Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46#include <linux/random.h>
  47#include <linux/sysctl.h>
  48
  49#include <linux/uaccess.h>
  50#include <asm/unistd.h>
  51#include <asm/div64.h>
  52#include <asm/timex.h>
  53#include <asm/io.h>
  54
  55#include "tick-internal.h"
 
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/timer.h>
  59
  60__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  61
  62EXPORT_SYMBOL(jiffies_64);
  63
  64/*
  65 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  66 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  67 * level has a different granularity.
  68 *
  69 * The level granularity is:		LVL_CLK_DIV ^ lvl
  70 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
  71 *
  72 * The array level of a newly armed timer depends on the relative expiry
  73 * time. The farther the expiry time is away the higher the array level and
  74 * therefor the granularity becomes.
  75 *
  76 * Contrary to the original timer wheel implementation, which aims for 'exact'
  77 * expiry of the timers, this implementation removes the need for recascading
  78 * the timers into the lower array levels. The previous 'classic' timer wheel
  79 * implementation of the kernel already violated the 'exact' expiry by adding
  80 * slack to the expiry time to provide batched expiration. The granularity
  81 * levels provide implicit batching.
  82 *
  83 * This is an optimization of the original timer wheel implementation for the
  84 * majority of the timer wheel use cases: timeouts. The vast majority of
  85 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  86 * the timeout expires it indicates that normal operation is disturbed, so it
  87 * does not matter much whether the timeout comes with a slight delay.
  88 *
  89 * The only exception to this are networking timers with a small expiry
  90 * time. They rely on the granularity. Those fit into the first wheel level,
  91 * which has HZ granularity.
  92 *
  93 * We don't have cascading anymore. timers with a expiry time above the
  94 * capacity of the last wheel level are force expired at the maximum timeout
  95 * value of the last wheel level. From data sampling we know that the maximum
  96 * value observed is 5 days (network connection tracking), so this should not
  97 * be an issue.
  98 *
  99 * The currently chosen array constants values are a good compromise between
 100 * array size and granularity.
 101 *
 102 * This results in the following granularity and range levels:
 103 *
 104 * HZ 1000 steps
 105 * Level Offset  Granularity            Range
 106 *  0      0         1 ms                0 ms -         63 ms
 107 *  1     64         8 ms               64 ms -        511 ms
 108 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 109 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 110 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 111 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 112 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 113 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 114 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 115 *
 116 * HZ  300
 117 * Level Offset  Granularity            Range
 118 *  0	   0         3 ms                0 ms -        210 ms
 119 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 120 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 121 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 122 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 123 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 124 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 125 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 126 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 127 *
 128 * HZ  250
 129 * Level Offset  Granularity            Range
 130 *  0	   0         4 ms                0 ms -        255 ms
 131 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 132 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 133 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 134 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 135 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 136 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 137 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 138 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 139 *
 140 * HZ  100
 141 * Level Offset  Granularity            Range
 142 *  0	   0         10 ms               0 ms -        630 ms
 143 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 144 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 145 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 146 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 147 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 148 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 149 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 150 */
 151
 152/* Clock divisor for the next level */
 153#define LVL_CLK_SHIFT	3
 154#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
 155#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
 156#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
 157#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
 158
 159/*
 160 * The time start value for each level to select the bucket at enqueue
 161 * time. We start from the last possible delta of the previous level
 162 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
 163 */
 164#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 165
 166/* Size of each clock level */
 167#define LVL_BITS	6
 168#define LVL_SIZE	(1UL << LVL_BITS)
 169#define LVL_MASK	(LVL_SIZE - 1)
 170#define LVL_OFFS(n)	((n) * LVL_SIZE)
 171
 172/* Level depth */
 173#if HZ > 100
 174# define LVL_DEPTH	9
 175# else
 176# define LVL_DEPTH	8
 177#endif
 178
 179/* The cutoff (max. capacity of the wheel) */
 180#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
 181#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 182
 183/*
 184 * The resulting wheel size. If NOHZ is configured we allocate two
 185 * wheels so we have a separate storage for the deferrable timers.
 186 */
 187#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
 188
 189#ifdef CONFIG_NO_HZ_COMMON
 190# define NR_BASES	2
 191# define BASE_STD	0
 192# define BASE_DEF	1
 
 
 
 
 
 193#else
 194# define NR_BASES	1
 195# define BASE_STD	0
 
 196# define BASE_DEF	0
 197#endif
 198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 199struct timer_base {
 200	raw_spinlock_t		lock;
 201	struct timer_list	*running_timer;
 202#ifdef CONFIG_PREEMPT_RT
 203	spinlock_t		expiry_lock;
 204	atomic_t		timer_waiters;
 205#endif
 206	unsigned long		clk;
 207	unsigned long		next_expiry;
 208	unsigned int		cpu;
 209	bool			next_expiry_recalc;
 210	bool			is_idle;
 211	bool			timers_pending;
 212	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 213	struct hlist_head	vectors[WHEEL_SIZE];
 214} ____cacheline_aligned;
 215
 216static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 217
 218#ifdef CONFIG_NO_HZ_COMMON
 219
 220static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 221static DEFINE_MUTEX(timer_keys_mutex);
 222
 223static void timer_update_keys(struct work_struct *work);
 224static DECLARE_WORK(timer_update_work, timer_update_keys);
 225
 226#ifdef CONFIG_SMP
 227static unsigned int sysctl_timer_migration = 1;
 228
 229DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 230
 231static void timers_update_migration(void)
 232{
 233	if (sysctl_timer_migration && tick_nohz_active)
 234		static_branch_enable(&timers_migration_enabled);
 235	else
 236		static_branch_disable(&timers_migration_enabled);
 237}
 238
 239#ifdef CONFIG_SYSCTL
 240static int timer_migration_handler(struct ctl_table *table, int write,
 241			    void *buffer, size_t *lenp, loff_t *ppos)
 242{
 243	int ret;
 244
 245	mutex_lock(&timer_keys_mutex);
 246	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 247	if (!ret && write)
 248		timers_update_migration();
 249	mutex_unlock(&timer_keys_mutex);
 250	return ret;
 251}
 252
 253static struct ctl_table timer_sysctl[] = {
 254	{
 255		.procname	= "timer_migration",
 256		.data		= &sysctl_timer_migration,
 257		.maxlen		= sizeof(unsigned int),
 258		.mode		= 0644,
 259		.proc_handler	= timer_migration_handler,
 260		.extra1		= SYSCTL_ZERO,
 261		.extra2		= SYSCTL_ONE,
 262	},
 263	{}
 264};
 265
 266static int __init timer_sysctl_init(void)
 267{
 268	register_sysctl("kernel", timer_sysctl);
 269	return 0;
 270}
 271device_initcall(timer_sysctl_init);
 272#endif /* CONFIG_SYSCTL */
 273#else /* CONFIG_SMP */
 274static inline void timers_update_migration(void) { }
 275#endif /* !CONFIG_SMP */
 276
 277static void timer_update_keys(struct work_struct *work)
 278{
 279	mutex_lock(&timer_keys_mutex);
 280	timers_update_migration();
 281	static_branch_enable(&timers_nohz_active);
 282	mutex_unlock(&timer_keys_mutex);
 283}
 284
 285void timers_update_nohz(void)
 286{
 287	schedule_work(&timer_update_work);
 288}
 289
 290static inline bool is_timers_nohz_active(void)
 291{
 292	return static_branch_unlikely(&timers_nohz_active);
 293}
 294#else
 295static inline bool is_timers_nohz_active(void) { return false; }
 296#endif /* NO_HZ_COMMON */
 297
 298static unsigned long round_jiffies_common(unsigned long j, int cpu,
 299		bool force_up)
 300{
 301	int rem;
 302	unsigned long original = j;
 303
 304	/*
 305	 * We don't want all cpus firing their timers at once hitting the
 306	 * same lock or cachelines, so we skew each extra cpu with an extra
 307	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 308	 * already did this.
 309	 * The skew is done by adding 3*cpunr, then round, then subtract this
 310	 * extra offset again.
 311	 */
 312	j += cpu * 3;
 313
 314	rem = j % HZ;
 315
 316	/*
 317	 * If the target jiffie is just after a whole second (which can happen
 318	 * due to delays of the timer irq, long irq off times etc etc) then
 319	 * we should round down to the whole second, not up. Use 1/4th second
 320	 * as cutoff for this rounding as an extreme upper bound for this.
 321	 * But never round down if @force_up is set.
 322	 */
 323	if (rem < HZ/4 && !force_up) /* round down */
 324		j = j - rem;
 325	else /* round up */
 326		j = j - rem + HZ;
 327
 328	/* now that we have rounded, subtract the extra skew again */
 329	j -= cpu * 3;
 330
 331	/*
 332	 * Make sure j is still in the future. Otherwise return the
 333	 * unmodified value.
 334	 */
 335	return time_is_after_jiffies(j) ? j : original;
 336}
 337
 338/**
 339 * __round_jiffies - function to round jiffies to a full second
 340 * @j: the time in (absolute) jiffies that should be rounded
 341 * @cpu: the processor number on which the timeout will happen
 342 *
 343 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 344 * up or down to (approximately) full seconds. This is useful for timers
 345 * for which the exact time they fire does not matter too much, as long as
 346 * they fire approximately every X seconds.
 347 *
 348 * By rounding these timers to whole seconds, all such timers will fire
 349 * at the same time, rather than at various times spread out. The goal
 350 * of this is to have the CPU wake up less, which saves power.
 351 *
 352 * The exact rounding is skewed for each processor to avoid all
 353 * processors firing at the exact same time, which could lead
 354 * to lock contention or spurious cache line bouncing.
 355 *
 356 * The return value is the rounded version of the @j parameter.
 357 */
 358unsigned long __round_jiffies(unsigned long j, int cpu)
 359{
 360	return round_jiffies_common(j, cpu, false);
 361}
 362EXPORT_SYMBOL_GPL(__round_jiffies);
 363
 364/**
 365 * __round_jiffies_relative - function to round jiffies to a full second
 366 * @j: the time in (relative) jiffies that should be rounded
 367 * @cpu: the processor number on which the timeout will happen
 368 *
 369 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 370 * up or down to (approximately) full seconds. This is useful for timers
 371 * for which the exact time they fire does not matter too much, as long as
 372 * they fire approximately every X seconds.
 373 *
 374 * By rounding these timers to whole seconds, all such timers will fire
 375 * at the same time, rather than at various times spread out. The goal
 376 * of this is to have the CPU wake up less, which saves power.
 377 *
 378 * The exact rounding is skewed for each processor to avoid all
 379 * processors firing at the exact same time, which could lead
 380 * to lock contention or spurious cache line bouncing.
 381 *
 382 * The return value is the rounded version of the @j parameter.
 383 */
 384unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 385{
 386	unsigned long j0 = jiffies;
 387
 388	/* Use j0 because jiffies might change while we run */
 389	return round_jiffies_common(j + j0, cpu, false) - j0;
 390}
 391EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 392
 393/**
 394 * round_jiffies - function to round jiffies to a full second
 395 * @j: the time in (absolute) jiffies that should be rounded
 396 *
 397 * round_jiffies() rounds an absolute time in the future (in jiffies)
 398 * up or down to (approximately) full seconds. This is useful for timers
 399 * for which the exact time they fire does not matter too much, as long as
 400 * they fire approximately every X seconds.
 401 *
 402 * By rounding these timers to whole seconds, all such timers will fire
 403 * at the same time, rather than at various times spread out. The goal
 404 * of this is to have the CPU wake up less, which saves power.
 405 *
 406 * The return value is the rounded version of the @j parameter.
 407 */
 408unsigned long round_jiffies(unsigned long j)
 409{
 410	return round_jiffies_common(j, raw_smp_processor_id(), false);
 411}
 412EXPORT_SYMBOL_GPL(round_jiffies);
 413
 414/**
 415 * round_jiffies_relative - function to round jiffies to a full second
 416 * @j: the time in (relative) jiffies that should be rounded
 417 *
 418 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 419 * up or down to (approximately) full seconds. This is useful for timers
 420 * for which the exact time they fire does not matter too much, as long as
 421 * they fire approximately every X seconds.
 422 *
 423 * By rounding these timers to whole seconds, all such timers will fire
 424 * at the same time, rather than at various times spread out. The goal
 425 * of this is to have the CPU wake up less, which saves power.
 426 *
 427 * The return value is the rounded version of the @j parameter.
 428 */
 429unsigned long round_jiffies_relative(unsigned long j)
 430{
 431	return __round_jiffies_relative(j, raw_smp_processor_id());
 432}
 433EXPORT_SYMBOL_GPL(round_jiffies_relative);
 434
 435/**
 436 * __round_jiffies_up - function to round jiffies up to a full second
 437 * @j: the time in (absolute) jiffies that should be rounded
 438 * @cpu: the processor number on which the timeout will happen
 439 *
 440 * This is the same as __round_jiffies() except that it will never
 441 * round down.  This is useful for timeouts for which the exact time
 442 * of firing does not matter too much, as long as they don't fire too
 443 * early.
 444 */
 445unsigned long __round_jiffies_up(unsigned long j, int cpu)
 446{
 447	return round_jiffies_common(j, cpu, true);
 448}
 449EXPORT_SYMBOL_GPL(__round_jiffies_up);
 450
 451/**
 452 * __round_jiffies_up_relative - function to round jiffies up to a full second
 453 * @j: the time in (relative) jiffies that should be rounded
 454 * @cpu: the processor number on which the timeout will happen
 455 *
 456 * This is the same as __round_jiffies_relative() except that it will never
 457 * round down.  This is useful for timeouts for which the exact time
 458 * of firing does not matter too much, as long as they don't fire too
 459 * early.
 460 */
 461unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 462{
 463	unsigned long j0 = jiffies;
 464
 465	/* Use j0 because jiffies might change while we run */
 466	return round_jiffies_common(j + j0, cpu, true) - j0;
 467}
 468EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 469
 470/**
 471 * round_jiffies_up - function to round jiffies up to a full second
 472 * @j: the time in (absolute) jiffies that should be rounded
 473 *
 474 * This is the same as round_jiffies() except that it will never
 475 * round down.  This is useful for timeouts for which the exact time
 476 * of firing does not matter too much, as long as they don't fire too
 477 * early.
 478 */
 479unsigned long round_jiffies_up(unsigned long j)
 480{
 481	return round_jiffies_common(j, raw_smp_processor_id(), true);
 482}
 483EXPORT_SYMBOL_GPL(round_jiffies_up);
 484
 485/**
 486 * round_jiffies_up_relative - function to round jiffies up to a full second
 487 * @j: the time in (relative) jiffies that should be rounded
 488 *
 489 * This is the same as round_jiffies_relative() except that it will never
 490 * round down.  This is useful for timeouts for which the exact time
 491 * of firing does not matter too much, as long as they don't fire too
 492 * early.
 493 */
 494unsigned long round_jiffies_up_relative(unsigned long j)
 495{
 496	return __round_jiffies_up_relative(j, raw_smp_processor_id());
 497}
 498EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 499
 500
 501static inline unsigned int timer_get_idx(struct timer_list *timer)
 502{
 503	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 504}
 505
 506static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 507{
 508	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 509			idx << TIMER_ARRAYSHIFT;
 510}
 511
 512/*
 513 * Helper function to calculate the array index for a given expiry
 514 * time.
 515 */
 516static inline unsigned calc_index(unsigned long expires, unsigned lvl,
 517				  unsigned long *bucket_expiry)
 518{
 519
 520	/*
 521	 * The timer wheel has to guarantee that a timer does not fire
 522	 * early. Early expiry can happen due to:
 523	 * - Timer is armed at the edge of a tick
 524	 * - Truncation of the expiry time in the outer wheel levels
 525	 *
 526	 * Round up with level granularity to prevent this.
 527	 */
 528	expires = (expires >> LVL_SHIFT(lvl)) + 1;
 529	*bucket_expiry = expires << LVL_SHIFT(lvl);
 530	return LVL_OFFS(lvl) + (expires & LVL_MASK);
 531}
 532
 533static int calc_wheel_index(unsigned long expires, unsigned long clk,
 534			    unsigned long *bucket_expiry)
 535{
 536	unsigned long delta = expires - clk;
 537	unsigned int idx;
 538
 539	if (delta < LVL_START(1)) {
 540		idx = calc_index(expires, 0, bucket_expiry);
 541	} else if (delta < LVL_START(2)) {
 542		idx = calc_index(expires, 1, bucket_expiry);
 543	} else if (delta < LVL_START(3)) {
 544		idx = calc_index(expires, 2, bucket_expiry);
 545	} else if (delta < LVL_START(4)) {
 546		idx = calc_index(expires, 3, bucket_expiry);
 547	} else if (delta < LVL_START(5)) {
 548		idx = calc_index(expires, 4, bucket_expiry);
 549	} else if (delta < LVL_START(6)) {
 550		idx = calc_index(expires, 5, bucket_expiry);
 551	} else if (delta < LVL_START(7)) {
 552		idx = calc_index(expires, 6, bucket_expiry);
 553	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 554		idx = calc_index(expires, 7, bucket_expiry);
 555	} else if ((long) delta < 0) {
 556		idx = clk & LVL_MASK;
 557		*bucket_expiry = clk;
 558	} else {
 559		/*
 560		 * Force expire obscene large timeouts to expire at the
 561		 * capacity limit of the wheel.
 562		 */
 563		if (delta >= WHEEL_TIMEOUT_CUTOFF)
 564			expires = clk + WHEEL_TIMEOUT_MAX;
 565
 566		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
 567	}
 568	return idx;
 569}
 570
 571static void
 572trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 573{
 574	if (!is_timers_nohz_active())
 575		return;
 576
 577	/*
 578	 * TODO: This wants some optimizing similar to the code below, but we
 579	 * will do that when we switch from push to pull for deferrable timers.
 
