Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2002 Andi Kleen, SuSE Labs.
   4 * Thanks to Ben LaHaise for precious feedback.
   5 */
   6#include <linux/highmem.h>
   7#include <linux/memblock.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
 
  12#include <linux/debugfs.h>
  13#include <linux/pfn.h>
  14#include <linux/percpu.h>
  15#include <linux/gfp.h>
  16#include <linux/pci.h>
  17#include <linux/vmalloc.h>
  18#include <linux/libnvdimm.h>
  19#include <linux/vmstat.h>
  20#include <linux/kernel.h>
  21#include <linux/cc_platform.h>
  22#include <linux/set_memory.h>
  23#include <linux/memregion.h>
  24
  25#include <asm/e820/api.h>
  26#include <asm/processor.h>
  27#include <asm/tlbflush.h>
  28#include <asm/sections.h>
  29#include <asm/setup.h>
  30#include <linux/uaccess.h>
  31#include <asm/pgalloc.h>
  32#include <asm/proto.h>
  33#include <asm/memtype.h>
  34#include <asm/hyperv-tlfs.h>
  35#include <asm/mshyperv.h>
  36
  37#include "../mm_internal.h"
  38
  39/*
  40 * The current flushing context - we pass it instead of 5 arguments:
  41 */
  42struct cpa_data {
  43	unsigned long	*vaddr;
  44	pgd_t		*pgd;
  45	pgprot_t	mask_set;
  46	pgprot_t	mask_clr;
  47	unsigned long	numpages;
  48	unsigned long	curpage;
  49	unsigned long	pfn;
  50	unsigned int	flags;
  51	unsigned int	force_split		: 1,
  52			force_static_prot	: 1,
  53			force_flush_all		: 1;
  54	struct page	**pages;
  55};
  56
  57enum cpa_warn {
  58	CPA_CONFLICT,
  59	CPA_PROTECT,
  60	CPA_DETECT,
  61};
  62
  63static const int cpa_warn_level = CPA_PROTECT;
  64
  65/*
  66 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  67 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  68 * entries change the page attribute in parallel to some other cpu
  69 * splitting a large page entry along with changing the attribute.
  70 */
  71static DEFINE_SPINLOCK(cpa_lock);
  72
  73#define CPA_FLUSHTLB 1
  74#define CPA_ARRAY 2
  75#define CPA_PAGES_ARRAY 4
  76#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  77
  78static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
  79{
  80	return __pgprot(cachemode2protval(pcm));
  81}
  82
  83#ifdef CONFIG_PROC_FS
  84static unsigned long direct_pages_count[PG_LEVEL_NUM];
  85
  86void update_page_count(int level, unsigned long pages)
  87{
  88	/* Protect against CPA */
  89	spin_lock(&pgd_lock);
  90	direct_pages_count[level] += pages;
  91	spin_unlock(&pgd_lock);
  92}
  93
  94static void split_page_count(int level)
  95{
  96	if (direct_pages_count[level] == 0)
  97		return;
  98
  99	direct_pages_count[level]--;
 100	if (system_state == SYSTEM_RUNNING) {
 101		if (level == PG_LEVEL_2M)
 102			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
 103		else if (level == PG_LEVEL_1G)
 104			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
 105	}
 106	direct_pages_count[level - 1] += PTRS_PER_PTE;
 107}
 108
 109void arch_report_meminfo(struct seq_file *m)
 110{
 111	seq_printf(m, "DirectMap4k:    %8lu kB\n",
 112			direct_pages_count[PG_LEVEL_4K] << 2);
 113#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 114	seq_printf(m, "DirectMap2M:    %8lu kB\n",
 115			direct_pages_count[PG_LEVEL_2M] << 11);
 116#else
 117	seq_printf(m, "DirectMap4M:    %8lu kB\n",
 118			direct_pages_count[PG_LEVEL_2M] << 12);
 119#endif
 120	if (direct_gbpages)
 121		seq_printf(m, "DirectMap1G:    %8lu kB\n",
 122			direct_pages_count[PG_LEVEL_1G] << 20);
 123}
 124#else
 125static inline void split_page_count(int level) { }
 126#endif
 127
 128#ifdef CONFIG_X86_CPA_STATISTICS
 129
 130static unsigned long cpa_1g_checked;
 131static unsigned long cpa_1g_sameprot;
 132static unsigned long cpa_1g_preserved;
 133static unsigned long cpa_2m_checked;
 134static unsigned long cpa_2m_sameprot;
 135static unsigned long cpa_2m_preserved;
 136static unsigned long cpa_4k_install;
 137
 138static inline void cpa_inc_1g_checked(void)
 139{
 140	cpa_1g_checked++;
 141}
 142
 143static inline void cpa_inc_2m_checked(void)
 144{
 145	cpa_2m_checked++;
 146}
 147
 148static inline void cpa_inc_4k_install(void)
 149{
 150	data_race(cpa_4k_install++);
 151}
 152
 153static inline void cpa_inc_lp_sameprot(int level)
 154{
 155	if (level == PG_LEVEL_1G)
 156		cpa_1g_sameprot++;
 157	else
 158		cpa_2m_sameprot++;
 159}
 160
 161static inline void cpa_inc_lp_preserved(int level)
 162{
 163	if (level == PG_LEVEL_1G)
 164		cpa_1g_preserved++;
 165	else
 166		cpa_2m_preserved++;
 167}
 168
 169static int cpastats_show(struct seq_file *m, void *p)
 170{
 171	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 172	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 173	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 174	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 175	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 176	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 177	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 178	return 0;
 179}
 180
 181static int cpastats_open(struct inode *inode, struct file *file)
 182{
 183	return single_open(file, cpastats_show, NULL);
 184}
 185
 186static const struct file_operations cpastats_fops = {
 187	.open		= cpastats_open,
 188	.read		= seq_read,
 189	.llseek		= seq_lseek,
 190	.release	= single_release,
 191};
 192
 193static int __init cpa_stats_init(void)
 194{
 195	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 196			    &cpastats_fops);
 197	return 0;
 198}
 199late_initcall(cpa_stats_init);
 200#else
 201static inline void cpa_inc_1g_checked(void) { }
 202static inline void cpa_inc_2m_checked(void) { }
 203static inline void cpa_inc_4k_install(void) { }
 204static inline void cpa_inc_lp_sameprot(int level) { }
 205static inline void cpa_inc_lp_preserved(int level) { }
 206#endif
 207
 208
 209static inline int
 210within(unsigned long addr, unsigned long start, unsigned long end)
 211{
 212	return addr >= start && addr < end;
 213}
 214
 215static inline int
 216within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 217{
 218	return addr >= start && addr <= end;
 219}
 220
 221#ifdef CONFIG_X86_64
 222
 223/*
 224 * The kernel image is mapped into two places in the virtual address space
 225 * (addresses without KASLR, of course):
 226 *
 227 * 1. The kernel direct map (0xffff880000000000)
 228 * 2. The "high kernel map" (0xffffffff81000000)
 229 *
 230 * We actually execute out of #2. If we get the address of a kernel symbol, it
 231 * points to #2, but almost all physical-to-virtual translations point to #1.
 232 *
 233 * This is so that we can have both a directmap of all physical memory *and*
 234 * take full advantage of the the limited (s32) immediate addressing range (2G)
 235 * of x86_64.
 236 *
 237 * See Documentation/x86/x86_64/mm.rst for more detail.
 238 */
 239
 240static inline unsigned long highmap_start_pfn(void)
 241{
 242	return __pa_symbol(_text) >> PAGE_SHIFT;
 243}
 244
 245static inline unsigned long highmap_end_pfn(void)
 246{
 247	/* Do not reference physical address outside the kernel. */
 248	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 249}
 250
 251static bool __cpa_pfn_in_highmap(unsigned long pfn)
 252{
 253	/*
 254	 * Kernel text has an alias mapping at a high address, known
 255	 * here as "highmap".
 256	 */
 257	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 258}
 259
 260#else
 261
 262static bool __cpa_pfn_in_highmap(unsigned long pfn)
 263{
 264	/* There is no highmap on 32-bit */
 265	return false;
 266}
 267
 268#endif
 269
 270/*
 271 * See set_mce_nospec().
 272 *
 273 * Machine check recovery code needs to change cache mode of poisoned pages to
 274 * UC to avoid speculative access logging another error. But passing the
 275 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 276 * speculative access. So we cheat and flip the top bit of the address. This
 277 * works fine for the code that updates the page tables. But at the end of the
 278 * process we need to flush the TLB and cache and the non-canonical address
 279 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 280 *
 281 * But in the common case we already have a canonical address. This code
 282 * will fix the top bit if needed and is a no-op otherwise.
 283 */
 284static inline unsigned long fix_addr(unsigned long addr)
 285{
 286#ifdef CONFIG_X86_64
 287	return (long)(addr << 1) >> 1;
 288#else
 289	return addr;
 290#endif
 291}
 292
 293static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 294{
 295	if (cpa->flags & CPA_PAGES_ARRAY) {
 296		struct page *page = cpa->pages[idx];
 297
 298		if (unlikely(PageHighMem(page)))
 299			return 0;
 300
 301		return (unsigned long)page_address(page);
 302	}
 303
 304	if (cpa->flags & CPA_ARRAY)
 305		return cpa->vaddr[idx];
 306
 307	return *cpa->vaddr + idx * PAGE_SIZE;
 308}
 309
 310/*
 311 * Flushing functions
 312 */
 313
 314static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 315{
 316	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 317	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 318	void *vend = vaddr + size;
 319
 320	if (p >= vend)
 321		return;
 322
 323	for (; p < vend; p += clflush_size)
 324		clflushopt(p);
 325}
 326
 327/**
 328 * clflush_cache_range - flush a cache range with clflush
 329 * @vaddr:	virtual start address
 330 * @size:	number of bytes to flush
 331 *
 332 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 333 * SFENCE to avoid ordering issues.
 334 */
 335void clflush_cache_range(void *vaddr, unsigned int size)
 336{
 337	mb();
 338	clflush_cache_range_opt(vaddr, size);
 339	mb();
 340}
 341EXPORT_SYMBOL_GPL(clflush_cache_range);
 342
 343#ifdef CONFIG_ARCH_HAS_PMEM_API
 344void arch_invalidate_pmem(void *addr, size_t size)
 345{
 346	clflush_cache_range(addr, size);
 347}
 348EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 349#endif
 350
 351#ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
 352bool cpu_cache_has_invalidate_memregion(void)
 353{
 354	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
 355}
 356EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
 357
 358int cpu_cache_invalidate_memregion(int res_desc)
 359{
 360	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
 361		return -ENXIO;
 362	wbinvd_on_all_cpus();
 363	return 0;
 364}
 365EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
 366#endif
 367
 368static void __cpa_flush_all(void *arg)
 369{
 370	unsigned long cache = (unsigned long)arg;
 371
 372	/*
 373	 * Flush all to work around Errata in early athlons regarding
 374	 * large page flushing.
 375	 */
 376	__flush_tlb_all();
 377
 378	if (cache && boot_cpu_data.x86 >= 4)
 379		wbinvd();
 380}
 381
 382static void cpa_flush_all(unsigned long cache)
 383{
 384	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 385
 386	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 387}
 388
 389static void __cpa_flush_tlb(void *data)
 390{
 391	struct cpa_data *cpa = data;
 392	unsigned int i;
 393
 394	for (i = 0; i < cpa->numpages; i++)
 395		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 396}
 397
 398static void cpa_flush(struct cpa_data *data, int cache)
 399{
 400	struct cpa_data *cpa = data;
 401	unsigned int i;
 402
 403	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 404
 405	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 406		cpa_flush_all(cache);
 407		return;
 408	}
 409
 410	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
 411		flush_tlb_all();
 412	else
 413		on_each_cpu(__cpa_flush_tlb, cpa, 1);
 414
 415	if (!cache)
 416		return;
 417
 418	mb();
 419	for (i = 0; i < cpa->numpages; i++) {
 420		unsigned long addr = __cpa_addr(cpa, i);
 421		unsigned int level;
 422
 423		pte_t *pte = lookup_address(addr, &level);
 424
 425		/*
 426		 * Only flush present addresses:
 427		 */
 428		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 429			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 430	}
 431	mb();
 432}
 433
 434static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 435		     unsigned long r2_start, unsigned long r2_end)
 436{
 437	return (r1_start <= r2_end && r1_end >= r2_start) ||
 438		(r2_start <= r1_end && r2_end >= r1_start);
 439}
 440
 441#ifdef CONFIG_PCI_BIOS
 442/*
 443 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 444 * based config access (CONFIG_PCI_GOBIOS) support.
 445 */
 446#define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
 447#define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
 448
 449static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 450{
 451	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 452		return _PAGE_NX;
 453	return 0;
 454}
 455#else
 456static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 457{
 458	return 0;
 459}
 460#endif
 461
 462/*
 463 * The .rodata section needs to be read-only. Using the pfn catches all
 464 * aliases.  This also includes __ro_after_init, so do not enforce until
 465 * kernel_set_to_readonly is true.
 466 */
 467static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 468{
 469	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 470
 471	/*
 472	 * Note: __end_rodata is at page aligned and not inclusive, so
 473	 * subtract 1 to get the last enforced PFN in the rodata area.
 474	 */
 475	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 476
 477	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 478		return _PAGE_RW;
 479	return 0;
 480}
 481
 482/*
 483 * Protect kernel text against becoming non executable by forbidding
 484 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 485 * out of which the kernel actually executes.  Do not protect the low
 486 * mapping.
 487 *
 488 * This does not cover __inittext since that is gone after boot.
 489 */
 490static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 491{
 492	unsigned long t_end = (unsigned long)_etext - 1;
 493	unsigned long t_start = (unsigned long)_text;
 494
 495	if (overlaps(start, end, t_start, t_end))
 496		return _PAGE_NX;
 497	return 0;
 498}
 499
 500#if defined(CONFIG_X86_64)
 501/*
 502 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 503 * kernel text mappings for the large page aligned text, rodata sections
 504 * will be always read-only. For the kernel identity mappings covering the
 505 * holes caused by this alignment can be anything that user asks.
 506 *
 507 * This will preserve the large page mappings for kernel text/data at no
 508 * extra cost.
 509 */
 510static pgprotval_t protect_kernel_text_ro(unsigned long start,
 511					  unsigned long end)
 512{
 513	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 514	unsigned long t_start = (unsigned long)_text;
 515	unsigned int level;
 516
 517	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 518		return 0;
 519	/*
 520	 * Don't enforce the !RW mapping for the kernel text mapping, if
 521	 * the current mapping is already using small page mapping.  No
 522	 * need to work hard to preserve large page mappings in this case.
 523	 *
 524	 * This also fixes the Linux Xen paravirt guest boot failure caused
 525	 * by unexpected read-only mappings for kernel identity
 526	 * mappings. In this paravirt guest case, the kernel text mapping
 527	 * and the kernel identity mapping share the same page-table pages,
 528	 * so the protections for kernel text and identity mappings have to
 529	 * be the same.
 530	 */
 531	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 532		return _PAGE_RW;
 533	return 0;
 534}
 535#else
 536static pgprotval_t protect_kernel_text_ro(unsigned long start,
 537					  unsigned long end)
 538{
 539	return 0;
 540}
 541#endif
 542
 543static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 544{
 545	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 546}
 547
 548static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 549				  unsigned long start, unsigned long end,
 550				  unsigned long pfn, const char *txt)
 551{
 552	static const char *lvltxt[] = {
 553		[CPA_CONFLICT]	= "conflict",
 554		[CPA_PROTECT]	= "protect",
 555		[CPA_DETECT]	= "detect",
 556	};
 557
 558	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 559		return;
 560
 561	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 562		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 563		(unsigned long long)val);
 564}
 565
 566/*
 567 * Certain areas of memory on x86 require very specific protection flags,
 568 * for example the BIOS area or kernel text. Callers don't always get this
 569 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 570 * checks and fixes these known static required protection bits.
 571 */
 572static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 573					  unsigned long pfn, unsigned long npg,
 574					  unsigned long lpsize, int warnlvl)
 575{
 576	pgprotval_t forbidden, res;
 577	unsigned long end;
 578
 579	/*
 580	 * There is no point in checking RW/NX conflicts when the requested
 581	 * mapping is setting the page !PRESENT.
 582	 */
 583	if (!(pgprot_val(prot) & _PAGE_PRESENT))
 584		return prot;
 585
 586	/* Operate on the virtual address */
 587	end = start + npg * PAGE_SIZE - 1;
 588
 589	res = protect_kernel_text(start, end);
 590	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 591	forbidden = res;
 592
 593	/*
 594	 * Special case to preserve a large page. If the change spawns the
 595	 * full large page mapping then there is no point to split it
 596	 * up. Happens with ftrace and is going to be removed once ftrace
 597	 * switched to text_poke().
 598	 */
 599	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 600		res = protect_kernel_text_ro(start, end);
 601		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 602		forbidden |= res;
 603	}
 604
 605	/* Check the PFN directly */
 606	res = protect_pci_bios(pfn, pfn + npg - 1);
 607	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 608	forbidden |= res;
 609
 610	res = protect_rodata(pfn, pfn + npg - 1);
 611	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 612	forbidden |= res;
 613
 614	return __pgprot(pgprot_val(prot) & ~forbidden);
 615}
 616
 617/*
 618 * Validate strict W^X semantics.
 619 */
 620static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
 621				  unsigned long pfn, unsigned long npg)
 
 622{
 623	unsigned long end;
 624
 625	/*
 626	 * 32-bit has some unfixable W+X issues, like EFI code
 627	 * and writeable data being in the same page.  Disable
 628	 * detection and enforcement there.
 629	 */
 630	if (IS_ENABLED(CONFIG_X86_32))
 631		return new;
 632
 633	/* Only verify when NX is supported: */
 634	if (!(__supported_pte_mask & _PAGE_NX))
 635		return new;
 636
 637	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
 638		return new;
 639
 640	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
 641		return new;
 642
 
 
 
 
 643	end = start + npg * PAGE_SIZE - 1;
 644	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
 645		  (unsigned long long)pgprot_val(old),
 646		  (unsigned long long)pgprot_val(new),
 647		  start, end, pfn);
 648
 649	/*
 650	 * For now, allow all permission change attempts by returning the
 651	 * attempted permissions.  This can 'return old' to actively
 652	 * refuse the permission change at a later time.
 653	 */
 654	return new;
 655}
 656
 657/*
 658 * Lookup the page table entry for a virtual address in a specific pgd.
 659 * Return a pointer to the entry and the level of the mapping.
 
