Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0+
  2//
  3// Scalability test comparing RCU vs other mechanisms
  4// for acquiring references on objects.
  5//
  6// Copyright (C) Google, 2020.
  7//
  8// Author: Joel Fernandes <joel@joelfernandes.org>
  9
 10#define pr_fmt(fmt) fmt
 11
 12#include <linux/atomic.h>
 13#include <linux/bitops.h>
 14#include <linux/completion.h>
 15#include <linux/cpu.h>
 16#include <linux/delay.h>
 17#include <linux/err.h>
 18#include <linux/init.h>
 19#include <linux/interrupt.h>
 20#include <linux/kthread.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/moduleparam.h>
 25#include <linux/notifier.h>
 26#include <linux/percpu.h>
 27#include <linux/rcupdate.h>
 28#include <linux/rcupdate_trace.h>
 29#include <linux/reboot.h>
 30#include <linux/sched.h>
 31#include <linux/spinlock.h>
 32#include <linux/smp.h>
 33#include <linux/stat.h>
 34#include <linux/srcu.h>
 35#include <linux/slab.h>
 36#include <linux/torture.h>
 37#include <linux/types.h>
 38
 39#include "rcu.h"
 40
 41#define SCALE_FLAG "-ref-scale: "
 42
 43#define SCALEOUT(s, x...) \
 44	pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
 45
 46#define VERBOSE_SCALEOUT(s, x...) \
 47	do { \
 48		if (verbose) \
 49			pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
 50	} while (0)
 51
 52static atomic_t verbose_batch_ctr;
 53
 54#define VERBOSE_SCALEOUT_BATCH(s, x...)							\
 55do {											\
 56	if (verbose &&									\
 57	    (verbose_batched <= 0 ||							\
 58	     !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {		\
 59		schedule_timeout_uninterruptible(1);					\
 60		pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);			\
 61	}										\
 62} while (0)
 63
 64#define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
 65
 66MODULE_LICENSE("GPL");
 67MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
 68
 69static char *scale_type = "rcu";
 70module_param(scale_type, charp, 0444);
 71MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
 72
 73torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
 74torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
 75
 76// Wait until there are multiple CPUs before starting test.
 77torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
 78	      "Holdoff time before test start (s)");
 
 
 79// Number of loops per experiment, all readers execute operations concurrently.
 80torture_param(long, loops, 10000, "Number of loops per experiment.");
 81// Number of readers, with -1 defaulting to about 75% of the CPUs.
 82torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
 83// Number of runs.
 84torture_param(int, nruns, 30, "Number of experiments to run.");
 85// Reader delay in nanoseconds, 0 for no delay.
 86torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
 87
 88#ifdef MODULE
 89# define REFSCALE_SHUTDOWN 0
 90#else
 91# define REFSCALE_SHUTDOWN 1
 92#endif
 93
 94torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
 95	      "Shutdown at end of scalability tests.");
 96
 97struct reader_task {
 98	struct task_struct *task;
 99	int start_reader;
100	wait_queue_head_t wq;
101	u64 last_duration_ns;
102};
103
104static struct task_struct *shutdown_task;
105static wait_queue_head_t shutdown_wq;
106
107static struct task_struct *main_task;
108static wait_queue_head_t main_wq;
109static int shutdown_start;
110
111static struct reader_task *reader_tasks;
112
113// Number of readers that are part of the current experiment.
114static atomic_t nreaders_exp;
115
116// Use to wait for all threads to start.
117static atomic_t n_init;
118static atomic_t n_started;
119static atomic_t n_warmedup;
120static atomic_t n_cooleddown;
121
122// Track which experiment is currently running.
123static int exp_idx;
124
125// Operations vector for selecting different types of tests.
126struct ref_scale_ops {
127	void (*init)(void);
128	void (*cleanup)(void);
129	void (*readsection)(const int nloops);
130	void (*delaysection)(const int nloops, const int udl, const int ndl);
131	const char *name;
132};
133
134static struct ref_scale_ops *cur_ops;
135
136static void un_delay(const int udl, const int ndl)
137{
138	if (udl)
139		udelay(udl);
140	if (ndl)
141		ndelay(ndl);
142}
143
144static void ref_rcu_read_section(const int nloops)
145{
146	int i;
147
148	for (i = nloops; i >= 0; i--) {
149		rcu_read_lock();
150		rcu_read_unlock();
151	}
152}
153
154static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
155{
156	int i;
157
158	for (i = nloops; i >= 0; i--) {
159		rcu_read_lock();
160		un_delay(udl, ndl);
161		rcu_read_unlock();
162	}
163}
164
165static void rcu_sync_scale_init(void)
166{
 
167}
168
169static struct ref_scale_ops rcu_ops = {
170	.init		= rcu_sync_scale_init,
171	.readsection	= ref_rcu_read_section,
172	.delaysection	= ref_rcu_delay_section,
173	.name		= "rcu"
174};
175
176// Definitions for SRCU ref scale testing.
177DEFINE_STATIC_SRCU(srcu_refctl_scale);
178static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
179
180static void srcu_ref_scale_read_section(const int nloops)
181{
182	int i;
183	int idx;
184
185	for (i = nloops; i >= 0; i--) {
186		idx = srcu_read_lock(srcu_ctlp);
187		srcu_read_unlock(srcu_ctlp, idx);
188	}
189}
190
191static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
192{
193	int i;
194	int idx;
195
196	for (i = nloops; i >= 0; i--) {
197		idx = srcu_read_lock(srcu_ctlp);
198		un_delay(udl, ndl);
199		srcu_read_unlock(srcu_ctlp, idx);
200	}
201}
202
203static struct ref_scale_ops srcu_ops = {
204	.init		= rcu_sync_scale_init,
205	.readsection	= srcu_ref_scale_read_section,
206	.delaysection	= srcu_ref_scale_delay_section,
207	.name		= "srcu"
208};
209
210#ifdef CONFIG_TASKS_RCU
211
212// Definitions for RCU Tasks ref scale testing: Empty read markers.
213// These definitions also work for RCU Rude readers.
214static void rcu_tasks_ref_scale_read_section(const int nloops)
215{
216	int i;
217
218	for (i = nloops; i >= 0; i--)
219		continue;
220}
221
222static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
223{
224	int i;
225
226	for (i = nloops; i >= 0; i--)
227		un_delay(udl, ndl);
228}
229
230static struct ref_scale_ops rcu_tasks_ops = {
231	.init		= rcu_sync_scale_init,
232	.readsection	= rcu_tasks_ref_scale_read_section,
233	.delaysection	= rcu_tasks_ref_scale_delay_section,
234	.name		= "rcu-tasks"
235};
236
237#define RCU_TASKS_OPS &rcu_tasks_ops,
238
239#else // #ifdef CONFIG_TASKS_RCU
240
241#define RCU_TASKS_OPS
242
243#endif // #else // #ifdef CONFIG_TASKS_RCU
244
245#ifdef CONFIG_TASKS_TRACE_RCU
246
247// Definitions for RCU Tasks Trace ref scale testing.