 
 
 580	 */
 581	if (timer->flags & TIMER_DEFERRABLE) {
 582		if (tick_nohz_full_cpu(base->cpu))
 583			wake_up_nohz_cpu(base->cpu);
 584		return;
 585	}
 586
 587	/*
 588	 * We might have to IPI the remote CPU if the base is idle and the
 589	 * timer is not deferrable. If the other CPU is on the way to idle
 590	 * then it can't set base->is_idle as we hold the base lock:
 591	 */
 592	if (base->is_idle)
 
 
 
 
 
 593		wake_up_nohz_cpu(base->cpu);
 
 594}
 595
 596/*
 597 * Enqueue the timer into the hash bucket, mark it pending in
 598 * the bitmap, store the index in the timer flags then wake up
 599 * the target CPU if needed.
 600 */
 601static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 602			  unsigned int idx, unsigned long bucket_expiry)
 603{
 604
 605	hlist_add_head(&timer->entry, base->vectors + idx);
 606	__set_bit(idx, base->pending_map);
 607	timer_set_idx(timer, idx);
 608
 609	trace_timer_start(timer, timer->expires, timer->flags);
 610
 611	/*
 612	 * Check whether this is the new first expiring timer. The
 613	 * effective expiry time of the timer is required here
 614	 * (bucket_expiry) instead of timer->expires.
 615	 */
 616	if (time_before(bucket_expiry, base->next_expiry)) {
 617		/*
 618		 * Set the next expiry time and kick the CPU so it
 619		 * can reevaluate the wheel:
 620		 */
 621		base->next_expiry = bucket_expiry;
 622		base->timers_pending = true;
 623		base->next_expiry_recalc = false;
 624		trigger_dyntick_cpu(base, timer);
 625	}
 626}
 627
 628static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
 629{
 630	unsigned long bucket_expiry;
 631	unsigned int idx;
 632
 633	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
 634	enqueue_timer(base, timer, idx, bucket_expiry);
 635}
 636
 637#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 638
 639static const struct debug_obj_descr timer_debug_descr;
 640
 641struct timer_hint {
 642	void	(*function)(struct timer_list *t);
 643	long	offset;
 644};
 645
 646#define TIMER_HINT(fn, container, timr, hintfn)			\
 647	{							\
 648		.function = fn,					\
 649		.offset	  = offsetof(container, hintfn) -	\
 650			    offsetof(container, timr)		\
 651	}
 652
 653static const struct timer_hint timer_hints[] = {
 654	TIMER_HINT(delayed_work_timer_fn,
 655		   struct delayed_work, timer, work.func),
 656	TIMER_HINT(kthread_delayed_work_timer_fn,
 657		   struct kthread_delayed_work, timer, work.func),
 658};
 659
 660static void *timer_debug_hint(void *addr)
 661{
 662	struct timer_list *timer = addr;
 663	int i;
 664
 665	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
 666		if (timer_hints[i].function == timer->function) {
 667			void (**fn)(void) = addr + timer_hints[i].offset;
 668
 669			return *fn;
 670		}
 671	}
 672
 673	return timer->function;
 674}
 675
 676static bool timer_is_static_object(void *addr)
 677{
 678	struct timer_list *timer = addr;
 679
 680	return (timer->entry.pprev == NULL &&
 681		timer->entry.next == TIMER_ENTRY_STATIC);
 682}
 683
 684/*
 685 * fixup_init is called when:
 686 * - an active object is initialized
 687 */
 688static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 689{
 690	struct timer_list *timer = addr;
 691
 692	switch (state) {
 693	case ODEBUG_STATE_ACTIVE:
 694		del_timer_sync(timer);
 695		debug_object_init(timer, &timer_debug_descr);
 696		return true;
 697	default:
 698		return false;
 699	}
 700}
 701
 702/* Stub timer callback for improperly used timers. */
 703static void stub_timer(struct timer_list *unused)
 704{
 705	WARN_ON(1);
 706}
 707
 708/*
 709 * fixup_activate is called when:
 710 * - an active object is activated
 711 * - an unknown non-static object is activated
 712 */
 713static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 714{
 715	struct timer_list *timer = addr;
 716
 717	switch (state) {
 718	case ODEBUG_STATE_NOTAVAILABLE:
 719		timer_setup(timer, stub_timer, 0);
 720		return true;
 721
 722	case ODEBUG_STATE_ACTIVE:
 723		WARN_ON(1);
 724		fallthrough;
 725	default:
 726		return false;
 727	}
 728}
 729
 730/*
 731 * fixup_free is called when:
 732 * - an active object is freed
 733 */
 734static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 735{
 736	struct timer_list *timer = addr;
 737
 738	switch (state) {
 739	case ODEBUG_STATE_ACTIVE:
 740		del_timer_sync(timer);
 741		debug_object_free(timer, &timer_debug_descr);
 742		return true;
 743	default:
 744		return false;
 745	}
 746}
 747
 748/*
 749 * fixup_assert_init is called when:
 750 * - an untracked/uninit-ed object is found
 751 */
 752static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 753{
 754	struct timer_list *timer = addr;
 755
 756	switch (state) {
 757	case ODEBUG_STATE_NOTAVAILABLE:
 758		timer_setup(timer, stub_timer, 0);
 759		return true;
 760	default:
 761		return false;
 762	}
 763}
 764
 765static const struct debug_obj_descr timer_debug_descr = {
 766	.name			= "timer_list",
 767	.debug_hint		= timer_debug_hint,
 768	.is_static_object	= timer_is_static_object,
 769	.fixup_init		= timer_fixup_init,
 770	.fixup_activate		= timer_fixup_activate,
 771	.fixup_free		= timer_fixup_free,
 772	.fixup_assert_init	= timer_fixup_assert_init,
 773};
 774
 775static inline void debug_timer_init(struct timer_list *timer)
 776{
 777	debug_object_init(timer, &timer_debug_descr);
 778}
 779
 780static inline void debug_timer_activate(struct timer_list *timer)
 781{
 782	debug_object_activate(timer, &timer_debug_descr);
 783}
 784
 785static inline void debug_timer_deactivate(struct timer_list *timer)
 786{
 787	debug_object_deactivate(timer, &timer_debug_descr);
 788}
 789
 790static inline void debug_timer_assert_init(struct timer_list *timer)
 791{
 792	debug_object_assert_init(timer, &timer_debug_descr);
 793}
 794
 795static void do_init_timer(struct timer_list *timer,
 796			  void (*func)(struct timer_list *),
 797			  unsigned int flags,
 798			  const char *name, struct lock_class_key *key);
 799
 800void init_timer_on_stack_key(struct timer_list *timer,
 801			     void (*func)(struct timer_list *),
 802			     unsigned int flags,
 803			     const char *name, struct lock_class_key *key)
 804{
 805	debug_object_init_on_stack(timer, &timer_debug_descr);
 806	do_init_timer(timer, func, flags, name, key);
 807}
 808EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 809
 810void destroy_timer_on_stack(struct timer_list *timer)
 811{
 812	debug_object_free(timer, &timer_debug_descr);
 813}
 814EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 815
 816#else
 817static inline void debug_timer_init(struct timer_list *timer) { }
 818static inline void debug_timer_activate(struct timer_list *timer) { }
 819static inline void debug_timer_deactivate(struct timer_list *timer) { }
 820static inline void debug_timer_assert_init(struct timer_list *timer) { }
 821#endif
 822
 823static inline void debug_init(struct timer_list *timer)
 824{
 825	debug_timer_init(timer);
 826	trace_timer_init(timer);
 827}
 828
 829static inline void debug_deactivate(struct timer_list *timer)
 830{
 831	debug_timer_deactivate(timer);
 832	trace_timer_cancel(timer);
 833}
 834
 835static inline void debug_assert_init(struct timer_list *timer)
 836{
 837	debug_timer_assert_init(timer);
 838}
 839
 840static void do_init_timer(struct timer_list *timer,
 841			  void (*func)(struct timer_list *),
 842			  unsigned int flags,
 843			  const char *name, struct lock_class_key *key)
 844{
 845	timer->entry.pprev = NULL;
 846	timer->function = func;
 847	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
 848		flags &= TIMER_INIT_FLAGS;
 849	timer->flags = flags | raw_smp_processor_id();
 850	lockdep_init_map(&timer->lockdep_map, name, key, 0);
 851}
 852
 853/**
 854 * init_timer_key - initialize a timer
 855 * @timer: the timer to be initialized
 856 * @func: timer callback function
 857 * @flags: timer flags
 858 * @name: name of the timer
 859 * @key: lockdep class key of the fake lock used for tracking timer
 860 *       sync lock dependencies
 861 *
 862 * init_timer_key() must be done to a timer prior calling *any* of the
 863 * other timer functions.
 864 */
 865void init_timer_key(struct timer_list *timer,
 866		    void (*func)(struct timer_list *), unsigned int flags,
 867		    const char *name, struct lock_class_key *key)
 868{
 869	debug_init(timer);
 870	do_init_timer(timer, func, flags, name, key);
 871}
 872EXPORT_SYMBOL(init_timer_key);
 873
 874static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 875{
 876	struct hlist_node *entry = &timer->entry;
 877
 878	debug_deactivate(timer);
 879
 880	__hlist_del(entry);
 881	if (clear_pending)
 882		entry->pprev = NULL;
 883	entry->next = LIST_POISON2;
 884}
 885
 886static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 887			     bool clear_pending)
 888{
 889	unsigned idx = timer_get_idx(timer);
 890
 891	if (!timer_pending(timer))
 892		return 0;
 893
 894	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
 895		__clear_bit(idx, base->pending_map);
 896		base->next_expiry_recalc = true;
 897	}
 898
 899	detach_timer(timer, clear_pending);
 900	return 1;
 901}
 902
 903static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 904{
 905	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 
 
 
 906
 907	/*
 908	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
 909	 * to use the deferrable base.
 910	 */
 911	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 912		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 913	return base;
 914}
 915
 916static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 917{
 918	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 
 
 
 919
 920	/*
 921	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
 922	 * to use the deferrable base.
 923	 */
 924	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 925		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 926	return base;
 927}
 928
 929static inline struct timer_base *get_timer_base(u32 tflags)
 930{
 931	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 932}
 933
 934static inline struct timer_base *
 935get_target_base(struct timer_base *base, unsigned tflags)
 936{
 937#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 938	if (static_branch_likely(&timers_migration_enabled) &&
 939	    !(tflags & TIMER_PINNED))
 940		return get_timer_cpu_base(tflags, get_nohz_timer_target());
 941#endif
 942	return get_timer_this_cpu_base(tflags);
 943}
 944
 945static inline void forward_timer_base(struct timer_base *base)
 946{
 947	unsigned long jnow = READ_ONCE(jiffies);
 948
 949	/*
 950	 * No need to forward if we are close enough below jiffies.
 951	 * Also while executing timers, base->clk is 1 offset ahead
 952	 * of jiffies to avoid endless requeuing to current jiffies.
 953	 */
 954	if ((long)(jnow - base->clk) < 1)
 955		return;
 956
 957	/*
 958	 * If the next expiry value is > jiffies, then we fast forward to
 959	 * jiffies otherwise we forward to the next expiry value.
 960	 */
 961	if (time_after(base->next_expiry, jnow)) {
 962		base->clk = jnow;
 963	} else {
 964		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
 965			return;
 966		base->clk = base->next_expiry;
 967	}
 
 968}
 969
 
 
 
 
 970
 971/*
 972 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 973 * that all timers which are tied to this base are locked, and the base itself
 974 * is locked too.
 975 *
 976 * So __run_timers/migrate_timers can safely modify all timers which could
 977 * be found in the base->vectors array.
 978 *
 979 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 980 * to wait until the migration is done.
 981 */
 982static struct timer_base *lock_timer_base(struct timer_list *timer,
 983					  unsigned long *flags)
 984	__acquires(timer->base->lock)
 985{
 986	for (;;) {
 987		struct timer_base *base;
 988		u32 tf;
 989
 990		/*
 991		 * We need to use READ_ONCE() here, otherwise the compiler
 992		 * might re-read @tf between the check for TIMER_MIGRATING
 993		 * and spin_lock().
 994		 */
 995		tf = READ_ONCE(timer->flags);
 996
 997		if (!(tf & TIMER_MIGRATING)) {
 998			base = get_timer_base(tf);
 999			raw_spin_lock_irqsave(&base->lock, *flags);
1000			if (timer->flags == tf)
1001				return base;
1002			raw_spin_unlock_irqrestore(&base->lock, *flags);
1003		}
1004		cpu_relax();
1005	}
1006}
1007
1008#define MOD_TIMER_PENDING_ONLY		0x01
1009#define MOD_TIMER_REDUCE		0x02
1010#define MOD_TIMER_NOTPENDING		0x04
1011
1012static inline int
1013__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1014{
1015	unsigned long clk = 0, flags, bucket_expiry;
1016	struct timer_base *base, *new_base;
1017	unsigned int idx = UINT_MAX;
1018	int ret = 0;
1019
1020	debug_assert_init(timer);
1021
1022	/*
1023	 * This is a common optimization triggered by the networking code - if
1024	 * the timer is re-modified to have the same timeout or ends up in the
1025	 * same array bucket then just return:
1026	 */
1027	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1028		/*
1029		 * The downside of this optimization is that it can result in
1030		 * larger granularity than you would get from adding a new
1031		 * timer with this expiry.
1032		 */
1033		long diff = timer->expires - expires;
1034
1035		if (!diff)
1036			return 1;
1037		if (options & MOD_TIMER_REDUCE && diff <= 0)
1038			return 1;
1039
1040		/*
1041		 * We lock timer base and calculate the bucket index right
1042		 * here. If the timer ends up in the same bucket, then we
1043		 * just update the expiry time and avoid the whole
1044		 * dequeue/enqueue dance.
1045		 */
1046		base = lock_timer_base(timer, &flags);
1047		/*
1048		 * Has @timer been shutdown? This needs to be evaluated
1049		 * while holding base lock to prevent a race against the
1050		 * shutdown code.
1051		 */
1052		if (!timer->function)
1053			goto out_unlock;
1054
1055		forward_timer_base(base);
1056
1057		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1058		    time_before_eq(timer->expires, expires)) {
1059			ret = 1;
1060			goto out_unlock;
1061		}
1062
1063		clk = base->clk;
1064		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1065
1066		/*
1067		 * Retrieve and compare the array index of the pending
1068		 * timer. If it matches set the expiry to the new value so a
1069		 * subsequent call will exit in the expires check above.
1070		 */
1071		if (idx == timer_get_idx(timer)) {
1072			if (!(options & MOD_TIMER_REDUCE))
1073				timer->expires = expires;
1074			else if (time_after(timer->expires, expires))
1075				timer->expires = expires;
1076			ret = 1;
1077			goto out_unlock;
1078		}
1079	} else {
1080		base = lock_timer_base(timer, &flags);
1081		/*
1082		 * Has @timer been shutdown? This needs to be evaluated
1083		 * while holding base lock to prevent a race against the
1084		 * shutdown code.
1085		 */
1086		if (!timer->function)
1087			goto out_unlock;
1088
1089		forward_timer_base(base);
1090	}
1091
1092	ret = detach_if_pending(timer, base, false);
1093	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1094		goto out_unlock;
1095
1096	new_base = get_target_base(base, timer->flags);
1097
1098	if (base != new_base) {
1099		/*
1100		 * We are trying to schedule the timer on the new base.
1101		 * However we can't change timer's base while it is running,
1102		 * otherwise timer_delete_sync() can't detect that the timer's
1103		 * handler yet has not finished. This also guarantees that the
1104		 * timer is serialized wrt itself.
1105		 */
1106		if (likely(base->running_timer != timer)) {
1107			/* See the comment in lock_timer_base() */
1108			timer->flags |= TIMER_MIGRATING;
1109
1110			raw_spin_unlock(&base->lock);
1111			base = new_base;
1112			raw_spin_lock(&base->lock);
1113			WRITE_ONCE(timer->flags,
1114				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1115			forward_timer_base(base);
1116		}
1117	}
1118
1119	debug_timer_activate(timer);
1120
1121	timer->expires = expires;
1122	/*
1123	 * If 'idx' was calculated above and the base time did not advance
1124	 * between calculating 'idx' and possibly switching the base, only
1125	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1126	 * the wheel index via internal_add_timer().
1127	 */
1128	if (idx != UINT_MAX && clk == base->clk)
1129		enqueue_timer(base, timer, idx, bucket_expiry);
1130	else
1131		internal_add_timer(base, timer);
1132
1133out_unlock:
1134	raw_spin_unlock_irqrestore(&base->lock, flags);
1135
1136	return ret;
1137}
1138
1139/**
1140 * mod_timer_pending - Modify a pending timer's timeout
1141 * @timer:	The pending timer to be modified
1142 * @expires:	New absolute timeout in jiffies
1143 *
1144 * mod_timer_pending() is the same for pending timers as mod_timer(), but
1145 * will not activate inactive timers.
1146 *
1147 * If @timer->function == NULL then the start operation is silently
1148 * discarded.
1149 *
1150 * Return:
1151 * * %0 - The timer was inactive and not modified or was in
1152 *	  shutdown state and the operation was discarded
1153 * * %1 - The timer was active and requeued to expire at @expires
1154 */
1155int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1156{
1157	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1158}
1159EXPORT_SYMBOL(mod_timer_pending);
1160
1161/**
1162 * mod_timer - Modify a timer's timeout
1163 * @timer:	The timer to be modified
1164 * @expires:	New absolute timeout in jiffies
1165 *
1166 * mod_timer(timer, expires) is equivalent to:
1167 *
1168 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1169 *
1170 * mod_timer() is more efficient than the above open coded sequence. In
1171 * case that the timer is inactive, the del_timer() part is a NOP. The
1172 * timer is in any case activated with the new expiry time @expires.
1173 *
1174 * Note that if there are multiple unserialized concurrent users of the
1175 * same timer, then mod_timer() is the only safe way to modify the timeout,
1176 * since add_timer() cannot modify an already running timer.
1177 *
1178 * If @timer->function == NULL then the start operation is silently
1179 * discarded. In this case the return value is 0 and meaningless.
1180 *
1181 * Return:
1182 * * %0 - The timer was inactive and started or was in shutdown
1183 *	  state and the operation was discarded
1184 * * %1 - The timer was active and requeued to expire at @expires or
1185 *	  the timer was active and not modified because @expires did
1186 *	  not change the effective expiry time
1187 */
1188int mod_timer(struct timer_list *timer, unsigned long expires)
1189{
1190	return __mod_timer(timer, expires, 0);
1191}
1192EXPORT_SYMBOL(mod_timer);
1193
1194/**
1195 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1196 * @timer:	The timer to be modified
1197 * @expires:	New absolute timeout in jiffies
1198 *
1199 * timer_reduce() is very similar to mod_timer(), except that it will only
1200 * modify an enqueued timer if that would reduce the expiration time. If
1201 * @timer is not enqueued it starts the timer.
1202 *
1203 * If @timer->function == NULL then the start operation is silently
1204 * discarded.
1205 *
1206 * Return:
1207 * * %0 - The timer was inactive and started or was in shutdown
1208 *	  state and the operation was discarded
1209 * * %1 - The timer was active and requeued to expire at @expires or
1210 *	  the timer was active and not modified because @expires
1211 *	  did not change the effective expiry time such that the
1212 *	  timer would expire earlier than already scheduled
1213 */
1214int timer_reduce(struct timer_list *timer, unsigned long expires)
1215{
1216	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1217}
1218EXPORT_SYMBOL(timer_reduce);
1219
1220/**
1221 * add_timer - Start a timer
1222 * @timer:	The timer to be started
1223 *
1224 * Start @timer to expire at @timer->expires in the future. @timer->expires
1225 * is the absolute expiry time measured in 'jiffies'. When the timer expires
1226 * timer->function(timer) will be invoked from soft interrupt context.
1227 *
1228 * The @timer->expires and @timer->function fields must be set prior
1229 * to calling this function.
1230 *
1231 * If @timer->function == NULL then the start operation is silently
1232 * discarded.
1233 *
1234 * If @timer->expires is already in the past @timer will be queued to
1235 * expire at the next timer tick.
1236 *
1237 * This can only operate on an inactive timer. Attempts to invoke this on
1238 * an active timer are rejected with a warning.
1239 */
1240void add_timer(struct timer_list *timer)
1241{
1242	if (WARN_ON_ONCE(timer_pending(timer)))
1243		return;
1244	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1245}
1246EXPORT_SYMBOL(add_timer);
1247
1248/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1249 * add_timer_on - Start a timer on a particular CPU
1250 * @timer:	The timer to be started
1251 * @cpu:	The CPU to start it on
1252 *
1253 * Same as add_timer() except that it starts the timer on the given CPU.
 
