Loading...
1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8#ifdef CONFIG_TASKS_RCU_GENERIC
9#include "rcu_segcblist.h"
10
11////////////////////////////////////////////////////////////////////////
12//
13// Generic data structures.
14
15struct rcu_tasks;
16typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17typedef void (*pregp_func_t)(struct list_head *hop);
18typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19typedef void (*postscan_func_t)(struct list_head *hop);
20typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22
23/**
24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25 * @cblist: Callback list.
26 * @lock: Lock protecting per-CPU callback list.
27 * @rtp_jiffies: Jiffies counter value for statistics.
28 * @rtp_n_lock_retries: Rough lock-contention statistic.
29 * @rtp_work: Work queue for invoking callbacks.
30 * @rtp_irq_work: IRQ work queue for deferred wakeups.
31 * @barrier_q_head: RCU callback for barrier operation.
32 * @rtp_blkd_tasks: List of tasks blocked as readers.
33 * @cpu: CPU number corresponding to this entry.
34 * @rtpp: Pointer to the rcu_tasks structure.
35 */
36struct rcu_tasks_percpu {
37 struct rcu_segcblist cblist;
38 raw_spinlock_t __private lock;
39 unsigned long rtp_jiffies;
40 unsigned long rtp_n_lock_retries;
41 struct work_struct rtp_work;
42 struct irq_work rtp_irq_work;
43 struct rcu_head barrier_q_head;
44 struct list_head rtp_blkd_tasks;
45 int cpu;
46 struct rcu_tasks *rtpp;
47};
48
49/**
50 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
51 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
52 * @cbs_gbl_lock: Lock protecting callback list.
53 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
54 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
55 * @gp_func: This flavor's grace-period-wait function.
56 * @gp_state: Grace period's most recent state transition (debugging).
57 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
58 * @init_fract: Initial backoff sleep interval.
59 * @gp_jiffies: Time of last @gp_state transition.
60 * @gp_start: Most recent grace-period start in jiffies.
61 * @tasks_gp_seq: Number of grace periods completed since boot.
62 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
63 * @n_ipis_fails: Number of IPI-send failures.
64 * @pregp_func: This flavor's pre-grace-period function (optional).
65 * @pertask_func: This flavor's per-task scan function (optional).
66 * @postscan_func: This flavor's post-task scan function (optional).
67 * @holdouts_func: This flavor's holdout-list scan function (optional).
68 * @postgp_func: This flavor's post-grace-period function (optional).
69 * @call_func: This flavor's call_rcu()-equivalent function.
70 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
71 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
72 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
73 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
74 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
75 * @barrier_q_mutex: Serialize barrier operations.
76 * @barrier_q_count: Number of queues being waited on.
77 * @barrier_q_completion: Barrier wait/wakeup mechanism.
78 * @barrier_q_seq: Sequence number for barrier operations.
79 * @name: This flavor's textual name.
80 * @kname: This flavor's kthread name.
81 */
82struct rcu_tasks {
83 struct rcuwait cbs_wait;
84 raw_spinlock_t cbs_gbl_lock;
85 struct mutex tasks_gp_mutex;
86 int gp_state;
87 int gp_sleep;
88 int init_fract;
89 unsigned long gp_jiffies;
90 unsigned long gp_start;
91 unsigned long tasks_gp_seq;
92 unsigned long n_ipis;
93 unsigned long n_ipis_fails;
94 struct task_struct *kthread_ptr;
95 rcu_tasks_gp_func_t gp_func;
96 pregp_func_t pregp_func;
97 pertask_func_t pertask_func;
98 postscan_func_t postscan_func;
99 holdouts_func_t holdouts_func;
100 postgp_func_t postgp_func;
101 call_rcu_func_t call_func;
102 struct rcu_tasks_percpu __percpu *rtpcpu;
103 int percpu_enqueue_shift;
104 int percpu_enqueue_lim;
105 int percpu_dequeue_lim;
106 unsigned long percpu_dequeue_gpseq;
107 struct mutex barrier_q_mutex;
108 atomic_t barrier_q_count;
109 struct completion barrier_q_completion;
110 unsigned long barrier_q_seq;
111 char *name;
112 char *kname;
113};
114
115static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
116
117#define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
118static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \
119 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \
120 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \
121}; \
122static struct rcu_tasks rt_name = \
123{ \
124 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \
125 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \
126 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \
127 .gp_func = gp, \
128 .call_func = call, \
129 .rtpcpu = &rt_name ## __percpu, \
130 .name = n, \
131 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \
132 .percpu_enqueue_lim = 1, \
133 .percpu_dequeue_lim = 1, \
134 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \
135 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \
136 .kname = #rt_name, \
137}
138
139/* Track exiting tasks in order to allow them to be waited for. */
140DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
141
142/* Avoid IPIing CPUs early in the grace period. */
143#define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
144static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
145module_param(rcu_task_ipi_delay, int, 0644);
146
147/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
148#define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
149#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
150static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
151module_param(rcu_task_stall_timeout, int, 0644);
152#define RCU_TASK_STALL_INFO (HZ * 10)
153static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
154module_param(rcu_task_stall_info, int, 0644);
155static int rcu_task_stall_info_mult __read_mostly = 3;
156module_param(rcu_task_stall_info_mult, int, 0444);
157
158static int rcu_task_enqueue_lim __read_mostly = -1;
159module_param(rcu_task_enqueue_lim, int, 0444);
160
161static bool rcu_task_cb_adjust;
162static int rcu_task_contend_lim __read_mostly = 100;
163module_param(rcu_task_contend_lim, int, 0444);
164static int rcu_task_collapse_lim __read_mostly = 10;
165module_param(rcu_task_collapse_lim, int, 0444);
166
167/* RCU tasks grace-period state for debugging. */
168#define RTGS_INIT 0
169#define RTGS_WAIT_WAIT_CBS 1
170#define RTGS_WAIT_GP 2
171#define RTGS_PRE_WAIT_GP 3
172#define RTGS_SCAN_TASKLIST 4
173#define RTGS_POST_SCAN_TASKLIST 5
174#define RTGS_WAIT_SCAN_HOLDOUTS 6
175#define RTGS_SCAN_HOLDOUTS 7
176#define RTGS_POST_GP 8
177#define RTGS_WAIT_READERS 9
178#define RTGS_INVOKE_CBS 10
179#define RTGS_WAIT_CBS 11
180#ifndef CONFIG_TINY_RCU
181static const char * const rcu_tasks_gp_state_names[] = {
182 "RTGS_INIT",
183 "RTGS_WAIT_WAIT_CBS",
184 "RTGS_WAIT_GP",
185 "RTGS_PRE_WAIT_GP",
186 "RTGS_SCAN_TASKLIST",
187 "RTGS_POST_SCAN_TASKLIST",
188 "RTGS_WAIT_SCAN_HOLDOUTS",
189 "RTGS_SCAN_HOLDOUTS",
190 "RTGS_POST_GP",
191 "RTGS_WAIT_READERS",
192 "RTGS_INVOKE_CBS",
193 "RTGS_WAIT_CBS",
194};
195#endif /* #ifndef CONFIG_TINY_RCU */
196
197////////////////////////////////////////////////////////////////////////
198//
199// Generic code.
200
201static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
202
203/* Record grace-period phase and time. */
204static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
205{
206 rtp->gp_state = newstate;
207 rtp->gp_jiffies = jiffies;
208}
209
210#ifndef CONFIG_TINY_RCU
211/* Return state name. */
212static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
213{
214 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
215 int j = READ_ONCE(i); // Prevent the compiler from reading twice
216
217 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
218 return "???";
219 return rcu_tasks_gp_state_names[j];
220}
221#endif /* #ifndef CONFIG_TINY_RCU */
222
223// Initialize per-CPU callback lists for the specified flavor of
224// Tasks RCU.
225static void cblist_init_generic(struct rcu_tasks *rtp)
226{
227 int cpu;
228 unsigned long flags;
229 int lim;
230 int shift;
231
232 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
233 if (rcu_task_enqueue_lim < 0) {
234 rcu_task_enqueue_lim = 1;
235 rcu_task_cb_adjust = true;
236 pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
237 } else if (rcu_task_enqueue_lim == 0) {
238 rcu_task_enqueue_lim = 1;
239 }
240 lim = rcu_task_enqueue_lim;
241
242 if (lim > nr_cpu_ids)
243 lim = nr_cpu_ids;
244 shift = ilog2(nr_cpu_ids / lim);
245 if (((nr_cpu_ids - 1) >> shift) >= lim)
246 shift++;
247 WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
248 WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
249 smp_store_release(&rtp->percpu_enqueue_lim, lim);
250 for_each_possible_cpu(cpu) {
251 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
252
253 WARN_ON_ONCE(!rtpcp);
254 if (cpu)
255 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
256 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
257 if (rcu_segcblist_empty(&rtpcp->cblist))
258 rcu_segcblist_init(&rtpcp->cblist);
259 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
260 rtpcp->cpu = cpu;
261 rtpcp->rtpp = rtp;
262 if (!rtpcp->rtp_blkd_tasks.next)
263 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
264 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
265 }
266 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
267 pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
268}
269
270// IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
271static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
272{
273 struct rcu_tasks *rtp;
274 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
275
276 rtp = rtpcp->rtpp;
277 rcuwait_wake_up(&rtp->cbs_wait);
278}
279
280// Enqueue a callback for the specified flavor of Tasks RCU.
281static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
282 struct rcu_tasks *rtp)
283{
284 int chosen_cpu;
285 unsigned long flags;
286 int ideal_cpu;
287 unsigned long j;
288 bool needadjust = false;
289 bool needwake;
290 struct rcu_tasks_percpu *rtpcp;
291
292 rhp->next = NULL;
293 rhp->func = func;
294 local_irq_save(flags);
295 rcu_read_lock();
296 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
297 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
298 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
299 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
300 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
301 j = jiffies;
302 if (rtpcp->rtp_jiffies != j) {
303 rtpcp->rtp_jiffies = j;
304 rtpcp->rtp_n_lock_retries = 0;
305 }
306 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
307 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
308 needadjust = true; // Defer adjustment to avoid deadlock.
309 }
310 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
311 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
312 cblist_init_generic(rtp);
313 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
314 }
315 needwake = rcu_segcblist_empty(&rtpcp->cblist);
316 rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
317 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
318 if (unlikely(needadjust)) {
319 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
320 if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
321 WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
322 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
323 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
324 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
325 }
326 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
327 }
328 rcu_read_unlock();
329 /* We can't create the thread unless interrupts are enabled. */
330 if (needwake && READ_ONCE(rtp->kthread_ptr))
331 irq_work_queue(&rtpcp->rtp_irq_work);
332}
333
334// RCU callback function for rcu_barrier_tasks_generic().
335static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
336{
337 struct rcu_tasks *rtp;
338 struct rcu_tasks_percpu *rtpcp;
339
340 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
341 rtp = rtpcp->rtpp;
342 if (atomic_dec_and_test(&rtp->barrier_q_count))
343 complete(&rtp->barrier_q_completion);
344}
345
346// Wait for all in-flight callbacks for the specified RCU Tasks flavor.
347// Operates in a manner similar to rcu_barrier().
348static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
349{
350 int cpu;
351 unsigned long flags;
352 struct rcu_tasks_percpu *rtpcp;
353 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
354
355 mutex_lock(&rtp->barrier_q_mutex);
356 if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
357 smp_mb();
358 mutex_unlock(&rtp->barrier_q_mutex);
359 return;
360 }
361 rcu_seq_start(&rtp->barrier_q_seq);
362 init_completion(&rtp->barrier_q_completion);
363 atomic_set(&rtp->barrier_q_count, 2);
364 for_each_possible_cpu(cpu) {
365 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
366 break;
367 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
368 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
369 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
370 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
371 atomic_inc(&rtp->barrier_q_count);
372 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
373 }
374 if (atomic_sub_and_test(2, &rtp->barrier_q_count))
375 complete(&rtp->barrier_q_completion);
376 wait_for_completion(&rtp->barrier_q_completion);
377 rcu_seq_end(&rtp->barrier_q_seq);
378 mutex_unlock(&rtp->barrier_q_mutex);
379}
380
381// Advance callbacks and indicate whether either a grace period or
382// callback invocation is needed.
383static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
384{
385 int cpu;
386 unsigned long flags;
387 long n;
388 long ncbs = 0;
389 long ncbsnz = 0;
390 int needgpcb = 0;
391
392 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
393 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
394
395 /* Advance and accelerate any new callbacks. */
396 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
397 continue;
398 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
399 // Should we shrink down to a single callback queue?
400 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
401 if (n) {
402 ncbs += n;
403 if (cpu > 0)
404 ncbsnz += n;
405 }
406 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
407 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
408 if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
409 needgpcb |= 0x3;
410 if (!rcu_segcblist_empty(&rtpcp->cblist))
411 needgpcb |= 0x1;
412 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
413 }
414
415 // Shrink down to a single callback queue if appropriate.
416 // This is done in two stages: (1) If there are no more than
417 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
418 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period,
419 // if there has not been an increase in callbacks, limit dequeuing
420 // to CPU 0. Note the matching RCU read-side critical section in
421 // call_rcu_tasks_generic().
422 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
423 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
424 if (rtp->percpu_enqueue_lim > 1) {
425 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
426 smp_store_release(&rtp->percpu_enqueue_lim, 1);
427 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
428 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
429 }
430 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
431 }
432 if (rcu_task_cb_adjust && !ncbsnz &&
433 poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
434 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
435 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
436 WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
437 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
438 }
439 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
440 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
441
442 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
443 }
444 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
445 }
446
447 return needgpcb;
448}
449
450// Advance callbacks and invoke any that are ready.
451static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
452{
453 int cpu;
454 int cpunext;
455 unsigned long flags;
456 int len;
457 struct rcu_head *rhp;
458 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
459 struct rcu_tasks_percpu *rtpcp_next;
460
461 cpu = rtpcp->cpu;
462 cpunext = cpu * 2 + 1;
463 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
464 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
465 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
466 cpunext++;
467 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
468 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
469 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
470 }
471 }
472
473 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
474 return;
475 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
476 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
477 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
478 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
479 len = rcl.len;
480 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
481 local_bh_disable();
482 rhp->func(rhp);
483 local_bh_enable();
484 cond_resched();
485 }
486 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
487 rcu_segcblist_add_len(&rtpcp->cblist, -len);
488 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
489 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
490}
491
492// Workqueue flood to advance callbacks and invoke any that are ready.
493static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
494{
495 struct rcu_tasks *rtp;
496 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
497
498 rtp = rtpcp->rtpp;
499 rcu_tasks_invoke_cbs(rtp, rtpcp);
500}
501
502// Wait for one grace period.
503static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
504{
505 int needgpcb;
506
507 mutex_lock(&rtp->tasks_gp_mutex);
508
509 // If there were none, wait a bit and start over.
510 if (unlikely(midboot)) {
511 needgpcb = 0x2;
512 } else {
513 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
514 rcuwait_wait_event(&rtp->cbs_wait,
515 (needgpcb = rcu_tasks_need_gpcb(rtp)),
516 TASK_IDLE);
517 }
518
519 if (needgpcb & 0x2) {
520 // Wait for one grace period.
521 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
522 rtp->gp_start = jiffies;
523 rcu_seq_start(&rtp->tasks_gp_seq);
524 rtp->gp_func(rtp);
525 rcu_seq_end(&rtp->tasks_gp_seq);
526 }
527
528 // Invoke callbacks.
529 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
530 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
531 mutex_unlock(&rtp->tasks_gp_mutex);
532}
533
534// RCU-tasks kthread that detects grace periods and invokes callbacks.
535static int __noreturn rcu_tasks_kthread(void *arg)
536{
537 struct rcu_tasks *rtp = arg;
538
539 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
540 housekeeping_affine(current, HK_TYPE_RCU);
541 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
542
543 /*
544 * Each pass through the following loop makes one check for
545 * newly arrived callbacks, and, if there are some, waits for
546 * one RCU-tasks grace period and then invokes the callbacks.
547 * This loop is terminated by the system going down. ;-)
548 */
549 for (;;) {
550 // Wait for one grace period and invoke any callbacks
551 // that are ready.
552 rcu_tasks_one_gp(rtp, false);
553
554 // Paranoid sleep to keep this from entering a tight loop.
555 schedule_timeout_idle(rtp->gp_sleep);
556 }
557}
558
559// Wait for a grace period for the specified flavor of Tasks RCU.
560static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
561{
562 /* Complain if the scheduler has not started. */
563 WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
564 "synchronize_rcu_tasks called too soon");
565
566 // If the grace-period kthread is running, use it.
