
4263	blk_mq_realloc_hw_ctxs(set, q);
4264	if (!q->nr_hw_queues)
4265		goto err_hctxs;
4266
4267	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4268	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4269
4270	q->tag_set = set;
4271
4272	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4273	blk_mq_update_poll_flag(q);
4274
4275	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4276	INIT_LIST_HEAD(&q->flush_list);
4277	INIT_LIST_HEAD(&q->requeue_list);
4278	spin_lock_init(&q->requeue_lock);
4279
4280	q->nr_requests = set->queue_depth;
4281
 
 
 
 
 
4282	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4283	blk_mq_add_queue_tag_set(set, q);
4284	blk_mq_map_swqueue(q);
4285	return 0;
4286
4287err_hctxs:
4288	blk_mq_release(q);
 
 
 
4289err_exit:
4290	q->mq_ops = NULL;
4291	return -ENOMEM;
4292}
4293EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4294
4295/* tags can _not_ be used after returning from blk_mq_exit_queue */
4296void blk_mq_exit_queue(struct request_queue *q)
4297{
4298	struct blk_mq_tag_set *set = q->tag_set;
4299
4300	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4301	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4302	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4303	blk_mq_del_queue_tag_set(q);
4304}
4305
4306static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4307{
4308	int i;
4309
4310	if (blk_mq_is_shared_tags(set->flags)) {
4311		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4312						BLK_MQ_NO_HCTX_IDX,
4313						set->queue_depth);
4314		if (!set->shared_tags)
4315			return -ENOMEM;
4316	}
4317
4318	for (i = 0; i < set->nr_hw_queues; i++) {
4319		if (!__blk_mq_alloc_map_and_rqs(set, i))
4320			goto out_unwind;
4321		cond_resched();
4322	}
4323
4324	return 0;
4325
4326out_unwind:
4327	while (--i >= 0)
4328		__blk_mq_free_map_and_rqs(set, i);
4329
4330	if (blk_mq_is_shared_tags(set->flags)) {
4331		blk_mq_free_map_and_rqs(set, set->shared_tags,
4332					BLK_MQ_NO_HCTX_IDX);
4333	}
4334
4335	return -ENOMEM;
4336}
4337
4338/*
4339 * Allocate the request maps associated with this tag_set. Note that this
4340 * may reduce the depth asked for, if memory is tight. set->queue_depth
4341 * will be updated to reflect the allocated depth.
4342 */
4343static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4344{
4345	unsigned int depth;
4346	int err;
4347
4348	depth = set->queue_depth;
4349	do {
4350		err = __blk_mq_alloc_rq_maps(set);
4351		if (!err)
4352			break;
4353
4354		set->queue_depth >>= 1;
4355		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4356			err = -ENOMEM;
4357			break;
4358		}
4359	} while (set->queue_depth);
4360
4361	if (!set->queue_depth || err) {
4362		pr_err("blk-mq: failed to allocate request map\n");
4363		return -ENOMEM;
4364	}
4365
4366	if (depth != set->queue_depth)
4367		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4368						depth, set->queue_depth);
4369
4370	return 0;
4371}
4372
4373static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4374{
4375	/*
4376	 * blk_mq_map_queues() and multiple .map_queues() implementations
4377	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4378	 * number of hardware queues.
4379	 */
4380	if (set->nr_maps == 1)
4381		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4382
4383	if (set->ops->map_queues) {
4384		int i;
4385
4386		/*
4387		 * transport .map_queues is usually done in the following
4388		 * way:
4389		 *
4390		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4391		 * 	mask = get_cpu_mask(queue)
4392		 * 	for_each_cpu(cpu, mask)
4393		 * 		set->map[x].mq_map[cpu] = queue;
4394		 * }
4395		 *
4396		 * When we need to remap, the table has to be cleared for
4397		 * killing stale mapping since one CPU may not be mapped
4398		 * to any hw queue.
4399		 */
4400		for (i = 0; i < set->nr_maps; i++)
4401			blk_mq_clear_mq_map(&set->map[i]);
4402
4403		set->ops->map_queues(set);
4404	} else {
4405		BUG_ON(set->nr_maps > 1);
4406		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4407	}
4408}
4409
4410static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4411				       int new_nr_hw_queues)
4412{
4413	struct blk_mq_tags **new_tags;
4414	int i;
4415
4416	if (set->nr_hw_queues >= new_nr_hw_queues)
4417		goto done;
4418
4419	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4420				GFP_KERNEL, set->numa_node);
4421	if (!new_tags)
4422		return -ENOMEM;
4423
4424	if (set->tags)
4425		memcpy(new_tags, set->tags, set->nr_hw_queues *
4426		       sizeof(*set->tags));
4427	kfree(set->tags);
4428	set->tags = new_tags;
4429
4430	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4431		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4432			while (--i >= set->nr_hw_queues)
4433				__blk_mq_free_map_and_rqs(set, i);
4434			return -ENOMEM;
4435		}
4436		cond_resched();
4437	}
4438
4439done:
4440	set->nr_hw_queues = new_nr_hw_queues;
4441	return 0;
4442}
4443
4444/*
4445 * Alloc a tag set to be associated with one or more request queues.
4446 * May fail with EINVAL for various error conditions. May adjust the
4447 * requested depth down, if it's too large. In that case, the set
4448 * value will be stored in set->queue_depth.
4449 */
4450int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4451{
4452	int i, ret;
4453
4454	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4455
4456	if (!set->nr_hw_queues)
4457		return -EINVAL;
4458	if (!set->queue_depth)
4459		return -EINVAL;
4460	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4461		return -EINVAL;
4462
4463	if (!set->ops->queue_rq)
4464		return -EINVAL;
4465
4466	if (!set->ops->get_budget ^ !set->ops->put_budget)
4467		return -EINVAL;
4468
4469	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4470		pr_info("blk-mq: reduced tag depth to %u\n",
4471			BLK_MQ_MAX_DEPTH);
4472		set->queue_depth = BLK_MQ_MAX_DEPTH;
4473	}
4474
4475	if (!set->nr_maps)
4476		set->nr_maps = 1;
4477	else if (set->nr_maps > HCTX_MAX_TYPES)
4478		return -EINVAL;
4479
4480	/*
4481	 * If a crashdump is active, then we are potentially in a very
4482	 * memory constrained environment. Limit us to  64 tags to prevent
4483	 * using too much memory.
4484	 */
4485	if (is_kdump_kernel())
 
