Linux Audio

Check our new training course

Loading...
v6.2
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994 - 2000 Ralf Baechle
  7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  9 * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
 10 */
 11#include <linux/bug.h>
 12#include <linux/init.h>
 13#include <linux/export.h>
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/smp.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/memblock.h>
 26#include <linux/highmem.h>
 27#include <linux/swap.h>
 28#include <linux/proc_fs.h>
 29#include <linux/pfn.h>
 30#include <linux/hardirq.h>
 31#include <linux/gfp.h>
 32#include <linux/kcore.h>
 33#include <linux/initrd.h>
 34
 35#include <asm/bootinfo.h>
 36#include <asm/cachectl.h>
 37#include <asm/cpu.h>
 38#include <asm/dma.h>
 39#include <asm/maar.h>
 40#include <asm/mmu_context.h>
 
 41#include <asm/sections.h>
 42#include <asm/pgalloc.h>
 43#include <asm/tlb.h>
 44#include <asm/fixmap.h>
 45
 46/*
 47 * We have up to 8 empty zeroed pages so we can map one of the right colour
 48 * when needed.	 This is necessary only on R4000 / R4400 SC and MC versions
 49 * where we have to avoid VCED / VECI exceptions for good performance at
 50 * any price.  Since page is never written to after the initialization we
 51 * don't have to care about aliases on other CPUs.
 52 */
 53unsigned long empty_zero_page, zero_page_mask;
 54EXPORT_SYMBOL_GPL(empty_zero_page);
 55EXPORT_SYMBOL(zero_page_mask);
 56
 57/*
 58 * Not static inline because used by IP27 special magic initialization code
 59 */
 60void setup_zero_pages(void)
 61{
 62	unsigned int order, i;
 63	struct page *page;
 64
 65	if (cpu_has_vce)
 66		order = 3;
 67	else
 68		order = 0;
 69
 70	empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
 71	if (!empty_zero_page)
 72		panic("Oh boy, that early out of memory?");
 73
 74	page = virt_to_page((void *)empty_zero_page);
 75	split_page(page, order);
 76	for (i = 0; i < (1 << order); i++, page++)
 77		mark_page_reserved(page);
 78
 79	zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK;
 80}
 81
 82static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot)
 83{
 84	enum fixed_addresses idx;
 85	unsigned int old_mmid;
 86	unsigned long vaddr, flags, entrylo;
 87	unsigned long old_ctx;
 88	pte_t pte;
 89	int tlbidx;
 90
 91	BUG_ON(Page_dcache_dirty(page));
 92
 93	preempt_disable();
 94	pagefault_disable();
 95	idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1);
 96	idx += in_interrupt() ? FIX_N_COLOURS : 0;
 97	vaddr = __fix_to_virt(FIX_CMAP_END - idx);
 98	pte = mk_pte(page, prot);
 99#if defined(CONFIG_XPA)
100	entrylo = pte_to_entrylo(pte.pte_high);
101#elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
102	entrylo = pte.pte_high;
103#else
104	entrylo = pte_to_entrylo(pte_val(pte));
105#endif
106
107	local_irq_save(flags);
108	old_ctx = read_c0_entryhi();
109	write_c0_entryhi(vaddr & (PAGE_MASK << 1));
110	write_c0_entrylo0(entrylo);
111	write_c0_entrylo1(entrylo);
112	if (cpu_has_mmid) {
113		old_mmid = read_c0_memorymapid();
114		write_c0_memorymapid(MMID_KERNEL_WIRED);
115	}
116#ifdef CONFIG_XPA
117	if (cpu_has_xpa) {
118		entrylo = (pte.pte_low & _PFNX_MASK);
119		writex_c0_entrylo0(entrylo);
120		writex_c0_entrylo1(entrylo);
121	}
122#endif
123	tlbidx = num_wired_entries();
124	write_c0_wired(tlbidx + 1);
125	write_c0_index(tlbidx);
126	mtc0_tlbw_hazard();
127	tlb_write_indexed();
128	tlbw_use_hazard();
129	write_c0_entryhi(old_ctx);
130	if (cpu_has_mmid)
131		write_c0_memorymapid(old_mmid);
132	local_irq_restore(flags);
133
134	return (void*) vaddr;
135}
136
137void *kmap_coherent(struct page *page, unsigned long addr)
138{
139	return __kmap_pgprot(page, addr, PAGE_KERNEL);
140}
141
142void *kmap_noncoherent(struct page *page, unsigned long addr)
143{
144	return __kmap_pgprot(page, addr, PAGE_KERNEL_NC);
145}
146
147void kunmap_coherent(void)
148{
149	unsigned int wired;
150	unsigned long flags, old_ctx;
151
152	local_irq_save(flags);
153	old_ctx = read_c0_entryhi();
154	wired = num_wired_entries() - 1;
155	write_c0_wired(wired);
156	write_c0_index(wired);
157	write_c0_entryhi(UNIQUE_ENTRYHI(wired));
158	write_c0_entrylo0(0);
159	write_c0_entrylo1(0);
160	mtc0_tlbw_hazard();
161	tlb_write_indexed();
162	tlbw_use_hazard();
163	write_c0_entryhi(old_ctx);
164	local_irq_restore(flags);
165	pagefault_enable();
166	preempt_enable();
167}
168
169void copy_user_highpage(struct page *to, struct page *from,
170	unsigned long vaddr, struct vm_area_struct *vma)
171{
 
