Linux Audio

Check our new training course

Loading...
v6.2
  1#include <linux/bpf.h>
  2#include <linux/btf.h>
  3#include <linux/err.h>
  4#include <linux/irq_work.h>
  5#include <linux/slab.h>
  6#include <linux/filter.h>
  7#include <linux/mm.h>
  8#include <linux/vmalloc.h>
  9#include <linux/wait.h>
 10#include <linux/poll.h>
 11#include <linux/kmemleak.h>
 12#include <uapi/linux/btf.h>
 13#include <linux/btf_ids.h>
 14
 15#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
 16
 17/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
 18#define RINGBUF_PGOFF \
 19	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
 20/* consumer page and producer page */
 21#define RINGBUF_POS_PAGES 2
 
 22
 23#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
 24
 25/* Maximum size of ring buffer area is limited by 32-bit page offset within
 26 * record header, counted in pages. Reserve 8 bits for extensibility, and take
 27 * into account few extra pages for consumer/producer pages and
 28 * non-mmap()'able parts. This gives 64GB limit, which seems plenty for single
 29 * ring buffer.
 30 */
 31#define RINGBUF_MAX_DATA_SZ \
 32	(((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
 33
 34struct bpf_ringbuf {
 35	wait_queue_head_t waitq;
 36	struct irq_work work;
 37	u64 mask;
 38	struct page **pages;
 39	int nr_pages;
 40	spinlock_t spinlock ____cacheline_aligned_in_smp;
 41	/* For user-space producer ring buffers, an atomic_t busy bit is used
 42	 * to synchronize access to the ring buffers in the kernel, rather than
 43	 * the spinlock that is used for kernel-producer ring buffers. This is
 44	 * done because the ring buffer must hold a lock across a BPF program's
 45	 * callback:
 46	 *
 47	 *    __bpf_user_ringbuf_peek() // lock acquired
 48	 * -> program callback_fn()
 49	 * -> __bpf_user_ringbuf_sample_release() // lock released
 50	 *
 51	 * It is unsafe and incorrect to hold an IRQ spinlock across what could
 52	 * be a long execution window, so we instead simply disallow concurrent
 53	 * access to the ring buffer by kernel consumers, and return -EBUSY from
 54	 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
 55	 */
 56	atomic_t busy ____cacheline_aligned_in_smp;
 57	/* Consumer and producer counters are put into separate pages to
 58	 * allow each position to be mapped with different permissions.
 59	 * This prevents a user-space application from modifying the
 60	 * position and ruining in-kernel tracking. The permissions of the
 61	 * pages depend on who is producing samples: user-space or the
 62	 * kernel.
 63	 *
 64	 * Kernel-producer
 65	 * ---------------
 66	 * The producer position and data pages are mapped as r/o in
 67	 * userspace. For this approach, bits in the header of samples are
 68	 * used to signal to user-space, and to other producers, whether a
 69	 * sample is currently being written.
 70	 *
 71	 * User-space producer
 72	 * -------------------
 73	 * Only the page containing the consumer position is mapped r/o in
 74	 * user-space. User-space producers also use bits of the header to
 75	 * communicate to the kernel, but the kernel must carefully check and
 76	 * validate each sample to ensure that they're correctly formatted, and
 77	 * fully contained within the ring buffer.
 78	 */
 79	unsigned long consumer_pos __aligned(PAGE_SIZE);
 80	unsigned long producer_pos __aligned(PAGE_SIZE);
 81	char data[] __aligned(PAGE_SIZE);
 82};
 83
 84struct bpf_ringbuf_map {
 85	struct bpf_map map;
 86	struct bpf_ringbuf *rb;
 87};
 88
 89/* 8-byte ring buffer record header structure */
 90struct bpf_ringbuf_hdr {
 91	u32 len;
 92	u32 pg_off;
 93};
 94
 95static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
 96{
 97	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
 98			    __GFP_NOWARN | __GFP_ZERO;
 99	int nr_meta_pages = RINGBUF_PGOFF + RINGBUF_POS_PAGES;
100	int nr_data_pages = data_sz >> PAGE_SHIFT;
101	int nr_pages = nr_meta_pages + nr_data_pages;
102	struct page **pages, *page;
103	struct bpf_ringbuf *rb;
104	size_t array_size;
105	int i;
106
107	/* Each data page is mapped twice to allow "virtual"
108	 * continuous read of samples wrapping around the end of ring
109	 * buffer area:
110	 * ------------------------------------------------------
111	 * | meta pages |  real data pages  |  same data pages  |
112	 * ------------------------------------------------------
113	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
114	 * ------------------------------------------------------
115	 * |            | TA             DA | TA             DA |
116	 * ------------------------------------------------------
117	 *                               ^^^^^^^
118	 *                                  |
119	 * Here, no need to worry about special handling of wrapped-around
120	 * data due to double-mapped data pages. This works both in kernel and
121	 * when mmap()'ed in user-space, simplifying both kernel and
122	 * user-space implementations significantly.
123	 */
124	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
125	pages = bpf_map_area_alloc(array_size, numa_node);
126	if (!pages)
127		return NULL;
128
129	for (i = 0; i < nr_pages; i++) {
130		page = alloc_pages_node(numa_node, flags, 0);
131		if (!page) {
132			nr_pages = i;
133			goto err_free_pages;
134		}
135		pages[i] = page;
136		if (i >= nr_meta_pages)
137			pages[nr_data_pages + i] = page;
138	}
139
140	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
141		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
142	if (rb) {
143		kmemleak_not_leak(pages);
144		rb->pages = pages;
145		rb->nr_pages = nr_pages;
146		return rb;
147	}
148
149err_free_pages:
150	for (i = 0; i < nr_pages; i++)
151		__free_page(pages[i]);
152	bpf_map_area_free(pages);
153	return NULL;
154}
155
156static void bpf_ringbuf_notify(struct irq_work *work)
157{
158	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
159
160	wake_up_all(&rb->waitq);
161}
162
 
 
 
 
 
 
 
 
 
 
 