567 if (READ_ONCE(rtp->kthread_ptr)) {
568 wait_rcu_gp(rtp->call_func);
569 return;
570 }
571 rcu_tasks_one_gp(rtp, true);
572}
573
574/* Spawn RCU-tasks grace-period kthread. */
575static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
576{
577 struct task_struct *t;
578
579 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
580 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
581 return;
582 smp_mb(); /* Ensure others see full kthread. */
583}
584
585#ifndef CONFIG_TINY_RCU
586
587/*
588 * Print any non-default Tasks RCU settings.
589 */
590static void __init rcu_tasks_bootup_oddness(void)
591{
592#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
593 int rtsimc;
594
595 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
596 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
597 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
598 if (rtsimc != rcu_task_stall_info_mult) {
599 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
600 rcu_task_stall_info_mult = rtsimc;
601 }
602#endif /* #ifdef CONFIG_TASKS_RCU */
603#ifdef CONFIG_TASKS_RCU
604 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
605#endif /* #ifdef CONFIG_TASKS_RCU */
606#ifdef CONFIG_TASKS_RUDE_RCU
607 pr_info("\tRude variant of Tasks RCU enabled.\n");
608#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
609#ifdef CONFIG_TASKS_TRACE_RCU
610 pr_info("\tTracing variant of Tasks RCU enabled.\n");
611#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
612}
613
614#endif /* #ifndef CONFIG_TINY_RCU */
615
616#ifndef CONFIG_TINY_RCU
617/* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
618static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
619{
620 int cpu;
621 bool havecbs = false;
622
623 for_each_possible_cpu(cpu) {
624 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
625
626 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
627 havecbs = true;
628 break;
629 }
630 }
631 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
632 rtp->kname,
633 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
634 jiffies - data_race(rtp->gp_jiffies),
635 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
636 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
637 ".k"[!!data_race(rtp->kthread_ptr)],
638 ".C"[havecbs],
639 s);
640}
641#endif // #ifndef CONFIG_TINY_RCU
642
643static void exit_tasks_rcu_finish_trace(struct task_struct *t);
644
645#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
646
647////////////////////////////////////////////////////////////////////////
648//
649// Shared code between task-list-scanning variants of Tasks RCU.
650
651/* Wait for one RCU-tasks grace period. */
652static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
653{
654 struct task_struct *g;
655 int fract;
656 LIST_HEAD(holdouts);
657 unsigned long j;
658 unsigned long lastinfo;
659 unsigned long lastreport;
660 bool reported = false;
661 int rtsi;
662 struct task_struct *t;
663
664 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
665 rtp->pregp_func(&holdouts);
666
667 /*
668 * There were callbacks, so we need to wait for an RCU-tasks
669 * grace period. Start off by scanning the task list for tasks
670 * that are not already voluntarily blocked. Mark these tasks
671 * and make a list of them in holdouts.
672 */
673 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
674 if (rtp->pertask_func) {
675 rcu_read_lock();
676 for_each_process_thread(g, t)
677 rtp->pertask_func(t, &holdouts);
678 rcu_read_unlock();
679 }
680
681 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
682 rtp->postscan_func(&holdouts);
683
684 /*
685 * Each pass through the following loop scans the list of holdout
686 * tasks, removing any that are no longer holdouts. When the list
687 * is empty, we are done.
688 */
689 lastreport = jiffies;
690 lastinfo = lastreport;
691 rtsi = READ_ONCE(rcu_task_stall_info);
692
693 // Start off with initial wait and slowly back off to 1 HZ wait.
694 fract = rtp->init_fract;
695
696 while (!list_empty(&holdouts)) {
697 ktime_t exp;
698 bool firstreport;
699 bool needreport;
700 int rtst;
701
702 // Slowly back off waiting for holdouts
703 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
704 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
705 schedule_timeout_idle(fract);
706 } else {
707 exp = jiffies_to_nsecs(fract);
708 __set_current_state(TASK_IDLE);
709 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
710 }
711
712 if (fract < HZ)
713 fract++;
714
715 rtst = READ_ONCE(rcu_task_stall_timeout);
716 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
717 if (needreport) {
718 lastreport = jiffies;
719 reported = true;
720 }
721 firstreport = true;
722 WARN_ON(signal_pending(current));
723 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
724 rtp->holdouts_func(&holdouts, needreport, &firstreport);
725
726 // Print pre-stall informational messages if needed.
727 j = jiffies;
728 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
729 lastinfo = j;
730 rtsi = rtsi * rcu_task_stall_info_mult;
731 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
732 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
733 }
734 }
735
736 set_tasks_gp_state(rtp, RTGS_POST_GP);
737 rtp->postgp_func(rtp);
738}
739
740#endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
741
742#ifdef CONFIG_TASKS_RCU
743
744////////////////////////////////////////////////////////////////////////
745//
746// Simple variant of RCU whose quiescent states are voluntary context
747// switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
748// As such, grace periods can take one good long time. There are no
749// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
750// because this implementation is intended to get the system into a safe
751// state for some of the manipulations involved in tracing and the like.
752// Finally, this implementation does not support high call_rcu_tasks()
753// rates from multiple CPUs. If this is required, per-CPU callback lists
754// will be needed.
755//
756// The implementation uses rcu_tasks_wait_gp(), which relies on function
757// pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread()
758// function sets these function pointers up so that rcu_tasks_wait_gp()
759// invokes these functions in this order:
760//
761// rcu_tasks_pregp_step():
762// Invokes synchronize_rcu() in order to wait for all in-flight
763// t->on_rq and t->nvcsw transitions to complete. This works because
764// all such transitions are carried out with interrupts disabled.
765// rcu_tasks_pertask(), invoked on every non-idle task:
766// For every runnable non-idle task other than the current one, use
767// get_task_struct() to pin down that task, snapshot that task's
768// number of voluntary context switches, and add that task to the
769// holdout list.
770// rcu_tasks_postscan():
771// Invoke synchronize_srcu() to ensure that all tasks that were
772// in the process of exiting (and which thus might not know to
773// synchronize with this RCU Tasks grace period) have completed
774// exiting.
775// check_all_holdout_tasks(), repeatedly until holdout list is empty:
776// Scans the holdout list, attempting to identify a quiescent state
777// for each task on the list. If there is a quiescent state, the
778// corresponding task is removed from the holdout list.
779// rcu_tasks_postgp():
780// Invokes synchronize_rcu() in order to ensure that all prior
781// t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
782// to have happened before the end of this RCU Tasks grace period.
783// Again, this works because all such transitions are carried out
784// with interrupts disabled.
785//
786// For each exiting task, the exit_tasks_rcu_start() and
787// exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
788// read-side critical sections waited for by rcu_tasks_postscan().
789//
790// Pre-grace-period update-side code is ordered before the grace
791// via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code
792// is ordered before the grace period via synchronize_rcu() call in
793// rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
794// disabling.
795
796/* Pre-grace-period preparation. */
797static void rcu_tasks_pregp_step(struct list_head *hop)
798{
799 /*
800 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
801 * to complete. Invoking synchronize_rcu() suffices because all
802 * these transitions occur with interrupts disabled. Without this
803 * synchronize_rcu(), a read-side critical section that started
804 * before the grace period might be incorrectly seen as having
805 * started after the grace period.
806 *
807 * This synchronize_rcu() also dispenses with the need for a
808 * memory barrier on the first store to t->rcu_tasks_holdout,
809 * as it forces the store to happen after the beginning of the
810 * grace period.
811 */
812 synchronize_rcu();
813}
814
815/* Per-task initial processing. */
816static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
817{
818 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
819 get_task_struct(t);
820 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
821 WRITE_ONCE(t->rcu_tasks_holdout, true);
822 list_add(&t->rcu_tasks_holdout_list, hop);
823 }
824}
825
826/* Processing between scanning taskslist and draining the holdout list. */
827static void rcu_tasks_postscan(struct list_head *hop)
828{
829 /*
830 * Wait for tasks that are in the process of exiting. This
831 * does only part of the job, ensuring that all tasks that were
832 * previously exiting reach the point where they have disabled
833 * preemption, allowing the later synchronize_rcu() to finish
834 * the job.
835 */
836 synchronize_srcu(&tasks_rcu_exit_srcu);
837}
838
839/* See if tasks are still holding out, complain if so. */
840static void check_holdout_task(struct task_struct *t,
841 bool needreport, bool *firstreport)
842{
843 int cpu;
844
845 if (!READ_ONCE(t->rcu_tasks_holdout) ||
846 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
847 !READ_ONCE(t->on_rq) ||
848 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
849 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
850 WRITE_ONCE(t->rcu_tasks_holdout, false);
851 list_del_init(&t->rcu_tasks_holdout_list);
852 put_task_struct(t);
853 return;
854 }
855 rcu_request_urgent_qs_task(t);
856 if (!needreport)
857 return;
858 if (*firstreport) {
859 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
860 *firstreport = false;
861 }
862 cpu = task_cpu(t);
863 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
864 t, ".I"[is_idle_task(t)],
865 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
866 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
867 t->rcu_tasks_idle_cpu, cpu);
868 sched_show_task(t);
869}
870
871/* Scan the holdout lists for tasks no longer holding out. */
872static void check_all_holdout_tasks(struct list_head *hop,
873 bool needreport, bool *firstreport)
874{
875 struct task_struct *t, *t1;
876
877 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
878 check_holdout_task(t, needreport, firstreport);
879 cond_resched();
880 }
881}
882
883/* Finish off the Tasks-RCU grace period. */
884static void rcu_tasks_postgp(struct rcu_tasks *rtp)
885{
886 /*
887 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
888 * memory barriers prior to them in the schedule() path, memory
889 * reordering on other CPUs could cause their RCU-tasks read-side
890 * critical sections to extend past the end of the grace period.
891 * However, because these ->nvcsw updates are carried out with
892 * interrupts disabled, we can use synchronize_rcu() to force the
893 * needed ordering on all such CPUs.
894 *
895 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
896 * accesses to be within the grace period, avoiding the need for
897 * memory barriers for ->rcu_tasks_holdout accesses.
898 *
899 * In addition, this synchronize_rcu() waits for exiting tasks
900 * to complete their final preempt_disable() region of execution,
901 * cleaning up after the synchronize_srcu() above.
902 */
903 synchronize_rcu();
904}
905
906void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
907DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
908
909/**
910 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
911 * @rhp: structure to be used for queueing the RCU updates.
912 * @func: actual callback function to be invoked after the grace period
913 *
914 * The callback function will be invoked some time after a full grace
915 * period elapses, in other words after all currently executing RCU
916 * read-side critical sections have completed. call_rcu_tasks() assumes
917 * that the read-side critical sections end at a voluntary context
918 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
919 * or transition to usermode execution. As such, there are no read-side
920 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
921 * this primitive is intended to determine that all tasks have passed
922 * through a safe state, not so much for data-structure synchronization.
923 *
924 * See the description of call_rcu() for more detailed information on
925 * memory ordering guarantees.
926 */
927void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
928{
929 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
930}
931EXPORT_SYMBOL_GPL(call_rcu_tasks);
932
933/**
934 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
935 *
936 * Control will return to the caller some time after a full rcu-tasks
937 * grace period has elapsed, in other words after all currently
938 * executing rcu-tasks read-side critical sections have elapsed. These
939 * read-side critical sections are delimited by calls to schedule(),
940 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
941 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
942 *
943 * This is a very specialized primitive, intended only for a few uses in
944 * tracing and other situations requiring manipulation of function
945 * preambles and profiling hooks. The synchronize_rcu_tasks() function
946 * is not (yet) intended for heavy use from multiple CPUs.
947 *
948 * See the description of synchronize_rcu() for more detailed information
949 * on memory ordering guarantees.
950 */
951void synchronize_rcu_tasks(void)
952{
953 synchronize_rcu_tasks_generic(&rcu_tasks);
954}
955EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
956
957/**
958 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
959 *
960 * Although the current implementation is guaranteed to wait, it is not
961 * obligated to, for example, if there are no pending callbacks.
962 */
963void rcu_barrier_tasks(void)
964{
965 rcu_barrier_tasks_generic(&rcu_tasks);
966}
967EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
968
969static int __init rcu_spawn_tasks_kthread(void)
970{
971 cblist_init_generic(&rcu_tasks);
972 rcu_tasks.gp_sleep = HZ / 10;
973 rcu_tasks.init_fract = HZ / 10;
974 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
975 rcu_tasks.pertask_func = rcu_tasks_pertask;
976 rcu_tasks.postscan_func = rcu_tasks_postscan;
977 rcu_tasks.holdouts_func = check_all_holdout_tasks;
978 rcu_tasks.postgp_func = rcu_tasks_postgp;
979 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
980 return 0;
981}
982
983#if !defined(CONFIG_TINY_RCU)
984void show_rcu_tasks_classic_gp_kthread(void)
985{
986 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
987}
988EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
989#endif // !defined(CONFIG_TINY_RCU)
990
991/* Do the srcu_read_lock() for the above synchronize_srcu(). */
992void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
993{
994 preempt_disable();
995 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
996 preempt_enable();
997}
998
999/* Do the srcu_read_unlock() for the above synchronize_srcu(). */
1000void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
1001{
1002 struct task_struct *t = current;
1003
1004 preempt_disable();
1005 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
1006 preempt_enable();
1007 exit_tasks_rcu_finish_trace(t);
1008}
1009
1010#else /* #ifdef CONFIG_TASKS_RCU */
1011void exit_tasks_rcu_start(void) { }
1012void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1013#endif /* #else #ifdef CONFIG_TASKS_RCU */
1014
1015#ifdef CONFIG_TASKS_RUDE_RCU
1016
1017////////////////////////////////////////////////////////////////////////
1018//
1019// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1020// passing an empty function to schedule_on_each_cpu(). This approach
1021// provides an asynchronous call_rcu_tasks_rude() API and batching of
1022// concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1023// This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1024// and induces otherwise unnecessary context switches on all online CPUs,
1025// whether idle or not.
1026//
1027// Callback handling is provided by the rcu_tasks_kthread() function.
1028//
1029// Ordering is provided by the scheduler's context-switch code.
1030
1031// Empty function to allow workqueues to force a context switch.
1032static void rcu_tasks_be_rude(struct work_struct *work)
1033{
1034}
1035
1036// Wait for one rude RCU-tasks grace period.
1037static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1038{
1039 if (num_online_cpus() <= 1)
1040 return; // Fastpath for only one CPU.
1041
1042 rtp->n_ipis += cpumask_weight(cpu_online_mask);
1043 schedule_on_each_cpu(rcu_tasks_be_rude);
1044}
1045
1046void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1047DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1048 "RCU Tasks Rude");
1049
1050/**
1051 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1052 * @rhp: structure to be used for queueing the RCU updates.
1053 * @func: actual callback function to be invoked after the grace period
1054 *
1055 * The callback function will be invoked some time after a full grace
1056 * period elapses, in other words after all currently executing RCU
1057 * read-side critical sections have completed. call_rcu_tasks_rude()
1058 * assumes that the read-side critical sections end at context switch,
1059 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1060 * usermode execution is schedulable). As such, there are no read-side
1061 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1062 * this primitive is intended to determine that all tasks have passed
1063 * through a safe state, not so much for data-structure synchronization.
1064 *
1065 * See the description of call_rcu() for more detailed information on
1066 * memory ordering guarantees.
1067 */
1068void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1069{
1070 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1071}
1072EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1073
1074/**
1075 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1076 *
1077 * Control will return to the caller some time after a rude rcu-tasks
1078 * grace period has elapsed, in other words after all currently
1079 * executing rcu-tasks read-side critical sections have elapsed. These
1080 * read-side critical sections are delimited by calls to schedule(),
1081 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1082 * context), and (in theory, anyway) cond_resched().
1083 *
1084 * This is a very specialized primitive, intended only for a few uses in
1085 * tracing and other situations requiring manipulation of function preambles
1086 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
1087 * (yet) intended for heavy use from multiple CPUs.
1088 *
1089 * See the description of synchronize_rcu() for more detailed information
1090 * on memory ordering guarantees.
1091 */
1092void synchronize_rcu_tasks_rude(void)
1093{
1094 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1095}
1096EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1097
1098/**
1099 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1100 *
1101 * Although the current implementation is guaranteed to wait, it is not
1102 * obligated to, for example, if there are no pending callbacks.