 660 */
 661pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 662			     unsigned int *level)
 663{
 664	p4d_t *p4d;
 665	pud_t *pud;
 666	pmd_t *pmd;
 667
 668	*level = PG_LEVEL_NONE;
 
 
 669
 670	if (pgd_none(*pgd))
 671		return NULL;
 672
 
 
 
 673	p4d = p4d_offset(pgd, address);
 674	if (p4d_none(*p4d))
 675		return NULL;
 676
 677	*level = PG_LEVEL_512G;
 678	if (p4d_large(*p4d) || !p4d_present(*p4d))
 679		return (pte_t *)p4d;
 680
 
 
 
 681	pud = pud_offset(p4d, address);
 682	if (pud_none(*pud))
 683		return NULL;
 684
 685	*level = PG_LEVEL_1G;
 686	if (pud_large(*pud) || !pud_present(*pud))
 687		return (pte_t *)pud;
 688
 
 
 
 689	pmd = pmd_offset(pud, address);
 690	if (pmd_none(*pmd))
 691		return NULL;
 692
 693	*level = PG_LEVEL_2M;
 694	if (pmd_large(*pmd) || !pmd_present(*pmd))
 695		return (pte_t *)pmd;
 696
 
 
 
 697	*level = PG_LEVEL_4K;
 698
 699	return pte_offset_kernel(pmd, address);
 700}
 701
 702/*
 
 
 
 
 
 
 
 
 
 
 
 
 703 * Lookup the page table entry for a virtual address. Return a pointer
 704 * to the entry and the level of the mapping.
 705 *
 706 * Note: We return pud and pmd either when the entry is marked large
 707 * or when the present bit is not set. Otherwise we would return a
 708 * pointer to a nonexisting mapping.
 709 */
 710pte_t *lookup_address(unsigned long address, unsigned int *level)
 711{
 712	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 713}
 714EXPORT_SYMBOL_GPL(lookup_address);
 715
 716static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 717				  unsigned int *level)
 718{
 719	if (cpa->pgd)
 720		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 721					       address, level);
 722
 723	return lookup_address(address, level);
 
 
 
 
 
 724}
 725
 726/*
 727 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 728 * or NULL if not present.
 729 */
 730pmd_t *lookup_pmd_address(unsigned long address)
 731{
 732	pgd_t *pgd;
 733	p4d_t *p4d;
 734	pud_t *pud;
 735
 736	pgd = pgd_offset_k(address);
 737	if (pgd_none(*pgd))
 738		return NULL;
 739
 740	p4d = p4d_offset(pgd, address);
 741	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 742		return NULL;
 743
 744	pud = pud_offset(p4d, address);
 745	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 746		return NULL;
 747
 748	return pmd_offset(pud, address);
 749}
 750
 751/*
 752 * This is necessary because __pa() does not work on some
 753 * kinds of memory, like vmalloc() or the alloc_remap()
 754 * areas on 32-bit NUMA systems.  The percpu areas can
 755 * end up in this kind of memory, for instance.
 756 *
 757 * This could be optimized, but it is only intended to be
 758 * used at initialization time, and keeping it
 759 * unoptimized should increase the testing coverage for
 760 * the more obscure platforms.
 
 
 
 
 761 */
 762phys_addr_t slow_virt_to_phys(void *__virt_addr)
 763{
 764	unsigned long virt_addr = (unsigned long)__virt_addr;
 765	phys_addr_t phys_addr;
 766	unsigned long offset;
 767	enum pg_level level;
 768	pte_t *pte;
 769
 770	pte = lookup_address(virt_addr, &level);
 771	BUG_ON(!pte);
 772
 773	/*
 774	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 775	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
 776	 * make 32-PAE kernel work correctly.
 777	 */
 778	switch (level) {
 779	case PG_LEVEL_1G:
 780		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 781		offset = virt_addr & ~PUD_MASK;
 782		break;
 783	case PG_LEVEL_2M:
 784		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 785		offset = virt_addr & ~PMD_MASK;
 786		break;
 787	default:
 788		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 789		offset = virt_addr & ~PAGE_MASK;
 790	}
 791
 792	return (phys_addr_t)(phys_addr | offset);
 793}
 794EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 795
 796/*
 797 * Set the new pmd in all the pgds we know about:
 798 */
 799static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 800{
 801	/* change init_mm */
 802	set_pte_atomic(kpte, pte);
 803#ifdef CONFIG_X86_32
 804	if (!SHARED_KERNEL_PMD) {
 805		struct page *page;
 806
 807		list_for_each_entry(page, &pgd_list, lru) {
 808			pgd_t *pgd;
 809			p4d_t *p4d;
 810			pud_t *pud;
 811			pmd_t *pmd;
 812
 813			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 814			p4d = p4d_offset(pgd, address);
 815			pud = pud_offset(p4d, address);
 816			pmd = pmd_offset(pud, address);
 817			set_pte_atomic((pte_t *)pmd, pte);
 818		}
 819	}
 820#endif
 821}
 822
 823static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 824{
 825	/*
 826	 * _PAGE_GLOBAL means "global page" for present PTEs.
 827	 * But, it is also used to indicate _PAGE_PROTNONE
 828	 * for non-present PTEs.
 829	 *
 830	 * This ensures that a _PAGE_GLOBAL PTE going from
 831	 * present to non-present is not confused as
 832	 * _PAGE_PROTNONE.
 833	 */
 834	if (!(pgprot_val(prot) & _PAGE_PRESENT))
 835		pgprot_val(prot) &= ~_PAGE_GLOBAL;
 836
 837	return prot;
 838}
 839
 840static int __should_split_large_page(pte_t *kpte, unsigned long address,
 841				     struct cpa_data *cpa)
 842{
 843	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 844	pgprot_t old_prot, new_prot, req_prot, chk_prot;
 845	pte_t new_pte, *tmp;
 846	enum pg_level level;
 
 847
 848	/*
 849	 * Check for races, another CPU might have split this page
 850	 * up already:
 851	 */
 852	tmp = _lookup_address_cpa(cpa, address, &level);
 853	if (tmp != kpte)
 854		return 1;
 855
 856	switch (level) {
 857	case PG_LEVEL_2M:
 858		old_prot = pmd_pgprot(*(pmd_t *)kpte);
 859		old_pfn = pmd_pfn(*(pmd_t *)kpte);
 860		cpa_inc_2m_checked();
 861		break;
 862	case PG_LEVEL_1G:
 863		old_prot = pud_pgprot(*(pud_t *)kpte);
 864		old_pfn = pud_pfn(*(pud_t *)kpte);
 865		cpa_inc_1g_checked();
 866		break;
 867	default:
 868		return -EINVAL;
 869	}
 870
 871	psize = page_level_size(level);
 872	pmask = page_level_mask(level);
 873
 874	/*
 875	 * Calculate the number of pages, which fit into this large
 876	 * page starting at address:
 877	 */
 878	lpaddr = (address + psize) & pmask;
 879	numpages = (lpaddr - address) >> PAGE_SHIFT;
 880	if (numpages < cpa->numpages)
 881		cpa->numpages = numpages;
 882
 883	/*
 884	 * We are safe now. Check whether the new pgprot is the same:
 885	 * Convert protection attributes to 4k-format, as cpa->mask* are set
 886	 * up accordingly.
 887	 */
 888
 889	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 890	req_prot = pgprot_large_2_4k(old_prot);
 891
 892	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 893	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 894
 895	/*
 896	 * req_prot is in format of 4k pages. It must be converted to large
 897	 * page format: the caching mode includes the PAT bit located at
 898	 * different bit positions in the two formats.
 899	 */
 900	req_prot = pgprot_4k_2_large(req_prot);
 901	req_prot = pgprot_clear_protnone_bits(req_prot);
 902	if (pgprot_val(req_prot) & _PAGE_PRESENT)
 903		pgprot_val(req_prot) |= _PAGE_PSE;
 904
 905	/*
 906	 * old_pfn points to the large page base pfn. So we need to add the
 907	 * offset of the virtual address:
 908	 */
 909	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 910	cpa->pfn = pfn;
 911
 912	/*
 913	 * Calculate the large page base address and the number of 4K pages
 914	 * in the large page
 915	 */
 916	lpaddr = address & pmask;
 917	numpages = psize >> PAGE_SHIFT;
 918
 919	/*
 920	 * Sanity check that the existing mapping is correct versus the static
 921	 * protections. static_protections() guards against !PRESENT, so no
 922	 * extra conditional required here.
 923	 */
 924	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 925				      psize, CPA_CONFLICT);
 926
 927	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 928		/*
 929		 * Split the large page and tell the split code to
 930		 * enforce static protections.
 931		 */
 932		cpa->force_static_prot = 1;
 933		return 1;
 934	}
 935
 936	/*
 937	 * Optimization: If the requested pgprot is the same as the current
 938	 * pgprot, then the large page can be preserved and no updates are
 939	 * required independent of alignment and length of the requested
 940	 * range. The above already established that the current pgprot is
 941	 * correct, which in consequence makes the requested pgprot correct
 942	 * as well if it is the same. The static protection scan below will
 943	 * not come to a different conclusion.
 944	 */
 945	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 946		cpa_inc_lp_sameprot(level);
 947		return 0;
 948	}
 949
 950	/*
 951	 * If the requested range does not cover the full page, split it up
 952	 */
 953	if (address != lpaddr || cpa->numpages != numpages)
 954		return 1;
 955
 956	/*
 957	 * Check whether the requested pgprot is conflicting with a static
 958	 * protection requirement in the large page.
 959	 */
 960	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 961				      psize, CPA_DETECT);
 962
 963	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages);
 
 964
 965	/*
 966	 * If there is a conflict, split the large page.
 967	 *
 968	 * There used to be a 4k wise evaluation trying really hard to
 969	 * preserve the large pages, but experimentation has shown, that this
 970	 * does not help at all. There might be corner cases which would
 971	 * preserve one large page occasionally, but it's really not worth the
 972	 * extra code and cycles for the common case.
 973	 */
 974	if (pgprot_val(req_prot) != pgprot_val(new_prot))
 975		return 1;
 976
 977	/* All checks passed. Update the large page mapping. */
 978	new_pte = pfn_pte(old_pfn, new_prot);
 979	__set_pmd_pte(kpte, address, new_pte);
 980	cpa->flags |= CPA_FLUSHTLB;
 981	cpa_inc_lp_preserved(level);
 982	return 0;
 983}
 984
 985static int should_split_large_page(pte_t *kpte, unsigned long address,
 986				   struct cpa_data *cpa)
 987{
 988	int do_split;
 989
 990	if (cpa->force_split)
 991		return 1;
 992
 993	spin_lock(&pgd_lock);
 994	do_split = __should_split_large_page(kpte, address, cpa);
 995	spin_unlock(&pgd_lock);
 996
 997	return do_split;
 998}
 999
1000static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1001			  pgprot_t ref_prot, unsigned long address,
1002			  unsigned long size)
1003{
1004	unsigned int npg = PFN_DOWN(size);
1005	pgprot_t prot;
1006
1007	/*
1008	 * If should_split_large_page() discovered an inconsistent mapping,
1009	 * remove the invalid protection in the split mapping.
1010	 */
1011	if (!cpa->force_static_prot)
1012		goto set;
1013
1014	/* Hand in lpsize = 0 to enforce the protection mechanism */
1015	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1016
1017	if (pgprot_val(prot) == pgprot_val(ref_prot))
1018		goto set;
1019
1020	/*
1021	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1022	 * fixed trivially as that would require to rescan the newly
1023	 * installed PMD mappings after returning from split_large_page()
1024	 * so an eventual further split can allocate the necessary PTE
1025	 * pages. Warn for now and revisit it in case this actually
1026	 * happens.
1027	 */
1028	if (size == PAGE_SIZE)
1029		ref_prot = prot;
1030	else
1031		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1032set:
1033	set_pte(pte, pfn_pte(pfn, ref_prot));
1034}
1035
1036static int
1037__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1038		   struct page *base)
1039{
1040	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1041	pte_t *pbase = (pte_t *)page_address(base);
1042	unsigned int i, level;
1043	pgprot_t ref_prot;
 