 
4486		set->queue_depth = min(64U, set->queue_depth);
4487
4488	/*
4489	 * There is no use for more h/w queues than cpus if we just have
4490	 * a single map
4491	 */
4492	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4493		set->nr_hw_queues = nr_cpu_ids;
4494
4495	if (set->flags & BLK_MQ_F_BLOCKING) {
4496		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4497		if (!set->srcu)
4498			return -ENOMEM;
4499		ret = init_srcu_struct(set->srcu);
4500		if (ret)
4501			goto out_free_srcu;
4502	}
4503
4504	ret = -ENOMEM;
4505	set->tags = kcalloc_node(set->nr_hw_queues,
4506				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4507				 set->numa_node);
4508	if (!set->tags)
4509		goto out_cleanup_srcu;
4510
4511	for (i = 0; i < set->nr_maps; i++) {
4512		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4513						  sizeof(set->map[i].mq_map[0]),
4514						  GFP_KERNEL, set->numa_node);
4515		if (!set->map[i].mq_map)
4516			goto out_free_mq_map;
4517		set->map[i].nr_queues = set->nr_hw_queues;
4518	}
4519
4520	blk_mq_update_queue_map(set);
4521
4522	ret = blk_mq_alloc_set_map_and_rqs(set);
4523	if (ret)
4524		goto out_free_mq_map;
4525
4526	mutex_init(&set->tag_list_lock);
4527	INIT_LIST_HEAD(&set->tag_list);
4528
4529	return 0;
4530
4531out_free_mq_map:
4532	for (i = 0; i < set->nr_maps; i++) {
4533		kfree(set->map[i].mq_map);
4534		set->map[i].mq_map = NULL;
4535	}
4536	kfree(set->tags);
4537	set->tags = NULL;
4538out_cleanup_srcu:
4539	if (set->flags & BLK_MQ_F_BLOCKING)
4540		cleanup_srcu_struct(set->srcu);
4541out_free_srcu:
4542	if (set->flags & BLK_MQ_F_BLOCKING)
4543		kfree(set->srcu);
4544	return ret;
4545}
4546EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4547
4548/* allocate and initialize a tagset for a simple single-queue device */
4549int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4550		const struct blk_mq_ops *ops, unsigned int queue_depth,
4551		unsigned int set_flags)
4552{
4553	memset(set, 0, sizeof(*set));
4554	set->ops = ops;
4555	set->nr_hw_queues = 1;
4556	set->nr_maps = 1;
4557	set->queue_depth = queue_depth;
4558	set->numa_node = NUMA_NO_NODE;
4559	set->flags = set_flags;
4560	return blk_mq_alloc_tag_set(set);
4561}
4562EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4563
4564void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4565{
4566	int i, j;
4567
4568	for (i = 0; i < set->nr_hw_queues; i++)
4569		__blk_mq_free_map_and_rqs(set, i);
4570
4571	if (blk_mq_is_shared_tags(set->flags)) {
4572		blk_mq_free_map_and_rqs(set, set->shared_tags,
4573					BLK_MQ_NO_HCTX_IDX);
4574	}
4575
4576	for (j = 0; j < set->nr_maps; j++) {
4577		kfree(set->map[j].mq_map);
4578		set->map[j].mq_map = NULL;
4579	}
4580
4581	kfree(set->tags);
4582	set->tags = NULL;
4583	if (set->flags & BLK_MQ_F_BLOCKING) {
4584		cleanup_srcu_struct(set->srcu);
4585		kfree(set->srcu);
4586	}
4587}
4588EXPORT_SYMBOL(blk_mq_free_tag_set);
4589
4590int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4591{
4592	struct blk_mq_tag_set *set = q->tag_set;
4593	struct blk_mq_hw_ctx *hctx;
4594	int ret;
4595	unsigned long i;
4596
4597	if (!set)
4598		return -EINVAL;
4599
4600	if (q->nr_requests == nr)
4601		return 0;
4602
4603	blk_mq_freeze_queue(q);
4604	blk_mq_quiesce_queue(q);
4605
4606	ret = 0;
4607	queue_for_each_hw_ctx(q, hctx, i) {
4608		if (!hctx->tags)
4609			continue;
4610		/*
4611		 * If we're using an MQ scheduler, just update the scheduler
4612		 * queue depth. This is similar to what the old code would do.
4613		 */
4614		if (hctx->sched_tags) {
4615			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4616						      nr, true);
4617		} else {
4618			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4619						      false);
4620		}
4621		if (ret)
4622			break;
4623		if (q->elevator && q->elevator->type->ops.depth_updated)
4624			q->elevator->type->ops.depth_updated(hctx);
4625	}
4626	if (!ret) {
4627		q->nr_requests = nr;
4628		if (blk_mq_is_shared_tags(set->flags)) {
4629			if (q->elevator)
4630				blk_mq_tag_update_sched_shared_tags(q);
4631			else
4632				blk_mq_tag_resize_shared_tags(set, nr);
4633		}
4634	}
4635
4636	blk_mq_unquiesce_queue(q);
4637	blk_mq_unfreeze_queue(q);
4638
4639	return ret;
4640}
4641
4642/*
4643 * request_queue and elevator_type pair.
4644 * It is just used by __blk_mq_update_nr_hw_queues to cache
4645 * the elevator_type associated with a request_queue.
4646 */
4647struct blk_mq_qe_pair {
4648	struct list_head node;
4649	struct request_queue *q;
4650	struct elevator_type *type;
4651};
4652
4653/*
4654 * Cache the elevator_type in qe pair list and switch the
4655 * io scheduler to 'none'
4656 */
4657static bool blk_mq_elv_switch_none(struct list_head *head,
4658		struct request_queue *q)
4659{
4660	struct blk_mq_qe_pair *qe;
4661
 