1103 */
1104void rcu_barrier_tasks_rude(void)
1105{
1106 rcu_barrier_tasks_generic(&rcu_tasks_rude);
1107}
1108EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1109
1110static int __init rcu_spawn_tasks_rude_kthread(void)
1111{
1112 cblist_init_generic(&rcu_tasks_rude);
1113 rcu_tasks_rude.gp_sleep = HZ / 10;
1114 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1115 return 0;
1116}
1117
1118#if !defined(CONFIG_TINY_RCU)
1119void show_rcu_tasks_rude_gp_kthread(void)
1120{
1121 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1122}
1123EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1124#endif // !defined(CONFIG_TINY_RCU)
1125#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1126
1127////////////////////////////////////////////////////////////////////////
1128//
1129// Tracing variant of Tasks RCU. This variant is designed to be used
1130// to protect tracing hooks, including those of BPF. This variant
1131// therefore:
1132//
1133// 1. Has explicit read-side markers to allow finite grace periods
1134// in the face of in-kernel loops for PREEMPT=n builds.
1135//
1136// 2. Protects code in the idle loop, exception entry/exit, and
1137// CPU-hotplug code paths, similar to the capabilities of SRCU.
1138//
1139// 3. Avoids expensive read-side instructions, having overhead similar
1140// to that of Preemptible RCU.
1141//
1142// There are of course downsides. For example, the grace-period code
1143// can send IPIs to CPUs, even when those CPUs are in the idle loop or
1144// in nohz_full userspace. If needed, these downsides can be at least
1145// partially remedied.
1146//
1147// Perhaps most important, this variant of RCU does not affect the vanilla
1148// flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
1149// readers can operate from idle, offline, and exception entry/exit in no
1150// way allows rcu_preempt and rcu_sched readers to also do so.
1151//
1152// The implementation uses rcu_tasks_wait_gp(), which relies on function
1153// pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
1154// function sets these function pointers up so that rcu_tasks_wait_gp()
1155// invokes these functions in this order:
1156//
1157// rcu_tasks_trace_pregp_step():
1158// Disables CPU hotplug, adds all currently executing tasks to the
1159// holdout list, then checks the state of all tasks that blocked
1160// or were preempted within their current RCU Tasks Trace read-side
1161// critical section, adding them to the holdout list if appropriate.
1162// Finally, this function re-enables CPU hotplug.
1163// The ->pertask_func() pointer is NULL, so there is no per-task processing.
1164// rcu_tasks_trace_postscan():
1165// Invokes synchronize_rcu() to wait for late-stage exiting tasks
1166// to finish exiting.
1167// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1168// Scans the holdout list, attempting to identify a quiescent state
1169// for each task on the list. If there is a quiescent state, the
1170// corresponding task is removed from the holdout list. Once this
1171// list is empty, the grace period has completed.
1172// rcu_tasks_trace_postgp():
1173// Provides the needed full memory barrier and does debug checks.
1174//
1175// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1176//
1177// Pre-grace-period update-side code is ordered before the grace period
1178// via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period
1179// read-side code is ordered before the grace period by atomic operations
1180// on .b.need_qs flag of each task involved in this process, or by scheduler
1181// context-switch ordering (for locked-down non-running readers).
1182
1183// The lockdep state must be outside of #ifdef to be useful.
1184#ifdef CONFIG_DEBUG_LOCK_ALLOC
1185static struct lock_class_key rcu_lock_trace_key;
1186struct lockdep_map rcu_trace_lock_map =
1187 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1188EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1189#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1190
1191#ifdef CONFIG_TASKS_TRACE_RCU
1192
1193// Record outstanding IPIs to each CPU. No point in sending two...
1194static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1195
1196// The number of detections of task quiescent state relying on
1197// heavyweight readers executing explicit memory barriers.
1198static unsigned long n_heavy_reader_attempts;
1199static unsigned long n_heavy_reader_updates;
1200static unsigned long n_heavy_reader_ofl_updates;
1201static unsigned long n_trc_holdouts;
1202
1203void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1204DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1205 "RCU Tasks Trace");
1206
1207/* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1208static u8 rcu_ld_need_qs(struct task_struct *t)
1209{
1210 smp_mb(); // Enforce full grace-period ordering.
1211 return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1212}
1213
1214/* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1215static void rcu_st_need_qs(struct task_struct *t, u8 v)
1216{
1217 smp_store_release(&t->trc_reader_special.b.need_qs, v);
1218 smp_mb(); // Enforce full grace-period ordering.
1219}
1220
1221/*
1222 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1223 * the four-byte operand-size restriction of some platforms.
1224 * Returns the old value, which is often ignored.
1225 */
1226u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1227{
1228 union rcu_special ret;
1229 union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1230 union rcu_special trs_new = trs_old;
1231
1232 if (trs_old.b.need_qs != old)
1233 return trs_old.b.need_qs;
1234 trs_new.b.need_qs = new;
1235 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1236 return ret.b.need_qs;
1237}
1238EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1239
1240/*
1241 * If we are the last reader, signal the grace-period kthread.
1242 * Also remove from the per-CPU list of blocked tasks.
1243 */
1244void rcu_read_unlock_trace_special(struct task_struct *t)
1245{
1246 unsigned long flags;
1247 struct rcu_tasks_percpu *rtpcp;
1248 union rcu_special trs;
1249
1250 // Open-coded full-word version of rcu_ld_need_qs().
1251 smp_mb(); // Enforce full grace-period ordering.
1252 trs = smp_load_acquire(&t->trc_reader_special);
1253
1254 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1255 smp_mb(); // Pairs with update-side barriers.
1256 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1257 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1258 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1259 TRC_NEED_QS_CHECKED);
1260
1261 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1262 }
1263 if (trs.b.blocked) {
1264 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1265 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1266 list_del_init(&t->trc_blkd_node);
1267 WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1268 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1269 }
1270 WRITE_ONCE(t->trc_reader_nesting, 0);
1271}
1272EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1273
1274/* Add a newly blocked reader task to its CPU's list. */
1275void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1276{
1277 unsigned long flags;
1278 struct rcu_tasks_percpu *rtpcp;
1279
1280 local_irq_save(flags);
1281 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1282 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1283 t->trc_blkd_cpu = smp_processor_id();
1284 if (!rtpcp->rtp_blkd_tasks.next)
1285 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1286 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1287 WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1288 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1289}
1290EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1291
1292/* Add a task to the holdout list, if it is not already on the list. */
1293static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1294{
1295 if (list_empty(&t->trc_holdout_list)) {
1296 get_task_struct(t);
1297 list_add(&t->trc_holdout_list, bhp);
1298 n_trc_holdouts++;
1299 }
1300}
1301
1302/* Remove a task from the holdout list, if it is in fact present. */
1303static void trc_del_holdout(struct task_struct *t)
1304{
1305 if (!list_empty(&t->trc_holdout_list)) {
1306 list_del_init(&t->trc_holdout_list);
1307 put_task_struct(t);
1308 n_trc_holdouts--;
1309 }
1310}
1311
1312/* IPI handler to check task state. */
1313static void trc_read_check_handler(void *t_in)
1314{
1315 int nesting;
1316 struct task_struct *t = current;
1317 struct task_struct *texp = t_in;
1318
1319 // If the task is no longer running on this CPU, leave.
1320 if (unlikely(texp != t))
1321 goto reset_ipi; // Already on holdout list, so will check later.
1322
1323 // If the task is not in a read-side critical section, and
1324 // if this is the last reader, awaken the grace-period kthread.
1325 nesting = READ_ONCE(t->trc_reader_nesting);
1326 if (likely(!nesting)) {
1327 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1328 goto reset_ipi;
1329 }
1330 // If we are racing with an rcu_read_unlock_trace(), try again later.
1331 if (unlikely(nesting < 0))
1332 goto reset_ipi;
1333
1334 // Get here if the task is in a read-side critical section.
1335 // Set its state so that it will update state for the grace-period
1336 // kthread upon exit from that critical section.
1337 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1338
1339reset_ipi:
1340 // Allow future IPIs to be sent on CPU and for task.
1341 // Also order this IPI handler against any later manipulations of
1342 // the intended task.
1343 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1344 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1345}
1346
1347/* Callback function for scheduler to check locked-down task. */
1348static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1349{
1350 struct list_head *bhp = bhp_in;
1351 int cpu = task_cpu(t);
1352 int nesting;
1353 bool ofl = cpu_is_offline(cpu);
1354
1355 if (task_curr(t) && !ofl) {
1356 // If no chance of heavyweight readers, do it the hard way.
1357 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1358 return -EINVAL;
1359
1360 // If heavyweight readers are enabled on the remote task,
1361 // we can inspect its state despite its currently running.
1362 // However, we cannot safely change its state.
1363 n_heavy_reader_attempts++;
1364 // Check for "running" idle tasks on offline CPUs.
1365 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1366 return -EINVAL; // No quiescent state, do it the hard way.
1367 n_heavy_reader_updates++;
1368 nesting = 0;
1369 } else {
1370 // The task is not running, so C-language access is safe.
1371 nesting = t->trc_reader_nesting;
1372 WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t));
1373 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1374 n_heavy_reader_ofl_updates++;
1375 }
1376
1377 // If not exiting a read-side critical section, mark as checked
1378 // so that the grace-period kthread will remove it from the
1379 // holdout list.
1380 if (!nesting) {
1381 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1382 return 0; // In QS, so done.
1383 }
1384 if (nesting < 0)
1385 return -EINVAL; // Reader transitioning, try again later.
1386
1387 // The task is in a read-side critical section, so set up its
1388 // state so that it will update state upon exit from that critical
1389 // section.
1390 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1391 trc_add_holdout(t, bhp);
1392 return 0;
1393}
1394
1395/* Attempt to extract the state for the specified task. */
1396static void trc_wait_for_one_reader(struct task_struct *t,
1397 struct list_head *bhp)
1398{
1399 int cpu;
1400
1401 // If a previous IPI is still in flight, let it complete.
1402 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1403 return;
1404
1405 // The current task had better be in a quiescent state.
1406 if (t == current) {
1407 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1408 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1409 return;
1410 }
1411
1412 // Attempt to nail down the task for inspection.
1413 get_task_struct(t);
1414 if (!task_call_func(t, trc_inspect_reader, bhp)) {
1415 put_task_struct(t);
1416 return;
1417 }
1418 put_task_struct(t);
1419
1420 // If this task is not yet on the holdout list, then we are in
1421 // an RCU read-side critical section. Otherwise, the invocation of
1422 // trc_add_holdout() that added it to the list did the necessary
1423 // get_task_struct(). Either way, the task cannot be freed out
1424 // from under this code.
1425
1426 // If currently running, send an IPI, either way, add to list.
1427 trc_add_holdout(t, bhp);
1428 if (task_curr(t) &&
1429 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1430 // The task is currently running, so try IPIing it.
1431 cpu = task_cpu(t);
1432
1433 // If there is already an IPI outstanding, let it happen.
1434 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1435 return;
1436
1437 per_cpu(trc_ipi_to_cpu, cpu) = true;
1438 t->trc_ipi_to_cpu = cpu;
1439 rcu_tasks_trace.n_ipis++;
1440 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1441 // Just in case there is some other reason for
1442 // failure than the target CPU being offline.
1443 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
1444 __func__, cpu);
1445 rcu_tasks_trace.n_ipis_fails++;
1446 per_cpu(trc_ipi_to_cpu, cpu) = false;
1447 t->trc_ipi_to_cpu = -1;
1448 }
1449 }
1450}
1451
1452/*
1453 * Initialize for first-round processing for the specified task.
1454 * Return false if task is NULL or already taken care of, true otherwise.
1455 */
1456static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1457{
1458 // During early boot when there is only the one boot CPU, there
1459 // is no idle task for the other CPUs. Also, the grace-period
1460 // kthread is always in a quiescent state. In addition, just return
1461 // if this task is already on the list.
1462 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1463 return false;
1464
1465 rcu_st_need_qs(t, 0);
1466 t->trc_ipi_to_cpu = -1;
1467 return true;
1468}
1469
1470/* Do first-round processing for the specified task. */
1471static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1472{
1473 if (rcu_tasks_trace_pertask_prep(t, true))
1474 trc_wait_for_one_reader(t, hop);
1475}
1476
1477/* Initialize for a new RCU-tasks-trace grace period. */
1478static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1479{
1480 LIST_HEAD(blkd_tasks);
1481 int cpu;
1482 unsigned long flags;
1483 struct rcu_tasks_percpu *rtpcp;
1484 struct task_struct *t;
1485
1486 // There shouldn't be any old IPIs, but...
1487 for_each_possible_cpu(cpu)
1488 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1489
1490 // Disable CPU hotplug across the CPU scan for the benefit of
1491 // any IPIs that might be needed. This also waits for all readers
1492 // in CPU-hotplug code paths.
1493 cpus_read_lock();
1494
1495 // These rcu_tasks_trace_pertask_prep() calls are serialized to
1496 // allow safe access to the hop list.
1497 for_each_online_cpu(cpu) {
1498 rcu_read_lock();
1499 t = cpu_curr_snapshot(cpu);
1500 if (rcu_tasks_trace_pertask_prep(t, true))
1501 trc_add_holdout(t, hop);
1502 rcu_read_unlock();
1503 cond_resched_tasks_rcu_qs();
1504 }
1505
1506 // Only after all running tasks have been accounted for is it
1507 // safe to take care of the tasks that have blocked within their
1508 // current RCU tasks trace read-side critical section.
1509 for_each_possible_cpu(cpu) {
1510 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1511 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1512 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1513 while (!list_empty(&blkd_tasks)) {
1514 rcu_read_lock();
1515 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1516 list_del_init(&t->trc_blkd_node);
1517 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1518 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1519 rcu_tasks_trace_pertask(t, hop);
1520 rcu_read_unlock();
1521 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1522 }
1523 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1524 cond_resched_tasks_rcu_qs();
1525 }
1526
1527 // Re-enable CPU hotplug now that the holdout list is populated.
1528 cpus_read_unlock();
1529}
1530
1531/*
1532 * Do intermediate processing between task and holdout scans.
1533 */
1534static void rcu_tasks_trace_postscan(struct list_head *hop)
1535{
1536 // Wait for late-stage exiting tasks to finish exiting.
1537 // These might have passed the call to exit_tasks_rcu_finish().
1538
1539 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1540 synchronize_rcu();
1541 // Any tasks that exit after this point will set
1542 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1543}
1544
1545/* Communicate task state back to the RCU tasks trace stall warning request. */
1546struct trc_stall_chk_rdr {
1547 int nesting;
1548 int ipi_to_cpu;
1549 u8 needqs;
1550};
1551
1552static int trc_check_slow_task(struct task_struct *t, void *arg)
1553{
1554 struct trc_stall_chk_rdr *trc_rdrp = arg;
1555
1556 if (task_curr(t) && cpu_online(task_cpu(t)))
1557 return false; // It is running, so decline to inspect it.
1558 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1559 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1560 trc_rdrp->needqs = rcu_ld_need_qs(t);
1561 return true;
1562}
1563
1564/* Show the state of a task stalling the current RCU tasks trace GP. */
1565static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1566{
1567 int cpu;
1568 struct trc_stall_chk_rdr trc_rdr;
1569 bool is_idle_tsk = is_idle_task(t);
1570
1571 if (*firstreport) {
1572 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1573 *firstreport = false;
1574 }
1575 cpu = task_cpu(t);
1576 if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1577 pr_alert("P%d: %c%c\n",
1578 t->pid,
1579 ".I"[t->trc_ipi_to_cpu >= 0],
1580 ".i"[is_idle_tsk]);
1581 else
1582 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1583 t->pid,
1584 ".I"[trc_rdr.ipi_to_cpu >= 0],
1585 ".i"[is_idle_tsk],
1586 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1587 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1588 trc_rdr.nesting,
1589 " !CN"[trc_rdr.needqs & 0x3],
1590 " ?"[trc_rdr.needqs > 0x3],
1591 cpu, cpu_online(cpu) ? "" : "(offline)");
1592 sched_show_task(t);
1593}
1594
1595/* List stalled IPIs for RCU tasks trace. */
1596static void show_stalled_ipi_trace(void)
1597{
1598 int cpu;
1599
1600 for_each_possible_cpu(cpu)
1601 if (per_cpu(trc_ipi_to_cpu, cpu))
1602 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1603}
1604
1605/* Do one scan of the holdout list. */
1606static void check_all_holdout_tasks_trace(struct list_head *hop,
1607 bool needreport, bool *firstreport)
1608{
1609 struct task_struct *g, *t;
1610
1611 // Disable CPU hotplug across the holdout list scan for IPIs.
