Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <uapi/linux/btf.h>
   5#include <uapi/linux/bpf.h>
   6#include <uapi/linux/bpf_perf_event.h>
   7#include <uapi/linux/types.h>
   8#include <linux/seq_file.h>
   9#include <linux/compiler.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/slab.h>
  13#include <linux/anon_inodes.h>
  14#include <linux/file.h>
  15#include <linux/uaccess.h>
  16#include <linux/kernel.h>
  17#include <linux/idr.h>
  18#include <linux/sort.h>
  19#include <linux/bpf_verifier.h>
  20#include <linux/btf.h>
  21#include <linux/btf_ids.h>
 
  22#include <linux/bpf_lsm.h>
  23#include <linux/skmsg.h>
  24#include <linux/perf_event.h>
  25#include <linux/bsearch.h>
  26#include <linux/kobject.h>
  27#include <linux/sysfs.h>
 
 
 
  28#include <net/sock.h>
 
  29#include "../tools/lib/bpf/relo_core.h"
  30
  31/* BTF (BPF Type Format) is the meta data format which describes
  32 * the data types of BPF program/map.  Hence, it basically focus
  33 * on the C programming language which the modern BPF is primary
  34 * using.
  35 *
  36 * ELF Section:
  37 * ~~~~~~~~~~~
  38 * The BTF data is stored under the ".BTF" ELF section
  39 *
  40 * struct btf_type:
  41 * ~~~~~~~~~~~~~~~
  42 * Each 'struct btf_type' object describes a C data type.
  43 * Depending on the type it is describing, a 'struct btf_type'
  44 * object may be followed by more data.  F.e.
  45 * To describe an array, 'struct btf_type' is followed by
  46 * 'struct btf_array'.
  47 *
  48 * 'struct btf_type' and any extra data following it are
  49 * 4 bytes aligned.
  50 *
  51 * Type section:
  52 * ~~~~~~~~~~~~~
  53 * The BTF type section contains a list of 'struct btf_type' objects.
  54 * Each one describes a C type.  Recall from the above section
  55 * that a 'struct btf_type' object could be immediately followed by extra
  56 * data in order to describe some particular C types.
  57 *
  58 * type_id:
  59 * ~~~~~~~
  60 * Each btf_type object is identified by a type_id.  The type_id
  61 * is implicitly implied by the location of the btf_type object in
  62 * the BTF type section.  The first one has type_id 1.  The second
  63 * one has type_id 2...etc.  Hence, an earlier btf_type has
  64 * a smaller type_id.
  65 *
  66 * A btf_type object may refer to another btf_type object by using
  67 * type_id (i.e. the "type" in the "struct btf_type").
  68 *
  69 * NOTE that we cannot assume any reference-order.
  70 * A btf_type object can refer to an earlier btf_type object
  71 * but it can also refer to a later btf_type object.
  72 *
  73 * For example, to describe "const void *".  A btf_type
  74 * object describing "const" may refer to another btf_type
  75 * object describing "void *".  This type-reference is done
  76 * by specifying type_id:
  77 *
  78 * [1] CONST (anon) type_id=2
  79 * [2] PTR (anon) type_id=0
  80 *
  81 * The above is the btf_verifier debug log:
  82 *   - Each line started with "[?]" is a btf_type object
  83 *   - [?] is the type_id of the btf_type object.
  84 *   - CONST/PTR is the BTF_KIND_XXX
  85 *   - "(anon)" is the name of the type.  It just
  86 *     happens that CONST and PTR has no name.
  87 *   - type_id=XXX is the 'u32 type' in btf_type
  88 *
  89 * NOTE: "void" has type_id 0
  90 *
  91 * String section:
  92 * ~~~~~~~~~~~~~~
  93 * The BTF string section contains the names used by the type section.
  94 * Each string is referred by an "offset" from the beginning of the
  95 * string section.
  96 *
  97 * Each string is '\0' terminated.
  98 *
  99 * The first character in the string section must be '\0'
 100 * which is used to mean 'anonymous'. Some btf_type may not
 101 * have a name.
 102 */
 103
 104/* BTF verification:
 105 *
 106 * To verify BTF data, two passes are needed.
 107 *
 108 * Pass #1
 109 * ~~~~~~~
 110 * The first pass is to collect all btf_type objects to
 111 * an array: "btf->types".
 112 *
 113 * Depending on the C type that a btf_type is describing,
 114 * a btf_type may be followed by extra data.  We don't know
 115 * how many btf_type is there, and more importantly we don't
 116 * know where each btf_type is located in the type section.
 117 *
 118 * Without knowing the location of each type_id, most verifications
 119 * cannot be done.  e.g. an earlier btf_type may refer to a later
 120 * btf_type (recall the "const void *" above), so we cannot
 121 * check this type-reference in the first pass.
 122 *
 123 * In the first pass, it still does some verifications (e.g.
 124 * checking the name is a valid offset to the string section).
 125 *
 126 * Pass #2
 127 * ~~~~~~~
 128 * The main focus is to resolve a btf_type that is referring
 129 * to another type.
 130 *
 131 * We have to ensure the referring type:
 132 * 1) does exist in the BTF (i.e. in btf->types[])
 133 * 2) does not cause a loop:
 134 *	struct A {
 135 *		struct B b;
 136 *	};
 137 *
 138 *	struct B {
 139 *		struct A a;
 140 *	};
 141 *
 142 * btf_type_needs_resolve() decides if a btf_type needs
 143 * to be resolved.
 144 *
 145 * The needs_resolve type implements the "resolve()" ops which
 146 * essentially does a DFS and detects backedge.
 147 *
 148 * During resolve (or DFS), different C types have different
 149 * "RESOLVED" conditions.
 150 *
 151 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
 152 * members because a member is always referring to another
 153 * type.  A struct's member can be treated as "RESOLVED" if
 154 * it is referring to a BTF_KIND_PTR.  Otherwise, the
 155 * following valid C struct would be rejected:
 156 *
 157 *	struct A {
 158 *		int m;
 159 *		struct A *a;
 160 *	};
 161 *
 162 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
 163 * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
 164 * detect a pointer loop, e.g.:
 165 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
 166 *                        ^                                         |
 167 *                        +-----------------------------------------+
 168 *
 169 */
 170
 171#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
 172#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
 173#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
 174#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
 175#define BITS_ROUNDUP_BYTES(bits) \
 176	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
 177
 178#define BTF_INFO_MASK 0x9f00ffff
 179#define BTF_INT_MASK 0x0fffffff
 180#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
 181#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
 182
 183/* 16MB for 64k structs and each has 16 members and
 184 * a few MB spaces for the string section.
 185 * The hard limit is S32_MAX.
 186 */
 187#define BTF_MAX_SIZE (16 * 1024 * 1024)
 188
 189#define for_each_member_from(i, from, struct_type, member)		\
 190	for (i = from, member = btf_type_member(struct_type) + from;	\
 191	     i < btf_type_vlen(struct_type);				\
 192	     i++, member++)
 193
 194#define for_each_vsi_from(i, from, struct_type, member)				\
 195	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
 196	     i < btf_type_vlen(struct_type);					\
 197	     i++, member++)
 198
 199DEFINE_IDR(btf_idr);
 200DEFINE_SPINLOCK(btf_idr_lock);
 201
 202enum btf_kfunc_hook {
 203	BTF_KFUNC_HOOK_COMMON,
 204	BTF_KFUNC_HOOK_XDP,
 205	BTF_KFUNC_HOOK_TC,
 206	BTF_KFUNC_HOOK_STRUCT_OPS,
 207	BTF_KFUNC_HOOK_TRACING,
 208	BTF_KFUNC_HOOK_SYSCALL,
 209	BTF_KFUNC_HOOK_FMODRET,
 
 
 
 
 
 
 210	BTF_KFUNC_HOOK_MAX,
 211};
 212
 213enum {
 214	BTF_KFUNC_SET_MAX_CNT = 256,
 215	BTF_DTOR_KFUNC_MAX_CNT = 256,
 
 
 
 
 
 
 216};
 217
 218struct btf_kfunc_set_tab {
 219	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
 
 220};
 221
 222struct btf_id_dtor_kfunc_tab {
 223	u32 cnt;
 224	struct btf_id_dtor_kfunc dtors[];
 225};
 226
 
 
 
 
 
 
 227struct btf {
 228	void *data;
 229	struct btf_type **types;
 230	u32 *resolved_ids;
 231	u32 *resolved_sizes;
 232	const char *strings;
 233	void *nohdr_data;
 234	struct btf_header hdr;
 235	u32 nr_types; /* includes VOID for base BTF */
 236	u32 types_size;
 237	u32 data_size;
 238	refcount_t refcnt;
 239	u32 id;
 240	struct rcu_head rcu;
 241	struct btf_kfunc_set_tab *kfunc_set_tab;
 242	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
 243	struct btf_struct_metas *struct_meta_tab;
 
 244
 245	/* split BTF support */
 246	struct btf *base_btf;
 247	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
 248	u32 start_str_off; /* first string offset (0 for base BTF) */
 249	char name[MODULE_NAME_LEN];
 250	bool kernel_btf;
 251};
 252
 253enum verifier_phase {
 254	CHECK_META,
 255	CHECK_TYPE,
 256};
 257
 258struct resolve_vertex {
 259	const struct btf_type *t;
 260	u32 type_id;
 261	u16 next_member;
 262};
 263
 264enum visit_state {
 265	NOT_VISITED,
 266	VISITED,
 267	RESOLVED,
 268};
 269
 270enum resolve_mode {
 271	RESOLVE_TBD,	/* To Be Determined */
 272	RESOLVE_PTR,	/* Resolving for Pointer */
 273	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
 274					 * or array
 275					 */
 276};
 277
 278#define MAX_RESOLVE_DEPTH 32
 279
 280struct btf_sec_info {
 281	u32 off;
 282	u32 len;
 283};
 284
 285struct btf_verifier_env {
 286	struct btf *btf;
 287	u8 *visit_states;
 288	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
 289	struct bpf_verifier_log log;
 290	u32 log_type_id;
 291	u32 top_stack;
 292	enum verifier_phase phase;
 293	enum resolve_mode resolve_mode;
 294};
 295
 296static const char * const btf_kind_str[NR_BTF_KINDS] = {
 297	[BTF_KIND_UNKN]		= "UNKNOWN",
 298	[BTF_KIND_INT]		= "INT",
 299	[BTF_KIND_PTR]		= "PTR",
 300	[BTF_KIND_ARRAY]	= "ARRAY",
 301	[BTF_KIND_STRUCT]	= "STRUCT",
 302	[BTF_KIND_UNION]	= "UNION",
 303	[BTF_KIND_ENUM]		= "ENUM",
 304	[BTF_KIND_FWD]		= "FWD",
 305	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
 306	[BTF_KIND_VOLATILE]	= "VOLATILE",
 307	[BTF_KIND_CONST]	= "CONST",
 308	[BTF_KIND_RESTRICT]	= "RESTRICT",
 309	[BTF_KIND_FUNC]		= "FUNC",
 310	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
 311	[BTF_KIND_VAR]		= "VAR",
 312	[BTF_KIND_DATASEC]	= "DATASEC",
 313	[BTF_KIND_FLOAT]	= "FLOAT",
 314	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
 315	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
 316	[BTF_KIND_ENUM64]	= "ENUM64",
 317};
 318
 319const char *btf_type_str(const struct btf_type *t)
 320{
 321	return btf_kind_str[BTF_INFO_KIND(t->info)];
 322}
 323
 324/* Chunk size we use in safe copy of data to be shown. */
 325#define BTF_SHOW_OBJ_SAFE_SIZE		32
 326
 327/*
 328 * This is the maximum size of a base type value (equivalent to a
 329 * 128-bit int); if we are at the end of our safe buffer and have
 330 * less than 16 bytes space we can't be assured of being able
 331 * to copy the next type safely, so in such cases we will initiate
 332 * a new copy.
 333 */
 334#define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
 335
 336/* Type name size */
 337#define BTF_SHOW_NAME_SIZE		80
 338
 339/*
 
 
 
 
 
 
 340 * Common data to all BTF show operations. Private show functions can add
 341 * their own data to a structure containing a struct btf_show and consult it
 342 * in the show callback.  See btf_type_show() below.
 343 *
 344 * One challenge with showing nested data is we want to skip 0-valued
 345 * data, but in order to figure out whether a nested object is all zeros
 346 * we need to walk through it.  As a result, we need to make two passes
 347 * when handling structs, unions and arrays; the first path simply looks
 348 * for nonzero data, while the second actually does the display.  The first
 349 * pass is signalled by show->state.depth_check being set, and if we
 350 * encounter a non-zero value we set show->state.depth_to_show to
 351 * the depth at which we encountered it.  When we have completed the
 352 * first pass, we will know if anything needs to be displayed if
 353 * depth_to_show > depth.  See btf_[struct,array]_show() for the
 354 * implementation of this.
 355 *
 356 * Another problem is we want to ensure the data for display is safe to
 357 * access.  To support this, the anonymous "struct {} obj" tracks the data
 358 * object and our safe copy of it.  We copy portions of the data needed
 359 * to the object "copy" buffer, but because its size is limited to
 360 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
 361 * traverse larger objects for display.
 362 *
 363 * The various data type show functions all start with a call to
 364 * btf_show_start_type() which returns a pointer to the safe copy
 365 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
 366 * raw data itself).  btf_show_obj_safe() is responsible for
 367 * using copy_from_kernel_nofault() to update the safe data if necessary
 368 * as we traverse the object's data.  skbuff-like semantics are
 369 * used:
 370 *
 371 * - obj.head points to the start of the toplevel object for display
 372 * - obj.size is the size of the toplevel object
 373 * - obj.data points to the current point in the original data at
 374 *   which our safe data starts.  obj.data will advance as we copy
 375 *   portions of the data.
 376 *
 377 * In most cases a single copy will suffice, but larger data structures
 378 * such as "struct task_struct" will require many copies.  The logic in
 379 * btf_show_obj_safe() handles the logic that determines if a new
 380 * copy_from_kernel_nofault() is needed.
 381 */
 382struct btf_show {
 383	u64 flags;
 384	void *target;	/* target of show operation (seq file, buffer) */
 385	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
 386	const struct btf *btf;
 387	/* below are used during iteration */
 388	struct {
 389		u8 depth;
 390		u8 depth_to_show;
 391		u8 depth_check;
 392		u8 array_member:1,
 393		   array_terminated:1;
 394		u16 array_encoding;
 395		u32 type_id;
 396		int status;			/* non-zero for error */
 397		const struct btf_type *type;
 398		const struct btf_member *member;
 399		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
 400	} state;
 401	struct {
 402		u32 size;
 403		void *head;
 404		void *data;
 405		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
 406	} obj;
 407};
 408
 409struct btf_kind_operations {
 410	s32 (*check_meta)(struct btf_verifier_env *env,
 411			  const struct btf_type *t,
 412			  u32 meta_left);
 413	int (*resolve)(struct btf_verifier_env *env,
 414		       const struct resolve_vertex *v);
 415	int (*check_member)(struct btf_verifier_env *env,
 416			    const struct btf_type *struct_type,
 417			    const struct btf_member *member,
 418			    const struct btf_type *member_type);
 419	int (*check_kflag_member)(struct btf_verifier_env *env,
 420				  const struct btf_type *struct_type,
 421				  const struct btf_member *member,
 422				  const struct btf_type *member_type);
 423	void (*log_details)(struct btf_verifier_env *env,
 424			    const struct btf_type *t);
 425	void (*show)(const struct btf *btf, const struct btf_type *t,
 426			 u32 type_id, void *data, u8 bits_offsets,
 427			 struct btf_show *show);
 428};
 429
 430static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
 431static struct btf_type btf_void;
 432
 433static int btf_resolve(struct btf_verifier_env *env,
 434		       const struct btf_type *t, u32 type_id);
 435
 436static int btf_func_check(struct btf_verifier_env *env,
 437			  const struct btf_type *t);
 438
 439static bool btf_type_is_modifier(const struct btf_type *t)
 440{
 441	/* Some of them is not strictly a C modifier
 442	 * but they are grouped into the same bucket
 443	 * for BTF concern:
 444	 *   A type (t) that refers to another
 445	 *   type through t->type AND its size cannot
 446	 *   be determined without following the t->type.
 447	 *
 448	 * ptr does not fall into this bucket
 449	 * because its size is always sizeof(void *).
 450	 */
 451	switch (BTF_INFO_KIND(t->info)) {
 452	case BTF_KIND_TYPEDEF:
 453	case BTF_KIND_VOLATILE:
 454	case BTF_KIND_CONST:
 455	case BTF_KIND_RESTRICT:
 456	case BTF_KIND_TYPE_TAG:
 457		return true;
 458	}
 459
 460	return false;
 461}
 462
 463bool btf_type_is_void(const struct btf_type *t)
 464{
 465	return t == &btf_void;
 466}
 467
 468static bool btf_type_is_fwd(const struct btf_type *t)
 469{
 470	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
 471}
 472
 473static bool btf_type_nosize(const struct btf_type *t)
 474{
 475	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
 476	       btf_type_is_func(t) || btf_type_is_func_proto(t);
 477}
 478
 479static bool btf_type_nosize_or_null(const struct btf_type *t)
 480{
 481	return !t || btf_type_nosize(t);
 482}
 483
 484static bool btf_type_is_datasec(const struct btf_type *t)
 485{
 486	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
 
 
 487}
 488
 489static bool btf_type_is_decl_tag(const struct btf_type *t)
 490{
 491	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
 492}
 493
 494static bool btf_type_is_decl_tag_target(const struct btf_type *t)
 495{
 496	return btf_type_is_func(t) || btf_type_is_struct(t) ||
 497	       btf_type_is_var(t) || btf_type_is_typedef(t);
 498}
 499
 500u32 btf_nr_types(const struct btf *btf)
 501{
 502	u32 total = 0;
 503
 504	while (btf) {
 505		total += btf->nr_types;
 506		btf = btf->base_btf;
 507	}
 508
 509	return total;
 510}
 511
 512s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
 513{
 514	const struct btf_type *t;
 515	const char *tname;
 516	u32 i, total;
 517
 518	total = btf_nr_types(btf);
 519	for (i = 1; i < total; i++) {
 520		t = btf_type_by_id(btf, i);
 521		if (BTF_INFO_KIND(t->info) != kind)
 522			continue;
 523
 524		tname = btf_name_by_offset(btf, t->name_off);
 525		if (!strcmp(tname, name))
 526			return i;
 527	}
 528
 529	return -ENOENT;
 530}
 531
 532static s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
 533{
 534	struct btf *btf;
 535	s32 ret;
 536	int id;
 537
 538	btf = bpf_get_btf_vmlinux();
 539	if (IS_ERR(btf))
 540		return PTR_ERR(btf);
 541	if (!btf)
 542		return -EINVAL;
 543
 544	ret = btf_find_by_name_kind(btf, name, kind);
 545	/* ret is never zero, since btf_find_by_name_kind returns
 546	 * positive btf_id or negative error.
 547	 */
 548	if (ret > 0) {
 549		btf_get(btf);
 550		*btf_p = btf;
 551		return ret;
 552	}
 553
 554	/* If name is not found in vmlinux's BTF then search in module's BTFs */
 555	spin_lock_bh(&btf_idr_lock);
 556	idr_for_each_entry(&btf_idr, btf, id) {
 557		if (!btf_is_module(btf))
 558			continue;
 559		/* linear search could be slow hence unlock/lock
 560		 * the IDR to avoiding holding it for too long
 561		 */
 562		btf_get(btf);
 563		spin_unlock_bh(&btf_idr_lock);
 564		ret = btf_find_by_name_kind(btf, name, kind);
 565		if (ret > 0) {
 566			*btf_p = btf;
 567			return ret;
 568		}
 569		spin_lock_bh(&btf_idr_lock);
 570		btf_put(btf);
 
 571	}
 572	spin_unlock_bh(&btf_idr_lock);
 573	return ret;
 574}
 575
 576const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
 577					       u32 id, u32 *res_id)
 578{
 579	const struct btf_type *t = btf_type_by_id(btf, id);
 580
 581	while (btf_type_is_modifier(t)) {
 582		id = t->type;
 583		t = btf_type_by_id(btf, t->type);
 584	}
 585
 586	if (res_id)
 587		*res_id = id;
 588
 589	return t;
 590}
 591
 592const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
 593					    u32 id, u32 *res_id)
 594{
 595	const struct btf_type *t;
 596
 597	t = btf_type_skip_modifiers(btf, id, NULL);
 598	if (!btf_type_is_ptr(t))
 599		return NULL;
 600
 601	return btf_type_skip_modifiers(btf, t->type, res_id);
 602}
 603
 604const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
 605						 u32 id, u32 *res_id)
 606{
 607	const struct btf_type *ptype;
 608
 609	ptype = btf_type_resolve_ptr(btf, id, res_id);
 610	if (ptype && btf_type_is_func_proto(ptype))
 611		return ptype;
 612
 613	return NULL;
 614}
 615
 616/* Types that act only as a source, not sink or intermediate
 617 * type when resolving.
 618 */
 619static bool btf_type_is_resolve_source_only(const struct btf_type *t)
 620{
 621	return btf_type_is_var(t) ||
 622	       btf_type_is_decl_tag(t) ||
 623	       btf_type_is_datasec(t);
 624}
 625
 626/* What types need to be resolved?
 627 *
 628 * btf_type_is_modifier() is an obvious one.
 629 *
 630 * btf_type_is_struct() because its member refers to
 631 * another type (through member->type).
 632 *
 633 * btf_type_is_var() because the variable refers to
 634 * another type. btf_type_is_datasec() holds multiple
 635 * btf_type_is_var() types that need resolving.
 636 *
 637 * btf_type_is_array() because its element (array->type)
 638 * refers to another type.  Array can be thought of a
 639 * special case of struct while array just has the same
 640 * member-type repeated by array->nelems of times.
 641 */
 642static bool btf_type_needs_resolve(const struct btf_type *t)
 643{
 644	return btf_type_is_modifier(t) ||
 645	       btf_type_is_ptr(t) ||
 646	       btf_type_is_struct(t) ||
 647	       btf_type_is_array(t) ||
 648	       btf_type_is_var(t) ||
 649	       btf_type_is_func(t) ||
 650	       btf_type_is_decl_tag(t) ||
 651	       btf_type_is_datasec(t);
 652}
 653
 654/* t->size can be used */
 655static bool btf_type_has_size(const struct btf_type *t)
 656{
 657	switch (BTF_INFO_KIND(t->info)) {
 658	case BTF_KIND_INT:
 659	case BTF_KIND_STRUCT:
 660	case BTF_KIND_UNION:
 661	case BTF_KIND_ENUM:
 662	case BTF_KIND_DATASEC:
 663	case BTF_KIND_FLOAT:
 664	case BTF_KIND_ENUM64:
 665		return true;
 666	}
 667
 668	return false;
 669}
 670
 671static const char *btf_int_encoding_str(u8 encoding)
 672{
 673	if (encoding == 0)
 674		return "(none)";
 675	else if (encoding == BTF_INT_SIGNED)
 676		return "SIGNED";
 677	else if (encoding == BTF_INT_CHAR)
 678		return "CHAR";
 679	else if (encoding == BTF_INT_BOOL)
 680		return "BOOL";
 681	else
 682		return "UNKN";
 683}
 684
 685static u32 btf_type_int(const struct btf_type *t)
 686{
 687	return *(u32 *)(t + 1);
 688}
 689
 690static const struct btf_array *btf_type_array(const struct btf_type *t)
 691{
 692	return (const struct btf_array *)(t + 1);
 693}
 694
 695static const struct btf_enum *btf_type_enum(const struct btf_type *t)
 696{
 697	return (const struct btf_enum *)(t + 1);
 698}
 699
 700static const struct btf_var *btf_type_var(const struct btf_type *t)
 701{
 702	return (const struct btf_var *)(t + 1);
 703}
 704
 705static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
 706{
 707	return (const struct btf_decl_tag *)(t + 1);
 708}
 709
 710static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
 711{
 712	return (const struct btf_enum64 *)(t + 1);
 713}
 714
 715static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
 716{
 717	return kind_ops[BTF_INFO_KIND(t->info)];
 718}
 719
 720static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
 721{
 722	if (!BTF_STR_OFFSET_VALID(offset))
 723		return false;
 724
 725	while (offset < btf->start_str_off)
 726		btf = btf->base_btf;
 727
 728	offset -= btf->start_str_off;
 729	return offset < btf->hdr.str_len;
 730}
 731
 732static bool __btf_name_char_ok(char c, bool first, bool dot_ok)
 733{
 734	if ((first ? !isalpha(c) :
 735		     !isalnum(c)) &&
 736	    c != '_' &&
 737	    ((c == '.' && !dot_ok) ||
 738	      c != '.'))
 739		return false;
 740	return true;
 741}
 742
 743static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
 744{
 745	while (offset < btf->start_str_off)
 746		btf = btf->base_btf;
 747
 748	offset -= btf->start_str_off;
 749	if (offset < btf->hdr.str_len)
 750		return &btf->strings[offset];
 751
 752	return NULL;
 753}
 754
 755static bool __btf_name_valid(const struct btf *btf, u32 offset, bool dot_ok)
 756{
 757	/* offset must be valid */
 758	const char *src = btf_str_by_offset(btf, offset);
 759	const char *src_limit;
 760
 761	if (!__btf_name_char_ok(*src, true, dot_ok))
 762		return false;
 763
 764	/* set a limit on identifier length */
 765	src_limit = src + KSYM_NAME_LEN;
 766	src++;
 767	while (*src && src < src_limit) {
 768		if (!__btf_name_char_ok(*src, false, dot_ok))
 769			return false;
 770		src++;
 771	}
 772
 773	return !*src;
 774}
 775
 776/* Only C-style identifier is permitted. This can be relaxed if
 777 * necessary.
 778 */
 779static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
 780{
 781	return __btf_name_valid(btf, offset, false);
 782}
 783
 