172	void *vfrom, *vto;
173
174	vto = kmap_atomic(to);
175	if (cpu_has_dc_aliases &&
176	    page_mapcount(from) && !Page_dcache_dirty(from)) {
177		vfrom = kmap_coherent(from, vaddr);
178		copy_page(vto, vfrom);
179		kunmap_coherent();
180	} else {
181		vfrom = kmap_atomic(from);
182		copy_page(vto, vfrom);
183		kunmap_atomic(vfrom);
184	}
185	if ((!cpu_has_ic_fills_f_dc) ||
186	    pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
187		flush_data_cache_page((unsigned long)vto);
188	kunmap_atomic(vto);
189	/* Make sure this page is cleared on other CPU's too before using it */
190	smp_wmb();
191}
192
193void copy_to_user_page(struct vm_area_struct *vma,
194	struct page *page, unsigned long vaddr, void *dst, const void *src,
195	unsigned long len)
196{
 
 
197	if (cpu_has_dc_aliases &&
198	    page_mapcount(page) && !Page_dcache_dirty(page)) {
199		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
200		memcpy(vto, src, len);
201		kunmap_coherent();
202	} else {
203		memcpy(dst, src, len);
204		if (cpu_has_dc_aliases)
205			SetPageDcacheDirty(page);
206	}
207	if (vma->vm_flags & VM_EXEC)
208		flush_cache_page(vma, vaddr, page_to_pfn(page));
209}
210
211void copy_from_user_page(struct vm_area_struct *vma,
212	struct page *page, unsigned long vaddr, void *dst, const void *src,
213	unsigned long len)
214{
 