1044	pte_t *tmp;
1045
1046	spin_lock(&pgd_lock);
1047	/*
1048	 * Check for races, another CPU might have split this page
1049	 * up for us already:
1050	 */
1051	tmp = _lookup_address_cpa(cpa, address, &level);
1052	if (tmp != kpte) {
1053		spin_unlock(&pgd_lock);
1054		return 1;
1055	}
1056
1057	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1058
1059	switch (level) {
1060	case PG_LEVEL_2M:
1061		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1062		/*
1063		 * Clear PSE (aka _PAGE_PAT) and move
1064		 * PAT bit to correct position.
1065		 */
1066		ref_prot = pgprot_large_2_4k(ref_prot);
1067		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1068		lpaddr = address & PMD_MASK;
1069		lpinc = PAGE_SIZE;
1070		break;
1071
1072	case PG_LEVEL_1G:
1073		ref_prot = pud_pgprot(*(pud_t *)kpte);
1074		ref_pfn = pud_pfn(*(pud_t *)kpte);
1075		pfninc = PMD_SIZE >> PAGE_SHIFT;
1076		lpaddr = address & PUD_MASK;
1077		lpinc = PMD_SIZE;
1078		/*
1079		 * Clear the PSE flags if the PRESENT flag is not set
1080		 * otherwise pmd_present/pmd_huge will return true
1081		 * even on a non present pmd.
1082		 */
1083		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1084			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1085		break;
1086
1087	default:
1088		spin_unlock(&pgd_lock);
1089		return 1;
1090	}
1091
1092	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1093
1094	/*
1095	 * Get the target pfn from the original entry:
1096	 */
1097	pfn = ref_pfn;
1098	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1099		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1100
1101	if (virt_addr_valid(address)) {
1102		unsigned long pfn = PFN_DOWN(__pa(address));
1103
1104		if (pfn_range_is_mapped(pfn, pfn + 1))
1105			split_page_count(level);
1106	}
1107
1108	/*
1109	 * Install the new, split up pagetable.
1110	 *
1111	 * We use the standard kernel pagetable protections for the new
1112	 * pagetable protections, the actual ptes set above control the
1113	 * primary protection behavior:
1114	 */
1115	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1116
1117	/*
1118	 * Do a global flush tlb after splitting the large page
1119	 * and before we do the actual change page attribute in the PTE.
1120	 *
1121	 * Without this, we violate the TLB application note, that says:
1122	 * "The TLBs may contain both ordinary and large-page
1123	 *  translations for a 4-KByte range of linear addresses. This
1124	 *  may occur if software modifies the paging structures so that
1125	 *  the page size used for the address range changes. If the two
1126	 *  translations differ with respect to page frame or attributes
1127	 *  (e.g., permissions), processor behavior is undefined and may
1128	 *  be implementation-specific."
1129	 *
1130	 * We do this global tlb flush inside the cpa_lock, so that we
1131	 * don't allow any other cpu, with stale tlb entries change the
1132	 * page attribute in parallel, that also falls into the
1133	 * just split large page entry.
1134	 */
1135	flush_tlb_all();
1136	spin_unlock(&pgd_lock);
1137
1138	return 0;
1139}
1140
1141static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1142			    unsigned long address)
1143{
1144	struct page *base;
1145
1146	if (!debug_pagealloc_enabled())
1147		spin_unlock(&cpa_lock);
1148	base = alloc_pages(GFP_KERNEL, 0);
1149	if (!debug_pagealloc_enabled())
1150		spin_lock(&cpa_lock);
1151	if (!base)
1152		return -ENOMEM;
1153
1154	if (__split_large_page(cpa, kpte, address, base))
1155		__free_page(base);
1156
1157	return 0;
1158}
1159
1160static bool try_to_free_pte_page(pte_t *pte)
1161{
1162	int i;
1163
1164	for (i = 0; i < PTRS_PER_PTE; i++)
1165		if (!pte_none(pte[i]))
1166			return false;
1167
1168	free_page((unsigned long)pte);
1169	return true;
1170}
1171
1172static bool try_to_free_pmd_page(pmd_t *pmd)
1173{
1174	int i;
1175
1176	for (i = 0; i < PTRS_PER_PMD; i++)
1177		if (!pmd_none(pmd[i]))
1178			return false;
1179
1180	free_page((unsigned long)pmd);
1181	return true;
1182}
1183
1184static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1185{
1186	pte_t *pte = pte_offset_kernel(pmd, start);
1187
1188	while (start < end) {
1189		set_pte(pte, __pte(0));
1190
1191		start += PAGE_SIZE;
1192		pte++;
1193	}
1194
1195	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1196		pmd_clear(pmd);
1197		return true;
1198	}
1199	return false;
1200}
1201
1202static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1203			      unsigned long start, unsigned long end)
1204{
1205	if (unmap_pte_range(pmd, start, end))
1206		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1207			pud_clear(pud);
1208}
1209
1210static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1211{
1212	pmd_t *pmd = pmd_offset(pud, start);
1213
1214	/*
1215	 * Not on a 2MB page boundary?
1216	 */
1217	if (start & (PMD_SIZE - 1)) {
1218		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1219		unsigned long pre_end = min_t(unsigned long, end, next_page);
1220
1221		__unmap_pmd_range(pud, pmd, start, pre_end);
1222
1223		start = pre_end;
1224		pmd++;
1225	}
1226
1227	/*
1228	 * Try to unmap in 2M chunks.
1229	 */
1230	while (end - start >= PMD_SIZE) {
1231		if (pmd_large(*pmd))
1232			pmd_clear(pmd);
1233		else
1234			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1235
1236		start += PMD_SIZE;
1237		pmd++;
1238	}
1239
1240	/*
1241	 * 4K leftovers?
1242	 */
1243	if (start < end)
1244		return __unmap_pmd_range(pud, pmd, start, end);
1245
1246	/*
1247	 * Try again to free the PMD page if haven't succeeded above.
1248	 */
1249	if (!pud_none(*pud))
1250		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1251			pud_clear(pud);
1252}
1253
1254static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1255{
1256	pud_t *pud = pud_offset(p4d, start);
1257
1258	/*
1259	 * Not on a GB page boundary?
1260	 */
1261	if (start & (PUD_SIZE - 1)) {
1262		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1263		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1264
1265		unmap_pmd_range(pud, start, pre_end);
1266
1267		start = pre_end;
1268		pud++;
1269	}
1270
1271	/*
1272	 * Try to unmap in 1G chunks?
1273	 */
1274	while (end - start >= PUD_SIZE) {
1275
1276		if (pud_large(*pud))
1277			pud_clear(pud);
1278		else
1279			unmap_pmd_range(pud, start, start + PUD_SIZE);
1280
1281		start += PUD_SIZE;
1282		pud++;
1283	}
1284
1285	/*
1286	 * 2M leftovers?
1287	 */
1288	if (start < end)
1289		unmap_pmd_range(pud, start, end);
1290
1291	/*
1292	 * No need to try to free the PUD page because we'll free it in
1293	 * populate_pgd's error path
1294	 */
1295}
1296
1297static int alloc_pte_page(pmd_t *pmd)
1298{
1299	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1300	if (!pte)
1301		return -1;
1302
1303	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1304	return 0;
1305}
1306
1307static int alloc_pmd_page(pud_t *pud)
1308{
1309	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1310	if (!pmd)
1311		return -1;
1312
1313	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1314	return 0;
1315}
1316
1317static void populate_pte(struct cpa_data *cpa,
1318			 unsigned long start, unsigned long end,
1319			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1320{
1321	pte_t *pte;
1322
1323	pte = pte_offset_kernel(pmd, start);
1324
1325	pgprot = pgprot_clear_protnone_bits(pgprot);
1326
1327	while (num_pages-- && start < end) {
1328		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1329
1330		start	 += PAGE_SIZE;
1331		cpa->pfn++;
1332		pte++;
1333	}
1334}
1335
1336static long populate_pmd(struct cpa_data *cpa,
1337			 unsigned long start, unsigned long end,
1338			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1339{
1340	long cur_pages = 0;
1341	pmd_t *pmd;
1342	pgprot_t pmd_pgprot;
1343
1344	/*
1345	 * Not on a 2M boundary?
1346	 */
1347	if (start & (PMD_SIZE - 1)) {
1348		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1349		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1350
1351		pre_end   = min_t(unsigned long, pre_end, next_page);
1352		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1353		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1354
1355		/*
1356		 * Need a PTE page?
1357		 */
1358		pmd = pmd_offset(pud, start);
1359		if (pmd_none(*pmd))
1360			if (alloc_pte_page(pmd))
1361				return -1;
1362
1363		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1364
1365		start = pre_end;
1366	}
1367
1368	/*
1369	 * We mapped them all?
1370	 */
1371	if (num_pages == cur_pages)
1372		return cur_pages;
1373
1374	pmd_pgprot = pgprot_4k_2_large(pgprot);
1375
1376	while (end - start >= PMD_SIZE) {
1377
1378		/*
1379		 * We cannot use a 1G page so allocate a PMD page if needed.
1380		 */
1381		if (pud_none(*pud))
1382			if (alloc_pmd_page(pud))
1383				return -1;
1384
1385		pmd = pmd_offset(pud, start);
1386
1387		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1388					canon_pgprot(pmd_pgprot))));
1389
1390		start	  += PMD_SIZE;
1391		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1392		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1393	}
1394
1395	/*
1396	 * Map trailing 4K pages.
1397	 */
1398	if (start < end) {
1399		pmd = pmd_offset(pud, start);
1400		if (pmd_none(*pmd))
1401			if (alloc_pte_page(pmd))
1402				return -1;
1403
1404		populate_pte(cpa, start, end, num_pages - cur_pages,
1405			     pmd, pgprot);
1406	}
1407	return num_pages;
1408}
1409
1410static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1411			pgprot_t pgprot)
1412{
1413	pud_t *pud;
1414	unsigned long end;
1415	long cur_pages = 0;
1416	pgprot_t pud_pgprot;
1417
1418	end = start + (cpa->numpages << PAGE_SHIFT);
1419
1420	/*
1421	 * Not on a Gb page boundary? => map everything up to it with
1422	 * smaller pages.
1423	 */
1424	if (start & (PUD_SIZE - 1)) {
1425		unsigned long pre_end;
1426		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1427
1428		pre_end   = min_t(unsigned long, end, next_page);
1429		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1430		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1431
1432		pud = pud_offset(p4d, start);
1433
1434		/*
1435		 * Need a PMD page?
1436		 */
1437		if (pud_none(*pud))
1438			if (alloc_pmd_page(pud))
1439				return -1;
1440
1441		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1442					 pud, pgprot);
1443		if (cur_pages < 0)
1444			return cur_pages;
1445
1446		start = pre_end;
1447	}
1448
1449	/* We mapped them all? */
1450	if (cpa->numpages == cur_pages)
1451		return cur_pages;
1452
1453	pud = pud_offset(p4d, start);
1454	pud_pgprot = pgprot_4k_2_large(pgprot);
1455
1456	/*
1457	 * Map everything starting from the Gb boundary, possibly with 1G pages
1458	 */
1459	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1460		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1461				   canon_pgprot(pud_pgprot))));
1462
1463		start	  += PUD_SIZE;
1464		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1465		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1466		pud++;
1467	}
1468
1469	/* Map trailing leftover */
1470	if (start < end) {
1471		long tmp;
1472
1473		pud = pud_offset(p4d, start);
1474		if (pud_none(*pud))
1475			if (alloc_pmd_page(pud))
1476				return -1;
1477
1478		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1479				   pud, pgprot);
1480		if (tmp < 0)
1481			return cur_pages;
1482
1483		cur_pages += tmp;
1484	}
1485	return cur_pages;
1486}
1487
1488/*
1489 * Restrictions for kernel page table do not necessarily apply when mapping in
1490 * an alternate PGD.
1491 */
1492static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1493{
1494	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1495	pud_t *pud = NULL;	/* shut up gcc */
1496	p4d_t *p4d;
1497	pgd_t *pgd_entry;
1498	long ret;
1499
1500	pgd_entry = cpa->pgd + pgd_index(addr);
1501
1502	if (pgd_none(*pgd_entry)) {
1503		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1504		if (!p4d)
1505			return -1;
1506
1507		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1508	}
1509
1510	/*
1511	 * Allocate a PUD page and hand it down for mapping.
1512	 */
1513	p4d = p4d_offset(pgd_entry, addr);
1514	if (p4d_none(*p4d)) {
1515		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1516		if (!pud)
1517			return -1;
1518
1519		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1520	}
1521
1522	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1523	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1524
1525	ret = populate_pud(cpa, addr, p4d, pgprot);
1526	if (ret < 0) {
1527		/*
1528		 * Leave the PUD page in place in case some other CPU or thread
1529		 * already found it, but remove any useless entries we just
1530		 * added to it.
1531		 */
1532		unmap_pud_range(p4d, addr,
1533				addr + (cpa->numpages << PAGE_SHIFT));
1534		return ret;
1535	}
1536
1537	cpa->numpages = ret;
1538	return 0;
1539}
1540
1541static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1542			       int primary)
1543{
1544	if (cpa->pgd) {
1545		/*
1546		 * Right now, we only execute this code path when mapping
1547		 * the EFI virtual memory map regions, no other users
1548		 * provide a ->pgd value. This may change in the future.
1549		 */
1550		return populate_pgd(cpa, vaddr);
1551	}
1552
1553	/*
1554	 * Ignore all non primary paths.
1555	 */
1556	if (!primary) {
1557		cpa->numpages = 1;
1558		return 0;
1559	}
1560
1561	/*
1562	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1563	 * to have holes.
1564	 * Also set numpages to '1' indicating that we processed cpa req for
1565	 * one virtual address page and its pfn. TBD: numpages can be set based
1566	 * on the initial value and the level returned by lookup_address().
1567	 */
1568	if (within(vaddr, PAGE_OFFSET,
1569		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1570		cpa->numpages = 1;
1571		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1572		return 0;
1573
1574	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1575		/* Faults in the highmap are OK, so do not warn: */
1576		return -EFAULT;
1577	} else {
1578		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1579			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1580			*cpa->vaddr);
1581
1582		return -EFAULT;
1583	}
1584}
1585
1586static int __change_page_attr(struct cpa_data *cpa, int primary)
1587{
1588	unsigned long address;
1589	int do_split, err;
1590	unsigned int level;
1591	pte_t *kpte, old_pte;
 
1592
1593	address = __cpa_addr(cpa, cpa->curpage);
1594repeat:
1595	kpte = _lookup_address_cpa(cpa, address, &level);
1596	if (!kpte)
1597		return __cpa_process_fault(cpa, address, primary);
1598
1599	old_pte = *kpte;
1600	if (pte_none(old_pte))
1601		return __cpa_process_fault(cpa, address, primary);
1602
1603	if (level == PG_LEVEL_4K) {
1604		pte_t new_pte;
1605		pgprot_t old_prot = pte_pgprot(old_pte);
1606		pgprot_t new_prot = pte_pgprot(old_pte);
1607		unsigned long pfn = pte_pfn(old_pte);
1608
1609		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1610		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1611
1612		cpa_inc_4k_install();
1613		/* Hand in lpsize = 0 to enforce the protection mechanism */
1614		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1615					      CPA_PROTECT);
1616
1617		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1);
 
1618
1619		new_prot = pgprot_clear_protnone_bits(new_prot);
1620
1621		/*
1622		 * We need to keep the pfn from the existing PTE,
1623		 * after all we're only going to change it's attributes
1624		 * not the memory it points to
1625		 */
1626		new_pte = pfn_pte(pfn, new_prot);
1627		cpa->pfn = pfn;
1628		/*
1629		 * Do we really change anything ?
1630		 */
1631		if (pte_val(old_pte) != pte_val(new_pte)) {
1632			set_pte_atomic(kpte, new_pte);
1633			cpa->flags |= CPA_FLUSHTLB;
1634		}
1635		cpa->numpages = 1;
1636		return 0;
1637	}
1638
1639	/*
1640	 * Check, whether we can keep the large page intact
1641	 * and just change the pte:
1642	 */
1643	do_split = should_split_large_page(kpte, address, cpa);
1644	/*
1645	 * When the range fits into the existing large page,
1646	 * return. cp->numpages and cpa->tlbflush have been updated in
1647	 * try_large_page:
1648	 */
1649	if (do_split <= 0)
1650		return do_split;
1651
1652	/*
1653	 * We have to split the large page:
1654	 */
1655	err = split_large_page(cpa, kpte, address);
1656	if (!err)
1657		goto repeat;
1658
1659	return err;
1660}
1661
1662static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1663
1664/*
1665 * Check the directmap and "high kernel map" 'aliases'.
1666 */
1667static int cpa_process_alias(struct cpa_data *cpa)
1668{
1669	struct cpa_data alias_cpa;
1670	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1671	unsigned long vaddr;
1672	int ret;
1673
1674	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1675		return 0;
1676
1677	/*
1678	 * No need to redo, when the primary call touched the direct
1679	 * mapping already:
1680	 */
1681	vaddr = __cpa_addr(cpa, cpa->curpage);
1682	if (!(within(vaddr, PAGE_OFFSET,
1683		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1684
1685		alias_cpa = *cpa;
1686		alias_cpa.vaddr = &laddr;
1687		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1688		alias_cpa.curpage = 0;
1689
1690		/* Directmap always has NX set, do not modify. */
1691		if (__supported_pte_mask & _PAGE_NX) {
1692			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1693			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1694		}
1695
1696		cpa->force_flush_all = 1;
1697
1698		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1699		if (ret)
1700			return ret;
1701	}
1702
1703#ifdef CONFIG_X86_64
1704	/*
1705	 * If the primary call didn't touch the high mapping already
1706	 * and the physical address is inside the kernel map, we need
1707	 * to touch the high mapped kernel as well:
1708	 */
1709	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1710	    __cpa_pfn_in_highmap(cpa->pfn)) {
1711		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1712					       __START_KERNEL_map - phys_base;
1713		alias_cpa = *cpa;
1714		alias_cpa.vaddr = &temp_cpa_vaddr;
1715		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1716		alias_cpa.curpage = 0;
1717
1718		/*
1719		 * [_text, _brk_end) also covers data, do not modify NX except
1720		 * in cases where the highmap is the primary target.
1721		 */
1722		if (__supported_pte_mask & _PAGE_NX) {
1723			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1724			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1725		}
1726
1727		cpa->force_flush_all = 1;
1728		/*
1729		 * The high mapping range is imprecise, so ignore the
1730		 * return value.
1731		 */
1732		__change_page_attr_set_clr(&alias_cpa, 0);
1733	}
1734#endif
1735
1736	return 0;
1737}
1738
1739static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1740{
1741	unsigned long numpages = cpa->numpages;
1742	unsigned long rempages = numpages;
1743	int ret = 0;
1744
1745	/*
1746	 * No changes, easy!
1747	 */
1748	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1749	    !cpa->force_split)
1750		return ret;
1751
1752	while (rempages) {
1753		/*
1754		 * Store the remaining nr of pages for the large page
1755		 * preservation check.
1756		 */
1757		cpa->numpages = rempages;
1758		/* for array changes, we can't use large page */
1759		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1760			cpa->numpages = 1;
1761
1762		if (!debug_pagealloc_enabled())
1763			spin_lock(&cpa_lock);
1764		ret = __change_page_attr(cpa, primary);
1765		if (!debug_pagealloc_enabled())
1766			spin_unlock(&cpa_lock);
1767		if (ret)
1768			goto out;
1769
1770		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1771			ret = cpa_process_alias(cpa);
1772			if (ret)
1773				goto out;
1774		}
1775
1776		/*
1777		 * Adjust the number of pages with the result of the
1778		 * CPA operation. Either a large page has been
1779		 * preserved or a single page update happened.
1780		 */
1781		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1782		rempages -= cpa->numpages;
1783		cpa->curpage += cpa->numpages;
1784	}
1785
1786out:
1787	/* Restore the original numpages */
1788	cpa->numpages = numpages;
1789	return ret;
1790}
1791
1792static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1793				    pgprot_t mask_set, pgprot_t mask_clr,
1794				    int force_split, int in_flag,
1795				    struct page **pages)
1796{
1797	struct cpa_data cpa;
1798	int ret, cache;
1799
1800	memset(&cpa, 0, sizeof(cpa));
1801
1802	/*
1803	 * Check, if we are requested to set a not supported
1804	 * feature.  Clearing non-supported features is OK.
1805	 */
1806	mask_set = canon_pgprot(mask_set);
1807
1808	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1809		return 0;
1810
1811	/* Ensure we are PAGE_SIZE aligned */
1812	if (in_flag & CPA_ARRAY) {
1813		int i;
1814		for (i = 0; i < numpages; i++) {
1815			if (addr[i] & ~PAGE_MASK) {
1816				addr[i] &= PAGE_MASK;
1817				WARN_ON_ONCE(1);
1818			}
1819		}
1820	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1821		/*
1822		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1823		 * No need to check in that case
1824		 */
1825		if (*addr & ~PAGE_MASK) {
1826			*addr &= PAGE_MASK;
1827			/*
1828			 * People should not be passing in unaligned addresses:
1829			 */
1830			WARN_ON_ONCE(1);
1831		}
1832	}
1833
1834	/* Must avoid aliasing mappings in the highmem code */
1835	kmap_flush_unused();
1836
1837	vm_unmap_aliases();
1838
1839	cpa.vaddr = addr;
1840	cpa.pages = pages;
1841	cpa.numpages = numpages;
1842	cpa.mask_set = mask_set;
1843	cpa.mask_clr = mask_clr;
1844	cpa.flags = in_flag;
1845	cpa.curpage = 0;
1846	cpa.force_split = force_split;
1847
1848	ret = __change_page_attr_set_clr(&cpa, 1);
1849
1850	/*
1851	 * Check whether we really changed something:
1852	 */
1853	if (!(cpa.flags & CPA_FLUSHTLB))
1854		goto out;
1855
1856	/*
1857	 * No need to flush, when we did not set any of the caching
1858	 * attributes:
1859	 */
1860	cache = !!pgprot2cachemode(mask_set);
1861
1862	/*
1863	 * On error; flush everything to be sure.
1864	 */
1865	if (ret) {
1866		cpa_flush_all(cache);
1867		goto out;
1868	}
1869
1870	cpa_flush(&cpa, cache);
1871out:
1872	return ret;
1873}
1874
1875static inline int change_page_attr_set(unsigned long *addr, int numpages,
1876				       pgprot_t mask, int array)
1877{
1878	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1879		(array ? CPA_ARRAY : 0), NULL);
1880}
1881
1882static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1883					 pgprot_t mask, int array)
1884{
1885	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1886		(array ? CPA_ARRAY : 0), NULL);
1887}
1888
1889static inline int cpa_set_pages_array(struct page **pages, int numpages,
1890				       pgprot_t mask)
1891{
1892	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1893		CPA_PAGES_ARRAY, pages);
1894}
1895
1896static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1897					 pgprot_t mask)
1898{
1899	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1900		CPA_PAGES_ARRAY, pages);
1901}
1902
1903/*
1904 * __set_memory_prot is an internal helper for callers that have been passed
1905 * a pgprot_t value from upper layers and a reservation has already been taken.
1906 * If you want to set the pgprot to a specific page protocol, use the
1907 * set_memory_xx() functions.
1908 */
1909int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1910{
1911	return change_page_attr_set_clr(&addr, numpages, prot,
1912					__pgprot(~pgprot_val(prot)), 0, 0,
1913					NULL);
1914}
1915
1916int _set_memory_uc(unsigned long addr, int numpages)
1917{
1918	/*
1919	 * for now UC MINUS. see comments in ioremap()
1920	 * If you really need strong UC use ioremap_uc(), but note
1921	 * that you cannot override IO areas with set_memory_*() as
1922	 * these helpers cannot work with IO memory.
1923	 */
1924	return change_page_attr_set(&addr, numpages,
1925				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1926				    0);
1927}
1928
1929int set_memory_uc(unsigned long addr, int numpages)
1930{
1931	int ret;
1932
1933	/*
1934	 * for now UC MINUS. see comments in ioremap()
1935	 */
1936	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1937			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1938	if (ret)
1939		goto out_err;
1940
1941	ret = _set_memory_uc(addr, numpages);
1942	if (ret)
1943		goto out_free;
1944
1945	return 0;
1946
1947out_free:
1948	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1949out_err:
1950	return ret;
1951}
1952EXPORT_SYMBOL(set_memory_uc);
1953
1954int _set_memory_wc(unsigned long addr, int numpages)
1955{
1956	int ret;
1957
1958	ret = change_page_attr_set(&addr, numpages,
1959				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1960				   0);
1961	if (!ret) {
1962		ret = change_page_attr_set_clr(&addr, numpages,
1963					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
1964					       __pgprot(_PAGE_CACHE_MASK),
1965					       0, 0, NULL);
1966	}
1967	return ret;
1968}
1969
1970int set_memory_wc(unsigned long addr, int numpages)
1971{
1972	int ret;
1973
1974	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1975		_PAGE_CACHE_MODE_WC, NULL);
1976	if (ret)
1977		return ret;
1978
1979	ret = _set_memory_wc(addr, numpages);
1980	if (ret)
1981		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1982
1983	return ret;
1984}
1985EXPORT_SYMBOL(set_memory_wc);
1986
1987int _set_memory_wt(unsigned long addr, int numpages)
1988{
1989	return change_page_attr_set(&addr, numpages,
1990				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1991}
1992
1993int _set_memory_wb(unsigned long addr, int numpages)
1994{
1995	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1996	return change_page_attr_clear(&addr, numpages,
1997				      __pgprot(_PAGE_CACHE_MASK), 0);
1998}
1999
2000int set_memory_wb(unsigned long addr, int numpages)
2001{
2002	int ret;
2003
2004	ret = _set_memory_wb(addr, numpages);
2005	if (ret)
2006		return ret;
2007
2008	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2009	return 0;
2010}
2011EXPORT_SYMBOL(set_memory_wb);
2012
2013/* Prevent speculative access to a page by marking it not-present */
2014#ifdef CONFIG_X86_64
2015int set_mce_nospec(unsigned long pfn)
2016{
2017	unsigned long decoy_addr;
2018	int rc;
2019
2020	/* SGX pages are not in the 1:1 map */
2021	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2022		return 0;
2023	/*
2024	 * We would like to just call:
2025	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2026	 * but doing that would radically increase the odds of a
2027	 * speculative access to the poison page because we'd have
2028	 * the virtual address of the kernel 1:1 mapping sitting
2029	 * around in registers.
2030	 * Instead we get tricky.  We create a non-canonical address
2031	 * that looks just like the one we want, but has bit 63 flipped.
2032	 * This relies on set_memory_XX() properly sanitizing any __pa()
2033	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2034	 */
2035	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2036
2037	rc = set_memory_np(decoy_addr, 1);
2038	if (rc)
2039		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2040	return rc;
2041}
2042
2043static int set_memory_p(unsigned long *addr, int numpages)
2044{
2045	return change_page_attr_set(addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2046}
2047
2048/* Restore full speculative operation to the pfn. */
2049int clear_mce_nospec(unsigned long pfn)
2050{
2051	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2052
2053	return set_memory_p(&addr, 1);
2054}
2055EXPORT_SYMBOL_GPL(clear_mce_nospec);
2056#endif /* CONFIG_X86_64 */
2057
2058int set_memory_x(unsigned long addr, int numpages)
2059{
2060	if (!(__supported_pte_mask & _PAGE_NX))
2061		return 0;
2062
2063	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2064}
2065
2066int set_memory_nx(unsigned long addr, int numpages)
2067{
2068	if (!(__supported_pte_mask & _PAGE_NX))
2069		return 0;
2070
2071	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2072}
2073
2074int set_memory_ro(unsigned long addr, int numpages)
2075{
2076	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
2077}
2078
2079int set_memory_rox(unsigned long addr, int numpages)
2080{
2081	pgprot_t clr = __pgprot(_PAGE_RW);
2082
2083	if (__supported_pte_mask & _PAGE_NX)
2084		clr.pgprot |= _PAGE_NX;
2085
2086	return change_page_attr_clear(&addr, numpages, clr, 0);
2087}
2088
2089int set_memory_rw(unsigned long addr, int numpages)
2090{
2091	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2092}
2093
2094int set_memory_np(unsigned long addr, int numpages)
2095{
2096	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2097}
2098
2099int set_memory_np_noalias(unsigned long addr, int numpages)
2100{
2101	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2102					__pgprot(_PAGE_PRESENT), 0,
2103					CPA_NO_CHECK_ALIAS, NULL);
2104}
2105
 