1612 cpus_read_lock();
1613
1614 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1615 // If safe and needed, try to check the current task.
1616 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1617 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1618 trc_wait_for_one_reader(t, hop);
1619
1620 // If check succeeded, remove this task from the list.
1621 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1622 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1623 trc_del_holdout(t);
1624 else if (needreport)
1625 show_stalled_task_trace(t, firstreport);
1626 cond_resched_tasks_rcu_qs();
1627 }
1628
1629 // Re-enable CPU hotplug now that the holdout list scan has completed.
1630 cpus_read_unlock();
1631
1632 if (needreport) {
1633 if (*firstreport)
1634 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1635 show_stalled_ipi_trace();
1636 }
1637}
1638
1639static void rcu_tasks_trace_empty_fn(void *unused)
1640{
1641}
1642
1643/* Wait for grace period to complete and provide ordering. */
1644static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1645{
1646 int cpu;
1647
1648 // Wait for any lingering IPI handlers to complete. Note that
1649 // if a CPU has gone offline or transitioned to userspace in the
1650 // meantime, all IPI handlers should have been drained beforehand.
1651 // Yes, this assumes that CPUs process IPIs in order. If that ever
1652 // changes, there will need to be a recheck and/or timed wait.
1653 for_each_online_cpu(cpu)
1654 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1655 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1656
1657 smp_mb(); // Caller's code must be ordered after wakeup.
1658 // Pairs with pretty much every ordering primitive.
1659}
1660
1661/* Report any needed quiescent state for this exiting task. */
1662static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1663{
1664 union rcu_special trs = READ_ONCE(t->trc_reader_special);
1665
1666 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1667 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1668 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1669 rcu_read_unlock_trace_special(t);
1670 else
1671 WRITE_ONCE(t->trc_reader_nesting, 0);
1672}
1673
1674/**
1675 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1676 * @rhp: structure to be used for queueing the RCU updates.
1677 * @func: actual callback function to be invoked after the grace period
1678 *
1679 * The callback function will be invoked some time after a trace rcu-tasks
1680 * grace period elapses, in other words after all currently executing
1681 * trace rcu-tasks read-side critical sections have completed. These
1682 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1683 * and rcu_read_unlock_trace().
1684 *
1685 * See the description of call_rcu() for more detailed information on
1686 * memory ordering guarantees.
1687 */
1688void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1689{
1690 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1691}
1692EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1693
1694/**
1695 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1696 *
1697 * Control will return to the caller some time after a trace rcu-tasks
1698 * grace period has elapsed, in other words after all currently executing
1699 * trace rcu-tasks read-side critical sections have elapsed. These read-side
1700 * critical sections are delimited by calls to rcu_read_lock_trace()
1701 * and rcu_read_unlock_trace().
1702 *
1703 * This is a very specialized primitive, intended only for a few uses in
1704 * tracing and other situations requiring manipulation of function preambles
1705 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1706 * (yet) intended for heavy use from multiple CPUs.
1707 *
1708 * See the description of synchronize_rcu() for more detailed information
1709 * on memory ordering guarantees.
1710 */
1711void synchronize_rcu_tasks_trace(void)
1712{
1713 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1714 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1715}
1716EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1717
1718/**
1719 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1720 *
1721 * Although the current implementation is guaranteed to wait, it is not
1722 * obligated to, for example, if there are no pending callbacks.
1723 */
1724void rcu_barrier_tasks_trace(void)
1725{
1726 rcu_barrier_tasks_generic(&rcu_tasks_trace);
1727}
1728EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1729
1730static int __init rcu_spawn_tasks_trace_kthread(void)
1731{
1732 cblist_init_generic(&rcu_tasks_trace);
1733 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1734 rcu_tasks_trace.gp_sleep = HZ / 10;
1735 rcu_tasks_trace.init_fract = HZ / 10;
1736 } else {
1737 rcu_tasks_trace.gp_sleep = HZ / 200;
1738 if (rcu_tasks_trace.gp_sleep <= 0)
1739 rcu_tasks_trace.gp_sleep = 1;
1740 rcu_tasks_trace.init_fract = HZ / 200;
1741 if (rcu_tasks_trace.init_fract <= 0)
1742 rcu_tasks_trace.init_fract = 1;
1743 }
1744 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1745 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1746 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1747 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1748 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1749 return 0;
1750}
1751
1752#if !defined(CONFIG_TINY_RCU)
1753void show_rcu_tasks_trace_gp_kthread(void)
1754{
1755 char buf[64];
1756
1757 sprintf(buf, "N%lu h:%lu/%lu/%lu",
1758 data_race(n_trc_holdouts),
1759 data_race(n_heavy_reader_ofl_updates),
1760 data_race(n_heavy_reader_updates),
1761 data_race(n_heavy_reader_attempts));
1762 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1763}
1764EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1765#endif // !defined(CONFIG_TINY_RCU)
1766
1767#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
1768static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1769#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1770
1771#ifndef CONFIG_TINY_RCU
1772void show_rcu_tasks_gp_kthreads(void)
1773{
1774 show_rcu_tasks_classic_gp_kthread();
1775 show_rcu_tasks_rude_gp_kthread();
1776 show_rcu_tasks_trace_gp_kthread();
1777}
1778#endif /* #ifndef CONFIG_TINY_RCU */
1779
1780#ifdef CONFIG_PROVE_RCU
1781struct rcu_tasks_test_desc {
1782 struct rcu_head rh;
1783 const char *name;
1784 bool notrun;
1785 unsigned long runstart;
1786};
1787
1788static struct rcu_tasks_test_desc tests[] = {
1789 {
1790 .name = "call_rcu_tasks()",
1791 /* If not defined, the test is skipped. */
1792 .notrun = IS_ENABLED(CONFIG_TASKS_RCU),
1793 },
1794 {
1795 .name = "call_rcu_tasks_rude()",
1796 /* If not defined, the test is skipped. */
1797 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1798 },
1799 {
1800 .name = "call_rcu_tasks_trace()",
1801 /* If not defined, the test is skipped. */
1802 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1803 }
1804};
1805
1806static void test_rcu_tasks_callback(struct rcu_head *rhp)
1807{
1808 struct rcu_tasks_test_desc *rttd =
1809 container_of(rhp, struct rcu_tasks_test_desc, rh);
1810
1811 pr_info("Callback from %s invoked.\n", rttd->name);
1812
1813 rttd->notrun = false;
1814}
1815
1816static void rcu_tasks_initiate_self_tests(void)
1817{
1818 unsigned long j = jiffies;
1819
1820 pr_info("Running RCU-tasks wait API self tests\n");
1821#ifdef CONFIG_TASKS_RCU
1822 tests[0].runstart = j;
1823 synchronize_rcu_tasks();
1824 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1825#endif
1826
1827#ifdef CONFIG_TASKS_RUDE_RCU
1828 tests[1].runstart = j;
1829 synchronize_rcu_tasks_rude();
1830 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1831#endif
1832
1833#ifdef CONFIG_TASKS_TRACE_RCU
1834 tests[2].runstart = j;
1835 synchronize_rcu_tasks_trace();
1836 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1837#endif
1838}
1839
1840/*
1841 * Return: 0 - test passed
1842 * 1 - test failed, but have not timed out yet
1843 * -1 - test failed and timed out
1844 */
1845static int rcu_tasks_verify_self_tests(void)
1846{
1847 int ret = 0;
1848 int i;
1849 unsigned long bst = rcu_task_stall_timeout;
1850
1851 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
1852 bst = RCU_TASK_BOOT_STALL_TIMEOUT;
1853 for (i = 0; i < ARRAY_SIZE(tests); i++) {
1854 while (tests[i].notrun) { // still hanging.
1855 if (time_after(jiffies, tests[i].runstart + bst)) {
1856 pr_err("%s has failed boot-time tests.\n", tests[i].name);
1857 ret = -1;
1858 break;
1859 }
1860 ret = 1;
1861 break;
1862 }
1863 }
1864 WARN_ON(ret < 0);
1865
1866 return ret;
1867}
1868
1869/*
1870 * Repeat the rcu_tasks_verify_self_tests() call once every second until the
1871 * test passes or has timed out.
1872 */
1873static struct delayed_work rcu_tasks_verify_work;
1874static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
1875{
1876 int ret = rcu_tasks_verify_self_tests();
1877
1878 if (ret <= 0)
1879 return;
1880
1881 /* Test fails but not timed out yet, reschedule another check */
1882 schedule_delayed_work(&rcu_tasks_verify_work, HZ);
1883}
1884
1885static int rcu_tasks_verify_schedule_work(void)
1886{
1887 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
1888 rcu_tasks_verify_work_fn(NULL);
1889 return 0;
1890}
1891late_initcall(rcu_tasks_verify_schedule_work);
1892#else /* #ifdef CONFIG_PROVE_RCU */
1893static void rcu_tasks_initiate_self_tests(void) { }
1894#endif /* #else #ifdef CONFIG_PROVE_RCU */
1895
1896void __init rcu_init_tasks_generic(void)
1897{
1898#ifdef CONFIG_TASKS_RCU
1899 rcu_spawn_tasks_kthread();
1900#endif
1901
1902#ifdef CONFIG_TASKS_RUDE_RCU
1903 rcu_spawn_tasks_rude_kthread();
1904#endif
1905
1906#ifdef CONFIG_TASKS_TRACE_RCU
1907 rcu_spawn_tasks_trace_kthread();
1908#endif
1909
1910 // Run the self-tests.
1911 rcu_tasks_initiate_self_tests();
1912}
1913
1914#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
1915static inline void rcu_tasks_bootup_oddness(void) {}
1916#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1/* SPDX-License-Identifier: GPL-2.0+ */
2/*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8#ifdef CONFIG_TASKS_RCU_GENERIC
9#include "rcu_segcblist.h"
10
11////////////////////////////////////////////////////////////////////////
12//
13// Generic data structures.
14
15struct rcu_tasks;
16typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17typedef void (*pregp_func_t)(struct list_head *hop);
18typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19typedef void (*postscan_func_t)(struct list_head *hop);
20typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22
23/**
24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25 * @cblist: Callback list.
26 * @lock: Lock protecting per-CPU callback list.
27 * @rtp_jiffies: Jiffies counter value for statistics.
28 * @lazy_timer: Timer to unlazify callbacks.
29 * @urgent_gp: Number of additional non-lazy grace periods.
30 * @rtp_n_lock_retries: Rough lock-contention statistic.
31 * @rtp_work: Work queue for invoking callbacks.
32 * @rtp_irq_work: IRQ work queue for deferred wakeups.
33 * @barrier_q_head: RCU callback for barrier operation.
34 * @rtp_blkd_tasks: List of tasks blocked as readers.
35 * @rtp_exit_list: List of tasks in the latter portion of do_exit().
36 * @cpu: CPU number corresponding to this entry.
37 * @rtpp: Pointer to the rcu_tasks structure.
38 */
39struct rcu_tasks_percpu {
40 struct rcu_segcblist cblist;
41 raw_spinlock_t __private lock;
42 unsigned long rtp_jiffies;
43 unsigned long rtp_n_lock_retries;
44 struct timer_list lazy_timer;
45 unsigned int urgent_gp;
46 struct work_struct rtp_work;
47 struct irq_work rtp_irq_work;
48 struct rcu_head barrier_q_head;
49 struct list_head rtp_blkd_tasks;
50 struct list_head rtp_exit_list;
51 int cpu;
52 struct rcu_tasks *rtpp;
53};
54
55/**
56 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
57 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
58 * @cbs_gbl_lock: Lock protecting callback list.
59 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
60 * @gp_func: This flavor's grace-period-wait function.
61 * @gp_state: Grace period's most recent state transition (debugging).
62 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
63 * @init_fract: Initial backoff sleep interval.
64 * @gp_jiffies: Time of last @gp_state transition.
65 * @gp_start: Most recent grace-period start in jiffies.
66 * @tasks_gp_seq: Number of grace periods completed since boot.
67 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
68 * @n_ipis_fails: Number of IPI-send failures.
69 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
70 * @lazy_jiffies: Number of jiffies to allow callbacks to be lazy.
71 * @pregp_func: This flavor's pre-grace-period function (optional).
72 * @pertask_func: This flavor's per-task scan function (optional).
73 * @postscan_func: This flavor's post-task scan function (optional).
74 * @holdouts_func: This flavor's holdout-list scan function (optional).
75 * @postgp_func: This flavor's post-grace-period function (optional).
76 * @call_func: This flavor's call_rcu()-equivalent function.
77 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
78 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
79 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
80 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
81 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
82 * @barrier_q_mutex: Serialize barrier operations.
83 * @barrier_q_count: Number of queues being waited on.
84 * @barrier_q_completion: Barrier wait/wakeup mechanism.
85 * @barrier_q_seq: Sequence number for barrier operations.
86 * @name: This flavor's textual name.
87 * @kname: This flavor's kthread name.
88 */
89struct rcu_tasks {
90 struct rcuwait cbs_wait;
91 raw_spinlock_t cbs_gbl_lock;
92 struct mutex tasks_gp_mutex;
93 int gp_state;
94 int gp_sleep;
95 int init_fract;
96 unsigned long gp_jiffies;
97 unsigned long gp_start;
98 unsigned long tasks_gp_seq;
99 unsigned long n_ipis;
100 unsigned long n_ipis_fails;
101 struct task_struct *kthread_ptr;
102 unsigned long lazy_jiffies;
103 rcu_tasks_gp_func_t gp_func;
104 pregp_func_t pregp_func;
105 pertask_func_t pertask_func;
106 postscan_func_t postscan_func;
107 holdouts_func_t holdouts_func;
108 postgp_func_t postgp_func;
109 call_rcu_func_t call_func;
110 struct rcu_tasks_percpu __percpu *rtpcpu;
111 int percpu_enqueue_shift;
112 int percpu_enqueue_lim;
113 int percpu_dequeue_lim;
114 unsigned long percpu_dequeue_gpseq;
115 struct mutex barrier_q_mutex;
116 atomic_t barrier_q_count;
117 struct completion barrier_q_completion;
118 unsigned long barrier_q_seq;
119 char *name;
120 char *kname;
121};
122
123static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
124
125#define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
126static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \
127 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \
128 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \
129}; \
130static struct rcu_tasks rt_name = \
131{ \
132 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \
133 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \
134 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \
135 .gp_func = gp, \
136 .call_func = call, \
137 .rtpcpu = &rt_name ## __percpu, \
138 .lazy_jiffies = DIV_ROUND_UP(HZ, 4), \
139 .name = n, \
140 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \
141 .percpu_enqueue_lim = 1, \
142 .percpu_dequeue_lim = 1, \
143 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \
144 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \
145 .kname = #rt_name, \
146}
147
148#ifdef CONFIG_TASKS_RCU
149
150/* Report delay in synchronize_srcu() completion in rcu_tasks_postscan(). */
151static void tasks_rcu_exit_srcu_stall(struct timer_list *unused);
152static DEFINE_TIMER(tasks_rcu_exit_srcu_stall_timer, tasks_rcu_exit_srcu_stall);
153#endif
154
155/* Avoid IPIing CPUs early in the grace period. */
156#define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
157static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
158module_param(rcu_task_ipi_delay, int, 0644);
159
160/* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
161#define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
162#define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
163static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
164module_param(rcu_task_stall_timeout, int, 0644);
165#define RCU_TASK_STALL_INFO (HZ * 10)
166static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
167module_param(rcu_task_stall_info, int, 0644);
168static int rcu_task_stall_info_mult __read_mostly = 3;
169module_param(rcu_task_stall_info_mult, int, 0444);
170
171static int rcu_task_enqueue_lim __read_mostly = -1;
172module_param(rcu_task_enqueue_lim, int, 0444);
173
174static bool rcu_task_cb_adjust;
175static int rcu_task_contend_lim __read_mostly = 100;
176module_param(rcu_task_contend_lim, int, 0444);
177static int rcu_task_collapse_lim __read_mostly = 10;
178module_param(rcu_task_collapse_lim, int, 0444);
179static int rcu_task_lazy_lim __read_mostly = 32;
180module_param(rcu_task_lazy_lim, int, 0444);
181
182/* RCU tasks grace-period state for debugging. */
183#define RTGS_INIT 0
184#define RTGS_WAIT_WAIT_CBS 1
185#define RTGS_WAIT_GP 2
186#define RTGS_PRE_WAIT_GP 3
187#define RTGS_SCAN_TASKLIST 4
188#define RTGS_POST_SCAN_TASKLIST 5
189#define RTGS_WAIT_SCAN_HOLDOUTS 6
190#define RTGS_SCAN_HOLDOUTS 7
191#define RTGS_POST_GP 8
192#define RTGS_WAIT_READERS 9
193#define RTGS_INVOKE_CBS 10
194#define RTGS_WAIT_CBS 11
195#ifndef CONFIG_TINY_RCU
196static const char * const rcu_tasks_gp_state_names[] = {
197 "RTGS_INIT",
198 "RTGS_WAIT_WAIT_CBS",
199 "RTGS_WAIT_GP",
200 "RTGS_PRE_WAIT_GP",
201 "RTGS_SCAN_TASKLIST",
202 "RTGS_POST_SCAN_TASKLIST",
203 "RTGS_WAIT_SCAN_HOLDOUTS",
204 "RTGS_SCAN_HOLDOUTS",
205 "RTGS_POST_GP",
206 "RTGS_WAIT_READERS",
207 "RTGS_INVOKE_CBS",
208 "RTGS_WAIT_CBS",
209};
210#endif /* #ifndef CONFIG_TINY_RCU */
211
212////////////////////////////////////////////////////////////////////////
213//
214// Generic code.