 
 
1254 *
1255 * See add_timer() for further details.
1256 */
1257void add_timer_on(struct timer_list *timer, int cpu)
1258{
1259	struct timer_base *new_base, *base;
1260	unsigned long flags;
1261
1262	debug_assert_init(timer);
1263
1264	if (WARN_ON_ONCE(timer_pending(timer)))
1265		return;
1266
 
 
 
1267	new_base = get_timer_cpu_base(timer->flags, cpu);
1268
1269	/*
1270	 * If @timer was on a different CPU, it should be migrated with the
1271	 * old base locked to prevent other operations proceeding with the
1272	 * wrong base locked.  See lock_timer_base().
1273	 */
1274	base = lock_timer_base(timer, &flags);
1275	/*
1276	 * Has @timer been shutdown? This needs to be evaluated while
1277	 * holding base lock to prevent a race against the shutdown code.
1278	 */
1279	if (!timer->function)
1280		goto out_unlock;
1281
1282	if (base != new_base) {
1283		timer->flags |= TIMER_MIGRATING;
1284
1285		raw_spin_unlock(&base->lock);
1286		base = new_base;
1287		raw_spin_lock(&base->lock);
1288		WRITE_ONCE(timer->flags,
1289			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1290	}
1291	forward_timer_base(base);
1292
1293	debug_timer_activate(timer);
1294	internal_add_timer(base, timer);
1295out_unlock:
1296	raw_spin_unlock_irqrestore(&base->lock, flags);
1297}
1298EXPORT_SYMBOL_GPL(add_timer_on);
1299
1300/**
1301 * __timer_delete - Internal function: Deactivate a timer
1302 * @timer:	The timer to be deactivated
1303 * @shutdown:	If true, this indicates that the timer is about to be
1304 *		shutdown permanently.
1305 *
1306 * If @shutdown is true then @timer->function is set to NULL under the
1307 * timer base lock which prevents further rearming of the time. In that
1308 * case any attempt to rearm @timer after this function returns will be
1309 * silently ignored.
1310 *
1311 * Return:
1312 * * %0 - The timer was not pending
1313 * * %1 - The timer was pending and deactivated
1314 */
1315static int __timer_delete(struct timer_list *timer, bool shutdown)
1316{
1317	struct timer_base *base;
1318	unsigned long flags;
1319	int ret = 0;
1320
1321	debug_assert_init(timer);
1322
1323	/*
1324	 * If @shutdown is set then the lock has to be taken whether the
1325	 * timer is pending or not to protect against a concurrent rearm
1326	 * which might hit between the lockless pending check and the lock
1327	 * aquisition. By taking the lock it is ensured that such a newly
1328	 * enqueued timer is dequeued and cannot end up with
1329	 * timer->function == NULL in the expiry code.
1330	 *
1331	 * If timer->function is currently executed, then this makes sure
1332	 * that the callback cannot requeue the timer.
1333	 */
1334	if (timer_pending(timer) || shutdown) {
1335		base = lock_timer_base(timer, &flags);
1336		ret = detach_if_pending(timer, base, true);
1337		if (shutdown)
1338			timer->function = NULL;
1339		raw_spin_unlock_irqrestore(&base->lock, flags);
1340	}
1341
1342	return ret;
1343}
1344
1345/**
1346 * timer_delete - Deactivate a timer
1347 * @timer:	The timer to be deactivated
1348 *
1349 * The function only deactivates a pending timer, but contrary to
1350 * timer_delete_sync() it does not take into account whether the timer's
1351 * callback function is concurrently executed on a different CPU or not.
1352 * It neither prevents rearming of the timer.  If @timer can be rearmed
1353 * concurrently then the return value of this function is meaningless.
1354 *
1355 * Return:
1356 * * %0 - The timer was not pending
1357 * * %1 - The timer was pending and deactivated
1358 */
1359int timer_delete(struct timer_list *timer)
1360{
1361	return __timer_delete(timer, false);
1362}
1363EXPORT_SYMBOL(timer_delete);
1364
1365/**
1366 * timer_shutdown - Deactivate a timer and prevent rearming
1367 * @timer:	The timer to be deactivated
1368 *
1369 * The function does not wait for an eventually running timer callback on a
1370 * different CPU but it prevents rearming of the timer. Any attempt to arm
1371 * @timer after this function returns will be silently ignored.
1372 *
1373 * This function is useful for teardown code and should only be used when
1374 * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1375 *
1376 * Return:
1377 * * %0 - The timer was not pending
1378 * * %1 - The timer was pending
1379 */
1380int timer_shutdown(struct timer_list *timer)
1381{
1382	return __timer_delete(timer, true);
1383}
1384EXPORT_SYMBOL_GPL(timer_shutdown);
1385
1386/**
1387 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1388 * @timer:	Timer to deactivate
1389 * @shutdown:	If true, this indicates that the timer is about to be
1390 *		shutdown permanently.
1391 *
1392 * If @shutdown is true then @timer->function is set to NULL under the
1393 * timer base lock which prevents further rearming of the timer. Any
1394 * attempt to rearm @timer after this function returns will be silently
1395 * ignored.
1396 *
1397 * This function cannot guarantee that the timer cannot be rearmed
1398 * right after dropping the base lock if @shutdown is false. That
1399 * needs to be prevented by the calling code if necessary.
1400 *
1401 * Return:
1402 * * %0  - The timer was not pending
1403 * * %1  - The timer was pending and deactivated
1404 * * %-1 - The timer callback function is running on a different CPU
1405 */
1406static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1407{
1408	struct timer_base *base;
1409	unsigned long flags;
1410	int ret = -1;
1411
1412	debug_assert_init(timer);
1413
1414	base = lock_timer_base(timer, &flags);
1415
1416	if (base->running_timer != timer)
1417		ret = detach_if_pending(timer, base, true);
1418	if (shutdown)
1419		timer->function = NULL;
1420
1421	raw_spin_unlock_irqrestore(&base->lock, flags);
1422
1423	return ret;
1424}
1425
1426/**
1427 * try_to_del_timer_sync - Try to deactivate a timer
1428 * @timer:	Timer to deactivate
1429 *
1430 * This function tries to deactivate a timer. On success the timer is not
1431 * queued and the timer callback function is not running on any CPU.
1432 *
1433 * This function does not guarantee that the timer cannot be rearmed right
1434 * after dropping the base lock. That needs to be prevented by the calling
1435 * code if necessary.
1436 *
1437 * Return:
1438 * * %0  - The timer was not pending
1439 * * %1  - The timer was pending and deactivated
1440 * * %-1 - The timer callback function is running on a different CPU
1441 */
1442int try_to_del_timer_sync(struct timer_list *timer)
1443{
1444	return __try_to_del_timer_sync(timer, false);
1445}
1446EXPORT_SYMBOL(try_to_del_timer_sync);
1447
1448#ifdef CONFIG_PREEMPT_RT
1449static __init void timer_base_init_expiry_lock(struct timer_base *base)
1450{
1451	spin_lock_init(&base->expiry_lock);
1452}
1453
1454static inline void timer_base_lock_expiry(struct timer_base *base)
1455{
1456	spin_lock(&base->expiry_lock);
1457}
1458
1459static inline void timer_base_unlock_expiry(struct timer_base *base)
1460{
1461	spin_unlock(&base->expiry_lock);
1462}
1463
1464/*
1465 * The counterpart to del_timer_wait_running().
1466 *
1467 * If there is a waiter for base->expiry_lock, then it was waiting for the
1468 * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1469 * the waiter to acquire the lock and make progress.
1470 */
1471static void timer_sync_wait_running(struct timer_base *base)
1472{
1473	if (atomic_read(&base->timer_waiters)) {
1474		raw_spin_unlock_irq(&base->lock);
1475		spin_unlock(&base->expiry_lock);
1476		spin_lock(&base->expiry_lock);
1477		raw_spin_lock_irq(&base->lock);
1478	}
1479}
1480
1481/*
1482 * This function is called on PREEMPT_RT kernels when the fast path
1483 * deletion of a timer failed because the timer callback function was
1484 * running.
1485 *
1486 * This prevents priority inversion, if the softirq thread on a remote CPU
1487 * got preempted, and it prevents a life lock when the task which tries to
1488 * delete a timer preempted the softirq thread running the timer callback
1489 * function.
1490 */
1491static void del_timer_wait_running(struct timer_list *timer)
1492{
1493	u32 tf;
1494
1495	tf = READ_ONCE(timer->flags);
1496	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1497		struct timer_base *base = get_timer_base(tf);
1498
1499		/*
1500		 * Mark the base as contended and grab the expiry lock,
1501		 * which is held by the softirq across the timer
1502		 * callback. Drop the lock immediately so the softirq can
1503		 * expire the next timer. In theory the timer could already
1504		 * be running again, but that's more than unlikely and just
1505		 * causes another wait loop.
1506		 */
1507		atomic_inc(&base->timer_waiters);
1508		spin_lock_bh(&base->expiry_lock);
1509		atomic_dec(&base->timer_waiters);
1510		spin_unlock_bh(&base->expiry_lock);
1511	}
1512}
1513#else
1514static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1515static inline void timer_base_lock_expiry(struct timer_base *base) { }
1516static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1517static inline void timer_sync_wait_running(struct timer_base *base) { }
1518static inline void del_timer_wait_running(struct timer_list *timer) { }
1519#endif
1520
1521/**
1522 * __timer_delete_sync - Internal function: Deactivate a timer and wait
1523 *			 for the handler to finish.
1524 * @timer:	The timer to be deactivated
1525 * @shutdown:	If true, @timer->function will be set to NULL under the
1526 *		timer base lock which prevents rearming of @timer
1527 *
1528 * If @shutdown is not set the timer can be rearmed later. If the timer can
1529 * be rearmed concurrently, i.e. after dropping the base lock then the
1530 * return value is meaningless.
1531 *
1532 * If @shutdown is set then @timer->function is set to NULL under timer
1533 * base lock which prevents rearming of the timer. Any attempt to rearm
1534 * a shutdown timer is silently ignored.
1535 *
1536 * If the timer should be reused after shutdown it has to be initialized
1537 * again.
1538 *
1539 * Return:
1540 * * %0	- The timer was not pending
1541 * * %1	- The timer was pending and deactivated
1542 */
1543static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1544{
1545	int ret;
1546
1547#ifdef CONFIG_LOCKDEP
1548	unsigned long flags;
1549
1550	/*
1551	 * If lockdep gives a backtrace here, please reference
1552	 * the synchronization rules above.
1553	 */
1554	local_irq_save(flags);
1555	lock_map_acquire(&timer->lockdep_map);
1556	lock_map_release(&timer->lockdep_map);
1557	local_irq_restore(flags);
1558#endif
1559	/*
1560	 * don't use it in hardirq context, because it
1561	 * could lead to deadlock.
1562	 */
1563	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1564
1565	/*
1566	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1567	 * del_timer_wait_running().
1568	 */
1569	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1570		lockdep_assert_preemption_enabled();
1571
1572	do {
1573		ret = __try_to_del_timer_sync(timer, shutdown);
1574
1575		if (unlikely(ret < 0)) {
1576			del_timer_wait_running(timer);
1577			cpu_relax();
1578		}
1579	} while (ret < 0);
1580
1581	return ret;
1582}
1583
1584/**
1585 * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1586 * @timer:	The timer to be deactivated
1587 *
1588 * Synchronization rules: Callers must prevent restarting of the timer,
1589 * otherwise this function is meaningless. It must not be called from
1590 * interrupt contexts unless the timer is an irqsafe one. The caller must
1591 * not hold locks which would prevent completion of the timer's callback
1592 * function. The timer's handler must not call add_timer_on(). Upon exit
1593 * the timer is not queued and the handler is not running on any CPU.
1594 *
1595 * For !irqsafe timers, the caller must not hold locks that are held in
1596 * interrupt context. Even if the lock has nothing to do with the timer in
1597 * question.  Here's why::
1598 *
1599 *    CPU0                             CPU1
1600 *    ----                             ----
1601 *                                     <SOFTIRQ>
1602 *                                       call_timer_fn();
1603 *                                       base->running_timer = mytimer;
1604 *    spin_lock_irq(somelock);
1605 *                                     <IRQ>
1606 *                                        spin_lock(somelock);
1607 *    timer_delete_sync(mytimer);
1608 *    while (base->running_timer == mytimer);
1609 *
1610 * Now timer_delete_sync() will never return and never release somelock.
1611 * The interrupt on the other CPU is waiting to grab somelock but it has
1612 * interrupted the softirq that CPU0 is waiting to finish.
1613 *
1614 * This function cannot guarantee that the timer is not rearmed again by
1615 * some concurrent or preempting code, right after it dropped the base
1616 * lock. If there is the possibility of a concurrent rearm then the return
1617 * value of the function is meaningless.
1618 *
1619 * If such a guarantee is needed, e.g. for teardown situations then use
1620 * timer_shutdown_sync() instead.
1621 *
1622 * Return:
1623 * * %0	- The timer was not pending
1624 * * %1	- The timer was pending and deactivated
1625 */
1626int timer_delete_sync(struct timer_list *timer)
1627{
1628	return __timer_delete_sync(timer, false);
1629}
1630EXPORT_SYMBOL(timer_delete_sync);
1631
1632/**
1633 * timer_shutdown_sync - Shutdown a timer and prevent rearming
1634 * @timer: The timer to be shutdown
1635 *
1636 * When the function returns it is guaranteed that:
1637 *   - @timer is not queued
1638 *   - The callback function of @timer is not running
1639 *   - @timer cannot be enqueued again. Any attempt to rearm
1640 *     @timer is silently ignored.
1641 *
1642 * See timer_delete_sync() for synchronization rules.
1643 *
1644 * This function is useful for final teardown of an infrastructure where
1645 * the timer is subject to a circular dependency problem.
1646 *
1647 * A common pattern for this is a timer and a workqueue where the timer can
1648 * schedule work and work can arm the timer. On shutdown the workqueue must
1649 * be destroyed and the timer must be prevented from rearming. Unless the
1650 * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1651 * there is no way to get this correct with timer_delete_sync().
1652 *
1653 * timer_shutdown_sync() is solving the problem. The correct ordering of
1654 * calls in this case is:
1655 *
1656 *	timer_shutdown_sync(&mything->timer);
1657 *	workqueue_destroy(&mything->workqueue);
1658 *
1659 * After this 'mything' can be safely freed.
1660 *
1661 * This obviously implies that the timer is not required to be functional
1662 * for the rest of the shutdown operation.
1663 *
1664 * Return:
1665 * * %0 - The timer was not pending
1666 * * %1 - The timer was pending
1667 */
1668int timer_shutdown_sync(struct timer_list *timer)
1669{
1670	return __timer_delete_sync(timer, true);
1671}
1672EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1673
1674static void call_timer_fn(struct timer_list *timer,
1675			  void (*fn)(struct timer_list *),
1676			  unsigned long baseclk)
1677{
1678	int count = preempt_count();
1679
1680#ifdef CONFIG_LOCKDEP
1681	/*
1682	 * It is permissible to free the timer from inside the
1683	 * function that is called from it, this we need to take into
1684	 * account for lockdep too. To avoid bogus "held lock freed"
1685	 * warnings as well as problems when looking into
1686	 * timer->lockdep_map, make a copy and use that here.
1687	 */
1688	struct lockdep_map lockdep_map;
1689
1690	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1691#endif
1692	/*
1693	 * Couple the lock chain with the lock chain at
1694	 * timer_delete_sync() by acquiring the lock_map around the fn()
1695	 * call here and in timer_delete_sync().
1696	 */
1697	lock_map_acquire(&lockdep_map);
1698
1699	trace_timer_expire_entry(timer, baseclk);
1700	fn(timer);
1701	trace_timer_expire_exit(timer);
1702
1703	lock_map_release(&lockdep_map);
1704
1705	if (count != preempt_count()) {
1706		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1707			  fn, count, preempt_count());
1708		/*
1709		 * Restore the preempt count. That gives us a decent
1710		 * chance to survive and extract information. If the
1711		 * callback kept a lock held, bad luck, but not worse
1712		 * than the BUG() we had.
1713		 */
1714		preempt_count_set(count);
1715	}
1716}
1717
1718static void expire_timers(struct timer_base *base, struct hlist_head *head)
1719{
1720	/*
1721	 * This value is required only for tracing. base->clk was
1722	 * incremented directly before expire_timers was called. But expiry
1723	 * is related to the old base->clk value.
1724	 */
1725	unsigned long baseclk = base->clk - 1;
1726
1727	while (!hlist_empty(head)) {
1728		struct timer_list *timer;
1729		void (*fn)(struct timer_list *);
1730
1731		timer = hlist_entry(head->first, struct timer_list, entry);
1732
1733		base->running_timer = timer;
1734		detach_timer(timer, true);
1735
1736		fn = timer->function;
1737
1738		if (WARN_ON_ONCE(!fn)) {
1739			/* Should never happen. Emphasis on should! */
1740			base->running_timer = NULL;
1741			continue;
1742		}
1743
1744		if (timer->flags & TIMER_IRQSAFE) {
1745			raw_spin_unlock(&base->lock);
1746			call_timer_fn(timer, fn, baseclk);
1747			raw_spin_lock(&base->lock);
1748			base->running_timer = NULL;
1749		} else {
1750			raw_spin_unlock_irq(&base->lock);
1751			call_timer_fn(timer, fn, baseclk);
1752			raw_spin_lock_irq(&base->lock);
1753			base->running_timer = NULL;
1754			timer_sync_wait_running(base);
1755		}
1756	}
1757}
1758
1759static int collect_expired_timers(struct timer_base *base,
1760				  struct hlist_head *heads)
1761{
1762	unsigned long clk = base->clk = base->next_expiry;
1763	struct hlist_head *vec;
1764	int i, levels = 0;
1765	unsigned int idx;
1766
1767	for (i = 0; i < LVL_DEPTH; i++) {
1768		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1769
1770		if (__test_and_clear_bit(idx, base->pending_map)) {
1771			vec = base->vectors + idx;
1772			hlist_move_list(vec, heads++);
1773			levels++;
1774		}
1775		/* Is it time to look at the next level? */
1776		if (clk & LVL_CLK_MASK)
1777			break;
1778		/* Shift clock for the next level granularity */
1779		clk >>= LVL_CLK_SHIFT;
1780	}
1781	return levels;
1782}
1783
1784/*
1785 * Find the next pending bucket of a level. Search from level start (@offset)
1786 * + @clk upwards and if nothing there, search from start of the level
1787 * (@offset) up to @offset + clk.
1788 */
1789static int next_pending_bucket(struct timer_base *base, unsigned offset,
1790			       unsigned clk)
1791{
1792	unsigned pos, start = offset + clk;
1793	unsigned end = offset + LVL_SIZE;
1794
1795	pos = find_next_bit(base->pending_map, end, start);
1796	if (pos < end)
1797		return pos - start;
1798
1799	pos = find_next_bit(base->pending_map, start, offset);
1800	return pos < start ? pos + LVL_SIZE - start : -1;
1801}
1802
1803/*
1804 * Search the first expiring timer in the various clock levels. Caller must
1805 * hold base->lock.
 
 
1806 */
1807static unsigned long __next_timer_interrupt(struct timer_base *base)
1808{
1809	unsigned long clk, next, adj;
1810	unsigned lvl, offset = 0;
1811
1812	next = base->clk + NEXT_TIMER_MAX_DELTA;
1813	clk = base->clk;
1814	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1815		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1816		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1817
1818		if (pos >= 0) {
1819			unsigned long tmp = clk + (unsigned long) pos;
1820
1821			tmp <<= LVL_SHIFT(lvl);
1822			if (time_before(tmp, next))
1823				next = tmp;
1824
1825			/*
1826			 * If the next expiration happens before we reach
1827			 * the next level, no need to check further.
1828			 */
1829			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1830				break;
1831		}
1832		/*
1833		 * Clock for the next level. If the current level clock lower
1834		 * bits are zero, we look at the next level as is. If not we
1835		 * need to advance it by one because that's going to be the
1836		 * next expiring bucket in that level. base->clk is the next
1837		 * expiring jiffie. So in case of:
1838		 *
1839		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1840		 *  0    0    0    0    0    0
1841		 *
1842		 * we have to look at all levels @index 0. With
1843		 *
1844		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1845		 *  0    0    0    0    0    2
1846		 *
1847		 * LVL0 has the next expiring bucket @index 2. The upper
1848		 * levels have the next expiring bucket @index 1.
1849		 *
1850		 * In case that the propagation wraps the next level the same
1851		 * rules apply:
1852		 *
1853		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1854		 *  0    0    0    0    F    2
1855		 *
1856		 * So after looking at LVL0 we get:
1857		 *
1858		 * LVL5 LVL4 LVL3 LVL2 LVL1
1859		 *  0    0    0    1    0
1860		 *
1861		 * So no propagation from LVL1 to LVL2 because that happened
1862		 * with the add already, but then we need to propagate further
1863		 * from LVL2 to LVL3.
1864		 *
1865		 * So the simple check whether the lower bits of the current
1866		 * level are 0 or not is sufficient for all cases.
1867		 */
1868		adj = lvl_clk ? 1 : 0;
1869		clk >>= LVL_CLK_SHIFT;
1870		clk += adj;
1871	}
1872
 
1873	base->next_expiry_recalc = false;
1874	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1875
1876	return next;
1877}
1878
1879#ifdef CONFIG_NO_HZ_COMMON
1880/*
1881 * Check, if the next hrtimer event is before the next timer wheel
1882 * event:
1883 */
1884static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1885{
1886	u64 nextevt = hrtimer_get_next_event();
1887
1888	/*
1889	 * If high resolution timers are enabled
1890	 * hrtimer_get_next_event() returns KTIME_MAX.
1891	 */
1892	if (expires <= nextevt)
1893		return expires;
1894
1895	/*
1896	 * If the next timer is already expired, return the tick base
1897	 * time so the tick is fired immediately.
1898	 */
1899	if (nextevt <= basem)
1900		return basem;
1901
1902	/*
1903	 * Round up to the next jiffie. High resolution timers are
1904	 * off, so the hrtimers are expired in the tick and we need to
1905	 * make sure that this tick really expires the timer to avoid
1906	 * a ping pong of the nohz stop code.
1907	 *
1908	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1909	 */
1910	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1911}
1912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913/**
1914 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1915 * @basej:	base time jiffies
1916 * @basem:	base time clock monotonic
 
 
 
 
 
 
 
1917 *
1918 * Returns the tick aligned clock monotonic time of the next pending
1919 * timer or KTIME_MAX if no timer is pending.
1920 */
1921u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922{
1923	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1924	u64 expires = KTIME_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925	unsigned long nextevt;
 
1926
1927	/*
1928	 * Pretend that there is no timer pending if the cpu is offline.
1929	 * Possible pending timers will be migrated later to an active cpu.
1930	 */
1931	if (cpu_is_offline(smp_processor_id()))
1932		return expires;
 
 
 
1933
1934	raw_spin_lock(&base->lock);
1935	if (base->next_expiry_recalc)
1936		base->next_expiry = __next_timer_interrupt(base);
1937	nextevt = base->next_expiry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1938
1939	/*
1940	 * We have a fresh next event. Check whether we can forward the
1941	 * base. We can only do that when @basej is past base->clk
1942	 * otherwise we might rewind base->clk.
1943	 */
1944	if (time_after(basej, base->clk)) {
1945		if (time_after(nextevt, basej))
1946			base->clk = basej;
1947		else if (time_after(nextevt, base->clk))
1948			base->clk = nextevt;
1949	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950
1951	if (time_before_eq(nextevt, basej)) {
1952		expires = basem;
1953		base->is_idle = false;
1954	} else {
1955		if (base->timers_pending)
1956			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1957		/*
1958		 * If we expect to sleep more than a tick, mark the base idle.
1959		 * Also the tick is stopped so any added timer must forward
1960		 * the base clk itself to keep granularity small. This idle
1961		 * logic is only maintained for the BASE_STD base, deferrable
1962		 * timers may still see large granularity skew (by design).
 