 
 
 
 
2106int set_memory_4k(unsigned long addr, int numpages)
2107{
2108	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2109					__pgprot(0), 1, 0, NULL);
2110}
2111
2112int set_memory_nonglobal(unsigned long addr, int numpages)
2113{
2114	return change_page_attr_clear(&addr, numpages,
2115				      __pgprot(_PAGE_GLOBAL), 0);
2116}
2117
2118int set_memory_global(unsigned long addr, int numpages)
2119{
2120	return change_page_attr_set(&addr, numpages,
2121				    __pgprot(_PAGE_GLOBAL), 0);
2122}
2123
2124/*
2125 * __set_memory_enc_pgtable() is used for the hypervisors that get
2126 * informed about "encryption" status via page tables.
2127 */
2128static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2129{
2130	pgprot_t empty = __pgprot(0);
2131	struct cpa_data cpa;
2132	int ret;
2133
2134	/* Should not be working on unaligned addresses */
2135	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2136		addr &= PAGE_MASK;
2137
2138	memset(&cpa, 0, sizeof(cpa));
2139	cpa.vaddr = &addr;
2140	cpa.numpages = numpages;
2141	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2142	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2143	cpa.pgd = init_mm.pgd;
2144
2145	/* Must avoid aliasing mappings in the highmem code */
2146	kmap_flush_unused();
2147	vm_unmap_aliases();
2148
2149	/* Flush the caches as needed before changing the encryption attribute. */
2150	if (x86_platform.guest.enc_tlb_flush_required(enc))
2151		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2152
2153	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2154	x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
 
2155
2156	ret = __change_page_attr_set_clr(&cpa, 1);
2157
2158	/*
2159	 * After changing the encryption attribute, we need to flush TLBs again
2160	 * in case any speculative TLB caching occurred (but no need to flush
2161	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2162	 * flushing gets optimized in the cpa_flush() path use the same logic
2163	 * as above.
2164	 */
2165	cpa_flush(&cpa, 0);
2166
 
 
 
2167	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2168	if (!ret) {
2169		if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2170			ret = -EIO;
2171	}
2172
2173	return ret;
 
 
 
 
 