215
216static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
217
218/* Record grace-period phase and time. */
219static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
220{
221 rtp->gp_state = newstate;
222 rtp->gp_jiffies = jiffies;
223}
224
225#ifndef CONFIG_TINY_RCU
226/* Return state name. */
227static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
228{
229 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
230 int j = READ_ONCE(i); // Prevent the compiler from reading twice
231
232 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
233 return "???";
234 return rcu_tasks_gp_state_names[j];
235}
236#endif /* #ifndef CONFIG_TINY_RCU */
237
238// Initialize per-CPU callback lists for the specified flavor of
239// Tasks RCU. Do not enqueue callbacks before this function is invoked.
240static void cblist_init_generic(struct rcu_tasks *rtp)
241{
242 int cpu;
243 int lim;
244 int shift;
245
246 if (rcu_task_enqueue_lim < 0) {
247 rcu_task_enqueue_lim = 1;
248 rcu_task_cb_adjust = true;
249 } else if (rcu_task_enqueue_lim == 0) {
250 rcu_task_enqueue_lim = 1;
251 }
252 lim = rcu_task_enqueue_lim;
253
254 if (lim > nr_cpu_ids)
255 lim = nr_cpu_ids;
256 shift = ilog2(nr_cpu_ids / lim);
257 if (((nr_cpu_ids - 1) >> shift) >= lim)
258 shift++;
259 WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
260 WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
261 smp_store_release(&rtp->percpu_enqueue_lim, lim);
262 for_each_possible_cpu(cpu) {
263 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
264
265 WARN_ON_ONCE(!rtpcp);
266 if (cpu)
267 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
268 if (rcu_segcblist_empty(&rtpcp->cblist))
269 rcu_segcblist_init(&rtpcp->cblist);
270 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
271 rtpcp->cpu = cpu;
272 rtpcp->rtpp = rtp;
273 if (!rtpcp->rtp_blkd_tasks.next)
274 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
275 if (!rtpcp->rtp_exit_list.next)
276 INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
277 }
278
279 pr_info("%s: Setting shift to %d and lim to %d rcu_task_cb_adjust=%d.\n", rtp->name,
280 data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim), rcu_task_cb_adjust);
281}
282
283// Compute wakeup time for lazy callback timer.
284static unsigned long rcu_tasks_lazy_time(struct rcu_tasks *rtp)
285{
286 return jiffies + rtp->lazy_jiffies;
287}
288
289// Timer handler that unlazifies lazy callbacks.
290static void call_rcu_tasks_generic_timer(struct timer_list *tlp)
291{
292 unsigned long flags;
293 bool needwake = false;
294 struct rcu_tasks *rtp;
295 struct rcu_tasks_percpu *rtpcp = from_timer(rtpcp, tlp, lazy_timer);
296
297 rtp = rtpcp->rtpp;
298 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
299 if (!rcu_segcblist_empty(&rtpcp->cblist) && rtp->lazy_jiffies) {
300 if (!rtpcp->urgent_gp)
301 rtpcp->urgent_gp = 1;
302 needwake = true;
303 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
304 }
305 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
306 if (needwake)
307 rcuwait_wake_up(&rtp->cbs_wait);
308}
309
310// IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
311static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
312{
313 struct rcu_tasks *rtp;
314 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
315
316 rtp = rtpcp->rtpp;
317 rcuwait_wake_up(&rtp->cbs_wait);
318}
319
320// Enqueue a callback for the specified flavor of Tasks RCU.
321static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
322 struct rcu_tasks *rtp)
323{
324 int chosen_cpu;
325 unsigned long flags;
326 bool havekthread = smp_load_acquire(&rtp->kthread_ptr);
327 int ideal_cpu;
328 unsigned long j;
329 bool needadjust = false;
330 bool needwake;
331 struct rcu_tasks_percpu *rtpcp;
332
333 rhp->next = NULL;
334 rhp->func = func;
335 local_irq_save(flags);
336 rcu_read_lock();
337 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
338 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
339 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
340 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
341 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
342 j = jiffies;
343 if (rtpcp->rtp_jiffies != j) {
344 rtpcp->rtp_jiffies = j;
345 rtpcp->rtp_n_lock_retries = 0;
346 }
347 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
348 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
349 needadjust = true; // Defer adjustment to avoid deadlock.
350 }
351 // Queuing callbacks before initialization not yet supported.
352 if (WARN_ON_ONCE(!rcu_segcblist_is_enabled(&rtpcp->cblist)))
353 rcu_segcblist_init(&rtpcp->cblist);
354 needwake = (func == wakeme_after_rcu) ||
355 (rcu_segcblist_n_cbs(&rtpcp->cblist) == rcu_task_lazy_lim);
356 if (havekthread && !needwake && !timer_pending(&rtpcp->lazy_timer)) {
357 if (rtp->lazy_jiffies)
358 mod_timer(&rtpcp->lazy_timer, rcu_tasks_lazy_time(rtp));
359 else
360 needwake = rcu_segcblist_empty(&rtpcp->cblist);
361 }
362 if (needwake)
363 rtpcp->urgent_gp = 3;
364 rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
365 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
366 if (unlikely(needadjust)) {
367 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
368 if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
369 WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
370 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
371 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
372 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
373 }
374 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
375 }
376 rcu_read_unlock();
377 /* We can't create the thread unless interrupts are enabled. */
378 if (needwake && READ_ONCE(rtp->kthread_ptr))
379 irq_work_queue(&rtpcp->rtp_irq_work);
380}
381
382// RCU callback function for rcu_barrier_tasks_generic().
383static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
384{
385 struct rcu_tasks *rtp;
386 struct rcu_tasks_percpu *rtpcp;
387
388 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
389 rtp = rtpcp->rtpp;
390 if (atomic_dec_and_test(&rtp->barrier_q_count))
391 complete(&rtp->barrier_q_completion);
392}
393
394// Wait for all in-flight callbacks for the specified RCU Tasks flavor.
395// Operates in a manner similar to rcu_barrier().
396static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
397{
398 int cpu;
399 unsigned long flags;
400 struct rcu_tasks_percpu *rtpcp;
401 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
402
403 mutex_lock(&rtp->barrier_q_mutex);
404 if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
405 smp_mb();
406 mutex_unlock(&rtp->barrier_q_mutex);
407 return;
408 }
409 rcu_seq_start(&rtp->barrier_q_seq);
410 init_completion(&rtp->barrier_q_completion);
411 atomic_set(&rtp->barrier_q_count, 2);
412 for_each_possible_cpu(cpu) {
413 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
414 break;
415 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
416 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
417 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
418 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
419 atomic_inc(&rtp->barrier_q_count);
420 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
421 }
422 if (atomic_sub_and_test(2, &rtp->barrier_q_count))
423 complete(&rtp->barrier_q_completion);
424 wait_for_completion(&rtp->barrier_q_completion);
425 rcu_seq_end(&rtp->barrier_q_seq);
426 mutex_unlock(&rtp->barrier_q_mutex);
427}
428
429// Advance callbacks and indicate whether either a grace period or
430// callback invocation is needed.
431static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
432{
433 int cpu;
434 int dequeue_limit;
435 unsigned long flags;
436 bool gpdone = poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq);
437 long n;
438 long ncbs = 0;
439 long ncbsnz = 0;
440 int needgpcb = 0;
441
442 dequeue_limit = smp_load_acquire(&rtp->percpu_dequeue_lim);
443 for (cpu = 0; cpu < dequeue_limit; cpu++) {
444 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
445
446 /* Advance and accelerate any new callbacks. */
447 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
448 continue;
449 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
450 // Should we shrink down to a single callback queue?
451 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
452 if (n) {
453 ncbs += n;
454 if (cpu > 0)
455 ncbsnz += n;
456 }
457 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
458 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
459 if (rtpcp->urgent_gp > 0 && rcu_segcblist_pend_cbs(&rtpcp->cblist)) {
460 if (rtp->lazy_jiffies)
461 rtpcp->urgent_gp--;
462 needgpcb |= 0x3;
463 } else if (rcu_segcblist_empty(&rtpcp->cblist)) {
464 rtpcp->urgent_gp = 0;
465 }
466 if (rcu_segcblist_ready_cbs(&rtpcp->cblist))
467 needgpcb |= 0x1;
468 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
469 }
470
471 // Shrink down to a single callback queue if appropriate.
472 // This is done in two stages: (1) If there are no more than
473 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
474 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period,
475 // if there has not been an increase in callbacks, limit dequeuing
476 // to CPU 0. Note the matching RCU read-side critical section in
477 // call_rcu_tasks_generic().
478 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
479 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
480 if (rtp->percpu_enqueue_lim > 1) {
481 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
482 smp_store_release(&rtp->percpu_enqueue_lim, 1);
483 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
484 gpdone = false;
485 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
486 }
487 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
488 }
489 if (rcu_task_cb_adjust && !ncbsnz && gpdone) {
490 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
491 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
492 WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
493 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
494 }
495 if (rtp->percpu_dequeue_lim == 1) {
496 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
497 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
498
499 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
500 }
501 }
502 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
503 }
504
505 return needgpcb;
506}
507
508// Advance callbacks and invoke any that are ready.
509static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
510{
511 int cpu;
512 int cpunext;
513 int cpuwq;
514 unsigned long flags;
515 int len;
516 struct rcu_head *rhp;
517 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
518 struct rcu_tasks_percpu *rtpcp_next;
519
520 cpu = rtpcp->cpu;
521 cpunext = cpu * 2 + 1;
522 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
523 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
524 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
525 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
526 cpunext++;
527 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
528 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
529 cpuwq = rcu_cpu_beenfullyonline(cpunext) ? cpunext : WORK_CPU_UNBOUND;
530 queue_work_on(cpuwq, system_wq, &rtpcp_next->rtp_work);
531 }
532 }
533
534 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
535 return;
536 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
537 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
538 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
539 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
540 len = rcl.len;
541 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
542 debug_rcu_head_callback(rhp);
543 local_bh_disable();
544 rhp->func(rhp);
545 local_bh_enable();
546 cond_resched();
547 }
548 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
549 rcu_segcblist_add_len(&rtpcp->cblist, -len);
550 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
551 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
552}
553
554// Workqueue flood to advance callbacks and invoke any that are ready.
555static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
556{
557 struct rcu_tasks *rtp;
558 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
559
560 rtp = rtpcp->rtpp;
561 rcu_tasks_invoke_cbs(rtp, rtpcp);
562}
563
564// Wait for one grace period.
565static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
566{
567 int needgpcb;
568
569 mutex_lock(&rtp->tasks_gp_mutex);
570
571 // If there were none, wait a bit and start over.
572 if (unlikely(midboot)) {
573 needgpcb = 0x2;
574 } else {
575 mutex_unlock(&rtp->tasks_gp_mutex);
576 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
577 rcuwait_wait_event(&rtp->cbs_wait,
578 (needgpcb = rcu_tasks_need_gpcb(rtp)),
579 TASK_IDLE);
580 mutex_lock(&rtp->tasks_gp_mutex);
581 }
582
583 if (needgpcb & 0x2) {
584 // Wait for one grace period.
585 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
586 rtp->gp_start = jiffies;
587 rcu_seq_start(&rtp->tasks_gp_seq);
588 rtp->gp_func(rtp);
589 rcu_seq_end(&rtp->tasks_gp_seq);
590 }
591
592 // Invoke callbacks.
593 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
594 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
595 mutex_unlock(&rtp->tasks_gp_mutex);
596}
597
598// RCU-tasks kthread that detects grace periods and invokes callbacks.
599static int __noreturn rcu_tasks_kthread(void *arg)
600{
601 int cpu;
602 struct rcu_tasks *rtp = arg;
603
604 for_each_possible_cpu(cpu) {
605 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
606
607 timer_setup(&rtpcp->lazy_timer, call_rcu_tasks_generic_timer, 0);
608 rtpcp->urgent_gp = 1;
609 }
610
611 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
612 housekeeping_affine(current, HK_TYPE_RCU);
613 smp_store_release(&rtp->kthread_ptr, current); // Let GPs start!
614
615 /*
616 * Each pass through the following loop makes one check for
617 * newly arrived callbacks, and, if there are some, waits for
618 * one RCU-tasks grace period and then invokes the callbacks.
619 * This loop is terminated by the system going down. ;-)
620 */
621 for (;;) {
622 // Wait for one grace period and invoke any callbacks
623 // that are ready.
624 rcu_tasks_one_gp(rtp, false);
625
626 // Paranoid sleep to keep this from entering a tight loop.
627 schedule_timeout_idle(rtp->gp_sleep);
628 }
629}
630
631// Wait for a grace period for the specified flavor of Tasks RCU.
632static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
633{
634 /* Complain if the scheduler has not started. */
635 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
636 "synchronize_%s() called too soon", rtp->name))
637 return;
638
639 // If the grace-period kthread is running, use it.
640 if (READ_ONCE(rtp->kthread_ptr)) {
641 wait_rcu_gp(rtp->call_func);
642 return;
643 }
644 rcu_tasks_one_gp(rtp, true);
645}
646
647/* Spawn RCU-tasks grace-period kthread. */
648static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
649{
650 struct task_struct *t;
651
652 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
653 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
654 return;
655 smp_mb(); /* Ensure others see full kthread. */
656}
657
658#ifndef CONFIG_TINY_RCU
659
660/*
661 * Print any non-default Tasks RCU settings.
662 */
663static void __init rcu_tasks_bootup_oddness(void)
664{
665#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
666 int rtsimc;
667
668 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
669 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
670 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
671 if (rtsimc != rcu_task_stall_info_mult) {
672 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
673 rcu_task_stall_info_mult = rtsimc;
674 }
675#endif /* #ifdef CONFIG_TASKS_RCU */
676#ifdef CONFIG_TASKS_RCU
677 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
678#endif /* #ifdef CONFIG_TASKS_RCU */
679#ifdef CONFIG_TASKS_RUDE_RCU
680 pr_info("\tRude variant of Tasks RCU enabled.\n");
681#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
682#ifdef CONFIG_TASKS_TRACE_RCU
683 pr_info("\tTracing variant of Tasks RCU enabled.\n");
684#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
685}
686
687#endif /* #ifndef CONFIG_TINY_RCU */
688
689#ifndef CONFIG_TINY_RCU
690/* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
691static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
692{
693 int cpu;
694 bool havecbs = false;
695 bool haveurgent = false;
696 bool haveurgentcbs = false;
697
698 for_each_possible_cpu(cpu) {
699 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
700
701 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)))
702 havecbs = true;
703 if (data_race(rtpcp->urgent_gp))
704 haveurgent = true;
705 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist)) && data_race(rtpcp->urgent_gp))
706 haveurgentcbs = true;
707 if (havecbs && haveurgent && haveurgentcbs)
708 break;
709 }
710 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c%c%c l:%lu %s\n",
711 rtp->kname,
712 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
713 jiffies - data_race(rtp->gp_jiffies),
714 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
715 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
716 ".k"[!!data_race(rtp->kthread_ptr)],
717 ".C"[havecbs],
718 ".u"[haveurgent],
719 ".U"[haveurgentcbs],
720 rtp->lazy_jiffies,
721 s);
722}
723#endif // #ifndef CONFIG_TINY_RCU
724
725static void exit_tasks_rcu_finish_trace(struct task_struct *t);
726
727#if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
728
729////////////////////////////////////////////////////////////////////////
730//
731// Shared code between task-list-scanning variants of Tasks RCU.