 784static bool btf_name_valid_section(const struct btf *btf, u32 offset)
 785{
 786	return __btf_name_valid(btf, offset, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 787}
 788
 789static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
 790{
 791	const char *name;
 792
 793	if (!offset)
 794		return "(anon)";
 795
 796	name = btf_str_by_offset(btf, offset);
 797	return name ?: "(invalid-name-offset)";
 798}
 799
 800const char *btf_name_by_offset(const struct btf *btf, u32 offset)
 801{
 802	return btf_str_by_offset(btf, offset);
 803}
 804
 805const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
 806{
 807	while (type_id < btf->start_id)
 808		btf = btf->base_btf;
 809
 810	type_id -= btf->start_id;
 811	if (type_id >= btf->nr_types)
 812		return NULL;
 813	return btf->types[type_id];
 814}
 815EXPORT_SYMBOL_GPL(btf_type_by_id);
 816
 817/*
 818 * Regular int is not a bit field and it must be either
 819 * u8/u16/u32/u64 or __int128.
 820 */
 821static bool btf_type_int_is_regular(const struct btf_type *t)
 822{
 823	u8 nr_bits, nr_bytes;
 824	u32 int_data;
 825
 826	int_data = btf_type_int(t);
 827	nr_bits = BTF_INT_BITS(int_data);
 828	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
 829	if (BITS_PER_BYTE_MASKED(nr_bits) ||
 830	    BTF_INT_OFFSET(int_data) ||
 831	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
 832	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
 833	     nr_bytes != (2 * sizeof(u64)))) {
 834		return false;
 835	}
 836
 837	return true;
 838}
 839
 840/*
 841 * Check that given struct member is a regular int with expected
 842 * offset and size.
 843 */
 844bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
 845			   const struct btf_member *m,
 846			   u32 expected_offset, u32 expected_size)
 847{
 848	const struct btf_type *t;
 849	u32 id, int_data;
 850	u8 nr_bits;
 851
 852	id = m->type;
 853	t = btf_type_id_size(btf, &id, NULL);
 854	if (!t || !btf_type_is_int(t))
 855		return false;
 856
 857	int_data = btf_type_int(t);
 858	nr_bits = BTF_INT_BITS(int_data);
 859	if (btf_type_kflag(s)) {
 860		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
 861		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
 862
 863		/* if kflag set, int should be a regular int and
 864		 * bit offset should be at byte boundary.
 865		 */
 866		return !bitfield_size &&
 867		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
 868		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
 869	}
 870
 871	if (BTF_INT_OFFSET(int_data) ||
 872	    BITS_PER_BYTE_MASKED(m->offset) ||
 873	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
 874	    BITS_PER_BYTE_MASKED(nr_bits) ||
 875	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
 876		return false;
 877
 878	return true;
 879}
 880
 881/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
 882static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
 883						       u32 id)
 884{
 885	const struct btf_type *t = btf_type_by_id(btf, id);
 886
 887	while (btf_type_is_modifier(t) &&
 888	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
 889		t = btf_type_by_id(btf, t->type);
 890	}
 891
 892	return t;
 893}
 894
 895#define BTF_SHOW_MAX_ITER	10
 896
 897#define BTF_KIND_BIT(kind)	(1ULL << kind)
 898
 899/*
 900 * Populate show->state.name with type name information.
 901 * Format of type name is
 902 *
 903 * [.member_name = ] (type_name)
 904 */
 905static const char *btf_show_name(struct btf_show *show)
 906{
 907	/* BTF_MAX_ITER array suffixes "[]" */
 908	const char *array_suffixes = "[][][][][][][][][][]";
 909	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
 910	/* BTF_MAX_ITER pointer suffixes "*" */
 911	const char *ptr_suffixes = "**********";
 912	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
 913	const char *name = NULL, *prefix = "", *parens = "";
 914	const struct btf_member *m = show->state.member;
 915	const struct btf_type *t;
 916	const struct btf_array *array;
 917	u32 id = show->state.type_id;
 918	const char *member = NULL;
 919	bool show_member = false;
 920	u64 kinds = 0;
 921	int i;
 922
 923	show->state.name[0] = '\0';
 924
 925	/*
 926	 * Don't show type name if we're showing an array member;
 927	 * in that case we show the array type so don't need to repeat
 928	 * ourselves for each member.
 929	 */
 930	if (show->state.array_member)
 931		return "";
 932
 933	/* Retrieve member name, if any. */
 934	if (m) {
 935		member = btf_name_by_offset(show->btf, m->name_off);
 936		show_member = strlen(member) > 0;
 937		id = m->type;
 938	}
 939
 940	/*
 941	 * Start with type_id, as we have resolved the struct btf_type *
 942	 * via btf_modifier_show() past the parent typedef to the child
 943	 * struct, int etc it is defined as.  In such cases, the type_id
 944	 * still represents the starting type while the struct btf_type *
 945	 * in our show->state points at the resolved type of the typedef.
 946	 */
 947	t = btf_type_by_id(show->btf, id);
 948	if (!t)
 949		return "";
 950
 951	/*
 952	 * The goal here is to build up the right number of pointer and
 953	 * array suffixes while ensuring the type name for a typedef
 954	 * is represented.  Along the way we accumulate a list of
 955	 * BTF kinds we have encountered, since these will inform later
 956	 * display; for example, pointer types will not require an
 957	 * opening "{" for struct, we will just display the pointer value.
 958	 *
 959	 * We also want to accumulate the right number of pointer or array
 960	 * indices in the format string while iterating until we get to
 961	 * the typedef/pointee/array member target type.
 962	 *
 963	 * We start by pointing at the end of pointer and array suffix
 964	 * strings; as we accumulate pointers and arrays we move the pointer
 965	 * or array string backwards so it will show the expected number of
 966	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
 967	 * and/or arrays and typedefs are supported as a precaution.
 968	 *
 969	 * We also want to get typedef name while proceeding to resolve
 970	 * type it points to so that we can add parentheses if it is a
 971	 * "typedef struct" etc.
 972	 */
 973	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
 974
 975		switch (BTF_INFO_KIND(t->info)) {
 976		case BTF_KIND_TYPEDEF:
 977			if (!name)
 978				name = btf_name_by_offset(show->btf,
 979							       t->name_off);
 980			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
 981			id = t->type;
 982			break;
 983		case BTF_KIND_ARRAY:
 984			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
 985			parens = "[";
 986			if (!t)
 987				return "";
 988			array = btf_type_array(t);
 989			if (array_suffix > array_suffixes)
 990				array_suffix -= 2;
 991			id = array->type;
 992			break;
 993		case BTF_KIND_PTR:
 994			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
 995			if (ptr_suffix > ptr_suffixes)
 996				ptr_suffix -= 1;
 997			id = t->type;
 998			break;
 999		default:
1000			id = 0;
1001			break;
1002		}
1003		if (!id)
1004			break;
1005		t = btf_type_skip_qualifiers(show->btf, id);
1006	}
1007	/* We may not be able to represent this type; bail to be safe */
1008	if (i == BTF_SHOW_MAX_ITER)
1009		return "";
1010
1011	if (!name)
1012		name = btf_name_by_offset(show->btf, t->name_off);
1013
1014	switch (BTF_INFO_KIND(t->info)) {
1015	case BTF_KIND_STRUCT:
1016	case BTF_KIND_UNION:
1017		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1018			 "struct" : "union";
1019		/* if it's an array of struct/union, parens is already set */
1020		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1021			parens = "{";
1022		break;
1023	case BTF_KIND_ENUM:
1024	case BTF_KIND_ENUM64:
1025		prefix = "enum";
1026		break;
1027	default:
1028		break;
1029	}
1030
1031	/* pointer does not require parens */
1032	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1033		parens = "";
1034	/* typedef does not require struct/union/enum prefix */
1035	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1036		prefix = "";
1037
1038	if (!name)
1039		name = "";
1040
1041	/* Even if we don't want type name info, we want parentheses etc */
1042	if (show->flags & BTF_SHOW_NONAME)
1043		snprintf(show->state.name, sizeof(show->state.name), "%s",
1044			 parens);
1045	else
1046		snprintf(show->state.name, sizeof(show->state.name),
1047			 "%s%s%s(%s%s%s%s%s%s)%s",
1048			 /* first 3 strings comprise ".member = " */
1049			 show_member ? "." : "",
1050			 show_member ? member : "",
1051			 show_member ? " = " : "",
1052			 /* ...next is our prefix (struct, enum, etc) */
1053			 prefix,
1054			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1055			 /* ...this is the type name itself */
1056			 name,
1057			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1058			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1059			 array_suffix, parens);
1060
1061	return show->state.name;
1062}
1063
1064static const char *__btf_show_indent(struct btf_show *show)
1065{
1066	const char *indents = "                                ";
1067	const char *indent = &indents[strlen(indents)];
1068
1069	if ((indent - show->state.depth) >= indents)
1070		return indent - show->state.depth;
1071	return indents;
1072}
1073
1074static const char *btf_show_indent(struct btf_show *show)
1075{
1076	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1077}
1078
1079static const char *btf_show_newline(struct btf_show *show)
1080{
1081	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1082}
1083
1084static const char *btf_show_delim(struct btf_show *show)
1085{
1086	if (show->state.depth == 0)
1087		return "";
1088
1089	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1090		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1091		return "|";
1092
1093	return ",";
1094}
1095
1096__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1097{
1098	va_list args;
1099
1100	if (!show->state.depth_check) {
1101		va_start(args, fmt);
1102		show->showfn(show, fmt, args);
1103		va_end(args);
1104	}
1105}
1106
1107/* Macros are used here as btf_show_type_value[s]() prepends and appends
1108 * format specifiers to the format specifier passed in; these do the work of
1109 * adding indentation, delimiters etc while the caller simply has to specify
1110 * the type value(s) in the format specifier + value(s).
1111 */
1112#define btf_show_type_value(show, fmt, value)				       \
1113	do {								       \
1114		if ((value) != (__typeof__(value))0 ||			       \
1115		    (show->flags & BTF_SHOW_ZERO) ||			       \
1116		    show->state.depth == 0) {				       \
1117			btf_show(show, "%s%s" fmt "%s%s",		       \
1118				 btf_show_indent(show),			       \
1119				 btf_show_name(show),			       \
1120				 value, btf_show_delim(show),		       \
1121				 btf_show_newline(show));		       \
1122			if (show->state.depth > show->state.depth_to_show)     \
1123				show->state.depth_to_show = show->state.depth; \
1124		}							       \
1125	} while (0)
1126
1127#define btf_show_type_values(show, fmt, ...)				       \
1128	do {								       \
1129		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1130			 btf_show_name(show),				       \
1131			 __VA_ARGS__, btf_show_delim(show),		       \
1132			 btf_show_newline(show));			       \
1133		if (show->state.depth > show->state.depth_to_show)	       \
1134			show->state.depth_to_show = show->state.depth;	       \
1135	} while (0)
1136
1137/* How much is left to copy to safe buffer after @data? */
1138static int btf_show_obj_size_left(struct btf_show *show, void *data)
1139{
1140	return show->obj.head + show->obj.size - data;
1141}
1142
1143/* Is object pointed to by @data of @size already copied to our safe buffer? */
1144static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1145{
1146	return data >= show->obj.data &&
1147	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1148}
1149
1150/*
1151 * If object pointed to by @data of @size falls within our safe buffer, return
1152 * the equivalent pointer to the same safe data.  Assumes
1153 * copy_from_kernel_nofault() has already happened and our safe buffer is
1154 * populated.
1155 */
1156static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1157{
1158	if (btf_show_obj_is_safe(show, data, size))
1159		return show->obj.safe + (data - show->obj.data);
1160	return NULL;
1161}
1162
1163/*
1164 * Return a safe-to-access version of data pointed to by @data.
1165 * We do this by copying the relevant amount of information
1166 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1167 *
1168 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1169 * safe copy is needed.
1170 *
1171 * Otherwise we need to determine if we have the required amount
1172 * of data (determined by the @data pointer and the size of the
1173 * largest base type we can encounter (represented by
1174 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1175 * that we will be able to print some of the current object,
1176 * and if more is needed a copy will be triggered.
1177 * Some objects such as structs will not fit into the buffer;
1178 * in such cases additional copies when we iterate over their
1179 * members may be needed.
1180 *
1181 * btf_show_obj_safe() is used to return a safe buffer for
1182 * btf_show_start_type(); this ensures that as we recurse into
1183 * nested types we always have safe data for the given type.
1184 * This approach is somewhat wasteful; it's possible for example
1185 * that when iterating over a large union we'll end up copying the
1186 * same data repeatedly, but the goal is safety not performance.
1187 * We use stack data as opposed to per-CPU buffers because the
1188 * iteration over a type can take some time, and preemption handling
1189 * would greatly complicate use of the safe buffer.
1190 */
1191static void *btf_show_obj_safe(struct btf_show *show,
1192			       const struct btf_type *t,
1193			       void *data)
1194{
1195	const struct btf_type *rt;
1196	int size_left, size;
1197	void *safe = NULL;
1198
1199	if (show->flags & BTF_SHOW_UNSAFE)
1200		return data;
1201
1202	rt = btf_resolve_size(show->btf, t, &size);
1203	if (IS_ERR(rt)) {
1204		show->state.status = PTR_ERR(rt);
1205		return NULL;
1206	}
1207
1208	/*
1209	 * Is this toplevel object? If so, set total object size and
1210	 * initialize pointers.  Otherwise check if we still fall within
1211	 * our safe object data.
1212	 */
1213	if (show->state.depth == 0) {
1214		show->obj.size = size;
1215		show->obj.head = data;
1216	} else {
1217		/*
1218		 * If the size of the current object is > our remaining
1219		 * safe buffer we _may_ need to do a new copy.  However
1220		 * consider the case of a nested struct; it's size pushes
1221		 * us over the safe buffer limit, but showing any individual
1222		 * struct members does not.  In such cases, we don't need
1223		 * to initiate a fresh copy yet; however we definitely need
1224		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1225		 * in our buffer, regardless of the current object size.
1226		 * The logic here is that as we resolve types we will
1227		 * hit a base type at some point, and we need to be sure
1228		 * the next chunk of data is safely available to display
1229		 * that type info safely.  We cannot rely on the size of
1230		 * the current object here because it may be much larger
1231		 * than our current buffer (e.g. task_struct is 8k).
1232		 * All we want to do here is ensure that we can print the
1233		 * next basic type, which we can if either
1234		 * - the current type size is within the safe buffer; or
1235		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1236		 *   the safe buffer.
1237		 */
1238		safe = __btf_show_obj_safe(show, data,
1239					   min(size,
1240					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1241	}
1242
1243	/*
1244	 * We need a new copy to our safe object, either because we haven't
1245	 * yet copied and are initializing safe data, or because the data
1246	 * we want falls outside the boundaries of the safe object.
1247	 */
1248	if (!safe) {
1249		size_left = btf_show_obj_size_left(show, data);
1250		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1251			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1252		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1253							      data, size_left);
1254		if (!show->state.status) {
1255			show->obj.data = data;
1256			safe = show->obj.safe;
1257		}
1258	}
1259
1260	return safe;
1261}
1262
1263/*
1264 * Set the type we are starting to show and return a safe data pointer
1265 * to be used for showing the associated data.
1266 */
1267static void *btf_show_start_type(struct btf_show *show,
1268				 const struct btf_type *t,
1269				 u32 type_id, void *data)
1270{
1271	show->state.type = t;
1272	show->state.type_id = type_id;
1273	show->state.name[0] = '\0';
1274
1275	return btf_show_obj_safe(show, t, data);
1276}
1277
1278static void btf_show_end_type(struct btf_show *show)
1279{
1280	show->state.type = NULL;
1281	show->state.type_id = 0;
1282	show->state.name[0] = '\0';
1283}
1284
1285static void *btf_show_start_aggr_type(struct btf_show *show,
1286				      const struct btf_type *t,
1287				      u32 type_id, void *data)
1288{
1289	void *safe_data = btf_show_start_type(show, t, type_id, data);
1290
1291	if (!safe_data)
1292		return safe_data;
1293
1294	btf_show(show, "%s%s%s", btf_show_indent(show),
1295		 btf_show_name(show),
1296		 btf_show_newline(show));
1297	show->state.depth++;
1298	return safe_data;
1299}
1300
1301static void btf_show_end_aggr_type(struct btf_show *show,
1302				   const char *suffix)
1303{
1304	show->state.depth--;
1305	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1306		 btf_show_delim(show), btf_show_newline(show));
1307	btf_show_end_type(show);
1308}
1309
1310static void btf_show_start_member(struct btf_show *show,
1311				  const struct btf_member *m)
1312{
1313	show->state.member = m;
1314}
1315
1316static void btf_show_start_array_member(struct btf_show *show)
1317{
1318	show->state.array_member = 1;
1319	btf_show_start_member(show, NULL);
1320}
1321
1322static void btf_show_end_member(struct btf_show *show)
1323{
1324	show->state.member = NULL;
1325}
1326
1327static void btf_show_end_array_member(struct btf_show *show)
1328{
1329	show->state.array_member = 0;
1330	btf_show_end_member(show);
1331}
1332
1333static void *btf_show_start_array_type(struct btf_show *show,
1334				       const struct btf_type *t,
1335				       u32 type_id,
1336				       u16 array_encoding,
1337				       void *data)
1338{
1339	show->state.array_encoding = array_encoding;
1340	show->state.array_terminated = 0;
1341	return btf_show_start_aggr_type(show, t, type_id, data);
1342}
1343
1344static void btf_show_end_array_type(struct btf_show *show)
1345{
1346	show->state.array_encoding = 0;
1347	show->state.array_terminated = 0;
1348	btf_show_end_aggr_type(show, "]");
1349}
1350
1351static void *btf_show_start_struct_type(struct btf_show *show,
1352					const struct btf_type *t,
1353					u32 type_id,
1354					void *data)
1355{
1356	return btf_show_start_aggr_type(show, t, type_id, data);
1357}
1358
1359static void btf_show_end_struct_type(struct btf_show *show)
1360{
1361	btf_show_end_aggr_type(show, "}");
1362}
1363
1364__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1365					      const char *fmt, ...)
1366{
1367	va_list args;
1368
1369	va_start(args, fmt);
1370	bpf_verifier_vlog(log, fmt, args);
1371	va_end(args);
1372}
1373
1374__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1375					    const char *fmt, ...)
1376{
1377	struct bpf_verifier_log *log = &env->log;
1378	va_list args;
1379
1380	if (!bpf_verifier_log_needed(log))
1381		return;
1382
1383	va_start(args, fmt);
1384	bpf_verifier_vlog(log, fmt, args);
1385	va_end(args);
1386}
1387
1388__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1389						   const struct btf_type *t,
1390						   bool log_details,
1391						   const char *fmt, ...)
1392{
1393	struct bpf_verifier_log *log = &env->log;
1394	struct btf *btf = env->btf;
1395	va_list args;
1396
1397	if (!bpf_verifier_log_needed(log))
1398		return;
1399
1400	/* btf verifier prints all types it is processing via
1401	 * btf_verifier_log_type(..., fmt = NULL).
1402	 * Skip those prints for in-kernel BTF verification.
1403	 */
1404	if (log->level == BPF_LOG_KERNEL && !fmt)
1405		return;
 
 
 
 
 
 
1406
1407	__btf_verifier_log(log, "[%u] %s %s%s",
1408			   env->log_type_id,
1409			   btf_type_str(t),
1410			   __btf_name_by_offset(btf, t->name_off),
1411			   log_details ? " " : "");
1412
1413	if (log_details)
1414		btf_type_ops(t)->log_details(env, t);
1415
1416	if (fmt && *fmt) {
1417		__btf_verifier_log(log, " ");
1418		va_start(args, fmt);
1419		bpf_verifier_vlog(log, fmt, args);
1420		va_end(args);
1421	}
1422
1423	__btf_verifier_log(log, "\n");
1424}
1425
1426#define btf_verifier_log_type(env, t, ...) \
1427	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1428#define btf_verifier_log_basic(env, t, ...) \
1429	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1430
1431__printf(4, 5)
1432static void btf_verifier_log_member(struct btf_verifier_env *env,
1433				    const struct btf_type *struct_type,
1434				    const struct btf_member *member,
1435				    const char *fmt, ...)
1436{
1437	struct bpf_verifier_log *log = &env->log;
1438	struct btf *btf = env->btf;
1439	va_list args;
1440
1441	if (!bpf_verifier_log_needed(log))
1442		return;
1443
1444	if (log->level == BPF_LOG_KERNEL && !fmt)
1445		return;
 
 
 
 
 
 
 
1446	/* The CHECK_META phase already did a btf dump.
1447	 *
1448	 * If member is logged again, it must hit an error in
1449	 * parsing this member.  It is useful to print out which
1450	 * struct this member belongs to.
1451	 */
1452	if (env->phase != CHECK_META)
1453		btf_verifier_log_type(env, struct_type, NULL);
1454
1455	if (btf_type_kflag(struct_type))
1456		__btf_verifier_log(log,
1457				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1458				   __btf_name_by_offset(btf, member->name_off),
1459				   member->type,
1460				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1461				   BTF_MEMBER_BIT_OFFSET(member->offset));
1462	else
1463		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1464				   __btf_name_by_offset(btf, member->name_off),
1465				   member->type, member->offset);
1466
1467	if (fmt && *fmt) {
1468		__btf_verifier_log(log, " ");
1469		va_start(args, fmt);
1470		bpf_verifier_vlog(log, fmt, args);
1471		va_end(args);
1472	}
1473
1474	__btf_verifier_log(log, "\n");
1475}
1476
1477__printf(4, 5)
1478static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1479				 const struct btf_type *datasec_type,
1480				 const struct btf_var_secinfo *vsi,
1481				 const char *fmt, ...)
1482{
1483	struct bpf_verifier_log *log = &env->log;
1484	va_list args;
1485
1486	if (!bpf_verifier_log_needed(log))
1487		return;
1488	if (log->level == BPF_LOG_KERNEL && !fmt)
1489		return;
1490	if (env->phase != CHECK_META)
1491		btf_verifier_log_type(env, datasec_type, NULL);
1492
1493	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1494			   vsi->type, vsi->offset, vsi->size);
1495	if (fmt && *fmt) {
1496		__btf_verifier_log(log, " ");
1497		va_start(args, fmt);
1498		bpf_verifier_vlog(log, fmt, args);
1499		va_end(args);
1500	}
1501
1502	__btf_verifier_log(log, "\n");
1503}
1504
1505static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1506				 u32 btf_data_size)
1507{
1508	struct bpf_verifier_log *log = &env->log;
1509	const struct btf *btf = env->btf;
1510	const struct btf_header *hdr;
1511
1512	if (!bpf_verifier_log_needed(log))
1513		return;
1514
1515	if (log->level == BPF_LOG_KERNEL)
1516		return;
1517	hdr = &btf->hdr;
1518	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1519	__btf_verifier_log(log, "version: %u\n", hdr->version);
1520	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1521	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1522	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1523	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1524	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1525	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1526	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1527}
1528
1529static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1530{
1531	struct btf *btf = env->btf;
1532
1533	if (btf->types_size == btf->nr_types) {
1534		/* Expand 'types' array */
1535
1536		struct btf_type **new_types;
1537		u32 expand_by, new_size;
1538
1539		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1540			btf_verifier_log(env, "Exceeded max num of types");
1541			return -E2BIG;
1542		}
1543
1544		expand_by = max_t(u32, btf->types_size >> 2, 16);
1545		new_size = min_t(u32, BTF_MAX_TYPE,
1546				 btf->types_size + expand_by);
1547
1548		new_types = kvcalloc(new_size, sizeof(*new_types),
1549				     GFP_KERNEL | __GFP_NOWARN);
1550		if (!new_types)
1551			return -ENOMEM;
1552
1553		if (btf->nr_types == 0) {
1554			if (!btf->base_btf) {
1555				/* lazily init VOID type */
1556				new_types[0] = &btf_void;
1557				btf->nr_types++;
1558			}
1559		} else {
1560			memcpy(new_types, btf->types,
1561			       sizeof(*btf->types) * btf->nr_types);
1562		}
1563
1564		kvfree(btf->types);
1565		btf->types = new_types;
1566		btf->types_size = new_size;
1567	}
1568
1569	btf->types[btf->nr_types++] = t;
1570
1571	return 0;
1572}
1573
1574static int btf_alloc_id(struct btf *btf)
1575{
1576	int id;
1577
1578	idr_preload(GFP_KERNEL);
1579	spin_lock_bh(&btf_idr_lock);
1580	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1581	if (id > 0)
1582		btf->id = id;
1583	spin_unlock_bh(&btf_idr_lock);
1584	idr_preload_end();
1585
1586	if (WARN_ON_ONCE(!id))
1587		return -ENOSPC;
1588
1589	return id > 0 ? 0 : id;
1590}
1591
1592static void btf_free_id(struct btf *btf)
1593{
1594	unsigned long flags;
1595
1596	/*
1597	 * In map-in-map, calling map_delete_elem() on outer
1598	 * map will call bpf_map_put on the inner map.
1599	 * It will then eventually call btf_free_id()
1600	 * on the inner map.  Some of the map_delete_elem()
1601	 * implementation may have irq disabled, so
1602	 * we need to use the _irqsave() version instead
1603	 * of the _bh() version.
1604	 */
1605	spin_lock_irqsave(&btf_idr_lock, flags);
1606	idr_remove(&btf_idr, btf->id);
1607	spin_unlock_irqrestore(&btf_idr_lock, flags);
1608}
1609
1610static void btf_free_kfunc_set_tab(struct btf *btf)
1611{
1612	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1613	int hook;
1614
1615	if (!tab)
1616		return;
1617	/* For module BTF, we directly assign the sets being registered, so
1618	 * there is nothing to free except kfunc_set_tab.
1619	 */
1620	if (btf_is_module(btf))
1621		goto free_tab;
1622	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1623		kfree(tab->sets[hook]);
1624free_tab:
1625	kfree(tab);
1626	btf->kfunc_set_tab = NULL;
1627}
1628
1629static void btf_free_dtor_kfunc_tab(struct btf *btf)
1630{
1631	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1632
1633	if (!tab)
1634		return;
1635	kfree(tab);
1636	btf->dtor_kfunc_tab = NULL;
1637}
1638
1639static void btf_struct_metas_free(struct btf_struct_metas *tab)
1640{
1641	int i;
1642
1643	if (!tab)
1644		return;
1645	for (i = 0; i < tab->cnt; i++) {
1646		btf_record_free(tab->types[i].record);
1647		kfree(tab->types[i].field_offs);
1648	}
1649	kfree(tab);
1650}
1651
1652static void btf_free_struct_meta_tab(struct btf *btf)
1653{
1654	struct btf_struct_metas *tab = btf->struct_meta_tab;
1655
1656	btf_struct_metas_free(tab);
1657	btf->struct_meta_tab = NULL;
1658}
1659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660static void btf_free(struct btf *btf)
1661{
1662	btf_free_struct_meta_tab(btf);
1663	btf_free_dtor_kfunc_tab(btf);
1664	btf_free_kfunc_set_tab(btf);
 
1665	kvfree(btf->types);
1666	kvfree(btf->resolved_sizes);
1667	kvfree(btf->resolved_ids);
1668	kvfree(btf->data);
1669	kfree(btf);
1670}
1671
1672static void btf_free_rcu(struct rcu_head *rcu)
1673{
1674	struct btf *btf = container_of(rcu, struct btf, rcu);
1675
1676	btf_free(btf);
1677}
1678
 
 
 
 
 