163static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
164{
165	struct bpf_ringbuf *rb;
166
167	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
168	if (!rb)
169		return NULL;
170
171	spin_lock_init(&rb->spinlock);
172	atomic_set(&rb->busy, 0);
173	init_waitqueue_head(&rb->waitq);
174	init_irq_work(&rb->work, bpf_ringbuf_notify);
175
176	rb->mask = data_sz - 1;
177	rb->consumer_pos = 0;
178	rb->producer_pos = 0;
179
180	return rb;
181}
182
183static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
184{
185	struct bpf_ringbuf_map *rb_map;
186
187	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
188		return ERR_PTR(-EINVAL);
189
190	if (attr->key_size || attr->value_size ||
191	    !is_power_of_2(attr->max_entries) ||
192	    !PAGE_ALIGNED(attr->max_entries))
193		return ERR_PTR(-EINVAL);
194
195#ifdef CONFIG_64BIT
196	/* on 32-bit arch, it's impossible to overflow record's hdr->pgoff */
197	if (attr->max_entries > RINGBUF_MAX_DATA_SZ)
198		return ERR_PTR(-E2BIG);
199#endif
200
201	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
202	if (!rb_map)
203		return ERR_PTR(-ENOMEM);
204
205	bpf_map_init_from_attr(&rb_map->map, attr);
206
207	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
208	if (!rb_map->rb) {
209		bpf_map_area_free(rb_map);
210		return ERR_PTR(-ENOMEM);
211	}
212
213	return &rb_map->map;
214}
215
216static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
217{
218	/* copy pages pointer and nr_pages to local variable, as we are going
219	 * to unmap rb itself with vunmap() below
220	 */
221	struct page **pages = rb->pages;
222	int i, nr_pages = rb->nr_pages;
223
224	vunmap(rb);
225	for (i = 0; i < nr_pages; i++)
226		__free_page(pages[i]);
227	bpf_map_area_free(pages);
228}
229
230static void ringbuf_map_free(struct bpf_map *map)
231{
232	struct bpf_ringbuf_map *rb_map;
233
234	rb_map = container_of(map, struct bpf_ringbuf_map, map);
235	bpf_ringbuf_free(rb_map->rb);
236	bpf_map_area_free(rb_map);
237}
238
239static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
240{
241	return ERR_PTR(-ENOTSUPP);
242}
243
244static int ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
245				   u64 flags)
246{
247	return -ENOTSUPP;
248}
249
250static int ringbuf_map_delete_elem(struct bpf_map *map, void *key)
251{
252	return -ENOTSUPP;
253}
254
255static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
256				    void *next_key)
257{
258	return -ENOTSUPP;
259}
260
261static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
262{
263	struct bpf_ringbuf_map *rb_map;
264
265	rb_map = container_of(map, struct bpf_ringbuf_map, map);
266
267	if (vma->vm_flags & VM_WRITE) {
268		/* allow writable mapping for the consumer_pos only */
269		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
270			return -EPERM;
271	} else {
272		vma->vm_flags &= ~VM_MAYWRITE;
273	}
274	/* remap_vmalloc_range() checks size and offset constraints */
275	return remap_vmalloc_range(vma, rb_map->rb,
276				   vma->vm_pgoff + RINGBUF_PGOFF);
277}
278
279static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
280{
281	struct bpf_ringbuf_map *rb_map;
282
283	rb_map = container_of(map, struct bpf_ringbuf_map, map);
284
285	if (vma->vm_flags & VM_WRITE) {
286		if (vma->vm_pgoff == 0)
287			/* Disallow writable mappings to the consumer pointer,
288			 * and allow writable mappings to both the producer
289			 * position, and the ring buffer data itself.
290			 */
291			return -EPERM;
292	} else {
293		vma->vm_flags &= ~VM_MAYWRITE;
294	}
295	/* remap_vmalloc_range() checks size and offset constraints */
296	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
297}
298
299static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
300{
301	unsigned long cons_pos, prod_pos;
302
303	cons_pos = smp_load_acquire(&rb->consumer_pos);
304	prod_pos = smp_load_acquire(&rb->producer_pos);
305	return prod_pos - cons_pos;
306}
307
308static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
309{
310	return rb->mask + 1;
311}
312
313static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
314				      struct poll_table_struct *pts)
315{
316	struct bpf_ringbuf_map *rb_map;
317
318	rb_map = container_of(map, struct bpf_ringbuf_map, map);
319	poll_wait(filp, &rb_map->rb->waitq, pts);
320
321	if (ringbuf_avail_data_sz(rb_map->rb))
322		return EPOLLIN | EPOLLRDNORM;
323	return 0;
324}
325
326static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
327				      struct poll_table_struct *pts)
328{
329	struct bpf_ringbuf_map *rb_map;
330
331	rb_map = container_of(map, struct bpf_ringbuf_map, map);
332	poll_wait(filp, &rb_map->rb->waitq, pts);
333
334	if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
335		return EPOLLOUT | EPOLLWRNORM;
336	return 0;
337}
338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
340const struct bpf_map_ops ringbuf_map_ops = {
341	.map_meta_equal = bpf_map_meta_equal,
342	.map_alloc = ringbuf_map_alloc,
343	.map_free = ringbuf_map_free,
344	.map_mmap = ringbuf_map_mmap_kern,
345	.map_poll = ringbuf_map_poll_kern,
346	.map_lookup_elem = ringbuf_map_lookup_elem,
347	.map_update_elem = ringbuf_map_update_elem,
348	.map_delete_elem = ringbuf_map_delete_elem,
349	.map_get_next_key = ringbuf_map_get_next_key,
 
350	.map_btf_id = &ringbuf_map_btf_ids[0],
351};
352
353BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
354const struct bpf_map_ops user_ringbuf_map_ops = {
355	.map_meta_equal = bpf_map_meta_equal,
356	.map_alloc = ringbuf_map_alloc,
357	.map_free = ringbuf_map_free,
358	.map_mmap = ringbuf_map_mmap_user,
359	.map_poll = ringbuf_map_poll_user,
360	.map_lookup_elem = ringbuf_map_lookup_elem,
361	.map_update_elem = ringbuf_map_update_elem,
362	.map_delete_elem = ringbuf_map_delete_elem,
363	.map_get_next_key = ringbuf_map_get_next_key,
 