 
215	if (cpu_has_dc_aliases &&
216	    page_mapcount(page) && !Page_dcache_dirty(page)) {
217		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
218		memcpy(dst, vfrom, len);
219		kunmap_coherent();
220	} else {
221		memcpy(dst, src, len);
222		if (cpu_has_dc_aliases)
223			SetPageDcacheDirty(page);
224	}
225}
226EXPORT_SYMBOL_GPL(copy_from_user_page);
227
228void __init fixrange_init(unsigned long start, unsigned long end,
229	pgd_t *pgd_base)
230{
231#ifdef CONFIG_HIGHMEM
232	pgd_t *pgd;
233	pud_t *pud;
234	pmd_t *pmd;
235	pte_t *pte;
236	int i, j, k;
237	unsigned long vaddr;
238
239	vaddr = start;
240	i = pgd_index(vaddr);
241	j = pud_index(vaddr);
242	k = pmd_index(vaddr);
243	pgd = pgd_base + i;
244
245	for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
246		pud = (pud_t *)pgd;
247		for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) {
248			pmd = (pmd_t *)pud;
249			for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) {
250				if (pmd_none(*pmd)) {
251					pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
252									   PAGE_SIZE);
253					if (!pte)
254						panic("%s: Failed to allocate %lu bytes align=%lx\n",
255						      __func__, PAGE_SIZE,
256						      PAGE_SIZE);
257
258					set_pmd(pmd, __pmd((unsigned long)pte));
259					BUG_ON(pte != pte_offset_kernel(pmd, 0));
260				}
261				vaddr += PMD_SIZE;
262			}
263			k = 0;
264		}
265		j = 0;
266	}
267#endif
268}
269
270struct maar_walk_info {
271	struct maar_config cfg[16];
272	unsigned int num_cfg;
273};
274
275static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages,
276			 void *data)
277{
278	struct maar_walk_info *wi = data;
279	struct maar_config *cfg = &wi->cfg[wi->num_cfg];
280	unsigned int maar_align;
281
282	/* MAAR registers hold physical addresses right shifted by 4 bits */
283	maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4);
284
285	/* Fill in the MAAR config entry */
286	cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align);
287	cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1;
288	cfg->attrs = MIPS_MAAR_S;
289
290	/* Ensure we don't overflow the cfg array */
291	if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg)))
292		wi->num_cfg++;
293
294	return 0;
295}
296
297
298unsigned __weak platform_maar_init(unsigned num_pairs)
299{
300	unsigned int num_configured;
301	struct maar_walk_info wi;
302
303	wi.num_cfg = 0;
304	walk_system_ram_range(0, max_pfn, &wi, maar_res_walk);
305
306	num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs);
307	if (num_configured < wi.num_cfg)
308		pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n",
309			num_pairs, wi.num_cfg);
310
311	return num_configured;
312}
313
314void maar_init(void)
315{
316	unsigned num_maars, used, i;
317	phys_addr_t lower, upper, attr;
318	static struct {
319		struct maar_config cfgs[3];
320		unsigned used;
321	} recorded = { { { 0 } }, 0 };
322
323	if (!cpu_has_maar)
324		return;
325
326	/* Detect the number of MAARs */
327	write_c0_maari(~0);
328	back_to_back_c0_hazard();
329	num_maars = read_c0_maari() + 1;
330
331	/* MAARs should be in pairs */
332	WARN_ON(num_maars % 2);
333
334	/* Set MAARs using values we recorded already */
335	if (recorded.used) {
336		used = maar_config(recorded.cfgs, recorded.used, num_maars / 2);
337		BUG_ON(used != recorded.used);
338	} else {
339		/* Configure the required MAARs */
340		used = platform_maar_init(num_maars / 2);
341	}
342
343	/* Disable any further MAARs */
344	for (i = (used * 2); i < num_maars; i++) {
345		write_c0_maari(i);
346		back_to_back_c0_hazard();
347		write_c0_maar(0);
348		back_to_back_c0_hazard();
349	}
350
351	if (recorded.used)
352		return;
353
354	pr_info("MAAR configuration:\n");
355	for (i = 0; i < num_maars; i += 2) {
356		write_c0_maari(i);
357		back_to_back_c0_hazard();
358		upper = read_c0_maar();
359#ifdef CONFIG_XPA
360		upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
361#endif
362
363		write_c0_maari(i + 1);
364		back_to_back_c0_hazard();
365		lower = read_c0_maar();
366#ifdef CONFIG_XPA
367		lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
368#endif
369
370		attr = lower & upper;
371		lower = (lower & MIPS_MAAR_ADDR) << 4;
372		upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff;
373
374		pr_info("  [%d]: ", i / 2);
375		if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) {
376			pr_cont("disabled\n");
377			continue;
378		}
379
380		pr_cont("%pa-%pa", &lower, &upper);
381
382		if (attr & MIPS_MAAR_S)
383			pr_cont(" speculate");
384
385		pr_cont("\n");
386
387		/* Record the setup for use on secondary CPUs */
388		if (used <= ARRAY_SIZE(recorded.cfgs)) {
389			recorded.cfgs[recorded.used].lower = lower;
390			recorded.cfgs[recorded.used].upper = upper;
391			recorded.cfgs[recorded.used].attrs = attr;
392			recorded.used++;
393		}
394	}
395}
396
397#ifndef CONFIG_NUMA
398void __init paging_init(void)
399{
400	unsigned long max_zone_pfns[MAX_NR_ZONES];
401
402	pagetable_init();
403
404#ifdef CONFIG_ZONE_DMA
405	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
406#endif
407#ifdef CONFIG_ZONE_DMA32
408	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
409#endif
410	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
411#ifdef CONFIG_HIGHMEM
412	max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
413
414	if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) {
415		printk(KERN_WARNING "This processor doesn't support highmem."
416		       " %ldk highmem ignored\n",
417		       (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10));
418		max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn;
 
 
 
 
 