1679void btf_get(struct btf *btf)
1680{
1681	refcount_inc(&btf->refcnt);
1682}
1683
1684void btf_put(struct btf *btf)
1685{
1686	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1687		btf_free_id(btf);
1688		call_rcu(&btf->rcu, btf_free_rcu);
1689	}
1690}
1691
1692static int env_resolve_init(struct btf_verifier_env *env)
1693{
1694	struct btf *btf = env->btf;
1695	u32 nr_types = btf->nr_types;
1696	u32 *resolved_sizes = NULL;
1697	u32 *resolved_ids = NULL;
1698	u8 *visit_states = NULL;
1699
1700	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1701				  GFP_KERNEL | __GFP_NOWARN);
1702	if (!resolved_sizes)
1703		goto nomem;
1704
1705	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1706				GFP_KERNEL | __GFP_NOWARN);
1707	if (!resolved_ids)
1708		goto nomem;
1709
1710	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1711				GFP_KERNEL | __GFP_NOWARN);
1712	if (!visit_states)
1713		goto nomem;
1714
1715	btf->resolved_sizes = resolved_sizes;
1716	btf->resolved_ids = resolved_ids;
1717	env->visit_states = visit_states;
1718
1719	return 0;
1720
1721nomem:
1722	kvfree(resolved_sizes);
1723	kvfree(resolved_ids);
1724	kvfree(visit_states);
1725	return -ENOMEM;
1726}
1727
1728static void btf_verifier_env_free(struct btf_verifier_env *env)
1729{
1730	kvfree(env->visit_states);
1731	kfree(env);
1732}
1733
1734static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1735				     const struct btf_type *next_type)
1736{
1737	switch (env->resolve_mode) {
1738	case RESOLVE_TBD:
1739		/* int, enum or void is a sink */
1740		return !btf_type_needs_resolve(next_type);
1741	case RESOLVE_PTR:
1742		/* int, enum, void, struct, array, func or func_proto is a sink
1743		 * for ptr
1744		 */
1745		return !btf_type_is_modifier(next_type) &&
1746			!btf_type_is_ptr(next_type);
1747	case RESOLVE_STRUCT_OR_ARRAY:
1748		/* int, enum, void, ptr, func or func_proto is a sink
1749		 * for struct and array
1750		 */
1751		return !btf_type_is_modifier(next_type) &&
1752			!btf_type_is_array(next_type) &&
1753			!btf_type_is_struct(next_type);
1754	default:
1755		BUG();
1756	}
1757}
1758
1759static bool env_type_is_resolved(const struct btf_verifier_env *env,
1760				 u32 type_id)
1761{
1762	/* base BTF types should be resolved by now */
1763	if (type_id < env->btf->start_id)
1764		return true;
1765
1766	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1767}
1768
1769static int env_stack_push(struct btf_verifier_env *env,
1770			  const struct btf_type *t, u32 type_id)
1771{
1772	const struct btf *btf = env->btf;
1773	struct resolve_vertex *v;
1774
1775	if (env->top_stack == MAX_RESOLVE_DEPTH)
1776		return -E2BIG;
1777
1778	if (type_id < btf->start_id
1779	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1780		return -EEXIST;
1781
1782	env->visit_states[type_id - btf->start_id] = VISITED;
1783
1784	v = &env->stack[env->top_stack++];
1785	v->t = t;
1786	v->type_id = type_id;
1787	v->next_member = 0;
1788
1789	if (env->resolve_mode == RESOLVE_TBD) {
1790		if (btf_type_is_ptr(t))
1791			env->resolve_mode = RESOLVE_PTR;
1792		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1793			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1794	}
1795
1796	return 0;
1797}
1798
1799static void env_stack_set_next_member(struct btf_verifier_env *env,
1800				      u16 next_member)
1801{
1802	env->stack[env->top_stack - 1].next_member = next_member;
1803}
1804
1805static void env_stack_pop_resolved(struct btf_verifier_env *env,
1806				   u32 resolved_type_id,
1807				   u32 resolved_size)
1808{
1809	u32 type_id = env->stack[--(env->top_stack)].type_id;
1810	struct btf *btf = env->btf;
1811
1812	type_id -= btf->start_id; /* adjust to local type id */
1813	btf->resolved_sizes[type_id] = resolved_size;
1814	btf->resolved_ids[type_id] = resolved_type_id;
1815	env->visit_states[type_id] = RESOLVED;
1816}
1817
1818static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1819{
1820	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1821}
1822
1823/* Resolve the size of a passed-in "type"
1824 *
1825 * type: is an array (e.g. u32 array[x][y])
1826 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1827 * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1828 *             corresponds to the return type.
1829 * *elem_type: u32
1830 * *elem_id: id of u32
1831 * *total_nelems: (x * y).  Hence, individual elem size is
1832 *                (*type_size / *total_nelems)
1833 * *type_id: id of type if it's changed within the function, 0 if not
1834 *
1835 * type: is not an array (e.g. const struct X)
1836 * return type: type "struct X"
1837 * *type_size: sizeof(struct X)
1838 * *elem_type: same as return type ("struct X")
1839 * *elem_id: 0
1840 * *total_nelems: 1
1841 * *type_id: id of type if it's changed within the function, 0 if not
1842 */
1843static const struct btf_type *
1844__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1845		   u32 *type_size, const struct btf_type **elem_type,
1846		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1847{
1848	const struct btf_type *array_type = NULL;
1849	const struct btf_array *array = NULL;
1850	u32 i, size, nelems = 1, id = 0;
1851
1852	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1853		switch (BTF_INFO_KIND(type->info)) {
1854		/* type->size can be used */
1855		case BTF_KIND_INT:
1856		case BTF_KIND_STRUCT:
1857		case BTF_KIND_UNION:
1858		case BTF_KIND_ENUM:
1859		case BTF_KIND_FLOAT:
1860		case BTF_KIND_ENUM64:
1861			size = type->size;
1862			goto resolved;
1863
1864		case BTF_KIND_PTR:
1865			size = sizeof(void *);
1866			goto resolved;
1867
1868		/* Modifiers */
1869		case BTF_KIND_TYPEDEF:
1870		case BTF_KIND_VOLATILE:
1871		case BTF_KIND_CONST:
1872		case BTF_KIND_RESTRICT:
1873		case BTF_KIND_TYPE_TAG:
1874			id = type->type;
1875			type = btf_type_by_id(btf, type->type);
1876			break;
1877
1878		case BTF_KIND_ARRAY:
1879			if (!array_type)
1880				array_type = type;
1881			array = btf_type_array(type);
1882			if (nelems && array->nelems > U32_MAX / nelems)
1883				return ERR_PTR(-EINVAL);
1884			nelems *= array->nelems;
1885			type = btf_type_by_id(btf, array->type);
1886			break;
1887
1888		/* type without size */
1889		default:
1890			return ERR_PTR(-EINVAL);
1891		}
1892	}
1893
1894	return ERR_PTR(-EINVAL);
1895
1896resolved:
1897	if (nelems && size > U32_MAX / nelems)
1898		return ERR_PTR(-EINVAL);
1899
1900	*type_size = nelems * size;
1901	if (total_nelems)
1902		*total_nelems = nelems;
1903	if (elem_type)
1904		*elem_type = type;
1905	if (elem_id)
1906		*elem_id = array ? array->type : 0;
1907	if (type_id && id)
1908		*type_id = id;
1909
1910	return array_type ? : type;
1911}
1912
1913const struct btf_type *
1914btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1915		 u32 *type_size)
1916{
1917	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1918}
1919
1920static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1921{
1922	while (type_id < btf->start_id)
1923		btf = btf->base_btf;
1924
1925	return btf->resolved_ids[type_id - btf->start_id];
1926}
1927
1928/* The input param "type_id" must point to a needs_resolve type */
1929static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
1930						  u32 *type_id)
1931{
1932	*type_id = btf_resolved_type_id(btf, *type_id);
1933	return btf_type_by_id(btf, *type_id);
1934}
1935
1936static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
1937{
1938	while (type_id < btf->start_id)
1939		btf = btf->base_btf;
1940
1941	return btf->resolved_sizes[type_id - btf->start_id];
1942}
1943
1944const struct btf_type *btf_type_id_size(const struct btf *btf,
1945					u32 *type_id, u32 *ret_size)
1946{
1947	const struct btf_type *size_type;
1948	u32 size_type_id = *type_id;
1949	u32 size = 0;
1950
1951	size_type = btf_type_by_id(btf, size_type_id);
1952	if (btf_type_nosize_or_null(size_type))
1953		return NULL;
1954
1955	if (btf_type_has_size(size_type)) {
1956		size = size_type->size;
1957	} else if (btf_type_is_array(size_type)) {
1958		size = btf_resolved_type_size(btf, size_type_id);
1959	} else if (btf_type_is_ptr(size_type)) {
1960		size = sizeof(void *);
1961	} else {
1962		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
1963				 !btf_type_is_var(size_type)))
1964			return NULL;
1965
1966		size_type_id = btf_resolved_type_id(btf, size_type_id);
1967		size_type = btf_type_by_id(btf, size_type_id);
1968		if (btf_type_nosize_or_null(size_type))
1969			return NULL;
1970		else if (btf_type_has_size(size_type))
1971			size = size_type->size;
1972		else if (btf_type_is_array(size_type))
1973			size = btf_resolved_type_size(btf, size_type_id);
1974		else if (btf_type_is_ptr(size_type))
1975			size = sizeof(void *);
1976		else
1977			return NULL;
1978	}
1979
1980	*type_id = size_type_id;
1981	if (ret_size)
1982		*ret_size = size;
1983
1984	return size_type;
1985}
1986
1987static int btf_df_check_member(struct btf_verifier_env *env,
1988			       const struct btf_type *struct_type,
1989			       const struct btf_member *member,
1990			       const struct btf_type *member_type)
1991{
1992	btf_verifier_log_basic(env, struct_type,
1993			       "Unsupported check_member");
1994	return -EINVAL;
1995}
1996
1997static int btf_df_check_kflag_member(struct btf_verifier_env *env,
1998				     const struct btf_type *struct_type,
1999				     const struct btf_member *member,
2000				     const struct btf_type *member_type)
2001{
2002	btf_verifier_log_basic(env, struct_type,
2003			       "Unsupported check_kflag_member");
2004	return -EINVAL;
2005}
2006
2007/* Used for ptr, array struct/union and float type members.
2008 * int, enum and modifier types have their specific callback functions.
2009 */
2010static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2011					  const struct btf_type *struct_type,
2012					  const struct btf_member *member,
2013					  const struct btf_type *member_type)
2014{
2015	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2016		btf_verifier_log_member(env, struct_type, member,
2017					"Invalid member bitfield_size");
2018		return -EINVAL;
2019	}
2020
2021	/* bitfield size is 0, so member->offset represents bit offset only.
2022	 * It is safe to call non kflag check_member variants.
2023	 */
2024	return btf_type_ops(member_type)->check_member(env, struct_type,
2025						       member,
2026						       member_type);
2027}
2028
2029static int btf_df_resolve(struct btf_verifier_env *env,
2030			  const struct resolve_vertex *v)
2031{
2032	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2033	return -EINVAL;
2034}
2035
2036static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2037			u32 type_id, void *data, u8 bits_offsets,
2038			struct btf_show *show)
2039{
2040	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2041}
2042
2043static int btf_int_check_member(struct btf_verifier_env *env,
2044				const struct btf_type *struct_type,
2045				const struct btf_member *member,
2046				const struct btf_type *member_type)
2047{
2048	u32 int_data = btf_type_int(member_type);
2049	u32 struct_bits_off = member->offset;
2050	u32 struct_size = struct_type->size;
2051	u32 nr_copy_bits;
2052	u32 bytes_offset;
2053
2054	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2055		btf_verifier_log_member(env, struct_type, member,
2056					"bits_offset exceeds U32_MAX");
2057		return -EINVAL;
2058	}
2059
2060	struct_bits_off += BTF_INT_OFFSET(int_data);
2061	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2062	nr_copy_bits = BTF_INT_BITS(int_data) +
2063		BITS_PER_BYTE_MASKED(struct_bits_off);
2064
2065	if (nr_copy_bits > BITS_PER_U128) {
2066		btf_verifier_log_member(env, struct_type, member,
2067					"nr_copy_bits exceeds 128");
2068		return -EINVAL;
2069	}
2070
2071	if (struct_size < bytes_offset ||
2072	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2073		btf_verifier_log_member(env, struct_type, member,
2074					"Member exceeds struct_size");
2075		return -EINVAL;
2076	}
2077
2078	return 0;
2079}
2080
2081static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2082				      const struct btf_type *struct_type,
2083				      const struct btf_member *member,
2084				      const struct btf_type *member_type)
2085{
2086	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2087	u32 int_data = btf_type_int(member_type);
2088	u32 struct_size = struct_type->size;
2089	u32 nr_copy_bits;
2090
2091	/* a regular int type is required for the kflag int member */
2092	if (!btf_type_int_is_regular(member_type)) {
2093		btf_verifier_log_member(env, struct_type, member,
2094					"Invalid member base type");
2095		return -EINVAL;
2096	}
2097
2098	/* check sanity of bitfield size */
2099	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2100	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2101	nr_int_data_bits = BTF_INT_BITS(int_data);
2102	if (!nr_bits) {
2103		/* Not a bitfield member, member offset must be at byte
2104		 * boundary.
2105		 */
2106		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2107			btf_verifier_log_member(env, struct_type, member,
2108						"Invalid member offset");
2109			return -EINVAL;
2110		}
2111
2112		nr_bits = nr_int_data_bits;
2113	} else if (nr_bits > nr_int_data_bits) {
2114		btf_verifier_log_member(env, struct_type, member,
2115					"Invalid member bitfield_size");
2116		return -EINVAL;
2117	}
2118
2119	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2120	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2121	if (nr_copy_bits > BITS_PER_U128) {
2122		btf_verifier_log_member(env, struct_type, member,
2123					"nr_copy_bits exceeds 128");
2124		return -EINVAL;
2125	}
2126
2127	if (struct_size < bytes_offset ||
2128	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2129		btf_verifier_log_member(env, struct_type, member,
2130					"Member exceeds struct_size");
2131		return -EINVAL;
2132	}
2133
2134	return 0;
2135}
2136
2137static s32 btf_int_check_meta(struct btf_verifier_env *env,
2138			      const struct btf_type *t,
2139			      u32 meta_left)
2140{
2141	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2142	u16 encoding;
2143
2144	if (meta_left < meta_needed) {
2145		btf_verifier_log_basic(env, t,
2146				       "meta_left:%u meta_needed:%u",
2147				       meta_left, meta_needed);
2148		return -EINVAL;
2149	}
2150
2151	if (btf_type_vlen(t)) {
2152		btf_verifier_log_type(env, t, "vlen != 0");
2153		return -EINVAL;
2154	}
2155
2156	if (btf_type_kflag(t)) {
2157		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2158		return -EINVAL;
2159	}
2160
2161	int_data = btf_type_int(t);
2162	if (int_data & ~BTF_INT_MASK) {
2163		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2164				       int_data);
2165		return -EINVAL;
2166	}
2167
2168	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2169
2170	if (nr_bits > BITS_PER_U128) {
2171		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2172				      BITS_PER_U128);
2173		return -EINVAL;
2174	}
2175
2176	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2177		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2178		return -EINVAL;
2179	}
2180
2181	/*
2182	 * Only one of the encoding bits is allowed and it
2183	 * should be sufficient for the pretty print purpose (i.e. decoding).
2184	 * Multiple bits can be allowed later if it is found
2185	 * to be insufficient.
2186	 */
2187	encoding = BTF_INT_ENCODING(int_data);
2188	if (encoding &&
2189	    encoding != BTF_INT_SIGNED &&
2190	    encoding != BTF_INT_CHAR &&
2191	    encoding != BTF_INT_BOOL) {
2192		btf_verifier_log_type(env, t, "Unsupported encoding");
2193		return -ENOTSUPP;
2194	}
2195
2196	btf_verifier_log_type(env, t, NULL);
2197
2198	return meta_needed;
2199}
2200
2201static void btf_int_log(struct btf_verifier_env *env,
2202			const struct btf_type *t)
2203{
2204	int int_data = btf_type_int(t);
2205
2206	btf_verifier_log(env,
2207			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2208			 t->size, BTF_INT_OFFSET(int_data),
2209			 BTF_INT_BITS(int_data),
2210			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2211}
2212
2213static void btf_int128_print(struct btf_show *show, void *data)
2214{
2215	/* data points to a __int128 number.
2216	 * Suppose
2217	 *     int128_num = *(__int128 *)data;
2218	 * The below formulas shows what upper_num and lower_num represents:
2219	 *     upper_num = int128_num >> 64;
2220	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2221	 */
2222	u64 upper_num, lower_num;
2223
2224#ifdef __BIG_ENDIAN_BITFIELD
2225	upper_num = *(u64 *)data;
2226	lower_num = *(u64 *)(data + 8);
2227#else
2228	upper_num = *(u64 *)(data + 8);
2229	lower_num = *(u64 *)data;
2230#endif
2231	if (upper_num == 0)
2232		btf_show_type_value(show, "0x%llx", lower_num);
2233	else
2234		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2235				     lower_num);
2236}
2237
2238static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2239			     u16 right_shift_bits)
2240{
2241	u64 upper_num, lower_num;
2242
2243#ifdef __BIG_ENDIAN_BITFIELD
2244	upper_num = print_num[0];
2245	lower_num = print_num[1];
2246#else
2247	upper_num = print_num[1];
2248	lower_num = print_num[0];
2249#endif
2250
2251	/* shake out un-needed bits by shift/or operations */
2252	if (left_shift_bits >= 64) {
2253		upper_num = lower_num << (left_shift_bits - 64);
2254		lower_num = 0;
2255	} else {
2256		upper_num = (upper_num << left_shift_bits) |
2257			    (lower_num >> (64 - left_shift_bits));
2258		lower_num = lower_num << left_shift_bits;
2259	}
2260
2261	if (right_shift_bits >= 64) {
2262		lower_num = upper_num >> (right_shift_bits - 64);
2263		upper_num = 0;
2264	} else {
2265		lower_num = (lower_num >> right_shift_bits) |
2266			    (upper_num << (64 - right_shift_bits));
2267		upper_num = upper_num >> right_shift_bits;
2268	}
2269
2270#ifdef __BIG_ENDIAN_BITFIELD
2271	print_num[0] = upper_num;
2272	print_num[1] = lower_num;
2273#else
2274	print_num[0] = lower_num;
2275	print_num[1] = upper_num;
2276#endif
2277}
2278
2279static void btf_bitfield_show(void *data, u8 bits_offset,
2280			      u8 nr_bits, struct btf_show *show)
2281{
2282	u16 left_shift_bits, right_shift_bits;
2283	u8 nr_copy_bytes;
2284	u8 nr_copy_bits;
2285	u64 print_num[2] = {};
2286
2287	nr_copy_bits = nr_bits + bits_offset;
2288	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2289
2290	memcpy(print_num, data, nr_copy_bytes);
2291
2292#ifdef __BIG_ENDIAN_BITFIELD
2293	left_shift_bits = bits_offset;
2294#else
2295	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2296#endif
2297	right_shift_bits = BITS_PER_U128 - nr_bits;
2298
2299	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2300	btf_int128_print(show, print_num);
2301}
2302
2303
2304static void btf_int_bits_show(const struct btf *btf,
2305			      const struct btf_type *t,
2306			      void *data, u8 bits_offset,
2307			      struct btf_show *show)
2308{
2309	u32 int_data = btf_type_int(t);
2310	u8 nr_bits = BTF_INT_BITS(int_data);
2311	u8 total_bits_offset;
2312
2313	/*
2314	 * bits_offset is at most 7.
2315	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2316	 */
2317	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2318	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2319	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2320	btf_bitfield_show(data, bits_offset, nr_bits, show);
2321}
2322
2323static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2324			 u32 type_id, void *data, u8 bits_offset,
2325			 struct btf_show *show)
2326{
2327	u32 int_data = btf_type_int(t);
2328	u8 encoding = BTF_INT_ENCODING(int_data);
2329	bool sign = encoding & BTF_INT_SIGNED;
2330	u8 nr_bits = BTF_INT_BITS(int_data);
2331	void *safe_data;
2332
2333	safe_data = btf_show_start_type(show, t, type_id, data);
2334	if (!safe_data)
2335		return;
2336
2337	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2338	    BITS_PER_BYTE_MASKED(nr_bits)) {
2339		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2340		goto out;
2341	}
2342
2343	switch (nr_bits) {
2344	case 128:
2345		btf_int128_print(show, safe_data);
2346		break;
2347	case 64:
2348		if (sign)
2349			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2350		else
2351			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2352		break;
2353	case 32:
2354		if (sign)
2355			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2356		else
2357			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2358		break;
2359	case 16:
2360		if (sign)
2361			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2362		else
2363			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2364		break;
2365	case 8:
2366		if (show->state.array_encoding == BTF_INT_CHAR) {
2367			/* check for null terminator */
2368			if (show->state.array_terminated)
2369				break;
2370			if (*(char *)data == '\0') {
2371				show->state.array_terminated = 1;
2372				break;
2373			}
2374			if (isprint(*(char *)data)) {
2375				btf_show_type_value(show, "'%c'",
2376						    *(char *)safe_data);
2377				break;
2378			}
2379		}
2380		if (sign)
2381			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2382		else
2383			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2384		break;
2385	default:
2386		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2387		break;
2388	}
2389out:
2390	btf_show_end_type(show);
2391}
2392
2393static const struct btf_kind_operations int_ops = {
2394	.check_meta = btf_int_check_meta,
2395	.resolve = btf_df_resolve,
2396	.check_member = btf_int_check_member,
2397	.check_kflag_member = btf_int_check_kflag_member,
2398	.log_details = btf_int_log,
2399	.show = btf_int_show,
2400};
2401
2402static int btf_modifier_check_member(struct btf_verifier_env *env,
2403				     const struct btf_type *struct_type,
2404				     const struct btf_member *member,
2405				     const struct btf_type *member_type)
2406{
2407	const struct btf_type *resolved_type;
2408	u32 resolved_type_id = member->type;
2409	struct btf_member resolved_member;
2410	struct btf *btf = env->btf;
2411
2412	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2413	if (!resolved_type) {
2414		btf_verifier_log_member(env, struct_type, member,
2415					"Invalid member");
2416		return -EINVAL;
2417	}
2418
2419	resolved_member = *member;
2420	resolved_member.type = resolved_type_id;
2421
2422	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2423							 &resolved_member,
2424							 resolved_type);
2425}
2426
2427static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2428					   const struct btf_type *struct_type,
2429					   const struct btf_member *member,
2430					   const struct btf_type *member_type)
2431{
2432	const struct btf_type *resolved_type;
2433	u32 resolved_type_id = member->type;
2434	struct btf_member resolved_member;
2435	struct btf *btf = env->btf;
2436
2437	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2438	if (!resolved_type) {
2439		btf_verifier_log_member(env, struct_type, member,
2440					"Invalid member");
2441		return -EINVAL;
2442	}
2443
2444	resolved_member = *member;
2445	resolved_member.type = resolved_type_id;
2446
2447	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2448							       &resolved_member,
2449							       resolved_type);
2450}
2451
2452static int btf_ptr_check_member(struct btf_verifier_env *env,
2453				const struct btf_type *struct_type,
2454				const struct btf_member *member,
2455				const struct btf_type *member_type)
2456{
2457	u32 struct_size, struct_bits_off, bytes_offset;
2458
2459	struct_size = struct_type->size;
2460	struct_bits_off = member->offset;
2461	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2462
2463	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2464		btf_verifier_log_member(env, struct_type, member,
2465					"Member is not byte aligned");
2466		return -EINVAL;
2467	}
2468
2469	if (struct_size - bytes_offset < sizeof(void *)) {
2470		btf_verifier_log_member(env, struct_type, member,
2471					"Member exceeds struct_size");
2472		return -EINVAL;
2473	}
2474
2475	return 0;
2476}
2477
2478static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2479				   const struct btf_type *t,
2480				   u32 meta_left)
2481{
2482	const char *value;
2483
2484	if (btf_type_vlen(t)) {
2485		btf_verifier_log_type(env, t, "vlen != 0");
2486		return -EINVAL;
2487	}
2488
2489	if (btf_type_kflag(t)) {
2490		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2491		return -EINVAL;
2492	}
2493
2494	if (!BTF_TYPE_ID_VALID(t->type)) {
2495		btf_verifier_log_type(env, t, "Invalid type_id");
2496		return -EINVAL;
2497	}
2498
2499	/* typedef/type_tag type must have a valid name, and other ref types,
2500	 * volatile, const, restrict, should have a null name.
2501	 */
2502	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2503		if (!t->name_off ||
2504		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2505			btf_verifier_log_type(env, t, "Invalid name");
2506			return -EINVAL;
2507		}
2508	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2509		value = btf_name_by_offset(env->btf, t->name_off);
2510		if (!value || !value[0]) {
2511			btf_verifier_log_type(env, t, "Invalid name");
2512			return -EINVAL;
2513		}
2514	} else {
2515		if (t->name_off) {
2516			btf_verifier_log_type(env, t, "Invalid name");
2517			return -EINVAL;
2518		}
2519	}
2520
2521	btf_verifier_log_type(env, t, NULL);
2522
2523	return 0;
2524}
2525
2526static int btf_modifier_resolve(struct btf_verifier_env *env,
2527				const struct resolve_vertex *v)
2528{
2529	const struct btf_type *t = v->t;
2530	const struct btf_type *next_type;
2531	u32 next_type_id = t->type;
2532	struct btf *btf = env->btf;
2533
2534	next_type = btf_type_by_id(btf, next_type_id);
2535	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2536		btf_verifier_log_type(env, v->t, "Invalid type_id");
2537		return -EINVAL;
2538	}
2539
2540	if (!env_type_is_resolve_sink(env, next_type) &&
2541	    !env_type_is_resolved(env, next_type_id))
2542		return env_stack_push(env, next_type, next_type_id);
2543
2544	/* Figure out the resolved next_type_id with size.
2545	 * They will be stored in the current modifier's
2546	 * resolved_ids and resolved_sizes such that it can
2547	 * save us a few type-following when we use it later (e.g. in
2548	 * pretty print).
2549	 */
2550	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2551		if (env_type_is_resolved(env, next_type_id))
2552			next_type = btf_type_id_resolve(btf, &next_type_id);
2553
2554		/* "typedef void new_void", "const void"...etc */
2555		if (!btf_type_is_void(next_type) &&
2556		    !btf_type_is_fwd(next_type) &&
2557		    !btf_type_is_func_proto(next_type)) {
2558			btf_verifier_log_type(env, v->t, "Invalid type_id");
2559			return -EINVAL;
2560		}
2561	}
2562
2563	env_stack_pop_resolved(env, next_type_id, 0);
2564
2565	return 0;
2566}
2567
2568static int btf_var_resolve(struct btf_verifier_env *env,
2569			   const struct resolve_vertex *v)
2570{
2571	const struct btf_type *next_type;
2572	const struct btf_type *t = v->t;
2573	u32 next_type_id = t->type;
2574	struct btf *btf = env->btf;
2575
2576	next_type = btf_type_by_id(btf, next_type_id);
2577	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2578		btf_verifier_log_type(env, v->t, "Invalid type_id");
2579		return -EINVAL;
2580	}
2581
2582	if (!env_type_is_resolve_sink(env, next_type) &&
2583	    !env_type_is_resolved(env, next_type_id))
2584		return env_stack_push(env, next_type, next_type_id);
2585
2586	if (btf_type_is_modifier(next_type)) {
2587		const struct btf_type *resolved_type;
2588		u32 resolved_type_id;
2589
2590		resolved_type_id = next_type_id;
2591		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2592
2593		if (btf_type_is_ptr(resolved_type) &&
2594		    !env_type_is_resolve_sink(env, resolved_type) &&
2595		    !env_type_is_resolved(env, resolved_type_id))
2596			return env_stack_push(env, resolved_type,
2597					      resolved_type_id);
2598	}
2599
2600	/* We must resolve to something concrete at this point, no
2601	 * forward types or similar that would resolve to size of
2602	 * zero is allowed.
2603	 */
2604	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2605		btf_verifier_log_type(env, v->t, "Invalid type_id");
2606		return -EINVAL;
2607	}
2608
2609	env_stack_pop_resolved(env, next_type_id, 0);
2610
2611	return 0;
2612}
2613
2614static int btf_ptr_resolve(struct btf_verifier_env *env,
2615			   const struct resolve_vertex *v)
2616{
2617	const struct btf_type *next_type;
2618	const struct btf_type *t = v->t;
2619	u32 next_type_id = t->type;
2620	struct btf *btf = env->btf;
2621
2622	next_type = btf_type_by_id(btf, next_type_id);
2623	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2624		btf_verifier_log_type(env, v->t, "Invalid type_id");
2625		return -EINVAL;
2626	}
2627
2628	if (!env_type_is_resolve_sink(env, next_type) &&
2629	    !env_type_is_resolved(env, next_type_id))
2630		return env_stack_push(env, next_type, next_type_id);
2631
2632	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2633	 * the modifier may have stopped resolving when it was resolved
2634	 * to a ptr (last-resolved-ptr).
2635	 *
2636	 * We now need to continue from the last-resolved-ptr to
2637	 * ensure the last-resolved-ptr will not referring back to
2638	 * the current ptr (t).
2639	 */
2640	if (btf_type_is_modifier(next_type)) {
2641		const struct btf_type *resolved_type;
2642		u32 resolved_type_id;
2643
2644		resolved_type_id = next_type_id;
2645		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2646
2647		if (btf_type_is_ptr(resolved_type) &&
2648		    !env_type_is_resolve_sink(env, resolved_type) &&
2649		    !env_type_is_resolved(env, resolved_type_id))
2650			return env_stack_push(env, resolved_type,
2651					      resolved_type_id);
2652	}
2653
2654	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2655		if (env_type_is_resolved(env, next_type_id))
2656			next_type = btf_type_id_resolve(btf, &next_type_id);
2657
2658		if (!btf_type_is_void(next_type) &&
2659		    !btf_type_is_fwd(next_type) &&
2660		    !btf_type_is_func_proto(next_type)) {
2661			btf_verifier_log_type(env, v->t, "Invalid type_id");
2662			return -EINVAL;
2663		}
2664	}
2665
2666	env_stack_pop_resolved(env, next_type_id, 0);
2667
2668	return 0;
2669}
2670
2671static void btf_modifier_show(const struct btf *btf,
2672			      const struct btf_type *t,
2673			      u32 type_id, void *data,
2674			      u8 bits_offset, struct btf_show *show)
2675{
2676	if (btf->resolved_ids)
2677		t = btf_type_id_resolve(btf, &type_id);
2678	else
2679		t = btf_type_skip_modifiers(btf, type_id, NULL);
2680
2681	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2682}
2683
2684static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2685			 u32 type_id, void *data, u8 bits_offset,
2686			 struct btf_show *show)
2687{
2688	t = btf_type_id_resolve(btf, &type_id);
2689
2690	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2691}
2692
2693static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2694			 u32 type_id, void *data, u8 bits_offset,
2695			 struct btf_show *show)
2696{
2697	void *safe_data;
2698
2699	safe_data = btf_show_start_type(show, t, type_id, data);
2700	if (!safe_data)
2701		return;
2702
2703	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2704	if (show->flags & BTF_SHOW_PTR_RAW)
2705		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2706	else
2707		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2708	btf_show_end_type(show);
2709}
2710
2711static void btf_ref_type_log(struct btf_verifier_env *env,
2712			     const struct btf_type *t)
2713{
2714	btf_verifier_log(env, "type_id=%u", t->type);
2715}
2716
2717static struct btf_kind_operations modifier_ops = {
2718	.check_meta = btf_ref_type_check_meta,
2719	.resolve = btf_modifier_resolve,
2720	.check_member = btf_modifier_check_member,
2721	.check_kflag_member = btf_modifier_check_kflag_member,
2722	.log_details = btf_ref_type_log,
2723	.show = btf_modifier_show,
2724};
2725
2726static struct btf_kind_operations ptr_ops = {
2727	.check_meta = btf_ref_type_check_meta,
2728	.resolve = btf_ptr_resolve,
2729	.check_member = btf_ptr_check_member,
2730	.check_kflag_member = btf_generic_check_kflag_member,
2731	.log_details = btf_ref_type_log,
2732	.show = btf_ptr_show,
2733};
2734
2735static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2736			      const struct btf_type *t,
2737			      u32 meta_left)
2738{
2739	if (btf_type_vlen(t)) {
2740		btf_verifier_log_type(env, t, "vlen != 0");
2741		return -EINVAL;
2742	}
2743
2744	if (t->type) {
2745		btf_verifier_log_type(env, t, "type != 0");
2746		return -EINVAL;
2747	}
2748
2749	/* fwd type must have a valid name */
2750	if (!t->name_off ||
2751	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2752		btf_verifier_log_type(env, t, "Invalid name");
2753		return -EINVAL;
2754	}
2755
2756	btf_verifier_log_type(env, t, NULL);
2757
2758	return 0;
2759}
2760
2761static void btf_fwd_type_log(struct btf_verifier_env *env,
2762			     const struct btf_type *t)
2763{
2764	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2765}
2766
2767static struct btf_kind_operations fwd_ops = {
2768	.check_meta = btf_fwd_check_meta,
2769	.resolve = btf_df_resolve,
2770	.check_member = btf_df_check_member,
2771	.check_kflag_member = btf_df_check_kflag_member,
2772	.log_details = btf_fwd_type_log,
2773	.show = btf_df_show,
2774};
2775
2776static int btf_array_check_member(struct btf_verifier_env *env,
2777				  const struct btf_type *struct_type,
2778				  const struct btf_member *member,
2779				  const struct btf_type *member_type)
2780{
2781	u32 struct_bits_off = member->offset;
2782	u32 struct_size, bytes_offset;
2783	u32 array_type_id, array_size;
2784	struct btf *btf = env->btf;
2785
2786	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2787		btf_verifier_log_member(env, struct_type, member,
2788					"Member is not byte aligned");
2789		return -EINVAL;
2790	}
2791
2792	array_type_id = member->type;
2793	btf_type_id_size(btf, &array_type_id, &array_size);
2794	struct_size = struct_type->size;
2795	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2796	if (struct_size - bytes_offset < array_size) {
2797		btf_verifier_log_member(env, struct_type, member,
2798					"Member exceeds struct_size");
2799		return -EINVAL;
2800	}
2801
2802	return 0;
2803}
2804
2805static s32 btf_array_check_meta(struct btf_verifier_env *env,
2806				const struct btf_type *t,
2807				u32 meta_left)
2808{
2809	const struct btf_array *array = btf_type_array(t);
2810	u32 meta_needed = sizeof(*array);
2811
2812	if (meta_left < meta_needed) {
2813		btf_verifier_log_basic(env, t,
2814				       "meta_left:%u meta_needed:%u",
2815				       meta_left, meta_needed);
2816		return -EINVAL;
2817	}
2818
2819	/* array type should not have a name */
2820	if (t->name_off) {
2821		btf_verifier_log_type(env, t, "Invalid name");
2822		return -EINVAL;
2823	}
2824
2825	if (btf_type_vlen(t)) {
2826		btf_verifier_log_type(env, t, "vlen != 0");
2827		return -EINVAL;
2828	}
2829
2830	if (btf_type_kflag(t)) {
2831		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2832		return -EINVAL;
2833	}
2834
2835	if (t->size) {
2836		btf_verifier_log_type(env, t, "size != 0");
2837		return -EINVAL;
2838	}
2839
2840	/* Array elem type and index type cannot be in type void,
2841	 * so !array->type and !array->index_type are not allowed.
2842	 */
2843	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2844		btf_verifier_log_type(env, t, "Invalid elem");
2845		return -EINVAL;
2846	}
2847
2848	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2849		btf_verifier_log_type(env, t, "Invalid index");
2850		return -EINVAL;
2851	}
2852
2853	btf_verifier_log_type(env, t, NULL);
2854
2855	return meta_needed;
2856}
2857
2858static int btf_array_resolve(struct btf_verifier_env *env,
2859			     const struct resolve_vertex *v)
2860{
2861	const struct btf_array *array = btf_type_array(v->t);
2862	const struct btf_type *elem_type, *index_type;
2863	u32 elem_type_id, index_type_id;
2864	struct btf *btf = env->btf;
2865	u32 elem_size;
2866
2867	/* Check array->index_type */
2868	index_type_id = array->index_type;
2869	index_type = btf_type_by_id(btf, index_type_id);
2870	if (btf_type_nosize_or_null(index_type) ||
2871	    btf_type_is_resolve_source_only(index_type)) {
2872		btf_verifier_log_type(env, v->t, "Invalid index");
2873		return -EINVAL;
2874	}
2875
2876	if (!env_type_is_resolve_sink(env, index_type) &&
2877	    !env_type_is_resolved(env, index_type_id))
2878		return env_stack_push(env, index_type, index_type_id);
2879
2880	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2881	if (!index_type || !btf_type_is_int(index_type) ||
2882	    !btf_type_int_is_regular(index_type)) {
2883		btf_verifier_log_type(env, v->t, "Invalid index");
2884		return -EINVAL;
2885	}
2886
2887	/* Check array->type */
2888	elem_type_id = array->type;
2889	elem_type = btf_type_by_id(btf, elem_type_id);
2890	if (btf_type_nosize_or_null(elem_type) ||
2891	    btf_type_is_resolve_source_only(elem_type)) {
2892		btf_verifier_log_type(env, v->t,
2893				      "Invalid elem");
2894		return -EINVAL;
2895	}
2896
2897	if (!env_type_is_resolve_sink(env, elem_type) &&
2898	    !env_type_is_resolved(env, elem_type_id))
2899		return env_stack_push(env, elem_type, elem_type_id);
2900
2901	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2902	if (!elem_type) {
2903		btf_verifier_log_type(env, v->t, "Invalid elem");
2904		return -EINVAL;
2905	}
2906
2907	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2908		btf_verifier_log_type(env, v->t, "Invalid array of int");
2909		return -EINVAL;
2910	}
2911
2912	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2913		btf_verifier_log_type(env, v->t,
2914				      "Array size overflows U32_MAX");
2915		return -EINVAL;
2916	}
2917
2918	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2919
2920	return 0;
2921}
2922
2923static void btf_array_log(struct btf_verifier_env *env,
2924			  const struct btf_type *t)
2925{
2926	const struct btf_array *array = btf_type_array(t);
2927
2928	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
2929			 array->type, array->index_type, array->nelems);
2930}
2931
2932static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
2933			     u32 type_id, void *data, u8 bits_offset,
2934			     struct btf_show *show)
2935{
2936	const struct btf_array *array = btf_type_array(t);
2937	const struct btf_kind_operations *elem_ops;
2938	const struct btf_type *elem_type;
2939	u32 i, elem_size = 0, elem_type_id;
2940	u16 encoding = 0;
2941
2942	elem_type_id = array->type;
2943	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
2944	if (elem_type && btf_type_has_size(elem_type))
2945		elem_size = elem_type->size;
2946
2947	if (elem_type && btf_type_is_int(elem_type)) {
2948		u32 int_type = btf_type_int(elem_type);
2949
2950		encoding = BTF_INT_ENCODING(int_type);
2951
2952		/*
2953		 * BTF_INT_CHAR encoding never seems to be set for
2954		 * char arrays, so if size is 1 and element is
2955		 * printable as a char, we'll do that.
2956		 */
2957		if (elem_size == 1)
2958			encoding = BTF_INT_CHAR;
2959	}
2960
2961	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
2962		return;
2963
2964	if (!elem_type)
2965		goto out;
2966	elem_ops = btf_type_ops(elem_type);
2967
2968	for (i = 0; i < array->nelems; i++) {
2969
2970		btf_show_start_array_member(show);
2971
2972		elem_ops->show(btf, elem_type, elem_type_id, data,
2973			       bits_offset, show);
2974		data += elem_size;
2975
2976		btf_show_end_array_member(show);
2977
2978		if (show->state.array_terminated)
2979			break;
2980	}
2981out:
2982	btf_show_end_array_type(show);
2983}
2984
2985static void btf_array_show(const struct btf *btf, const struct btf_type *t,
2986			   u32 type_id, void *data, u8 bits_offset,
2987			   struct btf_show *show)
2988{
2989	const struct btf_member *m = show->state.member;
2990
2991	/*
2992	 * First check if any members would be shown (are non-zero).
2993	 * See comments above "struct btf_show" definition for more
2994	 * details on how this works at a high-level.
2995	 */
2996	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
2997		if (!show->state.depth_check) {
2998			show->state.depth_check = show->state.depth + 1;
2999			show->state.depth_to_show = 0;
3000		}
3001		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3002		show->state.member = m;
3003
3004		if (show->state.depth_check != show->state.depth + 1)
3005			return;
3006		show->state.depth_check = 0;
3007
3008		if (show->state.depth_to_show <= show->state.depth)
3009			return;
3010		/*
3011		 * Reaching here indicates we have recursed and found
3012		 * non-zero array member(s).
3013		 */
3014	}
3015	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3016}
3017
3018static struct btf_kind_operations array_ops = {
3019	.check_meta = btf_array_check_meta,
3020	.resolve = btf_array_resolve,
3021	.check_member = btf_array_check_member,
3022	.check_kflag_member = btf_generic_check_kflag_member,
3023	.log_details = btf_array_log,
3024	.show = btf_array_show,
3025};
3026
3027static int btf_struct_check_member(struct btf_verifier_env *env,
3028				   const struct btf_type *struct_type,
3029				   const struct btf_member *member,
3030				   const struct btf_type *member_type)
3031{
3032	u32 struct_bits_off = member->offset;
3033	u32 struct_size, bytes_offset;
3034
3035	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3036		btf_verifier_log_member(env, struct_type, member,
3037					"Member is not byte aligned");
3038		return -EINVAL;
3039	}
3040
3041	struct_size = struct_type->size;
3042	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3043	if (struct_size - bytes_offset < member_type->size) {
3044		btf_verifier_log_member(env, struct_type, member,
3045					"Member exceeds struct_size");
3046		return -EINVAL;
3047	}
3048
3049	return 0;
3050}
3051
3052static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3053				 const struct btf_type *t,
3054				 u32 meta_left)
3055{
3056	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3057	const struct btf_member *member;
3058	u32 meta_needed, last_offset;
3059	struct btf *btf = env->btf;
3060	u32 struct_size = t->size;
3061	u32 offset;
3062	u16 i;
3063
3064	meta_needed = btf_type_vlen(t) * sizeof(*member);
3065	if (meta_left < meta_needed) {
3066		btf_verifier_log_basic(env, t,
3067				       "meta_left:%u meta_needed:%u",
3068				       meta_left, meta_needed);
3069		return -EINVAL;
3070	}
3071
3072	/* struct type either no name or a valid one */
3073	if (t->name_off &&
3074	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3075		btf_verifier_log_type(env, t, "Invalid name");
3076		return -EINVAL;
3077	}
3078
3079	btf_verifier_log_type(env, t, NULL);
3080
3081	last_offset = 0;
3082	for_each_member(i, t, member) {
3083		if (!btf_name_offset_valid(btf, member->name_off)) {
3084			btf_verifier_log_member(env, t, member,
3085						"Invalid member name_offset:%u",
3086						member->name_off);
3087			return -EINVAL;
3088		}
3089
3090		/* struct member either no name or a valid one */
3091		if (member->name_off &&
3092		    !btf_name_valid_identifier(btf, member->name_off)) {
3093			btf_verifier_log_member(env, t, member, "Invalid name");
3094			return -EINVAL;
3095		}
3096		/* A member cannot be in type void */
3097		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3098			btf_verifier_log_member(env, t, member,
3099						"Invalid type_id");
3100			return -EINVAL;
3101		}
3102
3103		offset = __btf_member_bit_offset(t, member);
3104		if (is_union && offset) {
3105			btf_verifier_log_member(env, t, member,
3106						"Invalid member bits_offset");
3107			return -EINVAL;
3108		}
3109
3110		/*
3111		 * ">" instead of ">=" because the last member could be
3112		 * "char a[0];"
3113		 */
3114		if (last_offset > offset) {
3115			btf_verifier_log_member(env, t, member,
3116						"Invalid member bits_offset");
3117			return -EINVAL;
3118		}
3119
3120		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3121			btf_verifier_log_member(env, t, member,
3122						"Member bits_offset exceeds its struct size");
3123			return -EINVAL;
3124		}
3125
3126		btf_verifier_log_member(env, t, member, NULL);
3127		last_offset = offset;
3128	}
3129
3130	return meta_needed;
3131}
3132
3133static int btf_struct_resolve(struct btf_verifier_env *env,
3134			      const struct resolve_vertex *v)
3135{
3136	const struct btf_member *member;
3137	int err;
3138	u16 i;
3139
3140	/* Before continue resolving the next_member,
3141	 * ensure the last member is indeed resolved to a
3142	 * type with size info.
3143	 */
3144	if (v->next_member) {
3145		const struct btf_type *last_member_type;
3146		const struct btf_member *last_member;
3147		u32 last_member_type_id;
3148
3149		last_member = btf_type_member(v->t) + v->next_member - 1;
3150		last_member_type_id = last_member->type;
3151		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3152						       last_member_type_id)))
3153			return -EINVAL;
3154
3155		last_member_type = btf_type_by_id(env->btf,
3156						  last_member_type_id);
3157		if (btf_type_kflag(v->t))
3158			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3159								last_member,
3160								last_member_type);
3161		else
3162			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3163								last_member,
3164								last_member_type);
3165		if (err)
3166			return err;
3167	}
3168
3169	for_each_member_from(i, v->next_member, v->t, member) {
3170		u32 member_type_id = member->type;
3171		const struct btf_type *member_type = btf_type_by_id(env->btf,
3172								member_type_id);
3173
3174		if (btf_type_nosize_or_null(member_type) ||
3175		    btf_type_is_resolve_source_only(member_type)) {
3176			btf_verifier_log_member(env, v->t, member,
3177						"Invalid member");
3178			return -EINVAL;
3179		}
3180
3181		if (!env_type_is_resolve_sink(env, member_type) &&
3182		    !env_type_is_resolved(env, member_type_id)) {
3183			env_stack_set_next_member(env, i + 1);
3184			return env_stack_push(env, member_type, member_type_id);
3185		}
3186
3187		if (btf_type_kflag(v->t))
3188			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3189									    member,
3190									    member_type);
3191		else
3192			err = btf_type_ops(member_type)->check_member(env, v->t,
3193								      member,
3194								      member_type);
3195		if (err)
3196			return err;
3197	}
3198
3199	env_stack_pop_resolved(env, 0, 0);
3200
3201	return 0;
3202}
3203
3204static void btf_struct_log(struct btf_verifier_env *env,
3205			   const struct btf_type *t)
3206{
3207	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3208}
3209
3210enum btf_field_info_type {
3211	BTF_FIELD_SPIN_LOCK,
3212	BTF_FIELD_TIMER,
3213	BTF_FIELD_KPTR,
3214};
3215
3216enum {
3217	BTF_FIELD_IGNORE = 0,
3218	BTF_FIELD_FOUND  = 1,
3219};
3220
3221struct btf_field_info {
3222	enum btf_field_type type;
3223	u32 off;
3224	union {
3225		struct {
3226			u32 type_id;
3227		} kptr;
3228		struct {
3229			const char *node_name;
3230			u32 value_btf_id;
3231		} list_head;
3232	};
3233};
3234
3235static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3236			   u32 off, int sz, enum btf_field_type field_type,
3237			   struct btf_field_info *info)
3238{
3239	if (!__btf_type_is_struct(t))
3240		return BTF_FIELD_IGNORE;
3241	if (t->size != sz)
3242		return BTF_FIELD_IGNORE;
3243	info->type = field_type;
3244	info->off = off;
3245	return BTF_FIELD_FOUND;
3246}
3247
3248static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3249			 u32 off, int sz, struct btf_field_info *info)
3250{
3251	enum btf_field_type type;
3252	u32 res_id;
3253
3254	/* Permit modifiers on the pointer itself */
3255	if (btf_type_is_volatile(t))
3256		t = btf_type_by_id(btf, t->type);
3257	/* For PTR, sz is always == 8 */
3258	if (!btf_type_is_ptr(t))
3259		return BTF_FIELD_IGNORE;
3260	t = btf_type_by_id(btf, t->type);
3261
3262	if (!btf_type_is_type_tag(t))
3263		return BTF_FIELD_IGNORE;
3264	/* Reject extra tags */
3265	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3266		return -EINVAL;
3267	if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3268		type = BPF_KPTR_UNREF;
3269	else if (!strcmp("kptr_ref", __btf_name_by_offset(btf, t->name_off)))
3270		type = BPF_KPTR_REF;
 