 
 
4662	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4663	if (!qe)
4664		return false;
4665
4666	/* q->elevator needs protection from ->sysfs_lock */
4667	mutex_lock(&q->sysfs_lock);
4668
4669	/* the check has to be done with holding sysfs_lock */
4670	if (!q->elevator) {
4671		kfree(qe);
4672		goto unlock;
4673	}
4674
4675	INIT_LIST_HEAD(&qe->node);
4676	qe->q = q;
4677	qe->type = q->elevator->type;
4678	/* keep a reference to the elevator module as we'll switch back */
4679	__elevator_get(qe->type);
4680	list_add(&qe->node, head);
4681	elevator_disable(q);
4682unlock:
4683	mutex_unlock(&q->sysfs_lock);
4684
4685	return true;
4686}
4687
4688static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4689						struct request_queue *q)
4690{
4691	struct blk_mq_qe_pair *qe;
4692
4693	list_for_each_entry(qe, head, node)
4694		if (qe->q == q)
4695			return qe;
4696
4697	return NULL;
4698}
4699
4700static void blk_mq_elv_switch_back(struct list_head *head,
4701				  struct request_queue *q)
4702{
4703	struct blk_mq_qe_pair *qe;
4704	struct elevator_type *t;
4705
4706	qe = blk_lookup_qe_pair(head, q);
4707	if (!qe)
4708		return;
4709	t = qe->type;
4710	list_del(&qe->node);
4711	kfree(qe);
4712
4713	mutex_lock(&q->sysfs_lock);
4714	elevator_switch(q, t);
4715	/* drop the reference acquired in blk_mq_elv_switch_none */
4716	elevator_put(t);
4717	mutex_unlock(&q->sysfs_lock);
4718}
4719
4720static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4721							int nr_hw_queues)
4722{
4723	struct request_queue *q;
4724	LIST_HEAD(head);
4725	int prev_nr_hw_queues = set->nr_hw_queues;
4726	int i;
4727
4728	lockdep_assert_held(&set->tag_list_lock);
4729
4730	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4731		nr_hw_queues = nr_cpu_ids;
4732	if (nr_hw_queues < 1)
4733		return;
4734	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4735		return;
4736
4737	list_for_each_entry(q, &set->tag_list, tag_set_list)
4738		blk_mq_freeze_queue(q);
4739	/*
4740	 * Switch IO scheduler to 'none', cleaning up the data associated
4741	 * with the previous scheduler. We will switch back once we are done
4742	 * updating the new sw to hw queue mappings.
4743	 */
4744	list_for_each_entry(q, &set->tag_list, tag_set_list)
4745		if (!blk_mq_elv_switch_none(&head, q))
4746			goto switch_back;
4747
4748	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4749		blk_mq_debugfs_unregister_hctxs(q);
4750		blk_mq_sysfs_unregister_hctxs(q);
4751	}
4752
 