 
419	}
 
 
420#endif
 
421
422	free_area_init(max_zone_pfns);
423}
424
425#ifdef CONFIG_64BIT
426static struct kcore_list kcore_kseg0;
427#endif
428
429static inline void __init mem_init_free_highmem(void)
430{
431#ifdef CONFIG_HIGHMEM
432	unsigned long tmp;
433
434	if (cpu_has_dc_aliases)
435		return;
436
437	for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {
438		struct page *page = pfn_to_page(tmp);
439
440		if (!memblock_is_memory(PFN_PHYS(tmp)))
441			SetPageReserved(page);
442		else
443			free_highmem_page(page);
444	}
445#endif
446}
447
448void __init mem_init(void)
449{
450	/*
451	 * When _PFN_SHIFT is greater than PAGE_SHIFT we won't have enough PTE
452	 * bits to hold a full 32b physical address on MIPS32 systems.
453	 */
454	BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (_PFN_SHIFT > PAGE_SHIFT));
455
456#ifdef CONFIG_HIGHMEM
457	max_mapnr = highend_pfn ? highend_pfn : max_low_pfn;
458#else
459	max_mapnr = max_low_pfn;
460#endif
461	high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
462
463	maar_init();
464	memblock_free_all();
465	setup_zero_pages();	/* Setup zeroed pages.  */
466	mem_init_free_highmem();
467
468#ifdef CONFIG_64BIT
469	if ((unsigned long) &_text > (unsigned long) CKSEG0)
470		/* The -4 is a hack so that user tools don't have to handle
471		   the overflow.  */
472		kclist_add(&kcore_kseg0, (void *) CKSEG0,
473				0x80000000 - 4, KCORE_TEXT);
474#endif
475}
476#endif /* !CONFIG_NUMA */
477
478void free_init_pages(const char *what, unsigned long begin, unsigned long end)
479{
480	unsigned long pfn;
481
482	for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) {
483		struct page *page = pfn_to_page(pfn);
484		void *addr = phys_to_virt(PFN_PHYS(pfn));
485
486		memset(addr, POISON_FREE_INITMEM, PAGE_SIZE);
487		free_reserved_page(page);
488	}
489	printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
490}
491
492void (*free_init_pages_eva)(void *begin, void *end) = NULL;
493
494void __weak __init prom_free_prom_memory(void)
495{
496	/* nothing to do */
497}
498
499void __ref free_initmem(void)
500{
501	prom_free_prom_memory();
502	/*
503	 * Let the platform define a specific function to free the
504	 * init section since EVA may have used any possible mapping
505	 * between virtual and physical addresses.
506	 */
507	if (free_init_pages_eva)
508		free_init_pages_eva((void *)&__init_begin, (void *)&__init_end);
509	else
510		free_initmem_default(POISON_FREE_INITMEM);
511}
512
513#ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
514unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
515EXPORT_SYMBOL(__per_cpu_offset);
516
517static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
518{
519	return node_distance(cpu_to_node(from), cpu_to_node(to));
520}
521
522static int __init pcpu_cpu_to_node(int cpu)
523{
524	return cpu_to_node(cpu);
525}
526
527void __init setup_per_cpu_areas(void)
528{
529	unsigned long delta;
530	unsigned int cpu;
531	int rc;
532
533	/*
534	 * Always reserve area for module percpu variables.  That's
535	 * what the legacy allocator did.
536	 */
537	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
538				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE,
539				    pcpu_cpu_distance,
540				    pcpu_cpu_to_node);
541	if (rc < 0)
542		panic("Failed to initialize percpu areas.");
543
544	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
545	for_each_possible_cpu(cpu)
546		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
547}
548#endif
549
550#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
551unsigned long pgd_current[NR_CPUS];
552#endif
553
554/*
555 * Align swapper_pg_dir in to 64K, allows its address to be loaded
556 * with a single LUI instruction in the TLB handlers.  If we used
557 * __aligned(64K), its size would get rounded up to the alignment
558 * size, and waste space.  So we place it in its own section and align
559 * it in the linker script.
560 */
561pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir");
562#ifndef __PAGETABLE_PUD_FOLDED
563pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss;
564#endif
565#ifndef __PAGETABLE_PMD_FOLDED
566pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
567EXPORT_SYMBOL_GPL(invalid_pmd_table);
568#endif
569pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss;