 
3271	else
3272		return -EINVAL;
3273
3274	/* Get the base type */
3275	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3276	/* Only pointer to struct is allowed */
3277	if (!__btf_type_is_struct(t))
3278		return -EINVAL;
3279
3280	info->type = type;
3281	info->off = off;
3282	info->kptr.type_id = res_id;
3283	return BTF_FIELD_FOUND;
3284}
3285
3286static const char *btf_find_decl_tag_value(const struct btf *btf,
3287					   const struct btf_type *pt,
3288					   int comp_idx, const char *tag_key)
3289{
3290	int i;
 
3291
3292	for (i = 1; i < btf_nr_types(btf); i++) {
3293		const struct btf_type *t = btf_type_by_id(btf, i);
3294		int len = strlen(tag_key);
3295
3296		if (!btf_type_is_decl_tag(t))
3297			continue;
3298		if (pt != btf_type_by_id(btf, t->type) ||
3299		    btf_type_decl_tag(t)->component_idx != comp_idx)
 
3300			continue;
3301		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3302			continue;
3303		return __btf_name_by_offset(btf, t->name_off) + len;
3304	}
3305	return NULL;
3306}
3307
3308static int btf_find_list_head(const struct btf *btf, const struct btf_type *pt,
3309			      const struct btf_type *t, int comp_idx,
3310			      u32 off, int sz, struct btf_field_info *info)
3311{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312	const char *value_type;
3313	const char *list_node;
3314	s32 id;
3315
3316	if (!__btf_type_is_struct(t))
3317		return BTF_FIELD_IGNORE;
3318	if (t->size != sz)
3319		return BTF_FIELD_IGNORE;
3320	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3321	if (!value_type)
3322		return -EINVAL;
3323	list_node = strstr(value_type, ":");
3324	if (!list_node)
3325		return -EINVAL;
3326	value_type = kstrndup(value_type, list_node - value_type, GFP_KERNEL | __GFP_NOWARN);
3327	if (!value_type)
3328		return -ENOMEM;
3329	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3330	kfree(value_type);
3331	if (id < 0)
3332		return id;
3333	list_node++;
3334	if (str_is_empty(list_node))
3335		return -EINVAL;
3336	info->type = BPF_LIST_HEAD;
3337	info->off = off;
3338	info->list_head.value_btf_id = id;
3339	info->list_head.node_name = list_node;
3340	return BTF_FIELD_FOUND;
3341}
3342
 
 
 
 
 
 
3343static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3344			      int *align, int *sz)
3345{
3346	int type = 0;
3347
3348	if (field_mask & BPF_SPIN_LOCK) {
3349		if (!strcmp(name, "bpf_spin_lock")) {
3350			if (*seen_mask & BPF_SPIN_LOCK)
3351				return -E2BIG;
3352			*seen_mask |= BPF_SPIN_LOCK;
3353			type = BPF_SPIN_LOCK;
3354			goto end;
3355		}
3356	}
3357	if (field_mask & BPF_TIMER) {
3358		if (!strcmp(name, "bpf_timer")) {
3359			if (*seen_mask & BPF_TIMER)
3360				return -E2BIG;
3361			*seen_mask |= BPF_TIMER;
3362			type = BPF_TIMER;
3363			goto end;
3364		}
3365	}
3366	if (field_mask & BPF_LIST_HEAD) {
3367		if (!strcmp(name, "bpf_list_head")) {
3368			type = BPF_LIST_HEAD;
3369			goto end;
3370		}
3371	}
3372	if (field_mask & BPF_LIST_NODE) {
3373		if (!strcmp(name, "bpf_list_node")) {
3374			type = BPF_LIST_NODE;
3375			goto end;
3376		}
3377	}
3378	/* Only return BPF_KPTR when all other types with matchable names fail */
3379	if (field_mask & BPF_KPTR) {
3380		type = BPF_KPTR_REF;
3381		goto end;
3382	}
3383	return 0;
3384end:
3385	*sz = btf_field_type_size(type);
3386	*align = btf_field_type_align(type);
3387	return type;
3388}
3389
 
 
3390static int btf_find_struct_field(const struct btf *btf,
3391				 const struct btf_type *t, u32 field_mask,
3392				 struct btf_field_info *info, int info_cnt)
3393{
3394	int ret, idx = 0, align, sz, field_type;
3395	const struct btf_member *member;
3396	struct btf_field_info tmp;
3397	u32 i, off, seen_mask = 0;
3398
3399	for_each_member(i, t, member) {
3400		const struct btf_type *member_type = btf_type_by_id(btf,
3401								    member->type);
3402
3403		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3404						field_mask, &seen_mask, &align, &sz);
3405		if (field_type == 0)
3406			continue;
3407		if (field_type < 0)
3408			return field_type;
3409
3410		off = __btf_member_bit_offset(t, member);
3411		if (off % 8)
3412			/* valid C code cannot generate such BTF */
3413			return -EINVAL;
3414		off /= 8;
3415		if (off % align)
3416			continue;
3417
3418		switch (field_type) {
3419		case BPF_SPIN_LOCK:
3420		case BPF_TIMER:
3421		case BPF_LIST_NODE:
 
 
3422			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3423					      idx < info_cnt ? &info[idx] : &tmp);
3424			if (ret < 0)
3425				return ret;
3426			break;
3427		case BPF_KPTR_UNREF:
3428		case BPF_KPTR_REF:
 
3429			ret = btf_find_kptr(btf, member_type, off, sz,
3430					    idx < info_cnt ? &info[idx] : &tmp);
3431			if (ret < 0)
3432				return ret;
3433			break;
3434		case BPF_LIST_HEAD:
3435			ret = btf_find_list_head(btf, t, member_type, i, off, sz,
3436						 idx < info_cnt ? &info[idx] : &tmp);
 
 
 
3437			if (ret < 0)
3438				return ret;
3439			break;
3440		default:
3441			return -EFAULT;
3442		}
3443
3444		if (ret == BTF_FIELD_IGNORE)
3445			continue;
3446		if (idx >= info_cnt)
3447			return -E2BIG;
3448		++idx;
3449	}
3450	return idx;
3451}
3452
3453static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3454				u32 field_mask, struct btf_field_info *info,
3455				int info_cnt)
3456{
3457	int ret, idx = 0, align, sz, field_type;
3458	const struct btf_var_secinfo *vsi;
3459	struct btf_field_info tmp;
3460	u32 i, off, seen_mask = 0;
3461
3462	for_each_vsi(i, t, vsi) {
3463		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3464		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3465
3466		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3467						field_mask, &seen_mask, &align, &sz);
3468		if (field_type == 0)
3469			continue;
3470		if (field_type < 0)
3471			return field_type;
3472
3473		off = vsi->offset;
3474		if (vsi->size != sz)
3475			continue;
3476		if (off % align)
3477			continue;
3478
3479		switch (field_type) {
3480		case BPF_SPIN_LOCK:
3481		case BPF_TIMER:
3482		case BPF_LIST_NODE:
 
 
3483			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3484					      idx < info_cnt ? &info[idx] : &tmp);
3485			if (ret < 0)
3486				return ret;
3487			break;
3488		case BPF_KPTR_UNREF:
3489		case BPF_KPTR_REF:
 
3490			ret = btf_find_kptr(btf, var_type, off, sz,
3491					    idx < info_cnt ? &info[idx] : &tmp);
3492			if (ret < 0)
3493				return ret;
3494			break;
3495		case BPF_LIST_HEAD:
3496			ret = btf_find_list_head(btf, var, var_type, -1, off, sz,
3497						 idx < info_cnt ? &info[idx] : &tmp);
 
 
 
3498			if (ret < 0)
3499				return ret;
3500			break;
3501		default:
3502			return -EFAULT;
3503		}
3504
3505		if (ret == BTF_FIELD_IGNORE)
3506			continue;
3507		if (idx >= info_cnt)
3508			return -E2BIG;
3509		++idx;
3510	}
3511	return idx;
3512}
3513
3514static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3515			  u32 field_mask, struct btf_field_info *info,
3516			  int info_cnt)
3517{
3518	if (__btf_type_is_struct(t))
3519		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3520	else if (btf_type_is_datasec(t))
3521		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3522	return -EINVAL;
3523}
3524
3525static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3526			  struct btf_field_info *info)
3527{
3528	struct module *mod = NULL;
3529	const struct btf_type *t;
3530	struct btf *kernel_btf;
 
 
 
3531	int ret;
3532	s32 id;
3533
3534	/* Find type in map BTF, and use it to look up the matching type
3535	 * in vmlinux or module BTFs, by name and kind.
3536	 */
3537	t = btf_type_by_id(btf, info->kptr.type_id);
3538	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3539			     &kernel_btf);
 
 
 
 
 
 
 
 
 
 
 
 
 
3540	if (id < 0)
3541		return id;
3542
3543	/* Find and stash the function pointer for the destruction function that
3544	 * needs to be eventually invoked from the map free path.
3545	 */
3546	if (info->type == BPF_KPTR_REF) {
3547		const struct btf_type *dtor_func;
3548		const char *dtor_func_name;
3549		unsigned long addr;
3550		s32 dtor_btf_id;
3551
3552		/* This call also serves as a whitelist of allowed objects that
3553		 * can be used as a referenced pointer and be stored in a map at
3554		 * the same time.
3555		 */
3556		dtor_btf_id = btf_find_dtor_kfunc(kernel_btf, id);
3557		if (dtor_btf_id < 0) {
3558			ret = dtor_btf_id;
3559			goto end_btf;
3560		}
3561
3562		dtor_func = btf_type_by_id(kernel_btf, dtor_btf_id);
3563		if (!dtor_func) {
3564			ret = -ENOENT;
3565			goto end_btf;
3566		}
3567
3568		if (btf_is_module(kernel_btf)) {
3569			mod = btf_try_get_module(kernel_btf);
3570			if (!mod) {
3571				ret = -ENXIO;
3572				goto end_btf;
3573			}
3574		}
3575
3576		/* We already verified dtor_func to be btf_type_is_func
3577		 * in register_btf_id_dtor_kfuncs.
3578		 */
3579		dtor_func_name = __btf_name_by_offset(kernel_btf, dtor_func->name_off);
3580		addr = kallsyms_lookup_name(dtor_func_name);
3581		if (!addr) {
3582			ret = -EINVAL;
3583			goto end_mod;
3584		}
3585		field->kptr.dtor = (void *)addr;
3586	}
3587
 
3588	field->kptr.btf_id = id;
3589	field->kptr.btf = kernel_btf;
3590	field->kptr.module = mod;
3591	return 0;
3592end_mod:
3593	module_put(mod);
3594end_btf:
3595	btf_put(kernel_btf);
3596	return ret;
3597}
3598
3599static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3600			       struct btf_field_info *info)
 
 
 
3601{
3602	const struct btf_type *t, *n = NULL;
3603	const struct btf_member *member;
3604	u32 offset;
3605	int i;
3606
3607	t = btf_type_by_id(btf, info->list_head.value_btf_id);
3608	/* We've already checked that value_btf_id is a struct type. We
3609	 * just need to figure out the offset of the list_node, and
3610	 * verify its type.
3611	 */
3612	for_each_member(i, t, member) {
3613		if (strcmp(info->list_head.node_name, __btf_name_by_offset(btf, member->name_off)))
 
3614			continue;
3615		/* Invalid BTF, two members with same name */
3616		if (n)
3617			return -EINVAL;
3618		n = btf_type_by_id(btf, member->type);
3619		if (!__btf_type_is_struct(n))
3620			return -EINVAL;
3621		if (strcmp("bpf_list_node", __btf_name_by_offset(btf, n->name_off)))
3622			return -EINVAL;
3623		offset = __btf_member_bit_offset(n, member);
3624		if (offset % 8)
3625			return -EINVAL;
3626		offset /= 8;
3627		if (offset % __alignof__(struct bpf_list_node))
3628			return -EINVAL;
3629
3630		field->list_head.btf = (struct btf *)btf;
3631		field->list_head.value_btf_id = info->list_head.value_btf_id;
3632		field->list_head.node_offset = offset;
3633	}
3634	if (!n)
3635		return -ENOENT;
3636	return 0;
3637}
3638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3639struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3640				    u32 field_mask, u32 value_size)
3641{
3642	struct btf_field_info info_arr[BTF_FIELDS_MAX];
 
3643	struct btf_record *rec;
3644	u32 next_off = 0;
3645	int ret, i, cnt;
3646
3647	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3648	if (ret < 0)
3649		return ERR_PTR(ret);
3650	if (!ret)
3651		return NULL;
3652
3653	cnt = ret;
3654	/* This needs to be kzalloc to zero out padding and unused fields, see
3655	 * comment in btf_record_equal.
3656	 */
3657	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3658	if (!rec)
3659		return ERR_PTR(-ENOMEM);
3660
3661	rec->spin_lock_off = -EINVAL;
3662	rec->timer_off = -EINVAL;
 
3663	for (i = 0; i < cnt; i++) {
3664		if (info_arr[i].off + btf_field_type_size(info_arr[i].type) > value_size) {
 
3665			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3666			ret = -EFAULT;
3667			goto end;
3668		}
3669		if (info_arr[i].off < next_off) {
3670			ret = -EEXIST;
3671			goto end;
3672		}
3673		next_off = info_arr[i].off + btf_field_type_size(info_arr[i].type);
3674
3675		rec->field_mask |= info_arr[i].type;
3676		rec->fields[i].offset = info_arr[i].off;
3677		rec->fields[i].type = info_arr[i].type;
 
3678
3679		switch (info_arr[i].type) {
3680		case BPF_SPIN_LOCK:
3681			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3682			/* Cache offset for faster lookup at runtime */
3683			rec->spin_lock_off = rec->fields[i].offset;
3684			break;
3685		case BPF_TIMER:
3686			WARN_ON_ONCE(rec->timer_off >= 0);
3687			/* Cache offset for faster lookup at runtime */
3688			rec->timer_off = rec->fields[i].offset;
3689			break;
 
 
 
 
 
3690		case BPF_KPTR_UNREF:
3691		case BPF_KPTR_REF:
 
3692			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3693			if (ret < 0)
3694				goto end;
3695			break;
3696		case BPF_LIST_HEAD:
3697			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3698			if (ret < 0)
3699				goto end;
3700			break;
 
 
 
 
 
3701		case BPF_LIST_NODE:
 
3702			break;
3703		default:
3704			ret = -EFAULT;
3705			goto end;
3706		}
3707		rec->cnt++;
3708	}
3709
3710	/* bpf_list_head requires bpf_spin_lock */
3711	if (btf_record_has_field(rec, BPF_LIST_HEAD) && rec->spin_lock_off < 0) {
 
3712		ret = -EINVAL;
3713		goto end;
3714	}
3715
 
 
 
 
 
 
 
 
 
 
3716	return rec;
3717end:
3718	btf_record_free(rec);
3719	return ERR_PTR(ret);
3720}
3721
3722int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3723{
3724	int i;
3725
3726	/* There are two owning types, kptr_ref and bpf_list_head. The former
3727	 * only supports storing kernel types, which can never store references
3728	 * to program allocated local types, atleast not yet. Hence we only need
3729	 * to ensure that bpf_list_head ownership does not form cycles.
 