364	.map_btf_id = &user_ringbuf_map_btf_ids[0],
365};
366
367/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
368 * calculate offset from record metadata to ring buffer in pages, rounded
369 * down. This page offset is stored as part of record metadata and allows to
370 * restore struct bpf_ringbuf * from record pointer. This page offset is
371 * stored at offset 4 of record metadata header.
372 */
373static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
374				     struct bpf_ringbuf_hdr *hdr)
375{
376	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
377}
378
379/* Given pointer to ring buffer record header, restore pointer to struct
380 * bpf_ringbuf itself by using page offset stored at offset 4
381 */
382static struct bpf_ringbuf *
383bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
384{
385	unsigned long addr = (unsigned long)(void *)hdr;
386	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
387
388	return (void*)((addr & PAGE_MASK) - off);
389}
390
391static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
392{
393	unsigned long cons_pos, prod_pos, new_prod_pos, flags;
394	u32 len, pg_off;
395	struct bpf_ringbuf_hdr *hdr;
396
397	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
398		return NULL;
399
400	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
401	if (len > ringbuf_total_data_sz(rb))
402		return NULL;
403
404	cons_pos = smp_load_acquire(&rb->consumer_pos);
405
406	if (in_nmi()) {
407		if (!spin_trylock_irqsave(&rb->spinlock, flags))
408			return NULL;
409	} else {
410		spin_lock_irqsave(&rb->spinlock, flags);
411	}
412
413	prod_pos = rb->producer_pos;
414	new_prod_pos = prod_pos + len;
415
416	/* check for out of ringbuf space by ensuring producer position
417	 * doesn't advance more than (ringbuf_size - 1) ahead
418	 */
419	if (new_prod_pos - cons_pos > rb->mask) {
420		spin_unlock_irqrestore(&rb->spinlock, flags);
421		return NULL;
422	}
423
424	hdr = (void *)rb->data + (prod_pos & rb->mask);
425	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
426	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
427	hdr->pg_off = pg_off;
428
429	/* pairs with consumer's smp_load_acquire() */
430	smp_store_release(&rb->producer_pos, new_prod_pos);
431
432	spin_unlock_irqrestore(&rb->spinlock, flags);
433
434	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
435}
436
437BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
438{
439	struct bpf_ringbuf_map *rb_map;
440
441	if (unlikely(flags))
442		return 0;
443
444	rb_map = container_of(map, struct bpf_ringbuf_map, map);
445	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
446}
447
448const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
449	.func		= bpf_ringbuf_reserve,
450	.ret_type	= RET_PTR_TO_RINGBUF_MEM_OR_NULL,
451	.arg1_type	= ARG_CONST_MAP_PTR,
452	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
453	.arg3_type	= ARG_ANYTHING,
454};
455
456static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
457{
458	unsigned long rec_pos, cons_pos;
459	struct bpf_ringbuf_hdr *hdr;
460	struct bpf_ringbuf *rb;
461	u32 new_len;
462
463	hdr = sample - BPF_RINGBUF_HDR_SZ;
464	rb = bpf_ringbuf_restore_from_rec(hdr);
465	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
466	if (discard)
467		new_len |= BPF_RINGBUF_DISCARD_BIT;
468
469	/* update record header with correct final size prefix */
470	xchg(&hdr->len, new_len);
471
472	/* if consumer caught up and is waiting for our record, notify about
473	 * new data availability
474	 */
475	rec_pos = (void *)hdr - (void *)rb->data;
476	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
477
478	if (flags & BPF_RB_FORCE_WAKEUP)
479		irq_work_queue(&rb->work);
480	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
481		irq_work_queue(&rb->work);
482}
483
484BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
485{
486	bpf_ringbuf_commit(sample, flags, false /* discard */);
487	return 0;
488}
489
490const struct bpf_func_proto bpf_ringbuf_submit_proto = {
491	.func		= bpf_ringbuf_submit,
492	.ret_type	= RET_VOID,
493	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
494	.arg2_type	= ARG_ANYTHING,
495};
496
497BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
498{
499	bpf_ringbuf_commit(sample, flags, true /* discard */);
500	return 0;
501}
502
503const struct bpf_func_proto bpf_ringbuf_discard_proto = {
504	.func		= bpf_ringbuf_discard,
505	.ret_type	= RET_VOID,
506	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
507	.arg2_type	= ARG_ANYTHING,
508};
509
510BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
511	   u64, flags)
512{
513	struct bpf_ringbuf_map *rb_map;
514	void *rec;
515
516	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
517		return -EINVAL;
518
519	rb_map = container_of(map, struct bpf_ringbuf_map, map);
520	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
521	if (!rec)
522		return -EAGAIN;
523
524	memcpy(rec, data, size);
525	bpf_ringbuf_commit(rec, flags, false /* discard */);
526	return 0;
527}
528
529const struct bpf_func_proto bpf_ringbuf_output_proto = {
530	.func		= bpf_ringbuf_output,
531	.ret_type	= RET_INTEGER,
532	.arg1_type	= ARG_CONST_MAP_PTR,
533	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
534	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
535	.arg4_type	= ARG_ANYTHING,
536};
537
538BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
539{
540	struct bpf_ringbuf *rb;
541
542	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
543
544	switch (flags) {
545	case BPF_RB_AVAIL_DATA:
546		return ringbuf_avail_data_sz(rb);
547	case BPF_RB_RING_SIZE:
548		return ringbuf_total_data_sz(rb);
549	case BPF_RB_CONS_POS:
550		return smp_load_acquire(&rb->consumer_pos);
551	case BPF_RB_PROD_POS:
552		return smp_load_acquire(&rb->producer_pos);
553	default:
554		return 0;
555	}
556}
557
558const struct bpf_func_proto bpf_ringbuf_query_proto = {
559	.func		= bpf_ringbuf_query,
560	.ret_type	= RET_INTEGER,
561	.arg1_type	= ARG_CONST_MAP_PTR,
562	.arg2_type	= ARG_ANYTHING,
563};
564
565BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
566	   struct bpf_dynptr_kern *, ptr)
567{
568	struct bpf_ringbuf_map *rb_map;
569	void *sample;
570	int err;
571
572	if (unlikely(flags)) {
573		bpf_dynptr_set_null(ptr);
574		return -EINVAL;
575	}
576
577	err = bpf_dynptr_check_size(size);
578	if (err) {
579		bpf_dynptr_set_null(ptr);
580		return err;
581	}
582
583	rb_map = container_of(map, struct bpf_ringbuf_map, map);
584
585	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
586	if (!sample) {
587		bpf_dynptr_set_null(ptr);
588		return -EINVAL;
589	}
590
591	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
592
593	return 0;
594}
595
596const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
597	.func		= bpf_ringbuf_reserve_dynptr,
598	.ret_type	= RET_INTEGER,
599	.arg1_type	= ARG_CONST_MAP_PTR,
600	.arg2_type	= ARG_ANYTHING,
601	.arg3_type	= ARG_ANYTHING,
602	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
603};
604
605BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
606{
607	if (!ptr->data)
608		return 0;
609
610	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
611
612	bpf_dynptr_set_null(ptr);
613
614	return 0;
615}
616
617const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
618	.func		= bpf_ringbuf_submit_dynptr,
619	.ret_type	= RET_VOID,
620	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
621	.arg2_type	= ARG_ANYTHING,
622};
623
624BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
625{
626	if (!ptr->data)
627		return 0;
628
629	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
630
631	bpf_dynptr_set_null(ptr);
632
633	return 0;
634}
635
636const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
637	.func		= bpf_ringbuf_discard_dynptr,
638	.ret_type	= RET_VOID,
639	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
640	.arg2_type	= ARG_ANYTHING,
641};
642
643static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
644{
645	int err;
646	u32 hdr_len, sample_len, total_len, flags, *hdr;
647	u64 cons_pos, prod_pos;
648
649	/* Synchronizes with smp_store_release() in user-space producer. */
650	prod_pos = smp_load_acquire(&rb->producer_pos);
651	if (prod_pos % 8)
652		return -EINVAL;
653
654	/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
655	cons_pos = smp_load_acquire(&rb->consumer_pos);
656	if (cons_pos >= prod_pos)
657		return -ENODATA;
658
659	hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
660	/* Synchronizes with smp_store_release() in user-space producer. */
661	hdr_len = smp_load_acquire(hdr);
662	flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
663	sample_len = hdr_len & ~flags;
664	total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
665
666	/* The sample must fit within the region advertised by the producer position. */
667	if (total_len > prod_pos - cons_pos)
668		return -EINVAL;
669
670	/* The sample must fit within the data region of the ring buffer. */
671	if (total_len > ringbuf_total_data_sz(rb))
672		return -E2BIG;
673
674	/* The sample must fit into a struct bpf_dynptr. */
675	err = bpf_dynptr_check_size(sample_len);
676	if (err)
677		return -E2BIG;
678
679	if (flags & BPF_RINGBUF_DISCARD_BIT) {
680		/* If the discard bit is set, the sample should be skipped.
681		 *
682		 * Update the consumer pos, and return -EAGAIN so the caller
683		 * knows to skip this sample and try to read the next one.
684		 */
685		smp_store_release(&rb->consumer_pos, cons_pos + total_len);
686		return -EAGAIN;
687	}
688
689	if (flags & BPF_RINGBUF_BUSY_BIT)
690		return -ENODATA;
691
692	*sample = (void *)((uintptr_t)rb->data +
693			   (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
694	*size = sample_len;
695	return 0;
696}
697
698static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
699{
700	u64 consumer_pos;
701	u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
702
703	/* Using smp_load_acquire() is unnecessary here, as the busy-bit
704	 * prevents another task from writing to consumer_pos after it was read
705	 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
706	 */
707	consumer_pos = rb->consumer_pos;
708	 /* Synchronizes with smp_load_acquire() in user-space producer. */
709	smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
710}
711
712BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
713	   void *, callback_fn, void *, callback_ctx, u64, flags)
714{
715	struct bpf_ringbuf *rb;
716	long samples, discarded_samples = 0, ret = 0;
717	bpf_callback_t callback = (bpf_callback_t)callback_fn;
718	u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
719	int busy = 0;
720
721	if (unlikely(flags & ~wakeup_flags))
722		return -EINVAL;
723
724	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
725
726	/* If another consumer is already consuming a sample, wait for them to finish. */
727	if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
728		return -EBUSY;
729
730	for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
731		int err;
732		u32 size;
733		void *sample;
734		struct bpf_dynptr_kern dynptr;
735
736		err = __bpf_user_ringbuf_peek(rb, &sample, &size);
737		if (err) {
738			if (err == -ENODATA) {
739				break;
740			} else if (err == -EAGAIN) {
741				discarded_samples++;
742				continue;
743			} else {
744				ret = err;
745				goto schedule_work_return;
746			}
747		}
748
749		bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
750		ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
751		__bpf_user_ringbuf_sample_release(rb, size, flags);
752	}
753	ret = samples - discarded_samples;
754
755schedule_work_return:
756	/* Prevent the clearing of the busy-bit from being reordered before the
757	 * storing of any rb consumer or producer positions.
758	 */
759	smp_mb__before_atomic();
760	atomic_set(&rb->busy, 0);
761
762	if (flags & BPF_RB_FORCE_WAKEUP)
763		irq_work_queue(&rb->work);
764	else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
765		irq_work_queue(&rb->work);
766	return ret;
767}
768
769const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
770	.func		= bpf_user_ringbuf_drain,
771	.ret_type	= RET_INTEGER,
772	.arg1_type	= ARG_CONST_MAP_PTR,
773	.arg2_type	= ARG_PTR_TO_FUNC,
774	.arg3_type	= ARG_PTR_TO_STACK_OR_NULL,
775	.arg4_type	= ARG_ANYTHING,
776};
v6.9.4
  1#include <linux/bpf.h>
  2#include <linux/btf.h>
  3#include <linux/err.h>
  4#include <linux/irq_work.h>
  5#include <linux/slab.h>
  6#include <linux/filter.h>
  7#include <linux/mm.h>
  8#include <linux/vmalloc.h>
  9#include <linux/wait.h>
 10#include <linux/poll.h>
 11#include <linux/kmemleak.h>
 12#include <uapi/linux/btf.h>
 13#include <linux/btf_ids.h>
 14
 15#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
 16
 17/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
 18#define RINGBUF_PGOFF \
 19	(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
 20/* consumer page and producer page */
 21#define RINGBUF_POS_PAGES 2
 22#define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
 23
 24#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
 25
 
 
 
 
 
 
 
 
 
 26struct bpf_ringbuf {
 27	wait_queue_head_t waitq;
 28	struct irq_work work;
 29	u64 mask;
 30	struct page **pages;
 31	int nr_pages;
 32	spinlock_t spinlock ____cacheline_aligned_in_smp;
 33	/* For user-space producer ring buffers, an atomic_t busy bit is used
 34	 * to synchronize access to the ring buffers in the kernel, rather than
 35	 * the spinlock that is used for kernel-producer ring buffers. This is
 36	 * done because the ring buffer must hold a lock across a BPF program's
 37	 * callback:
 38	 *
 39	 *    __bpf_user_ringbuf_peek() // lock acquired
 40	 * -> program callback_fn()
 41	 * -> __bpf_user_ringbuf_sample_release() // lock released
 42	 *
 43	 * It is unsafe and incorrect to hold an IRQ spinlock across what could
 44	 * be a long execution window, so we instead simply disallow concurrent
 45	 * access to the ring buffer by kernel consumers, and return -EBUSY from
 46	 * __bpf_user_ringbuf_peek() if the busy bit is held by another task.
 47	 */
 48	atomic_t busy ____cacheline_aligned_in_smp;
 49	/* Consumer and producer counters are put into separate pages to
 50	 * allow each position to be mapped with different permissions.
 51	 * This prevents a user-space application from modifying the
 52	 * position and ruining in-kernel tracking. The permissions of the
 53	 * pages depend on who is producing samples: user-space or the
 54	 * kernel.
 55	 *
 56	 * Kernel-producer
 57	 * ---------------
 58	 * The producer position and data pages are mapped as r/o in
 59	 * userspace. For this approach, bits in the header of samples are
 60	 * used to signal to user-space, and to other producers, whether a
 61	 * sample is currently being written.
 62	 *
 63	 * User-space producer
 64	 * -------------------
 65	 * Only the page containing the consumer position is mapped r/o in
 66	 * user-space. User-space producers also use bits of the header to
 67	 * communicate to the kernel, but the kernel must carefully check and
 68	 * validate each sample to ensure that they're correctly formatted, and
 69	 * fully contained within the ring buffer.
 70	 */
 71	unsigned long consumer_pos __aligned(PAGE_SIZE);
 72	unsigned long producer_pos __aligned(PAGE_SIZE);
 73	char data[] __aligned(PAGE_SIZE);
 74};
 75
 76struct bpf_ringbuf_map {
 77	struct bpf_map map;
 78	struct bpf_ringbuf *rb;
 79};
 80
 81/* 8-byte ring buffer record header structure */
 82struct bpf_ringbuf_hdr {
 83	u32 len;
 84	u32 pg_off;
 85};
 86
 87static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
 88{
 89	const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
 90			    __GFP_NOWARN | __GFP_ZERO;
 91	int nr_meta_pages = RINGBUF_NR_META_PAGES;
 92	int nr_data_pages = data_sz >> PAGE_SHIFT;
 93	int nr_pages = nr_meta_pages + nr_data_pages;
 94	struct page **pages, *page;
 95	struct bpf_ringbuf *rb;
 96	size_t array_size;
 97	int i;
 98
 99	/* Each data page is mapped twice to allow "virtual"
100	 * continuous read of samples wrapping around the end of ring
101	 * buffer area:
102	 * ------------------------------------------------------
103	 * | meta pages |  real data pages  |  same data pages  |
104	 * ------------------------------------------------------
105	 * |            | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
106	 * ------------------------------------------------------
107	 * |            | TA             DA | TA             DA |
108	 * ------------------------------------------------------
109	 *                               ^^^^^^^
110	 *                                  |
111	 * Here, no need to worry about special handling of wrapped-around
112	 * data due to double-mapped data pages. This works both in kernel and
113	 * when mmap()'ed in user-space, simplifying both kernel and
114	 * user-space implementations significantly.
115	 */
116	array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
117	pages = bpf_map_area_alloc(array_size, numa_node);
118	if (!pages)
119		return NULL;
120
121	for (i = 0; i < nr_pages; i++) {
122		page = alloc_pages_node(numa_node, flags, 0);
123		if (!page) {
124			nr_pages = i;
125			goto err_free_pages;
126		}
127		pages[i] = page;
128		if (i >= nr_meta_pages)
129			pages[nr_data_pages + i] = page;
130	}
131
132	rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
133		  VM_MAP | VM_USERMAP, PAGE_KERNEL);
134	if (rb) {
135		kmemleak_not_leak(pages);
136		rb->pages = pages;
137		rb->nr_pages = nr_pages;
138		return rb;
139	}
140
141err_free_pages:
142	for (i = 0; i < nr_pages; i++)
143		__free_page(pages[i]);
144	bpf_map_area_free(pages);
145	return NULL;
146}
147
148static void bpf_ringbuf_notify(struct irq_work *work)
149{
150	struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
151
152	wake_up_all(&rb->waitq);
153}
154
155/* Maximum size of ring buffer area is limited by 32-bit page offset within
156 * record header, counted in pages. Reserve 8 bits for extensibility, and
157 * take into account few extra pages for consumer/producer pages and
158 * non-mmap()'able parts, the current maximum size would be:
159 *
160 *     (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
161 *
162 * This gives 64GB limit, which seems plenty for single ring buffer. Now
163 * considering that the maximum value of data_sz is (4GB - 1), there
164 * will be no overflow, so just note the size limit in the comments.
165 */
166static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
167{
168	struct bpf_ringbuf *rb;
169
170	rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
171	if (!rb)
172		return NULL;
173
174	spin_lock_init(&rb->spinlock);
175	atomic_set(&rb->busy, 0);
176	init_waitqueue_head(&rb->waitq);
177	init_irq_work(&rb->work, bpf_ringbuf_notify);
178
179	rb->mask = data_sz - 1;
180	rb->consumer_pos = 0;
181	rb->producer_pos = 0;
182
183	return rb;
184}
185
186static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
187{
188	struct bpf_ringbuf_map *rb_map;
189
190	if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
191		return ERR_PTR(-EINVAL);
192
193	if (attr->key_size || attr->value_size ||
194	    !is_power_of_2(attr->max_entries) ||
195	    !PAGE_ALIGNED(attr->max_entries))
196		return ERR_PTR(-EINVAL);
197
 
 
 
 
 
 
198	rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
199	if (!rb_map)
200		return ERR_PTR(-ENOMEM);
201
202	bpf_map_init_from_attr(&rb_map->map, attr);
203
204	rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
205	if (!rb_map->rb) {
206		bpf_map_area_free(rb_map);
207		return ERR_PTR(-ENOMEM);
208	}
209
210	return &rb_map->map;
211}
212
213static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
214{
215	/* copy pages pointer and nr_pages to local variable, as we are going
216	 * to unmap rb itself with vunmap() below
217	 */
218	struct page **pages = rb->pages;
219	int i, nr_pages = rb->nr_pages;
220
221	vunmap(rb);
222	for (i = 0; i < nr_pages; i++)
223		__free_page(pages[i]);
224	bpf_map_area_free(pages);
225}
226
227static void ringbuf_map_free(struct bpf_map *map)
228{
229	struct bpf_ringbuf_map *rb_map;
230
231	rb_map = container_of(map, struct bpf_ringbuf_map, map);
232	bpf_ringbuf_free(rb_map->rb);
233	bpf_map_area_free(rb_map);
234}
235
236static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
237{
238	return ERR_PTR(-ENOTSUPP);
239}
240
241static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
242				    u64 flags)
243{
244	return -ENOTSUPP;
245}
246
247static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
248{
249	return -ENOTSUPP;
250}
251
252static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
253				    void *next_key)
254{
255	return -ENOTSUPP;
256}
257
258static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
259{
260	struct bpf_ringbuf_map *rb_map;
261
262	rb_map = container_of(map, struct bpf_ringbuf_map, map);
263
264	if (vma->vm_flags & VM_WRITE) {
265		/* allow writable mapping for the consumer_pos only */
266		if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
267			return -EPERM;
268	} else {
269		vm_flags_clear(vma, VM_MAYWRITE);
270	}
271	/* remap_vmalloc_range() checks size and offset constraints */
272	return remap_vmalloc_range(vma, rb_map->rb,
273				   vma->vm_pgoff + RINGBUF_PGOFF);
274}
275
276static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
277{
278	struct bpf_ringbuf_map *rb_map;
279
280	rb_map = container_of(map, struct bpf_ringbuf_map, map);
281
282	if (vma->vm_flags & VM_WRITE) {
283		if (vma->vm_pgoff == 0)
284			/* Disallow writable mappings to the consumer pointer,
285			 * and allow writable mappings to both the producer
286			 * position, and the ring buffer data itself.
287			 */
288			return -EPERM;
289	} else {
290		vm_flags_clear(vma, VM_MAYWRITE);
291	}
292	/* remap_vmalloc_range() checks size and offset constraints */
293	return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
294}
295
296static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
297{
298	unsigned long cons_pos, prod_pos;
299
300	cons_pos = smp_load_acquire(&rb->consumer_pos);
301	prod_pos = smp_load_acquire(&rb->producer_pos);
302	return prod_pos - cons_pos;
303}
304
305static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
306{
307	return rb->mask + 1;
308}
309
310static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
311				      struct poll_table_struct *pts)
312{
313	struct bpf_ringbuf_map *rb_map;
314
315	rb_map = container_of(map, struct bpf_ringbuf_map, map);
316	poll_wait(filp, &rb_map->rb->waitq, pts);
317
318	if (ringbuf_avail_data_sz(rb_map->rb))
319		return EPOLLIN | EPOLLRDNORM;
320	return 0;
321}
322
323static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
324				      struct poll_table_struct *pts)
325{
326	struct bpf_ringbuf_map *rb_map;
327
328	rb_map = container_of(map, struct bpf_ringbuf_map, map);
329	poll_wait(filp, &rb_map->rb->waitq, pts);
330
331	if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
332		return EPOLLOUT | EPOLLWRNORM;
333	return 0;
334}
335
336static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
337{
338	struct bpf_ringbuf *rb;
339	int nr_data_pages;
340	int nr_meta_pages;
341	u64 usage = sizeof(struct bpf_ringbuf_map);
342
343	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
344	usage += (u64)rb->nr_pages << PAGE_SHIFT;
345	nr_meta_pages = RINGBUF_NR_META_PAGES;
346	nr_data_pages = map->max_entries >> PAGE_SHIFT;
347	usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
348	return usage;
349}
350
351BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
352const struct bpf_map_ops ringbuf_map_ops = {
353	.map_meta_equal = bpf_map_meta_equal,
354	.map_alloc = ringbuf_map_alloc,
355	.map_free = ringbuf_map_free,
356	.map_mmap = ringbuf_map_mmap_kern,
357	.map_poll = ringbuf_map_poll_kern,
358	.map_lookup_elem = ringbuf_map_lookup_elem,
359	.map_update_elem = ringbuf_map_update_elem,
360	.map_delete_elem = ringbuf_map_delete_elem,
361	.map_get_next_key = ringbuf_map_get_next_key,
362	.map_mem_usage = ringbuf_map_mem_usage,
363	.map_btf_id = &ringbuf_map_btf_ids[0],
364};
365
366BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
367const struct bpf_map_ops user_ringbuf_map_ops = {
368	.map_meta_equal = bpf_map_meta_equal,
369	.map_alloc = ringbuf_map_alloc,
370	.map_free = ringbuf_map_free,
371	.map_mmap = ringbuf_map_mmap_user,
372	.map_poll = ringbuf_map_poll_user,
373	.map_lookup_elem = ringbuf_map_lookup_elem,
374	.map_update_elem = ringbuf_map_update_elem,
375	.map_delete_elem = ringbuf_map_delete_elem,
376	.map_get_next_key = ringbuf_map_get_next_key,
377	.map_mem_usage = ringbuf_map_mem_usage,
378	.map_btf_id = &user_ringbuf_map_btf_ids[0],
379};
380
381/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
382 * calculate offset from record metadata to ring buffer in pages, rounded
383 * down. This page offset is stored as part of record metadata and allows to
384 * restore struct bpf_ringbuf * from record pointer. This page offset is
385 * stored at offset 4 of record metadata header.
386 */
387static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
388				     struct bpf_ringbuf_hdr *hdr)
389{
390	return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
391}
392
393/* Given pointer to ring buffer record header, restore pointer to struct
394 * bpf_ringbuf itself by using page offset stored at offset 4
395 */
396static struct bpf_ringbuf *
397bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
398{
399	unsigned long addr = (unsigned long)(void *)hdr;
400	unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
401
402	return (void*)((addr & PAGE_MASK) - off);
403}
404
405static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
406{
407	unsigned long cons_pos, prod_pos, new_prod_pos, flags;
408	u32 len, pg_off;
409	struct bpf_ringbuf_hdr *hdr;
410
411	if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
412		return NULL;
413
414	len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
415	if (len > ringbuf_total_data_sz(rb))
416		return NULL;
417
418	cons_pos = smp_load_acquire(&rb->consumer_pos);
419
420	if (in_nmi()) {
421		if (!spin_trylock_irqsave(&rb->spinlock, flags))
422			return NULL;
423	} else {
424		spin_lock_irqsave(&rb->spinlock, flags);
425	}
426
427	prod_pos = rb->producer_pos;
428	new_prod_pos = prod_pos + len;
429
430	/* check for out of ringbuf space by ensuring producer position
431	 * doesn't advance more than (ringbuf_size - 1) ahead
432	 */
433	if (new_prod_pos - cons_pos > rb->mask) {
434		spin_unlock_irqrestore(&rb->spinlock, flags);
435		return NULL;
436	}
437
438	hdr = (void *)rb->data + (prod_pos & rb->mask);
439	pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
440	hdr->len = size | BPF_RINGBUF_BUSY_BIT;
441	hdr->pg_off = pg_off;
442
443	/* pairs with consumer's smp_load_acquire() */
444	smp_store_release(&rb->producer_pos, new_prod_pos);
445
446	spin_unlock_irqrestore(&rb->spinlock, flags);
447
448	return (void *)hdr + BPF_RINGBUF_HDR_SZ;
449}
450
451BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
452{
453	struct bpf_ringbuf_map *rb_map;
454
455	if (unlikely(flags))
456		return 0;
457
458	rb_map = container_of(map, struct bpf_ringbuf_map, map);
459	return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
460}
461
462const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
463	.func		= bpf_ringbuf_reserve,
464	.ret_type	= RET_PTR_TO_RINGBUF_MEM_OR_NULL,
465	.arg1_type	= ARG_CONST_MAP_PTR,
466	.arg2_type	= ARG_CONST_ALLOC_SIZE_OR_ZERO,
467	.arg3_type	= ARG_ANYTHING,
468};
469
470static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
471{
472	unsigned long rec_pos, cons_pos;
473	struct bpf_ringbuf_hdr *hdr;
474	struct bpf_ringbuf *rb;
475	u32 new_len;
476
477	hdr = sample - BPF_RINGBUF_HDR_SZ;
478	rb = bpf_ringbuf_restore_from_rec(hdr);
479	new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
480	if (discard)
481		new_len |= BPF_RINGBUF_DISCARD_BIT;
482
483	/* update record header with correct final size prefix */
484	xchg(&hdr->len, new_len);
485
486	/* if consumer caught up and is waiting for our record, notify about
487	 * new data availability
488	 */
489	rec_pos = (void *)hdr - (void *)rb->data;
490	cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
491
492	if (flags & BPF_RB_FORCE_WAKEUP)
493		irq_work_queue(&rb->work);
494	else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
495		irq_work_queue(&rb->work);
496}
497
498BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
499{
500	bpf_ringbuf_commit(sample, flags, false /* discard */);
501	return 0;
502}
503
504const struct bpf_func_proto bpf_ringbuf_submit_proto = {
505	.func		= bpf_ringbuf_submit,
506	.ret_type	= RET_VOID,
507	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
508	.arg2_type	= ARG_ANYTHING,
509};
510
511BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
512{
513	bpf_ringbuf_commit(sample, flags, true /* discard */);
514	return 0;
515}
516
517const struct bpf_func_proto bpf_ringbuf_discard_proto = {
518	.func		= bpf_ringbuf_discard,
519	.ret_type	= RET_VOID,
520	.arg1_type	= ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
521	.arg2_type	= ARG_ANYTHING,
522};
523
524BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
525	   u64, flags)
526{
527	struct bpf_ringbuf_map *rb_map;
528	void *rec;
529
530	if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
531		return -EINVAL;
532
533	rb_map = container_of(map, struct bpf_ringbuf_map, map);
534	rec = __bpf_ringbuf_reserve(rb_map->rb, size);
535	if (!rec)
536		return -EAGAIN;
537
538	memcpy(rec, data, size);
539	bpf_ringbuf_commit(rec, flags, false /* discard */);
540	return 0;
541}
542
543const struct bpf_func_proto bpf_ringbuf_output_proto = {
544	.func		= bpf_ringbuf_output,
545	.ret_type	= RET_INTEGER,
546	.arg1_type	= ARG_CONST_MAP_PTR,
547	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
548	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
549	.arg4_type	= ARG_ANYTHING,
550};
551
552BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
553{
554	struct bpf_ringbuf *rb;
555
556	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
557
558	switch (flags) {
559	case BPF_RB_AVAIL_DATA:
560		return ringbuf_avail_data_sz(rb);
561	case BPF_RB_RING_SIZE:
562		return ringbuf_total_data_sz(rb);
563	case BPF_RB_CONS_POS:
564		return smp_load_acquire(&rb->consumer_pos);
565	case BPF_RB_PROD_POS:
566		return smp_load_acquire(&rb->producer_pos);
567	default:
568		return 0;
569	}
570}
571
572const struct bpf_func_proto bpf_ringbuf_query_proto = {
573	.func		= bpf_ringbuf_query,
574	.ret_type	= RET_INTEGER,
575	.arg1_type	= ARG_CONST_MAP_PTR,
576	.arg2_type	= ARG_ANYTHING,
577};
578
579BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
580	   struct bpf_dynptr_kern *, ptr)
581{
582	struct bpf_ringbuf_map *rb_map;
583	void *sample;
584	int err;
585
586	if (unlikely(flags)) {
587		bpf_dynptr_set_null(ptr);
588		return -EINVAL;
589	}
590
591	err = bpf_dynptr_check_size(size);
592	if (err) {
593		bpf_dynptr_set_null(ptr);
594		return err;