732
733/* Wait for one RCU-tasks grace period. */
734static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
735{
736 struct task_struct *g;
737 int fract;
738 LIST_HEAD(holdouts);
739 unsigned long j;
740 unsigned long lastinfo;
741 unsigned long lastreport;
742 bool reported = false;
743 int rtsi;
744 struct task_struct *t;
745
746 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
747 rtp->pregp_func(&holdouts);
748
749 /*
750 * There were callbacks, so we need to wait for an RCU-tasks
751 * grace period. Start off by scanning the task list for tasks
752 * that are not already voluntarily blocked. Mark these tasks
753 * and make a list of them in holdouts.
754 */
755 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
756 if (rtp->pertask_func) {
757 rcu_read_lock();
758 for_each_process_thread(g, t)
759 rtp->pertask_func(t, &holdouts);
760 rcu_read_unlock();
761 }
762
763 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
764 rtp->postscan_func(&holdouts);
765
766 /*
767 * Each pass through the following loop scans the list of holdout
768 * tasks, removing any that are no longer holdouts. When the list
769 * is empty, we are done.
770 */
771 lastreport = jiffies;
772 lastinfo = lastreport;
773 rtsi = READ_ONCE(rcu_task_stall_info);
774
775 // Start off with initial wait and slowly back off to 1 HZ wait.
776 fract = rtp->init_fract;
777
778 while (!list_empty(&holdouts)) {
779 ktime_t exp;
780 bool firstreport;
781 bool needreport;
782 int rtst;
783
784 // Slowly back off waiting for holdouts
785 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
786 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
787 schedule_timeout_idle(fract);
788 } else {
789 exp = jiffies_to_nsecs(fract);
790 __set_current_state(TASK_IDLE);
791 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
792 }
793
794 if (fract < HZ)
795 fract++;
796
797 rtst = READ_ONCE(rcu_task_stall_timeout);
798 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
799 if (needreport) {
800 lastreport = jiffies;
801 reported = true;
802 }
803 firstreport = true;
804 WARN_ON(signal_pending(current));
805 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
806 rtp->holdouts_func(&holdouts, needreport, &firstreport);
807
808 // Print pre-stall informational messages if needed.
809 j = jiffies;
810 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
811 lastinfo = j;
812 rtsi = rtsi * rcu_task_stall_info_mult;
813 pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
814 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
815 }
816 }
817
818 set_tasks_gp_state(rtp, RTGS_POST_GP);
819 rtp->postgp_func(rtp);
820}
821
822#endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
823
824#ifdef CONFIG_TASKS_RCU
825
826////////////////////////////////////////////////////////////////////////
827//
828// Simple variant of RCU whose quiescent states are voluntary context
829// switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
830// As such, grace periods can take one good long time. There are no
831// read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
832// because this implementation is intended to get the system into a safe
833// state for some of the manipulations involved in tracing and the like.
834// Finally, this implementation does not support high call_rcu_tasks()
835// rates from multiple CPUs. If this is required, per-CPU callback lists
836// will be needed.
837//
838// The implementation uses rcu_tasks_wait_gp(), which relies on function
839// pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread()
840// function sets these function pointers up so that rcu_tasks_wait_gp()
841// invokes these functions in this order:
842//
843// rcu_tasks_pregp_step():
844// Invokes synchronize_rcu() in order to wait for all in-flight
845// t->on_rq and t->nvcsw transitions to complete. This works because
846// all such transitions are carried out with interrupts disabled.
847// rcu_tasks_pertask(), invoked on every non-idle task:
848// For every runnable non-idle task other than the current one, use
849// get_task_struct() to pin down that task, snapshot that task's
850// number of voluntary context switches, and add that task to the
851// holdout list.
852// rcu_tasks_postscan():
853// Gather per-CPU lists of tasks in do_exit() to ensure that all
854// tasks that were in the process of exiting (and which thus might
855// not know to synchronize with this RCU Tasks grace period) have
856// completed exiting. The synchronize_rcu() in rcu_tasks_postgp()
857// will take care of any tasks stuck in the non-preemptible region
858// of do_exit() following its call to exit_tasks_rcu_stop().
859// check_all_holdout_tasks(), repeatedly until holdout list is empty:
860// Scans the holdout list, attempting to identify a quiescent state
861// for each task on the list. If there is a quiescent state, the
862// corresponding task is removed from the holdout list.
863// rcu_tasks_postgp():
864// Invokes synchronize_rcu() in order to ensure that all prior
865// t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
866// to have happened before the end of this RCU Tasks grace period.
867// Again, this works because all such transitions are carried out
868// with interrupts disabled.
869//
870// For each exiting task, the exit_tasks_rcu_start() and
871// exit_tasks_rcu_finish() functions add and remove, respectively, the
872// current task to a per-CPU list of tasks that rcu_tasks_postscan() must
873// wait on. This is necessary because rcu_tasks_postscan() must wait on
874// tasks that have already been removed from the global list of tasks.
875//
876// Pre-grace-period update-side code is ordered before the grace
877// via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code
878// is ordered before the grace period via synchronize_rcu() call in
879// rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
880// disabling.
881
882/* Pre-grace-period preparation. */
883static void rcu_tasks_pregp_step(struct list_head *hop)
884{
885 /*
886 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
887 * to complete. Invoking synchronize_rcu() suffices because all
888 * these transitions occur with interrupts disabled. Without this
889 * synchronize_rcu(), a read-side critical section that started
890 * before the grace period might be incorrectly seen as having
891 * started after the grace period.
892 *
893 * This synchronize_rcu() also dispenses with the need for a
894 * memory barrier on the first store to t->rcu_tasks_holdout,
895 * as it forces the store to happen after the beginning of the
896 * grace period.
897 */
898 synchronize_rcu();
899}
900
901/* Check for quiescent states since the pregp's synchronize_rcu() */
902static bool rcu_tasks_is_holdout(struct task_struct *t)
903{
904 int cpu;
905
906 /* Has the task been seen voluntarily sleeping? */
907 if (!READ_ONCE(t->on_rq))
908 return false;
909
910 /*
911 * Idle tasks (or idle injection) within the idle loop are RCU-tasks
912 * quiescent states. But CPU boot code performed by the idle task
913 * isn't a quiescent state.
914 */
915 if (is_idle_task(t))
916 return false;
917
918 cpu = task_cpu(t);
919
920 /* Idle tasks on offline CPUs are RCU-tasks quiescent states. */
921 if (t == idle_task(cpu) && !rcu_cpu_online(cpu))
922 return false;
923
924 return true;
925}
926
927/* Per-task initial processing. */
928static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
929{
930 if (t != current && rcu_tasks_is_holdout(t)) {
931 get_task_struct(t);
932 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
933 WRITE_ONCE(t->rcu_tasks_holdout, true);
934 list_add(&t->rcu_tasks_holdout_list, hop);
935 }
936}
937
938void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
939DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
940
941/* Processing between scanning taskslist and draining the holdout list. */
942static void rcu_tasks_postscan(struct list_head *hop)
943{
944 int cpu;
945 int rtsi = READ_ONCE(rcu_task_stall_info);
946
947 if (!IS_ENABLED(CONFIG_TINY_RCU)) {
948 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
949 add_timer(&tasks_rcu_exit_srcu_stall_timer);
950 }
951
952 /*
953 * Exiting tasks may escape the tasklist scan. Those are vulnerable
954 * until their final schedule() with TASK_DEAD state. To cope with
955 * this, divide the fragile exit path part in two intersecting
956 * read side critical sections:
957 *
958 * 1) A task_struct list addition before calling exit_notify(),
959 * which may remove the task from the tasklist, with the
960 * removal after the final preempt_disable() call in do_exit().
961 *
962 * 2) An _RCU_ read side starting with the final preempt_disable()
963 * call in do_exit() and ending with the final call to schedule()
964 * with TASK_DEAD state.
965 *
966 * This handles the part 1). And postgp will handle part 2) with a
967 * call to synchronize_rcu().
968 */
969
970 for_each_possible_cpu(cpu) {
971 unsigned long j = jiffies + 1;
972 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, cpu);
973 struct task_struct *t;
974 struct task_struct *t1;
975 struct list_head tmp;
976
977 raw_spin_lock_irq_rcu_node(rtpcp);
978 list_for_each_entry_safe(t, t1, &rtpcp->rtp_exit_list, rcu_tasks_exit_list) {
979 if (list_empty(&t->rcu_tasks_holdout_list))
980 rcu_tasks_pertask(t, hop);
981
982 // RT kernels need frequent pauses, otherwise
983 // pause at least once per pair of jiffies.
984 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && time_before(jiffies, j))
985 continue;
986
987 // Keep our place in the list while pausing.
988 // Nothing else traverses this list, so adding a
989 // bare list_head is OK.
990 list_add(&tmp, &t->rcu_tasks_exit_list);
991 raw_spin_unlock_irq_rcu_node(rtpcp);
992 cond_resched(); // For CONFIG_PREEMPT=n kernels
993 raw_spin_lock_irq_rcu_node(rtpcp);
994 t1 = list_entry(tmp.next, struct task_struct, rcu_tasks_exit_list);
995 list_del(&tmp);
996 j = jiffies + 1;
997 }
998 raw_spin_unlock_irq_rcu_node(rtpcp);
999 }
1000
1001 if (!IS_ENABLED(CONFIG_TINY_RCU))
1002 del_timer_sync(&tasks_rcu_exit_srcu_stall_timer);
1003}
1004
1005/* See if tasks are still holding out, complain if so. */
1006static void check_holdout_task(struct task_struct *t,
1007 bool needreport, bool *firstreport)
1008{
1009 int cpu;
1010
1011 if (!READ_ONCE(t->rcu_tasks_holdout) ||
1012 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
1013 !rcu_tasks_is_holdout(t) ||
1014 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
1015 !is_idle_task(t) && READ_ONCE(t->rcu_tasks_idle_cpu) >= 0)) {
1016 WRITE_ONCE(t->rcu_tasks_holdout, false);
1017 list_del_init(&t->rcu_tasks_holdout_list);
1018 put_task_struct(t);
1019 return;
1020 }
1021 rcu_request_urgent_qs_task(t);
1022 if (!needreport)
1023 return;
1024 if (*firstreport) {
1025 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
1026 *firstreport = false;
1027 }
1028 cpu = task_cpu(t);
1029 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
1030 t, ".I"[is_idle_task(t)],
1031 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
1032 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
1033 data_race(t->rcu_tasks_idle_cpu), cpu);
1034 sched_show_task(t);
1035}
1036
1037/* Scan the holdout lists for tasks no longer holding out. */
1038static void check_all_holdout_tasks(struct list_head *hop,
1039 bool needreport, bool *firstreport)
1040{
1041 struct task_struct *t, *t1;
1042
1043 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
1044 check_holdout_task(t, needreport, firstreport);
1045 cond_resched();
1046 }
1047}
1048
1049/* Finish off the Tasks-RCU grace period. */
1050static void rcu_tasks_postgp(struct rcu_tasks *rtp)
1051{
1052 /*
1053 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
1054 * memory barriers prior to them in the schedule() path, memory
1055 * reordering on other CPUs could cause their RCU-tasks read-side
1056 * critical sections to extend past the end of the grace period.
1057 * However, because these ->nvcsw updates are carried out with
1058 * interrupts disabled, we can use synchronize_rcu() to force the
1059 * needed ordering on all such CPUs.
1060 *
1061 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
1062 * accesses to be within the grace period, avoiding the need for
1063 * memory barriers for ->rcu_tasks_holdout accesses.
1064 *
1065 * In addition, this synchronize_rcu() waits for exiting tasks
1066 * to complete their final preempt_disable() region of execution,
1067 * enforcing the whole region before tasklist removal until
1068 * the final schedule() with TASK_DEAD state to be an RCU TASKS
1069 * read side critical section.
1070 */
1071 synchronize_rcu();
1072}
1073
1074static void tasks_rcu_exit_srcu_stall(struct timer_list *unused)
1075{
1076#ifndef CONFIG_TINY_RCU
1077 int rtsi;
1078
1079 rtsi = READ_ONCE(rcu_task_stall_info);
1080 pr_info("%s: %s grace period number %lu (since boot) gp_state: %s is %lu jiffies old.\n",
1081 __func__, rcu_tasks.kname, rcu_tasks.tasks_gp_seq,
1082 tasks_gp_state_getname(&rcu_tasks), jiffies - rcu_tasks.gp_jiffies);
1083 pr_info("Please check any exiting tasks stuck between calls to exit_tasks_rcu_start() and exit_tasks_rcu_finish()\n");
1084 tasks_rcu_exit_srcu_stall_timer.expires = jiffies + rtsi;
1085 add_timer(&tasks_rcu_exit_srcu_stall_timer);
1086#endif // #ifndef CONFIG_TINY_RCU
1087}
1088
1089/**
1090 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
1091 * @rhp: structure to be used for queueing the RCU updates.
1092 * @func: actual callback function to be invoked after the grace period
1093 *
1094 * The callback function will be invoked some time after a full grace
1095 * period elapses, in other words after all currently executing RCU
1096 * read-side critical sections have completed. call_rcu_tasks() assumes
1097 * that the read-side critical sections end at a voluntary context
1098 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
1099 * or transition to usermode execution. As such, there are no read-side
1100 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1101 * this primitive is intended to determine that all tasks have passed
1102 * through a safe state, not so much for data-structure synchronization.
1103 *
1104 * See the description of call_rcu() for more detailed information on
1105 * memory ordering guarantees.
1106 */
1107void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
1108{
1109 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
1110}
1111EXPORT_SYMBOL_GPL(call_rcu_tasks);
1112
1113/**
1114 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
1115 *
1116 * Control will return to the caller some time after a full rcu-tasks
1117 * grace period has elapsed, in other words after all currently
1118 * executing rcu-tasks read-side critical sections have elapsed. These
1119 * read-side critical sections are delimited by calls to schedule(),
1120 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
1121 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
1122 *
1123 * This is a very specialized primitive, intended only for a few uses in
1124 * tracing and other situations requiring manipulation of function
1125 * preambles and profiling hooks. The synchronize_rcu_tasks() function
1126 * is not (yet) intended for heavy use from multiple CPUs.
1127 *
1128 * See the description of synchronize_rcu() for more detailed information
1129 * on memory ordering guarantees.
1130 */
1131void synchronize_rcu_tasks(void)
1132{
1133 synchronize_rcu_tasks_generic(&rcu_tasks);
1134}
1135EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
1136
1137/**
1138 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
1139 *
1140 * Although the current implementation is guaranteed to wait, it is not
1141 * obligated to, for example, if there are no pending callbacks.
1142 */
1143void rcu_barrier_tasks(void)
1144{
1145 rcu_barrier_tasks_generic(&rcu_tasks);
1146}
1147EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
1148
1149static int rcu_tasks_lazy_ms = -1;
1150module_param(rcu_tasks_lazy_ms, int, 0444);
1151
1152static int __init rcu_spawn_tasks_kthread(void)
1153{
1154 rcu_tasks.gp_sleep = HZ / 10;
1155 rcu_tasks.init_fract = HZ / 10;
1156 if (rcu_tasks_lazy_ms >= 0)
1157 rcu_tasks.lazy_jiffies = msecs_to_jiffies(rcu_tasks_lazy_ms);
1158 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
1159 rcu_tasks.pertask_func = rcu_tasks_pertask;
1160 rcu_tasks.postscan_func = rcu_tasks_postscan;
1161 rcu_tasks.holdouts_func = check_all_holdout_tasks;
1162 rcu_tasks.postgp_func = rcu_tasks_postgp;
1163 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
1164 return 0;
1165}
1166
1167#if !defined(CONFIG_TINY_RCU)
1168void show_rcu_tasks_classic_gp_kthread(void)
1169{
1170 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
1171}
1172EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
1173#endif // !defined(CONFIG_TINY_RCU)
1174
1175struct task_struct *get_rcu_tasks_gp_kthread(void)
1176{
1177 return rcu_tasks.kthread_ptr;
1178}
1179EXPORT_SYMBOL_GPL(get_rcu_tasks_gp_kthread);
1180
1181/*
1182 * Protect against tasklist scan blind spot while the task is exiting and
1183 * may be removed from the tasklist. Do this by adding the task to yet
1184 * another list.
1185 *
1186 * Note that the task will remove itself from this list, so there is no
1187 * need for get_task_struct(), except in the case where rcu_tasks_pertask()
1188 * adds it to the holdout list, in which case rcu_tasks_pertask() supplies
1189 * the needed get_task_struct().