 
 
3730	 */
3731	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_LIST_HEAD))
3732		return 0;
3733	for (i = 0; i < rec->cnt; i++) {
3734		struct btf_struct_meta *meta;
3735		u32 btf_id;
3736
3737		if (!(rec->fields[i].type & BPF_LIST_HEAD))
3738			continue;
3739		btf_id = rec->fields[i].list_head.value_btf_id;
3740		meta = btf_find_struct_meta(btf, btf_id);
3741		if (!meta)
3742			return -EFAULT;
3743		rec->fields[i].list_head.value_rec = meta->record;
3744
3745		if (!(rec->field_mask & BPF_LIST_NODE))
 
 
 
 
3746			continue;
3747
3748		/* We need to ensure ownership acyclicity among all types. The
3749		 * proper way to do it would be to topologically sort all BTF
3750		 * IDs based on the ownership edges, since there can be multiple
3751		 * bpf_list_head in a type. Instead, we use the following
3752		 * reasoning:
3753		 *
3754		 * - A type can only be owned by another type in user BTF if it
3755		 *   has a bpf_list_node.
3756		 * - A type can only _own_ another type in user BTF if it has a
3757		 *   bpf_list_head.
3758		 *
3759		 * We ensure that if a type has both bpf_list_head and
3760		 * bpf_list_node, its element types cannot be owning types.
3761		 *
3762		 * To ensure acyclicity:
3763		 *
3764		 * When A only has bpf_list_head, ownership chain can be:
 
3765		 *	A -> B -> C
3766		 * Where:
3767		 * - B has both bpf_list_head and bpf_list_node.
3768		 * - C only has bpf_list_node.
 
 
3769		 *
3770		 * When A has both bpf_list_head and bpf_list_node, some other
3771		 * type already owns it in the BTF domain, hence it can not own
3772		 * another owning type through any of the bpf_list_head edges.
3773		 *	A -> B
3774		 * Where:
3775		 * - B only has bpf_list_node.
 
3776		 */
3777		if (meta->record->field_mask & BPF_LIST_HEAD)
3778			return -ELOOP;
3779	}
3780	return 0;
3781}
3782
3783static int btf_field_offs_cmp(const void *_a, const void *_b, const void *priv)
3784{
3785	const u32 a = *(const u32 *)_a;
3786	const u32 b = *(const u32 *)_b;
3787
3788	if (a < b)
3789		return -1;
3790	else if (a > b)
3791		return 1;
3792	return 0;
3793}
3794
3795static void btf_field_offs_swap(void *_a, void *_b, int size, const void *priv)
3796{
3797	struct btf_field_offs *foffs = (void *)priv;
3798	u32 *off_base = foffs->field_off;
3799	u32 *a = _a, *b = _b;
3800	u8 *sz_a, *sz_b;
3801
3802	sz_a = foffs->field_sz + (a - off_base);
3803	sz_b = foffs->field_sz + (b - off_base);
3804
3805	swap(*a, *b);
3806	swap(*sz_a, *sz_b);
3807}
3808
3809struct btf_field_offs *btf_parse_field_offs(struct btf_record *rec)
3810{
3811	struct btf_field_offs *foffs;
3812	u32 i, *off;
3813	u8 *sz;
3814
3815	BUILD_BUG_ON(ARRAY_SIZE(foffs->field_off) != ARRAY_SIZE(foffs->field_sz));
3816	if (IS_ERR_OR_NULL(rec))
3817		return NULL;
3818
3819	foffs = kzalloc(sizeof(*foffs), GFP_KERNEL | __GFP_NOWARN);
3820	if (!foffs)
3821		return ERR_PTR(-ENOMEM);
3822
3823	off = foffs->field_off;
3824	sz = foffs->field_sz;
3825	for (i = 0; i < rec->cnt; i++) {
3826		off[i] = rec->fields[i].offset;
3827		sz[i] = btf_field_type_size(rec->fields[i].type);
3828	}
3829	foffs->cnt = rec->cnt;
3830
3831	if (foffs->cnt == 1)
3832		return foffs;
3833	sort_r(foffs->field_off, foffs->cnt, sizeof(foffs->field_off[0]),
3834	       btf_field_offs_cmp, btf_field_offs_swap, foffs);
3835	return foffs;
3836}
3837
3838static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3839			      u32 type_id, void *data, u8 bits_offset,
3840			      struct btf_show *show)
3841{
3842	const struct btf_member *member;
3843	void *safe_data;
3844	u32 i;
3845
3846	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3847	if (!safe_data)
3848		return;
3849
3850	for_each_member(i, t, member) {
3851		const struct btf_type *member_type = btf_type_by_id(btf,
3852								member->type);
3853		const struct btf_kind_operations *ops;
3854		u32 member_offset, bitfield_size;
3855		u32 bytes_offset;
3856		u8 bits8_offset;
3857
3858		btf_show_start_member(show, member);
3859
3860		member_offset = __btf_member_bit_offset(t, member);
3861		bitfield_size = __btf_member_bitfield_size(t, member);
3862		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
3863		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
3864		if (bitfield_size) {
3865			safe_data = btf_show_start_type(show, member_type,
3866							member->type,
3867							data + bytes_offset);
3868			if (safe_data)
3869				btf_bitfield_show(safe_data,
3870						  bits8_offset,
3871						  bitfield_size, show);
3872			btf_show_end_type(show);
3873		} else {
3874			ops = btf_type_ops(member_type);
3875			ops->show(btf, member_type, member->type,
3876				  data + bytes_offset, bits8_offset, show);
3877		}
3878
3879		btf_show_end_member(show);
3880	}
3881
3882	btf_show_end_struct_type(show);
3883}
3884
3885static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
3886			    u32 type_id, void *data, u8 bits_offset,
3887			    struct btf_show *show)
3888{
3889	const struct btf_member *m = show->state.member;
3890
3891	/*
3892	 * First check if any members would be shown (are non-zero).
3893	 * See comments above "struct btf_show" definition for more
3894	 * details on how this works at a high-level.
3895	 */
3896	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3897		if (!show->state.depth_check) {
3898			show->state.depth_check = show->state.depth + 1;
3899			show->state.depth_to_show = 0;
3900		}
3901		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3902		/* Restore saved member data here */
3903		show->state.member = m;
3904		if (show->state.depth_check != show->state.depth + 1)
3905			return;
3906		show->state.depth_check = 0;
3907
3908		if (show->state.depth_to_show <= show->state.depth)
3909			return;
3910		/*
3911		 * Reaching here indicates we have recursed and found
3912		 * non-zero child values.
3913		 */
3914	}
3915
3916	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
3917}
3918
3919static struct btf_kind_operations struct_ops = {
3920	.check_meta = btf_struct_check_meta,
3921	.resolve = btf_struct_resolve,
3922	.check_member = btf_struct_check_member,
3923	.check_kflag_member = btf_generic_check_kflag_member,
3924	.log_details = btf_struct_log,
3925	.show = btf_struct_show,
3926};
3927
3928static int btf_enum_check_member(struct btf_verifier_env *env,
3929				 const struct btf_type *struct_type,
3930				 const struct btf_member *member,
3931				 const struct btf_type *member_type)
3932{
3933	u32 struct_bits_off = member->offset;
3934	u32 struct_size, bytes_offset;
3935
3936	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3937		btf_verifier_log_member(env, struct_type, member,
3938					"Member is not byte aligned");
3939		return -EINVAL;
3940	}
3941
3942	struct_size = struct_type->size;
3943	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3944	if (struct_size - bytes_offset < member_type->size) {
3945		btf_verifier_log_member(env, struct_type, member,
3946					"Member exceeds struct_size");
3947		return -EINVAL;
3948	}
3949
3950	return 0;
3951}
3952
3953static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
3954				       const struct btf_type *struct_type,
3955				       const struct btf_member *member,
3956				       const struct btf_type *member_type)
3957{
3958	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
3959	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
3960
3961	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
3962	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
3963	if (!nr_bits) {
3964		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3965			btf_verifier_log_member(env, struct_type, member,
3966						"Member is not byte aligned");
3967			return -EINVAL;
3968		}
3969
3970		nr_bits = int_bitsize;
3971	} else if (nr_bits > int_bitsize) {
3972		btf_verifier_log_member(env, struct_type, member,
3973					"Invalid member bitfield_size");
3974		return -EINVAL;
3975	}
3976
3977	struct_size = struct_type->size;
3978	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
3979	if (struct_size < bytes_end) {
3980		btf_verifier_log_member(env, struct_type, member,
3981					"Member exceeds struct_size");
3982		return -EINVAL;
3983	}
3984
3985	return 0;
3986}
3987
3988static s32 btf_enum_check_meta(struct btf_verifier_env *env,
3989			       const struct btf_type *t,
3990			       u32 meta_left)
3991{
3992	const struct btf_enum *enums = btf_type_enum(t);
3993	struct btf *btf = env->btf;
3994	const char *fmt_str;
3995	u16 i, nr_enums;
3996	u32 meta_needed;
3997
3998	nr_enums = btf_type_vlen(t);
3999	meta_needed = nr_enums * sizeof(*enums);
4000
4001	if (meta_left < meta_needed) {
4002		btf_verifier_log_basic(env, t,
4003				       "meta_left:%u meta_needed:%u",
4004				       meta_left, meta_needed);
4005		return -EINVAL;
4006	}
4007
4008	if (t->size > 8 || !is_power_of_2(t->size)) {
4009		btf_verifier_log_type(env, t, "Unexpected size");
4010		return -EINVAL;
4011	}
4012
4013	/* enum type either no name or a valid one */
4014	if (t->name_off &&
4015	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4016		btf_verifier_log_type(env, t, "Invalid name");
4017		return -EINVAL;
4018	}
4019
4020	btf_verifier_log_type(env, t, NULL);
4021
4022	for (i = 0; i < nr_enums; i++) {
4023		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4024			btf_verifier_log(env, "\tInvalid name_offset:%u",
4025					 enums[i].name_off);
4026			return -EINVAL;
4027		}
4028
4029		/* enum member must have a valid name */
4030		if (!enums[i].name_off ||
4031		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4032			btf_verifier_log_type(env, t, "Invalid name");
4033			return -EINVAL;
4034		}
4035
4036		if (env->log.level == BPF_LOG_KERNEL)
4037			continue;
4038		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4039		btf_verifier_log(env, fmt_str,
4040				 __btf_name_by_offset(btf, enums[i].name_off),
4041				 enums[i].val);
4042	}
4043
4044	return meta_needed;
4045}
4046
4047static void btf_enum_log(struct btf_verifier_env *env,
4048			 const struct btf_type *t)
4049{
4050	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4051}
4052
4053static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4054			  u32 type_id, void *data, u8 bits_offset,
4055			  struct btf_show *show)
4056{
4057	const struct btf_enum *enums = btf_type_enum(t);
4058	u32 i, nr_enums = btf_type_vlen(t);
4059	void *safe_data;
4060	int v;
4061
4062	safe_data = btf_show_start_type(show, t, type_id, data);
4063	if (!safe_data)
4064		return;
4065
4066	v = *(int *)safe_data;
4067
4068	for (i = 0; i < nr_enums; i++) {
4069		if (v != enums[i].val)
4070			continue;
4071
4072		btf_show_type_value(show, "%s",
4073				    __btf_name_by_offset(btf,
4074							 enums[i].name_off));
4075
4076		btf_show_end_type(show);
4077		return;
4078	}
4079
4080	if (btf_type_kflag(t))
4081		btf_show_type_value(show, "%d", v);
4082	else
4083		btf_show_type_value(show, "%u", v);
4084	btf_show_end_type(show);
4085}
4086
4087static struct btf_kind_operations enum_ops = {
4088	.check_meta = btf_enum_check_meta,
4089	.resolve = btf_df_resolve,
4090	.check_member = btf_enum_check_member,
4091	.check_kflag_member = btf_enum_check_kflag_member,
4092	.log_details = btf_enum_log,
4093	.show = btf_enum_show,
4094};
4095
4096static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4097				 const struct btf_type *t,
4098				 u32 meta_left)
4099{
4100	const struct btf_enum64 *enums = btf_type_enum64(t);
4101	struct btf *btf = env->btf;
4102	const char *fmt_str;
4103	u16 i, nr_enums;
4104	u32 meta_needed;
4105
4106	nr_enums = btf_type_vlen(t);
4107	meta_needed = nr_enums * sizeof(*enums);
4108
4109	if (meta_left < meta_needed) {
4110		btf_verifier_log_basic(env, t,
4111				       "meta_left:%u meta_needed:%u",
4112				       meta_left, meta_needed);
4113		return -EINVAL;
4114	}
4115
4116	if (t->size > 8 || !is_power_of_2(t->size)) {
4117		btf_verifier_log_type(env, t, "Unexpected size");
4118		return -EINVAL;
4119	}
4120
4121	/* enum type either no name or a valid one */
4122	if (t->name_off &&
4123	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4124		btf_verifier_log_type(env, t, "Invalid name");
4125		return -EINVAL;
4126	}
4127
4128	btf_verifier_log_type(env, t, NULL);
4129
4130	for (i = 0; i < nr_enums; i++) {
4131		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4132			btf_verifier_log(env, "\tInvalid name_offset:%u",
4133					 enums[i].name_off);
4134			return -EINVAL;
4135		}
4136
4137		/* enum member must have a valid name */
4138		if (!enums[i].name_off ||
4139		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4140			btf_verifier_log_type(env, t, "Invalid name");
4141			return -EINVAL;
4142		}
4143
4144		if (env->log.level == BPF_LOG_KERNEL)
4145			continue;
4146
4147		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4148		btf_verifier_log(env, fmt_str,
4149				 __btf_name_by_offset(btf, enums[i].name_off),
4150				 btf_enum64_value(enums + i));
4151	}
4152
4153	return meta_needed;
4154}
4155
4156static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4157			    u32 type_id, void *data, u8 bits_offset,
4158			    struct btf_show *show)
4159{
4160	const struct btf_enum64 *enums = btf_type_enum64(t);
4161	u32 i, nr_enums = btf_type_vlen(t);
4162	void *safe_data;
4163	s64 v;
4164
4165	safe_data = btf_show_start_type(show, t, type_id, data);
4166	if (!safe_data)
4167		return;
4168
4169	v = *(u64 *)safe_data;
4170
4171	for (i = 0; i < nr_enums; i++) {
4172		if (v != btf_enum64_value(enums + i))
4173			continue;
4174
4175		btf_show_type_value(show, "%s",
4176				    __btf_name_by_offset(btf,
4177							 enums[i].name_off));
4178
4179		btf_show_end_type(show);
4180		return;
4181	}
4182
4183	if (btf_type_kflag(t))
4184		btf_show_type_value(show, "%lld", v);
4185	else
4186		btf_show_type_value(show, "%llu", v);
4187	btf_show_end_type(show);
4188}
4189
4190static struct btf_kind_operations enum64_ops = {
4191	.check_meta = btf_enum64_check_meta,
4192	.resolve = btf_df_resolve,
4193	.check_member = btf_enum_check_member,
4194	.check_kflag_member = btf_enum_check_kflag_member,
4195	.log_details = btf_enum_log,
4196	.show = btf_enum64_show,
4197};
4198
4199static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4200				     const struct btf_type *t,
4201				     u32 meta_left)
4202{
4203	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4204
4205	if (meta_left < meta_needed) {
4206		btf_verifier_log_basic(env, t,
4207				       "meta_left:%u meta_needed:%u",
4208				       meta_left, meta_needed);
4209		return -EINVAL;
4210	}
4211
4212	if (t->name_off) {
4213		btf_verifier_log_type(env, t, "Invalid name");
4214		return -EINVAL;
4215	}
4216
4217	if (btf_type_kflag(t)) {
4218		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4219		return -EINVAL;
4220	}
4221
4222	btf_verifier_log_type(env, t, NULL);
4223
4224	return meta_needed;
4225}
4226
4227static void btf_func_proto_log(struct btf_verifier_env *env,
4228			       const struct btf_type *t)
4229{
4230	const struct btf_param *args = (const struct btf_param *)(t + 1);
4231	u16 nr_args = btf_type_vlen(t), i;
4232
4233	btf_verifier_log(env, "return=%u args=(", t->type);
4234	if (!nr_args) {
4235		btf_verifier_log(env, "void");
4236		goto done;
4237	}
4238
4239	if (nr_args == 1 && !args[0].type) {
4240		/* Only one vararg */
4241		btf_verifier_log(env, "vararg");
4242		goto done;
4243	}
4244
4245	btf_verifier_log(env, "%u %s", args[0].type,
4246			 __btf_name_by_offset(env->btf,
4247					      args[0].name_off));
4248	for (i = 1; i < nr_args - 1; i++)
4249		btf_verifier_log(env, ", %u %s", args[i].type,
4250				 __btf_name_by_offset(env->btf,
4251						      args[i].name_off));
4252
4253	if (nr_args > 1) {
4254		const struct btf_param *last_arg = &args[nr_args - 1];
4255
4256		if (last_arg->type)
4257			btf_verifier_log(env, ", %u %s", last_arg->type,
4258					 __btf_name_by_offset(env->btf,
4259							      last_arg->name_off));
4260		else
4261			btf_verifier_log(env, ", vararg");
4262	}
4263
4264done:
4265	btf_verifier_log(env, ")");
4266}
4267
4268static struct btf_kind_operations func_proto_ops = {
4269	.check_meta = btf_func_proto_check_meta,
4270	.resolve = btf_df_resolve,
4271	/*
4272	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4273	 * a struct's member.
4274	 *
4275	 * It should be a function pointer instead.
4276	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4277	 *
4278	 * Hence, there is no btf_func_check_member().
4279	 */
4280	.check_member = btf_df_check_member,
4281	.check_kflag_member = btf_df_check_kflag_member,
4282	.log_details = btf_func_proto_log,
4283	.show = btf_df_show,
4284};
4285
4286static s32 btf_func_check_meta(struct btf_verifier_env *env,
4287			       const struct btf_type *t,
4288			       u32 meta_left)
4289{
4290	if (!t->name_off ||
4291	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4292		btf_verifier_log_type(env, t, "Invalid name");
4293		return -EINVAL;
4294	}
4295
4296	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4297		btf_verifier_log_type(env, t, "Invalid func linkage");
4298		return -EINVAL;
4299	}
4300
4301	if (btf_type_kflag(t)) {
4302		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4303		return -EINVAL;
4304	}
4305
4306	btf_verifier_log_type(env, t, NULL);
4307
4308	return 0;
4309}
4310
4311static int btf_func_resolve(struct btf_verifier_env *env,
4312			    const struct resolve_vertex *v)
4313{
4314	const struct btf_type *t = v->t;
4315	u32 next_type_id = t->type;
4316	int err;
4317
4318	err = btf_func_check(env, t);
4319	if (err)
4320		return err;
4321
4322	env_stack_pop_resolved(env, next_type_id, 0);
4323	return 0;
4324}
4325
4326static struct btf_kind_operations func_ops = {
4327	.check_meta = btf_func_check_meta,
4328	.resolve = btf_func_resolve,
4329	.check_member = btf_df_check_member,
4330	.check_kflag_member = btf_df_check_kflag_member,
4331	.log_details = btf_ref_type_log,
4332	.show = btf_df_show,
4333};
4334
4335static s32 btf_var_check_meta(struct btf_verifier_env *env,
4336			      const struct btf_type *t,
4337			      u32 meta_left)
4338{
4339	const struct btf_var *var;
4340	u32 meta_needed = sizeof(*var);
4341
4342	if (meta_left < meta_needed) {
4343		btf_verifier_log_basic(env, t,
4344				       "meta_left:%u meta_needed:%u",
4345				       meta_left, meta_needed);
4346		return -EINVAL;
4347	}
4348
4349	if (btf_type_vlen(t)) {
4350		btf_verifier_log_type(env, t, "vlen != 0");
4351		return -EINVAL;
4352	}
4353
4354	if (btf_type_kflag(t)) {
4355		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4356		return -EINVAL;
4357	}
4358
4359	if (!t->name_off ||
4360	    !__btf_name_valid(env->btf, t->name_off, true)) {
4361		btf_verifier_log_type(env, t, "Invalid name");
4362		return -EINVAL;
4363	}
4364
4365	/* A var cannot be in type void */
4366	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4367		btf_verifier_log_type(env, t, "Invalid type_id");
4368		return -EINVAL;
4369	}
4370
4371	var = btf_type_var(t);
4372	if (var->linkage != BTF_VAR_STATIC &&
4373	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4374		btf_verifier_log_type(env, t, "Linkage not supported");
4375		return -EINVAL;
4376	}
4377
4378	btf_verifier_log_type(env, t, NULL);
4379
4380	return meta_needed;
4381}
4382
4383static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4384{
4385	const struct btf_var *var = btf_type_var(t);
4386
4387	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4388}
4389
4390static const struct btf_kind_operations var_ops = {
4391	.check_meta		= btf_var_check_meta,
4392	.resolve		= btf_var_resolve,
4393	.check_member		= btf_df_check_member,
4394	.check_kflag_member	= btf_df_check_kflag_member,
4395	.log_details		= btf_var_log,
4396	.show			= btf_var_show,
4397};
4398
4399static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4400				  const struct btf_type *t,
4401				  u32 meta_left)
4402{
4403	const struct btf_var_secinfo *vsi;
4404	u64 last_vsi_end_off = 0, sum = 0;
4405	u32 i, meta_needed;
4406
4407	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4408	if (meta_left < meta_needed) {
4409		btf_verifier_log_basic(env, t,
4410				       "meta_left:%u meta_needed:%u",
4411				       meta_left, meta_needed);
4412		return -EINVAL;
4413	}
4414
4415	if (!t->size) {
4416		btf_verifier_log_type(env, t, "size == 0");
4417		return -EINVAL;
4418	}
4419
4420	if (btf_type_kflag(t)) {
4421		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4422		return -EINVAL;
4423	}
4424
4425	if (!t->name_off ||
4426	    !btf_name_valid_section(env->btf, t->name_off)) {
4427		btf_verifier_log_type(env, t, "Invalid name");
4428		return -EINVAL;
4429	}
4430
4431	btf_verifier_log_type(env, t, NULL);
4432
4433	for_each_vsi(i, t, vsi) {
4434		/* A var cannot be in type void */
4435		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4436			btf_verifier_log_vsi(env, t, vsi,
4437					     "Invalid type_id");
4438			return -EINVAL;
4439		}
4440
4441		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4442			btf_verifier_log_vsi(env, t, vsi,
4443					     "Invalid offset");
4444			return -EINVAL;
4445		}
4446
4447		if (!vsi->size || vsi->size > t->size) {
4448			btf_verifier_log_vsi(env, t, vsi,
4449					     "Invalid size");
4450			return -EINVAL;
4451		}
4452
4453		last_vsi_end_off = vsi->offset + vsi->size;
4454		if (last_vsi_end_off > t->size) {
4455			btf_verifier_log_vsi(env, t, vsi,
4456					     "Invalid offset+size");
4457			return -EINVAL;
4458		}
4459
4460		btf_verifier_log_vsi(env, t, vsi, NULL);
4461		sum += vsi->size;
4462	}
4463
4464	if (t->size < sum) {
4465		btf_verifier_log_type(env, t, "Invalid btf_info size");
4466		return -EINVAL;
4467	}
4468
4469	return meta_needed;
4470}
4471
4472static int btf_datasec_resolve(struct btf_verifier_env *env,
4473			       const struct resolve_vertex *v)
4474{
4475	const struct btf_var_secinfo *vsi;
4476	struct btf *btf = env->btf;
4477	u16 i;
4478
 
4479	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4480		u32 var_type_id = vsi->type, type_id, type_size = 0;
4481		const struct btf_type *var_type = btf_type_by_id(env->btf,
4482								 var_type_id);
4483		if (!var_type || !btf_type_is_var(var_type)) {
4484			btf_verifier_log_vsi(env, v->t, vsi,
4485					     "Not a VAR kind member");
4486			return -EINVAL;
4487		}
4488
4489		if (!env_type_is_resolve_sink(env, var_type) &&
4490		    !env_type_is_resolved(env, var_type_id)) {
4491			env_stack_set_next_member(env, i + 1);
4492			return env_stack_push(env, var_type, var_type_id);
4493		}
4494
4495		type_id = var_type->type;
4496		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4497			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4498			return -EINVAL;
4499		}
4500
4501		if (vsi->size < type_size) {
4502			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4503			return -EINVAL;
4504		}
4505	}
4506
4507	env_stack_pop_resolved(env, 0, 0);
4508	return 0;
4509}
4510
4511static void btf_datasec_log(struct btf_verifier_env *env,
4512			    const struct btf_type *t)
4513{
4514	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4515}
4516
4517static void btf_datasec_show(const struct btf *btf,
4518			     const struct btf_type *t, u32 type_id,
4519			     void *data, u8 bits_offset,
4520			     struct btf_show *show)
4521{
4522	const struct btf_var_secinfo *vsi;
4523	const struct btf_type *var;
4524	u32 i;
4525
4526	if (!btf_show_start_type(show, t, type_id, data))
4527		return;
4528
4529	btf_show_type_value(show, "section (\"%s\") = {",
4530			    __btf_name_by_offset(btf, t->name_off));
4531	for_each_vsi(i, t, vsi) {
4532		var = btf_type_by_id(btf, vsi->type);
4533		if (i)
4534			btf_show(show, ",");
4535		btf_type_ops(var)->show(btf, var, vsi->type,
4536					data + vsi->offset, bits_offset, show);
4537	}
4538	btf_show_end_type(show);
4539}
4540
4541static const struct btf_kind_operations datasec_ops = {
4542	.check_meta		= btf_datasec_check_meta,
4543	.resolve		= btf_datasec_resolve,
4544	.check_member		= btf_df_check_member,
4545	.check_kflag_member	= btf_df_check_kflag_member,
4546	.log_details		= btf_datasec_log,
4547	.show			= btf_datasec_show,
4548};
4549
4550static s32 btf_float_check_meta(struct btf_verifier_env *env,
4551				const struct btf_type *t,
4552				u32 meta_left)
4553{
4554	if (btf_type_vlen(t)) {
4555		btf_verifier_log_type(env, t, "vlen != 0");
4556		return -EINVAL;
4557	}
4558
4559	if (btf_type_kflag(t)) {
4560		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4561		return -EINVAL;
4562	}
4563
4564	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4565	    t->size != 16) {
4566		btf_verifier_log_type(env, t, "Invalid type_size");
4567		return -EINVAL;
4568	}
4569
4570	btf_verifier_log_type(env, t, NULL);
4571
4572	return 0;
4573}
4574
4575static int btf_float_check_member(struct btf_verifier_env *env,
4576				  const struct btf_type *struct_type,
4577				  const struct btf_member *member,
4578				  const struct btf_type *member_type)
4579{
4580	u64 start_offset_bytes;
4581	u64 end_offset_bytes;
4582	u64 misalign_bits;
4583	u64 align_bytes;
4584	u64 align_bits;
4585
4586	/* Different architectures have different alignment requirements, so
4587	 * here we check only for the reasonable minimum. This way we ensure
4588	 * that types after CO-RE can pass the kernel BTF verifier.
4589	 */
4590	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4591	align_bits = align_bytes * BITS_PER_BYTE;
4592	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4593	if (misalign_bits) {
4594		btf_verifier_log_member(env, struct_type, member,
4595					"Member is not properly aligned");
4596		return -EINVAL;
4597	}
4598
4599	start_offset_bytes = member->offset / BITS_PER_BYTE;
4600	end_offset_bytes = start_offset_bytes + member_type->size;
4601	if (end_offset_bytes > struct_type->size) {
4602		btf_verifier_log_member(env, struct_type, member,
4603					"Member exceeds struct_size");
4604		return -EINVAL;
4605	}
4606
4607	return 0;
4608}
4609
4610static void btf_float_log(struct btf_verifier_env *env,
4611			  const struct btf_type *t)
4612{
4613	btf_verifier_log(env, "size=%u", t->size);
4614}
4615
4616static const struct btf_kind_operations float_ops = {
4617	.check_meta = btf_float_check_meta,
4618	.resolve = btf_df_resolve,
4619	.check_member = btf_float_check_member,
4620	.check_kflag_member = btf_generic_check_kflag_member,
4621	.log_details = btf_float_log,
4622	.show = btf_df_show,
4623};
4624
4625static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4626			      const struct btf_type *t,
4627			      u32 meta_left)
4628{
4629	const struct btf_decl_tag *tag;
4630	u32 meta_needed = sizeof(*tag);
4631	s32 component_idx;
4632	const char *value;
4633
4634	if (meta_left < meta_needed) {
4635		btf_verifier_log_basic(env, t,
4636				       "meta_left:%u meta_needed:%u",
4637				       meta_left, meta_needed);
4638		return -EINVAL;
4639	}
4640
4641	value = btf_name_by_offset(env->btf, t->name_off);
4642	if (!value || !value[0]) {
4643		btf_verifier_log_type(env, t, "Invalid value");
4644		return -EINVAL;
4645	}
4646
4647	if (btf_type_vlen(t)) {
4648		btf_verifier_log_type(env, t, "vlen != 0");
4649		return -EINVAL;
4650	}
4651
4652	if (btf_type_kflag(t)) {
4653		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4654		return -EINVAL;
4655	}
4656
4657	component_idx = btf_type_decl_tag(t)->component_idx;
4658	if (component_idx < -1) {
4659		btf_verifier_log_type(env, t, "Invalid component_idx");
4660		return -EINVAL;
4661	}
4662
4663	btf_verifier_log_type(env, t, NULL);
4664
4665	return meta_needed;
4666}
4667
4668static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4669			   const struct resolve_vertex *v)
4670{
4671	const struct btf_type *next_type;
4672	const struct btf_type *t = v->t;
4673	u32 next_type_id = t->type;
4674	struct btf *btf = env->btf;
4675	s32 component_idx;
4676	u32 vlen;
4677
4678	next_type = btf_type_by_id(btf, next_type_id);
4679	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4680		btf_verifier_log_type(env, v->t, "Invalid type_id");
4681		return -EINVAL;
4682	}
4683
4684	if (!env_type_is_resolve_sink(env, next_type) &&
4685	    !env_type_is_resolved(env, next_type_id))
4686		return env_stack_push(env, next_type, next_type_id);
4687
4688	component_idx = btf_type_decl_tag(t)->component_idx;
4689	if (component_idx != -1) {
4690		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4691			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4692			return -EINVAL;
4693		}
4694
4695		if (btf_type_is_struct(next_type)) {
4696			vlen = btf_type_vlen(next_type);
4697		} else {
4698			/* next_type should be a function */
4699			next_type = btf_type_by_id(btf, next_type->type);
4700			vlen = btf_type_vlen(next_type);
4701		}
4702
4703		if ((u32)component_idx >= vlen) {
4704			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4705			return -EINVAL;
4706		}
4707	}
4708
4709	env_stack_pop_resolved(env, next_type_id, 0);
4710
4711	return 0;
4712}
4713
4714static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4715{
4716	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4717			 btf_type_decl_tag(t)->component_idx);
4718}
4719
4720static const struct btf_kind_operations decl_tag_ops = {
4721	.check_meta = btf_decl_tag_check_meta,
4722	.resolve = btf_decl_tag_resolve,
4723	.check_member = btf_df_check_member,
4724	.check_kflag_member = btf_df_check_kflag_member,
4725	.log_details = btf_decl_tag_log,
4726	.show = btf_df_show,
4727};
4728
4729static int btf_func_proto_check(struct btf_verifier_env *env,
4730				const struct btf_type *t)
4731{
4732	const struct btf_type *ret_type;
4733	const struct btf_param *args;
4734	const struct btf *btf;
4735	u16 nr_args, i;
4736	int err;
4737
4738	btf = env->btf;
4739	args = (const struct btf_param *)(t + 1);
4740	nr_args = btf_type_vlen(t);
4741
4742	/* Check func return type which could be "void" (t->type == 0) */
4743	if (t->type) {
4744		u32 ret_type_id = t->type;
4745
4746		ret_type = btf_type_by_id(btf, ret_type_id);
4747		if (!ret_type) {
4748			btf_verifier_log_type(env, t, "Invalid return type");
4749			return -EINVAL;
4750		}
4751
4752		if (btf_type_is_resolve_source_only(ret_type)) {
4753			btf_verifier_log_type(env, t, "Invalid return type");
4754			return -EINVAL;
4755		}
4756
4757		if (btf_type_needs_resolve(ret_type) &&
4758		    !env_type_is_resolved(env, ret_type_id)) {
4759			err = btf_resolve(env, ret_type, ret_type_id);
4760			if (err)
4761				return err;
4762		}
4763
4764		/* Ensure the return type is a type that has a size */
4765		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4766			btf_verifier_log_type(env, t, "Invalid return type");
4767			return -EINVAL;
4768		}
4769	}
4770
4771	if (!nr_args)
4772		return 0;
4773
4774	/* Last func arg type_id could be 0 if it is a vararg */
4775	if (!args[nr_args - 1].type) {
4776		if (args[nr_args - 1].name_off) {
4777			btf_verifier_log_type(env, t, "Invalid arg#%u",
4778					      nr_args);
4779			return -EINVAL;
4780		}
4781		nr_args--;
4782	}
4783
4784	for (i = 0; i < nr_args; i++) {
4785		const struct btf_type *arg_type;
4786		u32 arg_type_id;
4787
4788		arg_type_id = args[i].type;
4789		arg_type = btf_type_by_id(btf, arg_type_id);
4790		if (!arg_type) {
4791			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4792			return -EINVAL;
4793		}
4794
4795		if (btf_type_is_resolve_source_only(arg_type)) {
4796			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4797			return -EINVAL;
4798		}
4799
4800		if (args[i].name_off &&
4801		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4802		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4803			btf_verifier_log_type(env, t,
4804					      "Invalid arg#%u", i + 1);
4805			return -EINVAL;
4806		}
4807
4808		if (btf_type_needs_resolve(arg_type) &&
4809		    !env_type_is_resolved(env, arg_type_id)) {
4810			err = btf_resolve(env, arg_type, arg_type_id);
4811			if (err)
4812				return err;
4813		}
4814
4815		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4816			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4817			return -EINVAL;
4818		}
4819	}
4820
4821	return 0;
4822}
4823
4824static int btf_func_check(struct btf_verifier_env *env,
4825			  const struct btf_type *t)
4826{
4827	const struct btf_type *proto_type;
4828	const struct btf_param *args;
4829	const struct btf *btf;
4830	u16 nr_args, i;
4831
4832	btf = env->btf;
4833	proto_type = btf_type_by_id(btf, t->type);
4834
4835	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4836		btf_verifier_log_type(env, t, "Invalid type_id");
4837		return -EINVAL;
4838	}
4839
4840	args = (const struct btf_param *)(proto_type + 1);
4841	nr_args = btf_type_vlen(proto_type);
4842	for (i = 0; i < nr_args; i++) {
4843		if (!args[i].name_off && args[i].type) {
4844			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4845			return -EINVAL;
4846		}
4847	}
4848
4849	return 0;
4850}
4851
4852static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4853	[BTF_KIND_INT] = &int_ops,
4854	[BTF_KIND_PTR] = &ptr_ops,
4855	[BTF_KIND_ARRAY] = &array_ops,
4856	[BTF_KIND_STRUCT] = &struct_ops,
4857	[BTF_KIND_UNION] = &struct_ops,
4858	[BTF_KIND_ENUM] = &enum_ops,
4859	[BTF_KIND_FWD] = &fwd_ops,
4860	[BTF_KIND_TYPEDEF] = &modifier_ops,
4861	[BTF_KIND_VOLATILE] = &modifier_ops,
4862	[BTF_KIND_CONST] = &modifier_ops,
4863	[BTF_KIND_RESTRICT] = &modifier_ops,
4864	[BTF_KIND_FUNC] = &func_ops,
4865	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
4866	[BTF_KIND_VAR] = &var_ops,
4867	[BTF_KIND_DATASEC] = &datasec_ops,
4868	[BTF_KIND_FLOAT] = &float_ops,
4869	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
4870	[BTF_KIND_TYPE_TAG] = &modifier_ops,
4871	[BTF_KIND_ENUM64] = &enum64_ops,
4872};
4873
4874static s32 btf_check_meta(struct btf_verifier_env *env,
4875			  const struct btf_type *t,
4876			  u32 meta_left)
4877{
4878	u32 saved_meta_left = meta_left;
4879	s32 var_meta_size;
4880
4881	if (meta_left < sizeof(*t)) {
4882		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
4883				 env->log_type_id, meta_left, sizeof(*t));
4884		return -EINVAL;
4885	}
4886	meta_left -= sizeof(*t);
4887
4888	if (t->info & ~BTF_INFO_MASK) {
4889		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
4890				 env->log_type_id, t->info);
4891		return -EINVAL;
4892	}
4893
4894	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
4895	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
4896		btf_verifier_log(env, "[%u] Invalid kind:%u",
4897				 env->log_type_id, BTF_INFO_KIND(t->info));
4898		return -EINVAL;
4899	}
4900
4901	if (!btf_name_offset_valid(env->btf, t->name_off)) {
4902		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
4903				 env->log_type_id, t->name_off);
4904		return -EINVAL;
4905	}
4906
4907	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
4908	if (var_meta_size < 0)
4909		return var_meta_size;
4910
4911	meta_left -= var_meta_size;
4912
4913	return saved_meta_left - meta_left;
4914}
4915
4916static int btf_check_all_metas(struct btf_verifier_env *env)
4917{
4918	struct btf *btf = env->btf;
4919	struct btf_header *hdr;
4920	void *cur, *end;
4921
4922	hdr = &btf->hdr;
4923	cur = btf->nohdr_data + hdr->type_off;
4924	end = cur + hdr->type_len;
4925
4926	env->log_type_id = btf->base_btf ? btf->start_id : 1;
4927	while (cur < end) {
4928		struct btf_type *t = cur;
4929		s32 meta_size;
4930
4931		meta_size = btf_check_meta(env, t, end - cur);
4932		if (meta_size < 0)
4933			return meta_size;
4934
4935		btf_add_type(env, t);
4936		cur += meta_size;
4937		env->log_type_id++;
4938	}
4939
4940	return 0;
4941}
4942
4943static bool btf_resolve_valid(struct btf_verifier_env *env,
4944			      const struct btf_type *t,
4945			      u32 type_id)
4946{
4947	struct btf *btf = env->btf;
4948
4949	if (!env_type_is_resolved(env, type_id))
4950		return false;
4951
4952	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
4953		return !btf_resolved_type_id(btf, type_id) &&
4954		       !btf_resolved_type_size(btf, type_id);
4955
4956	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
4957		return btf_resolved_type_id(btf, type_id) &&
4958		       !btf_resolved_type_size(btf, type_id);
4959
4960	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
4961	    btf_type_is_var(t)) {
4962		t = btf_type_id_resolve(btf, &type_id);
4963		return t &&
4964		       !btf_type_is_modifier(t) &&
4965		       !btf_type_is_var(t) &&
4966		       !btf_type_is_datasec(t);
4967	}
4968
4969	if (btf_type_is_array(t)) {
4970		const struct btf_array *array = btf_type_array(t);
4971		const struct btf_type *elem_type;
4972		u32 elem_type_id = array->type;
4973		u32 elem_size;
4974
4975		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
4976		return elem_type && !btf_type_is_modifier(elem_type) &&
4977			(array->nelems * elem_size ==
4978			 btf_resolved_type_size(btf, type_id));
4979	}
4980
4981	return false;
4982}
4983
4984static int btf_resolve(struct btf_verifier_env *env,
4985		       const struct btf_type *t, u32 type_id)
4986{
4987	u32 save_log_type_id = env->log_type_id;
4988	const struct resolve_vertex *v;
4989	int err = 0;
4990
4991	env->resolve_mode = RESOLVE_TBD;
4992	env_stack_push(env, t, type_id);
4993	while (!err && (v = env_stack_peak(env))) {
4994		env->log_type_id = v->type_id;
4995		err = btf_type_ops(v->t)->resolve(env, v);
4996	}
4997
4998	env->log_type_id = type_id;
4999	if (err == -E2BIG) {
5000		btf_verifier_log_type(env, t,
5001				      "Exceeded max resolving depth:%u",
5002				      MAX_RESOLVE_DEPTH);
5003	} else if (err == -EEXIST) {
5004		btf_verifier_log_type(env, t, "Loop detected");
5005	}
5006
5007	/* Final sanity check */
5008	if (!err && !btf_resolve_valid(env, t, type_id)) {
5009		btf_verifier_log_type(env, t, "Invalid resolve state");
5010		err = -EINVAL;
5011	}
5012
5013	env->log_type_id = save_log_type_id;
5014	return err;
5015}
5016
5017static int btf_check_all_types(struct btf_verifier_env *env)
5018{
5019	struct btf *btf = env->btf;
5020	const struct btf_type *t;
5021	u32 type_id, i;
5022	int err;
5023
5024	err = env_resolve_init(env);
5025	if (err)
5026		return err;
5027
5028	env->phase++;
5029	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5030		type_id = btf->start_id + i;
5031		t = btf_type_by_id(btf, type_id);
5032
5033		env->log_type_id = type_id;
5034		if (btf_type_needs_resolve(t) &&
5035		    !env_type_is_resolved(env, type_id)) {
5036			err = btf_resolve(env, t, type_id);
5037			if (err)
5038				return err;
5039		}
5040
5041		if (btf_type_is_func_proto(t)) {
5042			err = btf_func_proto_check(env, t);
5043			if (err)
5044				return err;
5045		}
5046	}
5047
5048	return 0;
5049}
5050
5051static int btf_parse_type_sec(struct btf_verifier_env *env)
5052{
5053	const struct btf_header *hdr = &env->btf->hdr;
5054	int err;
5055
5056	/* Type section must align to 4 bytes */
5057	if (hdr->type_off & (sizeof(u32) - 1)) {
5058		btf_verifier_log(env, "Unaligned type_off");
5059		return -EINVAL;
5060	}
5061
5062	if (!env->btf->base_btf && !hdr->type_len) {
5063		btf_verifier_log(env, "No type found");
5064		return -EINVAL;
5065	}
5066
5067	err = btf_check_all_metas(env);
5068	if (err)
5069		return err;
5070
5071	return btf_check_all_types(env);
5072}
5073
5074static int btf_parse_str_sec(struct btf_verifier_env *env)
5075{
5076	const struct btf_header *hdr;
5077	struct btf *btf = env->btf;
5078	const char *start, *end;
5079
5080	hdr = &btf->hdr;
5081	start = btf->nohdr_data + hdr->str_off;
5082	end = start + hdr->str_len;
5083
5084	if (end != btf->data + btf->data_size) {
5085		btf_verifier_log(env, "String section is not at the end");
5086		return -EINVAL;
5087	}
5088
5089	btf->strings = start;
5090
5091	if (btf->base_btf && !hdr->str_len)
5092		return 0;
5093	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5094		btf_verifier_log(env, "Invalid string section");
5095		return -EINVAL;
5096	}
5097	if (!btf->base_btf && start[0]) {
5098		btf_verifier_log(env, "Invalid string section");
5099		return -EINVAL;
5100	}
5101
5102	return 0;
5103}
5104
5105static const size_t btf_sec_info_offset[] = {
5106	offsetof(struct btf_header, type_off),
5107	offsetof(struct btf_header, str_off),
5108};
5109
5110static int btf_sec_info_cmp(const void *a, const void *b)
5111{
5112	const struct btf_sec_info *x = a;
5113	const struct btf_sec_info *y = b;
5114
5115	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5116}
5117
5118static int btf_check_sec_info(struct btf_verifier_env *env,
5119			      u32 btf_data_size)
5120{
5121	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5122	u32 total, expected_total, i;
5123	const struct btf_header *hdr;
5124	const struct btf *btf;
5125
5126	btf = env->btf;
5127	hdr = &btf->hdr;
5128
5129	/* Populate the secs from hdr */
5130	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5131		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5132						   btf_sec_info_offset[i]);
5133
5134	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5135	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5136
5137	/* Check for gaps and overlap among sections */
5138	total = 0;
5139	expected_total = btf_data_size - hdr->hdr_len;
5140	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5141		if (expected_total < secs[i].off) {
5142			btf_verifier_log(env, "Invalid section offset");
5143			return -EINVAL;
5144		}
5145		if (total < secs[i].off) {
5146			/* gap */
5147			btf_verifier_log(env, "Unsupported section found");
5148			return -EINVAL;
5149		}
5150		if (total > secs[i].off) {
5151			btf_verifier_log(env, "Section overlap found");
5152			return -EINVAL;
5153		}
5154		if (expected_total - total < secs[i].len) {
5155			btf_verifier_log(env,
5156					 "Total section length too long");
5157			return -EINVAL;
5158		}
5159		total += secs[i].len;
5160	}
5161
5162	/* There is data other than hdr and known sections */
5163	if (expected_total != total) {
5164		btf_verifier_log(env, "Unsupported section found");
5165		return -EINVAL;
5166	}
5167
5168	return 0;
5169}
5170
5171static int btf_parse_hdr(struct btf_verifier_env *env)
5172{
5173	u32 hdr_len, hdr_copy, btf_data_size;
5174	const struct btf_header *hdr;
5175	struct btf *btf;
5176
5177	btf = env->btf;
5178	btf_data_size = btf->data_size;
5179
5180	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5181		btf_verifier_log(env, "hdr_len not found");
5182		return -EINVAL;
5183	}
5184
5185	hdr = btf->data;
5186	hdr_len = hdr->hdr_len;
5187	if (btf_data_size < hdr_len) {
5188		btf_verifier_log(env, "btf_header not found");
5189		return -EINVAL;
5190	}
5191
5192	/* Ensure the unsupported header fields are zero */
5193	if (hdr_len > sizeof(btf->hdr)) {
5194		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5195		u8 *end = btf->data + hdr_len;
5196
5197		for (; expected_zero < end; expected_zero++) {
5198			if (*expected_zero) {
5199				btf_verifier_log(env, "Unsupported btf_header");
5200				return -E2BIG;
5201			}
5202		}
5203	}
5204
5205	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5206	memcpy(&btf->hdr, btf->data, hdr_copy);
5207
5208	hdr = &btf->hdr;
5209
5210	btf_verifier_log_hdr(env, btf_data_size);
5211
5212	if (hdr->magic != BTF_MAGIC) {
5213		btf_verifier_log(env, "Invalid magic");
5214		return -EINVAL;
5215	}
5216
5217	if (hdr->version != BTF_VERSION) {
5218		btf_verifier_log(env, "Unsupported version");
5219		return -ENOTSUPP;
5220	}
5221
5222	if (hdr->flags) {
5223		btf_verifier_log(env, "Unsupported flags");
5224		return -ENOTSUPP;
5225	}
5226
5227	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5228		btf_verifier_log(env, "No data");
5229		return -EINVAL;
5230	}
5231
5232	return btf_check_sec_info(env, btf_data_size);
5233}
5234
5235static const char *alloc_obj_fields[] = {
5236	"bpf_spin_lock",
5237	"bpf_list_head",
5238	"bpf_list_node",
 
 
 
5239};
5240
5241static struct btf_struct_metas *
5242btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5243{
5244	union {
5245		struct btf_id_set set;
5246		struct {
5247			u32 _cnt;
5248			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5249		} _arr;
5250	} aof;
5251	struct btf_struct_metas *tab = NULL;
5252	int i, n, id, ret;
5253
5254	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5255	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5256
5257	memset(&aof, 0, sizeof(aof));
5258	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5259		/* Try to find whether this special type exists in user BTF, and
5260		 * if so remember its ID so we can easily find it among members
5261		 * of structs that we iterate in the next loop.
5262		 */
5263		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5264		if (id < 0)
5265			continue;
5266		aof.set.ids[aof.set.cnt++] = id;
5267	}
5268
5269	if (!aof.set.cnt)
5270		return NULL;
5271	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5272
5273	n = btf_nr_types(btf);
5274	for (i = 1; i < n; i++) {
5275		struct btf_struct_metas *new_tab;
5276		const struct btf_member *member;
5277		struct btf_field_offs *foffs;
5278		struct btf_struct_meta *type;
5279		struct btf_record *record;
5280		const struct btf_type *t;
5281		int j, tab_cnt;
5282
5283		t = btf_type_by_id(btf, i);
5284		if (!t) {
5285			ret = -EINVAL;
5286			goto free;
5287		}
5288		if (!__btf_type_is_struct(t))
5289			continue;
5290
5291		cond_resched();
5292
5293		for_each_member(j, t, member) {
5294			if (btf_id_set_contains(&aof.set, member->type))
5295				goto parse;
5296		}
5297		continue;
5298	parse:
5299		tab_cnt = tab ? tab->cnt : 0;
5300		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5301				   GFP_KERNEL | __GFP_NOWARN);
5302		if (!new_tab) {
5303			ret = -ENOMEM;
5304			goto free;
5305		}
5306		if (!tab)
5307			new_tab->cnt = 0;
5308		tab = new_tab;
5309
5310		type = &tab->types[tab->cnt];
5311		type->btf_id = i;
5312		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE, t->size);
 
5313		/* The record cannot be unset, treat it as an error if so */
5314		if (IS_ERR_OR_NULL(record)) {
5315			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5316			goto free;
5317		}
5318		foffs = btf_parse_field_offs(record);
5319		/* We need the field_offs to be valid for a valid record,
5320		 * either both should be set or both should be unset.
5321		 */
5322		if (IS_ERR_OR_NULL(foffs)) {
5323			btf_record_free(record);
5324			ret = -EFAULT;
5325			goto free;
5326		}
5327		type->record = record;
5328		type->field_offs = foffs;
5329		tab->cnt++;
5330	}
5331	return tab;
5332free:
5333	btf_struct_metas_free(tab);
5334	return ERR_PTR(ret);
5335}
5336
5337struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5338{
5339	struct btf_struct_metas *tab;
5340
5341	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5342	tab = btf->struct_meta_tab;
5343	if (!tab)
5344		return NULL;
5345	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5346}
5347
5348static int btf_check_type_tags(struct btf_verifier_env *env,
5349			       struct btf *btf, int start_id)
5350{
5351	int i, n, good_id = start_id - 1;
5352	bool in_tags;
5353
5354	n = btf_nr_types(btf);
5355	for (i = start_id; i < n; i++) {
5356		const struct btf_type *t;
5357		int chain_limit = 32;
5358		u32 cur_id = i;
5359
5360		t = btf_type_by_id(btf, i);
5361		if (!t)
5362			return -EINVAL;
5363		if (!btf_type_is_modifier(t))
5364			continue;
5365
5366		cond_resched();
5367
5368		in_tags = btf_type_is_type_tag(t);
5369		while (btf_type_is_modifier(t)) {
5370			if (!chain_limit--) {
5371				btf_verifier_log(env, "Max chain length or cycle detected");
5372				return -ELOOP;
5373			}
5374			if (btf_type_is_type_tag(t)) {
5375				if (!in_tags) {
5376					btf_verifier_log(env, "Type tags don't precede modifiers");
5377					return -EINVAL;
5378				}
5379			} else if (in_tags) {
5380				in_tags = false;
5381			}
5382			if (cur_id <= good_id)
5383				break;
5384			/* Move to next type */
5385			cur_id = t->type;
5386			t = btf_type_by_id(btf, cur_id);
5387			if (!t)
5388				return -EINVAL;
5389		}
5390		good_id = i;
5391	}
5392	return 0;
5393}
5394
5395static struct btf *btf_parse(bpfptr_t btf_data, u32 btf_data_size,
5396			     u32 log_level, char __user *log_ubuf, u32 log_size)
5397{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5398	struct btf_struct_metas *struct_meta_tab;
5399	struct btf_verifier_env *env = NULL;
5400	struct bpf_verifier_log *log;
5401	struct btf *btf = NULL;
5402	u8 *data;
5403	int err;
5404
5405	if (btf_data_size > BTF_MAX_SIZE)
5406		return ERR_PTR(-E2BIG);
5407
5408	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5409	if (!env)
5410		return ERR_PTR(-ENOMEM);
5411
5412	log = &env->log;
5413	if (log_level || log_ubuf || log_size) {
5414		/* user requested verbose verifier output
5415		 * and supplied buffer to store the verification trace
5416		 */
5417		log->level = log_level;
5418		log->ubuf = log_ubuf;
5419		log->len_total = log_size;
5420
5421		/* log attributes have to be sane */
5422		if (!bpf_verifier_log_attr_valid(log)) {
5423			err = -EINVAL;
5424			goto errout;
5425		}
5426	}
5427
5428	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5429	if (!btf) {
5430		err = -ENOMEM;
5431		goto errout;
5432	}
5433	env->btf = btf;
5434
5435	data = kvmalloc(btf_data_size, GFP_KERNEL | __GFP_NOWARN);
5436	if (!data) {
5437		err = -ENOMEM;
5438		goto errout;
5439	}
5440
5441	btf->data = data;
5442	btf->data_size = btf_data_size;
5443
5444	if (copy_from_bpfptr(data, btf_data, btf_data_size)) {
5445		err = -EFAULT;
5446		goto errout;
5447	}
5448
5449	err = btf_parse_hdr(env);
5450	if (err)
5451		goto errout;
5452
5453	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5454
5455	err = btf_parse_str_sec(env);
5456	if (err)
5457		goto errout;
5458
5459	err = btf_parse_type_sec(env);
5460	if (err)
5461		goto errout;
5462
5463	err = btf_check_type_tags(env, btf, 1);
5464	if (err)
5465		goto errout;
5466
5467	struct_meta_tab = btf_parse_struct_metas(log, btf);
5468	if (IS_ERR(struct_meta_tab)) {
5469		err = PTR_ERR(struct_meta_tab);
5470		goto errout;
5471	}
5472	btf->struct_meta_tab = struct_meta_tab;
5473
5474	if (struct_meta_tab) {
5475		int i;
5476
5477		for (i = 0; i < struct_meta_tab->cnt; i++) {
5478			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5479			if (err < 0)
5480				goto errout_meta;
5481		}
5482	}
5483
5484	if (log->level && bpf_verifier_log_full(log)) {
5485		err = -ENOSPC;
5486		goto errout_meta;
5487	}
5488
5489	btf_verifier_env_free(env);
5490	refcount_set(&btf->refcnt, 1);
5491	return btf;
5492
5493errout_meta:
5494	btf_free_struct_meta_tab(btf);
5495errout:
 
 
 
 
 