595	}
596
597	rb_map = container_of(map, struct bpf_ringbuf_map, map);
598
599	sample = __bpf_ringbuf_reserve(rb_map->rb, size);
600	if (!sample) {
601		bpf_dynptr_set_null(ptr);
602		return -EINVAL;
603	}
604
605	bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
606
607	return 0;
608}
609
610const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
611	.func		= bpf_ringbuf_reserve_dynptr,
612	.ret_type	= RET_INTEGER,
613	.arg1_type	= ARG_CONST_MAP_PTR,
614	.arg2_type	= ARG_ANYTHING,
615	.arg3_type	= ARG_ANYTHING,
616	.arg4_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT,
617};
618
619BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
620{
621	if (!ptr->data)
622		return 0;
623
624	bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
625
626	bpf_dynptr_set_null(ptr);
627
628	return 0;
629}
630
631const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
632	.func		= bpf_ringbuf_submit_dynptr,
633	.ret_type	= RET_VOID,
634	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
635	.arg2_type	= ARG_ANYTHING,
636};
637
638BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
639{
640	if (!ptr->data)
641		return 0;
642
643	bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
644
645	bpf_dynptr_set_null(ptr);
646
647	return 0;
648}
649
650const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
651	.func		= bpf_ringbuf_discard_dynptr,
652	.ret_type	= RET_VOID,
653	.arg1_type	= ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
654	.arg2_type	= ARG_ANYTHING,
655};
656
657static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
658{
659	int err;
660	u32 hdr_len, sample_len, total_len, flags, *hdr;
661	u64 cons_pos, prod_pos;
662
663	/* Synchronizes with smp_store_release() in user-space producer. */
664	prod_pos = smp_load_acquire(&rb->producer_pos);
665	if (prod_pos % 8)
666		return -EINVAL;
667
668	/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
669	cons_pos = smp_load_acquire(&rb->consumer_pos);
670	if (cons_pos >= prod_pos)
671		return -ENODATA;
672
673	hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
674	/* Synchronizes with smp_store_release() in user-space producer. */
675	hdr_len = smp_load_acquire(hdr);
676	flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
677	sample_len = hdr_len & ~flags;
678	total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
679
680	/* The sample must fit within the region advertised by the producer position. */
681	if (total_len > prod_pos - cons_pos)
682		return -EINVAL;
683
684	/* The sample must fit within the data region of the ring buffer. */
685	if (total_len > ringbuf_total_data_sz(rb))
686		return -E2BIG;
687
688	/* The sample must fit into a struct bpf_dynptr. */
689	err = bpf_dynptr_check_size(sample_len);
690	if (err)
691		return -E2BIG;
692
693	if (flags & BPF_RINGBUF_DISCARD_BIT) {
694		/* If the discard bit is set, the sample should be skipped.
695		 *
696		 * Update the consumer pos, and return -EAGAIN so the caller
697		 * knows to skip this sample and try to read the next one.
698		 */
699		smp_store_release(&rb->consumer_pos, cons_pos + total_len);
700		return -EAGAIN;
701	}
702
703	if (flags & BPF_RINGBUF_BUSY_BIT)
704		return -ENODATA;
705
706	*sample = (void *)((uintptr_t)rb->data +
707			   (uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
708	*size = sample_len;
709	return 0;
710}
711
712static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
713{
714	u64 consumer_pos;
715	u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
716
717	/* Using smp_load_acquire() is unnecessary here, as the busy-bit
718	 * prevents another task from writing to consumer_pos after it was read
719	 * by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
720	 */
721	consumer_pos = rb->consumer_pos;
722	 /* Synchronizes with smp_load_acquire() in user-space producer. */
723	smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
724}
725
726BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
727	   void *, callback_fn, void *, callback_ctx, u64, flags)
728{
729	struct bpf_ringbuf *rb;
730	long samples, discarded_samples = 0, ret = 0;
731	bpf_callback_t callback = (bpf_callback_t)callback_fn;
732	u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
733	int busy = 0;
734
735	if (unlikely(flags & ~wakeup_flags))
736		return -EINVAL;
737
738	rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
739
740	/* If another consumer is already consuming a sample, wait for them to finish. */
741	if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
742		return -EBUSY;
743
744	for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
745		int err;
746		u32 size;
747		void *sample;
748		struct bpf_dynptr_kern dynptr;
749
750		err = __bpf_user_ringbuf_peek(rb, &sample, &size);
751		if (err) {
752			if (err == -ENODATA) {
753				break;
754			} else if (err == -EAGAIN) {
755				discarded_samples++;
756				continue;
757			} else {
758				ret = err;
759				goto schedule_work_return;
760			}
761		}
762
763		bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
764		ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
765		__bpf_user_ringbuf_sample_release(rb, size, flags);
766	}
767	ret = samples - discarded_samples;
768
769schedule_work_return:
770	/* Prevent the clearing of the busy-bit from being reordered before the
771	 * storing of any rb consumer or producer positions.
772	 */
773	atomic_set_release(&rb->busy, 0);
 
774
775	if (flags & BPF_RB_FORCE_WAKEUP)
776		irq_work_queue(&rb->work);
777	else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
778		irq_work_queue(&rb->work);
779	return ret;
780}
781
782const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
783	.func		= bpf_user_ringbuf_drain,
784	.ret_type	= RET_INTEGER,
785	.arg1_type	= ARG_CONST_MAP_PTR,
786	.arg2_type	= ARG_PTR_TO_FUNC,
787	.arg3_type	= ARG_PTR_TO_STACK_OR_NULL,
788	.arg4_type	= ARG_ANYTHING,
789};