1963		 */
1964		if ((expires - basem) > TICK_NSEC)
1965			base->is_idle = true;
1966	}
1967	raw_spin_unlock(&base->lock);
1968
1969	return cmp_next_hrtimer_event(basem, expires);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1970}
1971
1972/**
1973 * timer_clear_idle - Clear the idle state of the timer base
1974 *
1975 * Called with interrupts disabled
1976 */
1977void timer_clear_idle(void)
1978{
1979	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1980
1981	/*
1982	 * We do this unlocked. The worst outcome is a remote enqueue sending
1983	 * a pointless IPI, but taking the lock would just make the window for
1984	 * sending the IPI a few instructions smaller for the cost of taking
1985	 * the lock in the exit from idle path.
1986	 */
1987	base->is_idle = false;
 
 
 
 
 
 
 
1988}
1989#endif
1990
1991/**
1992 * __run_timers - run all expired timers (if any) on this CPU.
1993 * @base: the timer vector to be processed.
1994 */
1995static inline void __run_timers(struct timer_base *base)
1996{
1997	struct hlist_head heads[LVL_DEPTH];
1998	int levels;
1999
2000	if (time_before(jiffies, base->next_expiry))
2001		return;
2002
2003	timer_base_lock_expiry(base);
2004	raw_spin_lock_irq(&base->lock);
2005
2006	while (time_after_eq(jiffies, base->clk) &&
2007	       time_after_eq(jiffies, base->next_expiry)) {
2008		levels = collect_expired_timers(base, heads);
2009		/*
2010		 * The two possible reasons for not finding any expired
2011		 * timer at this clk are that all matching timers have been
2012		 * dequeued or no timer has been queued since
2013		 * base::next_expiry was set to base::clk +
2014		 * NEXT_TIMER_MAX_DELTA.
2015		 */
2016		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2017			     && base->timers_pending);
 
 
 
 
2018		base->clk++;
2019		base->next_expiry = __next_timer_interrupt(base);
2020
2021		while (levels--)
2022			expire_timers(base, heads + levels);
2023	}
 
 
 
 
 
 
 
 
 
 
2024	raw_spin_unlock_irq(&base->lock);
2025	timer_base_unlock_expiry(base);
2026}
2027
 
 
 
 
 
 
 
2028/*
2029 * This function runs timers and the timer-tq in bottom half context.
2030 */
2031static __latent_entropy void run_timer_softirq(struct softirq_action *h)
2032{
2033	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 
 
 
2034
2035	__run_timers(base);
2036	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
2037		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
2038}
2039
2040/*
2041 * Called by the local, per-CPU timer interrupt on SMP.
2042 */
2043static void run_local_timers(void)
2044{
2045	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
2046
2047	hrtimer_run_queues();
2048	/* Raise the softirq only if required. */
2049	if (time_before(jiffies, base->next_expiry)) {
2050		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
2051			return;
2052		/* CPU is awake, so check the deferrable base. */
2053		base++;
2054		if (time_before(jiffies, base->next_expiry))
2055			return;
 
2056	}
2057	raise_softirq(TIMER_SOFTIRQ);
2058}
2059
2060/*
2061 * Called from the timer interrupt handler to charge one tick to the current
2062 * process.  user_tick is 1 if the tick is user time, 0 for system.
2063 */
2064void update_process_times(int user_tick)
2065{
2066	struct task_struct *p = current;
2067
2068	/* Note: this timer irq context must be accounted for as well. */
2069	account_process_tick(p, user_tick);
2070	run_local_timers();
2071	rcu_sched_clock_irq(user_tick);
2072#ifdef CONFIG_IRQ_WORK
2073	if (in_irq())
2074		irq_work_tick();
2075#endif
2076	scheduler_tick();
2077	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2078		run_posix_cpu_timers();
2079}
2080
2081/*
2082 * Since schedule_timeout()'s timer is defined on the stack, it must store
2083 * the target task on the stack as well.
2084 */
2085struct process_timer {
2086	struct timer_list timer;
2087	struct task_struct *task;
2088};
2089
2090static void process_timeout(struct timer_list *t)
2091{
2092	struct process_timer *timeout = from_timer(timeout, t, timer);
2093
2094	wake_up_process(timeout->task);
2095}
2096
2097/**
2098 * schedule_timeout - sleep until timeout
2099 * @timeout: timeout value in jiffies
2100 *
2101 * Make the current task sleep until @timeout jiffies have elapsed.
2102 * The function behavior depends on the current task state
2103 * (see also set_current_state() description):
2104 *
2105 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
2106 * at all. That happens because sched_submit_work() does nothing for
2107 * tasks in %TASK_RUNNING state.
2108 *
2109 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
2110 * pass before the routine returns unless the current task is explicitly
2111 * woken up, (e.g. by wake_up_process()).
2112 *
2113 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2114 * delivered to the current task or the current task is explicitly woken
2115 * up.
2116 *
2117 * The current task state is guaranteed to be %TASK_RUNNING when this
2118 * routine returns.
2119 *
2120 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
2121 * the CPU away without a bound on the timeout. In this case the return
2122 * value will be %MAX_SCHEDULE_TIMEOUT.
2123 *
2124 * Returns 0 when the timer has expired otherwise the remaining time in
2125 * jiffies will be returned. In all cases the return value is guaranteed
2126 * to be non-negative.
2127 */
2128signed long __sched schedule_timeout(signed long timeout)
2129{
2130	struct process_timer timer;
2131	unsigned long expire;
2132
2133	switch (timeout)
2134	{
2135	case MAX_SCHEDULE_TIMEOUT:
2136		/*
2137		 * These two special cases are useful to be comfortable
2138		 * in the caller. Nothing more. We could take
2139		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
2140		 * but I' d like to return a valid offset (>=0) to allow
2141		 * the caller to do everything it want with the retval.
2142		 */
2143		schedule();
2144		goto out;
2145	default:
2146		/*
2147		 * Another bit of PARANOID. Note that the retval will be
2148		 * 0 since no piece of kernel is supposed to do a check
2149		 * for a negative retval of schedule_timeout() (since it
2150		 * should never happens anyway). You just have the printk()
2151		 * that will tell you if something is gone wrong and where.
2152		 */
2153		if (timeout < 0) {
2154			printk(KERN_ERR "schedule_timeout: wrong timeout "
2155				"value %lx\n", timeout);
2156			dump_stack();
2157			__set_current_state(TASK_RUNNING);
2158			goto out;
2159		}
2160	}
2161
2162	expire = timeout + jiffies;
2163
2164	timer.task = current;
2165	timer_setup_on_stack(&timer.timer, process_timeout, 0);
2166	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2167	schedule();
2168	del_timer_sync(&timer.timer);
2169
2170	/* Remove the timer from the object tracker */
2171	destroy_timer_on_stack(&timer.timer);
2172
2173	timeout = expire - jiffies;
2174
2175 out:
2176	return timeout < 0 ? 0 : timeout;
2177}
2178EXPORT_SYMBOL(schedule_timeout);
2179
2180/*
2181 * We can use __set_current_state() here because schedule_timeout() calls
2182 * schedule() unconditionally.
2183 */
2184signed long __sched schedule_timeout_interruptible(signed long timeout)
2185{
2186	__set_current_state(TASK_INTERRUPTIBLE);
2187	return schedule_timeout(timeout);
2188}
2189EXPORT_SYMBOL(schedule_timeout_interruptible);
2190
2191signed long __sched schedule_timeout_killable(signed long timeout)
2192{
2193	__set_current_state(TASK_KILLABLE);
2194	return schedule_timeout(timeout);
2195}
2196EXPORT_SYMBOL(schedule_timeout_killable);
2197
2198signed long __sched schedule_timeout_uninterruptible(signed long timeout)
2199{
2200	__set_current_state(TASK_UNINTERRUPTIBLE);
2201	return schedule_timeout(timeout);
2202}
2203EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2204
2205/*
2206 * Like schedule_timeout_uninterruptible(), except this task will not contribute
2207 * to load average.
2208 */
2209signed long __sched schedule_timeout_idle(signed long timeout)
2210{
2211	__set_current_state(TASK_IDLE);
2212	return schedule_timeout(timeout);
2213}
2214EXPORT_SYMBOL(schedule_timeout_idle);
2215
2216#ifdef CONFIG_HOTPLUG_CPU
2217static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2218{
2219	struct timer_list *timer;
2220	int cpu = new_base->cpu;
2221
2222	while (!hlist_empty(head)) {
2223		timer = hlist_entry(head->first, struct timer_list, entry);
2224		detach_timer(timer, false);
2225		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2226		internal_add_timer(new_base, timer);
2227	}
2228}
2229
2230int timers_prepare_cpu(unsigned int cpu)
2231{
2232	struct timer_base *base;
2233	int b;
2234
2235	for (b = 0; b < NR_BASES; b++) {
2236		base = per_cpu_ptr(&timer_bases[b], cpu);
2237		base->clk = jiffies;
2238		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2239		base->next_expiry_recalc = false;
2240		base->timers_pending = false;
2241		base->is_idle = false;
2242	}
2243	return 0;
2244}
2245
2246int timers_dead_cpu(unsigned int cpu)
2247{
2248	struct timer_base *old_base;
2249	struct timer_base *new_base;
2250	int b, i;
2251
2252	for (b = 0; b < NR_BASES; b++) {
2253		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2254		new_base = get_cpu_ptr(&timer_bases[b]);
2255		/*
2256		 * The caller is globally serialized and nobody else
2257		 * takes two locks at once, deadlock is not possible.
2258		 */
2259		raw_spin_lock_irq(&new_base->lock);
2260		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2261
2262		/*
2263		 * The current CPUs base clock might be stale. Update it
2264		 * before moving the timers over.
2265		 */
2266		forward_timer_base(new_base);
2267
2268		WARN_ON_ONCE(old_base->running_timer);
2269		old_base->running_timer = NULL;
2270
2271		for (i = 0; i < WHEEL_SIZE; i++)
2272			migrate_timer_list(new_base, old_base->vectors + i);
2273
2274		raw_spin_unlock(&old_base->lock);
2275		raw_spin_unlock_irq(&new_base->lock);
2276		put_cpu_ptr(&timer_bases);
2277	}
2278	return 0;
2279}
2280
2281#endif /* CONFIG_HOTPLUG_CPU */
2282
2283static void __init init_timer_cpu(int cpu)
2284{
2285	struct timer_base *base;
2286	int i;
2287
2288	for (i = 0; i < NR_BASES; i++) {
2289		base = per_cpu_ptr(&timer_bases[i], cpu);
2290		base->cpu = cpu;
2291		raw_spin_lock_init(&base->lock);
2292		base->clk = jiffies;
2293		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2294		timer_base_init_expiry_lock(base);
2295	}
2296}
2297
2298static void __init init_timer_cpus(void)
2299{
2300	int cpu;
2301
2302	for_each_possible_cpu(cpu)
2303		init_timer_cpu(cpu);
2304}
2305
2306void __init init_timers(void)
2307{
2308	init_timer_cpus();
2309	posix_cputimers_init_work();
2310	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2311}
2312
2313/**
2314 * msleep - sleep safely even with waitqueue interruptions
2315 * @msecs: Time in milliseconds to sleep for
2316 */
2317void msleep(unsigned int msecs)
2318{
2319	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2320
2321	while (timeout)
2322		timeout = schedule_timeout_uninterruptible(timeout);
2323}
2324
2325EXPORT_SYMBOL(msleep);
2326
2327/**
2328 * msleep_interruptible - sleep waiting for signals
2329 * @msecs: Time in milliseconds to sleep for
2330 */
2331unsigned long msleep_interruptible(unsigned int msecs)
2332{
2333	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2334
2335	while (timeout && !signal_pending(current))
2336		timeout = schedule_timeout_interruptible(timeout);
2337	return jiffies_to_msecs(timeout);
2338}
2339
2340EXPORT_SYMBOL(msleep_interruptible);
2341
2342/**
2343 * usleep_range_state - Sleep for an approximate time in a given state
2344 * @min:	Minimum time in usecs to sleep
2345 * @max:	Maximum time in usecs to sleep
2346 * @state:	State of the current task that will be while sleeping
2347 *
2348 * In non-atomic context where the exact wakeup time is flexible, use
2349 * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2350 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2351 * power usage by allowing hrtimers to take advantage of an already-
2352 * scheduled interrupt instead of scheduling a new one just for this sleep.
2353 */
2354void __sched usleep_range_state(unsigned long min, unsigned long max,
2355				unsigned int state)
2356{
2357	ktime_t exp = ktime_add_us(ktime_get(), min);
2358	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2359
2360	for (;;) {
2361		__set_current_state(state);
2362		/* Do not return before the requested sleep time has elapsed */
2363		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2364			break;
2365	}
2366}
2367EXPORT_SYMBOL(usleep_range_state);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46#include <linux/random.h>
  47#include <linux/sysctl.h>
  48
  49#include <linux/uaccess.h>
  50#include <asm/unistd.h>
  51#include <asm/div64.h>
  52#include <asm/timex.h>
  53#include <asm/io.h>
  54
  55#include "tick-internal.h"
  56#include "timer_migration.h"
  57
  58#define CREATE_TRACE_POINTS
  59#include <trace/events/timer.h>
  60
  61__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  62
  63EXPORT_SYMBOL(jiffies_64);
  64
  65/*
  66 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  67 * LVL_SIZE buckets. Each level is driven by its own clock and therefore each
  68 * level has a different granularity.
  69 *
  70 * The level granularity is:		LVL_CLK_DIV ^ level
  71 * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
  72 *
  73 * The array level of a newly armed timer depends on the relative expiry
  74 * time. The farther the expiry time is away the higher the array level and
  75 * therefore the granularity becomes.
  76 *
  77 * Contrary to the original timer wheel implementation, which aims for 'exact'
  78 * expiry of the timers, this implementation removes the need for recascading
  79 * the timers into the lower array levels. The previous 'classic' timer wheel
  80 * implementation of the kernel already violated the 'exact' expiry by adding
  81 * slack to the expiry time to provide batched expiration. The granularity
  82 * levels provide implicit batching.
  83 *
  84 * This is an optimization of the original timer wheel implementation for the
  85 * majority of the timer wheel use cases: timeouts. The vast majority of
  86 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  87 * the timeout expires it indicates that normal operation is disturbed, so it
  88 * does not matter much whether the timeout comes with a slight delay.
  89 *
  90 * The only exception to this are networking timers with a small expiry
  91 * time. They rely on the granularity. Those fit into the first wheel level,
  92 * which has HZ granularity.
  93 *
  94 * We don't have cascading anymore. timers with a expiry time above the
  95 * capacity of the last wheel level are force expired at the maximum timeout
  96 * value of the last wheel level. From data sampling we know that the maximum
  97 * value observed is 5 days (network connection tracking), so this should not
  98 * be an issue.
  99 *
 100 * The currently chosen array constants values are a good compromise between
 101 * array size and granularity.
 102 *
 103 * This results in the following granularity and range levels:
 104 *
 105 * HZ 1000 steps
 106 * Level Offset  Granularity            Range
 107 *  0      0         1 ms                0 ms -         63 ms
 108 *  1     64         8 ms               64 ms -        511 ms
 109 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 110 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 111 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 112 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 113 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 114 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 115 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 116 *
 117 * HZ  300
 118 * Level Offset  Granularity            Range
 119 *  0	   0         3 ms                0 ms -        210 ms
 120 *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 121 *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 122 *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 123 *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 124 *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 125 *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 126 *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 127 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 128 *
 129 * HZ  250
 130 * Level Offset  Granularity            Range
 131 *  0	   0         4 ms                0 ms -        255 ms
 132 *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 133 *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 134 *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 135 *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 136 *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 137 *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 138 *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 139 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 140 *
 141 * HZ  100
 142 * Level Offset  Granularity            Range
 143 *  0	   0         10 ms               0 ms -        630 ms
 144 *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 145 *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 146 *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 147 *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 148 *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 149 *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 150 *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 151 */
 152
 153/* Clock divisor for the next level */
 154#define LVL_CLK_SHIFT	3
 155#define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
 156#define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
 157#define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
 158#define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
 159
 160/*
 161 * The time start value for each level to select the bucket at enqueue
 162 * time. We start from the last possible delta of the previous level
 163 * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
 164 */
 165#define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 166
 167/* Size of each clock level */
 168#define LVL_BITS	6
 169#define LVL_SIZE	(1UL << LVL_BITS)
 170#define LVL_MASK	(LVL_SIZE - 1)
 171#define LVL_OFFS(n)	((n) * LVL_SIZE)
 172
 173/* Level depth */
 174#if HZ > 100
 175# define LVL_DEPTH	9
 176# else
 177# define LVL_DEPTH	8
 178#endif
 179
 180/* The cutoff (max. capacity of the wheel) */
 181#define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
 182#define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 183
 184/*
 185 * The resulting wheel size. If NOHZ is configured we allocate two
 186 * wheels so we have a separate storage for the deferrable timers.
 187 */
 188#define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
 189
 190#ifdef CONFIG_NO_HZ_COMMON
 191/*
 192 * If multiple bases need to be locked, use the base ordering for lock
 193 * nesting, i.e. lowest number first.
 194 */
 195# define NR_BASES	3
 196# define BASE_LOCAL	0
 197# define BASE_GLOBAL	1
 198# define BASE_DEF	2
 199#else
 200# define NR_BASES	1
 201# define BASE_LOCAL	0
 202# define BASE_GLOBAL	0
 203# define BASE_DEF	0
 204#endif
 205
 206/**
 207 * struct timer_base - Per CPU timer base (number of base depends on config)
 208 * @lock:		Lock protecting the timer_base
 209 * @running_timer:	When expiring timers, the lock is dropped. To make
 210 *			sure not to race against deleting/modifying a
 211 *			currently running timer, the pointer is set to the
 212 *			timer, which expires at the moment. If no timer is
 213 *			running, the pointer is NULL.
 214 * @expiry_lock:	PREEMPT_RT only: Lock is taken in softirq around
 215 *			timer expiry callback execution and when trying to
 216 *			delete a running timer and it wasn't successful in
 217 *			the first glance. It prevents priority inversion
 218 *			when callback was preempted on a remote CPU and a
 219 *			caller tries to delete the running timer. It also
 220 *			prevents a life lock, when the task which tries to
 221 *			delete a timer preempted the softirq thread which
 222 *			is running the timer callback function.
 223 * @timer_waiters:	PREEMPT_RT only: Tells, if there is a waiter
 224 *			waiting for the end of the timer callback function
 225 *			execution.
 226 * @clk:		clock of the timer base; is updated before enqueue
 227 *			of a timer; during expiry, it is 1 offset ahead of
 228 *			jiffies to avoid endless requeuing to current
 229 *			jiffies
 230 * @next_expiry:	expiry value of the first timer; it is updated when
 231 *			finding the next timer and during enqueue; the
 232 *			value is not valid, when next_expiry_recalc is set
 233 * @cpu:		Number of CPU the timer base belongs to
 234 * @next_expiry_recalc: States, whether a recalculation of next_expiry is
 235 *			required. Value is set true, when a timer was
 236 *			deleted.
 237 * @is_idle:		Is set, when timer_base is idle. It is triggered by NOHZ
 238 *			code. This state is only used in standard
 239 *			base. Deferrable timers, which are enqueued remotely
 240 *			never wake up an idle CPU. So no matter of supporting it
 241 *			for this base.
 242 * @timers_pending:	Is set, when a timer is pending in the base. It is only
 243 *			reliable when next_expiry_recalc is not set.
 244 * @pending_map:	bitmap of the timer wheel; each bit reflects a
 245 *			bucket of the wheel. When a bit is set, at least a
 246 *			single timer is enqueued in the related bucket.
 247 * @vectors:		Array of lists; Each array member reflects a bucket
 248 *			of the timer wheel. The list contains all timers
 249 *			which are enqueued into a specific bucket.
 250 */
 251struct timer_base {
 252	raw_spinlock_t		lock;
 253	struct timer_list	*running_timer;
 254#ifdef CONFIG_PREEMPT_RT
 255	spinlock_t		expiry_lock;
 256	atomic_t		timer_waiters;
 257#endif
 258	unsigned long		clk;
 259	unsigned long		next_expiry;
 260	unsigned int		cpu;
 261	bool			next_expiry_recalc;
 262	bool			is_idle;
 263	bool			timers_pending;
 264	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 265	struct hlist_head	vectors[WHEEL_SIZE];
 266} ____cacheline_aligned;
 267
 268static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 269
 270#ifdef CONFIG_NO_HZ_COMMON
 271
 272static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 273static DEFINE_MUTEX(timer_keys_mutex);
 274
 275static void timer_update_keys(struct work_struct *work);
 276static DECLARE_WORK(timer_update_work, timer_update_keys);
 277
 278#ifdef CONFIG_SMP
 279static unsigned int sysctl_timer_migration = 1;
 280
 281DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 282
 283static void timers_update_migration(void)
 284{
 285	if (sysctl_timer_migration && tick_nohz_active)
 286		static_branch_enable(&timers_migration_enabled);
 287	else
 288		static_branch_disable(&timers_migration_enabled);
 289}
 290
 291#ifdef CONFIG_SYSCTL
 292static int timer_migration_handler(struct ctl_table *table, int write,
 293			    void *buffer, size_t *lenp, loff_t *ppos)
 294{
 295	int ret;
 296
 297	mutex_lock(&timer_keys_mutex);
 298	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 299	if (!ret && write)
 300		timers_update_migration();
 301	mutex_unlock(&timer_keys_mutex);
 302	return ret;
 303}
 304
 305static struct ctl_table timer_sysctl[] = {
 306	{
 307		.procname	= "timer_migration",
 308		.data		= &sysctl_timer_migration,
 309		.maxlen		= sizeof(unsigned int),
 310		.mode		= 0644,
 311		.proc_handler	= timer_migration_handler,
 312		.extra1		= SYSCTL_ZERO,
 313		.extra2		= SYSCTL_ONE,
 314	},
 315	{}
 316};
 317
 318static int __init timer_sysctl_init(void)
 319{
 320	register_sysctl("kernel", timer_sysctl);
 321	return 0;
 322}
 323device_initcall(timer_sysctl_init);
 324#endif /* CONFIG_SYSCTL */
 325#else /* CONFIG_SMP */
 326static inline void timers_update_migration(void) { }
 327#endif /* !CONFIG_SMP */
 328
 329static void timer_update_keys(struct work_struct *work)
 330{
 331	mutex_lock(&timer_keys_mutex);
 332	timers_update_migration();
 333	static_branch_enable(&timers_nohz_active);
 334	mutex_unlock(&timer_keys_mutex);
 335}
 336
 337void timers_update_nohz(void)
 338{
 339	schedule_work(&timer_update_work);
 340}
 341
 342static inline bool is_timers_nohz_active(void)
 343{
 344	return static_branch_unlikely(&timers_nohz_active);
 345}
 346#else
 347static inline bool is_timers_nohz_active(void) { return false; }
 348#endif /* NO_HZ_COMMON */
 349
 350static unsigned long round_jiffies_common(unsigned long j, int cpu,
 351		bool force_up)
 352{
 353	int rem;
 354	unsigned long original = j;
 355
 356	/*
 357	 * We don't want all cpus firing their timers at once hitting the
 358	 * same lock or cachelines, so we skew each extra cpu with an extra
 359	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 360	 * already did this.
 361	 * The skew is done by adding 3*cpunr, then round, then subtract this
 362	 * extra offset again.
 363	 */
 364	j += cpu * 3;
 365
 366	rem = j % HZ;
 367
 368	/*
 369	 * If the target jiffie is just after a whole second (which can happen
 370	 * due to delays of the timer irq, long irq off times etc etc) then
 371	 * we should round down to the whole second, not up. Use 1/4th second
 372	 * as cutoff for this rounding as an extreme upper bound for this.
 373	 * But never round down if @force_up is set.
 374	 */
 375	if (rem < HZ/4 && !force_up) /* round down */
 376		j = j - rem;
 377	else /* round up */
 378		j = j - rem + HZ;
 379
 380	/* now that we have rounded, subtract the extra skew again */
 381	j -= cpu * 3;
 382
 383	/*
 384	 * Make sure j is still in the future. Otherwise return the
 385	 * unmodified value.
 386	 */
 387	return time_is_after_jiffies(j) ? j : original;
 388}
 389
 390/**
 391 * __round_jiffies - function to round jiffies to a full second
 392 * @j: the time in (absolute) jiffies that should be rounded
 393 * @cpu: the processor number on which the timeout will happen
 394 *
 395 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 396 * up or down to (approximately) full seconds. This is useful for timers
 397 * for which the exact time they fire does not matter too much, as long as
 398 * they fire approximately every X seconds.
 399 *
 400 * By rounding these timers to whole seconds, all such timers will fire
 401 * at the same time, rather than at various times spread out. The goal
 402 * of this is to have the CPU wake up less, which saves power.
 403 *
 404 * The exact rounding is skewed for each processor to avoid all
 405 * processors firing at the exact same time, which could lead
 406 * to lock contention or spurious cache line bouncing.
 407 *
 408 * The return value is the rounded version of the @j parameter.
 409 */
 410unsigned long __round_jiffies(unsigned long j, int cpu)
 411{
 412	return round_jiffies_common(j, cpu, false);
 413}
 414EXPORT_SYMBOL_GPL(__round_jiffies);
 415
 416/**
 417 * __round_jiffies_relative - function to round jiffies to a full second
 418 * @j: the time in (relative) jiffies that should be rounded
 419 * @cpu: the processor number on which the timeout will happen
 420 *
 421 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 422 * up or down to (approximately) full seconds. This is useful for timers
 423 * for which the exact time they fire does not matter too much, as long as
 424 * they fire approximately every X seconds.
 425 *
 426 * By rounding these timers to whole seconds, all such timers will fire
 427 * at the same time, rather than at various times spread out. The goal
 428 * of this is to have the CPU wake up less, which saves power.
 429 *
 430 * The exact rounding is skewed for each processor to avoid all
 431 * processors firing at the exact same time, which could lead
 432 * to lock contention or spurious cache line bouncing.
 433 *
 434 * The return value is the rounded version of the @j parameter.
 435 */
 436unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 437{
 438	unsigned long j0 = jiffies;
 439
 440	/* Use j0 because jiffies might change while we run */
 441	return round_jiffies_common(j + j0, cpu, false) - j0;
 442}
 443EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 444
 445/**
 446 * round_jiffies - function to round jiffies to a full second
 447 * @j: the time in (absolute) jiffies that should be rounded
 448 *
 449 * round_jiffies() rounds an absolute time in the future (in jiffies)
 450 * up or down to (approximately) full seconds. This is useful for timers
 451 * for which the exact time they fire does not matter too much, as long as
 452 * they fire approximately every X seconds.
 453 *
 454 * By rounding these timers to whole seconds, all such timers will fire
 455 * at the same time, rather than at various times spread out. The goal
 456 * of this is to have the CPU wake up less, which saves power.
 457 *
 458 * The return value is the rounded version of the @j parameter.
 459 */
 460unsigned long round_jiffies(unsigned long j)
 461{
 462	return round_jiffies_common(j, raw_smp_processor_id(), false);
 463}
 464EXPORT_SYMBOL_GPL(round_jiffies);
 465
 466/**
 467 * round_jiffies_relative - function to round jiffies to a full second
 468 * @j: the time in (relative) jiffies that should be rounded
 469 *
 470 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 471 * up or down to (approximately) full seconds. This is useful for timers
 472 * for which the exact time they fire does not matter too much, as long as
 473 * they fire approximately every X seconds.
 474 *
 475 * By rounding these timers to whole seconds, all such timers will fire
 476 * at the same time, rather than at various times spread out. The goal
 477 * of this is to have the CPU wake up less, which saves power.
 478 *
 479 * The return value is the rounded version of the @j parameter.
 480 */
 481unsigned long round_jiffies_relative(unsigned long j)
 482{
 483	return __round_jiffies_relative(j, raw_smp_processor_id());
 484}
 485EXPORT_SYMBOL_GPL(round_jiffies_relative);
 486
 487/**
 488 * __round_jiffies_up - function to round jiffies up to a full second
 489 * @j: the time in (absolute) jiffies that should be rounded
 490 * @cpu: the processor number on which the timeout will happen
 491 *
 492 * This is the same as __round_jiffies() except that it will never
 493 * round down.  This is useful for timeouts for which the exact time
 494 * of firing does not matter too much, as long as they don't fire too
 495 * early.
 496 */
 497unsigned long __round_jiffies_up(unsigned long j, int cpu)
 498{
 499	return round_jiffies_common(j, cpu, true);
 500}
 501EXPORT_SYMBOL_GPL(__round_jiffies_up);
 502
 503/**
 504 * __round_jiffies_up_relative - function to round jiffies up to a full second
 505 * @j: the time in (relative) jiffies that should be rounded
 506 * @cpu: the processor number on which the timeout will happen
 507 *
 508 * This is the same as __round_jiffies_relative() except that it will never
 509 * round down.  This is useful for timeouts for which the exact time
 510 * of firing does not matter too much, as long as they don't fire too
 511 * early.
 512 */
 513unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 514{
 515	unsigned long j0 = jiffies;
 516
 517	/* Use j0 because jiffies might change while we run */
 518	return round_jiffies_common(j + j0, cpu, true) - j0;
 519}
 520EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 521
 522/**
 523 * round_jiffies_up - function to round jiffies up to a full second
 524 * @j: the time in (absolute) jiffies that should be rounded
 525 *
 526 * This is the same as round_jiffies() except that it will never
 527 * round down.  This is useful for timeouts for which the exact time
 528 * of firing does not matter too much, as long as they don't fire too
 529 * early.
 530 */
 531unsigned long round_jiffies_up(unsigned long j)
 532{
 533	return round_jiffies_common(j, raw_smp_processor_id(), true);
 534}
 535EXPORT_SYMBOL_GPL(round_jiffies_up);
 536
 537/**
 538 * round_jiffies_up_relative - function to round jiffies up to a full second
 539 * @j: the time in (relative) jiffies that should be rounded
 540 *
 541 * This is the same as round_jiffies_relative() except that it will never
 542 * round down.  This is useful for timeouts for which the exact time
 543 * of firing does not matter too much, as long as they don't fire too
 544 * early.
 545 */
 546unsigned long round_jiffies_up_relative(unsigned long j)
 547{
 548	return __round_jiffies_up_relative(j, raw_smp_processor_id());
 549}
 550EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 551
 552
 553static inline unsigned int timer_get_idx(struct timer_list *timer)
 554{
 555	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 556}
 557
 558static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 559{
 560	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 561			idx << TIMER_ARRAYSHIFT;
 562}
 563
 564/*
 565 * Helper function to calculate the array index for a given expiry
 566 * time.
 567 */
 568static inline unsigned calc_index(unsigned long expires, unsigned lvl,
 569				  unsigned long *bucket_expiry)
 570{
 571
 572	/*
 573	 * The timer wheel has to guarantee that a timer does not fire
 574	 * early. Early expiry can happen due to:
 575	 * - Timer is armed at the edge of a tick
 576	 * - Truncation of the expiry time in the outer wheel levels
 577	 *
 578	 * Round up with level granularity to prevent this.
 579	 */
 580	expires = (expires >> LVL_SHIFT(lvl)) + 1;
 581	*bucket_expiry = expires << LVL_SHIFT(lvl);
 582	return LVL_OFFS(lvl) + (expires & LVL_MASK);
 583}
 584
 585static int calc_wheel_index(unsigned long expires, unsigned long clk,
 586			    unsigned long *bucket_expiry)
 587{
 588	unsigned long delta = expires - clk;
 589	unsigned int idx;
 590
 591	if (delta < LVL_START(1)) {
 592		idx = calc_index(expires, 0, bucket_expiry);
 593	} else if (delta < LVL_START(2)) {
 594		idx = calc_index(expires, 1, bucket_expiry);
 595	} else if (delta < LVL_START(3)) {
 596		idx = calc_index(expires, 2, bucket_expiry);
 597	} else if (delta < LVL_START(4)) {
 598		idx = calc_index(expires, 3, bucket_expiry);
 599	} else if (delta < LVL_START(5)) {
 600		idx = calc_index(expires, 4, bucket_expiry);
 601	} else if (delta < LVL_START(6)) {
 602		idx = calc_index(expires, 5, bucket_expiry);
 603	} else if (delta < LVL_START(7)) {
 604		idx = calc_index(expires, 6, bucket_expiry);
 605	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 606		idx = calc_index(expires, 7, bucket_expiry);
 607	} else if ((long) delta < 0) {
 608		idx = clk & LVL_MASK;
 609		*bucket_expiry = clk;
 610	} else {
 611		/*
 612		 * Force expire obscene large timeouts to expire at the
 613		 * capacity limit of the wheel.
 614		 */
 615		if (delta >= WHEEL_TIMEOUT_CUTOFF)
 616			expires = clk + WHEEL_TIMEOUT_MAX;
 617
 618		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
 619	}
 620	return idx;
 621}
 622
 623static void
 624trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 625{
 