 
2174}
2175
2176static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2177{
2178	if (hv_is_isolation_supported())
2179		return hv_set_mem_host_visibility(addr, numpages, !enc);
2180
2181	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2182		return __set_memory_enc_pgtable(addr, numpages, enc);
2183
2184	return 0;
2185}
2186
2187int set_memory_encrypted(unsigned long addr, int numpages)
2188{
2189	return __set_memory_enc_dec(addr, numpages, true);
2190}
2191EXPORT_SYMBOL_GPL(set_memory_encrypted);
2192
2193int set_memory_decrypted(unsigned long addr, int numpages)
2194{
2195	return __set_memory_enc_dec(addr, numpages, false);
2196}
2197EXPORT_SYMBOL_GPL(set_memory_decrypted);
2198
2199int set_pages_uc(struct page *page, int numpages)
2200{
2201	unsigned long addr = (unsigned long)page_address(page);
2202
2203	return set_memory_uc(addr, numpages);
2204}
2205EXPORT_SYMBOL(set_pages_uc);
2206
2207static int _set_pages_array(struct page **pages, int numpages,
2208		enum page_cache_mode new_type)
2209{
2210	unsigned long start;
2211	unsigned long end;
2212	enum page_cache_mode set_type;
2213	int i;
2214	int free_idx;
2215	int ret;
2216
2217	for (i = 0; i < numpages; i++) {
2218		if (PageHighMem(pages[i]))
2219			continue;
2220		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2221		end = start + PAGE_SIZE;
2222		if (memtype_reserve(start, end, new_type, NULL))
2223			goto err_out;
2224	}
2225
2226	/* If WC, set to UC- first and then WC */
2227	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2228				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2229
2230	ret = cpa_set_pages_array(pages, numpages,
2231				  cachemode2pgprot(set_type));
2232	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2233		ret = change_page_attr_set_clr(NULL, numpages,
2234					       cachemode2pgprot(
2235						_PAGE_CACHE_MODE_WC),
2236					       __pgprot(_PAGE_CACHE_MASK),
2237					       0, CPA_PAGES_ARRAY, pages);
2238	if (ret)
2239		goto err_out;
2240	return 0; /* Success */
2241err_out:
2242	free_idx = i;
2243	for (i = 0; i < free_idx; i++) {
2244		if (PageHighMem(pages[i]))
2245			continue;
2246		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2247		end = start + PAGE_SIZE;
2248		memtype_free(start, end);
2249	}
2250	return -EINVAL;
2251}
2252
2253int set_pages_array_uc(struct page **pages, int numpages)
2254{
2255	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2256}
2257EXPORT_SYMBOL(set_pages_array_uc);
2258
2259int set_pages_array_wc(struct page **pages, int numpages)
2260{
2261	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2262}
2263EXPORT_SYMBOL(set_pages_array_wc);
2264
2265int set_pages_wb(struct page *page, int numpages)
2266{
2267	unsigned long addr = (unsigned long)page_address(page);
2268
2269	return set_memory_wb(addr, numpages);
2270}
2271EXPORT_SYMBOL(set_pages_wb);
2272
2273int set_pages_array_wb(struct page **pages, int numpages)
2274{
2275	int retval;
2276	unsigned long start;
2277	unsigned long end;
2278	int i;
2279
2280	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2281	retval = cpa_clear_pages_array(pages, numpages,
2282			__pgprot(_PAGE_CACHE_MASK));
2283	if (retval)
2284		return retval;
2285
2286	for (i = 0; i < numpages; i++) {
2287		if (PageHighMem(pages[i]))
2288			continue;
2289		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2290		end = start + PAGE_SIZE;
2291		memtype_free(start, end);
2292	}
2293
2294	return 0;
2295}
2296EXPORT_SYMBOL(set_pages_array_wb);
2297
2298int set_pages_ro(struct page *page, int numpages)
2299{
2300	unsigned long addr = (unsigned long)page_address(page);
2301
2302	return set_memory_ro(addr, numpages);
2303}
2304
2305int set_pages_rw(struct page *page, int numpages)
2306{
2307	unsigned long addr = (unsigned long)page_address(page);
2308
2309	return set_memory_rw(addr, numpages);
2310}
2311
2312static int __set_pages_p(struct page *page, int numpages)
2313{
2314	unsigned long tempaddr = (unsigned long) page_address(page);
2315	struct cpa_data cpa = { .vaddr = &tempaddr,
2316				.pgd = NULL,
2317				.numpages = numpages,
2318				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2319				.mask_clr = __pgprot(0),
2320				.flags = CPA_NO_CHECK_ALIAS };
2321
2322	/*
2323	 * No alias checking needed for setting present flag. otherwise,
2324	 * we may need to break large pages for 64-bit kernel text
2325	 * mappings (this adds to complexity if we want to do this from
2326	 * atomic context especially). Let's keep it simple!
2327	 */
2328	return __change_page_attr_set_clr(&cpa, 1);
2329}
2330
2331static int __set_pages_np(struct page *page, int numpages)
2332{
2333	unsigned long tempaddr = (unsigned long) page_address(page);
2334	struct cpa_data cpa = { .vaddr = &tempaddr,
2335				.pgd = NULL,
2336				.numpages = numpages,
2337				.mask_set = __pgprot(0),
2338				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2339				.flags = CPA_NO_CHECK_ALIAS };
2340
2341	/*
2342	 * No alias checking needed for setting not present flag. otherwise,
2343	 * we may need to break large pages for 64-bit kernel text
2344	 * mappings (this adds to complexity if we want to do this from
2345	 * atomic context especially). Let's keep it simple!
2346	 */
2347	return __change_page_attr_set_clr(&cpa, 1);
2348}
2349
2350int set_direct_map_invalid_noflush(struct page *page)
2351{
2352	return __set_pages_np(page, 1);
2353}
2354
2355int set_direct_map_default_noflush(struct page *page)
2356{
2357	return __set_pages_p(page, 1);
2358}
2359
2360#ifdef CONFIG_DEBUG_PAGEALLOC
2361void __kernel_map_pages(struct page *page, int numpages, int enable)
2362{
2363	if (PageHighMem(page))
2364		return;
2365	if (!enable) {
2366		debug_check_no_locks_freed(page_address(page),
2367					   numpages * PAGE_SIZE);
2368	}
2369
2370	/*
2371	 * The return value is ignored as the calls cannot fail.
2372	 * Large pages for identity mappings are not used at boot time
2373	 * and hence no memory allocations during large page split.
2374	 */
2375	if (enable)
2376		__set_pages_p(page, numpages);
2377	else
2378		__set_pages_np(page, numpages);
2379
2380	/*
2381	 * We should perform an IPI and flush all tlbs,
2382	 * but that can deadlock->flush only current cpu.
2383	 * Preemption needs to be disabled around __flush_tlb_all() due to
2384	 * CR3 reload in __native_flush_tlb().
2385	 */
2386	preempt_disable();
2387	__flush_tlb_all();
2388	preempt_enable();
2389
2390	arch_flush_lazy_mmu_mode();
2391}
2392#endif /* CONFIG_DEBUG_PAGEALLOC */
2393
2394bool kernel_page_present(struct page *page)
2395{
2396	unsigned int level;
2397	pte_t *pte;
2398
2399	if (PageHighMem(page))
2400		return false;
2401
2402	pte = lookup_address((unsigned long)page_address(page), &level);
2403	return (pte_val(*pte) & _PAGE_PRESENT);
2404}
2405
2406int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2407				   unsigned numpages, unsigned long page_flags)
2408{
2409	int retval = -EINVAL;
2410
2411	struct cpa_data cpa = {
2412		.vaddr = &address,
2413		.pfn = pfn,
2414		.pgd = pgd,
2415		.numpages = numpages,
2416		.mask_set = __pgprot(0),
2417		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2418		.flags = CPA_NO_CHECK_ALIAS,
2419	};
2420
2421	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2422
2423	if (!(__supported_pte_mask & _PAGE_NX))
2424		goto out;
2425
2426	if (!(page_flags & _PAGE_ENC))
2427		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2428
2429	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2430
2431	retval = __change_page_attr_set_clr(&cpa, 1);
2432	__flush_tlb_all();
2433
2434out:
2435	return retval;
2436}
2437
2438/*
2439 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2440 * function shouldn't be used in an SMP environment. Presently, it's used only
2441 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2442 */
2443int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2444				     unsigned long numpages)
2445{
2446	int retval;
2447
2448	/*
2449	 * The typical sequence for unmapping is to find a pte through
2450	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2451	 * the address is already mapped) and change it's protections. As pfn is
2452	 * the *target* of a mapping, it's not useful while unmapping.
2453	 */
2454	struct cpa_data cpa = {
2455		.vaddr		= &address,
2456		.pfn		= 0,
2457		.pgd		= pgd,
2458		.numpages	= numpages,
2459		.mask_set	= __pgprot(0),
2460		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2461		.flags		= CPA_NO_CHECK_ALIAS,
2462	};
2463
2464	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2465
2466	retval = __change_page_attr_set_clr(&cpa, 1);
2467	__flush_tlb_all();
2468
2469	return retval;
2470}
2471
2472/*
2473 * The testcases use internal knowledge of the implementation that shouldn't
2474 * be exposed to the rest of the kernel. Include these directly here.
2475 */
2476#ifdef CONFIG_CPA_DEBUG
2477#include "cpa-test.c"
2478#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2002 Andi Kleen, SuSE Labs.
   4 * Thanks to Ben LaHaise for precious feedback.
   5 */
   6#include <linux/highmem.h>
   7#include <linux/memblock.h>
   8#include <linux/sched.h>
   9#include <linux/mm.h>
  10#include <linux/interrupt.h>
  11#include <linux/seq_file.h>
  12#include <linux/proc_fs.h>
  13#include <linux/debugfs.h>
  14#include <linux/pfn.h>
  15#include <linux/percpu.h>
  16#include <linux/gfp.h>
  17#include <linux/pci.h>
  18#include <linux/vmalloc.h>
  19#include <linux/libnvdimm.h>
  20#include <linux/vmstat.h>
  21#include <linux/kernel.h>
  22#include <linux/cc_platform.h>
  23#include <linux/set_memory.h>
  24#include <linux/memregion.h>
  25
  26#include <asm/e820/api.h>
  27#include <asm/processor.h>
  28#include <asm/tlbflush.h>
  29#include <asm/sections.h>
  30#include <asm/setup.h>
  31#include <linux/uaccess.h>
  32#include <asm/pgalloc.h>
  33#include <asm/proto.h>
  34#include <asm/memtype.h>
  35#include <asm/hyperv-tlfs.h>
  36#include <asm/mshyperv.h>
  37
  38#include "../mm_internal.h"
  39
  40/*
  41 * The current flushing context - we pass it instead of 5 arguments:
  42 */
  43struct cpa_data {
  44	unsigned long	*vaddr;
  45	pgd_t		*pgd;
  46	pgprot_t	mask_set;
  47	pgprot_t	mask_clr;
  48	unsigned long	numpages;
  49	unsigned long	curpage;
  50	unsigned long	pfn;
  51	unsigned int	flags;
  52	unsigned int	force_split		: 1,
  53			force_static_prot	: 1,
  54			force_flush_all		: 1;
  55	struct page	**pages;
  56};
  57
  58enum cpa_warn {
  59	CPA_CONFLICT,
  60	CPA_PROTECT,
  61	CPA_DETECT,
  62};
  63
  64static const int cpa_warn_level = CPA_PROTECT;
  65
  66/*
  67 * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  68 * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  69 * entries change the page attribute in parallel to some other cpu
  70 * splitting a large page entry along with changing the attribute.
  71 */
  72static DEFINE_SPINLOCK(cpa_lock);
  73
  74#define CPA_FLUSHTLB 1
  75#define CPA_ARRAY 2
  76#define CPA_PAGES_ARRAY 4
  77#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
  78
  79static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
  80{
  81	return __pgprot(cachemode2protval(pcm));
  82}
  83
  84#ifdef CONFIG_PROC_FS
  85static unsigned long direct_pages_count[PG_LEVEL_NUM];
  86
  87void update_page_count(int level, unsigned long pages)
  88{
  89	/* Protect against CPA */
  90	spin_lock(&pgd_lock);
  91	direct_pages_count[level] += pages;
  92	spin_unlock(&pgd_lock);
  93}
  94
  95static void split_page_count(int level)
  96{
  97	if (direct_pages_count[level] == 0)
  98		return;
  99
 100	direct_pages_count[level]--;
 101	if (system_state == SYSTEM_RUNNING) {
 102		if (level == PG_LEVEL_2M)
 103			count_vm_event(DIRECT_MAP_LEVEL2_SPLIT);
 104		else if (level == PG_LEVEL_1G)
 105			count_vm_event(DIRECT_MAP_LEVEL3_SPLIT);
 106	}
 107	direct_pages_count[level - 1] += PTRS_PER_PTE;
 108}
 109
 110void arch_report_meminfo(struct seq_file *m)
 111{
 112	seq_printf(m, "DirectMap4k:    %8lu kB\n",
 113			direct_pages_count[PG_LEVEL_4K] << 2);
 114#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 115	seq_printf(m, "DirectMap2M:    %8lu kB\n",
 116			direct_pages_count[PG_LEVEL_2M] << 11);
 117#else
 118	seq_printf(m, "DirectMap4M:    %8lu kB\n",
 119			direct_pages_count[PG_LEVEL_2M] << 12);
 120#endif
 121	if (direct_gbpages)
 122		seq_printf(m, "DirectMap1G:    %8lu kB\n",
 123			direct_pages_count[PG_LEVEL_1G] << 20);
 124}
 125#else
 126static inline void split_page_count(int level) { }
 127#endif
 128
 129#ifdef CONFIG_X86_CPA_STATISTICS
 130
 131static unsigned long cpa_1g_checked;
 132static unsigned long cpa_1g_sameprot;
 133static unsigned long cpa_1g_preserved;
 134static unsigned long cpa_2m_checked;
 135static unsigned long cpa_2m_sameprot;
 136static unsigned long cpa_2m_preserved;
 137static unsigned long cpa_4k_install;
 138
 139static inline void cpa_inc_1g_checked(void)
 140{
 141	cpa_1g_checked++;
 142}
 143
 144static inline void cpa_inc_2m_checked(void)
 145{
 146	cpa_2m_checked++;
 147}
 148
 149static inline void cpa_inc_4k_install(void)
 150{
 151	data_race(cpa_4k_install++);
 152}
 153
 154static inline void cpa_inc_lp_sameprot(int level)
 155{
 156	if (level == PG_LEVEL_1G)
 157		cpa_1g_sameprot++;
 158	else
 159		cpa_2m_sameprot++;
 160}
 161
 162static inline void cpa_inc_lp_preserved(int level)
 163{
 164	if (level == PG_LEVEL_1G)
 165		cpa_1g_preserved++;
 166	else
 167		cpa_2m_preserved++;
 168}
 169
 170static int cpastats_show(struct seq_file *m, void *p)
 171{
 172	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 173	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 174	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 175	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 176	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 177	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 178	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 179	return 0;
 180}
 181
 182static int cpastats_open(struct inode *inode, struct file *file)
 183{
 184	return single_open(file, cpastats_show, NULL);
 185}
 186
 187static const struct file_operations cpastats_fops = {
 188	.open		= cpastats_open,
 189	.read		= seq_read,
 190	.llseek		= seq_lseek,
 191	.release	= single_release,
 192};
 193
 194static int __init cpa_stats_init(void)
 195{
 196	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 197			    &cpastats_fops);
 198	return 0;
 199}
 200late_initcall(cpa_stats_init);
 201#else
 202static inline void cpa_inc_1g_checked(void) { }
 203static inline void cpa_inc_2m_checked(void) { }
 204static inline void cpa_inc_4k_install(void) { }
 205static inline void cpa_inc_lp_sameprot(int level) { }
 206static inline void cpa_inc_lp_preserved(int level) { }
 207#endif
 208
 209
 210static inline int
 211within(unsigned long addr, unsigned long start, unsigned long end)
 212{
 213	return addr >= start && addr < end;
 214}
 215
 216static inline int
 217within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 218{
 219	return addr >= start && addr <= end;
 220}
 221
 222#ifdef CONFIG_X86_64
 223
 224/*
 225 * The kernel image is mapped into two places in the virtual address space
 226 * (addresses without KASLR, of course):
 227 *
 228 * 1. The kernel direct map (0xffff880000000000)
 229 * 2. The "high kernel map" (0xffffffff81000000)
 230 *
 231 * We actually execute out of #2. If we get the address of a kernel symbol, it
 232 * points to #2, but almost all physical-to-virtual translations point to #1.
 233 *
 234 * This is so that we can have both a directmap of all physical memory *and*
 235 * take full advantage of the limited (s32) immediate addressing range (2G)
 236 * of x86_64.
 237 *
 238 * See Documentation/arch/x86/x86_64/mm.rst for more detail.
 239 */
 240
 241static inline unsigned long highmap_start_pfn(void)
 242{
 243	return __pa_symbol(_text) >> PAGE_SHIFT;
 244}
 245
 246static inline unsigned long highmap_end_pfn(void)
 247{
 248	/* Do not reference physical address outside the kernel. */
 249	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 250}
 251
 252static bool __cpa_pfn_in_highmap(unsigned long pfn)
 253{
 254	/*
 255	 * Kernel text has an alias mapping at a high address, known
 256	 * here as "highmap".
 257	 */
 258	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 259}
 260
 261#else
 262
 263static bool __cpa_pfn_in_highmap(unsigned long pfn)
 264{
 265	/* There is no highmap on 32-bit */
 266	return false;
 267}
 268
 269#endif
 270
 271/*
 272 * See set_mce_nospec().
 273 *
 274 * Machine check recovery code needs to change cache mode of poisoned pages to
 275 * UC to avoid speculative access logging another error. But passing the
 276 * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 277 * speculative access. So we cheat and flip the top bit of the address. This
 278 * works fine for the code that updates the page tables. But at the end of the
 279 * process we need to flush the TLB and cache and the non-canonical address
 280 * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 281 *
 282 * But in the common case we already have a canonical address. This code
 283 * will fix the top bit if needed and is a no-op otherwise.
 284 */
 285static inline unsigned long fix_addr(unsigned long addr)
 286{
 287#ifdef CONFIG_X86_64
 288	return (long)(addr << 1) >> 1;
 289#else
 290	return addr;
 291#endif
 292}
 293
 294static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 295{
 296	if (cpa->flags & CPA_PAGES_ARRAY) {
 297		struct page *page = cpa->pages[idx];
 298
 299		if (unlikely(PageHighMem(page)))
 300			return 0;
 301
 302		return (unsigned long)page_address(page);
 303	}
 304
 305	if (cpa->flags & CPA_ARRAY)
 306		return cpa->vaddr[idx];
 307
 308	return *cpa->vaddr + idx * PAGE_SIZE;
 309}
 310
 311/*
 312 * Flushing functions
 313 */
 314
 315static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 316{
 317	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 318	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 319	void *vend = vaddr + size;
 320
 321	if (p >= vend)
 322		return;
 323
 324	for (; p < vend; p += clflush_size)
 325		clflushopt(p);
 326}
 327
 328/**
 329 * clflush_cache_range - flush a cache range with clflush
 330 * @vaddr:	virtual start address
 331 * @size:	number of bytes to flush
 332 *
 333 * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 334 * SFENCE to avoid ordering issues.
 335 */
 336void clflush_cache_range(void *vaddr, unsigned int size)
 337{
 338	mb();
 339	clflush_cache_range_opt(vaddr, size);
 340	mb();
 341}
 342EXPORT_SYMBOL_GPL(clflush_cache_range);
 343
 344#ifdef CONFIG_ARCH_HAS_PMEM_API
 345void arch_invalidate_pmem(void *addr, size_t size)
 346{
 347	clflush_cache_range(addr, size);
 348}
 349EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 350#endif
 351
 352#ifdef CONFIG_ARCH_HAS_CPU_CACHE_INVALIDATE_MEMREGION
 353bool cpu_cache_has_invalidate_memregion(void)
 354{
 355	return !cpu_feature_enabled(X86_FEATURE_HYPERVISOR);
 356}
 357EXPORT_SYMBOL_NS_GPL(cpu_cache_has_invalidate_memregion, DEVMEM);
 358
 359int cpu_cache_invalidate_memregion(int res_desc)
 360{
 361	if (WARN_ON_ONCE(!cpu_cache_has_invalidate_memregion()))
 362		return -ENXIO;
 363	wbinvd_on_all_cpus();
 364	return 0;
 365}
 366EXPORT_SYMBOL_NS_GPL(cpu_cache_invalidate_memregion, DEVMEM);
 367#endif
 368
 369static void __cpa_flush_all(void *arg)
 370{
 371	unsigned long cache = (unsigned long)arg;
 372
 373	/*
 374	 * Flush all to work around Errata in early athlons regarding
 375	 * large page flushing.
 376	 */
 377	__flush_tlb_all();
 378
 379	if (cache && boot_cpu_data.x86 >= 4)
 380		wbinvd();
 381}
 382
 383static void cpa_flush_all(unsigned long cache)
 384{
 385	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 386
 387	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 388}
 389
 390static void __cpa_flush_tlb(void *data)
 391{
 392	struct cpa_data *cpa = data;
 393	unsigned int i;
 394
 395	for (i = 0; i < cpa->numpages; i++)
 396		flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 397}
 398
 399static void cpa_flush(struct cpa_data *data, int cache)
 400{
 401	struct cpa_data *cpa = data;
 402	unsigned int i;
 403
 404	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 405
 406	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 407		cpa_flush_all(cache);
 408		return;
 409	}
 410
 411	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
 412		flush_tlb_all();
 413	else
 414		on_each_cpu(__cpa_flush_tlb, cpa, 1);
 415
 416	if (!cache)
 417		return;
 418
 419	mb();
 420	for (i = 0; i < cpa->numpages; i++) {
 421		unsigned long addr = __cpa_addr(cpa, i);
 422		unsigned int level;
 423
 424		pte_t *pte = lookup_address(addr, &level);
 425
 426		/*
 427		 * Only flush present addresses:
 428		 */
 429		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 430			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 431	}
 432	mb();
 433}
 434
 435static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 436		     unsigned long r2_start, unsigned long r2_end)
 437{
 438	return (r1_start <= r2_end && r1_end >= r2_start) ||
 439		(r2_start <= r1_end && r2_end >= r1_start);
 440}
 441
 442#ifdef CONFIG_PCI_BIOS
 443/*
 444 * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 445 * based config access (CONFIG_PCI_GOBIOS) support.
 446 */
 447#define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
 448#define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
 449
 450static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 451{
 452	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 453		return _PAGE_NX;
 454	return 0;
 455}
 456#else
 457static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 458{
 459	return 0;
 460}
 461#endif
 462
 463/*
 464 * The .rodata section needs to be read-only. Using the pfn catches all
 465 * aliases.  This also includes __ro_after_init, so do not enforce until
 466 * kernel_set_to_readonly is true.
 467 */
 468static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 469{
 470	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 471
 472	/*
 473	 * Note: __end_rodata is at page aligned and not inclusive, so
 474	 * subtract 1 to get the last enforced PFN in the rodata area.
 475	 */
 476	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 477
 478	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 479		return _PAGE_RW;
 480	return 0;
 481}
 482
 483/*
 484 * Protect kernel text against becoming non executable by forbidding
 485 * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 486 * out of which the kernel actually executes.  Do not protect the low
 487 * mapping.
 488 *
 489 * This does not cover __inittext since that is gone after boot.
 490 */
 491static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 492{
 493	unsigned long t_end = (unsigned long)_etext - 1;
 494	unsigned long t_start = (unsigned long)_text;
 495
 496	if (overlaps(start, end, t_start, t_end))
 497		return _PAGE_NX;
 498	return 0;
 499}
 500
 501#if defined(CONFIG_X86_64)
 502/*
 503 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 504 * kernel text mappings for the large page aligned text, rodata sections
 505 * will be always read-only. For the kernel identity mappings covering the
 506 * holes caused by this alignment can be anything that user asks.
 507 *
 508 * This will preserve the large page mappings for kernel text/data at no
 509 * extra cost.
 510 */
 511static pgprotval_t protect_kernel_text_ro(unsigned long start,
 512					  unsigned long end)
 513{
 514	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 515	unsigned long t_start = (unsigned long)_text;
 516	unsigned int level;
 517
 518	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 519		return 0;
 520	/*
 521	 * Don't enforce the !RW mapping for the kernel text mapping, if
 522	 * the current mapping is already using small page mapping.  No
 523	 * need to work hard to preserve large page mappings in this case.
 524	 *
 525	 * This also fixes the Linux Xen paravirt guest boot failure caused
 526	 * by unexpected read-only mappings for kernel identity
 527	 * mappings. In this paravirt guest case, the kernel text mapping
 528	 * and the kernel identity mapping share the same page-table pages,
 529	 * so the protections for kernel text and identity mappings have to
 530	 * be the same.
 531	 */
 532	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 533		return _PAGE_RW;
 534	return 0;
 535}
 536#else
 537static pgprotval_t protect_kernel_text_ro(unsigned long start,
 538					  unsigned long end)
 539{
 540	return 0;
 541}
 542#endif
 543
 544static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 545{
 546	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 547}
 548
 549static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 550				  unsigned long start, unsigned long end,
 551				  unsigned long pfn, const char *txt)
 552{
 553	static const char *lvltxt[] = {
 554		[CPA_CONFLICT]	= "conflict",
 555		[CPA_PROTECT]	= "protect",
 556		[CPA_DETECT]	= "detect",
 557	};
 558
 559	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 560		return;
 561
 562	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 563		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 564		(unsigned long long)val);
 565}
 566
 567/*
 568 * Certain areas of memory on x86 require very specific protection flags,
 569 * for example the BIOS area or kernel text. Callers don't always get this
 570 * right (again, ioremap() on BIOS memory is not uncommon) so this function
 571 * checks and fixes these known static required protection bits.
 572 */
 573static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 574					  unsigned long pfn, unsigned long npg,
 575					  unsigned long lpsize, int warnlvl)
 576{
 577	pgprotval_t forbidden, res;
 578	unsigned long end;
 579
 580	/*
 581	 * There is no point in checking RW/NX conflicts when the requested
 582	 * mapping is setting the page !PRESENT.
 583	 */
 584	if (!(pgprot_val(prot) & _PAGE_PRESENT))
 585		return prot;
 586
 587	/* Operate on the virtual address */
 588	end = start + npg * PAGE_SIZE - 1;
 589
 590	res = protect_kernel_text(start, end);
 591	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 592	forbidden = res;
 593
 594	/*
 595	 * Special case to preserve a large page. If the change spawns the
 596	 * full large page mapping then there is no point to split it
 597	 * up. Happens with ftrace and is going to be removed once ftrace
 598	 * switched to text_poke().
 599	 */
 600	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 601		res = protect_kernel_text_ro(start, end);
 602		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 603		forbidden |= res;
 604	}
 605
 606	/* Check the PFN directly */
 607	res = protect_pci_bios(pfn, pfn + npg - 1);
 608	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 609	forbidden |= res;
 610
 611	res = protect_rodata(pfn, pfn + npg - 1);
 612	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 613	forbidden |= res;
 614
 615	return __pgprot(pgprot_val(prot) & ~forbidden);
 616}
 617
 618/*
 619 * Validate strict W^X semantics.
 620 */
 621static inline pgprot_t verify_rwx(pgprot_t old, pgprot_t new, unsigned long start,
 622				  unsigned long pfn, unsigned long npg,
 623				  bool nx, bool rw)
 624{
 625	unsigned long end;
 626
 627	/*
 628	 * 32-bit has some unfixable W+X issues, like EFI code
 629	 * and writeable data being in the same page.  Disable
 630	 * detection and enforcement there.
 631	 */
 632	if (IS_ENABLED(CONFIG_X86_32))
 633		return new;
 634
 635	/* Only verify when NX is supported: */
 636	if (!(__supported_pte_mask & _PAGE_NX))
 637		return new;
 638
 639	if (!((pgprot_val(old) ^ pgprot_val(new)) & (_PAGE_RW | _PAGE_NX)))
 640		return new;
 641
 642	if ((pgprot_val(new) & (_PAGE_RW | _PAGE_NX)) != _PAGE_RW)
 643		return new;
 644
 645	/* Non-leaf translation entries can disable writing or execution. */
 646	if (!rw || nx)
 647		return new;
 648
 649	end = start + npg * PAGE_SIZE - 1;
 650	WARN_ONCE(1, "CPA detected W^X violation: %016llx -> %016llx range: 0x%016lx - 0x%016lx PFN %lx\n",
 651		  (unsigned long long)pgprot_val(old),
 652		  (unsigned long long)pgprot_val(new),
 653		  start, end, pfn);
 654
 655	/*
 656	 * For now, allow all permission change attempts by returning the
 657	 * attempted permissions.  This can 'return old' to actively
 658	 * refuse the permission change at a later time.
 659	 */
 660	return new;
 661}
 662
 663/*
 664 * Lookup the page table entry for a virtual address in a specific pgd.
 665 * Return a pointer to the entry, the level of the mapping, and the effective
 666 * NX and RW bits of all page table levels.
 667 */
 668pte_t *lookup_address_in_pgd_attr(pgd_t *pgd, unsigned long address,
 669				  unsigned int *level, bool *nx, bool *rw)
 670{
 671	p4d_t *p4d;
 672	pud_t *pud;
 673	pmd_t *pmd;
 674
 675	*level = PG_LEVEL_NONE;
 676	*nx = false;
 677	*rw = true;
 678
 679	if (pgd_none(*pgd))
 680		return NULL;
 681
 682	*nx |= pgd_flags(*pgd) & _PAGE_NX;
 683	*rw &= pgd_flags(*pgd) & _PAGE_RW;
 684
 685	p4d = p4d_offset(pgd, address);
 686	if (p4d_none(*p4d))
 687		return NULL;
 688
 689	*level = PG_LEVEL_512G;
 690	if (p4d_leaf(*p4d) || !p4d_present(*p4d))
 691		return (pte_t *)p4d;
 692
 693	*nx |= p4d_flags(*p4d) & _PAGE_NX;
 694	*rw &= p4d_flags(*p4d) & _PAGE_RW;
 695
 696	pud = pud_offset(p4d, address);
 697	if (pud_none(*pud))
 698		return NULL;
 699
 700	*level = PG_LEVEL_1G;
 701	if (pud_leaf(*pud) || !pud_present(*pud))
 702		return (pte_t *)pud;
 703
 704	*nx |= pud_flags(*pud) & _PAGE_NX;
 705	*rw &= pud_flags(*pud) & _PAGE_RW;
 706
 707	pmd = pmd_offset(pud, address);
 708	if (pmd_none(*pmd))
 709		return NULL;
 710
 711	*level = PG_LEVEL_2M;
 712	if (pmd_leaf(*pmd) || !pmd_present(*pmd))
 713		return (pte_t *)pmd;
 714
 715	*nx |= pmd_flags(*pmd) & _PAGE_NX;
 716	*rw &= pmd_flags(*pmd) & _PAGE_RW;
 717
 718	*level = PG_LEVEL_4K;
 719
 720	return pte_offset_kernel(pmd, address);
 721}
 722
 723/*
 724 * Lookup the page table entry for a virtual address in a specific pgd.
 725 * Return a pointer to the entry and the level of the mapping.
 726 */
 727pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 728			     unsigned int *level)
 729{
 730	bool nx, rw;
 731
 732	return lookup_address_in_pgd_attr(pgd, address, level, &nx, &rw);
 733}
 734
 735/*
 736 * Lookup the page table entry for a virtual address. Return a pointer
 737 * to the entry and the level of the mapping.
 738 *
 739 * Note: We return pud and pmd either when the entry is marked large
 740 * or when the present bit is not set. Otherwise we would return a
 741 * pointer to a nonexisting mapping.
 742 */
 743pte_t *lookup_address(unsigned long address, unsigned int *level)
 744{
 745	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 746}
 747EXPORT_SYMBOL_GPL(lookup_address);
 748
 749static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 750				  unsigned int *level, bool *nx, bool *rw)
 751{
 752	pgd_t *pgd;
 
 
 753
 754	if (!cpa->pgd)
 755		pgd = pgd_offset_k(address);
 756	else
 757		pgd = cpa->pgd + pgd_index(address);
 758
 759	return lookup_address_in_pgd_attr(pgd, address, level, nx, rw);
 760}
 761
 762/*
 763 * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 764 * or NULL if not present.
 765 */
 766pmd_t *lookup_pmd_address(unsigned long address)
 767{
 768	pgd_t *pgd;
 769	p4d_t *p4d;
 770	pud_t *pud;
 771
 772	pgd = pgd_offset_k(address);
 773	if (pgd_none(*pgd))
 774		return NULL;
 775
 776	p4d = p4d_offset(pgd, address);
 777	if (p4d_none(*p4d) || p4d_leaf(*p4d) || !p4d_present(*p4d))
 778		return NULL;
 779
 780	pud = pud_offset(p4d, address);
 781	if (pud_none(*pud) || pud_leaf(*pud) || !pud_present(*pud))
 782		return NULL;
 783
 784	return pmd_offset(pud, address);
 785}
 786
 787/*
 788 * This is necessary because __pa() does not work on some
 789 * kinds of memory, like vmalloc() or the alloc_remap()
 790 * areas on 32-bit NUMA systems.  The percpu areas can
 791 * end up in this kind of memory, for instance.
 792 *
 793 * Note that as long as the PTEs are well-formed with correct PFNs, this
 794 * works without checking the PRESENT bit in the leaf PTE.  This is unlike
 795 * the similar vmalloc_to_page() and derivatives.  Callers may depend on
 796 * this behavior.
 797 *
 798 * This could be optimized, but it is only used in paths that are not perf
 799 * sensitive, and keeping it unoptimized should increase the testing coverage
 800 * for the more obscure platforms.
 801 */
 802phys_addr_t slow_virt_to_phys(void *__virt_addr)
 803{
 804	unsigned long virt_addr = (unsigned long)__virt_addr;
 805	phys_addr_t phys_addr;
 806	unsigned long offset;
 807	enum pg_level level;
 808	pte_t *pte;
 809
 810	pte = lookup_address(virt_addr, &level);
 811	BUG_ON(!pte);
 812
 813	/*
 814	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 815	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
 816	 * make 32-PAE kernel work correctly.
 817	 */
 818	switch (level) {
 819	case PG_LEVEL_1G:
 820		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 821		offset = virt_addr & ~PUD_MASK;
 822		break;
 823	case PG_LEVEL_2M:
 824		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 825		offset = virt_addr & ~PMD_MASK;
 826		break;
 827	default:
 828		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 829		offset = virt_addr & ~PAGE_MASK;
 830	}
 831
 832	return (phys_addr_t)(phys_addr | offset);
 833}
 834EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 835
 836/*
 837 * Set the new pmd in all the pgds we know about:
 838 */
 839static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 840{
 841	/* change init_mm */
 842	set_pte_atomic(kpte, pte);
 843#ifdef CONFIG_X86_32
 844	if (!SHARED_KERNEL_PMD) {
 845		struct page *page;
 846
 847		list_for_each_entry(page, &pgd_list, lru) {
 848			pgd_t *pgd;
 849			p4d_t *p4d;
 850			pud_t *pud;
 851			pmd_t *pmd;
 852
 853			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 854			p4d = p4d_offset(pgd, address);
 855			pud = pud_offset(p4d, address);
 856			pmd = pmd_offset(pud, address);
 857			set_pte_atomic((pte_t *)pmd, pte);
 858		}
 859	}
 860#endif
 861}
 862
 863static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 864{
 865	/*
 866	 * _PAGE_GLOBAL means "global page" for present PTEs.
 867	 * But, it is also used to indicate _PAGE_PROTNONE
 868	 * for non-present PTEs.
 869	 *
 870	 * This ensures that a _PAGE_GLOBAL PTE going from
 871	 * present to non-present is not confused as
 872	 * _PAGE_PROTNONE.
 873	 */
 874	if (!(pgprot_val(prot) & _PAGE_PRESENT))
 875		pgprot_val(prot) &= ~_PAGE_GLOBAL;
 876
 877	return prot;
 878}
 879
 880static int __should_split_large_page(pte_t *kpte, unsigned long address,
 881				     struct cpa_data *cpa)
 882{
 883	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 884	pgprot_t old_prot, new_prot, req_prot, chk_prot;
 885	pte_t new_pte, *tmp;
 886	enum pg_level level;
 887	bool nx, rw;
 888
 889	/*
 890	 * Check for races, another CPU might have split this page
 891	 * up already:
 892	 */
 893	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
 894	if (tmp != kpte)
 895		return 1;
 896
 897	switch (level) {
 898	case PG_LEVEL_2M:
 899		old_prot = pmd_pgprot(*(pmd_t *)kpte);
 900		old_pfn = pmd_pfn(*(pmd_t *)kpte);
 901		cpa_inc_2m_checked();
 902		break;
 903	case PG_LEVEL_1G:
 904		old_prot = pud_pgprot(*(pud_t *)kpte);
 905		old_pfn = pud_pfn(*(pud_t *)kpte);
 906		cpa_inc_1g_checked();
 907		break;
 908	default:
 909		return -EINVAL;
 910	}
 911
 912	psize = page_level_size(level);
 913	pmask = page_level_mask(level);
 914
 915	/*
 916	 * Calculate the number of pages, which fit into this large
 917	 * page starting at address:
 918	 */
 919	lpaddr = (address + psize) & pmask;
 920	numpages = (lpaddr - address) >> PAGE_SHIFT;
 921	if (numpages < cpa->numpages)
 922		cpa->numpages = numpages;
 923
 924	/*
 925	 * We are safe now. Check whether the new pgprot is the same:
 926	 * Convert protection attributes to 4k-format, as cpa->mask* are set
 927	 * up accordingly.
 928	 */
 929
 930	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 931	req_prot = pgprot_large_2_4k(old_prot);
 932
 933	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 934	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 935
 936	/*
 937	 * req_prot is in format of 4k pages. It must be converted to large
 938	 * page format: the caching mode includes the PAT bit located at
 939	 * different bit positions in the two formats.
 940	 */
 941	req_prot = pgprot_4k_2_large(req_prot);
 942	req_prot = pgprot_clear_protnone_bits(req_prot);
 943	if (pgprot_val(req_prot) & _PAGE_PRESENT)
 944		pgprot_val(req_prot) |= _PAGE_PSE;
 945
 946	/*
 947	 * old_pfn points to the large page base pfn. So we need to add the
 948	 * offset of the virtual address:
 949	 */
 950	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 951	cpa->pfn = pfn;
 952
 953	/*
 954	 * Calculate the large page base address and the number of 4K pages
 955	 * in the large page
 956	 */
 957	lpaddr = address & pmask;
 958	numpages = psize >> PAGE_SHIFT;
 959
 960	/*
 961	 * Sanity check that the existing mapping is correct versus the static
 962	 * protections. static_protections() guards against !PRESENT, so no
 963	 * extra conditional required here.
 964	 */
 965	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 966				      psize, CPA_CONFLICT);
 967
 968	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 969		/*
 970		 * Split the large page and tell the split code to
 971		 * enforce static protections.
 972		 */
 973		cpa->force_static_prot = 1;
 974		return 1;
 975	}
 976
 977	/*
 978	 * Optimization: If the requested pgprot is the same as the current
 979	 * pgprot, then the large page can be preserved and no updates are
 980	 * required independent of alignment and length of the requested
 981	 * range. The above already established that the current pgprot is
 982	 * correct, which in consequence makes the requested pgprot correct
 983	 * as well if it is the same. The static protection scan below will
 984	 * not come to a different conclusion.
 985	 */
 986	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 987		cpa_inc_lp_sameprot(level);
 988		return 0;
 989	}
 990
 991	/*
 992	 * If the requested range does not cover the full page, split it up
 993	 */
 994	if (address != lpaddr || cpa->numpages != numpages)
 995		return 1;
 996
 997	/*
 998	 * Check whether the requested pgprot is conflicting with a static
 999	 * protection requirement in the large page.
1000	 */
1001	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
1002				      psize, CPA_DETECT);
1003
1004	new_prot = verify_rwx(old_prot, new_prot, lpaddr, old_pfn, numpages,
1005			      nx, rw);
1006
1007	/*
1008	 * If there is a conflict, split the large page.
1009	 *
1010	 * There used to be a 4k wise evaluation trying really hard to
1011	 * preserve the large pages, but experimentation has shown, that this
1012	 * does not help at all. There might be corner cases which would
1013	 * preserve one large page occasionally, but it's really not worth the
1014	 * extra code and cycles for the common case.
1015	 */
1016	if (pgprot_val(req_prot) != pgprot_val(new_prot))
1017		return 1;
1018
1019	/* All checks passed. Update the large page mapping. */
1020	new_pte = pfn_pte(old_pfn, new_prot);
1021	__set_pmd_pte(kpte, address, new_pte);
1022	cpa->flags |= CPA_FLUSHTLB;
1023	cpa_inc_lp_preserved(level);
1024	return 0;
1025}
1026
1027static int should_split_large_page(pte_t *kpte, unsigned long address,
1028				   struct cpa_data *cpa)
1029{
1030	int do_split;
1031
1032	if (cpa->force_split)
1033		return 1;
1034
1035	spin_lock(&pgd_lock);
1036	do_split = __should_split_large_page(kpte, address, cpa);
1037	spin_unlock(&pgd_lock);
1038
1039	return do_split;
1040}
1041
1042static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
1043			  pgprot_t ref_prot, unsigned long address,
1044			  unsigned long size)
1045{
1046	unsigned int npg = PFN_DOWN(size);
1047	pgprot_t prot;
1048
1049	/*
1050	 * If should_split_large_page() discovered an inconsistent mapping,
1051	 * remove the invalid protection in the split mapping.
1052	 */
1053	if (!cpa->force_static_prot)
1054		goto set;
1055
1056	/* Hand in lpsize = 0 to enforce the protection mechanism */
1057	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
1058
1059	if (pgprot_val(prot) == pgprot_val(ref_prot))
1060		goto set;
1061
1062	/*
1063	 * If this is splitting a PMD, fix it up. PUD splits cannot be
1064	 * fixed trivially as that would require to rescan the newly
1065	 * installed PMD mappings after returning from split_large_page()
1066	 * so an eventual further split can allocate the necessary PTE
1067	 * pages. Warn for now and revisit it in case this actually
1068	 * happens.
1069	 */
1070	if (size == PAGE_SIZE)
1071		ref_prot = prot;
1072	else
1073		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
1074set:
1075	set_pte(pte, pfn_pte(pfn, ref_prot));
1076}
1077
1078static int
1079__split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
1080		   struct page *base)
1081{
1082	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
1083	pte_t *pbase = (pte_t *)page_address(base);
1084	unsigned int i, level;
1085	pgprot_t ref_prot;
1086	bool nx, rw;
1087	pte_t *tmp;
1088
1089	spin_lock(&pgd_lock);
1090	/*
1091	 * Check for races, another CPU might have split this page
1092	 * up for us already:
1093	 */
1094	tmp = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1095	if (tmp != kpte) {
1096		spin_unlock(&pgd_lock);
1097		return 1;
1098	}
1099
1100	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
1101
1102	switch (level) {
1103	case PG_LEVEL_2M:
1104		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
1105		/*
1106		 * Clear PSE (aka _PAGE_PAT) and move
1107		 * PAT bit to correct position.
1108		 */
1109		ref_prot = pgprot_large_2_4k(ref_prot);
1110		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
1111		lpaddr = address & PMD_MASK;
1112		lpinc = PAGE_SIZE;
1113		break;
1114
1115	case PG_LEVEL_1G:
1116		ref_prot = pud_pgprot(*(pud_t *)kpte);
1117		ref_pfn = pud_pfn(*(pud_t *)kpte);
1118		pfninc = PMD_SIZE >> PAGE_SHIFT;
1119		lpaddr = address & PUD_MASK;
1120		lpinc = PMD_SIZE;
1121		/*
1122		 * Clear the PSE flags if the PRESENT flag is not set
1123		 * otherwise pmd_present/pmd_huge will return true
1124		 * even on a non present pmd.
1125		 */
1126		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
1127			pgprot_val(ref_prot) &= ~_PAGE_PSE;
1128		break;
1129
1130	default:
1131		spin_unlock(&pgd_lock);
1132		return 1;
1133	}
1134
1135	ref_prot = pgprot_clear_protnone_bits(ref_prot);
1136
1137	/*
1138	 * Get the target pfn from the original entry:
1139	 */
1140	pfn = ref_pfn;
1141	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
1142		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
1143
1144	if (virt_addr_valid(address)) {
1145		unsigned long pfn = PFN_DOWN(__pa(address));
1146
1147		if (pfn_range_is_mapped(pfn, pfn + 1))
1148			split_page_count(level);
1149	}
1150
1151	/*
1152	 * Install the new, split up pagetable.
1153	 *
1154	 * We use the standard kernel pagetable protections for the new
1155	 * pagetable protections, the actual ptes set above control the
1156	 * primary protection behavior:
1157	 */
1158	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
1159
1160	/*
1161	 * Do a global flush tlb after splitting the large page
1162	 * and before we do the actual change page attribute in the PTE.
1163	 *
1164	 * Without this, we violate the TLB application note, that says:
1165	 * "The TLBs may contain both ordinary and large-page
1166	 *  translations for a 4-KByte range of linear addresses. This
1167	 *  may occur if software modifies the paging structures so that
1168	 *  the page size used for the address range changes. If the two
1169	 *  translations differ with respect to page frame or attributes
1170	 *  (e.g., permissions), processor behavior is undefined and may
1171	 *  be implementation-specific."
1172	 *
1173	 * We do this global tlb flush inside the cpa_lock, so that we
1174	 * don't allow any other cpu, with stale tlb entries change the
1175	 * page attribute in parallel, that also falls into the
1176	 * just split large page entry.
1177	 */
1178	flush_tlb_all();
1179	spin_unlock(&pgd_lock);
1180
1181	return 0;
1182}
1183
1184static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
1185			    unsigned long address)
1186{
1187	struct page *base;
1188
1189	if (!debug_pagealloc_enabled())
1190		spin_unlock(&cpa_lock);
1191	base = alloc_pages(GFP_KERNEL, 0);
1192	if (!debug_pagealloc_enabled())
1193		spin_lock(&cpa_lock);
1194	if (!base)
1195		return -ENOMEM;
1196
1197	if (__split_large_page(cpa, kpte, address, base))
1198		__free_page(base);
1199
1200	return 0;
1201}
1202
1203static bool try_to_free_pte_page(pte_t *pte)
1204{
1205	int i;
1206
1207	for (i = 0; i < PTRS_PER_PTE; i++)
1208		if (!pte_none(pte[i]))
1209			return false;
1210
1211	free_page((unsigned long)pte);
1212	return true;
1213}
1214
1215static bool try_to_free_pmd_page(pmd_t *pmd)
1216{
1217	int i;
1218
1219	for (i = 0; i < PTRS_PER_PMD; i++)
1220		if (!pmd_none(pmd[i]))
1221			return false;
1222
1223	free_page((unsigned long)pmd);
1224	return true;
1225}
1226
1227static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
1228{
1229	pte_t *pte = pte_offset_kernel(pmd, start);
1230
1231	while (start < end) {
1232		set_pte(pte, __pte(0));
1233
1234		start += PAGE_SIZE;
1235		pte++;
1236	}
1237
1238	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
1239		pmd_clear(pmd);
1240		return true;
1241	}
1242	return false;
1243}
1244
1245static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
1246			      unsigned long start, unsigned long end)
1247{
1248	if (unmap_pte_range(pmd, start, end))
1249		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1250			pud_clear(pud);
1251}
1252
1253static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
1254{
1255	pmd_t *pmd = pmd_offset(pud, start);
1256
1257	/*
1258	 * Not on a 2MB page boundary?
1259	 */
1260	if (start & (PMD_SIZE - 1)) {
1261		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1262		unsigned long pre_end = min_t(unsigned long, end, next_page);
1263
1264		__unmap_pmd_range(pud, pmd, start, pre_end);
1265
1266		start = pre_end;
1267		pmd++;
1268	}
1269
1270	/*
1271	 * Try to unmap in 2M chunks.
1272	 */
1273	while (end - start >= PMD_SIZE) {
1274		if (pmd_leaf(*pmd))
1275			pmd_clear(pmd);
1276		else
1277			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
1278
1279		start += PMD_SIZE;
1280		pmd++;
1281	}
1282
1283	/*
1284	 * 4K leftovers?
1285	 */
1286	if (start < end)
1287		return __unmap_pmd_range(pud, pmd, start, end);
1288
1289	/*
1290	 * Try again to free the PMD page if haven't succeeded above.
1291	 */
1292	if (!pud_none(*pud))
1293		if (try_to_free_pmd_page(pud_pgtable(*pud)))
1294			pud_clear(pud);
1295}
1296
1297static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
1298{
1299	pud_t *pud = pud_offset(p4d, start);
1300
1301	/*
1302	 * Not on a GB page boundary?
1303	 */
1304	if (start & (PUD_SIZE - 1)) {
1305		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1306		unsigned long pre_end	= min_t(unsigned long, end, next_page);
1307
1308		unmap_pmd_range(pud, start, pre_end);
1309
1310		start = pre_end;
1311		pud++;
1312	}
1313
1314	/*
1315	 * Try to unmap in 1G chunks?
1316	 */
1317	while (end - start >= PUD_SIZE) {
1318
1319		if (pud_leaf(*pud))
1320			pud_clear(pud);
1321		else
1322			unmap_pmd_range(pud, start, start + PUD_SIZE);
1323
1324		start += PUD_SIZE;
1325		pud++;
1326	}
1327
1328	/*
1329	 * 2M leftovers?
1330	 */
1331	if (start < end)
1332		unmap_pmd_range(pud, start, end);
1333
1334	/*
1335	 * No need to try to free the PUD page because we'll free it in
1336	 * populate_pgd's error path
1337	 */
1338}
1339
1340static int alloc_pte_page(pmd_t *pmd)
1341{
1342	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
1343	if (!pte)
1344		return -1;
1345
1346	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
1347	return 0;
1348}
1349
1350static int alloc_pmd_page(pud_t *pud)
1351{
1352	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
1353	if (!pmd)
1354		return -1;
1355
1356	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
1357	return 0;
1358}
1359
1360static void populate_pte(struct cpa_data *cpa,
1361			 unsigned long start, unsigned long end,
1362			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
1363{
1364	pte_t *pte;
1365
1366	pte = pte_offset_kernel(pmd, start);
1367
1368	pgprot = pgprot_clear_protnone_bits(pgprot);
1369
1370	while (num_pages-- && start < end) {
1371		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
1372
1373		start	 += PAGE_SIZE;
1374		cpa->pfn++;
1375		pte++;
1376	}
1377}
1378
1379static long populate_pmd(struct cpa_data *cpa,
1380			 unsigned long start, unsigned long end,
1381			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
1382{
1383	long cur_pages = 0;
1384	pmd_t *pmd;
1385	pgprot_t pmd_pgprot;
1386
1387	/*
1388	 * Not on a 2M boundary?
1389	 */
1390	if (start & (PMD_SIZE - 1)) {
1391		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
1392		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
1393
1394		pre_end   = min_t(unsigned long, pre_end, next_page);
1395		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1396		cur_pages = min_t(unsigned int, num_pages, cur_pages);
1397
1398		/*
1399		 * Need a PTE page?
1400		 */
1401		pmd = pmd_offset(pud, start);
1402		if (pmd_none(*pmd))
1403			if (alloc_pte_page(pmd))
1404				return -1;
1405
1406		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
1407
1408		start = pre_end;
1409	}
1410
1411	/*
1412	 * We mapped them all?