1190 */
1191void exit_tasks_rcu_start(void)
1192{
1193 unsigned long flags;
1194 struct rcu_tasks_percpu *rtpcp;
1195 struct task_struct *t = current;
1196
1197 WARN_ON_ONCE(!list_empty(&t->rcu_tasks_exit_list));
1198 preempt_disable();
1199 rtpcp = this_cpu_ptr(rcu_tasks.rtpcpu);
1200 t->rcu_tasks_exit_cpu = smp_processor_id();
1201 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1202 if (!rtpcp->rtp_exit_list.next)
1203 INIT_LIST_HEAD(&rtpcp->rtp_exit_list);
1204 list_add(&t->rcu_tasks_exit_list, &rtpcp->rtp_exit_list);
1205 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1206 preempt_enable();
1207}
1208
1209/*
1210 * Remove the task from the "yet another list" because do_exit() is now
1211 * non-preemptible, allowing synchronize_rcu() to wait beyond this point.
1212 */
1213void exit_tasks_rcu_stop(void)
1214{
1215 unsigned long flags;
1216 struct rcu_tasks_percpu *rtpcp;
1217 struct task_struct *t = current;
1218
1219 WARN_ON_ONCE(list_empty(&t->rcu_tasks_exit_list));
1220 rtpcp = per_cpu_ptr(rcu_tasks.rtpcpu, t->rcu_tasks_exit_cpu);
1221 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1222 list_del_init(&t->rcu_tasks_exit_list);
1223 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1224}
1225
1226/*
1227 * Contribute to protect against tasklist scan blind spot while the
1228 * task is exiting and may be removed from the tasklist. See
1229 * corresponding synchronize_srcu() for further details.
1230 */
1231void exit_tasks_rcu_finish(void)
1232{
1233 exit_tasks_rcu_stop();
1234 exit_tasks_rcu_finish_trace(current);
1235}
1236
1237#else /* #ifdef CONFIG_TASKS_RCU */
1238void exit_tasks_rcu_start(void) { }
1239void exit_tasks_rcu_stop(void) { }
1240void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1241#endif /* #else #ifdef CONFIG_TASKS_RCU */
1242
1243#ifdef CONFIG_TASKS_RUDE_RCU
1244
1245////////////////////////////////////////////////////////////////////////
1246//
1247// "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1248// passing an empty function to schedule_on_each_cpu(). This approach
1249// provides an asynchronous call_rcu_tasks_rude() API and batching of
1250// concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1251// This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1252// and induces otherwise unnecessary context switches on all online CPUs,
1253// whether idle or not.
1254//
1255// Callback handling is provided by the rcu_tasks_kthread() function.
1256//
1257// Ordering is provided by the scheduler's context-switch code.
1258
1259// Empty function to allow workqueues to force a context switch.
1260static void rcu_tasks_be_rude(struct work_struct *work)
1261{
1262}
1263
1264// Wait for one rude RCU-tasks grace period.
1265static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1266{
1267 rtp->n_ipis += cpumask_weight(cpu_online_mask);
1268 schedule_on_each_cpu(rcu_tasks_be_rude);
1269}
1270
1271void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1272DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1273 "RCU Tasks Rude");
1274
1275/**
1276 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1277 * @rhp: structure to be used for queueing the RCU updates.
1278 * @func: actual callback function to be invoked after the grace period
1279 *
1280 * The callback function will be invoked some time after a full grace
1281 * period elapses, in other words after all currently executing RCU
1282 * read-side critical sections have completed. call_rcu_tasks_rude()
1283 * assumes that the read-side critical sections end at context switch,
1284 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1285 * usermode execution is schedulable). As such, there are no read-side
1286 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1287 * this primitive is intended to determine that all tasks have passed
1288 * through a safe state, not so much for data-structure synchronization.
1289 *
1290 * See the description of call_rcu() for more detailed information on
1291 * memory ordering guarantees.
1292 */
1293void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1294{
1295 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1296}
1297EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1298
1299/**
1300 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1301 *
1302 * Control will return to the caller some time after a rude rcu-tasks
1303 * grace period has elapsed, in other words after all currently
1304 * executing rcu-tasks read-side critical sections have elapsed. These
1305 * read-side critical sections are delimited by calls to schedule(),
1306 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1307 * context), and (in theory, anyway) cond_resched().
1308 *
1309 * This is a very specialized primitive, intended only for a few uses in
1310 * tracing and other situations requiring manipulation of function preambles
1311 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
1312 * (yet) intended for heavy use from multiple CPUs.
1313 *
1314 * See the description of synchronize_rcu() for more detailed information
1315 * on memory ordering guarantees.
1316 */
1317void synchronize_rcu_tasks_rude(void)
1318{
1319 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1320}
1321EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1322
1323/**
1324 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1325 *
1326 * Although the current implementation is guaranteed to wait, it is not
1327 * obligated to, for example, if there are no pending callbacks.
1328 */
1329void rcu_barrier_tasks_rude(void)
1330{
1331 rcu_barrier_tasks_generic(&rcu_tasks_rude);
1332}
1333EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1334
1335int rcu_tasks_rude_lazy_ms = -1;
1336module_param(rcu_tasks_rude_lazy_ms, int, 0444);
1337
1338static int __init rcu_spawn_tasks_rude_kthread(void)
1339{
1340 rcu_tasks_rude.gp_sleep = HZ / 10;
1341 if (rcu_tasks_rude_lazy_ms >= 0)
1342 rcu_tasks_rude.lazy_jiffies = msecs_to_jiffies(rcu_tasks_rude_lazy_ms);
1343 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1344 return 0;
1345}
1346
1347#if !defined(CONFIG_TINY_RCU)
1348void show_rcu_tasks_rude_gp_kthread(void)
1349{
1350 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1351}
1352EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1353#endif // !defined(CONFIG_TINY_RCU)
1354
1355struct task_struct *get_rcu_tasks_rude_gp_kthread(void)
1356{
1357 return rcu_tasks_rude.kthread_ptr;
1358}
1359EXPORT_SYMBOL_GPL(get_rcu_tasks_rude_gp_kthread);
1360
1361#endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1362
1363////////////////////////////////////////////////////////////////////////
1364//
1365// Tracing variant of Tasks RCU. This variant is designed to be used
1366// to protect tracing hooks, including those of BPF. This variant
1367// therefore:
1368//
1369// 1. Has explicit read-side markers to allow finite grace periods
1370// in the face of in-kernel loops for PREEMPT=n builds.
1371//
1372// 2. Protects code in the idle loop, exception entry/exit, and
1373// CPU-hotplug code paths, similar to the capabilities of SRCU.
1374//
1375// 3. Avoids expensive read-side instructions, having overhead similar
1376// to that of Preemptible RCU.
1377//
1378// There are of course downsides. For example, the grace-period code
1379// can send IPIs to CPUs, even when those CPUs are in the idle loop or
1380// in nohz_full userspace. If needed, these downsides can be at least
1381// partially remedied.
1382//
1383// Perhaps most important, this variant of RCU does not affect the vanilla
1384// flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
1385// readers can operate from idle, offline, and exception entry/exit in no
1386// way allows rcu_preempt and rcu_sched readers to also do so.
1387//
1388// The implementation uses rcu_tasks_wait_gp(), which relies on function
1389// pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
1390// function sets these function pointers up so that rcu_tasks_wait_gp()
1391// invokes these functions in this order:
1392//
1393// rcu_tasks_trace_pregp_step():
1394// Disables CPU hotplug, adds all currently executing tasks to the
1395// holdout list, then checks the state of all tasks that blocked
1396// or were preempted within their current RCU Tasks Trace read-side
1397// critical section, adding them to the holdout list if appropriate.
1398// Finally, this function re-enables CPU hotplug.
1399// The ->pertask_func() pointer is NULL, so there is no per-task processing.
1400// rcu_tasks_trace_postscan():
1401// Invokes synchronize_rcu() to wait for late-stage exiting tasks
1402// to finish exiting.
1403// check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1404// Scans the holdout list, attempting to identify a quiescent state
1405// for each task on the list. If there is a quiescent state, the
1406// corresponding task is removed from the holdout list. Once this
1407// list is empty, the grace period has completed.
1408// rcu_tasks_trace_postgp():
1409// Provides the needed full memory barrier and does debug checks.
1410//
1411// The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1412//
1413// Pre-grace-period update-side code is ordered before the grace period
1414// via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period
1415// read-side code is ordered before the grace period by atomic operations
1416// on .b.need_qs flag of each task involved in this process, or by scheduler
1417// context-switch ordering (for locked-down non-running readers).
1418
1419// The lockdep state must be outside of #ifdef to be useful.
1420#ifdef CONFIG_DEBUG_LOCK_ALLOC
1421static struct lock_class_key rcu_lock_trace_key;
1422struct lockdep_map rcu_trace_lock_map =
1423 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1424EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1425#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1426
1427#ifdef CONFIG_TASKS_TRACE_RCU
1428
1429// Record outstanding IPIs to each CPU. No point in sending two...
1430static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1431
1432// The number of detections of task quiescent state relying on
1433// heavyweight readers executing explicit memory barriers.
1434static unsigned long n_heavy_reader_attempts;
1435static unsigned long n_heavy_reader_updates;
1436static unsigned long n_heavy_reader_ofl_updates;
1437static unsigned long n_trc_holdouts;
1438
1439void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1440DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1441 "RCU Tasks Trace");
1442
1443/* Load from ->trc_reader_special.b.need_qs with proper ordering. */
1444static u8 rcu_ld_need_qs(struct task_struct *t)
1445{
1446 smp_mb(); // Enforce full grace-period ordering.
1447 return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1448}
1449
1450/* Store to ->trc_reader_special.b.need_qs with proper ordering. */
1451static void rcu_st_need_qs(struct task_struct *t, u8 v)
1452{
1453 smp_store_release(&t->trc_reader_special.b.need_qs, v);
1454 smp_mb(); // Enforce full grace-period ordering.
1455}
1456
1457/*
1458 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1459 * the four-byte operand-size restriction of some platforms.
1460 * Returns the old value, which is often ignored.
1461 */
1462u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1463{
1464 union rcu_special ret;
1465 union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1466 union rcu_special trs_new = trs_old;
1467
1468 if (trs_old.b.need_qs != old)
1469 return trs_old.b.need_qs;
1470 trs_new.b.need_qs = new;
1471 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1472 return ret.b.need_qs;
1473}
1474EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1475
1476/*
1477 * If we are the last reader, signal the grace-period kthread.
1478 * Also remove from the per-CPU list of blocked tasks.
1479 */
1480void rcu_read_unlock_trace_special(struct task_struct *t)
1481{
1482 unsigned long flags;
1483 struct rcu_tasks_percpu *rtpcp;
1484 union rcu_special trs;
1485
1486 // Open-coded full-word version of rcu_ld_need_qs().
1487 smp_mb(); // Enforce full grace-period ordering.
1488 trs = smp_load_acquire(&t->trc_reader_special);
1489
1490 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1491 smp_mb(); // Pairs with update-side barriers.
1492 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1493 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1494 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1495 TRC_NEED_QS_CHECKED);
1496
1497 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1498 }
1499 if (trs.b.blocked) {
1500 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1501 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1502 list_del_init(&t->trc_blkd_node);
1503 WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1504 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1505 }
1506 WRITE_ONCE(t->trc_reader_nesting, 0);
1507}
1508EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1509
1510/* Add a newly blocked reader task to its CPU's list. */
1511void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1512{
1513 unsigned long flags;
1514 struct rcu_tasks_percpu *rtpcp;
1515
1516 local_irq_save(flags);
1517 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1518 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1519 t->trc_blkd_cpu = smp_processor_id();
1520 if (!rtpcp->rtp_blkd_tasks.next)
1521 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1522 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1523 WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1524 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1525}
1526EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1527
1528/* Add a task to the holdout list, if it is not already on the list. */
1529static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1530{
1531 if (list_empty(&t->trc_holdout_list)) {
1532 get_task_struct(t);
1533 list_add(&t->trc_holdout_list, bhp);
1534 n_trc_holdouts++;
1535 }
1536}
1537
1538/* Remove a task from the holdout list, if it is in fact present. */
1539static void trc_del_holdout(struct task_struct *t)
1540{
1541 if (!list_empty(&t->trc_holdout_list)) {
1542 list_del_init(&t->trc_holdout_list);
1543 put_task_struct(t);
1544 n_trc_holdouts--;
1545 }
1546}
1547
1548/* IPI handler to check task state. */
1549static void trc_read_check_handler(void *t_in)
1550{
1551 int nesting;
1552 struct task_struct *t = current;
1553 struct task_struct *texp = t_in;
1554
1555 // If the task is no longer running on this CPU, leave.
1556 if (unlikely(texp != t))
1557 goto reset_ipi; // Already on holdout list, so will check later.
1558
1559 // If the task is not in a read-side critical section, and
1560 // if this is the last reader, awaken the grace-period kthread.
1561 nesting = READ_ONCE(t->trc_reader_nesting);
1562 if (likely(!nesting)) {
1563 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1564 goto reset_ipi;
1565 }
1566 // If we are racing with an rcu_read_unlock_trace(), try again later.
1567 if (unlikely(nesting < 0))
1568 goto reset_ipi;
1569
1570 // Get here if the task is in a read-side critical section.
1571 // Set its state so that it will update state for the grace-period
1572 // kthread upon exit from that critical section.
1573 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1574
1575reset_ipi:
1576 // Allow future IPIs to be sent on CPU and for task.
1577 // Also order this IPI handler against any later manipulations of
1578 // the intended task.
1579 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1580 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1581}
1582
1583/* Callback function for scheduler to check locked-down task. */
1584static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1585{
1586 struct list_head *bhp = bhp_in;
1587 int cpu = task_cpu(t);
1588 int nesting;
1589 bool ofl = cpu_is_offline(cpu);
1590
1591 if (task_curr(t) && !ofl) {
1592 // If no chance of heavyweight readers, do it the hard way.
1593 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1594 return -EINVAL;
1595
1596 // If heavyweight readers are enabled on the remote task,
1597 // we can inspect its state despite its currently running.
1598 // However, we cannot safely change its state.
1599 n_heavy_reader_attempts++;
1600 // Check for "running" idle tasks on offline CPUs.
1601 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1602 return -EINVAL; // No quiescent state, do it the hard way.
1603 n_heavy_reader_updates++;
1604 nesting = 0;
1605 } else {
1606 // The task is not running, so C-language access is safe.
1607 nesting = t->trc_reader_nesting;
1608 WARN_ON_ONCE(ofl && task_curr(t) && (t != idle_task(task_cpu(t))));
1609 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1610 n_heavy_reader_ofl_updates++;
1611 }
1612
1613 // If not exiting a read-side critical section, mark as checked
1614 // so that the grace-period kthread will remove it from the
1615 // holdout list.
1616 if (!nesting) {
1617 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1618 return 0; // In QS, so done.
1619 }
1620 if (nesting < 0)
1621 return -EINVAL; // Reader transitioning, try again later.
1622
1623 // The task is in a read-side critical section, so set up its
1624 // state so that it will update state upon exit from that critical
1625 // section.
1626 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1627 trc_add_holdout(t, bhp);
1628 return 0;
1629}
1630
1631/* Attempt to extract the state for the specified task. */
1632static void trc_wait_for_one_reader(struct task_struct *t,
1633 struct list_head *bhp)
1634{
1635 int cpu;
1636
1637 // If a previous IPI is still in flight, let it complete.
1638 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1639 return;
1640
1641 // The current task had better be in a quiescent state.
1642 if (t == current) {
1643 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1644 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1645 return;
1646 }
1647
1648 // Attempt to nail down the task for inspection.
1649 get_task_struct(t);
1650 if (!task_call_func(t, trc_inspect_reader, bhp)) {
1651 put_task_struct(t);
1652 return;
1653 }
1654 put_task_struct(t);
1655
1656 // If this task is not yet on the holdout list, then we are in
1657 // an RCU read-side critical section. Otherwise, the invocation of
1658 // trc_add_holdout() that added it to the list did the necessary
1659 // get_task_struct(). Either way, the task cannot be freed out
1660 // from under this code.
1661
1662 // If currently running, send an IPI, either way, add to list.
1663 trc_add_holdout(t, bhp);
1664 if (task_curr(t) &&
1665 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1666 // The task is currently running, so try IPIing it.
1667 cpu = task_cpu(t);
1668
1669 // If there is already an IPI outstanding, let it happen.
1670 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1671 return;
1672
1673 per_cpu(trc_ipi_to_cpu, cpu) = true;
1674 t->trc_ipi_to_cpu = cpu;
1675 rcu_tasks_trace.n_ipis++;
1676 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1677 // Just in case there is some other reason for
1678 // failure than the target CPU being offline.