248static void rcu_trace_ref_scale_read_section(const int nloops)
249{
250	int i;
251
252	for (i = nloops; i >= 0; i--) {
253		rcu_read_lock_trace();
254		rcu_read_unlock_trace();
255	}
256}
257
258static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
259{
260	int i;
261
262	for (i = nloops; i >= 0; i--) {
263		rcu_read_lock_trace();
264		un_delay(udl, ndl);
265		rcu_read_unlock_trace();
266	}
267}
268
269static struct ref_scale_ops rcu_trace_ops = {
270	.init		= rcu_sync_scale_init,
271	.readsection	= rcu_trace_ref_scale_read_section,
272	.delaysection	= rcu_trace_ref_scale_delay_section,
273	.name		= "rcu-trace"
274};
275
276#define RCU_TRACE_OPS &rcu_trace_ops,
277
278#else // #ifdef CONFIG_TASKS_TRACE_RCU
279
280#define RCU_TRACE_OPS
281
282#endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
283
284// Definitions for reference count
285static atomic_t refcnt;
286
287static void ref_refcnt_section(const int nloops)
288{
289	int i;
290
291	for (i = nloops; i >= 0; i--) {
292		atomic_inc(&refcnt);
293		atomic_dec(&refcnt);
294	}
295}
296
297static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
298{
299	int i;
300
301	for (i = nloops; i >= 0; i--) {
302		atomic_inc(&refcnt);
303		un_delay(udl, ndl);
304		atomic_dec(&refcnt);
305	}
306}
307
308static struct ref_scale_ops refcnt_ops = {
309	.init		= rcu_sync_scale_init,
310	.readsection	= ref_refcnt_section,
311	.delaysection	= ref_refcnt_delay_section,
312	.name		= "refcnt"
313};
314
315// Definitions for rwlock
316static rwlock_t test_rwlock;
317
318static void ref_rwlock_init(void)
319{
320	rwlock_init(&test_rwlock);
 
321}
322
323static void ref_rwlock_section(const int nloops)
324{
325	int i;
326
327	for (i = nloops; i >= 0; i--) {
328		read_lock(&test_rwlock);
329		read_unlock(&test_rwlock);
330	}
331}
332
333static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
334{
335	int i;
336
337	for (i = nloops; i >= 0; i--) {
338		read_lock(&test_rwlock);
339		un_delay(udl, ndl);
340		read_unlock(&test_rwlock);
341	}
342}
343
344static struct ref_scale_ops rwlock_ops = {
345	.init		= ref_rwlock_init,
346	.readsection	= ref_rwlock_section,
347	.delaysection	= ref_rwlock_delay_section,
348	.name		= "rwlock"
349};
350
351// Definitions for rwsem
352static struct rw_semaphore test_rwsem;
353
354static void ref_rwsem_init(void)
355{
356	init_rwsem(&test_rwsem);
 
357}
358
359static void ref_rwsem_section(const int nloops)
360{
361	int i;
362
363	for (i = nloops; i >= 0; i--) {
364		down_read(&test_rwsem);
365		up_read(&test_rwsem);
366	}
367}
368
369static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
370{
371	int i;
372
373	for (i = nloops; i >= 0; i--) {
374		down_read(&test_rwsem);
375		un_delay(udl, ndl);
376		up_read(&test_rwsem);
377	}
378}
379
380static struct ref_scale_ops rwsem_ops = {
381	.init		= ref_rwsem_init,
382	.readsection	= ref_rwsem_section,
383	.delaysection	= ref_rwsem_delay_section,
384	.name		= "rwsem"
385};
386
387// Definitions for global spinlock
388static DEFINE_RAW_SPINLOCK(test_lock);
389
390static void ref_lock_section(const int nloops)
391{
392	int i;
393
394	preempt_disable();
395	for (i = nloops; i >= 0; i--) {
396		raw_spin_lock(&test_lock);
397		raw_spin_unlock(&test_lock);
398	}
399	preempt_enable();
400}
401
402static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
403{
404	int i;
405
406	preempt_disable();
407	for (i = nloops; i >= 0; i--) {
408		raw_spin_lock(&test_lock);
409		un_delay(udl, ndl);
410		raw_spin_unlock(&test_lock);
411	}
412	preempt_enable();
413}
414
415static struct ref_scale_ops lock_ops = {
416	.readsection	= ref_lock_section,
417	.delaysection	= ref_lock_delay_section,
418	.name		= "lock"
419};
420
421// Definitions for global irq-save spinlock
422
423static void ref_lock_irq_section(const int nloops)
424{
425	unsigned long flags;
426	int i;
427
428	preempt_disable();
429	for (i = nloops; i >= 0; i--) {
430		raw_spin_lock_irqsave(&test_lock, flags);
431		raw_spin_unlock_irqrestore(&test_lock, flags);
432	}
433	preempt_enable();
434}
435
436static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
437{
438	unsigned long flags;
439	int i;
440
441	preempt_disable();
442	for (i = nloops; i >= 0; i--) {
443		raw_spin_lock_irqsave(&test_lock, flags);
444		un_delay(udl, ndl);
445		raw_spin_unlock_irqrestore(&test_lock, flags);
446	}
447	preempt_enable();
448}
449
450static struct ref_scale_ops lock_irq_ops = {
451	.readsection	= ref_lock_irq_section,
452	.delaysection	= ref_lock_irq_delay_section,
453	.name		= "lock-irq"
454};
455
456// Definitions acquire-release.
457static DEFINE_PER_CPU(unsigned long, test_acqrel);
458
459static void ref_acqrel_section(const int nloops)
460{
461	unsigned long x;
462	int i;
463
464	preempt_disable();
465	for (i = nloops; i >= 0; i--) {
466		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
467		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
468	}
469	preempt_enable();
470}
471
472static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
473{
474	unsigned long x;
475	int i;
476
477	preempt_disable();
478	for (i = nloops; i >= 0; i--) {
479		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
480		un_delay(udl, ndl);
481		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
482	}
483	preempt_enable();
484}
485
486static struct ref_scale_ops acqrel_ops = {
487	.readsection	= ref_acqrel_section,
488	.delaysection	= ref_acqrel_delay_section,
489	.name		= "acqrel"
490};
491
492static volatile u64 stopopts;
493
494static void ref_clock_section(const int nloops)
495{
496	u64 x = 0;
497	int i;
498
499	preempt_disable();
500	for (i = nloops; i >= 0; i--)
501		x += ktime_get_real_fast_ns();
502	preempt_enable();
503	stopopts = x;
504}
505
506static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
507{
508	u64 x = 0;
509	int i;
510
511	preempt_disable();
512	for (i = nloops; i >= 0; i--) {
513		x += ktime_get_real_fast_ns();
514		un_delay(udl, ndl);
515	}
516	preempt_enable();
517	stopopts = x;
518}
519
520static struct ref_scale_ops clock_ops = {
521	.readsection	= ref_clock_section,
522	.delaysection	= ref_clock_delay_section,
523	.name		= "clock"
524};
525
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
526static void rcu_scale_one_reader(void)
527{
528	if (readdelay <= 0)
529		cur_ops->readsection(loops);
530	else
531		cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
532}
533
534// Reader kthread.  Repeatedly does empty RCU read-side
535// critical section, minimizing update-side interference.
536static int
537ref_scale_reader(void *arg)
538{
539	unsigned long flags;
540	long me = (long)arg;
541	struct reader_task *rt = &(reader_tasks[me]);
542	u64 start;
543	s64 duration;
544
545	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
546	WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
547	set_user_nice(current, MAX_NICE);
548	atomic_inc(&n_init);
549	if (holdoff)
550		schedule_timeout_interruptible(holdoff * HZ);
551repeat:
552	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
553
554	// Wait for signal that this reader can start.
555	wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
556			   torture_must_stop());
557
558	if (torture_must_stop())
559		goto end;
560
561	// Make sure that the CPU is affinitized appropriately during testing.
562	WARN_ON_ONCE(raw_smp_processor_id() != me);
563
564	WRITE_ONCE(rt->start_reader, 0);
565	if (!atomic_dec_return(&n_started))
566		while (atomic_read_acquire(&n_started))
567			cpu_relax();
568
569	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
570
571
572	// To reduce noise, do an initial cache-warming invocation, check
573	// in, and then keep warming until everyone has checked in.
574	rcu_scale_one_reader();
575	if (!atomic_dec_return(&n_warmedup))
576		while (atomic_read_acquire(&n_warmedup))
577			rcu_scale_one_reader();
578	// Also keep interrupts disabled.  This also has the effect
579	// of preventing entries into slow path for rcu_read_unlock().
580	local_irq_save(flags);
581	start = ktime_get_mono_fast_ns();
582
583	rcu_scale_one_reader();
584
585	duration = ktime_get_mono_fast_ns() - start;
586	local_irq_restore(flags);
587
588	rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
589	// To reduce runtime-skew noise, do maintain-load invocations until
590	// everyone is done.
591	if (!atomic_dec_return(&n_cooleddown))
592		while (atomic_read_acquire(&n_cooleddown))
593			rcu_scale_one_reader();
594
595	if (atomic_dec_and_test(&nreaders_exp))
596		wake_up(&main_wq);
597
598	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
599				me, exp_idx, atomic_read(&nreaders_exp));
600
601	if (!torture_must_stop())
602		goto repeat;
603end:
604	torture_kthread_stopping("ref_scale_reader");
605	return 0;
606}
607
608static void reset_readers(void)
609{
610	int i;
611	struct reader_task *rt;
612
613	for (i = 0; i < nreaders; i++) {
614		rt = &(reader_tasks[i]);
615
616		rt->last_duration_ns = 0;
617	}
618}
619
620// Print the results of each reader and return the sum of all their durations.
621static u64 process_durations(int n)
622{
623	int i;
624	struct reader_task *rt;
625	char buf1[64];
626	char *buf;
627	u64 sum = 0;
628
629	buf = kmalloc(800 + 64, GFP_KERNEL);
630	if (!buf)
631		return 0;
632	buf[0] = 0;
633	sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
634		exp_idx);
635
636	for (i = 0; i < n && !torture_must_stop(); i++) {
637		rt = &(reader_tasks[i]);
638		sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
639
640		if (i % 5 == 0)
641			strcat(buf, "\n");
642		if (strlen(buf) >= 800) {
643			pr_alert("%s", buf);
644			buf[0] = 0;
645		}
646		strcat(buf, buf1);
647
648		sum += rt->last_duration_ns;
649	}
650	pr_alert("%s\n", buf);
651
652	kfree(buf);
653	return sum;
654}
655
656// The main_func is the main orchestrator, it performs a bunch of
657// experiments.  For every experiment, it orders all the readers
658// involved to start and waits for them to finish the experiment. It
659// then reads their timestamps and starts the next experiment. Each
660// experiment progresses from 1 concurrent reader to N of them at which
661// point all the timestamps are printed.
662static int main_func(void *arg)
663{
664	int exp, r;
665	char buf1[64];
666	char *buf;
667	u64 *result_avg;
668
669	set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
670	set_user_nice(current, MAX_NICE);
671
672	VERBOSE_SCALEOUT("main_func task started");
673	result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
674	buf = kzalloc(800 + 64, GFP_KERNEL);
675	if (!result_avg || !buf) {
676		SCALEOUT_ERRSTRING("out of memory");
677		goto oom_exit;
678	}
679	if (holdoff)
680		schedule_timeout_interruptible(holdoff * HZ);
681
682	// Wait for all threads to start.
683	atomic_inc(&n_init);
684	while (atomic_read(&n_init) < nreaders + 1)
685		schedule_timeout_uninterruptible(1);
686
687	// Start exp readers up per experiment
688	for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
689		if (torture_must_stop())
690			goto end;
691
692		reset_readers();
693		atomic_set(&nreaders_exp, nreaders);
694		atomic_set(&n_started, nreaders);
695		atomic_set(&n_warmedup, nreaders);
696		atomic_set(&n_cooleddown, nreaders);
697
698		exp_idx = exp;
699
700		for (r = 0; r < nreaders; r++) {
701			smp_store_release(&reader_tasks[r].start_reader, 1);
702			wake_up(&reader_tasks[r].wq);
703		}
704
705		VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
706				nreaders);
707
708		wait_event(main_wq,
709			   !atomic_read(&nreaders_exp) || torture_must_stop());
710
711		VERBOSE_SCALEOUT("main_func: experiment ended");
712
713		if (torture_must_stop())
714			goto end;
715
716		result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
717	}
718
719	// Print the average of all experiments
720	SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
721
722	pr_alert("Runs\tTime(ns)\n");
723	for (exp = 0; exp < nruns; exp++) {
724		u64 avg;
725		u32 rem;
726
727		avg = div_u64_rem(result_avg[exp], 1000, &rem);
728		sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
729		strcat(buf, buf1);
730		if (strlen(buf) >= 800) {
731			pr_alert("%s", buf);
732			buf[0] = 0;
733		}
734	}
735
736	pr_alert("%s", buf);
737
738oom_exit:
739	// This will shutdown everything including us.
740	if (shutdown) {
741		shutdown_start = 1;
742		wake_up(&shutdown_wq);
743	}
744
745	// Wait for torture to stop us
746	while (!torture_must_stop())
747		schedule_timeout_uninterruptible(1);
748
749end:
750	torture_kthread_stopping("main_func");
751	kfree(result_avg);
752	kfree(buf);
753	return 0;
754}
755
756static void
757ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag)
758{
759	pr_alert("%s" SCALE_FLAG
760		 "--- %s:  verbose=%d shutdown=%d holdoff=%d loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
761		 verbose, shutdown, holdoff, loops, nreaders, nruns, readdelay);
762}
763
764static void
765ref_scale_cleanup(void)
766{
767	int i;
768
769	if (torture_cleanup_begin())
770		return;
771
772	if (!cur_ops) {
773		torture_cleanup_end();
774		return;
775	}
776
777	if (reader_tasks) {
778		for (i = 0; i < nreaders; i++)
779			torture_stop_kthread("ref_scale_reader",
780					     reader_tasks[i].task);
781	}
782	kfree(reader_tasks);
783
784	torture_stop_kthread("main_task", main_task);
785	kfree(main_task);
786
787	// Do scale-type-specific cleanup operations.
788	if (cur_ops->cleanup != NULL)
789		cur_ops->cleanup();
790
791	torture_cleanup_end();
792}
793
794// Shutdown kthread.  Just waits to be awakened, then shuts down system.
795static int
796ref_scale_shutdown(void *arg)
797{
798	wait_event(shutdown_wq, shutdown_start);
799
800	smp_mb(); // Wake before output.
801	ref_scale_cleanup();
802	kernel_power_off();
803
804	return -EINVAL;
805}
806
807static int __init
808ref_scale_init(void)
809{
810	long i;
811	int firsterr = 0;
812	static struct ref_scale_ops *scale_ops[] = {
813		&rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
814		&rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops,
 
815	};
816
817	if (!torture_init_begin(scale_type, verbose))
818		return -EBUSY;
819
820	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
821		cur_ops = scale_ops[i];
822		if (strcmp(scale_type, cur_ops->name) == 0)
823			break;
824	}
825	if (i == ARRAY_SIZE(scale_ops)) {
826		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
827		pr_alert("rcu-scale types:");
828		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
829			pr_cont(" %s", scale_ops[i]->name);
830		pr_cont("\n");
831		firsterr = -EINVAL;
832		cur_ops = NULL;
833		goto unwind;
834	}
835	if (cur_ops->init)
836		cur_ops->init();
 
 
 
837
838	ref_scale_print_module_parms(cur_ops, "Start of test");
839
840	// Shutdown task
841	if (shutdown) {
842		init_waitqueue_head(&shutdown_wq);
843		firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
844						  shutdown_task);
845		if (torture_init_error(firsterr))
846			goto unwind;
847		schedule_timeout_uninterruptible(1);
848	}
849
850	// Reader tasks (default to ~75% of online CPUs).
851	if (nreaders < 0)
852		nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
853	if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
854		loops = 1;
855	if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
856		nreaders = 1;
857	if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
858		nruns = 1;
859	reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
860			       GFP_KERNEL);
861	if (!reader_tasks) {
862		SCALEOUT_ERRSTRING("out of memory");
863		firsterr = -ENOMEM;
864		goto unwind;
865	}
866
867	VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
868
869	for (i = 0; i < nreaders; i++) {
 
870		firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
871						  reader_tasks[i].task);
872		if (torture_init_error(firsterr))
873			goto unwind;
874
875		init_waitqueue_head(&(reader_tasks[i].wq));
876	}
877
878	// Main Task
879	init_waitqueue_head(&main_wq);
880	firsterr = torture_create_kthread(main_func, NULL, main_task);
881	if (torture_init_error(firsterr))
882		goto unwind;
883
884	torture_init_end();
885	return 0;
886
887unwind:
888	torture_init_end();
889	ref_scale_cleanup();
890	if (shutdown) {
891		WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
892		kernel_power_off();
893	}
894	return firsterr;
895}
896
897module_init(ref_scale_init);
898module_exit(ref_scale_cleanup);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Scalability test comparing RCU vs other mechanisms
   4// for acquiring references on objects.
   5//
   6// Copyright (C) Google, 2020.
   7//
   8// Author: Joel Fernandes <joel@joelfernandes.org>
   9
  10#define pr_fmt(fmt) fmt
  11
  12#include <linux/atomic.h>
  13#include <linux/bitops.h>
  14#include <linux/completion.h>
  15#include <linux/cpu.h>
  16#include <linux/delay.h>
  17#include <linux/err.h>
  18#include <linux/init.h>
  19#include <linux/interrupt.h>
  20#include <linux/kthread.h>
  21#include <linux/kernel.h>
  22#include <linux/mm.h>
  23#include <linux/module.h>
  24#include <linux/moduleparam.h>
  25#include <linux/notifier.h>
  26#include <linux/percpu.h>
  27#include <linux/rcupdate.h>
  28#include <linux/rcupdate_trace.h>
  29#include <linux/reboot.h>
  30#include <linux/sched.h>
  31#include <linux/spinlock.h>
  32#include <linux/smp.h>
  33#include <linux/stat.h>
  34#include <linux/srcu.h>
  35#include <linux/slab.h>
  36#include <linux/torture.h>
  37#include <linux/types.h>
  38
  39#include "rcu.h"
  40
  41#define SCALE_FLAG "-ref-scale: "
  42
  43#define SCALEOUT(s, x...) \
  44	pr_alert("%s" SCALE_FLAG s, scale_type, ## x)
  45
  46#define VERBOSE_SCALEOUT(s, x...) \
  47	do { \
  48		if (verbose) \
  49			pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x); \
  50	} while (0)
  51
  52static atomic_t verbose_batch_ctr;
  53
  54#define VERBOSE_SCALEOUT_BATCH(s, x...)							\
  55do {											\
  56	if (verbose &&									\
  57	    (verbose_batched <= 0 ||							\
  58	     !(atomic_inc_return(&verbose_batch_ctr) % verbose_batched))) {		\
  59		schedule_timeout_uninterruptible(1);					\
  60		pr_alert("%s" SCALE_FLAG s "\n", scale_type, ## x);			\
  61	}										\
  62} while (0)
  63
  64#define SCALEOUT_ERRSTRING(s, x...) pr_alert("%s" SCALE_FLAG "!!! " s "\n", scale_type, ## x)
  65
  66MODULE_LICENSE("GPL");
  67MODULE_AUTHOR("Joel Fernandes (Google) <joel@joelfernandes.org>");
  68
  69static char *scale_type = "rcu";
  70module_param(scale_type, charp, 0444);
  71MODULE_PARM_DESC(scale_type, "Type of test (rcu, srcu, refcnt, rwsem, rwlock.");
  72
  73torture_param(int, verbose, 0, "Enable verbose debugging printk()s");
  74torture_param(int, verbose_batched, 0, "Batch verbose debugging printk()s");
  75
  76// Wait until there are multiple CPUs before starting test.
  77torture_param(int, holdoff, IS_BUILTIN(CONFIG_RCU_REF_SCALE_TEST) ? 10 : 0,
  78	      "Holdoff time before test start (s)");
  79// Number of typesafe_lookup structures, that is, the degree of concurrency.
  80torture_param(long, lookup_instances, 0, "Number of typesafe_lookup structures.");
  81// Number of loops per experiment, all readers execute operations concurrently.
  82torture_param(long, loops, 10000, "Number of loops per experiment.");
  83// Number of readers, with -1 defaulting to about 75% of the CPUs.
  84torture_param(int, nreaders, -1, "Number of readers, -1 for 75% of CPUs.");
  85// Number of runs.
  86torture_param(int, nruns, 30, "Number of experiments to run.");
  87// Reader delay in nanoseconds, 0 for no delay.
  88torture_param(int, readdelay, 0, "Read-side delay in nanoseconds.");
  89
  90#ifdef MODULE
  91# define REFSCALE_SHUTDOWN 0
  92#else
  93# define REFSCALE_SHUTDOWN 1
  94#endif
  95
  96torture_param(bool, shutdown, REFSCALE_SHUTDOWN,
  97	      "Shutdown at end of scalability tests.");
  98
  99struct reader_task {
 100	struct task_struct *task;
 101	int start_reader;
 102	wait_queue_head_t wq;
 103	u64 last_duration_ns;
 104};
 105
 106static struct task_struct *shutdown_task;
 107static wait_queue_head_t shutdown_wq;
 108
 109static struct task_struct *main_task;
 110static wait_queue_head_t main_wq;
 111static int shutdown_start;
 112
 113static struct reader_task *reader_tasks;
 114
 115// Number of readers that are part of the current experiment.
 116static atomic_t nreaders_exp;
 117
 118// Use to wait for all threads to start.
 119static atomic_t n_init;
 120static atomic_t n_started;
 121static atomic_t n_warmedup;
 122static atomic_t n_cooleddown;
 123
 124// Track which experiment is currently running.
 125static int exp_idx;
 126
 127// Operations vector for selecting different types of tests.
 128struct ref_scale_ops {
 129	bool (*init)(void);
 130	void (*cleanup)(void);
 131	void (*readsection)(const int nloops);
 132	void (*delaysection)(const int nloops, const int udl, const int ndl);
 133	const char *name;
 134};
 135
 136static struct ref_scale_ops *cur_ops;
 137
 138static void un_delay(const int udl, const int ndl)
 139{
 140	if (udl)
 141		udelay(udl);
 142	if (ndl)
 143		ndelay(ndl);
 144}
 145
 146static void ref_rcu_read_section(const int nloops)
 147{
 148	int i;
 149
 150	for (i = nloops; i >= 0; i--) {
 151		rcu_read_lock();
 152		rcu_read_unlock();
 153	}
 154}
 155
 156static void ref_rcu_delay_section(const int nloops, const int udl, const int ndl)
 157{
 158	int i;
 159
 160	for (i = nloops; i >= 0; i--) {
 161		rcu_read_lock();
 162		un_delay(udl, ndl);
 163		rcu_read_unlock();
 164	}
 165}
 166
 167static bool rcu_sync_scale_init(void)
 168{
 169	return true;
 170}
 171
 172static struct ref_scale_ops rcu_ops = {
 173	.init		= rcu_sync_scale_init,
 174	.readsection	= ref_rcu_read_section,
 175	.delaysection	= ref_rcu_delay_section,
 176	.name		= "rcu"
 177};
 178
 179// Definitions for SRCU ref scale testing.
 180DEFINE_STATIC_SRCU(srcu_refctl_scale);
 181static struct srcu_struct *srcu_ctlp = &srcu_refctl_scale;
 182
 183static void srcu_ref_scale_read_section(const int nloops)
 184{
 185	int i;
 186	int idx;
 187
 188	for (i = nloops; i >= 0; i--) {
 189		idx = srcu_read_lock(srcu_ctlp);
 190		srcu_read_unlock(srcu_ctlp, idx);
 191	}
 192}
 193
 194static void srcu_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
 195{
 196	int i;
 197	int idx;
 198
 199	for (i = nloops; i >= 0; i--) {
 200		idx = srcu_read_lock(srcu_ctlp);
 201		un_delay(udl, ndl);
 202		srcu_read_unlock(srcu_ctlp, idx);
 203	}
 204}
 205
 206static struct ref_scale_ops srcu_ops = {
 207	.init		= rcu_sync_scale_init,
 208	.readsection	= srcu_ref_scale_read_section,
 209	.delaysection	= srcu_ref_scale_delay_section,
 210	.name		= "srcu"
 211};
 212
 213#ifdef CONFIG_TASKS_RCU
 214
 215// Definitions for RCU Tasks ref scale testing: Empty read markers.
 216// These definitions also work for RCU Rude readers.
 217static void rcu_tasks_ref_scale_read_section(const int nloops)
 218{
 219	int i;
 220
 221	for (i = nloops; i >= 0; i--)
 222		continue;
 223}
 224
 225static void rcu_tasks_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
 226{
 227	int i;
 228
 229	for (i = nloops; i >= 0; i--)
 230		un_delay(udl, ndl);
 231}
 232
 233static struct ref_scale_ops rcu_tasks_ops = {
 234	.init		= rcu_sync_scale_init,
 235	.readsection	= rcu_tasks_ref_scale_read_section,
 236	.delaysection	= rcu_tasks_ref_scale_delay_section,
 237	.name		= "rcu-tasks"
 238};
 239
 240#define RCU_TASKS_OPS &rcu_tasks_ops,
 241
 242#else // #ifdef CONFIG_TASKS_RCU
 243
 244#define RCU_TASKS_OPS
 245
 246#endif // #else // #ifdef CONFIG_TASKS_RCU
 247
 248#ifdef CONFIG_TASKS_TRACE_RCU
 249
 250// Definitions for RCU Tasks Trace ref scale testing.
 251static void rcu_trace_ref_scale_read_section(const int nloops)
 252{
 253	int i;
 254
 255	for (i = nloops; i >= 0; i--) {
 256		rcu_read_lock_trace();
 257		rcu_read_unlock_trace();
 258	}
 259}
 260
 261static void rcu_trace_ref_scale_delay_section(const int nloops, const int udl, const int ndl)
 262{
 263	int i;
 264
 265	for (i = nloops; i >= 0; i--) {
 266		rcu_read_lock_trace();
 267		un_delay(udl, ndl);
 268		rcu_read_unlock_trace();
 269	}
 270}
 271
 272static struct ref_scale_ops rcu_trace_ops = {
 273	.init		= rcu_sync_scale_init,
 274	.readsection	= rcu_trace_ref_scale_read_section,
 275	.delaysection	= rcu_trace_ref_scale_delay_section,
 276	.name		= "rcu-trace"
 277};
 278
 279#define RCU_TRACE_OPS &rcu_trace_ops,
 280
 281#else // #ifdef CONFIG_TASKS_TRACE_RCU
 282
 283#define RCU_TRACE_OPS
 284
 285#endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
 286
 287// Definitions for reference count
 288static atomic_t refcnt;
 289
 290static void ref_refcnt_section(const int nloops)
 291{
 292	int i;
 293
 294	for (i = nloops; i >= 0; i--) {
 295		atomic_inc(&refcnt);
 296		atomic_dec(&refcnt);
 297	}
 298}
 299
 300static void ref_refcnt_delay_section(const int nloops, const int udl, const int ndl)
 301{
 302	int i;
 303
 304	for (i = nloops; i >= 0; i--) {
 305		atomic_inc(&refcnt);
 306		un_delay(udl, ndl);
 307		atomic_dec(&refcnt);
 308	}
 309}
 310
 311static struct ref_scale_ops refcnt_ops = {
 312	.init		= rcu_sync_scale_init,
 313	.readsection	= ref_refcnt_section,
 314	.delaysection	= ref_refcnt_delay_section,
 315	.name		= "refcnt"
 316};
 317
 318// Definitions for rwlock
 319static rwlock_t test_rwlock;
 320
 321static bool ref_rwlock_init(void)
 322{
 323	rwlock_init(&test_rwlock);
 324	return true;
 325}
 326
 327static void ref_rwlock_section(const int nloops)
 328{
 329	int i;
 330
 331	for (i = nloops; i >= 0; i--) {
 332		read_lock(&test_rwlock);
 333		read_unlock(&test_rwlock);
 334	}
 335}
 336
 337static void ref_rwlock_delay_section(const int nloops, const int udl, const int ndl)
 338{
 339	int i;
 340
 341	for (i = nloops; i >= 0; i--) {
 342		read_lock(&test_rwlock);
 343		un_delay(udl, ndl);
 344		read_unlock(&test_rwlock);
 345	}
 346}
 347
 348static struct ref_scale_ops rwlock_ops = {
 349	.init		= ref_rwlock_init,
 350	.readsection	= ref_rwlock_section,
 351	.delaysection	= ref_rwlock_delay_section,
 352	.name		= "rwlock"
 353};
 354
 355// Definitions for rwsem
 356static struct rw_semaphore test_rwsem;
 357
 358static bool ref_rwsem_init(void)
 359{
 360	init_rwsem(&test_rwsem);
 361	return true;
 362}
 363
 364static void ref_rwsem_section(const int nloops)
 365{
 366	int i;
 367
 368	for (i = nloops; i >= 0; i--) {
 369		down_read(&test_rwsem);
 370		up_read(&test_rwsem);
 371	}
 372}
 373
 374static void ref_rwsem_delay_section(const int nloops, const int udl, const int ndl)
 375{
 376	int i;
 377
 378	for (i = nloops; i >= 0; i--) {
 379		down_read(&test_rwsem);
 380		un_delay(udl, ndl);
 381		up_read(&test_rwsem);
 382	}
 383}
 384
 385static struct ref_scale_ops rwsem_ops = {
 386	.init		= ref_rwsem_init,
 387	.readsection	= ref_rwsem_section,
 388	.delaysection	= ref_rwsem_delay_section,
 389	.name		= "rwsem"
 390};
 391
 392// Definitions for global spinlock
 393static DEFINE_RAW_SPINLOCK(test_lock);
 394
 395static void ref_lock_section(const int nloops)
 396{
 397	int i;
 398
 399	preempt_disable();
 400	for (i = nloops; i >= 0; i--) {
 401		raw_spin_lock(&test_lock);
 402		raw_spin_unlock(&test_lock);
 403	}
 404	preempt_enable();
 405}
 406
 407static void ref_lock_delay_section(const int nloops, const int udl, const int ndl)
 408{
 409	int i;
 410
 411	preempt_disable();
 412	for (i = nloops; i >= 0; i--) {
 413		raw_spin_lock(&test_lock);
 414		un_delay(udl, ndl);
 415		raw_spin_unlock(&test_lock);
 416	}
 417	preempt_enable();
 418}
 419
 420static struct ref_scale_ops lock_ops = {
 421	.readsection	= ref_lock_section,
 422	.delaysection	= ref_lock_delay_section,
 423	.name		= "lock"
 424};
 425
 426// Definitions for global irq-save spinlock
 427
 428static void ref_lock_irq_section(const int nloops)
 429{
 430	unsigned long flags;
 431	int i;
 432
 433	preempt_disable();
 434	for (i = nloops; i >= 0; i--) {
 435		raw_spin_lock_irqsave(&test_lock, flags);
 436		raw_spin_unlock_irqrestore(&test_lock, flags);
 437	}
 438	preempt_enable();
 439}
 440
 441static void ref_lock_irq_delay_section(const int nloops, const int udl, const int ndl)
 442{
 443	unsigned long flags;
 444	int i;
 445
 446	preempt_disable();
 447	for (i = nloops; i >= 0; i--) {
 448		raw_spin_lock_irqsave(&test_lock, flags);
 449		un_delay(udl, ndl);
 450		raw_spin_unlock_irqrestore(&test_lock, flags);
 451	}
 452	preempt_enable();
 453}
 454
 455static struct ref_scale_ops lock_irq_ops = {
 456	.readsection	= ref_lock_irq_section,
 457	.delaysection	= ref_lock_irq_delay_section,
 458	.name		= "lock-irq"
 459};
 460
 461// Definitions acquire-release.
 462static DEFINE_PER_CPU(unsigned long, test_acqrel);
 463
 464static void ref_acqrel_section(const int nloops)
 465{
 466	unsigned long x;
 467	int i;
 468
 469	preempt_disable();
 470	for (i = nloops; i >= 0; i--) {
 471		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
 472		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
 473	}
 474	preempt_enable();
 475}
 476
 477static void ref_acqrel_delay_section(const int nloops, const int udl, const int ndl)
 478{
 479	unsigned long x;
 480	int i;
 481
 482	preempt_disable();
 483	for (i = nloops; i >= 0; i--) {
 484		x = smp_load_acquire(this_cpu_ptr(&test_acqrel));
 485		un_delay(udl, ndl);
 486		smp_store_release(this_cpu_ptr(&test_acqrel), x + 1);
 487	}
 488	preempt_enable();
 489}
 490
 491static struct ref_scale_ops acqrel_ops = {
 492	.readsection	= ref_acqrel_section,
 493	.delaysection	= ref_acqrel_delay_section,
 494	.name		= "acqrel"
 495};
 496
 497static volatile u64 stopopts;
 498
 499static void ref_clock_section(const int nloops)
 500{
 501	u64 x = 0;
 502	int i;
 503
 504	preempt_disable();
 505	for (i = nloops; i >= 0; i--)
 506		x += ktime_get_real_fast_ns();
 507	preempt_enable();
 508	stopopts = x;
 509}
 510
 511static void ref_clock_delay_section(const int nloops, const int udl, const int ndl)
 512{
 513	u64 x = 0;
 514	int i;
 515
 516	preempt_disable();
 517	for (i = nloops; i >= 0; i--) {
 518		x += ktime_get_real_fast_ns();
 519		un_delay(udl, ndl);
 520	}
 521	preempt_enable();
 522	stopopts = x;
 523}
 524
 525static struct ref_scale_ops clock_ops = {
 526	.readsection	= ref_clock_section,
 527	.delaysection	= ref_clock_delay_section,
 528	.name		= "clock"
 529};
 530
 531static void ref_jiffies_section(const int nloops)
 532{
 533	u64 x = 0;
 534	int i;
 535
 536	preempt_disable();
 537	for (i = nloops; i >= 0; i--)
 538		x += jiffies;
 539	preempt_enable();
 540	stopopts = x;
 541}
 542
 543static void ref_jiffies_delay_section(const int nloops, const int udl, const int ndl)
 544{
 545	u64 x = 0;
 546	int i;
 547
 548	preempt_disable();
 549	for (i = nloops; i >= 0; i--) {
 550		x += jiffies;
 551		un_delay(udl, ndl);
 552	}
 553	preempt_enable();
 554	stopopts = x;
 555}
 556
 557static struct ref_scale_ops jiffies_ops = {
 558	.readsection	= ref_jiffies_section,
 559	.delaysection	= ref_jiffies_delay_section,
 560	.name		= "jiffies"
 561};
 562
 563////////////////////////////////////////////////////////////////////////
 564//
 565// Methods leveraging SLAB_TYPESAFE_BY_RCU.
 566//
 567
 568// Item to look up in a typesafe manner.  Array of pointers to these.
 569struct refscale_typesafe {
 570	atomic_t rts_refctr;  // Used by all flavors
 571	spinlock_t rts_lock;
 572	seqlock_t rts_seqlock;
 573	unsigned int a;
 574	unsigned int b;
 575};
 576
 577static struct kmem_cache *typesafe_kmem_cachep;
 578static struct refscale_typesafe **rtsarray;
 579static long rtsarray_size;
 580static DEFINE_TORTURE_RANDOM_PERCPU(refscale_rand);
 581static bool (*rts_acquire)(struct refscale_typesafe *rtsp, unsigned int *start);
 582static bool (*rts_release)(struct refscale_typesafe *rtsp, unsigned int start);
 583
 584// Conditionally acquire an explicit in-structure reference count.
 585static bool typesafe_ref_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
 586{
 587	return atomic_inc_not_zero(&rtsp->rts_refctr);
 588}
 589
 590// Unconditionally release an explicit in-structure reference count.
 591static bool typesafe_ref_release(struct refscale_typesafe *rtsp, unsigned int start)
 592{
 593	if (!atomic_dec_return(&rtsp->rts_refctr)) {
 594		WRITE_ONCE(rtsp->a, rtsp->a + 1);
 595		kmem_cache_free(typesafe_kmem_cachep, rtsp);
 596	}
 597	return true;
 598}
 599
 600// Unconditionally acquire an explicit in-structure spinlock.
 601static bool typesafe_lock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
 602{
 603	spin_lock(&rtsp->rts_lock);
 604	return true;
 605}
 606
 607// Unconditionally release an explicit in-structure spinlock.
 608static bool typesafe_lock_release(struct refscale_typesafe *rtsp, unsigned int start)
 609{
 610	spin_unlock(&rtsp->rts_lock);
 611	return true;
 612}
 613
 614// Unconditionally acquire an explicit in-structure sequence lock.
 615static bool typesafe_seqlock_acquire(struct refscale_typesafe *rtsp, unsigned int *start)
 616{
 617	*start = read_seqbegin(&rtsp->rts_seqlock);
 618	return true;
 619}
 620
 621// Conditionally release an explicit in-structure sequence lock.  Return
 622// true if this release was successful, that is, if no retry is required.
 623static bool typesafe_seqlock_release(struct refscale_typesafe *rtsp, unsigned int start)
 624{
 625	return !read_seqretry(&rtsp->rts_seqlock, start);
 626}
 627
 628// Do a read-side critical section with the specified delay in
 629// microseconds and nanoseconds inserted so as to increase probability
 630// of failure.
 631static void typesafe_delay_section(const int nloops, const int udl, const int ndl)
 632{
 633	unsigned int a;
 634	unsigned int b;
 635	int i;
 636	long idx;
 637	struct refscale_typesafe *rtsp;
 638	unsigned int start;
 639
 640	for (i = nloops; i >= 0; i--) {
 641		preempt_disable();
 642		idx = torture_random(this_cpu_ptr(&refscale_rand)) % rtsarray_size;
 643		preempt_enable();
 644retry:
 645		rcu_read_lock();
 646		rtsp = rcu_dereference(rtsarray[idx]);
 647		a = READ_ONCE(rtsp->a);
 648		if (!rts_acquire(rtsp, &start)) {
 649			rcu_read_unlock();
 650			goto retry;
 651		}
 652		if (a != READ_ONCE(rtsp->a)) {
 653			(void)rts_release(rtsp, start);
 654			rcu_read_unlock();
 655			goto retry;
 656		}
 657		un_delay(udl, ndl);
 658		b = READ_ONCE(rtsp->a);
 659		// Remember, seqlock read-side release can fail.
 660		if (!rts_release(rtsp, start)) {
 661			rcu_read_unlock();
 662			goto retry;
 663		}
 664		WARN_ONCE(a != b, "Re-read of ->a changed from %u to %u.\n", a, b);
 665		b = rtsp->b;
 666		rcu_read_unlock();
 667		WARN_ON_ONCE(a * a != b);
 668	}
 669}
 670
 671// Because the acquisition and release methods are expensive, there
 672// is no point in optimizing away the un_delay() function's two checks.
 673// Thus simply define typesafe_read_section() as a simple wrapper around
 674// typesafe_delay_section().
 675static void typesafe_read_section(const int nloops)
 676{
 677	typesafe_delay_section(nloops, 0, 0);
 678}
 679
 680// Allocate and initialize one refscale_typesafe structure.
 681static struct refscale_typesafe *typesafe_alloc_one(void)
 682{
 683	struct refscale_typesafe *rtsp;
 684
 685	rtsp = kmem_cache_alloc(typesafe_kmem_cachep, GFP_KERNEL);
 686	if (!rtsp)
 687		return NULL;
 688	atomic_set(&rtsp->rts_refctr, 1);
 689	WRITE_ONCE(rtsp->a, rtsp->a + 1);
 690	WRITE_ONCE(rtsp->b, rtsp->a * rtsp->a);
 691	return rtsp;
 692}
 693
 694// Slab-allocator constructor for refscale_typesafe structures created
 695// out of a new slab of system memory.
 696static void refscale_typesafe_ctor(void *rtsp_in)
 697{
 698	struct refscale_typesafe *rtsp = rtsp_in;
 699
 700	spin_lock_init(&rtsp->rts_lock);
 701	seqlock_init(&rtsp->rts_seqlock);
 702	preempt_disable();
 703	rtsp->a = torture_random(this_cpu_ptr(&refscale_rand));
 704	preempt_enable();
 705}
 706
 707static struct ref_scale_ops typesafe_ref_ops;
 708static struct ref_scale_ops typesafe_lock_ops;
 709static struct ref_scale_ops typesafe_seqlock_ops;
 710
 711// Initialize for a typesafe test.
 712static bool typesafe_init(void)
 713{
 714	long idx;
 715	long si = lookup_instances;
 716
 717	typesafe_kmem_cachep = kmem_cache_create("refscale_typesafe",
 718						 sizeof(struct refscale_typesafe), sizeof(void *),
 719						 SLAB_TYPESAFE_BY_RCU, refscale_typesafe_ctor);
 720	if (!typesafe_kmem_cachep)
 721		return false;
 722	if (si < 0)
 723		si = -si * nr_cpu_ids;
 724	else if (si == 0)
 725		si = nr_cpu_ids;
 726	rtsarray_size = si;
 727	rtsarray = kcalloc(si, sizeof(*rtsarray), GFP_KERNEL);
 728	if (!rtsarray)
 729		return false;
 730	for (idx = 0; idx < rtsarray_size; idx++) {
 731		rtsarray[idx] = typesafe_alloc_one();
 732		if (!rtsarray[idx])
 733			return false;
 734	}
 735	if (cur_ops == &typesafe_ref_ops) {
 736		rts_acquire = typesafe_ref_acquire;
 737		rts_release = typesafe_ref_release;
 738	} else if (cur_ops == &typesafe_lock_ops) {
 739		rts_acquire = typesafe_lock_acquire;
 740		rts_release = typesafe_lock_release;
 741	} else if (cur_ops == &typesafe_seqlock_ops) {
 742		rts_acquire = typesafe_seqlock_acquire;
 743		rts_release = typesafe_seqlock_release;
 744	} else {
 745		WARN_ON_ONCE(1);
 746		return false;
 747	}
 748	return true;
 749}
 750
 751// Clean up after a typesafe test.
 752static void typesafe_cleanup(void)
 753{
 754	long idx;
 755
 756	if (rtsarray) {
 757		for (idx = 0; idx < rtsarray_size; idx++)
 758			kmem_cache_free(typesafe_kmem_cachep, rtsarray[idx]);
 759		kfree(rtsarray);
 760		rtsarray = NULL;
 761		rtsarray_size = 0;
 762	}
 763	kmem_cache_destroy(typesafe_kmem_cachep);
 764	typesafe_kmem_cachep = NULL;
 765	rts_acquire = NULL;
 766	rts_release = NULL;
 767}
 768
 769// The typesafe_init() function distinguishes these structures by address.
 770static struct ref_scale_ops typesafe_ref_ops = {
 771	.init		= typesafe_init,
 772	.cleanup	= typesafe_cleanup,
 773	.readsection	= typesafe_read_section,
 774	.delaysection	= typesafe_delay_section,
 775	.name		= "typesafe_ref"
 776};
 777
 778static struct ref_scale_ops typesafe_lock_ops = {
 779	.init		= typesafe_init,
 780	.cleanup	= typesafe_cleanup,
 781	.readsection	= typesafe_read_section,
 782	.delaysection	= typesafe_delay_section,
 783	.name		= "typesafe_lock"
 784};
 785
 786static struct ref_scale_ops typesafe_seqlock_ops = {
 787	.init		= typesafe_init,
 788	.cleanup	= typesafe_cleanup,
 789	.readsection	= typesafe_read_section,
 790	.delaysection	= typesafe_delay_section,
 791	.name		= "typesafe_seqlock"
 792};
 793
 794static void rcu_scale_one_reader(void)
 795{
 796	if (readdelay <= 0)
 797		cur_ops->readsection(loops);
 798	else
 799		cur_ops->delaysection(loops, readdelay / 1000, readdelay % 1000);
 800}
 801
 802// Reader kthread.  Repeatedly does empty RCU read-side
 803// critical section, minimizing update-side interference.
 804static int
 805ref_scale_reader(void *arg)
 806{
 807	unsigned long flags;
 808	long me = (long)arg;
 809	struct reader_task *rt = &(reader_tasks[me]);
 810	u64 start;
 811	s64 duration;
 812
 813	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: task started", me);
 814	WARN_ON_ONCE(set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids)));
 815	set_user_nice(current, MAX_NICE);
 816	atomic_inc(&n_init);
 817	if (holdoff)
 818		schedule_timeout_interruptible(holdoff * HZ);
 819repeat:
 820	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: waiting to start next experiment on cpu %d", me, raw_smp_processor_id());
 821
 822	// Wait for signal that this reader can start.
 823	wait_event(rt->wq, (atomic_read(&nreaders_exp) && smp_load_acquire(&rt->start_reader)) ||
 824			   torture_must_stop());
 825
 826	if (torture_must_stop())
 827		goto end;
 828
 829	// Make sure that the CPU is affinitized appropriately during testing.
 830	WARN_ON_ONCE(raw_smp_processor_id() != me);
 831
 832	WRITE_ONCE(rt->start_reader, 0);
 833	if (!atomic_dec_return(&n_started))
 834		while (atomic_read_acquire(&n_started))
 835			cpu_relax();
 836
 837	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d started", me, exp_idx);
 838
 839
 840	// To reduce noise, do an initial cache-warming invocation, check
 841	// in, and then keep warming until everyone has checked in.
 842	rcu_scale_one_reader();
 843	if (!atomic_dec_return(&n_warmedup))
 844		while (atomic_read_acquire(&n_warmedup))
 845			rcu_scale_one_reader();
 846	// Also keep interrupts disabled.  This also has the effect
 847	// of preventing entries into slow path for rcu_read_unlock().
 848	local_irq_save(flags);
 849	start = ktime_get_mono_fast_ns();
 850
 851	rcu_scale_one_reader();
 852
 853	duration = ktime_get_mono_fast_ns() - start;
 854	local_irq_restore(flags);
 855
 856	rt->last_duration_ns = WARN_ON_ONCE(duration < 0) ? 0 : duration;
 857	// To reduce runtime-skew noise, do maintain-load invocations until
 858	// everyone is done.
 859	if (!atomic_dec_return(&n_cooleddown))
 860		while (atomic_read_acquire(&n_cooleddown))
 861			rcu_scale_one_reader();
 862
 863	if (atomic_dec_and_test(&nreaders_exp))
 864		wake_up(&main_wq);
 865
 866	VERBOSE_SCALEOUT_BATCH("ref_scale_reader %ld: experiment %d ended, (readers remaining=%d)",
 867				me, exp_idx, atomic_read(&nreaders_exp));
 868
 869	if (!torture_must_stop())
 870		goto repeat;
 871end:
 872	torture_kthread_stopping("ref_scale_reader");
 873	return 0;
 874}
 875
 876static void reset_readers(void)
 877{
 878	int i;
 879	struct reader_task *rt;
 880
 881	for (i = 0; i < nreaders; i++) {
 882		rt = &(reader_tasks[i]);
 883
 884		rt->last_duration_ns = 0;
 885	}
 886}
 887
 888// Print the results of each reader and return the sum of all their durations.
 889static u64 process_durations(int n)
 890{
 891	int i;
 892	struct reader_task *rt;
 893	char buf1[64];
 894	char *buf;
 895	u64 sum = 0;
 896
 897	buf = kmalloc(800 + 64, GFP_KERNEL);
 898	if (!buf)
 899		return 0;
 900	buf[0] = 0;
 901	sprintf(buf, "Experiment #%d (Format: <THREAD-NUM>:<Total loop time in ns>)",
 902		exp_idx);
 903
 904	for (i = 0; i < n && !torture_must_stop(); i++) {
 905		rt = &(reader_tasks[i]);
 906		sprintf(buf1, "%d: %llu\t", i, rt->last_duration_ns);
 907
 908		if (i % 5 == 0)
 909			strcat(buf, "\n");
 910		if (strlen(buf) >= 800) {
 911			pr_alert("%s", buf);
 912			buf[0] = 0;
 913		}
 914		strcat(buf, buf1);
 915
 916		sum += rt->last_duration_ns;
 917	}
 918	pr_alert("%s\n", buf);
 919
 920	kfree(buf);
 921	return sum;
 922}
 923
 924// The main_func is the main orchestrator, it performs a bunch of
 925// experiments.  For every experiment, it orders all the readers
 926// involved to start and waits for them to finish the experiment. It
 927// then reads their timestamps and starts the next experiment. Each
 928// experiment progresses from 1 concurrent reader to N of them at which
 929// point all the timestamps are printed.
 930static int main_func(void *arg)
 931{
 932	int exp, r;
 933	char buf1[64];
 934	char *buf;
 935	u64 *result_avg;
 936
 937	set_cpus_allowed_ptr(current, cpumask_of(nreaders % nr_cpu_ids));
 938	set_user_nice(current, MAX_NICE);
 939
 940	VERBOSE_SCALEOUT("main_func task started");
 941	result_avg = kzalloc(nruns * sizeof(*result_avg), GFP_KERNEL);
 942	buf = kzalloc(800 + 64, GFP_KERNEL);
 943	if (!result_avg || !buf) {
 944		SCALEOUT_ERRSTRING("out of memory");
 945		goto oom_exit;
 946	}
 947	if (holdoff)
 948		schedule_timeout_interruptible(holdoff * HZ);
 949
 950	// Wait for all threads to start.
 951	atomic_inc(&n_init);
 952	while (atomic_read(&n_init) < nreaders + 1)
 953		schedule_timeout_uninterruptible(1);
 954
 955	// Start exp readers up per experiment
 956	for (exp = 0; exp < nruns && !torture_must_stop(); exp++) {
 957		if (torture_must_stop())
 958			goto end;
 959
 960		reset_readers();
 961		atomic_set(&nreaders_exp, nreaders);
 962		atomic_set(&n_started, nreaders);
 963		atomic_set(&n_warmedup, nreaders);
 964		atomic_set(&n_cooleddown, nreaders);
 965
 966		exp_idx = exp;
 967
 968		for (r = 0; r < nreaders; r++) {
 969			smp_store_release(&reader_tasks[r].start_reader, 1);
 970			wake_up(&reader_tasks[r].wq);
 971		}
 972
 973		VERBOSE_SCALEOUT("main_func: experiment started, waiting for %d readers",
 974				nreaders);
 975
 976		wait_event(main_wq,
 977			   !atomic_read(&nreaders_exp) || torture_must_stop());
 978
 979		VERBOSE_SCALEOUT("main_func: experiment ended");
 980
 981		if (torture_must_stop())
 982			goto end;
 983
 984		result_avg[exp] = div_u64(1000 * process_durations(nreaders), nreaders * loops);
 985	}
 986
 987	// Print the average of all experiments
 988	SCALEOUT("END OF TEST. Calculating average duration per loop (nanoseconds)...\n");
 989
 990	pr_alert("Runs\tTime(ns)\n");
 991	for (exp = 0; exp < nruns; exp++) {
 992		u64 avg;
 993		u32 rem;
 994
 995		avg = div_u64_rem(result_avg[exp], 1000, &rem);
 996		sprintf(buf1, "%d\t%llu.%03u\n", exp + 1, avg, rem);
 997		strcat(buf, buf1);
 998		if (strlen(buf) >= 800) {
 999			pr_alert("%s", buf);
1000			buf[0] = 0;
1001		}
1002	}
1003
1004	pr_alert("%s", buf);
1005
1006oom_exit:
1007	// This will shutdown everything including us.
1008	if (shutdown) {
1009		shutdown_start = 1;
1010		wake_up(&shutdown_wq);
1011	}
1012
1013	// Wait for torture to stop us
1014	while (!torture_must_stop())
1015		schedule_timeout_uninterruptible(1);
1016
1017end:
1018	torture_kthread_stopping("main_func");
1019	kfree(result_avg);
1020	kfree(buf);
1021	return 0;
1022}
1023
1024static void
1025ref_scale_print_module_parms(struct ref_scale_ops *cur_ops, const char *tag)
1026{
1027	pr_alert("%s" SCALE_FLAG
1028		 "--- %s:  verbose=%d verbose_batched=%d shutdown=%d holdoff=%d lookup_instances=%ld loops=%ld nreaders=%d nruns=%d readdelay=%d\n", scale_type, tag,
1029		 verbose, verbose_batched, shutdown, holdoff, lookup_instances, loops, nreaders, nruns, readdelay);
1030}
1031
1032static void
1033ref_scale_cleanup(void)
1034{
1035	int i;
1036
1037	if (torture_cleanup_begin())
1038		return;
1039
1040	if (!cur_ops) {
1041		torture_cleanup_end();
1042		return;
1043	}
1044
1045	if (reader_tasks) {
1046		for (i = 0; i < nreaders; i++)
1047			torture_stop_kthread("ref_scale_reader",
1048					     reader_tasks[i].task);
1049	}
1050	kfree(reader_tasks);
1051
1052	torture_stop_kthread("main_task", main_task);
1053	kfree(main_task);
1054
1055	// Do scale-type-specific cleanup operations.
1056	if (cur_ops->cleanup != NULL)
1057		cur_ops->cleanup();
1058
1059	torture_cleanup_end();
1060}
1061
1062// Shutdown kthread.  Just waits to be awakened, then shuts down system.
1063static int
1064ref_scale_shutdown(void *arg)
1065{
1066	wait_event_idle(shutdown_wq, shutdown_start);
1067
1068	smp_mb(); // Wake before output.
1069	ref_scale_cleanup();
1070	kernel_power_off();
1071
1072	return -EINVAL;
1073}
1074
1075static int __init
1076ref_scale_init(void)
1077{
1078	long i;
1079	int firsterr = 0;
1080	static struct ref_scale_ops *scale_ops[] = {
1081		&rcu_ops, &srcu_ops, RCU_TRACE_OPS RCU_TASKS_OPS &refcnt_ops, &rwlock_ops,
1082		&rwsem_ops, &lock_ops, &lock_irq_ops, &acqrel_ops, &clock_ops, &jiffies_ops,
1083		&typesafe_ref_ops, &typesafe_lock_ops, &typesafe_seqlock_ops,
1084	};
1085
1086	if (!torture_init_begin(scale_type, verbose))
1087		return -EBUSY;
1088
1089	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1090		cur_ops = scale_ops[i];
1091		if (strcmp(scale_type, cur_ops->name) == 0)
1092			break;
1093	}
1094	if (i == ARRAY_SIZE(scale_ops)) {
1095		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1096		pr_alert("rcu-scale types:");
1097		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1098			pr_cont(" %s", scale_ops[i]->name);
1099		pr_cont("\n");
1100		firsterr = -EINVAL;
1101		cur_ops = NULL;
1102		goto unwind;
1103	}
1104	if (cur_ops->init)
1105		if (!cur_ops->init()) {
1106			firsterr = -EUCLEAN;
1107			goto unwind;
1108		}
1109
1110	ref_scale_print_module_parms(cur_ops, "Start of test");
1111
1112	// Shutdown task
1113	if (shutdown) {
1114		init_waitqueue_head(&shutdown_wq);
1115		firsterr = torture_create_kthread(ref_scale_shutdown, NULL,
1116						  shutdown_task);
1117		if (torture_init_error(firsterr))
1118			goto unwind;
1119		schedule_timeout_uninterruptible(1);
1120	}
1121
1122	// Reader tasks (default to ~75% of online CPUs).
1123	if (nreaders < 0)
1124		nreaders = (num_online_cpus() >> 1) + (num_online_cpus() >> 2);
1125	if (WARN_ONCE(loops <= 0, "%s: loops = %ld, adjusted to 1\n", __func__, loops))
1126		loops = 1;
1127	if (WARN_ONCE(nreaders <= 0, "%s: nreaders = %d, adjusted to 1\n", __func__, nreaders))
1128		nreaders = 1;
1129	if (WARN_ONCE(nruns <= 0, "%s: nruns = %d, adjusted to 1\n", __func__, nruns))
1130		nruns = 1;
1131	reader_tasks = kcalloc(nreaders, sizeof(reader_tasks[0]),
1132			       GFP_KERNEL);
1133	if (!reader_tasks) {
1134		SCALEOUT_ERRSTRING("out of memory");
1135		firsterr = -ENOMEM;
1136		goto unwind;
1137	}
1138
1139	VERBOSE_SCALEOUT("Starting %d reader threads", nreaders);
1140
1141	for (i = 0; i < nreaders; i++) {
1142		init_waitqueue_head(&reader_tasks[i].wq);
1143		firsterr = torture_create_kthread(ref_scale_reader, (void *)i,
1144						  reader_tasks[i].task);
1145		if (torture_init_error(firsterr))
1146			goto unwind;
 
 
1147	}
1148
1149	// Main Task
1150	init_waitqueue_head(&main_wq);
1151	firsterr = torture_create_kthread(main_func, NULL, main_task);
1152	if (torture_init_error(firsterr))
1153		goto unwind;
1154
1155	torture_init_end();
1156	return 0;
1157
1158unwind:
1159	torture_init_end();
1160	ref_scale_cleanup();
1161	if (shutdown) {
1162		WARN_ON(!IS_MODULE(CONFIG_RCU_REF_SCALE_TEST));
1163		kernel_power_off();
1164	}
1165	return firsterr;
1166}
1167
1168module_init(ref_scale_init);
1169module_exit(ref_scale_cleanup);