1413	 */
1414	if (num_pages == cur_pages)
1415		return cur_pages;
1416
1417	pmd_pgprot = pgprot_4k_2_large(pgprot);
1418
1419	while (end - start >= PMD_SIZE) {
1420
1421		/*
1422		 * We cannot use a 1G page so allocate a PMD page if needed.
1423		 */
1424		if (pud_none(*pud))
1425			if (alloc_pmd_page(pud))
1426				return -1;
1427
1428		pmd = pmd_offset(pud, start);
1429
1430		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1431					canon_pgprot(pmd_pgprot))));
1432
1433		start	  += PMD_SIZE;
1434		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1435		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1436	}
1437
1438	/*
1439	 * Map trailing 4K pages.
1440	 */
1441	if (start < end) {
1442		pmd = pmd_offset(pud, start);
1443		if (pmd_none(*pmd))
1444			if (alloc_pte_page(pmd))
1445				return -1;
1446
1447		populate_pte(cpa, start, end, num_pages - cur_pages,
1448			     pmd, pgprot);
1449	}
1450	return num_pages;
1451}
1452
1453static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1454			pgprot_t pgprot)
1455{
1456	pud_t *pud;
1457	unsigned long end;
1458	long cur_pages = 0;
1459	pgprot_t pud_pgprot;
1460
1461	end = start + (cpa->numpages << PAGE_SHIFT);
1462
1463	/*
1464	 * Not on a Gb page boundary? => map everything up to it with
1465	 * smaller pages.
1466	 */
1467	if (start & (PUD_SIZE - 1)) {
1468		unsigned long pre_end;
1469		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1470
1471		pre_end   = min_t(unsigned long, end, next_page);
1472		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1473		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1474
1475		pud = pud_offset(p4d, start);
1476
1477		/*
1478		 * Need a PMD page?
1479		 */
1480		if (pud_none(*pud))
1481			if (alloc_pmd_page(pud))
1482				return -1;
1483
1484		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1485					 pud, pgprot);
1486		if (cur_pages < 0)
1487			return cur_pages;
1488
1489		start = pre_end;
1490	}
1491
1492	/* We mapped them all? */
1493	if (cpa->numpages == cur_pages)
1494		return cur_pages;
1495
1496	pud = pud_offset(p4d, start);
1497	pud_pgprot = pgprot_4k_2_large(pgprot);
1498
1499	/*
1500	 * Map everything starting from the Gb boundary, possibly with 1G pages
1501	 */
1502	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1503		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1504				   canon_pgprot(pud_pgprot))));
1505
1506		start	  += PUD_SIZE;
1507		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1508		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1509		pud++;
1510	}
1511
1512	/* Map trailing leftover */
1513	if (start < end) {
1514		long tmp;
1515
1516		pud = pud_offset(p4d, start);
1517		if (pud_none(*pud))
1518			if (alloc_pmd_page(pud))
1519				return -1;
1520
1521		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1522				   pud, pgprot);
1523		if (tmp < 0)
1524			return cur_pages;
1525
1526		cur_pages += tmp;
1527	}
1528	return cur_pages;
1529}
1530
1531/*
1532 * Restrictions for kernel page table do not necessarily apply when mapping in
1533 * an alternate PGD.
1534 */
1535static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1536{
1537	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1538	pud_t *pud = NULL;	/* shut up gcc */
1539	p4d_t *p4d;
1540	pgd_t *pgd_entry;
1541	long ret;
1542
1543	pgd_entry = cpa->pgd + pgd_index(addr);
1544
1545	if (pgd_none(*pgd_entry)) {
1546		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1547		if (!p4d)
1548			return -1;
1549
1550		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1551	}
1552
1553	/*
1554	 * Allocate a PUD page and hand it down for mapping.
1555	 */
1556	p4d = p4d_offset(pgd_entry, addr);
1557	if (p4d_none(*p4d)) {
1558		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1559		if (!pud)
1560			return -1;
1561
1562		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1563	}
1564
1565	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1566	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1567
1568	ret = populate_pud(cpa, addr, p4d, pgprot);
1569	if (ret < 0) {
1570		/*
1571		 * Leave the PUD page in place in case some other CPU or thread
1572		 * already found it, but remove any useless entries we just
1573		 * added to it.
1574		 */
1575		unmap_pud_range(p4d, addr,
1576				addr + (cpa->numpages << PAGE_SHIFT));
1577		return ret;
1578	}
1579
1580	cpa->numpages = ret;
1581	return 0;
1582}
1583
1584static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1585			       int primary)
1586{
1587	if (cpa->pgd) {
1588		/*
1589		 * Right now, we only execute this code path when mapping
1590		 * the EFI virtual memory map regions, no other users
1591		 * provide a ->pgd value. This may change in the future.
1592		 */
1593		return populate_pgd(cpa, vaddr);
1594	}
1595
1596	/*
1597	 * Ignore all non primary paths.
1598	 */
1599	if (!primary) {
1600		cpa->numpages = 1;
1601		return 0;
1602	}
1603
1604	/*
1605	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1606	 * to have holes.
1607	 * Also set numpages to '1' indicating that we processed cpa req for
1608	 * one virtual address page and its pfn. TBD: numpages can be set based
1609	 * on the initial value and the level returned by lookup_address().
1610	 */
1611	if (within(vaddr, PAGE_OFFSET,
1612		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1613		cpa->numpages = 1;
1614		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1615		return 0;
1616
1617	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1618		/* Faults in the highmap are OK, so do not warn: */
1619		return -EFAULT;
1620	} else {
1621		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1622			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1623			*cpa->vaddr);
1624
1625		return -EFAULT;
1626	}
1627}
1628
1629static int __change_page_attr(struct cpa_data *cpa, int primary)
1630{
1631	unsigned long address;
1632	int do_split, err;
1633	unsigned int level;
1634	pte_t *kpte, old_pte;
1635	bool nx, rw;
1636
1637	address = __cpa_addr(cpa, cpa->curpage);
1638repeat:
1639	kpte = _lookup_address_cpa(cpa, address, &level, &nx, &rw);
1640	if (!kpte)
1641		return __cpa_process_fault(cpa, address, primary);
1642
1643	old_pte = *kpte;
1644	if (pte_none(old_pte))
1645		return __cpa_process_fault(cpa, address, primary);
1646
1647	if (level == PG_LEVEL_4K) {
1648		pte_t new_pte;
1649		pgprot_t old_prot = pte_pgprot(old_pte);
1650		pgprot_t new_prot = pte_pgprot(old_pte);
1651		unsigned long pfn = pte_pfn(old_pte);
1652
1653		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1654		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1655
1656		cpa_inc_4k_install();
1657		/* Hand in lpsize = 0 to enforce the protection mechanism */
1658		new_prot = static_protections(new_prot, address, pfn, 1, 0,
1659					      CPA_PROTECT);
1660
1661		new_prot = verify_rwx(old_prot, new_prot, address, pfn, 1,
1662				      nx, rw);
1663
1664		new_prot = pgprot_clear_protnone_bits(new_prot);
1665
1666		/*
1667		 * We need to keep the pfn from the existing PTE,
1668		 * after all we're only going to change its attributes
1669		 * not the memory it points to
1670		 */
1671		new_pte = pfn_pte(pfn, new_prot);
1672		cpa->pfn = pfn;
1673		/*
1674		 * Do we really change anything ?
1675		 */
1676		if (pte_val(old_pte) != pte_val(new_pte)) {
1677			set_pte_atomic(kpte, new_pte);
1678			cpa->flags |= CPA_FLUSHTLB;
1679		}
1680		cpa->numpages = 1;
1681		return 0;
1682	}
1683
1684	/*
1685	 * Check, whether we can keep the large page intact
1686	 * and just change the pte:
1687	 */
1688	do_split = should_split_large_page(kpte, address, cpa);
1689	/*
1690	 * When the range fits into the existing large page,
1691	 * return. cp->numpages and cpa->tlbflush have been updated in
1692	 * try_large_page:
1693	 */
1694	if (do_split <= 0)
1695		return do_split;
1696
1697	/*
1698	 * We have to split the large page:
1699	 */
1700	err = split_large_page(cpa, kpte, address);
1701	if (!err)
1702		goto repeat;
1703
1704	return err;
1705}
1706
1707static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary);
1708
1709/*
1710 * Check the directmap and "high kernel map" 'aliases'.
1711 */
1712static int cpa_process_alias(struct cpa_data *cpa)
1713{
1714	struct cpa_data alias_cpa;
1715	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1716	unsigned long vaddr;
1717	int ret;
1718
1719	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1720		return 0;
1721
1722	/*
1723	 * No need to redo, when the primary call touched the direct
1724	 * mapping already:
1725	 */
1726	vaddr = __cpa_addr(cpa, cpa->curpage);
1727	if (!(within(vaddr, PAGE_OFFSET,
1728		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1729
1730		alias_cpa = *cpa;
1731		alias_cpa.vaddr = &laddr;
1732		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1733		alias_cpa.curpage = 0;
1734
1735		/* Directmap always has NX set, do not modify. */
1736		if (__supported_pte_mask & _PAGE_NX) {
1737			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1738			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1739		}
1740
1741		cpa->force_flush_all = 1;
1742
1743		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1744		if (ret)
1745			return ret;
1746	}
1747
1748#ifdef CONFIG_X86_64
1749	/*
1750	 * If the primary call didn't touch the high mapping already
1751	 * and the physical address is inside the kernel map, we need
1752	 * to touch the high mapped kernel as well:
1753	 */
1754	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1755	    __cpa_pfn_in_highmap(cpa->pfn)) {
1756		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1757					       __START_KERNEL_map - phys_base;
1758		alias_cpa = *cpa;
1759		alias_cpa.vaddr = &temp_cpa_vaddr;
1760		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1761		alias_cpa.curpage = 0;
1762
1763		/*
1764		 * [_text, _brk_end) also covers data, do not modify NX except
1765		 * in cases where the highmap is the primary target.
1766		 */
1767		if (__supported_pte_mask & _PAGE_NX) {
1768			alias_cpa.mask_clr.pgprot &= ~_PAGE_NX;
1769			alias_cpa.mask_set.pgprot &= ~_PAGE_NX;
1770		}
1771
1772		cpa->force_flush_all = 1;
1773		/*
1774		 * The high mapping range is imprecise, so ignore the
1775		 * return value.
1776		 */
1777		__change_page_attr_set_clr(&alias_cpa, 0);
1778	}
1779#endif
1780
1781	return 0;
1782}
1783
1784static int __change_page_attr_set_clr(struct cpa_data *cpa, int primary)
1785{
1786	unsigned long numpages = cpa->numpages;
1787	unsigned long rempages = numpages;
1788	int ret = 0;
1789
1790	/*
1791	 * No changes, easy!
1792	 */
1793	if (!(pgprot_val(cpa->mask_set) | pgprot_val(cpa->mask_clr)) &&
1794	    !cpa->force_split)
1795		return ret;
1796
1797	while (rempages) {
1798		/*
1799		 * Store the remaining nr of pages for the large page
1800		 * preservation check.
1801		 */
1802		cpa->numpages = rempages;
1803		/* for array changes, we can't use large page */
1804		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1805			cpa->numpages = 1;
1806
1807		if (!debug_pagealloc_enabled())
1808			spin_lock(&cpa_lock);
1809		ret = __change_page_attr(cpa, primary);
1810		if (!debug_pagealloc_enabled())
1811			spin_unlock(&cpa_lock);
1812		if (ret)
1813			goto out;
1814
1815		if (primary && !(cpa->flags & CPA_NO_CHECK_ALIAS)) {
1816			ret = cpa_process_alias(cpa);
1817			if (ret)
1818				goto out;
1819		}
1820
1821		/*
1822		 * Adjust the number of pages with the result of the
1823		 * CPA operation. Either a large page has been
1824		 * preserved or a single page update happened.
1825		 */
1826		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
1827		rempages -= cpa->numpages;
1828		cpa->curpage += cpa->numpages;
1829	}
1830
1831out:
1832	/* Restore the original numpages */
1833	cpa->numpages = numpages;
1834	return ret;
1835}
1836
1837static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1838				    pgprot_t mask_set, pgprot_t mask_clr,
1839				    int force_split, int in_flag,
1840				    struct page **pages)
1841{
1842	struct cpa_data cpa;
1843	int ret, cache;
1844
1845	memset(&cpa, 0, sizeof(cpa));
1846
1847	/*
1848	 * Check, if we are requested to set a not supported
1849	 * feature.  Clearing non-supported features is OK.
1850	 */
1851	mask_set = canon_pgprot(mask_set);
1852
1853	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1854		return 0;
1855
1856	/* Ensure we are PAGE_SIZE aligned */
1857	if (in_flag & CPA_ARRAY) {
1858		int i;
1859		for (i = 0; i < numpages; i++) {
1860			if (addr[i] & ~PAGE_MASK) {
1861				addr[i] &= PAGE_MASK;
1862				WARN_ON_ONCE(1);
1863			}
1864		}
1865	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1866		/*
1867		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1868		 * No need to check in that case
1869		 */
1870		if (*addr & ~PAGE_MASK) {
1871			*addr &= PAGE_MASK;
1872			/*
1873			 * People should not be passing in unaligned addresses:
1874			 */
1875			WARN_ON_ONCE(1);
1876		}
1877	}
1878
1879	/* Must avoid aliasing mappings in the highmem code */
1880	kmap_flush_unused();
1881
1882	vm_unmap_aliases();
1883
1884	cpa.vaddr = addr;
1885	cpa.pages = pages;
1886	cpa.numpages = numpages;
1887	cpa.mask_set = mask_set;
1888	cpa.mask_clr = mask_clr;
1889	cpa.flags = in_flag;
1890	cpa.curpage = 0;
1891	cpa.force_split = force_split;
1892
1893	ret = __change_page_attr_set_clr(&cpa, 1);
1894
1895	/*
1896	 * Check whether we really changed something:
1897	 */
1898	if (!(cpa.flags & CPA_FLUSHTLB))
1899		goto out;
1900
1901	/*
1902	 * No need to flush, when we did not set any of the caching
1903	 * attributes:
1904	 */
1905	cache = !!pgprot2cachemode(mask_set);
1906
1907	/*
1908	 * On error; flush everything to be sure.
1909	 */
1910	if (ret) {
1911		cpa_flush_all(cache);
1912		goto out;
1913	}
1914
1915	cpa_flush(&cpa, cache);
1916out:
1917	return ret;
1918}
1919
1920static inline int change_page_attr_set(unsigned long *addr, int numpages,
1921				       pgprot_t mask, int array)
1922{
1923	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1924		(array ? CPA_ARRAY : 0), NULL);
1925}
1926
1927static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1928					 pgprot_t mask, int array)
1929{
1930	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1931		(array ? CPA_ARRAY : 0), NULL);
1932}
1933
1934static inline int cpa_set_pages_array(struct page **pages, int numpages,
1935				       pgprot_t mask)
1936{
1937	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1938		CPA_PAGES_ARRAY, pages);
1939}
1940
1941static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1942					 pgprot_t mask)
1943{
1944	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1945		CPA_PAGES_ARRAY, pages);
1946}
1947
1948/*
1949 * __set_memory_prot is an internal helper for callers that have been passed
1950 * a pgprot_t value from upper layers and a reservation has already been taken.
1951 * If you want to set the pgprot to a specific page protocol, use the
1952 * set_memory_xx() functions.
1953 */
1954int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
1955{
1956	return change_page_attr_set_clr(&addr, numpages, prot,
1957					__pgprot(~pgprot_val(prot)), 0, 0,
1958					NULL);
1959}
1960
1961int _set_memory_uc(unsigned long addr, int numpages)
1962{
1963	/*
1964	 * for now UC MINUS. see comments in ioremap()
1965	 * If you really need strong UC use ioremap_uc(), but note
1966	 * that you cannot override IO areas with set_memory_*() as
1967	 * these helpers cannot work with IO memory.
1968	 */
1969	return change_page_attr_set(&addr, numpages,
1970				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1971				    0);
1972}
1973
1974int set_memory_uc(unsigned long addr, int numpages)
1975{
1976	int ret;
1977
1978	/*
1979	 * for now UC MINUS. see comments in ioremap()
1980	 */
1981	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1982			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1983	if (ret)
1984		goto out_err;
1985
1986	ret = _set_memory_uc(addr, numpages);
1987	if (ret)
1988		goto out_free;
1989
1990	return 0;
1991
1992out_free:
1993	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1994out_err:
1995	return ret;
1996}
1997EXPORT_SYMBOL(set_memory_uc);
1998
1999int _set_memory_wc(unsigned long addr, int numpages)
2000{
2001	int ret;
2002
2003	ret = change_page_attr_set(&addr, numpages,
2004				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
2005				   0);
2006	if (!ret) {
2007		ret = change_page_attr_set_clr(&addr, numpages,
2008					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
2009					       __pgprot(_PAGE_CACHE_MASK),
2010					       0, 0, NULL);
2011	}
2012	return ret;
2013}
2014
2015int set_memory_wc(unsigned long addr, int numpages)
2016{
2017	int ret;
2018
2019	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
2020		_PAGE_CACHE_MODE_WC, NULL);
2021	if (ret)
2022		return ret;
2023
2024	ret = _set_memory_wc(addr, numpages);
2025	if (ret)
2026		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2027
2028	return ret;
2029}
2030EXPORT_SYMBOL(set_memory_wc);
2031
2032int _set_memory_wt(unsigned long addr, int numpages)
2033{
2034	return change_page_attr_set(&addr, numpages,
2035				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
2036}
2037
2038int _set_memory_wb(unsigned long addr, int numpages)
2039{
2040	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2041	return change_page_attr_clear(&addr, numpages,
2042				      __pgprot(_PAGE_CACHE_MASK), 0);
2043}
2044
2045int set_memory_wb(unsigned long addr, int numpages)
2046{
2047	int ret;
2048
2049	ret = _set_memory_wb(addr, numpages);
2050	if (ret)
2051		return ret;
2052
2053	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
2054	return 0;
2055}
2056EXPORT_SYMBOL(set_memory_wb);
2057
2058/* Prevent speculative access to a page by marking it not-present */
2059#ifdef CONFIG_X86_64
2060int set_mce_nospec(unsigned long pfn)
2061{
2062	unsigned long decoy_addr;
2063	int rc;
2064
2065	/* SGX pages are not in the 1:1 map */
2066	if (arch_is_platform_page(pfn << PAGE_SHIFT))
2067		return 0;
2068	/*
2069	 * We would like to just call:
2070	 *      set_memory_XX((unsigned long)pfn_to_kaddr(pfn), 1);
2071	 * but doing that would radically increase the odds of a
2072	 * speculative access to the poison page because we'd have
2073	 * the virtual address of the kernel 1:1 mapping sitting
2074	 * around in registers.
2075	 * Instead we get tricky.  We create a non-canonical address
2076	 * that looks just like the one we want, but has bit 63 flipped.
2077	 * This relies on set_memory_XX() properly sanitizing any __pa()
2078	 * results with __PHYSICAL_MASK or PTE_PFN_MASK.
2079	 */
2080	decoy_addr = (pfn << PAGE_SHIFT) + (PAGE_OFFSET ^ BIT(63));
2081
2082	rc = set_memory_np(decoy_addr, 1);
2083	if (rc)
2084		pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
2085	return rc;
2086}
2087
 
 
 
 
 
2088/* Restore full speculative operation to the pfn. */
2089int clear_mce_nospec(unsigned long pfn)
2090{
2091	unsigned long addr = (unsigned long) pfn_to_kaddr(pfn);
2092
2093	return set_memory_p(addr, 1);
2094}
2095EXPORT_SYMBOL_GPL(clear_mce_nospec);
2096#endif /* CONFIG_X86_64 */
2097
2098int set_memory_x(unsigned long addr, int numpages)
2099{
2100	if (!(__supported_pte_mask & _PAGE_NX))
2101		return 0;
2102
2103	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
2104}
2105
2106int set_memory_nx(unsigned long addr, int numpages)
2107{
2108	if (!(__supported_pte_mask & _PAGE_NX))
2109		return 0;
2110
2111	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
2112}
2113
2114int set_memory_ro(unsigned long addr, int numpages)
2115{
2116	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW | _PAGE_DIRTY), 0);
2117}
2118
2119int set_memory_rox(unsigned long addr, int numpages)
2120{
2121	pgprot_t clr = __pgprot(_PAGE_RW | _PAGE_DIRTY);
2122
2123	if (__supported_pte_mask & _PAGE_NX)
2124		clr.pgprot |= _PAGE_NX;
2125
2126	return change_page_attr_clear(&addr, numpages, clr, 0);
2127}
2128
2129int set_memory_rw(unsigned long addr, int numpages)
2130{
2131	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
2132}
2133
2134int set_memory_np(unsigned long addr, int numpages)
2135{
2136	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2137}
2138
2139int set_memory_np_noalias(unsigned long addr, int numpages)
2140{
2141	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2142					__pgprot(_PAGE_PRESENT), 0,
2143					CPA_NO_CHECK_ALIAS, NULL);
2144}
2145
2146int set_memory_p(unsigned long addr, int numpages)
2147{
2148	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
2149}
2150
2151int set_memory_4k(unsigned long addr, int numpages)
2152{
2153	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
2154					__pgprot(0), 1, 0, NULL);
2155}
2156
2157int set_memory_nonglobal(unsigned long addr, int numpages)
2158{
2159	return change_page_attr_clear(&addr, numpages,
2160				      __pgprot(_PAGE_GLOBAL), 0);
2161}
2162
2163int set_memory_global(unsigned long addr, int numpages)
2164{
2165	return change_page_attr_set(&addr, numpages,
2166				    __pgprot(_PAGE_GLOBAL), 0);
2167}
2168
2169/*
2170 * __set_memory_enc_pgtable() is used for the hypervisors that get
2171 * informed about "encryption" status via page tables.
2172 */
2173static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
2174{
2175	pgprot_t empty = __pgprot(0);
2176	struct cpa_data cpa;
2177	int ret;
2178
2179	/* Should not be working on unaligned addresses */
2180	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
2181		addr &= PAGE_MASK;
2182
2183	memset(&cpa, 0, sizeof(cpa));
2184	cpa.vaddr = &addr;
2185	cpa.numpages = numpages;
2186	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
2187	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
2188	cpa.pgd = init_mm.pgd;
2189
2190	/* Must avoid aliasing mappings in the highmem code */
2191	kmap_flush_unused();
2192	vm_unmap_aliases();
2193
2194	/* Flush the caches as needed before changing the encryption attribute. */
2195	if (x86_platform.guest.enc_tlb_flush_required(enc))
2196		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
2197
2198	/* Notify hypervisor that we are about to set/clr encryption attribute. */
2199	if (!x86_platform.guest.enc_status_change_prepare(addr, numpages, enc))
2200		goto vmm_fail;
2201
2202	ret = __change_page_attr_set_clr(&cpa, 1);
2203
2204	/*
2205	 * After changing the encryption attribute, we need to flush TLBs again
2206	 * in case any speculative TLB caching occurred (but no need to flush
2207	 * caches again).  We could just use cpa_flush_all(), but in case TLB
2208	 * flushing gets optimized in the cpa_flush() path use the same logic
2209	 * as above.
2210	 */
2211	cpa_flush(&cpa, 0);
2212
2213	if (ret)
2214		return ret;
2215
2216	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
2217	if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
2218		goto vmm_fail;
 
 
2219
2220	return 0;
2221
2222vmm_fail:
2223	WARN_ONCE(1, "CPA VMM failure to convert memory (addr=%p, numpages=%d) to %s.\n",
2224		  (void *)addr, numpages, enc ? "private" : "shared");
2225
2226	return -EIO;
2227}
2228
2229static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
2230{
 
 
 
2231	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
2232		return __set_memory_enc_pgtable(addr, numpages, enc);
2233
2234	return 0;
2235}
2236
2237int set_memory_encrypted(unsigned long addr, int numpages)
2238{
2239	return __set_memory_enc_dec(addr, numpages, true);
2240}
2241EXPORT_SYMBOL_GPL(set_memory_encrypted);
2242
2243int set_memory_decrypted(unsigned long addr, int numpages)
2244{
2245	return __set_memory_enc_dec(addr, numpages, false);
2246}
2247EXPORT_SYMBOL_GPL(set_memory_decrypted);
2248
2249int set_pages_uc(struct page *page, int numpages)
2250{
2251	unsigned long addr = (unsigned long)page_address(page);
2252
2253	return set_memory_uc(addr, numpages);
2254}
2255EXPORT_SYMBOL(set_pages_uc);
2256
2257static int _set_pages_array(struct page **pages, int numpages,
2258		enum page_cache_mode new_type)
2259{
2260	unsigned long start;
2261	unsigned long end;
2262	enum page_cache_mode set_type;
2263	int i;
2264	int free_idx;
2265	int ret;
2266
2267	for (i = 0; i < numpages; i++) {
2268		if (PageHighMem(pages[i]))
2269			continue;
2270		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2271		end = start + PAGE_SIZE;
2272		if (memtype_reserve(start, end, new_type, NULL))
2273			goto err_out;
2274	}
2275
2276	/* If WC, set to UC- first and then WC */
2277	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
2278				_PAGE_CACHE_MODE_UC_MINUS : new_type;
2279
2280	ret = cpa_set_pages_array(pages, numpages,
2281				  cachemode2pgprot(set_type));
2282	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
2283		ret = change_page_attr_set_clr(NULL, numpages,
2284					       cachemode2pgprot(
2285						_PAGE_CACHE_MODE_WC),
2286					       __pgprot(_PAGE_CACHE_MASK),
2287					       0, CPA_PAGES_ARRAY, pages);
2288	if (ret)
2289		goto err_out;
2290	return 0; /* Success */
2291err_out:
2292	free_idx = i;
2293	for (i = 0; i < free_idx; i++) {
2294		if (PageHighMem(pages[i]))
2295			continue;
2296		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2297		end = start + PAGE_SIZE;
2298		memtype_free(start, end);
2299	}
2300	return -EINVAL;
2301}
2302
2303int set_pages_array_uc(struct page **pages, int numpages)
2304{
2305	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
2306}
2307EXPORT_SYMBOL(set_pages_array_uc);
2308
2309int set_pages_array_wc(struct page **pages, int numpages)
2310{
2311	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
2312}
2313EXPORT_SYMBOL(set_pages_array_wc);
2314
2315int set_pages_wb(struct page *page, int numpages)
2316{
2317	unsigned long addr = (unsigned long)page_address(page);
2318
2319	return set_memory_wb(addr, numpages);
2320}
2321EXPORT_SYMBOL(set_pages_wb);
2322
2323int set_pages_array_wb(struct page **pages, int numpages)
2324{
2325	int retval;
2326	unsigned long start;
2327	unsigned long end;
2328	int i;
2329
2330	/* WB cache mode is hard wired to all cache attribute bits being 0 */
2331	retval = cpa_clear_pages_array(pages, numpages,
2332			__pgprot(_PAGE_CACHE_MASK));
2333	if (retval)
2334		return retval;
2335
2336	for (i = 0; i < numpages; i++) {
2337		if (PageHighMem(pages[i]))
2338			continue;
2339		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
2340		end = start + PAGE_SIZE;
2341		memtype_free(start, end);
2342	}
2343
2344	return 0;
2345}
2346EXPORT_SYMBOL(set_pages_array_wb);
2347
2348int set_pages_ro(struct page *page, int numpages)
2349{
2350	unsigned long addr = (unsigned long)page_address(page);
2351
2352	return set_memory_ro(addr, numpages);
2353}
2354
2355int set_pages_rw(struct page *page, int numpages)
2356{
2357	unsigned long addr = (unsigned long)page_address(page);
2358
2359	return set_memory_rw(addr, numpages);
2360}
2361
2362static int __set_pages_p(struct page *page, int numpages)
2363{
2364	unsigned long tempaddr = (unsigned long) page_address(page);
2365	struct cpa_data cpa = { .vaddr = &tempaddr,
2366				.pgd = NULL,
2367				.numpages = numpages,
2368				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2369				.mask_clr = __pgprot(0),
2370				.flags = CPA_NO_CHECK_ALIAS };
2371
2372	/*
2373	 * No alias checking needed for setting present flag. otherwise,
2374	 * we may need to break large pages for 64-bit kernel text
2375	 * mappings (this adds to complexity if we want to do this from
2376	 * atomic context especially). Let's keep it simple!
2377	 */
2378	return __change_page_attr_set_clr(&cpa, 1);
2379}
2380
2381static int __set_pages_np(struct page *page, int numpages)
2382{
2383	unsigned long tempaddr = (unsigned long) page_address(page);
2384	struct cpa_data cpa = { .vaddr = &tempaddr,
2385				.pgd = NULL,
2386				.numpages = numpages,
2387				.mask_set = __pgprot(0),
2388				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2389				.flags = CPA_NO_CHECK_ALIAS };
2390
2391	/*
2392	 * No alias checking needed for setting not present flag. otherwise,
2393	 * we may need to break large pages for 64-bit kernel text
2394	 * mappings (this adds to complexity if we want to do this from
2395	 * atomic context especially). Let's keep it simple!
2396	 */
2397	return __change_page_attr_set_clr(&cpa, 1);
2398}
2399
2400int set_direct_map_invalid_noflush(struct page *page)
2401{
2402	return __set_pages_np(page, 1);
2403}
2404
2405int set_direct_map_default_noflush(struct page *page)
2406{
2407	return __set_pages_p(page, 1);
2408}
2409
2410#ifdef CONFIG_DEBUG_PAGEALLOC
2411void __kernel_map_pages(struct page *page, int numpages, int enable)
2412{
2413	if (PageHighMem(page))
2414		return;
2415	if (!enable) {
2416		debug_check_no_locks_freed(page_address(page),
2417					   numpages * PAGE_SIZE);
2418	}
2419
2420	/*
2421	 * The return value is ignored as the calls cannot fail.
2422	 * Large pages for identity mappings are not used at boot time
2423	 * and hence no memory allocations during large page split.
2424	 */
2425	if (enable)
2426		__set_pages_p(page, numpages);
2427	else
2428		__set_pages_np(page, numpages);
2429
2430	/*
2431	 * We should perform an IPI and flush all tlbs,
2432	 * but that can deadlock->flush only current cpu.
2433	 * Preemption needs to be disabled around __flush_tlb_all() due to
2434	 * CR3 reload in __native_flush_tlb().
2435	 */
2436	preempt_disable();
2437	__flush_tlb_all();
2438	preempt_enable();
2439
2440	arch_flush_lazy_mmu_mode();
2441}
2442#endif /* CONFIG_DEBUG_PAGEALLOC */
2443
2444bool kernel_page_present(struct page *page)
2445{
2446	unsigned int level;
2447	pte_t *pte;
2448
2449	if (PageHighMem(page))
2450		return false;
2451
2452	pte = lookup_address((unsigned long)page_address(page), &level);
2453	return (pte_val(*pte) & _PAGE_PRESENT);
2454}
2455
2456int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2457				   unsigned numpages, unsigned long page_flags)
2458{
2459	int retval = -EINVAL;
2460
2461	struct cpa_data cpa = {
2462		.vaddr = &address,
2463		.pfn = pfn,
2464		.pgd = pgd,
2465		.numpages = numpages,
2466		.mask_set = __pgprot(0),
2467		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
2468		.flags = CPA_NO_CHECK_ALIAS,
2469	};
2470
2471	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2472
2473	if (!(__supported_pte_mask & _PAGE_NX))
2474		goto out;
2475
2476	if (!(page_flags & _PAGE_ENC))
2477		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2478
2479	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2480
2481	retval = __change_page_attr_set_clr(&cpa, 1);
2482	__flush_tlb_all();
2483
2484out:
2485	return retval;
2486}
2487
2488/*
2489 * __flush_tlb_all() flushes mappings only on current CPU and hence this
2490 * function shouldn't be used in an SMP environment. Presently, it's used only
2491 * during boot (way before smp_init()) by EFI subsystem and hence is ok.
2492 */
2493int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
2494				     unsigned long numpages)
2495{
2496	int retval;
2497
2498	/*
2499	 * The typical sequence for unmapping is to find a pte through
2500	 * lookup_address_in_pgd() (ideally, it should never return NULL because
2501	 * the address is already mapped) and change its protections. As pfn is
2502	 * the *target* of a mapping, it's not useful while unmapping.
2503	 */
2504	struct cpa_data cpa = {
2505		.vaddr		= &address,
2506		.pfn		= 0,
2507		.pgd		= pgd,
2508		.numpages	= numpages,
2509		.mask_set	= __pgprot(0),
2510		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
2511		.flags		= CPA_NO_CHECK_ALIAS,
2512	};
2513
2514	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
2515
2516	retval = __change_page_attr_set_clr(&cpa, 1);
2517	__flush_tlb_all();
2518
2519	return retval;
2520}
2521
2522/*
2523 * The testcases use internal knowledge of the implementation that shouldn't
2524 * be exposed to the rest of the kernel. Include these directly here.
2525 */
2526#ifdef CONFIG_CPA_DEBUG
2527#include "cpa-test.c"
2528#endif