1679 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
1680 __func__, cpu);
1681 rcu_tasks_trace.n_ipis_fails++;
1682 per_cpu(trc_ipi_to_cpu, cpu) = false;
1683 t->trc_ipi_to_cpu = -1;
1684 }
1685 }
1686}
1687
1688/*
1689 * Initialize for first-round processing for the specified task.
1690 * Return false if task is NULL or already taken care of, true otherwise.
1691 */
1692static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1693{
1694 // During early boot when there is only the one boot CPU, there
1695 // is no idle task for the other CPUs. Also, the grace-period
1696 // kthread is always in a quiescent state. In addition, just return
1697 // if this task is already on the list.
1698 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1699 return false;
1700
1701 rcu_st_need_qs(t, 0);
1702 t->trc_ipi_to_cpu = -1;
1703 return true;
1704}
1705
1706/* Do first-round processing for the specified task. */
1707static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1708{
1709 if (rcu_tasks_trace_pertask_prep(t, true))
1710 trc_wait_for_one_reader(t, hop);
1711}
1712
1713/* Initialize for a new RCU-tasks-trace grace period. */
1714static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1715{
1716 LIST_HEAD(blkd_tasks);
1717 int cpu;
1718 unsigned long flags;
1719 struct rcu_tasks_percpu *rtpcp;
1720 struct task_struct *t;
1721
1722 // There shouldn't be any old IPIs, but...
1723 for_each_possible_cpu(cpu)
1724 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1725
1726 // Disable CPU hotplug across the CPU scan for the benefit of
1727 // any IPIs that might be needed. This also waits for all readers
1728 // in CPU-hotplug code paths.
1729 cpus_read_lock();
1730
1731 // These rcu_tasks_trace_pertask_prep() calls are serialized to
1732 // allow safe access to the hop list.
1733 for_each_online_cpu(cpu) {
1734 rcu_read_lock();
1735 t = cpu_curr_snapshot(cpu);
1736 if (rcu_tasks_trace_pertask_prep(t, true))
1737 trc_add_holdout(t, hop);
1738 rcu_read_unlock();
1739 cond_resched_tasks_rcu_qs();
1740 }
1741
1742 // Only after all running tasks have been accounted for is it
1743 // safe to take care of the tasks that have blocked within their
1744 // current RCU tasks trace read-side critical section.
1745 for_each_possible_cpu(cpu) {
1746 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1747 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1748 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1749 while (!list_empty(&blkd_tasks)) {
1750 rcu_read_lock();
1751 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1752 list_del_init(&t->trc_blkd_node);
1753 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1754 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1755 rcu_tasks_trace_pertask(t, hop);
1756 rcu_read_unlock();
1757 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1758 }
1759 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1760 cond_resched_tasks_rcu_qs();
1761 }
1762
1763 // Re-enable CPU hotplug now that the holdout list is populated.
1764 cpus_read_unlock();
1765}
1766
1767/*
1768 * Do intermediate processing between task and holdout scans.
1769 */
1770static void rcu_tasks_trace_postscan(struct list_head *hop)
1771{
1772 // Wait for late-stage exiting tasks to finish exiting.
1773 // These might have passed the call to exit_tasks_rcu_finish().
1774
1775 // If you remove the following line, update rcu_trace_implies_rcu_gp()!!!
1776 synchronize_rcu();
1777 // Any tasks that exit after this point will set
1778 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1779}
1780
1781/* Communicate task state back to the RCU tasks trace stall warning request. */
1782struct trc_stall_chk_rdr {
1783 int nesting;
1784 int ipi_to_cpu;
1785 u8 needqs;
1786};
1787
1788static int trc_check_slow_task(struct task_struct *t, void *arg)
1789{
1790 struct trc_stall_chk_rdr *trc_rdrp = arg;
1791
1792 if (task_curr(t) && cpu_online(task_cpu(t)))
1793 return false; // It is running, so decline to inspect it.
1794 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1795 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1796 trc_rdrp->needqs = rcu_ld_need_qs(t);
1797 return true;
1798}
1799
1800/* Show the state of a task stalling the current RCU tasks trace GP. */
1801static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1802{
1803 int cpu;
1804 struct trc_stall_chk_rdr trc_rdr;
1805 bool is_idle_tsk = is_idle_task(t);
1806
1807 if (*firstreport) {
1808 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1809 *firstreport = false;
1810 }
1811 cpu = task_cpu(t);
1812 if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1813 pr_alert("P%d: %c%c\n",
1814 t->pid,
1815 ".I"[t->trc_ipi_to_cpu >= 0],
1816 ".i"[is_idle_tsk]);
1817 else
1818 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1819 t->pid,
1820 ".I"[trc_rdr.ipi_to_cpu >= 0],
1821 ".i"[is_idle_tsk],
1822 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1823 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1824 trc_rdr.nesting,
1825 " !CN"[trc_rdr.needqs & 0x3],
1826 " ?"[trc_rdr.needqs > 0x3],
1827 cpu, cpu_online(cpu) ? "" : "(offline)");
1828 sched_show_task(t);
1829}
1830
1831/* List stalled IPIs for RCU tasks trace. */
1832static void show_stalled_ipi_trace(void)
1833{
1834 int cpu;
1835
1836 for_each_possible_cpu(cpu)
1837 if (per_cpu(trc_ipi_to_cpu, cpu))
1838 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1839}
1840
1841/* Do one scan of the holdout list. */
1842static void check_all_holdout_tasks_trace(struct list_head *hop,
1843 bool needreport, bool *firstreport)
1844{
1845 struct task_struct *g, *t;
1846
1847 // Disable CPU hotplug across the holdout list scan for IPIs.
1848 cpus_read_lock();
1849
1850 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1851 // If safe and needed, try to check the current task.
1852 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1853 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1854 trc_wait_for_one_reader(t, hop);
1855
1856 // If check succeeded, remove this task from the list.
1857 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1858 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1859 trc_del_holdout(t);
1860 else if (needreport)
1861 show_stalled_task_trace(t, firstreport);
1862 cond_resched_tasks_rcu_qs();
1863 }
1864
1865 // Re-enable CPU hotplug now that the holdout list scan has completed.
1866 cpus_read_unlock();
1867
1868 if (needreport) {
1869 if (*firstreport)
1870 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1871 show_stalled_ipi_trace();
1872 }
1873}
1874
1875static void rcu_tasks_trace_empty_fn(void *unused)
1876{
1877}
1878
1879/* Wait for grace period to complete and provide ordering. */
1880static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1881{
1882 int cpu;
1883
1884 // Wait for any lingering IPI handlers to complete. Note that
1885 // if a CPU has gone offline or transitioned to userspace in the
1886 // meantime, all IPI handlers should have been drained beforehand.
1887 // Yes, this assumes that CPUs process IPIs in order. If that ever
1888 // changes, there will need to be a recheck and/or timed wait.
1889 for_each_online_cpu(cpu)
1890 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1891 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1892
1893 smp_mb(); // Caller's code must be ordered after wakeup.
1894 // Pairs with pretty much every ordering primitive.
1895}
1896
1897/* Report any needed quiescent state for this exiting task. */
1898static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1899{
1900 union rcu_special trs = READ_ONCE(t->trc_reader_special);
1901
1902 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1903 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1904 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1905 rcu_read_unlock_trace_special(t);
1906 else
1907 WRITE_ONCE(t->trc_reader_nesting, 0);
1908}
1909
1910/**
1911 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1912 * @rhp: structure to be used for queueing the RCU updates.
1913 * @func: actual callback function to be invoked after the grace period
1914 *
1915 * The callback function will be invoked some time after a trace rcu-tasks
1916 * grace period elapses, in other words after all currently executing
1917 * trace rcu-tasks read-side critical sections have completed. These
1918 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1919 * and rcu_read_unlock_trace().
1920 *
1921 * See the description of call_rcu() for more detailed information on
1922 * memory ordering guarantees.
1923 */
1924void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1925{
1926 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1927}
1928EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1929
1930/**
1931 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1932 *
1933 * Control will return to the caller some time after a trace rcu-tasks
1934 * grace period has elapsed, in other words after all currently executing
1935 * trace rcu-tasks read-side critical sections have elapsed. These read-side
1936 * critical sections are delimited by calls to rcu_read_lock_trace()
1937 * and rcu_read_unlock_trace().
1938 *
1939 * This is a very specialized primitive, intended only for a few uses in
1940 * tracing and other situations requiring manipulation of function preambles
1941 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1942 * (yet) intended for heavy use from multiple CPUs.
1943 *
1944 * See the description of synchronize_rcu() for more detailed information
1945 * on memory ordering guarantees.
1946 */
1947void synchronize_rcu_tasks_trace(void)
1948{
1949 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1950 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1951}
1952EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1953
1954/**
1955 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1956 *
1957 * Although the current implementation is guaranteed to wait, it is not
1958 * obligated to, for example, if there are no pending callbacks.
1959 */
1960void rcu_barrier_tasks_trace(void)
1961{
1962 rcu_barrier_tasks_generic(&rcu_tasks_trace);
1963}
1964EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1965
1966int rcu_tasks_trace_lazy_ms = -1;
1967module_param(rcu_tasks_trace_lazy_ms, int, 0444);
1968
1969static int __init rcu_spawn_tasks_trace_kthread(void)
1970{
1971 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1972 rcu_tasks_trace.gp_sleep = HZ / 10;
1973 rcu_tasks_trace.init_fract = HZ / 10;
1974 } else {
1975 rcu_tasks_trace.gp_sleep = HZ / 200;
1976 if (rcu_tasks_trace.gp_sleep <= 0)
1977 rcu_tasks_trace.gp_sleep = 1;
1978 rcu_tasks_trace.init_fract = HZ / 200;
1979 if (rcu_tasks_trace.init_fract <= 0)
1980 rcu_tasks_trace.init_fract = 1;
1981 }
1982 if (rcu_tasks_trace_lazy_ms >= 0)
1983 rcu_tasks_trace.lazy_jiffies = msecs_to_jiffies(rcu_tasks_trace_lazy_ms);
1984 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1985 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1986 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1987 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1988 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1989 return 0;
1990}
1991
1992#if !defined(CONFIG_TINY_RCU)
1993void show_rcu_tasks_trace_gp_kthread(void)
1994{
1995 char buf[64];
1996
1997 snprintf(buf, sizeof(buf), "N%lu h:%lu/%lu/%lu",
1998 data_race(n_trc_holdouts),
1999 data_race(n_heavy_reader_ofl_updates),
2000 data_race(n_heavy_reader_updates),
2001 data_race(n_heavy_reader_attempts));
2002 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
2003}
2004EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
2005#endif // !defined(CONFIG_TINY_RCU)
2006
2007struct task_struct *get_rcu_tasks_trace_gp_kthread(void)
2008{
2009 return rcu_tasks_trace.kthread_ptr;
2010}
2011EXPORT_SYMBOL_GPL(get_rcu_tasks_trace_gp_kthread);
2012
2013#else /* #ifdef CONFIG_TASKS_TRACE_RCU */
2014static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
2015#endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
2016
2017#ifndef CONFIG_TINY_RCU
2018void show_rcu_tasks_gp_kthreads(void)
2019{
2020 show_rcu_tasks_classic_gp_kthread();
2021 show_rcu_tasks_rude_gp_kthread();
2022 show_rcu_tasks_trace_gp_kthread();
2023}
2024#endif /* #ifndef CONFIG_TINY_RCU */
2025
2026#ifdef CONFIG_PROVE_RCU
2027struct rcu_tasks_test_desc {
2028 struct rcu_head rh;
2029 const char *name;
2030 bool notrun;
2031 unsigned long runstart;
2032};
2033
2034static struct rcu_tasks_test_desc tests[] = {
2035 {
2036 .name = "call_rcu_tasks()",
2037 /* If not defined, the test is skipped. */
2038 .notrun = IS_ENABLED(CONFIG_TASKS_RCU),
2039 },
2040 {
2041 .name = "call_rcu_tasks_rude()",
2042 /* If not defined, the test is skipped. */
2043 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
2044 },
2045 {
2046 .name = "call_rcu_tasks_trace()",
2047 /* If not defined, the test is skipped. */
2048 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
2049 }
2050};
2051
2052static void test_rcu_tasks_callback(struct rcu_head *rhp)
2053{
2054 struct rcu_tasks_test_desc *rttd =
2055 container_of(rhp, struct rcu_tasks_test_desc, rh);
2056
2057 pr_info("Callback from %s invoked.\n", rttd->name);
2058
2059 rttd->notrun = false;
2060}
2061
2062static void rcu_tasks_initiate_self_tests(void)
2063{
2064#ifdef CONFIG_TASKS_RCU
2065 pr_info("Running RCU Tasks wait API self tests\n");
2066 tests[0].runstart = jiffies;
2067 synchronize_rcu_tasks();
2068 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
2069#endif
2070
2071#ifdef CONFIG_TASKS_RUDE_RCU
2072 pr_info("Running RCU Tasks Rude wait API self tests\n");
2073 tests[1].runstart = jiffies;
2074 synchronize_rcu_tasks_rude();
2075 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
2076#endif
2077
2078#ifdef CONFIG_TASKS_TRACE_RCU
2079 pr_info("Running RCU Tasks Trace wait API self tests\n");
2080 tests[2].runstart = jiffies;
2081 synchronize_rcu_tasks_trace();
2082 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
2083#endif
2084}
2085
2086/*
2087 * Return: 0 - test passed
2088 * 1 - test failed, but have not timed out yet
2089 * -1 - test failed and timed out
2090 */
2091static int rcu_tasks_verify_self_tests(void)
2092{
2093 int ret = 0;
2094 int i;
2095 unsigned long bst = rcu_task_stall_timeout;
2096
2097 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
2098 bst = RCU_TASK_BOOT_STALL_TIMEOUT;
2099 for (i = 0; i < ARRAY_SIZE(tests); i++) {
2100 while (tests[i].notrun) { // still hanging.
2101 if (time_after(jiffies, tests[i].runstart + bst)) {
2102 pr_err("%s has failed boot-time tests.\n", tests[i].name);
2103 ret = -1;
2104 break;
2105 }
2106 ret = 1;
2107 break;
2108 }
2109 }
2110 WARN_ON(ret < 0);
2111
2112 return ret;
2113}
2114
2115/*
2116 * Repeat the rcu_tasks_verify_self_tests() call once every second until the
2117 * test passes or has timed out.
2118 */
2119static struct delayed_work rcu_tasks_verify_work;
2120static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
2121{
2122 int ret = rcu_tasks_verify_self_tests();
2123
2124 if (ret <= 0)
2125 return;
2126
2127 /* Test fails but not timed out yet, reschedule another check */
2128 schedule_delayed_work(&rcu_tasks_verify_work, HZ);
2129}
2130
2131static int rcu_tasks_verify_schedule_work(void)
2132{
2133 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
2134 rcu_tasks_verify_work_fn(NULL);
2135 return 0;
2136}
2137late_initcall(rcu_tasks_verify_schedule_work);
2138#else /* #ifdef CONFIG_PROVE_RCU */
2139static void rcu_tasks_initiate_self_tests(void) { }
2140#endif /* #else #ifdef CONFIG_PROVE_RCU */
2141
2142void __init tasks_cblist_init_generic(void)
2143{
2144 lockdep_assert_irqs_disabled();
2145 WARN_ON(num_online_cpus() > 1);
2146
2147#ifdef CONFIG_TASKS_RCU
2148 cblist_init_generic(&rcu_tasks);
2149#endif
2150
2151#ifdef CONFIG_TASKS_RUDE_RCU
2152 cblist_init_generic(&rcu_tasks_rude);
2153#endif
2154
2155#ifdef CONFIG_TASKS_TRACE_RCU
2156 cblist_init_generic(&rcu_tasks_trace);
2157#endif
2158}
2159
2160void __init rcu_init_tasks_generic(void)
2161{
2162#ifdef CONFIG_TASKS_RCU
2163 rcu_spawn_tasks_kthread();
2164#endif
2165
2166#ifdef CONFIG_TASKS_RUDE_RCU
2167 rcu_spawn_tasks_rude_kthread();
2168#endif
2169
2170#ifdef CONFIG_TASKS_TRACE_RCU
2171 rcu_spawn_tasks_trace_kthread();
2172#endif
2173
2174 // Run the self-tests.
2175 rcu_tasks_initiate_self_tests();
2176}
2177
2178#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
2179static inline void rcu_tasks_bootup_oddness(void) {}
2180#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */