Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * transition.c - Kernel Live Patching transition functions
  4 *
  5 * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/cpu.h>
 11#include <linux/stacktrace.h>
 
 12#include "core.h"
 13#include "patch.h"
 14#include "transition.h"
 15
 16#define MAX_STACK_ENTRIES  100
 
 
 17#define STACK_ERR_BUF_SIZE 128
 18
 19#define SIGNALS_TIMEOUT 15
 20
 21struct klp_patch *klp_transition_patch;
 22
 23static int klp_target_state = KLP_UNDEFINED;
 24
 25static unsigned int klp_signals_cnt;
 26
 27/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28 * This work can be performed periodically to finish patching or unpatching any
 29 * "straggler" tasks which failed to transition in the first attempt.
 30 */
 31static void klp_transition_work_fn(struct work_struct *work)
 32{
 33	mutex_lock(&klp_mutex);
 34
 35	if (klp_transition_patch)
 36		klp_try_complete_transition();
 37
 38	mutex_unlock(&klp_mutex);
 39}
 40static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
 41
 42/*
 43 * This function is just a stub to implement a hard force
 44 * of synchronize_rcu(). This requires synchronizing
 45 * tasks even in userspace and idle.
 46 */
 47static void klp_sync(struct work_struct *work)
 48{
 49}
 50
 51/*
 52 * We allow to patch also functions where RCU is not watching,
 53 * e.g. before user_exit(). We can not rely on the RCU infrastructure
 54 * to do the synchronization. Instead hard force the sched synchronization.
 55 *
 56 * This approach allows to use RCU functions for manipulating func_stack
 57 * safely.
 58 */
 59static void klp_synchronize_transition(void)
 60{
 61	schedule_on_each_cpu(klp_sync);
 62}
 63
 64/*
 65 * The transition to the target patch state is complete.  Clean up the data
 66 * structures.
 67 */
 68static void klp_complete_transition(void)
 69{
 70	struct klp_object *obj;
 71	struct klp_func *func;
 72	struct task_struct *g, *task;
 73	unsigned int cpu;
 74
 75	pr_debug("'%s': completing %s transition\n",
 76		 klp_transition_patch->mod->name,
 77		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
 78
 79	if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
 80		klp_unpatch_replaced_patches(klp_transition_patch);
 81		klp_discard_nops(klp_transition_patch);
 82	}
 83
 84	if (klp_target_state == KLP_UNPATCHED) {
 85		/*
 86		 * All tasks have transitioned to KLP_UNPATCHED so we can now
 87		 * remove the new functions from the func_stack.
 88		 */
 89		klp_unpatch_objects(klp_transition_patch);
 90
 91		/*
 92		 * Make sure klp_ftrace_handler() can no longer see functions
 93		 * from this patch on the ops->func_stack.  Otherwise, after
 94		 * func->transition gets cleared, the handler may choose a
 95		 * removed function.
 96		 */
 97		klp_synchronize_transition();
 98	}
 99
100	klp_for_each_object(klp_transition_patch, obj)
101		klp_for_each_func(obj, func)
102			func->transition = false;
103
104	/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
105	if (klp_target_state == KLP_PATCHED)
106		klp_synchronize_transition();
107
108	read_lock(&tasklist_lock);
109	for_each_process_thread(g, task) {
110		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
111		task->patch_state = KLP_UNDEFINED;
112	}
113	read_unlock(&tasklist_lock);
114
115	for_each_possible_cpu(cpu) {
116		task = idle_task(cpu);
117		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
118		task->patch_state = KLP_UNDEFINED;
119	}
120
121	klp_for_each_object(klp_transition_patch, obj) {
122		if (!klp_is_object_loaded(obj))
123			continue;
124		if (klp_target_state == KLP_PATCHED)
125			klp_post_patch_callback(obj);
126		else if (klp_target_state == KLP_UNPATCHED)
127			klp_post_unpatch_callback(obj);
128	}
129
130	pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
131		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
132
133	klp_target_state = KLP_UNDEFINED;
134	klp_transition_patch = NULL;
135}
136
137/*
138 * This is called in the error path, to cancel a transition before it has
139 * started, i.e. klp_init_transition() has been called but
140 * klp_start_transition() hasn't.  If the transition *has* been started,
141 * klp_reverse_transition() should be used instead.
142 */
143void klp_cancel_transition(void)
144{
145	if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
146		return;
147
148	pr_debug("'%s': canceling patching transition, going to unpatch\n",
149		 klp_transition_patch->mod->name);
150
151	klp_target_state = KLP_UNPATCHED;
152	klp_complete_transition();
153}
154
155/*
156 * Switch the patched state of the task to the set of functions in the target
157 * patch state.
158 *
159 * NOTE: If task is not 'current', the caller must ensure the task is inactive.
160 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
161 */
162void klp_update_patch_state(struct task_struct *task)
163{
164	/*
165	 * A variant of synchronize_rcu() is used to allow patching functions
166	 * where RCU is not watching, see klp_synchronize_transition().
167	 */
168	preempt_disable_notrace();
169
170	/*
171	 * This test_and_clear_tsk_thread_flag() call also serves as a read
172	 * barrier (smp_rmb) for two cases:
173	 *
174	 * 1) Enforce the order of the TIF_PATCH_PENDING read and the
175	 *    klp_target_state read.  The corresponding write barrier is in
176	 *    klp_init_transition().
177	 *
178	 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
179	 *    of func->transition, if klp_ftrace_handler() is called later on
180	 *    the same CPU.  See __klp_disable_patch().
181	 */
182	if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
183		task->patch_state = READ_ONCE(klp_target_state);
184
185	preempt_enable_notrace();
186}
187
188/*
189 * Determine whether the given stack trace includes any references to a
190 * to-be-patched or to-be-unpatched function.
191 */
192static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
193				unsigned int nr_entries)
194{
195	unsigned long func_addr, func_size, address;
196	struct klp_ops *ops;
197	int i;
198
199	if (klp_target_state == KLP_UNPATCHED) {
200		 /*
201		  * Check for the to-be-unpatched function
202		  * (the func itself).
203		  */
204		func_addr = (unsigned long)func->new_func;
205		func_size = func->new_size;
206	} else {
207		/*
208		 * Check for the to-be-patched function
209		 * (the previous func).
210		 */
211		ops = klp_find_ops(func->old_func);
212
213		if (list_is_singular(&ops->func_stack)) {
214			/* original function */
215			func_addr = (unsigned long)func->old_func;
216			func_size = func->old_size;
217		} else {
218			/* previously patched function */
219			struct klp_func *prev;
220
221			prev = list_next_entry(func, stack_node);
222			func_addr = (unsigned long)prev->new_func;
223			func_size = prev->new_size;
224		}
225	}
226
227	for (i = 0; i < nr_entries; i++) {
228		address = entries[i];
229
230		if (address >= func_addr && address < func_addr + func_size)
231			return -EAGAIN;
232	}
233
234	return 0;
235}
236
237/*
238 * Determine whether it's safe to transition the task to the target patch state
239 * by looking for any to-be-patched or to-be-unpatched functions on its stack.
240 */
241static int klp_check_stack(struct task_struct *task, const char **oldname)
242{
243	static unsigned long entries[MAX_STACK_ENTRIES];
244	struct klp_object *obj;
245	struct klp_func *func;
246	int ret, nr_entries;
247
248	ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
 
 
 
249	if (ret < 0)
250		return -EINVAL;
251	nr_entries = ret;
252
253	klp_for_each_object(klp_transition_patch, obj) {
254		if (!obj->patched)
255			continue;
256		klp_for_each_func(obj, func) {
257			ret = klp_check_stack_func(func, entries, nr_entries);
258			if (ret) {
259				*oldname = func->old_name;
260				return -EADDRINUSE;
261			}
262		}
263	}
264
265	return 0;
266}
267
268static int klp_check_and_switch_task(struct task_struct *task, void *arg)
269{
270	int ret;
271
272	if (task_curr(task) && task != current)
273		return -EBUSY;
274
275	ret = klp_check_stack(task, arg);
276	if (ret)
277		return ret;
278
279	clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
280	task->patch_state = klp_target_state;
281	return 0;
282}
283
284/*
285 * Try to safely switch a task to the target patch state.  If it's currently
286 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
287 * if the stack is unreliable, return false.
288 */
289static bool klp_try_switch_task(struct task_struct *task)
290{
291	const char *old_name;
292	int ret;
293
294	/* check if this task has already switched over */
295	if (task->patch_state == klp_target_state)
296		return true;
297
298	/*
299	 * For arches which don't have reliable stack traces, we have to rely
300	 * on other methods (e.g., switching tasks at kernel exit).
301	 */
302	if (!klp_have_reliable_stack())
303		return false;
304
305	/*
306	 * Now try to check the stack for any to-be-patched or to-be-unpatched
307	 * functions.  If all goes well, switch the task to the target patch
308	 * state.
309	 */
310	ret = task_call_func(task, klp_check_and_switch_task, &old_name);
 
 
 
 
311	switch (ret) {
312	case 0:		/* success */
313		break;
314
315	case -EBUSY:	/* klp_check_and_switch_task() */
316		pr_debug("%s: %s:%d is running\n",
317			 __func__, task->comm, task->pid);
318		break;
319	case -EINVAL:	/* klp_check_and_switch_task() */
320		pr_debug("%s: %s:%d has an unreliable stack\n",
321			 __func__, task->comm, task->pid);
322		break;
323	case -EADDRINUSE: /* klp_check_and_switch_task() */
324		pr_debug("%s: %s:%d is sleeping on function %s\n",
325			 __func__, task->comm, task->pid, old_name);
326		break;
327
328	default:
329		pr_debug("%s: Unknown error code (%d) when trying to switch %s:%d\n",
330			 __func__, ret, task->comm, task->pid);
331		break;
332	}
333
334	return !ret;
335}
336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337/*
338 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
339 * Kthreads with TIF_PATCH_PENDING set are woken up.
340 */
341static void klp_send_signals(void)
342{
343	struct task_struct *g, *task;
344
345	if (klp_signals_cnt == SIGNALS_TIMEOUT)
346		pr_notice("signaling remaining tasks\n");
347
348	read_lock(&tasklist_lock);
349	for_each_process_thread(g, task) {
350		if (!klp_patch_pending(task))
351			continue;
352
353		/*
354		 * There is a small race here. We could see TIF_PATCH_PENDING
355		 * set and decide to wake up a kthread or send a fake signal.
356		 * Meanwhile the task could migrate itself and the action
357		 * would be meaningless. It is not serious though.
358		 */
359		if (task->flags & PF_KTHREAD) {
360			/*
361			 * Wake up a kthread which sleeps interruptedly and
362			 * still has not been migrated.
363			 */
364			wake_up_state(task, TASK_INTERRUPTIBLE);
365		} else {
366			/*
367			 * Send fake signal to all non-kthread tasks which are
368			 * still not migrated.
369			 */
370			set_notify_signal(task);
371		}
372	}
373	read_unlock(&tasklist_lock);
374}
375
376/*
377 * Try to switch all remaining tasks to the target patch state by walking the
378 * stacks of sleeping tasks and looking for any to-be-patched or
379 * to-be-unpatched functions.  If such functions are found, the task can't be
380 * switched yet.
381 *
382 * If any tasks are still stuck in the initial patch state, schedule a retry.
383 */
384void klp_try_complete_transition(void)
385{
386	unsigned int cpu;
387	struct task_struct *g, *task;
388	struct klp_patch *patch;
389	bool complete = true;
390
391	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
392
393	/*
394	 * Try to switch the tasks to the target patch state by walking their
395	 * stacks and looking for any to-be-patched or to-be-unpatched
396	 * functions.  If such functions are found on a stack, or if the stack
397	 * is deemed unreliable, the task can't be switched yet.
398	 *
399	 * Usually this will transition most (or all) of the tasks on a system
400	 * unless the patch includes changes to a very common function.
401	 */
402	read_lock(&tasklist_lock);
403	for_each_process_thread(g, task)
404		if (!klp_try_switch_task(task))
405			complete = false;
406	read_unlock(&tasklist_lock);
407
408	/*
409	 * Ditto for the idle "swapper" tasks.
410	 */
411	cpus_read_lock();
412	for_each_possible_cpu(cpu) {
413		task = idle_task(cpu);
414		if (cpu_online(cpu)) {
415			if (!klp_try_switch_task(task)) {
416				complete = false;
417				/* Make idle task go through the main loop. */
418				wake_up_if_idle(cpu);
419			}
420		} else if (task->patch_state != klp_target_state) {
421			/* offline idle tasks can be switched immediately */
422			clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
423			task->patch_state = klp_target_state;
424		}
425	}
426	cpus_read_unlock();
427
428	if (!complete) {
429		if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
430			klp_send_signals();
431		klp_signals_cnt++;
432
433		/*
434		 * Some tasks weren't able to be switched over.  Try again
435		 * later and/or wait for other methods like kernel exit
436		 * switching.
437		 */
438		schedule_delayed_work(&klp_transition_work,
439				      round_jiffies_relative(HZ));
440		return;
441	}
442
443	/* we're done, now cleanup the data structures */
 
444	patch = klp_transition_patch;
445	klp_complete_transition();
446
447	/*
448	 * It would make more sense to free the unused patches in
449	 * klp_complete_transition() but it is called also
450	 * from klp_cancel_transition().
451	 */
452	if (!patch->enabled)
453		klp_free_patch_async(patch);
454	else if (patch->replace)
455		klp_free_replaced_patches_async(patch);
456}
457
458/*
459 * Start the transition to the specified target patch state so tasks can begin
460 * switching to it.
461 */
462void klp_start_transition(void)
463{
464	struct task_struct *g, *task;
465	unsigned int cpu;
466
467	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
468
469	pr_notice("'%s': starting %s transition\n",
470		  klp_transition_patch->mod->name,
471		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
472
473	/*
474	 * Mark all normal tasks as needing a patch state update.  They'll
475	 * switch either in klp_try_complete_transition() or as they exit the
476	 * kernel.
477	 */
478	read_lock(&tasklist_lock);
479	for_each_process_thread(g, task)
480		if (task->patch_state != klp_target_state)
481			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
482	read_unlock(&tasklist_lock);
483
484	/*
485	 * Mark all idle tasks as needing a patch state update.  They'll switch
486	 * either in klp_try_complete_transition() or at the idle loop switch
487	 * point.
488	 */
489	for_each_possible_cpu(cpu) {
490		task = idle_task(cpu);
491		if (task->patch_state != klp_target_state)
492			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
493	}
494
 
 
495	klp_signals_cnt = 0;
496}
497
498/*
499 * Initialize the global target patch state and all tasks to the initial patch
500 * state, and initialize all function transition states to true in preparation
501 * for patching or unpatching.
502 */
503void klp_init_transition(struct klp_patch *patch, int state)
504{
505	struct task_struct *g, *task;
506	unsigned int cpu;
507	struct klp_object *obj;
508	struct klp_func *func;
509	int initial_state = !state;
510
511	WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
512
513	klp_transition_patch = patch;
514
515	/*
516	 * Set the global target patch state which tasks will switch to.  This
517	 * has no effect until the TIF_PATCH_PENDING flags get set later.
518	 */
519	klp_target_state = state;
520
521	pr_debug("'%s': initializing %s transition\n", patch->mod->name,
522		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
523
524	/*
525	 * Initialize all tasks to the initial patch state to prepare them for
526	 * switching to the target state.
527	 */
528	read_lock(&tasklist_lock);
529	for_each_process_thread(g, task) {
530		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
531		task->patch_state = initial_state;
532	}
533	read_unlock(&tasklist_lock);
534
535	/*
536	 * Ditto for the idle "swapper" tasks.
537	 */
538	for_each_possible_cpu(cpu) {
539		task = idle_task(cpu);
540		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
541		task->patch_state = initial_state;
542	}
543
544	/*
545	 * Enforce the order of the task->patch_state initializations and the
546	 * func->transition updates to ensure that klp_ftrace_handler() doesn't
547	 * see a func in transition with a task->patch_state of KLP_UNDEFINED.
548	 *
549	 * Also enforce the order of the klp_target_state write and future
550	 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
551	 * set a task->patch_state to KLP_UNDEFINED.
 
552	 */
553	smp_wmb();
554
555	/*
556	 * Set the func transition states so klp_ftrace_handler() will know to
557	 * switch to the transition logic.
558	 *
559	 * When patching, the funcs aren't yet in the func_stack and will be
560	 * made visible to the ftrace handler shortly by the calls to
561	 * klp_patch_object().
562	 *
563	 * When unpatching, the funcs are already in the func_stack and so are
564	 * already visible to the ftrace handler.
565	 */
566	klp_for_each_object(patch, obj)
567		klp_for_each_func(obj, func)
568			func->transition = true;
569}
570
571/*
572 * This function can be called in the middle of an existing transition to
573 * reverse the direction of the target patch state.  This can be done to
574 * effectively cancel an existing enable or disable operation if there are any
575 * tasks which are stuck in the initial patch state.
576 */
577void klp_reverse_transition(void)
578{
579	unsigned int cpu;
580	struct task_struct *g, *task;
581
582	pr_debug("'%s': reversing transition from %s\n",
583		 klp_transition_patch->mod->name,
584		 klp_target_state == KLP_PATCHED ? "patching to unpatching" :
585						   "unpatching to patching");
586
587	klp_transition_patch->enabled = !klp_transition_patch->enabled;
588
589	klp_target_state = !klp_target_state;
590
591	/*
592	 * Clear all TIF_PATCH_PENDING flags to prevent races caused by
593	 * klp_update_patch_state() running in parallel with
594	 * klp_start_transition().
595	 */
596	read_lock(&tasklist_lock);
597	for_each_process_thread(g, task)
598		clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
599	read_unlock(&tasklist_lock);
600
601	for_each_possible_cpu(cpu)
602		clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
603
604	/* Let any remaining calls to klp_update_patch_state() complete */
 
 
 
 
605	klp_synchronize_transition();
606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
607	klp_start_transition();
608}
609
610/* Called from copy_process() during fork */
611void klp_copy_process(struct task_struct *child)
612{
613
614	/*
615	 * The parent process may have gone through a KLP transition since
616	 * the thread flag was copied in setup_thread_stack earlier. Bring
617	 * the task flag up to date with the parent here.
618	 *
619	 * The operation is serialized against all klp_*_transition()
620	 * operations by the tasklist_lock. The only exception is
621	 * klp_update_patch_state(current), but we cannot race with
622	 * that because we are current.
623	 */
624	if (test_tsk_thread_flag(current, TIF_PATCH_PENDING))
625		set_tsk_thread_flag(child, TIF_PATCH_PENDING);
626	else
627		clear_tsk_thread_flag(child, TIF_PATCH_PENDING);
628
629	child->patch_state = current->patch_state;
630}
631
632/*
633 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
634 * existing transition to finish.
635 *
636 * NOTE: klp_update_patch_state(task) requires the task to be inactive or
637 * 'current'. This is not the case here and the consistency model could be
638 * broken. Administrator, who is the only one to execute the
639 * klp_force_transitions(), has to be aware of this.
640 */
641void klp_force_transition(void)
642{
643	struct klp_patch *patch;
644	struct task_struct *g, *task;
645	unsigned int cpu;
646
647	pr_warn("forcing remaining tasks to the patched state\n");
648
649	read_lock(&tasklist_lock);
650	for_each_process_thread(g, task)
651		klp_update_patch_state(task);
652	read_unlock(&tasklist_lock);
653
654	for_each_possible_cpu(cpu)
655		klp_update_patch_state(idle_task(cpu));
656
657	/* Set forced flag for patches being removed. */
658	if (klp_target_state == KLP_UNPATCHED)
659		klp_transition_patch->forced = true;
660	else if (klp_transition_patch->replace) {
661		klp_for_each_patch(patch) {
662			if (patch != klp_transition_patch)
663				patch->forced = true;
664		}
665	}
666}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * transition.c - Kernel Live Patching transition functions
  4 *
  5 * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
  6 */
  7
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/cpu.h>
 11#include <linux/stacktrace.h>
 12#include <linux/static_call.h>
 13#include "core.h"
 14#include "patch.h"
 15#include "transition.h"
 16
 17#define MAX_STACK_ENTRIES  100
 18static DEFINE_PER_CPU(unsigned long[MAX_STACK_ENTRIES], klp_stack_entries);
 19
 20#define STACK_ERR_BUF_SIZE 128
 21
 22#define SIGNALS_TIMEOUT 15
 23
 24struct klp_patch *klp_transition_patch;
 25
 26static int klp_target_state = KLP_UNDEFINED;
 27
 28static unsigned int klp_signals_cnt;
 29
 30/*
 31 * When a livepatch is in progress, enable klp stack checking in
 32 * cond_resched().  This helps CPU-bound kthreads get patched.
 33 */
 34#if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
 35
 36#define klp_cond_resched_enable() sched_dynamic_klp_enable()
 37#define klp_cond_resched_disable() sched_dynamic_klp_disable()
 38
 39#else /* !CONFIG_PREEMPT_DYNAMIC || !CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
 40
 41DEFINE_STATIC_KEY_FALSE(klp_sched_try_switch_key);
 42EXPORT_SYMBOL(klp_sched_try_switch_key);
 43
 44#define klp_cond_resched_enable() static_branch_enable(&klp_sched_try_switch_key)
 45#define klp_cond_resched_disable() static_branch_disable(&klp_sched_try_switch_key)
 46
 47#endif /* CONFIG_PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
 48
 49/*
 50 * This work can be performed periodically to finish patching or unpatching any
 51 * "straggler" tasks which failed to transition in the first attempt.
 52 */
 53static void klp_transition_work_fn(struct work_struct *work)
 54{
 55	mutex_lock(&klp_mutex);
 56
 57	if (klp_transition_patch)
 58		klp_try_complete_transition();
 59
 60	mutex_unlock(&klp_mutex);
 61}
 62static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
 63
 64/*
 65 * This function is just a stub to implement a hard force
 66 * of synchronize_rcu(). This requires synchronizing
 67 * tasks even in userspace and idle.
 68 */
 69static void klp_sync(struct work_struct *work)
 70{
 71}
 72
 73/*
 74 * We allow to patch also functions where RCU is not watching,
 75 * e.g. before user_exit(). We can not rely on the RCU infrastructure
 76 * to do the synchronization. Instead hard force the sched synchronization.
 77 *
 78 * This approach allows to use RCU functions for manipulating func_stack
 79 * safely.
 80 */
 81static void klp_synchronize_transition(void)
 82{
 83	schedule_on_each_cpu(klp_sync);
 84}
 85
 86/*
 87 * The transition to the target patch state is complete.  Clean up the data
 88 * structures.
 89 */
 90static void klp_complete_transition(void)
 91{
 92	struct klp_object *obj;
 93	struct klp_func *func;
 94	struct task_struct *g, *task;
 95	unsigned int cpu;
 96
 97	pr_debug("'%s': completing %s transition\n",
 98		 klp_transition_patch->mod->name,
 99		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
100
101	if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
102		klp_unpatch_replaced_patches(klp_transition_patch);
103		klp_discard_nops(klp_transition_patch);
104	}
105
106	if (klp_target_state == KLP_UNPATCHED) {
107		/*
108		 * All tasks have transitioned to KLP_UNPATCHED so we can now
109		 * remove the new functions from the func_stack.
110		 */
111		klp_unpatch_objects(klp_transition_patch);
112
113		/*
114		 * Make sure klp_ftrace_handler() can no longer see functions
115		 * from this patch on the ops->func_stack.  Otherwise, after
116		 * func->transition gets cleared, the handler may choose a
117		 * removed function.
118		 */
119		klp_synchronize_transition();
120	}
121
122	klp_for_each_object(klp_transition_patch, obj)
123		klp_for_each_func(obj, func)
124			func->transition = false;
125
126	/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
127	if (klp_target_state == KLP_PATCHED)
128		klp_synchronize_transition();
129
130	read_lock(&tasklist_lock);
131	for_each_process_thread(g, task) {
132		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
133		task->patch_state = KLP_UNDEFINED;
134	}
135	read_unlock(&tasklist_lock);
136
137	for_each_possible_cpu(cpu) {
138		task = idle_task(cpu);
139		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
140		task->patch_state = KLP_UNDEFINED;
141	}
142
143	klp_for_each_object(klp_transition_patch, obj) {
144		if (!klp_is_object_loaded(obj))
145			continue;
146		if (klp_target_state == KLP_PATCHED)
147			klp_post_patch_callback(obj);
148		else if (klp_target_state == KLP_UNPATCHED)
149			klp_post_unpatch_callback(obj);
150	}
151
152	pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
153		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
154
155	klp_target_state = KLP_UNDEFINED;
156	klp_transition_patch = NULL;
157}
158
159/*
160 * This is called in the error path, to cancel a transition before it has
161 * started, i.e. klp_init_transition() has been called but
162 * klp_start_transition() hasn't.  If the transition *has* been started,
163 * klp_reverse_transition() should be used instead.
164 */
165void klp_cancel_transition(void)
166{
167	if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
168		return;
169
170	pr_debug("'%s': canceling patching transition, going to unpatch\n",
171		 klp_transition_patch->mod->name);
172
173	klp_target_state = KLP_UNPATCHED;
174	klp_complete_transition();
175}
176
177/*
178 * Switch the patched state of the task to the set of functions in the target
179 * patch state.
180 *
181 * NOTE: If task is not 'current', the caller must ensure the task is inactive.
182 * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
183 */
184void klp_update_patch_state(struct task_struct *task)
185{
186	/*
187	 * A variant of synchronize_rcu() is used to allow patching functions
188	 * where RCU is not watching, see klp_synchronize_transition().
189	 */
190	preempt_disable_notrace();
191
192	/*
193	 * This test_and_clear_tsk_thread_flag() call also serves as a read
194	 * barrier (smp_rmb) for two cases:
195	 *
196	 * 1) Enforce the order of the TIF_PATCH_PENDING read and the
197	 *    klp_target_state read.  The corresponding write barriers are in
198	 *    klp_init_transition() and klp_reverse_transition().
199	 *
200	 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
201	 *    of func->transition, if klp_ftrace_handler() is called later on
202	 *    the same CPU.  See __klp_disable_patch().
203	 */
204	if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
205		task->patch_state = READ_ONCE(klp_target_state);
206
207	preempt_enable_notrace();
208}
209
210/*
211 * Determine whether the given stack trace includes any references to a
212 * to-be-patched or to-be-unpatched function.
213 */
214static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
215				unsigned int nr_entries)
216{
217	unsigned long func_addr, func_size, address;
218	struct klp_ops *ops;
219	int i;
220
221	if (klp_target_state == KLP_UNPATCHED) {
222		 /*
223		  * Check for the to-be-unpatched function
224		  * (the func itself).
225		  */
226		func_addr = (unsigned long)func->new_func;
227		func_size = func->new_size;
228	} else {
229		/*
230		 * Check for the to-be-patched function
231		 * (the previous func).
232		 */
233		ops = klp_find_ops(func->old_func);
234
235		if (list_is_singular(&ops->func_stack)) {
236			/* original function */
237			func_addr = (unsigned long)func->old_func;
238			func_size = func->old_size;
239		} else {
240			/* previously patched function */
241			struct klp_func *prev;
242
243			prev = list_next_entry(func, stack_node);
244			func_addr = (unsigned long)prev->new_func;
245			func_size = prev->new_size;
246		}
247	}
248
249	for (i = 0; i < nr_entries; i++) {
250		address = entries[i];
251
252		if (address >= func_addr && address < func_addr + func_size)
253			return -EAGAIN;
254	}
255
256	return 0;
257}
258
259/*
260 * Determine whether it's safe to transition the task to the target patch state
261 * by looking for any to-be-patched or to-be-unpatched functions on its stack.
262 */
263static int klp_check_stack(struct task_struct *task, const char **oldname)
264{
265	unsigned long *entries = this_cpu_ptr(klp_stack_entries);
266	struct klp_object *obj;
267	struct klp_func *func;
268	int ret, nr_entries;
269
270	/* Protect 'klp_stack_entries' */
271	lockdep_assert_preemption_disabled();
272
273	ret = stack_trace_save_tsk_reliable(task, entries, MAX_STACK_ENTRIES);
274	if (ret < 0)
275		return -EINVAL;
276	nr_entries = ret;
277
278	klp_for_each_object(klp_transition_patch, obj) {
279		if (!obj->patched)
280			continue;
281		klp_for_each_func(obj, func) {
282			ret = klp_check_stack_func(func, entries, nr_entries);
283			if (ret) {
284				*oldname = func->old_name;
285				return -EADDRINUSE;
286			}
287		}
288	}
289
290	return 0;
291}
292
293static int klp_check_and_switch_task(struct task_struct *task, void *arg)
294{
295	int ret;
296
297	if (task_curr(task) && task != current)
298		return -EBUSY;
299
300	ret = klp_check_stack(task, arg);
301	if (ret)
302		return ret;
303
304	clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
305	task->patch_state = klp_target_state;
306	return 0;
307}
308
309/*
310 * Try to safely switch a task to the target patch state.  If it's currently
311 * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
312 * if the stack is unreliable, return false.
313 */
314static bool klp_try_switch_task(struct task_struct *task)
315{
316	const char *old_name;
317	int ret;
318
319	/* check if this task has already switched over */
320	if (task->patch_state == klp_target_state)
321		return true;
322
323	/*
324	 * For arches which don't have reliable stack traces, we have to rely
325	 * on other methods (e.g., switching tasks at kernel exit).
326	 */
327	if (!klp_have_reliable_stack())
328		return false;
329
330	/*
331	 * Now try to check the stack for any to-be-patched or to-be-unpatched
332	 * functions.  If all goes well, switch the task to the target patch
333	 * state.
334	 */
335	if (task == current)
336		ret = klp_check_and_switch_task(current, &old_name);
337	else
338		ret = task_call_func(task, klp_check_and_switch_task, &old_name);
339
340	switch (ret) {
341	case 0:		/* success */
342		break;
343
344	case -EBUSY:	/* klp_check_and_switch_task() */
345		pr_debug("%s: %s:%d is running\n",
346			 __func__, task->comm, task->pid);
347		break;
348	case -EINVAL:	/* klp_check_and_switch_task() */
349		pr_debug("%s: %s:%d has an unreliable stack\n",
350			 __func__, task->comm, task->pid);
351		break;
352	case -EADDRINUSE: /* klp_check_and_switch_task() */
353		pr_debug("%s: %s:%d is sleeping on function %s\n",
354			 __func__, task->comm, task->pid, old_name);
355		break;
356
357	default:
358		pr_debug("%s: Unknown error code (%d) when trying to switch %s:%d\n",
359			 __func__, ret, task->comm, task->pid);
360		break;
361	}
362
363	return !ret;
364}
365
366void __klp_sched_try_switch(void)
367{
368	if (likely(!klp_patch_pending(current)))
369		return;
370
371	/*
372	 * This function is called from cond_resched() which is called in many
373	 * places throughout the kernel.  Using the klp_mutex here might
374	 * deadlock.
375	 *
376	 * Instead, disable preemption to prevent racing with other callers of
377	 * klp_try_switch_task().  Thanks to task_call_func() they won't be
378	 * able to switch this task while it's running.
379	 */
380	preempt_disable();
381
382	/*
383	 * Make sure current didn't get patched between the above check and
384	 * preempt_disable().
385	 */
386	if (unlikely(!klp_patch_pending(current)))
387		goto out;
388
389	/*
390	 * Enforce the order of the TIF_PATCH_PENDING read above and the
391	 * klp_target_state read in klp_try_switch_task().  The corresponding
392	 * write barriers are in klp_init_transition() and
393	 * klp_reverse_transition().
394	 */
395	smp_rmb();
396
397	klp_try_switch_task(current);
398
399out:
400	preempt_enable();
401}
402EXPORT_SYMBOL(__klp_sched_try_switch);
403
404/*
405 * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
406 * Kthreads with TIF_PATCH_PENDING set are woken up.
407 */
408static void klp_send_signals(void)
409{
410	struct task_struct *g, *task;
411
412	if (klp_signals_cnt == SIGNALS_TIMEOUT)
413		pr_notice("signaling remaining tasks\n");
414
415	read_lock(&tasklist_lock);
416	for_each_process_thread(g, task) {
417		if (!klp_patch_pending(task))
418			continue;
419
420		/*
421		 * There is a small race here. We could see TIF_PATCH_PENDING
422		 * set and decide to wake up a kthread or send a fake signal.
423		 * Meanwhile the task could migrate itself and the action
424		 * would be meaningless. It is not serious though.
425		 */
426		if (task->flags & PF_KTHREAD) {
427			/*
428			 * Wake up a kthread which sleeps interruptedly and
429			 * still has not been migrated.
430			 */
431			wake_up_state(task, TASK_INTERRUPTIBLE);
432		} else {
433			/*
434			 * Send fake signal to all non-kthread tasks which are
435			 * still not migrated.
436			 */
437			set_notify_signal(task);
438		}
439	}
440	read_unlock(&tasklist_lock);
441}
442
443/*
444 * Try to switch all remaining tasks to the target patch state by walking the
445 * stacks of sleeping tasks and looking for any to-be-patched or
446 * to-be-unpatched functions.  If such functions are found, the task can't be
447 * switched yet.
448 *
449 * If any tasks are still stuck in the initial patch state, schedule a retry.
450 */
451void klp_try_complete_transition(void)
452{
453	unsigned int cpu;
454	struct task_struct *g, *task;
455	struct klp_patch *patch;
456	bool complete = true;
457
458	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
459
460	/*
461	 * Try to switch the tasks to the target patch state by walking their
462	 * stacks and looking for any to-be-patched or to-be-unpatched
463	 * functions.  If such functions are found on a stack, or if the stack
464	 * is deemed unreliable, the task can't be switched yet.
465	 *
466	 * Usually this will transition most (or all) of the tasks on a system
467	 * unless the patch includes changes to a very common function.
468	 */
469	read_lock(&tasklist_lock);
470	for_each_process_thread(g, task)
471		if (!klp_try_switch_task(task))
472			complete = false;
473	read_unlock(&tasklist_lock);
474
475	/*
476	 * Ditto for the idle "swapper" tasks.
477	 */
478	cpus_read_lock();
479	for_each_possible_cpu(cpu) {
480		task = idle_task(cpu);
481		if (cpu_online(cpu)) {
482			if (!klp_try_switch_task(task)) {
483				complete = false;
484				/* Make idle task go through the main loop. */
485				wake_up_if_idle(cpu);
486			}
487		} else if (task->patch_state != klp_target_state) {
488			/* offline idle tasks can be switched immediately */
489			clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
490			task->patch_state = klp_target_state;
491		}
492	}
493	cpus_read_unlock();
494
495	if (!complete) {
496		if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
497			klp_send_signals();
498		klp_signals_cnt++;
499
500		/*
501		 * Some tasks weren't able to be switched over.  Try again
502		 * later and/or wait for other methods like kernel exit
503		 * switching.
504		 */
505		schedule_delayed_work(&klp_transition_work,
506				      round_jiffies_relative(HZ));
507		return;
508	}
509
510	/* Done!  Now cleanup the data structures. */
511	klp_cond_resched_disable();
512	patch = klp_transition_patch;
513	klp_complete_transition();
514
515	/*
516	 * It would make more sense to free the unused patches in
517	 * klp_complete_transition() but it is called also
518	 * from klp_cancel_transition().
519	 */
520	if (!patch->enabled)
521		klp_free_patch_async(patch);
522	else if (patch->replace)
523		klp_free_replaced_patches_async(patch);
524}
525
526/*
527 * Start the transition to the specified target patch state so tasks can begin
528 * switching to it.
529 */
530void klp_start_transition(void)
531{
532	struct task_struct *g, *task;
533	unsigned int cpu;
534
535	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
536
537	pr_notice("'%s': starting %s transition\n",
538		  klp_transition_patch->mod->name,
539		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
540
541	/*
542	 * Mark all normal tasks as needing a patch state update.  They'll
543	 * switch either in klp_try_complete_transition() or as they exit the
544	 * kernel.
545	 */
546	read_lock(&tasklist_lock);
547	for_each_process_thread(g, task)
548		if (task->patch_state != klp_target_state)
549			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
550	read_unlock(&tasklist_lock);
551
552	/*
553	 * Mark all idle tasks as needing a patch state update.  They'll switch
554	 * either in klp_try_complete_transition() or at the idle loop switch
555	 * point.
556	 */
557	for_each_possible_cpu(cpu) {
558		task = idle_task(cpu);
559		if (task->patch_state != klp_target_state)
560			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
561	}
562
563	klp_cond_resched_enable();
564
565	klp_signals_cnt = 0;
566}
567
568/*
569 * Initialize the global target patch state and all tasks to the initial patch
570 * state, and initialize all function transition states to true in preparation
571 * for patching or unpatching.
572 */
573void klp_init_transition(struct klp_patch *patch, int state)
574{
575	struct task_struct *g, *task;
576	unsigned int cpu;
577	struct klp_object *obj;
578	struct klp_func *func;
579	int initial_state = !state;
580
581	WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
582
583	klp_transition_patch = patch;
584
585	/*
586	 * Set the global target patch state which tasks will switch to.  This
587	 * has no effect until the TIF_PATCH_PENDING flags get set later.
588	 */
589	klp_target_state = state;
590
591	pr_debug("'%s': initializing %s transition\n", patch->mod->name,
592		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
593
594	/*
595	 * Initialize all tasks to the initial patch state to prepare them for
596	 * switching to the target state.
597	 */
598	read_lock(&tasklist_lock);
599	for_each_process_thread(g, task) {
600		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
601		task->patch_state = initial_state;
602	}
603	read_unlock(&tasklist_lock);
604
605	/*
606	 * Ditto for the idle "swapper" tasks.
607	 */
608	for_each_possible_cpu(cpu) {
609		task = idle_task(cpu);
610		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
611		task->patch_state = initial_state;
612	}
613
614	/*
615	 * Enforce the order of the task->patch_state initializations and the
616	 * func->transition updates to ensure that klp_ftrace_handler() doesn't
617	 * see a func in transition with a task->patch_state of KLP_UNDEFINED.
618	 *
619	 * Also enforce the order of the klp_target_state write and future
620	 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() and
621	 * __klp_sched_try_switch() don't set a task->patch_state to
622	 * KLP_UNDEFINED.
623	 */
624	smp_wmb();
625
626	/*
627	 * Set the func transition states so klp_ftrace_handler() will know to
628	 * switch to the transition logic.
629	 *
630	 * When patching, the funcs aren't yet in the func_stack and will be
631	 * made visible to the ftrace handler shortly by the calls to
632	 * klp_patch_object().
633	 *
634	 * When unpatching, the funcs are already in the func_stack and so are
635	 * already visible to the ftrace handler.
636	 */
637	klp_for_each_object(patch, obj)
638		klp_for_each_func(obj, func)
639			func->transition = true;
640}
641
642/*
643 * This function can be called in the middle of an existing transition to
644 * reverse the direction of the target patch state.  This can be done to
645 * effectively cancel an existing enable or disable operation if there are any
646 * tasks which are stuck in the initial patch state.
647 */
648void klp_reverse_transition(void)
649{
650	unsigned int cpu;
651	struct task_struct *g, *task;
652
653	pr_debug("'%s': reversing transition from %s\n",
654		 klp_transition_patch->mod->name,
655		 klp_target_state == KLP_PATCHED ? "patching to unpatching" :
656						   "unpatching to patching");
657
 
 
 
 
658	/*
659	 * Clear all TIF_PATCH_PENDING flags to prevent races caused by
660	 * klp_update_patch_state() or __klp_sched_try_switch() running in
661	 * parallel with the reverse transition.
662	 */
663	read_lock(&tasklist_lock);
664	for_each_process_thread(g, task)
665		clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
666	read_unlock(&tasklist_lock);
667
668	for_each_possible_cpu(cpu)
669		clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
670
671	/*
672	 * Make sure all existing invocations of klp_update_patch_state() and
673	 * __klp_sched_try_switch() see the cleared TIF_PATCH_PENDING before
674	 * starting the reverse transition.
675	 */
676	klp_synchronize_transition();
677
678	/*
679	 * All patching has stopped, now re-initialize the global variables to
680	 * prepare for the reverse transition.
681	 */
682	klp_transition_patch->enabled = !klp_transition_patch->enabled;
683	klp_target_state = !klp_target_state;
684
685	/*
686	 * Enforce the order of the klp_target_state write and the
687	 * TIF_PATCH_PENDING writes in klp_start_transition() to ensure
688	 * klp_update_patch_state() and __klp_sched_try_switch() don't set
689	 * task->patch_state to the wrong value.
690	 */
691	smp_wmb();
692
693	klp_start_transition();
694}
695
696/* Called from copy_process() during fork */
697void klp_copy_process(struct task_struct *child)
698{
699
700	/*
701	 * The parent process may have gone through a KLP transition since
702	 * the thread flag was copied in setup_thread_stack earlier. Bring
703	 * the task flag up to date with the parent here.
704	 *
705	 * The operation is serialized against all klp_*_transition()
706	 * operations by the tasklist_lock. The only exceptions are
707	 * klp_update_patch_state(current) and __klp_sched_try_switch(), but we
708	 * cannot race with them because we are current.
709	 */
710	if (test_tsk_thread_flag(current, TIF_PATCH_PENDING))
711		set_tsk_thread_flag(child, TIF_PATCH_PENDING);
712	else
713		clear_tsk_thread_flag(child, TIF_PATCH_PENDING);
714
715	child->patch_state = current->patch_state;
716}
717
718/*
719 * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
720 * existing transition to finish.
721 *
722 * NOTE: klp_update_patch_state(task) requires the task to be inactive or
723 * 'current'. This is not the case here and the consistency model could be
724 * broken. Administrator, who is the only one to execute the
725 * klp_force_transitions(), has to be aware of this.
726 */
727void klp_force_transition(void)
728{
729	struct klp_patch *patch;
730	struct task_struct *g, *task;
731	unsigned int cpu;
732
733	pr_warn("forcing remaining tasks to the patched state\n");
734
735	read_lock(&tasklist_lock);
736	for_each_process_thread(g, task)
737		klp_update_patch_state(task);
738	read_unlock(&tasklist_lock);
739
740	for_each_possible_cpu(cpu)
741		klp_update_patch_state(idle_task(cpu));
742
743	/* Set forced flag for patches being removed. */
744	if (klp_target_state == KLP_UNPATCHED)
745		klp_transition_patch->forced = true;
746	else if (klp_transition_patch->replace) {
747		klp_for_each_patch(patch) {
748			if (patch != klp_transition_patch)
749				patch->forced = true;
750		}
751	}
752}