4753	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4754		goto reregister;
4755
4756fallback:
4757	blk_mq_update_queue_map(set);
4758	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4759		blk_mq_realloc_hw_ctxs(set, q);
4760		blk_mq_update_poll_flag(q);
4761		if (q->nr_hw_queues != set->nr_hw_queues) {
4762			int i = prev_nr_hw_queues;
4763
4764			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4765					nr_hw_queues, prev_nr_hw_queues);
4766			for (; i < set->nr_hw_queues; i++)
4767				__blk_mq_free_map_and_rqs(set, i);
4768
4769			set->nr_hw_queues = prev_nr_hw_queues;
 
4770			goto fallback;
4771		}
4772		blk_mq_map_swqueue(q);
4773	}
4774
4775reregister:
4776	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4777		blk_mq_sysfs_register_hctxs(q);
4778		blk_mq_debugfs_register_hctxs(q);
4779	}
4780
4781switch_back:
4782	list_for_each_entry(q, &set->tag_list, tag_set_list)
4783		blk_mq_elv_switch_back(&head, q);
4784
4785	list_for_each_entry(q, &set->tag_list, tag_set_list)
4786		blk_mq_unfreeze_queue(q);
4787
4788	/* Free the excess tags when nr_hw_queues shrink. */
4789	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4790		__blk_mq_free_map_and_rqs(set, i);
4791}
4792
4793void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4794{
4795	mutex_lock(&set->tag_list_lock);
4796	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4797	mutex_unlock(&set->tag_list_lock);
4798}
4799EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4800
4801static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4802			 struct io_comp_batch *iob, unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4803{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4804	long state = get_current_state();
4805	int ret;
4806
4807	do {
4808		ret = q->mq_ops->poll(hctx, iob);
4809		if (ret > 0) {
4810			__set_current_state(TASK_RUNNING);
4811			return ret;
4812		}
4813
4814		if (signal_pending_state(state, current))
4815			__set_current_state(TASK_RUNNING);
4816		if (task_is_running(current))
4817			return 1;
4818
4819		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4820			break;
4821		cpu_relax();
4822	} while (!need_resched());
4823
4824	__set_current_state(TASK_RUNNING);
4825	return 0;
4826}
4827
4828int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4829		struct io_comp_batch *iob, unsigned int flags)
4830{
4831	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4832
4833	return blk_hctx_poll(q, hctx, iob, flags);
4834}
4835
4836int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4837		unsigned int poll_flags)
4838{
4839	struct request_queue *q = rq->q;
4840	int ret;
4841
4842	if (!blk_rq_is_poll(rq))
4843		return 0;
4844	if (!percpu_ref_tryget(&q->q_usage_counter))
4845		return 0;
4846
4847	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4848	blk_queue_exit(q);
4849
4850	return ret;
4851}
4852EXPORT_SYMBOL_GPL(blk_rq_poll);
4853
4854unsigned int blk_mq_rq_cpu(struct request *rq)
4855{
4856	return rq->mq_ctx->cpu;
4857}
4858EXPORT_SYMBOL(blk_mq_rq_cpu);
4859
4860void blk_mq_cancel_work_sync(struct request_queue *q)
4861{
4862	struct blk_mq_hw_ctx *hctx;
4863	unsigned long i;
4864
4865	cancel_delayed_work_sync(&q->requeue_work);
4866
4867	queue_for_each_hw_ctx(q, hctx, i)
4868		cancel_delayed_work_sync(&hctx->run_work);
4869}
4870
4871static int __init blk_mq_init(void)
4872{
4873	int i;
4874
4875	for_each_possible_cpu(i)
4876		init_llist_head(&per_cpu(blk_cpu_done, i));
4877	for_each_possible_cpu(i)
4878		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4879			 __blk_mq_complete_request_remote, NULL);
4880	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4881
4882	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4883				  "block/softirq:dead", NULL,
4884				  blk_softirq_cpu_dead);
4885	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4886				blk_mq_hctx_notify_dead);
4887	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4888				blk_mq_hctx_notify_online,
4889				blk_mq_hctx_notify_offline);
4890	return 0;
4891}
4892subsys_initcall(blk_mq_init);