 
 
 626	/*
 627	 * Deferrable timers do not prevent the CPU from entering dynticks and
 628	 * are not taken into account on the idle/nohz_full path. An IPI when a
 629	 * new deferrable timer is enqueued will wake up the remote CPU but
 630	 * nothing will be done with the deferrable timer base. Therefore skip
 631	 * the remote IPI for deferrable timers completely.
 632	 */
 633	if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
 
 
 634		return;
 
 635
 636	/*
 637	 * We might have to IPI the remote CPU if the base is idle and the
 638	 * timer is pinned. If it is a non pinned timer, it is only queued
 639	 * on the remote CPU, when timer was running during queueing. Then
 640	 * everything is handled by remote CPU anyway. If the other CPU is
 641	 * on the way to idle then it can't set base->is_idle as we hold
 642	 * the base lock:
 643	 */
 644	if (base->is_idle) {
 645		WARN_ON_ONCE(!(timer->flags & TIMER_PINNED ||
 646			       tick_nohz_full_cpu(base->cpu)));
 647		wake_up_nohz_cpu(base->cpu);
 648	}
 649}
 650
 651/*
 652 * Enqueue the timer into the hash bucket, mark it pending in
 653 * the bitmap, store the index in the timer flags then wake up
 654 * the target CPU if needed.
 655 */
 656static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 657			  unsigned int idx, unsigned long bucket_expiry)
 658{
 659
 660	hlist_add_head(&timer->entry, base->vectors + idx);
 661	__set_bit(idx, base->pending_map);
 662	timer_set_idx(timer, idx);
 663
 664	trace_timer_start(timer, bucket_expiry);
 665
 666	/*
 667	 * Check whether this is the new first expiring timer. The
 668	 * effective expiry time of the timer is required here
 669	 * (bucket_expiry) instead of timer->expires.
 670	 */
 671	if (time_before(bucket_expiry, base->next_expiry)) {
 672		/*
 673		 * Set the next expiry time and kick the CPU so it
 674		 * can reevaluate the wheel:
 675		 */
 676		base->next_expiry = bucket_expiry;
 677		base->timers_pending = true;
 678		base->next_expiry_recalc = false;
 679		trigger_dyntick_cpu(base, timer);
 680	}
 681}
 682
 683static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
 684{
 685	unsigned long bucket_expiry;
 686	unsigned int idx;
 687
 688	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
 689	enqueue_timer(base, timer, idx, bucket_expiry);
 690}
 691
 692#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 693
 694static const struct debug_obj_descr timer_debug_descr;
 695
 696struct timer_hint {
 697	void	(*function)(struct timer_list *t);
 698	long	offset;
 699};
 700
 701#define TIMER_HINT(fn, container, timr, hintfn)			\
 702	{							\
 703		.function = fn,					\
 704		.offset	  = offsetof(container, hintfn) -	\
 705			    offsetof(container, timr)		\
 706	}
 707
 708static const struct timer_hint timer_hints[] = {
 709	TIMER_HINT(delayed_work_timer_fn,
 710		   struct delayed_work, timer, work.func),
 711	TIMER_HINT(kthread_delayed_work_timer_fn,
 712		   struct kthread_delayed_work, timer, work.func),
 713};
 714
 715static void *timer_debug_hint(void *addr)
 716{
 717	struct timer_list *timer = addr;
 718	int i;
 719
 720	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
 721		if (timer_hints[i].function == timer->function) {
 722			void (**fn)(void) = addr + timer_hints[i].offset;
 723
 724			return *fn;
 725		}
 726	}
 727
 728	return timer->function;
 729}
 730
 731static bool timer_is_static_object(void *addr)
 732{
 733	struct timer_list *timer = addr;
 734
 735	return (timer->entry.pprev == NULL &&
 736		timer->entry.next == TIMER_ENTRY_STATIC);
 737}
 738
 739/*
 740 * timer_fixup_init is called when:
 741 * - an active object is initialized
 742 */
 743static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 744{
 745	struct timer_list *timer = addr;
 746
 747	switch (state) {
 748	case ODEBUG_STATE_ACTIVE:
 749		del_timer_sync(timer);
 750		debug_object_init(timer, &timer_debug_descr);
 751		return true;
 752	default:
 753		return false;
 754	}
 755}
 756
 757/* Stub timer callback for improperly used timers. */
 758static void stub_timer(struct timer_list *unused)
 759{
 760	WARN_ON(1);
 761}
 762
 763/*
 764 * timer_fixup_activate is called when:
 765 * - an active object is activated
 766 * - an unknown non-static object is activated
 767 */
 768static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 769{
 770	struct timer_list *timer = addr;
 771
 772	switch (state) {
 773	case ODEBUG_STATE_NOTAVAILABLE:
 774		timer_setup(timer, stub_timer, 0);
 775		return true;
 776
 777	case ODEBUG_STATE_ACTIVE:
 778		WARN_ON(1);
 779		fallthrough;
 780	default:
 781		return false;
 782	}
 783}
 784
 785/*
 786 * timer_fixup_free is called when:
 787 * - an active object is freed
 788 */
 789static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 790{
 791	struct timer_list *timer = addr;
 792
 793	switch (state) {
 794	case ODEBUG_STATE_ACTIVE:
 795		del_timer_sync(timer);
 796		debug_object_free(timer, &timer_debug_descr);
 797		return true;
 798	default:
 799		return false;
 800	}
 801}
 802
 803/*
 804 * timer_fixup_assert_init is called when:
 805 * - an untracked/uninit-ed object is found
 806 */
 807static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 808{
 809	struct timer_list *timer = addr;
 810
 811	switch (state) {
 812	case ODEBUG_STATE_NOTAVAILABLE:
 813		timer_setup(timer, stub_timer, 0);
 814		return true;
 815	default:
 816		return false;
 817	}
 818}
 819
 820static const struct debug_obj_descr timer_debug_descr = {
 821	.name			= "timer_list",
 822	.debug_hint		= timer_debug_hint,
 823	.is_static_object	= timer_is_static_object,
 824	.fixup_init		= timer_fixup_init,
 825	.fixup_activate		= timer_fixup_activate,
 826	.fixup_free		= timer_fixup_free,
 827	.fixup_assert_init	= timer_fixup_assert_init,
 828};
 829
 830static inline void debug_timer_init(struct timer_list *timer)
 831{
 832	debug_object_init(timer, &timer_debug_descr);
 833}
 834
 835static inline void debug_timer_activate(struct timer_list *timer)
 836{
 837	debug_object_activate(timer, &timer_debug_descr);
 838}
 839
 840static inline void debug_timer_deactivate(struct timer_list *timer)
 841{
 842	debug_object_deactivate(timer, &timer_debug_descr);
 843}
 844
 845static inline void debug_timer_assert_init(struct timer_list *timer)
 846{
 847	debug_object_assert_init(timer, &timer_debug_descr);
 848}
 849
 850static void do_init_timer(struct timer_list *timer,
 851			  void (*func)(struct timer_list *),
 852			  unsigned int flags,
 853			  const char *name, struct lock_class_key *key);
 854
 855void init_timer_on_stack_key(struct timer_list *timer,
 856			     void (*func)(struct timer_list *),
 857			     unsigned int flags,
 858			     const char *name, struct lock_class_key *key)
 859{
 860	debug_object_init_on_stack(timer, &timer_debug_descr);
 861	do_init_timer(timer, func, flags, name, key);
 862}
 863EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 864
 865void destroy_timer_on_stack(struct timer_list *timer)
 866{
 867	debug_object_free(timer, &timer_debug_descr);
 868}
 869EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 870
 871#else
 872static inline void debug_timer_init(struct timer_list *timer) { }
 873static inline void debug_timer_activate(struct timer_list *timer) { }
 874static inline void debug_timer_deactivate(struct timer_list *timer) { }
 875static inline void debug_timer_assert_init(struct timer_list *timer) { }
 876#endif
 877
 878static inline void debug_init(struct timer_list *timer)
 879{
 880	debug_timer_init(timer);
 881	trace_timer_init(timer);
 882}
 883
 884static inline void debug_deactivate(struct timer_list *timer)
 885{
 886	debug_timer_deactivate(timer);
 887	trace_timer_cancel(timer);
 888}
 889
 890static inline void debug_assert_init(struct timer_list *timer)
 891{
 892	debug_timer_assert_init(timer);
 893}
 894
 895static void do_init_timer(struct timer_list *timer,
 896			  void (*func)(struct timer_list *),
 897			  unsigned int flags,
 898			  const char *name, struct lock_class_key *key)
 899{
 900	timer->entry.pprev = NULL;
 901	timer->function = func;
 902	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
 903		flags &= TIMER_INIT_FLAGS;
 904	timer->flags = flags | raw_smp_processor_id();
 905	lockdep_init_map(&timer->lockdep_map, name, key, 0);
 906}
 907
 908/**
 909 * init_timer_key - initialize a timer
 910 * @timer: the timer to be initialized
 911 * @func: timer callback function
 912 * @flags: timer flags
 913 * @name: name of the timer
 914 * @key: lockdep class key of the fake lock used for tracking timer
 915 *       sync lock dependencies
 916 *
 917 * init_timer_key() must be done to a timer prior to calling *any* of the
 918 * other timer functions.
 919 */
 920void init_timer_key(struct timer_list *timer,
 921		    void (*func)(struct timer_list *), unsigned int flags,
 922		    const char *name, struct lock_class_key *key)
 923{
 924	debug_init(timer);
 925	do_init_timer(timer, func, flags, name, key);
 926}
 927EXPORT_SYMBOL(init_timer_key);
 928
 929static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 930{
 931	struct hlist_node *entry = &timer->entry;
 932
 933	debug_deactivate(timer);
 934
 935	__hlist_del(entry);
 936	if (clear_pending)
 937		entry->pprev = NULL;
 938	entry->next = LIST_POISON2;
 939}
 940
 941static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 942			     bool clear_pending)
 943{
 944	unsigned idx = timer_get_idx(timer);
 945
 946	if (!timer_pending(timer))
 947		return 0;
 948
 949	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
 950		__clear_bit(idx, base->pending_map);
 951		base->next_expiry_recalc = true;
 952	}
 953
 954	detach_timer(timer, clear_pending);
 955	return 1;
 956}
 957
 958static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 959{
 960	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
 961	struct timer_base *base;
 962
 963	base = per_cpu_ptr(&timer_bases[index], cpu);
 964
 965	/*
 966	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
 967	 * to use the deferrable base.
 968	 */
 969	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 970		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 971	return base;
 972}
 973
 974static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 975{
 976	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
 977	struct timer_base *base;
 978
 979	base = this_cpu_ptr(&timer_bases[index]);
 980
 981	/*
 982	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
 983	 * to use the deferrable base.
 984	 */
 985	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 986		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 987	return base;
 988}
 989
 990static inline struct timer_base *get_timer_base(u32 tflags)
 991{
 992	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 993}
 994
 995static inline void __forward_timer_base(struct timer_base *base,
 996					unsigned long basej)
 997{
 
 
 
 
 
 
 
 
 
 
 
 
 998	/*
 999	 * Check whether we can forward the base. We can only do that when
1000	 * @basej is past base->clk otherwise we might rewind base->clk.
 
1001	 */
1002	if (time_before_eq(basej, base->clk))
1003		return;
1004
1005	/*
1006	 * If the next expiry value is > jiffies, then we fast forward to
1007	 * jiffies otherwise we forward to the next expiry value.
1008	 */
1009	if (time_after(base->next_expiry, basej)) {
1010		base->clk = basej;
1011	} else {
1012		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
1013			return;
1014		base->clk = base->next_expiry;
1015	}
1016
1017}
1018
1019static inline void forward_timer_base(struct timer_base *base)
1020{
1021	__forward_timer_base(base, READ_ONCE(jiffies));
1022}
1023
1024/*
1025 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
1026 * that all timers which are tied to this base are locked, and the base itself
1027 * is locked too.
1028 *
1029 * So __run_timers/migrate_timers can safely modify all timers which could
1030 * be found in the base->vectors array.
1031 *
1032 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
1033 * to wait until the migration is done.
1034 */
1035static struct timer_base *lock_timer_base(struct timer_list *timer,
1036					  unsigned long *flags)
1037	__acquires(timer->base->lock)
1038{
1039	for (;;) {
1040		struct timer_base *base;
1041		u32 tf;
1042
1043		/*
1044		 * We need to use READ_ONCE() here, otherwise the compiler
1045		 * might re-read @tf between the check for TIMER_MIGRATING
1046		 * and spin_lock().
1047		 */
1048		tf = READ_ONCE(timer->flags);
1049
1050		if (!(tf & TIMER_MIGRATING)) {
1051			base = get_timer_base(tf);
1052			raw_spin_lock_irqsave(&base->lock, *flags);
1053			if (timer->flags == tf)
1054				return base;
1055			raw_spin_unlock_irqrestore(&base->lock, *flags);
1056		}
1057		cpu_relax();
1058	}
1059}
1060
1061#define MOD_TIMER_PENDING_ONLY		0x01
1062#define MOD_TIMER_REDUCE		0x02
1063#define MOD_TIMER_NOTPENDING		0x04
1064
1065static inline int
1066__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1067{
1068	unsigned long clk = 0, flags, bucket_expiry;
1069	struct timer_base *base, *new_base;
1070	unsigned int idx = UINT_MAX;
1071	int ret = 0;
1072
1073	debug_assert_init(timer);
1074
1075	/*
1076	 * This is a common optimization triggered by the networking code - if
1077	 * the timer is re-modified to have the same timeout or ends up in the
1078	 * same array bucket then just return:
1079	 */
1080	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1081		/*
1082		 * The downside of this optimization is that it can result in
1083		 * larger granularity than you would get from adding a new
1084		 * timer with this expiry.
1085		 */
1086		long diff = timer->expires - expires;
1087
1088		if (!diff)
1089			return 1;
1090		if (options & MOD_TIMER_REDUCE && diff <= 0)
1091			return 1;
1092
1093		/*
1094		 * We lock timer base and calculate the bucket index right
1095		 * here. If the timer ends up in the same bucket, then we
1096		 * just update the expiry time and avoid the whole
1097		 * dequeue/enqueue dance.
1098		 */
1099		base = lock_timer_base(timer, &flags);
1100		/*
1101		 * Has @timer been shutdown? This needs to be evaluated
1102		 * while holding base lock to prevent a race against the
1103		 * shutdown code.
1104		 */
1105		if (!timer->function)
1106			goto out_unlock;
1107
1108		forward_timer_base(base);
1109
1110		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1111		    time_before_eq(timer->expires, expires)) {
1112			ret = 1;
1113			goto out_unlock;
1114		}
1115
1116		clk = base->clk;
1117		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1118
1119		/*
1120		 * Retrieve and compare the array index of the pending
1121		 * timer. If it matches set the expiry to the new value so a
1122		 * subsequent call will exit in the expires check above.
1123		 */
1124		if (idx == timer_get_idx(timer)) {
1125			if (!(options & MOD_TIMER_REDUCE))
1126				timer->expires = expires;
1127			else if (time_after(timer->expires, expires))
1128				timer->expires = expires;
1129			ret = 1;
1130			goto out_unlock;
1131		}
1132	} else {
1133		base = lock_timer_base(timer, &flags);
1134		/*
1135		 * Has @timer been shutdown? This needs to be evaluated
1136		 * while holding base lock to prevent a race against the
1137		 * shutdown code.
1138		 */
1139		if (!timer->function)
1140			goto out_unlock;
1141
1142		forward_timer_base(base);
1143	}
1144
1145	ret = detach_if_pending(timer, base, false);
1146	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1147		goto out_unlock;
1148
1149	new_base = get_timer_this_cpu_base(timer->flags);
1150
1151	if (base != new_base) {
1152		/*
1153		 * We are trying to schedule the timer on the new base.
1154		 * However we can't change timer's base while it is running,
1155		 * otherwise timer_delete_sync() can't detect that the timer's
1156		 * handler yet has not finished. This also guarantees that the
1157		 * timer is serialized wrt itself.
1158		 */
1159		if (likely(base->running_timer != timer)) {
1160			/* See the comment in lock_timer_base() */
1161			timer->flags |= TIMER_MIGRATING;
1162
1163			raw_spin_unlock(&base->lock);
1164			base = new_base;
1165			raw_spin_lock(&base->lock);
1166			WRITE_ONCE(timer->flags,
1167				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1168			forward_timer_base(base);
1169		}
1170	}
1171
1172	debug_timer_activate(timer);
1173
1174	timer->expires = expires;
1175	/*
1176	 * If 'idx' was calculated above and the base time did not advance
1177	 * between calculating 'idx' and possibly switching the base, only
1178	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1179	 * the wheel index via internal_add_timer().
1180	 */
1181	if (idx != UINT_MAX && clk == base->clk)
1182		enqueue_timer(base, timer, idx, bucket_expiry);
1183	else
1184		internal_add_timer(base, timer);
1185
1186out_unlock:
1187	raw_spin_unlock_irqrestore(&base->lock, flags);
1188
1189	return ret;
1190}
1191
1192/**
1193 * mod_timer_pending - Modify a pending timer's timeout
1194 * @timer:	The pending timer to be modified
1195 * @expires:	New absolute timeout in jiffies
1196 *
1197 * mod_timer_pending() is the same for pending timers as mod_timer(), but
1198 * will not activate inactive timers.
1199 *
1200 * If @timer->function == NULL then the start operation is silently
1201 * discarded.
1202 *
1203 * Return:
1204 * * %0 - The timer was inactive and not modified or was in
1205 *	  shutdown state and the operation was discarded
1206 * * %1 - The timer was active and requeued to expire at @expires
1207 */
1208int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1209{
1210	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1211}
1212EXPORT_SYMBOL(mod_timer_pending);
1213
1214/**
1215 * mod_timer - Modify a timer's timeout
1216 * @timer:	The timer to be modified
1217 * @expires:	New absolute timeout in jiffies
1218 *
1219 * mod_timer(timer, expires) is equivalent to:
1220 *
1221 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1222 *
1223 * mod_timer() is more efficient than the above open coded sequence. In
1224 * case that the timer is inactive, the del_timer() part is a NOP. The
1225 * timer is in any case activated with the new expiry time @expires.
1226 *
1227 * Note that if there are multiple unserialized concurrent users of the
1228 * same timer, then mod_timer() is the only safe way to modify the timeout,
1229 * since add_timer() cannot modify an already running timer.
1230 *
1231 * If @timer->function == NULL then the start operation is silently
1232 * discarded. In this case the return value is 0 and meaningless.
1233 *
1234 * Return:
1235 * * %0 - The timer was inactive and started or was in shutdown
1236 *	  state and the operation was discarded
1237 * * %1 - The timer was active and requeued to expire at @expires or
1238 *	  the timer was active and not modified because @expires did
1239 *	  not change the effective expiry time
1240 */
1241int mod_timer(struct timer_list *timer, unsigned long expires)
1242{
1243	return __mod_timer(timer, expires, 0);
1244}
1245EXPORT_SYMBOL(mod_timer);
1246
1247/**
1248 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1249 * @timer:	The timer to be modified
1250 * @expires:	New absolute timeout in jiffies
1251 *
1252 * timer_reduce() is very similar to mod_timer(), except that it will only
1253 * modify an enqueued timer if that would reduce the expiration time. If
1254 * @timer is not enqueued it starts the timer.
1255 *
1256 * If @timer->function == NULL then the start operation is silently
1257 * discarded.
1258 *
1259 * Return:
1260 * * %0 - The timer was inactive and started or was in shutdown
1261 *	  state and the operation was discarded
1262 * * %1 - The timer was active and requeued to expire at @expires or
1263 *	  the timer was active and not modified because @expires
1264 *	  did not change the effective expiry time such that the
1265 *	  timer would expire earlier than already scheduled
1266 */
1267int timer_reduce(struct timer_list *timer, unsigned long expires)
1268{
1269	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1270}
1271EXPORT_SYMBOL(timer_reduce);
1272
1273/**
1274 * add_timer - Start a timer
1275 * @timer:	The timer to be started
1276 *
1277 * Start @timer to expire at @timer->expires in the future. @timer->expires
1278 * is the absolute expiry time measured in 'jiffies'. When the timer expires
1279 * timer->function(timer) will be invoked from soft interrupt context.
1280 *
1281 * The @timer->expires and @timer->function fields must be set prior
1282 * to calling this function.
1283 *
1284 * If @timer->function == NULL then the start operation is silently
1285 * discarded.
1286 *
1287 * If @timer->expires is already in the past @timer will be queued to
1288 * expire at the next timer tick.
1289 *
1290 * This can only operate on an inactive timer. Attempts to invoke this on
1291 * an active timer are rejected with a warning.
1292 */
1293void add_timer(struct timer_list *timer)
1294{
1295	if (WARN_ON_ONCE(timer_pending(timer)))
1296		return;
1297	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1298}
1299EXPORT_SYMBOL(add_timer);
1300
1301/**
1302 * add_timer_local() - Start a timer on the local CPU
1303 * @timer:	The timer to be started
1304 *
1305 * Same as add_timer() except that the timer flag TIMER_PINNED is set.
1306 *
1307 * See add_timer() for further details.
1308 */
1309void add_timer_local(struct timer_list *timer)
1310{
1311	if (WARN_ON_ONCE(timer_pending(timer)))
1312		return;
1313	timer->flags |= TIMER_PINNED;
1314	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1315}
1316EXPORT_SYMBOL(add_timer_local);
1317
1318/**
1319 * add_timer_global() - Start a timer without TIMER_PINNED flag set
1320 * @timer:	The timer to be started
1321 *
1322 * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
1323 *
1324 * See add_timer() for further details.
1325 */
1326void add_timer_global(struct timer_list *timer)
1327{
1328	if (WARN_ON_ONCE(timer_pending(timer)))
1329		return;
1330	timer->flags &= ~TIMER_PINNED;
1331	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1332}
1333EXPORT_SYMBOL(add_timer_global);
1334
1335/**
1336 * add_timer_on - Start a timer on a particular CPU
1337 * @timer:	The timer to be started
1338 * @cpu:	The CPU to start it on
1339 *
1340 * Same as add_timer() except that it starts the timer on the given CPU and
1341 * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
1342 * the next round, add_timer_global() should be used instead as it unsets
1343 * the TIMER_PINNED flag.
1344 *
1345 * See add_timer() for further details.
1346 */
1347void add_timer_on(struct timer_list *timer, int cpu)
1348{
1349	struct timer_base *new_base, *base;
1350	unsigned long flags;
1351
1352	debug_assert_init(timer);
1353
1354	if (WARN_ON_ONCE(timer_pending(timer)))
1355		return;
1356
1357	/* Make sure timer flags have TIMER_PINNED flag set */
1358	timer->flags |= TIMER_PINNED;
1359
1360	new_base = get_timer_cpu_base(timer->flags, cpu);
1361
1362	/*
1363	 * If @timer was on a different CPU, it should be migrated with the
1364	 * old base locked to prevent other operations proceeding with the
1365	 * wrong base locked.  See lock_timer_base().
1366	 */
1367	base = lock_timer_base(timer, &flags);
1368	/*
1369	 * Has @timer been shutdown? This needs to be evaluated while
1370	 * holding base lock to prevent a race against the shutdown code.
1371	 */
1372	if (!timer->function)
1373		goto out_unlock;
1374
1375	if (base != new_base) {
1376		timer->flags |= TIMER_MIGRATING;
1377
1378		raw_spin_unlock(&base->lock);
1379		base = new_base;
1380		raw_spin_lock(&base->lock);
1381		WRITE_ONCE(timer->flags,
1382			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1383	}
1384	forward_timer_base(base);
1385
1386	debug_timer_activate(timer);
1387	internal_add_timer(base, timer);
1388out_unlock:
1389	raw_spin_unlock_irqrestore(&base->lock, flags);
1390}
1391EXPORT_SYMBOL_GPL(add_timer_on);
1392
1393/**
1394 * __timer_delete - Internal function: Deactivate a timer
1395 * @timer:	The timer to be deactivated
1396 * @shutdown:	If true, this indicates that the timer is about to be
1397 *		shutdown permanently.
1398 *
1399 * If @shutdown is true then @timer->function is set to NULL under the
1400 * timer base lock which prevents further rearming of the time. In that
1401 * case any attempt to rearm @timer after this function returns will be
1402 * silently ignored.
1403 *
1404 * Return:
1405 * * %0 - The timer was not pending
1406 * * %1 - The timer was pending and deactivated
1407 */
1408static int __timer_delete(struct timer_list *timer, bool shutdown)
1409{
1410	struct timer_base *base;
1411	unsigned long flags;
1412	int ret = 0;
1413
1414	debug_assert_init(timer);
1415
1416	/*
1417	 * If @shutdown is set then the lock has to be taken whether the
1418	 * timer is pending or not to protect against a concurrent rearm
1419	 * which might hit between the lockless pending check and the lock
1420	 * acquisition. By taking the lock it is ensured that such a newly
1421	 * enqueued timer is dequeued and cannot end up with
1422	 * timer->function == NULL in the expiry code.
1423	 *
1424	 * If timer->function is currently executed, then this makes sure
1425	 * that the callback cannot requeue the timer.
1426	 */
1427	if (timer_pending(timer) || shutdown) {
1428		base = lock_timer_base(timer, &flags);
1429		ret = detach_if_pending(timer, base, true);
1430		if (shutdown)
1431			timer->function = NULL;
1432		raw_spin_unlock_irqrestore(&base->lock, flags);
1433	}
1434
1435	return ret;
1436}
1437
1438/**
1439 * timer_delete - Deactivate a timer
1440 * @timer:	The timer to be deactivated
1441 *
1442 * The function only deactivates a pending timer, but contrary to
1443 * timer_delete_sync() it does not take into account whether the timer's
1444 * callback function is concurrently executed on a different CPU or not.
1445 * It neither prevents rearming of the timer.  If @timer can be rearmed
1446 * concurrently then the return value of this function is meaningless.
1447 *
1448 * Return:
1449 * * %0 - The timer was not pending
1450 * * %1 - The timer was pending and deactivated
1451 */
1452int timer_delete(struct timer_list *timer)
1453{
1454	return __timer_delete(timer, false);
1455}
1456EXPORT_SYMBOL(timer_delete);
1457
1458/**
1459 * timer_shutdown - Deactivate a timer and prevent rearming
1460 * @timer:	The timer to be deactivated
1461 *
1462 * The function does not wait for an eventually running timer callback on a
1463 * different CPU but it prevents rearming of the timer. Any attempt to arm
1464 * @timer after this function returns will be silently ignored.
1465 *
1466 * This function is useful for teardown code and should only be used when
1467 * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1468 *
1469 * Return:
1470 * * %0 - The timer was not pending
1471 * * %1 - The timer was pending
1472 */
1473int timer_shutdown(struct timer_list *timer)
1474{
1475	return __timer_delete(timer, true);
1476}
1477EXPORT_SYMBOL_GPL(timer_shutdown);
1478
1479/**
1480 * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1481 * @timer:	Timer to deactivate
1482 * @shutdown:	If true, this indicates that the timer is about to be
1483 *		shutdown permanently.
1484 *
1485 * If @shutdown is true then @timer->function is set to NULL under the
1486 * timer base lock which prevents further rearming of the timer. Any
1487 * attempt to rearm @timer after this function returns will be silently
1488 * ignored.
1489 *
1490 * This function cannot guarantee that the timer cannot be rearmed
1491 * right after dropping the base lock if @shutdown is false. That
1492 * needs to be prevented by the calling code if necessary.
1493 *
1494 * Return:
1495 * * %0  - The timer was not pending
1496 * * %1  - The timer was pending and deactivated
1497 * * %-1 - The timer callback function is running on a different CPU
1498 */
1499static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1500{
1501	struct timer_base *base;
1502	unsigned long flags;
1503	int ret = -1;
1504
1505	debug_assert_init(timer);
1506
1507	base = lock_timer_base(timer, &flags);
1508
1509	if (base->running_timer != timer)
1510		ret = detach_if_pending(timer, base, true);
1511	if (shutdown)
1512		timer->function = NULL;
1513
1514	raw_spin_unlock_irqrestore(&base->lock, flags);
1515
1516	return ret;
1517}
1518
1519/**
1520 * try_to_del_timer_sync - Try to deactivate a timer
1521 * @timer:	Timer to deactivate
1522 *
1523 * This function tries to deactivate a timer. On success the timer is not
1524 * queued and the timer callback function is not running on any CPU.
1525 *
1526 * This function does not guarantee that the timer cannot be rearmed right
1527 * after dropping the base lock. That needs to be prevented by the calling
1528 * code if necessary.
1529 *
1530 * Return:
1531 * * %0  - The timer was not pending
1532 * * %1  - The timer was pending and deactivated
1533 * * %-1 - The timer callback function is running on a different CPU
1534 */
1535int try_to_del_timer_sync(struct timer_list *timer)
1536{
1537	return __try_to_del_timer_sync(timer, false);
1538}
1539EXPORT_SYMBOL(try_to_del_timer_sync);
1540
1541#ifdef CONFIG_PREEMPT_RT
1542static __init void timer_base_init_expiry_lock(struct timer_base *base)
1543{
1544	spin_lock_init(&base->expiry_lock);
1545}
1546
1547static inline void timer_base_lock_expiry(struct timer_base *base)
1548{
1549	spin_lock(&base->expiry_lock);
1550}
1551
1552static inline void timer_base_unlock_expiry(struct timer_base *base)
1553{
1554	spin_unlock(&base->expiry_lock);
1555}
1556
1557/*
1558 * The counterpart to del_timer_wait_running().
1559 *
1560 * If there is a waiter for base->expiry_lock, then it was waiting for the
1561 * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1562 * the waiter to acquire the lock and make progress.
1563 */
1564static void timer_sync_wait_running(struct timer_base *base)
1565{
1566	if (atomic_read(&base->timer_waiters)) {
1567		raw_spin_unlock_irq(&base->lock);
1568		spin_unlock(&base->expiry_lock);
1569		spin_lock(&base->expiry_lock);
1570		raw_spin_lock_irq(&base->lock);
1571	}
1572}
1573
1574/*
1575 * This function is called on PREEMPT_RT kernels when the fast path
1576 * deletion of a timer failed because the timer callback function was
1577 * running.
1578 *
1579 * This prevents priority inversion, if the softirq thread on a remote CPU
1580 * got preempted, and it prevents a life lock when the task which tries to
1581 * delete a timer preempted the softirq thread running the timer callback
1582 * function.
1583 */
1584static void del_timer_wait_running(struct timer_list *timer)
1585{
1586	u32 tf;
1587
1588	tf = READ_ONCE(timer->flags);
1589	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1590		struct timer_base *base = get_timer_base(tf);
1591
1592		/*
1593		 * Mark the base as contended and grab the expiry lock,
1594		 * which is held by the softirq across the timer
1595		 * callback. Drop the lock immediately so the softirq can
1596		 * expire the next timer. In theory the timer could already
1597		 * be running again, but that's more than unlikely and just
1598		 * causes another wait loop.
1599		 */
1600		atomic_inc(&base->timer_waiters);
1601		spin_lock_bh(&base->expiry_lock);
1602		atomic_dec(&base->timer_waiters);
1603		spin_unlock_bh(&base->expiry_lock);
1604	}
1605}
1606#else
1607static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1608static inline void timer_base_lock_expiry(struct timer_base *base) { }
1609static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1610static inline void timer_sync_wait_running(struct timer_base *base) { }
1611static inline void del_timer_wait_running(struct timer_list *timer) { }
1612#endif
1613
1614/**
1615 * __timer_delete_sync - Internal function: Deactivate a timer and wait
1616 *			 for the handler to finish.
1617 * @timer:	The timer to be deactivated
1618 * @shutdown:	If true, @timer->function will be set to NULL under the
1619 *		timer base lock which prevents rearming of @timer
1620 *
1621 * If @shutdown is not set the timer can be rearmed later. If the timer can
1622 * be rearmed concurrently, i.e. after dropping the base lock then the
1623 * return value is meaningless.
1624 *
1625 * If @shutdown is set then @timer->function is set to NULL under timer
1626 * base lock which prevents rearming of the timer. Any attempt to rearm
1627 * a shutdown timer is silently ignored.
1628 *
1629 * If the timer should be reused after shutdown it has to be initialized
1630 * again.
1631 *
1632 * Return:
1633 * * %0	- The timer was not pending
1634 * * %1	- The timer was pending and deactivated
1635 */
1636static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1637{
1638	int ret;
1639
1640#ifdef CONFIG_LOCKDEP
1641	unsigned long flags;
1642
1643	/*
1644	 * If lockdep gives a backtrace here, please reference
1645	 * the synchronization rules above.
1646	 */
1647	local_irq_save(flags);
1648	lock_map_acquire(&timer->lockdep_map);
1649	lock_map_release(&timer->lockdep_map);
1650	local_irq_restore(flags);
1651#endif
1652	/*
1653	 * don't use it in hardirq context, because it
1654	 * could lead to deadlock.
1655	 */
1656	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1657
1658	/*
1659	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1660	 * del_timer_wait_running().
1661	 */
1662	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1663		lockdep_assert_preemption_enabled();
1664
1665	do {
1666		ret = __try_to_del_timer_sync(timer, shutdown);
1667
1668		if (unlikely(ret < 0)) {
1669			del_timer_wait_running(timer);
1670			cpu_relax();
1671		}
1672	} while (ret < 0);
1673
1674	return ret;
1675}
1676
1677/**
1678 * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1679 * @timer:	The timer to be deactivated
1680 *
1681 * Synchronization rules: Callers must prevent restarting of the timer,
1682 * otherwise this function is meaningless. It must not be called from
1683 * interrupt contexts unless the timer is an irqsafe one. The caller must
1684 * not hold locks which would prevent completion of the timer's callback
1685 * function. The timer's handler must not call add_timer_on(). Upon exit
1686 * the timer is not queued and the handler is not running on any CPU.
1687 *
1688 * For !irqsafe timers, the caller must not hold locks that are held in
1689 * interrupt context. Even if the lock has nothing to do with the timer in
1690 * question.  Here's why::
1691 *
1692 *    CPU0                             CPU1
1693 *    ----                             ----
1694 *                                     <SOFTIRQ>
1695 *                                       call_timer_fn();
1696 *                                       base->running_timer = mytimer;
1697 *    spin_lock_irq(somelock);
1698 *                                     <IRQ>
1699 *                                        spin_lock(somelock);
1700 *    timer_delete_sync(mytimer);
1701 *    while (base->running_timer == mytimer);
1702 *
1703 * Now timer_delete_sync() will never return and never release somelock.
1704 * The interrupt on the other CPU is waiting to grab somelock but it has
1705 * interrupted the softirq that CPU0 is waiting to finish.
1706 *
1707 * This function cannot guarantee that the timer is not rearmed again by
1708 * some concurrent or preempting code, right after it dropped the base
1709 * lock. If there is the possibility of a concurrent rearm then the return
1710 * value of the function is meaningless.
1711 *
1712 * If such a guarantee is needed, e.g. for teardown situations then use
1713 * timer_shutdown_sync() instead.
1714 *
1715 * Return:
1716 * * %0	- The timer was not pending
1717 * * %1	- The timer was pending and deactivated
1718 */
1719int timer_delete_sync(struct timer_list *timer)
1720{
1721	return __timer_delete_sync(timer, false);
1722}
1723EXPORT_SYMBOL(timer_delete_sync);
1724
1725/**
1726 * timer_shutdown_sync - Shutdown a timer and prevent rearming
1727 * @timer: The timer to be shutdown
1728 *
1729 * When the function returns it is guaranteed that:
1730 *   - @timer is not queued
1731 *   - The callback function of @timer is not running
1732 *   - @timer cannot be enqueued again. Any attempt to rearm
1733 *     @timer is silently ignored.
1734 *
1735 * See timer_delete_sync() for synchronization rules.
1736 *
1737 * This function is useful for final teardown of an infrastructure where
1738 * the timer is subject to a circular dependency problem.
1739 *
1740 * A common pattern for this is a timer and a workqueue where the timer can
1741 * schedule work and work can arm the timer. On shutdown the workqueue must
1742 * be destroyed and the timer must be prevented from rearming. Unless the
1743 * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1744 * there is no way to get this correct with timer_delete_sync().
1745 *
1746 * timer_shutdown_sync() is solving the problem. The correct ordering of
1747 * calls in this case is:
1748 *
1749 *	timer_shutdown_sync(&mything->timer);
1750 *	workqueue_destroy(&mything->workqueue);
1751 *
1752 * After this 'mything' can be safely freed.
1753 *
1754 * This obviously implies that the timer is not required to be functional
1755 * for the rest of the shutdown operation.
1756 *
1757 * Return:
1758 * * %0 - The timer was not pending
1759 * * %1 - The timer was pending
1760 */
1761int timer_shutdown_sync(struct timer_list *timer)
1762{
1763	return __timer_delete_sync(timer, true);
1764}
1765EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1766
1767static void call_timer_fn(struct timer_list *timer,
1768			  void (*fn)(struct timer_list *),
1769			  unsigned long baseclk)
1770{
1771	int count = preempt_count();
1772
1773#ifdef CONFIG_LOCKDEP
1774	/*
1775	 * It is permissible to free the timer from inside the
1776	 * function that is called from it, this we need to take into
1777	 * account for lockdep too. To avoid bogus "held lock freed"
1778	 * warnings as well as problems when looking into
1779	 * timer->lockdep_map, make a copy and use that here.
1780	 */
1781	struct lockdep_map lockdep_map;
1782
1783	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1784#endif
1785	/*
1786	 * Couple the lock chain with the lock chain at
1787	 * timer_delete_sync() by acquiring the lock_map around the fn()
1788	 * call here and in timer_delete_sync().
1789	 */
1790	lock_map_acquire(&lockdep_map);
1791
1792	trace_timer_expire_entry(timer, baseclk);
1793	fn(timer);
1794	trace_timer_expire_exit(timer);
1795
1796	lock_map_release(&lockdep_map);
1797
1798	if (count != preempt_count()) {
1799		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1800			  fn, count, preempt_count());
1801		/*
1802		 * Restore the preempt count. That gives us a decent
1803		 * chance to survive and extract information. If the
1804		 * callback kept a lock held, bad luck, but not worse
1805		 * than the BUG() we had.
1806		 */
1807		preempt_count_set(count);
1808	}
1809}
1810
1811static void expire_timers(struct timer_base *base, struct hlist_head *head)
1812{
1813	/*
1814	 * This value is required only for tracing. base->clk was
1815	 * incremented directly before expire_timers was called. But expiry
1816	 * is related to the old base->clk value.
1817	 */
1818	unsigned long baseclk = base->clk - 1;
1819
1820	while (!hlist_empty(head)) {
1821		struct timer_list *timer;
1822		void (*fn)(struct timer_list *);
1823
1824		timer = hlist_entry(head->first, struct timer_list, entry);
1825
1826		base->running_timer = timer;
1827		detach_timer(timer, true);
1828
1829		fn = timer->function;
1830
1831		if (WARN_ON_ONCE(!fn)) {
1832			/* Should never happen. Emphasis on should! */
1833			base->running_timer = NULL;
1834			continue;
1835		}
1836
1837		if (timer->flags & TIMER_IRQSAFE) {
1838			raw_spin_unlock(&base->lock);
1839			call_timer_fn(timer, fn, baseclk);
1840			raw_spin_lock(&base->lock);
1841			base->running_timer = NULL;
1842		} else {
1843			raw_spin_unlock_irq(&base->lock);
1844			call_timer_fn(timer, fn, baseclk);
1845			raw_spin_lock_irq(&base->lock);
1846			base->running_timer = NULL;
1847			timer_sync_wait_running(base);
1848		}
1849	}
1850}
1851
1852static int collect_expired_timers(struct timer_base *base,
1853				  struct hlist_head *heads)
1854{
1855	unsigned long clk = base->clk = base->next_expiry;
1856	struct hlist_head *vec;
1857	int i, levels = 0;
1858	unsigned int idx;
1859
1860	for (i = 0; i < LVL_DEPTH; i++) {
1861		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1862
1863		if (__test_and_clear_bit(idx, base->pending_map)) {
1864			vec = base->vectors + idx;
1865			hlist_move_list(vec, heads++);
1866			levels++;
1867		}
1868		/* Is it time to look at the next level? */
1869		if (clk & LVL_CLK_MASK)
1870			break;
1871		/* Shift clock for the next level granularity */
1872		clk >>= LVL_CLK_SHIFT;
1873	}
1874	return levels;
1875}
1876
1877/*
1878 * Find the next pending bucket of a level. Search from level start (@offset)
1879 * + @clk upwards and if nothing there, search from start of the level
1880 * (@offset) up to @offset + clk.
1881 */
1882static int next_pending_bucket(struct timer_base *base, unsigned offset,
1883			       unsigned clk)
1884{
1885	unsigned pos, start = offset + clk;
1886	unsigned end = offset + LVL_SIZE;
1887
1888	pos = find_next_bit(base->pending_map, end, start);
1889	if (pos < end)
1890		return pos - start;
1891
1892	pos = find_next_bit(base->pending_map, start, offset);
1893	return pos < start ? pos + LVL_SIZE - start : -1;
1894}
1895
1896/*
1897 * Search the first expiring timer in the various clock levels. Caller must
1898 * hold base->lock.
1899 *
1900 * Store next expiry time in base->next_expiry.
1901 */
1902static void next_expiry_recalc(struct timer_base *base)
1903{
1904	unsigned long clk, next, adj;
1905	unsigned lvl, offset = 0;
1906
1907	next = base->clk + NEXT_TIMER_MAX_DELTA;
1908	clk = base->clk;
1909	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1910		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1911		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1912
1913		if (pos >= 0) {
1914			unsigned long tmp = clk + (unsigned long) pos;
1915
1916			tmp <<= LVL_SHIFT(lvl);
1917			if (time_before(tmp, next))
1918				next = tmp;
1919
1920			/*
1921			 * If the next expiration happens before we reach
1922			 * the next level, no need to check further.
1923			 */
1924			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1925				break;
1926		}
1927		/*
1928		 * Clock for the next level. If the current level clock lower
1929		 * bits are zero, we look at the next level as is. If not we
1930		 * need to advance it by one because that's going to be the
1931		 * next expiring bucket in that level. base->clk is the next
1932		 * expiring jiffie. So in case of:
1933		 *
1934		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1935		 *  0    0    0    0    0    0
1936		 *
1937		 * we have to look at all levels @index 0. With
1938		 *
1939		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1940		 *  0    0    0    0    0    2
1941		 *
1942		 * LVL0 has the next expiring bucket @index 2. The upper
1943		 * levels have the next expiring bucket @index 1.
1944		 *
1945		 * In case that the propagation wraps the next level the same
1946		 * rules apply:
1947		 *
1948		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1949		 *  0    0    0    0    F    2
1950		 *
1951		 * So after looking at LVL0 we get:
1952		 *
1953		 * LVL5 LVL4 LVL3 LVL2 LVL1
1954		 *  0    0    0    1    0
1955		 *
1956		 * So no propagation from LVL1 to LVL2 because that happened
1957		 * with the add already, but then we need to propagate further
1958		 * from LVL2 to LVL3.
1959		 *
1960		 * So the simple check whether the lower bits of the current
1961		 * level are 0 or not is sufficient for all cases.
1962		 */
1963		adj = lvl_clk ? 1 : 0;
1964		clk >>= LVL_CLK_SHIFT;
1965		clk += adj;
1966	}
1967
1968	base->next_expiry = next;
1969	base->next_expiry_recalc = false;
1970	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
 
 
1971}
1972
1973#ifdef CONFIG_NO_HZ_COMMON
1974/*
1975 * Check, if the next hrtimer event is before the next timer wheel
1976 * event:
1977 */
1978static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1979{
1980	u64 nextevt = hrtimer_get_next_event();
1981
1982	/*
1983	 * If high resolution timers are enabled
1984	 * hrtimer_get_next_event() returns KTIME_MAX.
1985	 */
1986	if (expires <= nextevt)
1987		return expires;
1988
1989	/*
1990	 * If the next timer is already expired, return the tick base
1991	 * time so the tick is fired immediately.
1992	 */
1993	if (nextevt <= basem)
1994		return basem;
1995
1996	/*
1997	 * Round up to the next jiffie. High resolution timers are
1998	 * off, so the hrtimers are expired in the tick and we need to
1999	 * make sure that this tick really expires the timer to avoid
2000	 * a ping pong of the nohz stop code.
2001	 *
2002	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
2003	 */
2004	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
2005}
2006
2007static unsigned long next_timer_interrupt(struct timer_base *base,
2008					  unsigned long basej)
2009{
2010	if (base->next_expiry_recalc)
2011		next_expiry_recalc(base);
2012
2013	/*
2014	 * Move next_expiry for the empty base into the future to prevent an
2015	 * unnecessary raise of the timer softirq when the next_expiry value
2016	 * will be reached even if there is no timer pending.
2017	 *
2018	 * This update is also required to make timer_base::next_expiry values
2019	 * easy comparable to find out which base holds the first pending timer.
2020	 */
2021	if (!base->timers_pending)
2022		base->next_expiry = basej + NEXT_TIMER_MAX_DELTA;
2023
2024	return base->next_expiry;
2025}
2026
2027static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
2028						struct timer_base *base_local,
2029						struct timer_base *base_global,
2030						struct timer_events *tevt)
2031{
2032	unsigned long nextevt, nextevt_local, nextevt_global;
2033	bool local_first;
2034
2035	nextevt_local = next_timer_interrupt(base_local, basej);
2036	nextevt_global = next_timer_interrupt(base_global, basej);
2037
2038	local_first = time_before_eq(nextevt_local, nextevt_global);
2039
2040	nextevt = local_first ? nextevt_local : nextevt_global;
2041
2042	/*
2043	 * If the @nextevt is at max. one tick away, use @nextevt and store
2044	 * it in the local expiry value. The next global event is irrelevant in
2045	 * this case and can be left as KTIME_MAX.
2046	 */
2047	if (time_before_eq(nextevt, basej + 1)) {
2048		/* If we missed a tick already, force 0 delta */
2049		if (time_before(nextevt, basej))
2050			nextevt = basej;
2051		tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
2052
2053		/*
2054		 * This is required for the remote check only but it doesn't
2055		 * hurt, when it is done for both call sites:
2056		 *
2057		 * * The remote callers will only take care of the global timers
2058		 *   as local timers will be handled by CPU itself. When not
2059		 *   updating tevt->global with the already missed first global
2060		 *   timer, it is possible that it will be missed completely.
2061		 *
2062		 * * The local callers will ignore the tevt->global anyway, when
2063		 *   nextevt is max. one tick away.
2064		 */
2065		if (!local_first)
2066			tevt->global = tevt->local;
2067		return nextevt;
2068	}
2069
2070	/*
2071	 * Update tevt.* values:
2072	 *
2073	 * If the local queue expires first, then the global event can be
2074	 * ignored. If the global queue is empty, nothing to do either.
2075	 */
2076	if (!local_first && base_global->timers_pending)
2077		tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
2078
2079	if (base_local->timers_pending)
2080		tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
2081
2082	return nextevt;
2083}
2084
2085# ifdef CONFIG_SMP
2086/**
2087 * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
2088 * @basej:	base time jiffies
2089 * @basem:	base time clock monotonic
2090 * @tevt:	Pointer to the storage for the expiry values
2091 * @cpu:	Remote CPU
2092 *
2093 * Stores the next pending local and global timer expiry values in the
2094 * struct pointed to by @tevt. If a queue is empty the corresponding
2095 * field is set to KTIME_MAX. If local event expires before global
2096 * event, global event is set to KTIME_MAX as well.
2097 *
2098 * Caller needs to make sure timer base locks are held (use
2099 * timer_lock_remote_bases() for this purpose).
2100 */
2101void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
2102				       struct timer_events *tevt,
2103				       unsigned int cpu)
2104{
2105	struct timer_base *base_local, *base_global;
2106
2107	/* Preset local / global events */
2108	tevt->local = tevt->global = KTIME_MAX;
2109
2110	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2111	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2112
2113	lockdep_assert_held(&base_local->lock);
2114	lockdep_assert_held(&base_global->lock);
2115
2116	fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
2117}
2118
2119/**
2120 * timer_unlock_remote_bases - unlock timer bases of cpu
2121 * @cpu:	Remote CPU
2122 *
2123 * Unlocks the remote timer bases.
2124 */
2125void timer_unlock_remote_bases(unsigned int cpu)
2126	__releases(timer_bases[BASE_LOCAL]->lock)
2127	__releases(timer_bases[BASE_GLOBAL]->lock)
2128{
2129	struct timer_base *base_local, *base_global;
2130
2131	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2132	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2133
2134	raw_spin_unlock(&base_global->lock);
2135	raw_spin_unlock(&base_local->lock);
2136}
2137
2138/**
2139 * timer_lock_remote_bases - lock timer bases of cpu
2140 * @cpu:	Remote CPU
2141 *
2142 * Locks the remote timer bases.
2143 */
2144void timer_lock_remote_bases(unsigned int cpu)
2145	__acquires(timer_bases[BASE_LOCAL]->lock)
2146	__acquires(timer_bases[BASE_GLOBAL]->lock)
2147{
2148	struct timer_base *base_local, *base_global;
2149
2150	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2151	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2152
2153	lockdep_assert_irqs_disabled();
2154
2155	raw_spin_lock(&base_local->lock);
2156	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2157}
2158
2159/**
2160 * timer_base_is_idle() - Return whether timer base is set idle
2161 *
2162 * Returns value of local timer base is_idle value.
2163 */
2164bool timer_base_is_idle(void)
2165{
2166	return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle);
2167}
2168
2169static void __run_timer_base(struct timer_base *base);
2170
2171/**
2172 * timer_expire_remote() - expire global timers of cpu
2173 * @cpu:	Remote CPU
2174 *
2175 * Expire timers of global base of remote CPU.
2176 */
2177void timer_expire_remote(unsigned int cpu)
2178{
2179	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2180
2181	__run_timer_base(base);
2182}
2183
2184static void timer_use_tmigr(unsigned long basej, u64 basem,
2185			    unsigned long *nextevt, bool *tick_stop_path,
2186			    bool timer_base_idle, struct timer_events *tevt)
2187{
2188	u64 next_tmigr;
2189
2190	if (timer_base_idle)
2191		next_tmigr = tmigr_cpu_new_timer(tevt->global);
2192	else if (tick_stop_path)
2193		next_tmigr = tmigr_cpu_deactivate(tevt->global);
2194	else
2195		next_tmigr = tmigr_quick_check(tevt->global);
2196
2197	/*
2198	 * If the CPU is the last going idle in timer migration hierarchy, make
2199	 * sure the CPU will wake up in time to handle remote timers.
2200	 * next_tmigr == KTIME_MAX if other CPUs are still active.
2201	 */
2202	if (next_tmigr < tevt->local) {
2203		u64 tmp;
2204
2205		/* If we missed a tick already, force 0 delta */
2206		if (next_tmigr < basem)
2207			next_tmigr = basem;
2208
2209		tmp = div_u64(next_tmigr - basem, TICK_NSEC);
2210
2211		*nextevt = basej + (unsigned long)tmp;
2212		tevt->local = next_tmigr;
2213	}
2214}
2215# else
2216static void timer_use_tmigr(unsigned long basej, u64 basem,
2217			    unsigned long *nextevt, bool *tick_stop_path,
2218			    bool timer_base_idle, struct timer_events *tevt)
2219{
2220	/*
2221	 * Make sure first event is written into tevt->local to not miss a
2222	 * timer on !SMP systems.
2223	 */
2224	tevt->local = min_t(u64, tevt->local, tevt->global);
2225}
2226# endif /* CONFIG_SMP */
2227
2228static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
2229					     bool *idle)
2230{
2231	struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
2232	struct timer_base *base_local, *base_global;
2233	unsigned long nextevt;
2234	bool idle_is_possible;
2235
2236	/*
2237	 * When the CPU is offline, the tick is cancelled and nothing is supposed
2238	 * to try to stop it.
2239	 */
2240	if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) {
2241		if (idle)
2242			*idle = true;
2243		return tevt.local;
2244	}
2245
2246	base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2247	base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
2248
2249	raw_spin_lock(&base_local->lock);
2250	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2251
2252	nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
2253					     base_global, &tevt);
2254
2255	/*
2256	 * If the next event is only one jiffie ahead there is no need to call
2257	 * timer migration hierarchy related functions. The value for the next
2258	 * global timer in @tevt struct equals then KTIME_MAX. This is also
2259	 * true, when the timer base is idle.
2260	 *
2261	 * The proper timer migration hierarchy function depends on the callsite
2262	 * and whether timer base is idle or not. @nextevt will be updated when
2263	 * this CPU needs to handle the first timer migration hierarchy
2264	 * event. See timer_use_tmigr() for detailed information.
2265	 */
2266	idle_is_possible = time_after(nextevt, basej + 1);
2267	if (idle_is_possible)
2268		timer_use_tmigr(basej, basem, &nextevt, idle,
2269				base_local->is_idle, &tevt);
2270
2271	/*
2272	 * We have a fresh next event. Check whether we can forward the
2273	 * base.
 
2274	 */
2275	__forward_timer_base(base_local, basej);
2276	__forward_timer_base(base_global, basej);
2277
2278	/*
2279	 * Set base->is_idle only when caller is timer_base_try_to_set_idle()
2280	 */
2281	if (idle) {
2282		/*
2283		 * Bases are idle if the next event is more than a tick
2284		 * away. Caution: @nextevt could have changed by enqueueing a
2285		 * global timer into timer migration hierarchy. Therefore a new
2286		 * check is required here.
2287		 *
2288		 * If the base is marked idle then any timer add operation must
2289		 * forward the base clk itself to keep granularity small. This
2290		 * idle logic is only maintained for the BASE_LOCAL and
2291		 * BASE_GLOBAL base, deferrable timers may still see large
2292		 * granularity skew (by design).
2293		 */
2294		if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
2295			base_local->is_idle = true;
2296			/*
2297			 * Global timers queued locally while running in a task
2298			 * in nohz_full mode need a self-IPI to kick reprogramming
2299			 * in IRQ tail.
2300			 */
2301			if (tick_nohz_full_cpu(base_local->cpu))
2302				base_global->is_idle = true;
2303			trace_timer_base_idle(true, base_local->cpu);
2304		}
2305		*idle = base_local->is_idle;
2306
 
 
 
 
 
 
2307		/*
2308		 * When timer base is not set idle, undo the effect of
2309		 * tmigr_cpu_deactivate() to prevent inconsistent states - active
2310		 * timer base but inactive timer migration hierarchy.
2311		 *
2312		 * When timer base was already marked idle, nothing will be
2313		 * changed here.
2314		 */
2315		if (!base_local->is_idle && idle_is_possible)
2316			tmigr_cpu_activate();
2317	}
 
2318
2319	raw_spin_unlock(&base_global->lock);
2320	raw_spin_unlock(&base_local->lock);
2321
2322	return cmp_next_hrtimer_event(basem, tevt.local);
2323}
2324
2325/**
2326 * get_next_timer_interrupt() - return the time (clock mono) of the next timer
2327 * @basej:	base time jiffies
2328 * @basem:	base time clock monotonic
2329 *
2330 * Returns the tick aligned clock monotonic time of the next pending timer or
2331 * KTIME_MAX if no timer is pending. If timer of global base was queued into
2332 * timer migration hierarchy, first global timer is not taken into account. If
2333 * it was the last CPU of timer migration hierarchy going idle, first global
2334 * event is taken into account.
2335 */
2336u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
2337{
2338	return __get_next_timer_interrupt(basej, basem, NULL);
2339}
2340
2341/**
2342 * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
2343 * @basej:	base time jiffies
2344 * @basem:	base time clock monotonic
2345 * @idle:	pointer to store the value of timer_base->is_idle on return;
2346 *		*idle contains the information whether tick was already stopped
2347 *
2348 * Returns the tick aligned clock monotonic time of the next pending timer or
2349 * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
2350 * returned as well.
2351 */
2352u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
2353{
2354	if (*idle)
2355		return KTIME_MAX;
2356
2357	return __get_next_timer_interrupt(basej, basem, idle);
2358}
2359
2360/**
2361 * timer_clear_idle - Clear the idle state of the timer base
2362 *
2363 * Called with interrupts disabled
2364 */
2365void timer_clear_idle(void)
2366{
 
 
2367	/*
2368	 * We do this unlocked. The worst outcome is a remote pinned timer
2369	 * enqueue sending a pointless IPI, but taking the lock would just
2370	 * make the window for sending the IPI a few instructions smaller
2371	 * for the cost of taking the lock in the exit from idle
2372	 * path. Required for BASE_LOCAL only.
2373	 */
2374	__this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
2375	if (tick_nohz_full_cpu(smp_processor_id()))
2376		__this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
2377	trace_timer_base_idle(false, smp_processor_id());
2378
2379	/* Activate without holding the timer_base->lock */
2380	tmigr_cpu_activate();
2381}
2382#endif
2383
2384/**
2385 * __run_timers - run all expired timers (if any) on this CPU.
2386 * @base: the timer vector to be processed.
2387 */
2388static inline void __run_timers(struct timer_base *base)
2389{
2390	struct hlist_head heads[LVL_DEPTH];
2391	int levels;
2392
2393	lockdep_assert_held(&base->lock);
 
2394
2395	if (base->running_timer)
2396		return;
2397
2398	while (time_after_eq(jiffies, base->clk) &&
2399	       time_after_eq(jiffies, base->next_expiry)) {
2400		levels = collect_expired_timers(base, heads);
2401		/*
2402		 * The two possible reasons for not finding any expired
2403		 * timer at this clk are that all matching timers have been
2404		 * dequeued or no timer has been queued since
2405		 * base::next_expiry was set to base::clk +
2406		 * NEXT_TIMER_MAX_DELTA.
2407		 */
2408		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2409			     && base->timers_pending);
2410		/*
2411		 * While executing timers, base->clk is set 1 offset ahead of
2412		 * jiffies to avoid endless requeuing to current jiffies.
2413		 */
2414		base->clk++;
2415		next_expiry_recalc(base);
2416
2417		while (levels--)
2418			expire_timers(base, heads + levels);
2419	}
2420}
2421
2422static void __run_timer_base(struct timer_base *base)
2423{
2424	if (time_before(jiffies, base->next_expiry))
2425		return;
2426
2427	timer_base_lock_expiry(base);
2428	raw_spin_lock_irq(&base->lock);
2429	__run_timers(base);
2430	raw_spin_unlock_irq(&base->lock);
2431	timer_base_unlock_expiry(base);
2432}
2433
2434static void run_timer_base(int index)
2435{
2436	struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
2437
2438	__run_timer_base(base);
2439}
2440
2441/*
2442 * This function runs timers and the timer-tq in bottom half context.
2443 */
2444static __latent_entropy void run_timer_softirq(struct softirq_action *h)
2445{
2446	run_timer_base(BASE_LOCAL);
2447	if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
2448		run_timer_base(BASE_GLOBAL);
2449		run_timer_base(BASE_DEF);
2450
2451		if (is_timers_nohz_active())
2452			tmigr_handle_remote();
2453	}
2454}
2455
2456/*
2457 * Called by the local, per-CPU timer interrupt on SMP.
2458 */
2459static void run_local_timers(void)
2460{
2461	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2462
2463	hrtimer_run_queues();
2464
2465	for (int i = 0; i < NR_BASES; i++, base++) {
2466		/* Raise the softirq only if required. */
2467		if (time_after_eq(jiffies, base->next_expiry) ||
2468		    (i == BASE_DEF && tmigr_requires_handle_remote())) {
2469			raise_softirq(TIMER_SOFTIRQ);
 
2470			return;
2471		}
2472	}
 
2473}
2474
2475/*
2476 * Called from the timer interrupt handler to charge one tick to the current
2477 * process.  user_tick is 1 if the tick is user time, 0 for system.
2478 */
2479void update_process_times(int user_tick)
2480{
2481	struct task_struct *p = current;
2482
2483	/* Note: this timer irq context must be accounted for as well. */
2484	account_process_tick(p, user_tick);
2485	run_local_timers();
2486	rcu_sched_clock_irq(user_tick);
2487#ifdef CONFIG_IRQ_WORK
2488	if (in_irq())
2489		irq_work_tick();
2490#endif
2491	scheduler_tick();
2492	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2493		run_posix_cpu_timers();
2494}
2495
2496/*
2497 * Since schedule_timeout()'s timer is defined on the stack, it must store
2498 * the target task on the stack as well.
2499 */
2500struct process_timer {
2501	struct timer_list timer;
2502	struct task_struct *task;
2503};
2504
2505static void process_timeout(struct timer_list *t)
2506{
2507	struct process_timer *timeout = from_timer(timeout, t, timer);
2508
2509	wake_up_process(timeout->task);
2510}
2511
2512/**
2513 * schedule_timeout - sleep until timeout
2514 * @timeout: timeout value in jiffies
2515 *
2516 * Make the current task sleep until @timeout jiffies have elapsed.
2517 * The function behavior depends on the current task state
2518 * (see also set_current_state() description):
2519 *
2520 * %TASK_RUNNING - the scheduler is called, but the task does not sleep
2521 * at all. That happens because sched_submit_work() does nothing for
2522 * tasks in %TASK_RUNNING state.
2523 *
2524 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
2525 * pass before the routine returns unless the current task is explicitly
2526 * woken up, (e.g. by wake_up_process()).
2527 *
2528 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2529 * delivered to the current task or the current task is explicitly woken
2530 * up.
2531 *
2532 * The current task state is guaranteed to be %TASK_RUNNING when this
2533 * routine returns.
2534 *
2535 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
2536 * the CPU away without a bound on the timeout. In this case the return
2537 * value will be %MAX_SCHEDULE_TIMEOUT.
2538 *
2539 * Returns 0 when the timer has expired otherwise the remaining time in
2540 * jiffies will be returned. In all cases the return value is guaranteed
2541 * to be non-negative.
2542 */
2543signed long __sched schedule_timeout(signed long timeout)
2544{
2545	struct process_timer timer;
2546	unsigned long expire;
2547
2548	switch (timeout)
2549	{
2550	case MAX_SCHEDULE_TIMEOUT:
2551		/*
2552		 * These two special cases are useful to be comfortable
2553		 * in the caller. Nothing more. We could take
2554		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
2555		 * but I' d like to return a valid offset (>=0) to allow
2556		 * the caller to do everything it want with the retval.
2557		 */
2558		schedule();
2559		goto out;
2560	default:
2561		/*
2562		 * Another bit of PARANOID. Note that the retval will be
2563		 * 0 since no piece of kernel is supposed to do a check
2564		 * for a negative retval of schedule_timeout() (since it
2565		 * should never happens anyway). You just have the printk()
2566		 * that will tell you if something is gone wrong and where.
2567		 */
2568		if (timeout < 0) {
2569			printk(KERN_ERR "schedule_timeout: wrong timeout "
2570				"value %lx\n", timeout);
2571			dump_stack();
2572			__set_current_state(TASK_RUNNING);
2573			goto out;
2574		}
2575	}
2576
2577	expire = timeout + jiffies;
2578
2579	timer.task = current;
2580	timer_setup_on_stack(&timer.timer, process_timeout, 0);
2581	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2582	schedule();
2583	del_timer_sync(&timer.timer);
2584
2585	/* Remove the timer from the object tracker */
2586	destroy_timer_on_stack(&timer.timer);
2587
2588	timeout = expire - jiffies;
2589
2590 out:
2591	return timeout < 0 ? 0 : timeout;
2592}
2593EXPORT_SYMBOL(schedule_timeout);
2594
2595/*
2596 * We can use __set_current_state() here because schedule_timeout() calls
2597 * schedule() unconditionally.
2598 */
2599signed long __sched schedule_timeout_interruptible(signed long timeout)
2600{
2601	__set_current_state(TASK_INTERRUPTIBLE);
2602	return schedule_timeout(timeout);
2603}
2604EXPORT_SYMBOL(schedule_timeout_interruptible);
2605
2606signed long __sched schedule_timeout_killable(signed long timeout)
2607{
2608	__set_current_state(TASK_KILLABLE);
2609	return schedule_timeout(timeout);
2610}
2611EXPORT_SYMBOL(schedule_timeout_killable);
2612
2613signed long __sched schedule_timeout_uninterruptible(signed long timeout)
2614{
2615	__set_current_state(TASK_UNINTERRUPTIBLE);
2616	return schedule_timeout(timeout);
2617}
2618EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2619
2620/*
2621 * Like schedule_timeout_uninterruptible(), except this task will not contribute
2622 * to load average.
2623 */
2624signed long __sched schedule_timeout_idle(signed long timeout)
2625{
2626	__set_current_state(TASK_IDLE);
2627	return schedule_timeout(timeout);
2628}
2629EXPORT_SYMBOL(schedule_timeout_idle);
2630
2631#ifdef CONFIG_HOTPLUG_CPU
2632static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2633{
2634	struct timer_list *timer;
2635	int cpu = new_base->cpu;
2636
2637	while (!hlist_empty(head)) {
2638		timer = hlist_entry(head->first, struct timer_list, entry);
2639		detach_timer(timer, false);
2640		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2641		internal_add_timer(new_base, timer);
2642	}
2643}
2644
2645int timers_prepare_cpu(unsigned int cpu)
2646{
2647	struct timer_base *base;
2648	int b;
2649
2650	for (b = 0; b < NR_BASES; b++) {
2651		base = per_cpu_ptr(&timer_bases[b], cpu);
2652		base->clk = jiffies;
2653		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2654		base->next_expiry_recalc = false;
2655		base->timers_pending = false;
2656		base->is_idle = false;
2657	}
2658	return 0;
2659}
2660
2661int timers_dead_cpu(unsigned int cpu)
2662{
2663	struct timer_base *old_base;
2664	struct timer_base *new_base;
2665	int b, i;
2666
2667	for (b = 0; b < NR_BASES; b++) {
2668		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2669		new_base = get_cpu_ptr(&timer_bases[b]);
2670		/*
2671		 * The caller is globally serialized and nobody else
2672		 * takes two locks at once, deadlock is not possible.
2673		 */
2674		raw_spin_lock_irq(&new_base->lock);
2675		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2676
2677		/*
2678		 * The current CPUs base clock might be stale. Update it
2679		 * before moving the timers over.
2680		 */
2681		forward_timer_base(new_base);
2682
2683		WARN_ON_ONCE(old_base->running_timer);
2684		old_base->running_timer = NULL;
2685
2686		for (i = 0; i < WHEEL_SIZE; i++)
2687			migrate_timer_list(new_base, old_base->vectors + i);
2688
2689		raw_spin_unlock(&old_base->lock);
2690		raw_spin_unlock_irq(&new_base->lock);
2691		put_cpu_ptr(&timer_bases);
2692	}
2693	return 0;
2694}
2695
2696#endif /* CONFIG_HOTPLUG_CPU */
2697
2698static void __init init_timer_cpu(int cpu)
2699{
2700	struct timer_base *base;
2701	int i;
2702
2703	for (i = 0; i < NR_BASES; i++) {
2704		base = per_cpu_ptr(&timer_bases[i], cpu);
2705		base->cpu = cpu;
2706		raw_spin_lock_init(&base->lock);
2707		base->clk = jiffies;
2708		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2709		timer_base_init_expiry_lock(base);
2710	}
2711}
2712
2713static void __init init_timer_cpus(void)
2714{
2715	int cpu;
2716
2717	for_each_possible_cpu(cpu)
2718		init_timer_cpu(cpu);
2719}
2720
2721void __init init_timers(void)
2722{
2723	init_timer_cpus();
2724	posix_cputimers_init_work();
2725	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2726}
2727
2728/**
2729 * msleep - sleep safely even with waitqueue interruptions
2730 * @msecs: Time in milliseconds to sleep for
2731 */
2732void msleep(unsigned int msecs)
2733{
2734	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2735
2736	while (timeout)
2737		timeout = schedule_timeout_uninterruptible(timeout);
2738}
2739
2740EXPORT_SYMBOL(msleep);
2741
2742/**
2743 * msleep_interruptible - sleep waiting for signals
2744 * @msecs: Time in milliseconds to sleep for
2745 */
2746unsigned long msleep_interruptible(unsigned int msecs)
2747{
2748	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2749
2750	while (timeout && !signal_pending(current))
2751		timeout = schedule_timeout_interruptible(timeout);
2752	return jiffies_to_msecs(timeout);
2753}
2754
2755EXPORT_SYMBOL(msleep_interruptible);
2756
2757/**
2758 * usleep_range_state - Sleep for an approximate time in a given state
2759 * @min:	Minimum time in usecs to sleep
2760 * @max:	Maximum time in usecs to sleep
2761 * @state:	State of the current task that will be while sleeping
2762 *
2763 * In non-atomic context where the exact wakeup time is flexible, use
2764 * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2765 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2766 * power usage by allowing hrtimers to take advantage of an already-
2767 * scheduled interrupt instead of scheduling a new one just for this sleep.
2768 */
2769void __sched usleep_range_state(unsigned long min, unsigned long max,
2770				unsigned int state)
2771{
2772	ktime_t exp = ktime_add_us(ktime_get(), min);
2773	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2774
2775	for (;;) {
2776		__set_current_state(state);
2777		/* Do not return before the requested sleep time has elapsed */
2778		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2779			break;
2780	}
2781}
2782EXPORT_SYMBOL(usleep_range_state);