570EXPORT_SYMBOL(invalid_pte_table);
v6.9.4
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 1994 - 2000 Ralf Baechle
  7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
  8 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  9 * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
 10 */
 11#include <linux/bug.h>
 12#include <linux/init.h>
 13#include <linux/export.h>
 14#include <linux/signal.h>
 15#include <linux/sched.h>
 16#include <linux/smp.h>
 17#include <linux/kernel.h>
 18#include <linux/errno.h>
 19#include <linux/string.h>
 20#include <linux/types.h>
 21#include <linux/pagemap.h>
 22#include <linux/ptrace.h>
 23#include <linux/mman.h>
 24#include <linux/mm.h>
 25#include <linux/memblock.h>
 26#include <linux/highmem.h>
 27#include <linux/swap.h>
 28#include <linux/proc_fs.h>
 29#include <linux/pfn.h>
 30#include <linux/hardirq.h>
 31#include <linux/gfp.h>
 32#include <linux/kcore.h>
 33#include <linux/initrd.h>
 34
 35#include <asm/bootinfo.h>
 36#include <asm/cachectl.h>
 37#include <asm/cpu.h>
 38#include <asm/dma.h>
 39#include <asm/maar.h>
 40#include <asm/mmu_context.h>
 41#include <asm/mmzone.h>
 42#include <asm/sections.h>
 43#include <asm/pgalloc.h>
 44#include <asm/tlb.h>
 45#include <asm/fixmap.h>
 46
 47/*
 48 * We have up to 8 empty zeroed pages so we can map one of the right colour
 49 * when needed.	 This is necessary only on R4000 / R4400 SC and MC versions
 50 * where we have to avoid VCED / VECI exceptions for good performance at
 51 * any price.  Since page is never written to after the initialization we
 52 * don't have to care about aliases on other CPUs.
 53 */
 54unsigned long empty_zero_page, zero_page_mask;
 55EXPORT_SYMBOL_GPL(empty_zero_page);
 56EXPORT_SYMBOL(zero_page_mask);
 57
 58/*
 59 * Not static inline because used by IP27 special magic initialization code
 60 */
 61void setup_zero_pages(void)
 62{
 63	unsigned int order, i;
 64	struct page *page;
 65
 66	if (cpu_has_vce)
 67		order = 3;
 68	else
 69		order = 0;
 70
 71	empty_zero_page = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
 72	if (!empty_zero_page)
 73		panic("Oh boy, that early out of memory?");
 74
 75	page = virt_to_page((void *)empty_zero_page);
 76	split_page(page, order);
 77	for (i = 0; i < (1 << order); i++, page++)
 78		mark_page_reserved(page);
 79
 80	zero_page_mask = ((PAGE_SIZE << order) - 1) & PAGE_MASK;
 81}
 82
 83static void *__kmap_pgprot(struct page *page, unsigned long addr, pgprot_t prot)
 84{
 85	enum fixed_addresses idx;
 86	unsigned int old_mmid;
 87	unsigned long vaddr, flags, entrylo;
 88	unsigned long old_ctx;
 89	pte_t pte;
 90	int tlbidx;
 91
 92	BUG_ON(folio_test_dcache_dirty(page_folio(page)));
 93
 94	preempt_disable();
 95	pagefault_disable();
 96	idx = (addr >> PAGE_SHIFT) & (FIX_N_COLOURS - 1);
 97	idx += in_interrupt() ? FIX_N_COLOURS : 0;
 98	vaddr = __fix_to_virt(FIX_CMAP_END - idx);
 99	pte = mk_pte(page, prot);
100#if defined(CONFIG_XPA)
101	entrylo = pte_to_entrylo(pte.pte_high);
102#elif defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32)
103	entrylo = pte.pte_high;
104#else
105	entrylo = pte_to_entrylo(pte_val(pte));
106#endif
107
108	local_irq_save(flags);
109	old_ctx = read_c0_entryhi();
110	write_c0_entryhi(vaddr & (PAGE_MASK << 1));
111	write_c0_entrylo0(entrylo);
112	write_c0_entrylo1(entrylo);
113	if (cpu_has_mmid) {
114		old_mmid = read_c0_memorymapid();
115		write_c0_memorymapid(MMID_KERNEL_WIRED);
116	}
117#ifdef CONFIG_XPA
118	if (cpu_has_xpa) {
119		entrylo = (pte.pte_low & _PFNX_MASK);
120		writex_c0_entrylo0(entrylo);
121		writex_c0_entrylo1(entrylo);
122	}
123#endif
124	tlbidx = num_wired_entries();
125	write_c0_wired(tlbidx + 1);
126	write_c0_index(tlbidx);
127	mtc0_tlbw_hazard();
128	tlb_write_indexed();
129	tlbw_use_hazard();
130	write_c0_entryhi(old_ctx);
131	if (cpu_has_mmid)
132		write_c0_memorymapid(old_mmid);
133	local_irq_restore(flags);
134
135	return (void*) vaddr;
136}
137
138void *kmap_coherent(struct page *page, unsigned long addr)
139{
140	return __kmap_pgprot(page, addr, PAGE_KERNEL);
141}
142
143void *kmap_noncoherent(struct page *page, unsigned long addr)
144{
145	return __kmap_pgprot(page, addr, PAGE_KERNEL_NC);
146}
147
148void kunmap_coherent(void)
149{
150	unsigned int wired;
151	unsigned long flags, old_ctx;
152
153	local_irq_save(flags);
154	old_ctx = read_c0_entryhi();
155	wired = num_wired_entries() - 1;
156	write_c0_wired(wired);
157	write_c0_index(wired);
158	write_c0_entryhi(UNIQUE_ENTRYHI(wired));
159	write_c0_entrylo0(0);
160	write_c0_entrylo1(0);
161	mtc0_tlbw_hazard();
162	tlb_write_indexed();
163	tlbw_use_hazard();
164	write_c0_entryhi(old_ctx);
165	local_irq_restore(flags);
166	pagefault_enable();
167	preempt_enable();
168}
169
170void copy_user_highpage(struct page *to, struct page *from,
171	unsigned long vaddr, struct vm_area_struct *vma)
172{
173	struct folio *src = page_folio(from);
174	void *vfrom, *vto;
175
176	vto = kmap_atomic(to);
177	if (cpu_has_dc_aliases &&
178	    folio_mapped(src) && !folio_test_dcache_dirty(src)) {
179		vfrom = kmap_coherent(from, vaddr);
180		copy_page(vto, vfrom);
181		kunmap_coherent();
182	} else {
183		vfrom = kmap_atomic(from);
184		copy_page(vto, vfrom);
185		kunmap_atomic(vfrom);
186	}
187	if ((!cpu_has_ic_fills_f_dc) ||
188	    pages_do_alias((unsigned long)vto, vaddr & PAGE_MASK))
189		flush_data_cache_page((unsigned long)vto);
190	kunmap_atomic(vto);
191	/* Make sure this page is cleared on other CPU's too before using it */
192	smp_wmb();
193}
194
195void copy_to_user_page(struct vm_area_struct *vma,
196	struct page *page, unsigned long vaddr, void *dst, const void *src,
197	unsigned long len)
198{
199	struct folio *folio = page_folio(page);
200
201	if (cpu_has_dc_aliases &&
202	    folio_mapped(folio) && !folio_test_dcache_dirty(folio)) {
203		void *vto = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
204		memcpy(vto, src, len);
205		kunmap_coherent();
206	} else {
207		memcpy(dst, src, len);
208		if (cpu_has_dc_aliases)
209			folio_set_dcache_dirty(folio);
210	}
211	if (vma->vm_flags & VM_EXEC)
212		flush_cache_page(vma, vaddr, page_to_pfn(page));
213}
214
215void copy_from_user_page(struct vm_area_struct *vma,
216	struct page *page, unsigned long vaddr, void *dst, const void *src,
217	unsigned long len)
218{
219	struct folio *folio = page_folio(page);
220
221	if (cpu_has_dc_aliases &&
222	    folio_mapped(folio) && !folio_test_dcache_dirty(folio)) {
223		void *vfrom = kmap_coherent(page, vaddr) + (vaddr & ~PAGE_MASK);
224		memcpy(dst, vfrom, len);
225		kunmap_coherent();
226	} else {
227		memcpy(dst, src, len);
228		if (cpu_has_dc_aliases)
229			folio_set_dcache_dirty(folio);
230	}
231}
232EXPORT_SYMBOL_GPL(copy_from_user_page);
233
234void __init fixrange_init(unsigned long start, unsigned long end,
235	pgd_t *pgd_base)
236{
237#ifdef CONFIG_HIGHMEM
238	pgd_t *pgd;
239	pud_t *pud;
240	pmd_t *pmd;
241	pte_t *pte;
242	int i, j, k;
243	unsigned long vaddr;
244
245	vaddr = start;
246	i = pgd_index(vaddr);
247	j = pud_index(vaddr);
248	k = pmd_index(vaddr);
249	pgd = pgd_base + i;
250
251	for ( ; (i < PTRS_PER_PGD) && (vaddr < end); pgd++, i++) {
252		pud = (pud_t *)pgd;
253		for ( ; (j < PTRS_PER_PUD) && (vaddr < end); pud++, j++) {
254			pmd = (pmd_t *)pud;
255			for (; (k < PTRS_PER_PMD) && (vaddr < end); pmd++, k++) {
256				if (pmd_none(*pmd)) {
257					pte = (pte_t *) memblock_alloc_low(PAGE_SIZE,
258									   PAGE_SIZE);
259					if (!pte)
260						panic("%s: Failed to allocate %lu bytes align=%lx\n",
261						      __func__, PAGE_SIZE,
262						      PAGE_SIZE);
263
264					set_pmd(pmd, __pmd((unsigned long)pte));
265					BUG_ON(pte != pte_offset_kernel(pmd, 0));
266				}
267				vaddr += PMD_SIZE;
268			}
269			k = 0;
270		}
271		j = 0;
272	}
273#endif
274}
275
276struct maar_walk_info {
277	struct maar_config cfg[16];
278	unsigned int num_cfg;
279};
280
281static int maar_res_walk(unsigned long start_pfn, unsigned long nr_pages,
282			 void *data)
283{
284	struct maar_walk_info *wi = data;
285	struct maar_config *cfg = &wi->cfg[wi->num_cfg];
286	unsigned int maar_align;
287
288	/* MAAR registers hold physical addresses right shifted by 4 bits */
289	maar_align = BIT(MIPS_MAAR_ADDR_SHIFT + 4);
290
291	/* Fill in the MAAR config entry */
292	cfg->lower = ALIGN(PFN_PHYS(start_pfn), maar_align);
293	cfg->upper = ALIGN_DOWN(PFN_PHYS(start_pfn + nr_pages), maar_align) - 1;
294	cfg->attrs = MIPS_MAAR_S;
295
296	/* Ensure we don't overflow the cfg array */
297	if (!WARN_ON(wi->num_cfg >= ARRAY_SIZE(wi->cfg)))
298		wi->num_cfg++;
299
300	return 0;
301}
302
303
304unsigned __weak platform_maar_init(unsigned num_pairs)
305{
306	unsigned int num_configured;
307	struct maar_walk_info wi;
308
309	wi.num_cfg = 0;
310	walk_system_ram_range(0, max_pfn, &wi, maar_res_walk);
311
312	num_configured = maar_config(wi.cfg, wi.num_cfg, num_pairs);
313	if (num_configured < wi.num_cfg)
314		pr_warn("Not enough MAAR pairs (%u) for all memory regions (%u)\n",
315			num_pairs, wi.num_cfg);
316
317	return num_configured;
318}
319
320void maar_init(void)
321{
322	unsigned num_maars, used, i;
323	phys_addr_t lower, upper, attr;
324	static struct {
325		struct maar_config cfgs[3];
326		unsigned used;
327	} recorded = { { { 0 } }, 0 };
328
329	if (!cpu_has_maar)
330		return;
331
332	/* Detect the number of MAARs */
333	write_c0_maari(~0);
334	back_to_back_c0_hazard();
335	num_maars = read_c0_maari() + 1;
336
337	/* MAARs should be in pairs */
338	WARN_ON(num_maars % 2);
339
340	/* Set MAARs using values we recorded already */
341	if (recorded.used) {
342		used = maar_config(recorded.cfgs, recorded.used, num_maars / 2);
343		BUG_ON(used != recorded.used);
344	} else {
345		/* Configure the required MAARs */
346		used = platform_maar_init(num_maars / 2);
347	}
348
349	/* Disable any further MAARs */
350	for (i = (used * 2); i < num_maars; i++) {
351		write_c0_maari(i);
352		back_to_back_c0_hazard();
353		write_c0_maar(0);
354		back_to_back_c0_hazard();
355	}
356
357	if (recorded.used)
358		return;
359
360	pr_info("MAAR configuration:\n");
361	for (i = 0; i < num_maars; i += 2) {
362		write_c0_maari(i);
363		back_to_back_c0_hazard();
364		upper = read_c0_maar();
365#ifdef CONFIG_XPA
366		upper |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
367#endif
368
369		write_c0_maari(i + 1);
370		back_to_back_c0_hazard();
371		lower = read_c0_maar();
372#ifdef CONFIG_XPA
373		lower |= (phys_addr_t)readx_c0_maar() << MIPS_MAARX_ADDR_SHIFT;
374#endif
375
376		attr = lower & upper;
377		lower = (lower & MIPS_MAAR_ADDR) << 4;
378		upper = ((upper & MIPS_MAAR_ADDR) << 4) | 0xffff;
379
380		pr_info("  [%d]: ", i / 2);
381		if ((attr & MIPS_MAAR_V) != MIPS_MAAR_V) {
382			pr_cont("disabled\n");
383			continue;
384		}
385
386		pr_cont("%pa-%pa", &lower, &upper);
387
388		if (attr & MIPS_MAAR_S)
389			pr_cont(" speculate");
390
391		pr_cont("\n");
392
393		/* Record the setup for use on secondary CPUs */
394		if (used <= ARRAY_SIZE(recorded.cfgs)) {
395			recorded.cfgs[recorded.used].lower = lower;
396			recorded.cfgs[recorded.used].upper = upper;
397			recorded.cfgs[recorded.used].attrs = attr;
398			recorded.used++;
399		}
400	}
401}
402
403#ifndef CONFIG_NUMA
404void __init paging_init(void)
405{
406	unsigned long max_zone_pfns[MAX_NR_ZONES];
407
408	pagetable_init();
409
410#ifdef CONFIG_ZONE_DMA
411	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
412#endif
413#ifdef CONFIG_ZONE_DMA32
414	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
415#endif
416	max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
417#ifdef CONFIG_HIGHMEM
418	max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
419
420	if (cpu_has_dc_aliases && max_low_pfn != highend_pfn) {
421		printk(KERN_WARNING "This processor doesn't support highmem."
422		       " %ldk highmem ignored\n",
423		       (highend_pfn - max_low_pfn) << (PAGE_SHIFT - 10));
424		max_zone_pfns[ZONE_HIGHMEM] = max_low_pfn;
425
426		max_mapnr = max_low_pfn;
427	} else if (highend_pfn) {
428		max_mapnr = highend_pfn;
429	} else {
430		max_mapnr = max_low_pfn;
431	}
432#else
433	max_mapnr = max_low_pfn;
434#endif
435	high_memory = (void *) __va(max_low_pfn << PAGE_SHIFT);
436
437	free_area_init(max_zone_pfns);
438}
439
440#ifdef CONFIG_64BIT
441static struct kcore_list kcore_kseg0;
442#endif
443
444static inline void __init mem_init_free_highmem(void)
445{
446#ifdef CONFIG_HIGHMEM
447	unsigned long tmp;
448
449	if (cpu_has_dc_aliases)
450		return;
451
452	for (tmp = highstart_pfn; tmp < highend_pfn; tmp++) {
453		struct page *page = pfn_to_page(tmp);
454
455		if (!memblock_is_memory(PFN_PHYS(tmp)))
456			SetPageReserved(page);
457		else
458			free_highmem_page(page);
459	}
460#endif
461}
462
463void __init mem_init(void)
464{
465	/*
466	 * When PFN_PTE_SHIFT is greater than PAGE_SHIFT we won't have enough PTE
467	 * bits to hold a full 32b physical address on MIPS32 systems.
468	 */
469	BUILD_BUG_ON(IS_ENABLED(CONFIG_32BIT) && (PFN_PTE_SHIFT > PAGE_SHIFT));
 
 
 
 
 
 
 
470
471	maar_init();
472	memblock_free_all();
473	setup_zero_pages();	/* Setup zeroed pages.  */
474	mem_init_free_highmem();
475
476#ifdef CONFIG_64BIT
477	if ((unsigned long) &_text > (unsigned long) CKSEG0)
478		/* The -4 is a hack so that user tools don't have to handle
479		   the overflow.  */
480		kclist_add(&kcore_kseg0, (void *) CKSEG0,
481				0x80000000 - 4, KCORE_TEXT);
482#endif
483}
484#endif /* !CONFIG_NUMA */
485
486void free_init_pages(const char *what, unsigned long begin, unsigned long end)
487{
488	unsigned long pfn;
489
490	for (pfn = PFN_UP(begin); pfn < PFN_DOWN(end); pfn++) {
491		struct page *page = pfn_to_page(pfn);
492		void *addr = phys_to_virt(PFN_PHYS(pfn));
493
494		memset(addr, POISON_FREE_INITMEM, PAGE_SIZE);
495		free_reserved_page(page);
496	}
497	printk(KERN_INFO "Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
498}
499
500void (*free_init_pages_eva)(void *begin, void *end) = NULL;
501
502void __weak __init prom_free_prom_memory(void)
503{
504	/* nothing to do */
505}
506
507void __ref free_initmem(void)
508{
509	prom_free_prom_memory();
510	/*
511	 * Let the platform define a specific function to free the
512	 * init section since EVA may have used any possible mapping
513	 * between virtual and physical addresses.
514	 */
515	if (free_init_pages_eva)
516		free_init_pages_eva((void *)&__init_begin, (void *)&__init_end);
517	else
518		free_initmem_default(POISON_FREE_INITMEM);
519}
520
521#ifdef CONFIG_HAVE_SETUP_PER_CPU_AREA
522unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
523EXPORT_SYMBOL(__per_cpu_offset);
524
525static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
526{
527	return node_distance(cpu_to_node(from), cpu_to_node(to));
528}
529
530static int __init pcpu_cpu_to_node(int cpu)
531{
532	return cpu_to_node(cpu);
533}
534
535void __init setup_per_cpu_areas(void)
536{
537	unsigned long delta;
538	unsigned int cpu;
539	int rc;
540
541	/*
542	 * Always reserve area for module percpu variables.  That's
543	 * what the legacy allocator did.
544	 */
545	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
546				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE,
547				    pcpu_cpu_distance,
548				    pcpu_cpu_to_node);
549	if (rc < 0)
550		panic("Failed to initialize percpu areas.");
551
552	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
553	for_each_possible_cpu(cpu)
554		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
555}
556#endif
557
558#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
559unsigned long pgd_current[NR_CPUS];
560#endif
561
562/*
563 * Align swapper_pg_dir in to 64K, allows its address to be loaded
564 * with a single LUI instruction in the TLB handlers.  If we used
565 * __aligned(64K), its size would get rounded up to the alignment
566 * size, and waste space.  So we place it in its own section and align
567 * it in the linker script.
568 */
569pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".bss..swapper_pg_dir");
570#ifndef __PAGETABLE_PUD_FOLDED
571pud_t invalid_pud_table[PTRS_PER_PUD] __page_aligned_bss;
572#endif
573#ifndef __PAGETABLE_PMD_FOLDED
574pmd_t invalid_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
575EXPORT_SYMBOL_GPL(invalid_pmd_table);
576#endif
577pte_t invalid_pte_table[PTRS_PER_PTE] __page_aligned_bss;
578EXPORT_SYMBOL(invalid_pte_table);