5496	btf_verifier_env_free(env);
5497	if (btf)
5498		btf_free(btf);
5499	return ERR_PTR(err);
5500}
5501
5502extern char __weak __start_BTF[];
5503extern char __weak __stop_BTF[];
5504extern struct btf *btf_vmlinux;
5505
5506#define BPF_MAP_TYPE(_id, _ops)
5507#define BPF_LINK_TYPE(_id, _name)
5508static union {
5509	struct bpf_ctx_convert {
5510#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5511	prog_ctx_type _id##_prog; \
5512	kern_ctx_type _id##_kern;
5513#include <linux/bpf_types.h>
5514#undef BPF_PROG_TYPE
5515	} *__t;
5516	/* 't' is written once under lock. Read many times. */
5517	const struct btf_type *t;
5518} bpf_ctx_convert;
5519enum {
5520#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5521	__ctx_convert##_id,
5522#include <linux/bpf_types.h>
5523#undef BPF_PROG_TYPE
5524	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5525};
5526static u8 bpf_ctx_convert_map[] = {
5527#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5528	[_id] = __ctx_convert##_id,
5529#include <linux/bpf_types.h>
5530#undef BPF_PROG_TYPE
5531	0, /* avoid empty array */
5532};
5533#undef BPF_MAP_TYPE
5534#undef BPF_LINK_TYPE
5535
5536const struct btf_member *
5537btf_get_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5538		      const struct btf_type *t, enum bpf_prog_type prog_type,
5539		      int arg)
5540{
5541	const struct btf_type *conv_struct;
5542	const struct btf_type *ctx_struct;
5543	const struct btf_member *ctx_type;
5544	const char *tname, *ctx_tname;
5545
5546	conv_struct = bpf_ctx_convert.t;
5547	if (!conv_struct) {
5548		bpf_log(log, "btf_vmlinux is malformed\n");
5549		return NULL;
5550	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5551	t = btf_type_by_id(btf, t->type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5552	while (btf_type_is_modifier(t))
5553		t = btf_type_by_id(btf, t->type);
5554	if (!btf_type_is_struct(t)) {
5555		/* Only pointer to struct is supported for now.
5556		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5557		 * is not supported yet.
5558		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5559		 */
5560		return NULL;
5561	}
5562	tname = btf_name_by_offset(btf, t->name_off);
5563	if (!tname) {
5564		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5565		return NULL;
5566	}
5567	/* prog_type is valid bpf program type. No need for bounds check. */
5568	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5569	/* ctx_struct is a pointer to prog_ctx_type in vmlinux.
5570	 * Like 'struct __sk_buff'
5571	 */
5572	ctx_struct = btf_type_by_id(btf_vmlinux, ctx_type->type);
5573	if (!ctx_struct)
5574		/* should not happen */
5575		return NULL;
5576	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_struct->name_off);
 
 
5577	if (!ctx_tname) {
5578		/* should not happen */
5579		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5580		return NULL;
5581	}
 
 
 
5582	/* only compare that prog's ctx type name is the same as
5583	 * kernel expects. No need to compare field by field.
5584	 * It's ok for bpf prog to do:
5585	 * struct __sk_buff {};
5586	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5587	 * { // no fields of skb are ever used }
5588	 */
5589	if (strcmp(ctx_tname, tname))
5590		return NULL;
5591	return ctx_type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5592}
5593
5594static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5595				     struct btf *btf,
5596				     const struct btf_type *t,
5597				     enum bpf_prog_type prog_type,
5598				     int arg)
5599{
5600	const struct btf_member *prog_ctx_type, *kern_ctx_type;
5601
5602	prog_ctx_type = btf_get_prog_ctx_type(log, btf, t, prog_type, arg);
5603	if (!prog_ctx_type)
5604		return -ENOENT;
5605	kern_ctx_type = prog_ctx_type + 1;
5606	return kern_ctx_type->type;
5607}
5608
5609int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5610{
5611	const struct btf_member *kctx_member;
5612	const struct btf_type *conv_struct;
5613	const struct btf_type *kctx_type;
5614	u32 kctx_type_id;
5615
5616	conv_struct = bpf_ctx_convert.t;
5617	/* get member for kernel ctx type */
5618	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5619	kctx_type_id = kctx_member->type;
5620	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5621	if (!btf_type_is_struct(kctx_type)) {
5622		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5623		return -EINVAL;
5624	}
5625
5626	return kctx_type_id;
5627}
5628
5629BTF_ID_LIST(bpf_ctx_convert_btf_id)
5630BTF_ID(struct, bpf_ctx_convert)
5631
5632struct btf *btf_parse_vmlinux(void)
5633{
5634	struct btf_verifier_env *env = NULL;
5635	struct bpf_verifier_log *log;
5636	struct btf *btf = NULL;
5637	int err;
5638
5639	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5640	if (!env)
5641		return ERR_PTR(-ENOMEM);
5642
5643	log = &env->log;
5644	log->level = BPF_LOG_KERNEL;
5645
5646	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5647	if (!btf) {
5648		err = -ENOMEM;
5649		goto errout;
5650	}
5651	env->btf = btf;
5652
5653	btf->data = __start_BTF;
5654	btf->data_size = __stop_BTF - __start_BTF;
5655	btf->kernel_btf = true;
5656	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5657
5658	err = btf_parse_hdr(env);
5659	if (err)
5660		goto errout;
5661
5662	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5663
5664	err = btf_parse_str_sec(env);
5665	if (err)
5666		goto errout;
5667
5668	err = btf_check_all_metas(env);
5669	if (err)
5670		goto errout;
5671
5672	err = btf_check_type_tags(env, btf, 1);
5673	if (err)
5674		goto errout;
5675
5676	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
5677	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
5678
5679	bpf_struct_ops_init(btf, log);
5680
5681	refcount_set(&btf->refcnt, 1);
5682
5683	err = btf_alloc_id(btf);
5684	if (err)
5685		goto errout;
5686
5687	btf_verifier_env_free(env);
5688	return btf;
5689
5690errout:
5691	btf_verifier_env_free(env);
5692	if (btf) {
5693		kvfree(btf->types);
5694		kfree(btf);
5695	}
5696	return ERR_PTR(err);
5697}
5698
5699#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
5700
5701static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
5702{
5703	struct btf_verifier_env *env = NULL;
5704	struct bpf_verifier_log *log;
5705	struct btf *btf = NULL, *base_btf;
5706	int err;
5707
5708	base_btf = bpf_get_btf_vmlinux();
5709	if (IS_ERR(base_btf))
5710		return base_btf;
5711	if (!base_btf)
5712		return ERR_PTR(-EINVAL);
5713
5714	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5715	if (!env)
5716		return ERR_PTR(-ENOMEM);
5717
5718	log = &env->log;
5719	log->level = BPF_LOG_KERNEL;
5720
5721	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5722	if (!btf) {
5723		err = -ENOMEM;
5724		goto errout;
5725	}
5726	env->btf = btf;
5727
5728	btf->base_btf = base_btf;
5729	btf->start_id = base_btf->nr_types;
5730	btf->start_str_off = base_btf->hdr.str_len;
5731	btf->kernel_btf = true;
5732	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
5733
5734	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
5735	if (!btf->data) {
5736		err = -ENOMEM;
5737		goto errout;
5738	}
5739	memcpy(btf->data, data, data_size);
5740	btf->data_size = data_size;
5741
5742	err = btf_parse_hdr(env);
5743	if (err)
5744		goto errout;
5745
5746	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5747
5748	err = btf_parse_str_sec(env);
5749	if (err)
5750		goto errout;
5751
5752	err = btf_check_all_metas(env);
5753	if (err)
5754		goto errout;
5755
5756	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
5757	if (err)
5758		goto errout;
5759
5760	btf_verifier_env_free(env);
5761	refcount_set(&btf->refcnt, 1);
5762	return btf;
5763
5764errout:
5765	btf_verifier_env_free(env);
5766	if (btf) {
5767		kvfree(btf->data);
5768		kvfree(btf->types);
5769		kfree(btf);
5770	}
5771	return ERR_PTR(err);
5772}
5773
5774#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
5775
5776struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
5777{
5778	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5779
5780	if (tgt_prog)
5781		return tgt_prog->aux->btf;
5782	else
5783		return prog->aux->attach_btf;
5784}
5785
5786static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
5787{
5788	/* t comes in already as a pointer */
5789	t = btf_type_by_id(btf, t->type);
5790
5791	/* allow const */
5792	if (BTF_INFO_KIND(t->info) == BTF_KIND_CONST)
5793		t = btf_type_by_id(btf, t->type);
5794
5795	return btf_type_is_int(t);
5796}
5797
5798static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
5799			   int off)
5800{
5801	const struct btf_param *args;
5802	const struct btf_type *t;
5803	u32 offset = 0, nr_args;
5804	int i;
5805
5806	if (!func_proto)
5807		return off / 8;
5808
5809	nr_args = btf_type_vlen(func_proto);
5810	args = (const struct btf_param *)(func_proto + 1);
5811	for (i = 0; i < nr_args; i++) {
5812		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
5813		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5814		if (off < offset)
5815			return i;
5816	}
5817
5818	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
5819	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
5820	if (off < offset)
5821		return nr_args;
5822
5823	return nr_args + 1;
5824}
5825
5826static bool prog_args_trusted(const struct bpf_prog *prog)
5827{
5828	enum bpf_attach_type atype = prog->expected_attach_type;
5829
5830	switch (prog->type) {
5831	case BPF_PROG_TYPE_TRACING:
5832		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
5833	case BPF_PROG_TYPE_LSM:
5834		return bpf_lsm_is_trusted(prog);
5835	case BPF_PROG_TYPE_STRUCT_OPS:
5836		return true;
5837	default:
5838		return false;
5839	}
5840}
5841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5842bool btf_ctx_access(int off, int size, enum bpf_access_type type,
5843		    const struct bpf_prog *prog,
5844		    struct bpf_insn_access_aux *info)
5845{
5846	const struct btf_type *t = prog->aux->attach_func_proto;
5847	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
5848	struct btf *btf = bpf_prog_get_target_btf(prog);
5849	const char *tname = prog->aux->attach_func_name;
5850	struct bpf_verifier_log *log = info->log;
5851	const struct btf_param *args;
5852	const char *tag_value;
5853	u32 nr_args, arg;
5854	int i, ret;
5855
5856	if (off % 8) {
5857		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
5858			tname, off);
5859		return false;
5860	}
5861	arg = get_ctx_arg_idx(btf, t, off);
5862	args = (const struct btf_param *)(t + 1);
5863	/* if (t == NULL) Fall back to default BPF prog with
5864	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
5865	 */
5866	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
5867	if (prog->aux->attach_btf_trace) {
5868		/* skip first 'void *__data' argument in btf_trace_##name typedef */
5869		args++;
5870		nr_args--;
5871	}
5872
5873	if (arg > nr_args) {
5874		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5875			tname, arg + 1);
5876		return false;
5877	}
5878
5879	if (arg == nr_args) {
5880		switch (prog->expected_attach_type) {
5881		case BPF_LSM_CGROUP:
5882		case BPF_LSM_MAC:
5883		case BPF_TRACE_FEXIT:
5884			/* When LSM programs are attached to void LSM hooks
5885			 * they use FEXIT trampolines and when attached to
5886			 * int LSM hooks, they use MODIFY_RETURN trampolines.
5887			 *
5888			 * While the LSM programs are BPF_MODIFY_RETURN-like
5889			 * the check:
5890			 *
5891			 *	if (ret_type != 'int')
5892			 *		return -EINVAL;
5893			 *
5894			 * is _not_ done here. This is still safe as LSM hooks
5895			 * have only void and int return types.
5896			 */
5897			if (!t)
5898				return true;
5899			t = btf_type_by_id(btf, t->type);
5900			break;
5901		case BPF_MODIFY_RETURN:
5902			/* For now the BPF_MODIFY_RETURN can only be attached to
5903			 * functions that return an int.
5904			 */
5905			if (!t)
5906				return false;
5907
5908			t = btf_type_skip_modifiers(btf, t->type, NULL);
5909			if (!btf_type_is_small_int(t)) {
5910				bpf_log(log,
5911					"ret type %s not allowed for fmod_ret\n",
5912					btf_type_str(t));
5913				return false;
5914			}
5915			break;
5916		default:
5917			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
5918				tname, arg + 1);
5919			return false;
5920		}
5921	} else {
5922		if (!t)
5923			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
5924			return true;
5925		t = btf_type_by_id(btf, args[arg].type);
5926	}
5927
5928	/* skip modifiers */
5929	while (btf_type_is_modifier(t))
5930		t = btf_type_by_id(btf, t->type);
5931	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
5932		/* accessing a scalar */
5933		return true;
5934	if (!btf_type_is_ptr(t)) {
5935		bpf_log(log,
5936			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
5937			tname, arg,
5938			__btf_name_by_offset(btf, t->name_off),
5939			btf_type_str(t));
5940		return false;
5941	}
5942
5943	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
5944	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5945		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5946		u32 type, flag;
5947
5948		type = base_type(ctx_arg_info->reg_type);
5949		flag = type_flag(ctx_arg_info->reg_type);
5950		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
5951		    (flag & PTR_MAYBE_NULL)) {
5952			info->reg_type = ctx_arg_info->reg_type;
5953			return true;
5954		}
5955	}
5956
5957	if (t->type == 0)
5958		/* This is a pointer to void.
5959		 * It is the same as scalar from the verifier safety pov.
5960		 * No further pointer walking is allowed.
5961		 */
5962		return true;
5963
5964	if (is_int_ptr(btf, t))
5965		return true;
5966
5967	/* this is a pointer to another type */
5968	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
5969		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
5970
5971		if (ctx_arg_info->offset == off) {
5972			if (!ctx_arg_info->btf_id) {
5973				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
5974				return false;
5975			}
5976
5977			info->reg_type = ctx_arg_info->reg_type;
5978			info->btf = btf_vmlinux;
5979			info->btf_id = ctx_arg_info->btf_id;
5980			return true;
5981		}
5982	}
5983
5984	info->reg_type = PTR_TO_BTF_ID;
5985	if (prog_args_trusted(prog))
5986		info->reg_type |= PTR_TRUSTED;
5987
5988	if (tgt_prog) {
5989		enum bpf_prog_type tgt_type;
5990
5991		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
5992			tgt_type = tgt_prog->aux->saved_dst_prog_type;
5993		else
5994			tgt_type = tgt_prog->type;
5995
5996		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
5997		if (ret > 0) {
5998			info->btf = btf_vmlinux;
5999			info->btf_id = ret;
6000			return true;
6001		} else {
6002			return false;
6003		}
6004	}
6005
6006	info->btf = btf;
6007	info->btf_id = t->type;
6008	t = btf_type_by_id(btf, t->type);
6009
6010	if (btf_type_is_type_tag(t)) {
6011		tag_value = __btf_name_by_offset(btf, t->name_off);
6012		if (strcmp(tag_value, "user") == 0)
6013			info->reg_type |= MEM_USER;
6014		if (strcmp(tag_value, "percpu") == 0)
6015			info->reg_type |= MEM_PERCPU;
6016	}
6017
6018	/* skip modifiers */
6019	while (btf_type_is_modifier(t)) {
6020		info->btf_id = t->type;
6021		t = btf_type_by_id(btf, t->type);
6022	}
6023	if (!btf_type_is_struct(t)) {
6024		bpf_log(log,
6025			"func '%s' arg%d type %s is not a struct\n",
6026			tname, arg, btf_type_str(t));
6027		return false;
6028	}
6029	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6030		tname, arg, info->btf_id, btf_type_str(t),
6031		__btf_name_by_offset(btf, t->name_off));
6032	return true;
6033}
 
6034
6035enum bpf_struct_walk_result {
6036	/* < 0 error */
6037	WALK_SCALAR = 0,
6038	WALK_PTR,
6039	WALK_STRUCT,
6040};
6041
6042static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6043			   const struct btf_type *t, int off, int size,
6044			   u32 *next_btf_id, enum bpf_type_flag *flag)
 
6045{
6046	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6047	const struct btf_type *mtype, *elem_type = NULL;
6048	const struct btf_member *member;
6049	const char *tname, *mname, *tag_value;
6050	u32 vlen, elem_id, mid;
6051
6052again:
 
 
6053	tname = __btf_name_by_offset(btf, t->name_off);
6054	if (!btf_type_is_struct(t)) {
6055		bpf_log(log, "Type '%s' is not a struct\n", tname);
6056		return -EINVAL;
6057	}
6058
6059	vlen = btf_type_vlen(t);
 
 
 
 
 
 
 
 
6060	if (off + size > t->size) {
6061		/* If the last element is a variable size array, we may
6062		 * need to relax the rule.
6063		 */
6064		struct btf_array *array_elem;
6065
6066		if (vlen == 0)
6067			goto error;
6068
6069		member = btf_type_member(t) + vlen - 1;
6070		mtype = btf_type_skip_modifiers(btf, member->type,
6071						NULL);
6072		if (!btf_type_is_array(mtype))
6073			goto error;
6074
6075		array_elem = (struct btf_array *)(mtype + 1);
6076		if (array_elem->nelems != 0)
6077			goto error;
6078
6079		moff = __btf_member_bit_offset(t, member) / 8;
6080		if (off < moff)
6081			goto error;
6082
6083		/* Only allow structure for now, can be relaxed for
6084		 * other types later.
6085		 */
6086		t = btf_type_skip_modifiers(btf, array_elem->type,
6087					    NULL);
 
 
 
 
6088		if (!btf_type_is_struct(t))
6089			goto error;
6090
6091		off = (off - moff) % t->size;
6092		goto again;
6093
6094error:
6095		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6096			tname, off, size);
6097		return -EACCES;
6098	}
6099
6100	for_each_member(i, t, member) {
6101		/* offset of the field in bytes */
6102		moff = __btf_member_bit_offset(t, member) / 8;
6103		if (off + size <= moff)
6104			/* won't find anything, field is already too far */
6105			break;
6106
6107		if (__btf_member_bitfield_size(t, member)) {
6108			u32 end_bit = __btf_member_bit_offset(t, member) +
6109				__btf_member_bitfield_size(t, member);
6110
6111			/* off <= moff instead of off == moff because clang
6112			 * does not generate a BTF member for anonymous
6113			 * bitfield like the ":16" here:
6114			 * struct {
6115			 *	int :16;
6116			 *	int x:8;
6117			 * };
6118			 */
6119			if (off <= moff &&
6120			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6121				return WALK_SCALAR;
6122
6123			/* off may be accessing a following member
6124			 *
6125			 * or
6126			 *
6127			 * Doing partial access at either end of this
6128			 * bitfield.  Continue on this case also to
6129			 * treat it as not accessing this bitfield
6130			 * and eventually error out as field not
6131			 * found to keep it simple.
6132			 * It could be relaxed if there was a legit
6133			 * partial access case later.
6134			 */
6135			continue;
6136		}
6137
6138		/* In case of "off" is pointing to holes of a struct */
6139		if (off < moff)
6140			break;
6141
6142		/* type of the field */
6143		mid = member->type;
6144		mtype = btf_type_by_id(btf, member->type);
6145		mname = __btf_name_by_offset(btf, member->name_off);
6146
6147		mtype = __btf_resolve_size(btf, mtype, &msize,
6148					   &elem_type, &elem_id, &total_nelems,
6149					   &mid);
6150		if (IS_ERR(mtype)) {
6151			bpf_log(log, "field %s doesn't have size\n", mname);
6152			return -EFAULT;
6153		}
6154
6155		mtrue_end = moff + msize;
6156		if (off >= mtrue_end)
6157			/* no overlap with member, keep iterating */
6158			continue;
6159
6160		if (btf_type_is_array(mtype)) {
6161			u32 elem_idx;
6162
6163			/* __btf_resolve_size() above helps to
6164			 * linearize a multi-dimensional array.
6165			 *
6166			 * The logic here is treating an array
6167			 * in a struct as the following way:
6168			 *
6169			 * struct outer {
6170			 *	struct inner array[2][2];
6171			 * };
6172			 *
6173			 * looks like:
6174			 *
6175			 * struct outer {
6176			 *	struct inner array_elem0;
6177			 *	struct inner array_elem1;
6178			 *	struct inner array_elem2;
6179			 *	struct inner array_elem3;
6180			 * };
6181			 *
6182			 * When accessing outer->array[1][0], it moves
6183			 * moff to "array_elem2", set mtype to
6184			 * "struct inner", and msize also becomes
6185			 * sizeof(struct inner).  Then most of the
6186			 * remaining logic will fall through without
6187			 * caring the current member is an array or
6188			 * not.
6189			 *
6190			 * Unlike mtype/msize/moff, mtrue_end does not
6191			 * change.  The naming difference ("_true") tells
6192			 * that it is not always corresponding to
6193			 * the current mtype/msize/moff.
6194			 * It is the true end of the current
6195			 * member (i.e. array in this case).  That
6196			 * will allow an int array to be accessed like
6197			 * a scratch space,
6198			 * i.e. allow access beyond the size of
6199			 *      the array's element as long as it is
6200			 *      within the mtrue_end boundary.
6201			 */
6202
6203			/* skip empty array */
6204			if (moff == mtrue_end)
6205				continue;
6206
6207			msize /= total_nelems;
6208			elem_idx = (off - moff) / msize;
6209			moff += elem_idx * msize;
6210			mtype = elem_type;
6211			mid = elem_id;
6212		}
6213
6214		/* the 'off' we're looking for is either equal to start
6215		 * of this field or inside of this struct
6216		 */
6217		if (btf_type_is_struct(mtype)) {
6218			/* our field must be inside that union or struct */
6219			t = mtype;
6220
6221			/* return if the offset matches the member offset */
6222			if (off == moff) {
6223				*next_btf_id = mid;
6224				return WALK_STRUCT;
6225			}
6226
6227			/* adjust offset we're looking for */
6228			off -= moff;
6229			goto again;
6230		}
6231
6232		if (btf_type_is_ptr(mtype)) {
6233			const struct btf_type *stype, *t;
6234			enum bpf_type_flag tmp_flag = 0;
6235			u32 id;
6236
6237			if (msize != size || off != moff) {
6238				bpf_log(log,
6239					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6240					mname, moff, tname, off, size);
6241				return -EACCES;
6242			}
6243
6244			/* check type tag */
6245			t = btf_type_by_id(btf, mtype->type);
6246			if (btf_type_is_type_tag(t)) {
6247				tag_value = __btf_name_by_offset(btf, t->name_off);
6248				/* check __user tag */
6249				if (strcmp(tag_value, "user") == 0)
6250					tmp_flag = MEM_USER;
6251				/* check __percpu tag */
6252				if (strcmp(tag_value, "percpu") == 0)
6253					tmp_flag = MEM_PERCPU;
6254				/* check __rcu tag */
6255				if (strcmp(tag_value, "rcu") == 0)
6256					tmp_flag = MEM_RCU;
6257			}
6258
6259			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6260			if (btf_type_is_struct(stype)) {
6261				*next_btf_id = id;
6262				*flag = tmp_flag;
 
 
6263				return WALK_PTR;
6264			}
6265		}
6266
6267		/* Allow more flexible access within an int as long as
6268		 * it is within mtrue_end.
6269		 * Since mtrue_end could be the end of an array,
6270		 * that also allows using an array of int as a scratch
6271		 * space. e.g. skb->cb[].
6272		 */
6273		if (off + size > mtrue_end) {
6274			bpf_log(log,
6275				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6276				mname, mtrue_end, tname, off, size);
6277			return -EACCES;
6278		}
6279
6280		return WALK_SCALAR;
6281	}
6282	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6283	return -EINVAL;
6284}
6285
6286int btf_struct_access(struct bpf_verifier_log *log,
6287		      const struct bpf_reg_state *reg,
6288		      int off, int size, enum bpf_access_type atype __maybe_unused,
6289		      u32 *next_btf_id, enum bpf_type_flag *flag)
 
6290{
6291	const struct btf *btf = reg->btf;
6292	enum bpf_type_flag tmp_flag = 0;
6293	const struct btf_type *t;
6294	u32 id = reg->btf_id;
6295	int err;
6296
6297	while (type_is_alloc(reg->type)) {
6298		struct btf_struct_meta *meta;
6299		struct btf_record *rec;
6300		int i;
6301
6302		meta = btf_find_struct_meta(btf, id);
6303		if (!meta)
6304			break;
6305		rec = meta->record;
6306		for (i = 0; i < rec->cnt; i++) {
6307			struct btf_field *field = &rec->fields[i];
6308			u32 offset = field->offset;
6309			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6310				bpf_log(log,
6311					"direct access to %s is disallowed\n",
6312					btf_field_type_name(field->type));
6313				return -EACCES;
6314			}
6315		}
6316		break;
6317	}
6318
6319	t = btf_type_by_id(btf, id);
6320	do {
6321		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag);
6322
6323		switch (err) {
6324		case WALK_PTR:
6325			/* For local types, the destination register cannot
6326			 * become a pointer again.
6327			 */
6328			if (type_is_alloc(reg->type))
6329				return SCALAR_VALUE;
6330			/* If we found the pointer or scalar on t+off,
6331			 * we're done.
6332			 */
6333			*next_btf_id = id;
6334			*flag = tmp_flag;
6335			return PTR_TO_BTF_ID;
6336		case WALK_SCALAR:
6337			return SCALAR_VALUE;
6338		case WALK_STRUCT:
6339			/* We found nested struct, so continue the search
6340			 * by diving in it. At this point the offset is
6341			 * aligned with the new type, so set it to 0.
6342			 */
6343			t = btf_type_by_id(btf, id);
6344			off = 0;
6345			break;
6346		default:
6347			/* It's either error or unknown return value..
6348			 * scream and leave.
6349			 */
6350			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6351				return -EINVAL;
6352			return err;
6353		}
6354	} while (t);
6355
6356	return -EINVAL;
6357}
6358
6359/* Check that two BTF types, each specified as an BTF object + id, are exactly
6360 * the same. Trivial ID check is not enough due to module BTFs, because we can
6361 * end up with two different module BTFs, but IDs point to the common type in
6362 * vmlinux BTF.
6363 */
6364bool btf_types_are_same(const struct btf *btf1, u32 id1,
6365			const struct btf *btf2, u32 id2)
6366{
6367	if (id1 != id2)
6368		return false;
6369	if (btf1 == btf2)
6370		return true;
6371	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6372}
6373
6374bool btf_struct_ids_match(struct bpf_verifier_log *log,
6375			  const struct btf *btf, u32 id, int off,
6376			  const struct btf *need_btf, u32 need_type_id,
6377			  bool strict)
6378{
6379	const struct btf_type *type;
6380	enum bpf_type_flag flag;
6381	int err;
6382
6383	/* Are we already done? */
6384	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6385		return true;
6386	/* In case of strict type match, we do not walk struct, the top level
6387	 * type match must succeed. When strict is true, off should have already
6388	 * been 0.
6389	 */
6390	if (strict)
6391		return false;
6392again:
6393	type = btf_type_by_id(btf, id);
6394	if (!type)
6395		return false;
6396	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag);
6397	if (err != WALK_STRUCT)
6398		return false;
6399
6400	/* We found nested struct object. If it matches
6401	 * the requested ID, we're done. Otherwise let's
6402	 * continue the search with offset 0 in the new
6403	 * type.
6404	 */
6405	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6406		off = 0;
6407		goto again;
6408	}
6409
6410	return true;
6411}
6412
6413static int __get_type_size(struct btf *btf, u32 btf_id,
6414			   const struct btf_type **ret_type)
6415{
6416	const struct btf_type *t;
6417
6418	*ret_type = btf_type_by_id(btf, 0);
6419	if (!btf_id)
6420		/* void */
6421		return 0;
6422	t = btf_type_by_id(btf, btf_id);
6423	while (t && btf_type_is_modifier(t))
6424		t = btf_type_by_id(btf, t->type);
6425	if (!t)
6426		return -EINVAL;
6427	*ret_type = t;
6428	if (btf_type_is_ptr(t))
6429		/* kernel size of pointer. Not BPF's size of pointer*/
6430		return sizeof(void *);
6431	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6432		return t->size;
6433	return -EINVAL;
6434}
6435
 
 
 
 
 
 
 
 
 
 
 
 
6436int btf_distill_func_proto(struct bpf_verifier_log *log,
6437			   struct btf *btf,
6438			   const struct btf_type *func,
6439			   const char *tname,
6440			   struct btf_func_model *m)
6441{
6442	const struct btf_param *args;
6443	const struct btf_type *t;
6444	u32 i, nargs;
6445	int ret;
6446
6447	if (!func) {
6448		/* BTF function prototype doesn't match the verifier types.
6449		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6450		 */
6451		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6452			m->arg_size[i] = 8;
6453			m->arg_flags[i] = 0;
6454		}
6455		m->ret_size = 8;
 
6456		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6457		return 0;
6458	}
6459	args = (const struct btf_param *)(func + 1);
6460	nargs = btf_type_vlen(func);
6461	if (nargs > MAX_BPF_FUNC_ARGS) {
6462		bpf_log(log,
6463			"The function %s has %d arguments. Too many.\n",
6464			tname, nargs);
6465		return -EINVAL;
6466	}
6467	ret = __get_type_size(btf, func->type, &t);
6468	if (ret < 0 || __btf_type_is_struct(t)) {
6469		bpf_log(log,
6470			"The function %s return type %s is unsupported.\n",
6471			tname, btf_type_str(t));
6472		return -EINVAL;
6473	}
6474	m->ret_size = ret;
 
6475
6476	for (i = 0; i < nargs; i++) {
6477		if (i == nargs - 1 && args[i].type == 0) {
6478			bpf_log(log,
6479				"The function %s with variable args is unsupported.\n",
6480				tname);
6481			return -EINVAL;
6482		}
6483		ret = __get_type_size(btf, args[i].type, &t);
6484
6485		/* No support of struct argument size greater than 16 bytes */
6486		if (ret < 0 || ret > 16) {
6487			bpf_log(log,
6488				"The function %s arg%d type %s is unsupported.\n",
6489				tname, i, btf_type_str(t));
6490			return -EINVAL;
6491		}
6492		if (ret == 0) {
6493			bpf_log(log,
6494				"The function %s has malformed void argument.\n",
6495				tname);
6496			return -EINVAL;
6497		}
6498		m->arg_size[i] = ret;
6499		m->arg_flags[i] = __btf_type_is_struct(t) ? BTF_FMODEL_STRUCT_ARG : 0;
6500	}
6501	m->nr_args = nargs;
6502	return 0;
6503}
6504
6505/* Compare BTFs of two functions assuming only scalars and pointers to context.
6506 * t1 points to BTF_KIND_FUNC in btf1
6507 * t2 points to BTF_KIND_FUNC in btf2
6508 * Returns:
6509 * EINVAL - function prototype mismatch
6510 * EFAULT - verifier bug
6511 * 0 - 99% match. The last 1% is validated by the verifier.
6512 */
6513static int btf_check_func_type_match(struct bpf_verifier_log *log,
6514				     struct btf *btf1, const struct btf_type *t1,
6515				     struct btf *btf2, const struct btf_type *t2)
6516{
6517	const struct btf_param *args1, *args2;
6518	const char *fn1, *fn2, *s1, *s2;
6519	u32 nargs1, nargs2, i;
6520
6521	fn1 = btf_name_by_offset(btf1, t1->name_off);
6522	fn2 = btf_name_by_offset(btf2, t2->name_off);
6523
6524	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6525		bpf_log(log, "%s() is not a global function\n", fn1);
6526		return -EINVAL;
6527	}
6528	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6529		bpf_log(log, "%s() is not a global function\n", fn2);
6530		return -EINVAL;
6531	}
6532
6533	t1 = btf_type_by_id(btf1, t1->type);
6534	if (!t1 || !btf_type_is_func_proto(t1))
6535		return -EFAULT;
6536	t2 = btf_type_by_id(btf2, t2->type);
6537	if (!t2 || !btf_type_is_func_proto(t2))
6538		return -EFAULT;
6539
6540	args1 = (const struct btf_param *)(t1 + 1);
6541	nargs1 = btf_type_vlen(t1);
6542	args2 = (const struct btf_param *)(t2 + 1);
6543	nargs2 = btf_type_vlen(t2);
6544
6545	if (nargs1 != nargs2) {
6546		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6547			fn1, nargs1, fn2, nargs2);
6548		return -EINVAL;
6549	}
6550
6551	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6552	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6553	if (t1->info != t2->info) {
6554		bpf_log(log,
6555			"Return type %s of %s() doesn't match type %s of %s()\n",
6556			btf_type_str(t1), fn1,
6557			btf_type_str(t2), fn2);
6558		return -EINVAL;
6559	}
6560
6561	for (i = 0; i < nargs1; i++) {
6562		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6563		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6564
6565		if (t1->info != t2->info) {
6566			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6567				i, fn1, btf_type_str(t1),
6568				fn2, btf_type_str(t2));
6569			return -EINVAL;
6570		}
6571		if (btf_type_has_size(t1) && t1->size != t2->size) {
6572			bpf_log(log,
6573				"arg%d in %s() has size %d while %s() has %d\n",
6574				i, fn1, t1->size,
6575				fn2, t2->size);
6576			return -EINVAL;
6577		}
6578
6579		/* global functions are validated with scalars and pointers
6580		 * to context only. And only global functions can be replaced.
6581		 * Hence type check only those types.
6582		 */
6583		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6584			continue;
6585		if (!btf_type_is_ptr(t1)) {
6586			bpf_log(log,
6587				"arg%d in %s() has unrecognized type\n",
6588				i, fn1);
6589			return -EINVAL;
6590		}
6591		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6592		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6593		if (!btf_type_is_struct(t1)) {
6594			bpf_log(log,
6595				"arg%d in %s() is not a pointer to context\n",
6596				i, fn1);
6597			return -EINVAL;
6598		}
6599		if (!btf_type_is_struct(t2)) {
6600			bpf_log(log,
6601				"arg%d in %s() is not a pointer to context\n",
6602				i, fn2);
6603			return -EINVAL;
6604		}
6605		/* This is an optional check to make program writing easier.
6606		 * Compare names of structs and report an error to the user.
6607		 * btf_prepare_func_args() already checked that t2 struct
6608		 * is a context type. btf_prepare_func_args() will check
6609		 * later that t1 struct is a context type as well.
6610		 */
6611		s1 = btf_name_by_offset(btf1, t1->name_off);
6612		s2 = btf_name_by_offset(btf2, t2->name_off);
6613		if (strcmp(s1, s2)) {
6614			bpf_log(log,
6615				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6616				i, fn1, s1, fn2, s2);
6617			return -EINVAL;
6618		}
6619	}
6620	return 0;
6621}
6622
6623/* Compare BTFs of given program with BTF of target program */
6624int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
6625			 struct btf *btf2, const struct btf_type *t2)
6626{
6627	struct btf *btf1 = prog->aux->btf;
6628	const struct btf_type *t1;
6629	u32 btf_id = 0;
6630
6631	if (!prog->aux->func_info) {
6632		bpf_log(log, "Program extension requires BTF\n");
6633		return -EINVAL;
6634	}
6635
6636	btf_id = prog->aux->func_info[0].type_id;
6637	if (!btf_id)
6638		return -EFAULT;
6639
6640	t1 = btf_type_by_id(btf1, btf_id);
6641	if (!t1 || !btf_type_is_func(t1))
6642		return -EFAULT;
6643
6644	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
6645}
6646
6647static int btf_check_func_arg_match(struct bpf_verifier_env *env,
6648				    const struct btf *btf, u32 func_id,
6649				    struct bpf_reg_state *regs,
6650				    bool ptr_to_mem_ok,
6651				    bool processing_call)
6652{
6653	enum bpf_prog_type prog_type = resolve_prog_type(env->prog);
6654	struct bpf_verifier_log *log = &env->log;
6655	const char *func_name, *ref_tname;
6656	const struct btf_type *t, *ref_t;
6657	const struct btf_param *args;
6658	u32 i, nargs, ref_id;
6659	int ret;
6660
6661	t = btf_type_by_id(btf, func_id);
6662	if (!t || !btf_type_is_func(t)) {
6663		/* These checks were already done by the verifier while loading
6664		 * struct bpf_func_info or in add_kfunc_call().
6665		 */
6666		bpf_log(log, "BTF of func_id %u doesn't point to KIND_FUNC\n",
6667			func_id);
6668		return -EFAULT;
6669	}
6670	func_name = btf_name_by_offset(btf, t->name_off);
6671
6672	t = btf_type_by_id(btf, t->type);
6673	if (!t || !btf_type_is_func_proto(t)) {
6674		bpf_log(log, "Invalid BTF of func %s\n", func_name);
6675		return -EFAULT;
6676	}
6677	args = (const struct btf_param *)(t + 1);
6678	nargs = btf_type_vlen(t);
6679	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
6680		bpf_log(log, "Function %s has %d > %d args\n", func_name, nargs,
6681			MAX_BPF_FUNC_REG_ARGS);
6682		return -EINVAL;
6683	}
6684
6685	/* check that BTF function arguments match actual types that the
6686	 * verifier sees.
6687	 */
6688	for (i = 0; i < nargs; i++) {
6689		enum bpf_arg_type arg_type = ARG_DONTCARE;
6690		u32 regno = i + 1;
6691		struct bpf_reg_state *reg = &regs[regno];
6692
6693		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6694		if (btf_type_is_scalar(t)) {
6695			if (reg->type == SCALAR_VALUE)
6696				continue;
6697			bpf_log(log, "R%d is not a scalar\n", regno);
6698			return -EINVAL;
6699		}
6700
6701		if (!btf_type_is_ptr(t)) {
6702			bpf_log(log, "Unrecognized arg#%d type %s\n",
6703				i, btf_type_str(t));
6704			return -EINVAL;
6705		}
6706
6707		ref_t = btf_type_skip_modifiers(btf, t->type, &ref_id);
6708		ref_tname = btf_name_by_offset(btf, ref_t->name_off);
6709
6710		ret = check_func_arg_reg_off(env, reg, regno, arg_type);
6711		if (ret < 0)
6712			return ret;
6713
6714		if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6715			/* If function expects ctx type in BTF check that caller
6716			 * is passing PTR_TO_CTX.
6717			 */
6718			if (reg->type != PTR_TO_CTX) {
6719				bpf_log(log,
6720					"arg#%d expected pointer to ctx, but got %s\n",
6721					i, btf_type_str(t));
6722				return -EINVAL;
6723			}
6724		} else if (ptr_to_mem_ok && processing_call) {
6725			const struct btf_type *resolve_ret;
6726			u32 type_size;
6727
6728			resolve_ret = btf_resolve_size(btf, ref_t, &type_size);
6729			if (IS_ERR(resolve_ret)) {
6730				bpf_log(log,
6731					"arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6732					i, btf_type_str(ref_t), ref_tname,
6733					PTR_ERR(resolve_ret));
6734				return -EINVAL;
6735			}
6736
6737			if (check_mem_reg(env, reg, regno, type_size))
6738				return -EINVAL;
6739		} else {
6740			bpf_log(log, "reg type unsupported for arg#%d function %s#%d\n", i,
6741				func_name, func_id);
6742			return -EINVAL;
6743		}
6744	}
6745
6746	return 0;
6747}
6748
6749/* Compare BTF of a function declaration with given bpf_reg_state.
6750 * Returns:
6751 * EFAULT - there is a verifier bug. Abort verification.
6752 * EINVAL - there is a type mismatch or BTF is not available.
6753 * 0 - BTF matches with what bpf_reg_state expects.
6754 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6755 */
6756int btf_check_subprog_arg_match(struct bpf_verifier_env *env, int subprog,
6757				struct bpf_reg_state *regs)
6758{
6759	struct bpf_prog *prog = env->prog;
6760	struct btf *btf = prog->aux->btf;
6761	bool is_global;
6762	u32 btf_id;
6763	int err;
6764
6765	if (!prog->aux->func_info)
6766		return -EINVAL;
6767
6768	btf_id = prog->aux->func_info[subprog].type_id;
6769	if (!btf_id)
6770		return -EFAULT;
6771
6772	if (prog->aux->func_info_aux[subprog].unreliable)
6773		return -EINVAL;
6774
6775	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6776	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, false);
6777
6778	/* Compiler optimizations can remove arguments from static functions
6779	 * or mismatched type can be passed into a global function.
6780	 * In such cases mark the function as unreliable from BTF point of view.
6781	 */
6782	if (err)
6783		prog->aux->func_info_aux[subprog].unreliable = true;
6784	return err;
6785}
6786
6787/* Compare BTF of a function call with given bpf_reg_state.
6788 * Returns:
6789 * EFAULT - there is a verifier bug. Abort verification.
6790 * EINVAL - there is a type mismatch or BTF is not available.
6791 * 0 - BTF matches with what bpf_reg_state expects.
6792 * Only PTR_TO_CTX and SCALAR_VALUE states are recognized.
6793 *
6794 * NOTE: the code is duplicated from btf_check_subprog_arg_match()
6795 * because btf_check_func_arg_match() is still doing both. Once that
6796 * function is split in 2, we can call from here btf_check_subprog_arg_match()
6797 * first, and then treat the calling part in a new code path.
6798 */
6799int btf_check_subprog_call(struct bpf_verifier_env *env, int subprog,
6800			   struct bpf_reg_state *regs)
6801{
6802	struct bpf_prog *prog = env->prog;
6803	struct btf *btf = prog->aux->btf;
6804	bool is_global;
6805	u32 btf_id;
6806	int err;
6807
6808	if (!prog->aux->func_info)
6809		return -EINVAL;
6810
6811	btf_id = prog->aux->func_info[subprog].type_id;
6812	if (!btf_id)
6813		return -EFAULT;
6814
6815	if (prog->aux->func_info_aux[subprog].unreliable)
6816		return -EINVAL;
 
 
 
 
 
6817
6818	is_global = prog->aux->func_info_aux[subprog].linkage == BTF_FUNC_GLOBAL;
6819	err = btf_check_func_arg_match(env, btf, btf_id, regs, is_global, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6820
6821	/* Compiler optimizations can remove arguments from static functions
6822	 * or mismatched type can be passed into a global function.
6823	 * In such cases mark the function as unreliable from BTF point of view.
6824	 */
6825	if (err)
6826		prog->aux->func_info_aux[subprog].unreliable = true;
6827	return err;
 
6828}
6829
6830/* Convert BTF of a function into bpf_reg_state if possible
 
 
 
 
 
 
 
 
 
 
6831 * Returns:
6832 * EFAULT - there is a verifier bug. Abort verification.
6833 * EINVAL - cannot convert BTF.
6834 * 0 - Successfully converted BTF into bpf_reg_state
6835 * (either PTR_TO_CTX or SCALAR_VALUE).
6836 */
6837int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog,
6838			  struct bpf_reg_state *regs)
6839{
 
 
6840	struct bpf_verifier_log *log = &env->log;
6841	struct bpf_prog *prog = env->prog;
6842	enum bpf_prog_type prog_type = prog->type;
6843	struct btf *btf = prog->aux->btf;
6844	const struct btf_param *args;
6845	const struct btf_type *t, *ref_t;
6846	u32 i, nargs, btf_id;
6847	const char *tname;
6848
6849	if (!prog->aux->func_info ||
6850	    prog->aux->func_info_aux[subprog].linkage != BTF_FUNC_GLOBAL) {
 
 
6851		bpf_log(log, "Verifier bug\n");
6852		return -EFAULT;
6853	}
6854
6855	btf_id = prog->aux->func_info[subprog].type_id;
6856	if (!btf_id) {
 
 
6857		bpf_log(log, "Global functions need valid BTF\n");
6858		return -EFAULT;
6859	}
6860
6861	t = btf_type_by_id(btf, btf_id);
6862	if (!t || !btf_type_is_func(t)) {
6863		/* These checks were already done by the verifier while loading
6864		 * struct bpf_func_info
6865		 */
6866		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
6867			subprog);
6868		return -EFAULT;
6869	}
6870	tname = btf_name_by_offset(btf, t->name_off);
6871
6872	if (log->level & BPF_LOG_LEVEL)
6873		bpf_log(log, "Validating %s() func#%d...\n",
6874			tname, subprog);
6875
6876	if (prog->aux->func_info_aux[subprog].unreliable) {
6877		bpf_log(log, "Verifier bug in function %s()\n", tname);
6878		return -EFAULT;
6879	}
6880	if (prog_type == BPF_PROG_TYPE_EXT)
6881		prog_type = prog->aux->dst_prog->type;
6882
6883	t = btf_type_by_id(btf, t->type);
6884	if (!t || !btf_type_is_func_proto(t)) {
6885		bpf_log(log, "Invalid type of function %s()\n", tname);
6886		return -EFAULT;
6887	}
6888	args = (const struct btf_param *)(t + 1);
6889	nargs = btf_type_vlen(t);
6890	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
 
 
6891		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
6892			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
6893		return -EINVAL;
6894	}
6895	/* check that function returns int */
6896	t = btf_type_by_id(btf, t->type);
6897	while (btf_type_is_modifier(t))
6898		t = btf_type_by_id(btf, t->type);
6899	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
 
 
6900		bpf_log(log,
6901			"Global function %s() doesn't return scalar. Only those are supported.\n",
6902			tname);
6903		return -EINVAL;
6904	}
6905	/* Convert BTF function arguments into verifier types.
6906	 * Only PTR_TO_CTX and SCALAR are supported atm.
6907	 */
6908	for (i = 0; i < nargs; i++) {
6909		struct bpf_reg_state *reg = &regs[i + 1];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6910
6911		t = btf_type_by_id(btf, args[i].type);
6912		while (btf_type_is_modifier(t))
6913			t = btf_type_by_id(btf, t->type);
6914		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
6915			reg->type = SCALAR_VALUE;
 
 
 
 
 
 
 
 
 
 
 
6916			continue;
6917		}
6918		if (btf_type_is_ptr(t)) {
6919			if (btf_get_prog_ctx_type(log, btf, t, prog_type, i)) {
6920				reg->type = PTR_TO_CTX;
6921				continue;
6922			}
 
 
 
 
 
6923
6924			t = btf_type_skip_modifiers(btf, t->type, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6925
6926			ref_t = btf_resolve_size(btf, t, &reg->mem_size);
 
6927			if (IS_ERR(ref_t)) {
6928				bpf_log(log,
6929				    "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
6930				    i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
6931					PTR_ERR(ref_t));
6932				return -EINVAL;
6933			}
6934
6935			reg->type = PTR_TO_MEM | PTR_MAYBE_NULL;
6936			reg->id = ++env->id_gen;
 
 
 
 
6937
 
 
 
 
 
 
 
6938			continue;
6939		}
 
 
6940		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
6941			i, btf_type_str(t), tname);
6942		return -EINVAL;
6943	}
 
 
 
 
6944	return 0;
6945}
6946
6947static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
6948			  struct btf_show *show)
6949{
6950	const struct btf_type *t = btf_type_by_id(btf, type_id);
6951
6952	show->btf = btf;
6953	memset(&show->state, 0, sizeof(show->state));
6954	memset(&show->obj, 0, sizeof(show->obj));
6955
6956	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
6957}
6958
6959static void btf_seq_show(struct btf_show *show, const char *fmt,
6960			 va_list args)
6961{
6962	seq_vprintf((struct seq_file *)show->target, fmt, args);
6963}
6964
6965int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
6966			    void *obj, struct seq_file *m, u64 flags)
6967{
6968	struct btf_show sseq;
6969
6970	sseq.target = m;
6971	sseq.showfn = btf_seq_show;
6972	sseq.flags = flags;
6973
6974	btf_type_show(btf, type_id, obj, &sseq);
6975
6976	return sseq.state.status;
6977}
6978
6979void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
6980		       struct seq_file *m)
6981{
6982	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
6983				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
6984				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
6985}
6986
6987struct btf_show_snprintf {
6988	struct btf_show show;
6989	int len_left;		/* space left in string */
6990	int len;		/* length we would have written */
6991};
6992
6993static void btf_snprintf_show(struct btf_show *show, const char *fmt,
6994			      va_list args)
6995{
6996	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
6997	int len;
6998
6999	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7000
7001	if (len < 0) {
7002		ssnprintf->len_left = 0;
7003		ssnprintf->len = len;
7004	} else if (len >= ssnprintf->len_left) {
7005		/* no space, drive on to get length we would have written */
7006		ssnprintf->len_left = 0;
7007		ssnprintf->len += len;
7008	} else {
7009		ssnprintf->len_left -= len;
7010		ssnprintf->len += len;
7011		show->target += len;
7012	}
7013}
7014
7015int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7016			   char *buf, int len, u64 flags)
7017{
7018	struct btf_show_snprintf ssnprintf;
7019
7020	ssnprintf.show.target = buf;
7021	ssnprintf.show.flags = flags;
7022	ssnprintf.show.showfn = btf_snprintf_show;
7023	ssnprintf.len_left = len;
7024	ssnprintf.len = 0;
7025
7026	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7027
7028	/* If we encountered an error, return it. */
7029	if (ssnprintf.show.state.status)
7030		return ssnprintf.show.state.status;
7031
7032	/* Otherwise return length we would have written */
7033	return ssnprintf.len;
7034}
7035
7036#ifdef CONFIG_PROC_FS
7037static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7038{
7039	const struct btf *btf = filp->private_data;
7040
7041	seq_printf(m, "btf_id:\t%u\n", btf->id);
7042}
7043#endif
7044
7045static int btf_release(struct inode *inode, struct file *filp)
7046{
7047	btf_put(filp->private_data);
7048	return 0;
7049}
7050
7051const struct file_operations btf_fops = {
7052#ifdef CONFIG_PROC_FS
7053	.show_fdinfo	= bpf_btf_show_fdinfo,
7054#endif
7055	.release	= btf_release,
7056};
7057
7058static int __btf_new_fd(struct btf *btf)
7059{
7060	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7061}
7062
7063int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr)
7064{
7065	struct btf *btf;
7066	int ret;
7067
7068	btf = btf_parse(make_bpfptr(attr->btf, uattr.is_kernel),
7069			attr->btf_size, attr->btf_log_level,
7070			u64_to_user_ptr(attr->btf_log_buf),
7071			attr->btf_log_size);
7072	if (IS_ERR(btf))
7073		return PTR_ERR(btf);
7074
7075	ret = btf_alloc_id(btf);
7076	if (ret) {
7077		btf_free(btf);
7078		return ret;
7079	}
7080
7081	/*
7082	 * The BTF ID is published to the userspace.
7083	 * All BTF free must go through call_rcu() from
7084	 * now on (i.e. free by calling btf_put()).
7085	 */
7086
7087	ret = __btf_new_fd(btf);
7088	if (ret < 0)
7089		btf_put(btf);
7090
7091	return ret;
7092}
7093
7094struct btf *btf_get_by_fd(int fd)
7095{
7096	struct btf *btf;
7097	struct fd f;
7098
7099	f = fdget(fd);
7100
7101	if (!f.file)
7102		return ERR_PTR(-EBADF);
7103
7104	if (f.file->f_op != &btf_fops) {
7105		fdput(f);
7106		return ERR_PTR(-EINVAL);
7107	}
7108
7109	btf = f.file->private_data;
7110	refcount_inc(&btf->refcnt);
7111	fdput(f);
7112
7113	return btf;
7114}
7115
7116int btf_get_info_by_fd(const struct btf *btf,
7117		       const union bpf_attr *attr,
7118		       union bpf_attr __user *uattr)
7119{
7120	struct bpf_btf_info __user *uinfo;
7121	struct bpf_btf_info info;
7122	u32 info_copy, btf_copy;
7123	void __user *ubtf;
7124	char __user *uname;
7125	u32 uinfo_len, uname_len, name_len;
7126	int ret = 0;
7127
7128	uinfo = u64_to_user_ptr(attr->info.info);
7129	uinfo_len = attr->info.info_len;
7130
7131	info_copy = min_t(u32, uinfo_len, sizeof(info));
7132	memset(&info, 0, sizeof(info));
7133	if (copy_from_user(&info, uinfo, info_copy))
7134		return -EFAULT;
7135
7136	info.id = btf->id;
7137	ubtf = u64_to_user_ptr(info.btf);
7138	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7139	if (copy_to_user(ubtf, btf->data, btf_copy))
7140		return -EFAULT;
7141	info.btf_size = btf->data_size;
7142
7143	info.kernel_btf = btf->kernel_btf;
7144
7145	uname = u64_to_user_ptr(info.name);
7146	uname_len = info.name_len;
7147	if (!uname ^ !uname_len)
7148		return -EINVAL;
7149
7150	name_len = strlen(btf->name);
7151	info.name_len = name_len;
7152
7153	if (uname) {
7154		if (uname_len >= name_len + 1) {
7155			if (copy_to_user(uname, btf->name, name_len + 1))
7156				return -EFAULT;
7157		} else {
7158			char zero = '\0';
7159
7160			if (copy_to_user(uname, btf->name, uname_len - 1))
7161				return -EFAULT;
7162			if (put_user(zero, uname + uname_len - 1))
7163				return -EFAULT;
7164			/* let user-space know about too short buffer */
7165			ret = -ENOSPC;
7166		}
7167	}
7168
7169	if (copy_to_user(uinfo, &info, info_copy) ||
7170	    put_user(info_copy, &uattr->info.info_len))
7171		return -EFAULT;
7172
7173	return ret;
7174}
7175
7176int btf_get_fd_by_id(u32 id)
7177{
7178	struct btf *btf;
7179	int fd;
7180
7181	rcu_read_lock();
7182	btf = idr_find(&btf_idr, id);
7183	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7184		btf = ERR_PTR(-ENOENT);
7185	rcu_read_unlock();
7186
7187	if (IS_ERR(btf))
7188		return PTR_ERR(btf);
7189
7190	fd = __btf_new_fd(btf);
7191	if (fd < 0)
7192		btf_put(btf);
7193
7194	return fd;
7195}
7196
7197u32 btf_obj_id(const struct btf *btf)
7198{
7199	return btf->id;
7200}
7201
7202bool btf_is_kernel(const struct btf *btf)
7203{
7204	return btf->kernel_btf;
7205}
7206
7207bool btf_is_module(const struct btf *btf)
7208{
7209	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7210}
7211
7212enum {
7213	BTF_MODULE_F_LIVE = (1 << 0),
7214};
7215
7216#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7217struct btf_module {
7218	struct list_head list;
7219	struct module *module;
7220	struct btf *btf;
7221	struct bin_attribute *sysfs_attr;
7222	int flags;
7223};
7224
7225static LIST_HEAD(btf_modules);
7226static DEFINE_MUTEX(btf_module_mutex);
7227
7228static ssize_t
7229btf_module_read(struct file *file, struct kobject *kobj,
7230		struct bin_attribute *bin_attr,
7231		char *buf, loff_t off, size_t len)
7232{
7233	const struct btf *btf = bin_attr->private;
7234
7235	memcpy(buf, btf->data + off, len);
7236	return len;
7237}
7238
7239static void purge_cand_cache(struct btf *btf);
7240
7241static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7242			     void *module)
7243{
7244	struct btf_module *btf_mod, *tmp;
7245	struct module *mod = module;
7246	struct btf *btf;
7247	int err = 0;
7248
7249	if (mod->btf_data_size == 0 ||
7250	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7251	     op != MODULE_STATE_GOING))
7252		goto out;
7253
7254	switch (op) {
7255	case MODULE_STATE_COMING:
7256		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7257		if (!btf_mod) {
7258			err = -ENOMEM;
7259			goto out;
7260		}
7261		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7262		if (IS_ERR(btf)) {
7263			pr_warn("failed to validate module [%s] BTF: %ld\n",
7264				mod->name, PTR_ERR(btf));
7265			kfree(btf_mod);
7266			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
 
 
7267				err = PTR_ERR(btf);
 
 
 
7268			goto out;
7269		}
7270		err = btf_alloc_id(btf);
7271		if (err) {
7272			btf_free(btf);
7273			kfree(btf_mod);
7274			goto out;
7275		}
7276
7277		purge_cand_cache(NULL);
7278		mutex_lock(&btf_module_mutex);
7279		btf_mod->module = module;
7280		btf_mod->btf = btf;
7281		list_add(&btf_mod->list, &btf_modules);
7282		mutex_unlock(&btf_module_mutex);
7283
7284		if (IS_ENABLED(CONFIG_SYSFS)) {
7285			struct bin_attribute *attr;
7286
7287			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7288			if (!attr)
7289				goto out;
7290
7291			sysfs_bin_attr_init(attr);
7292			attr->attr.name = btf->name;
7293			attr->attr.mode = 0444;
7294			attr->size = btf->data_size;
7295			attr->private = btf;
7296			attr->read = btf_module_read;
7297
7298			err = sysfs_create_bin_file(btf_kobj, attr);
7299			if (err) {
7300				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7301					mod->name, err);
7302				kfree(attr);
7303				err = 0;
7304				goto out;
7305			}
7306
7307			btf_mod->sysfs_attr = attr;
7308		}
7309
7310		break;
7311	case MODULE_STATE_LIVE:
7312		mutex_lock(&btf_module_mutex);
7313		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7314			if (btf_mod->module != module)
7315				continue;
7316
7317			btf_mod->flags |= BTF_MODULE_F_LIVE;
7318			break;
7319		}
7320		mutex_unlock(&btf_module_mutex);
7321		break;
7322	case MODULE_STATE_GOING:
7323		mutex_lock(&btf_module_mutex);
7324		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7325			if (btf_mod->module != module)
7326				continue;
7327
7328			list_del(&btf_mod->list);
7329			if (btf_mod->sysfs_attr)
7330				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7331			purge_cand_cache(btf_mod->btf);
7332			btf_put(btf_mod->btf);
7333			kfree(btf_mod->sysfs_attr);
7334			kfree(btf_mod);
7335			break;
7336		}
7337		mutex_unlock(&btf_module_mutex);
7338		break;
7339	}
7340out:
7341	return notifier_from_errno(err);
7342}
7343
7344static struct notifier_block btf_module_nb = {
7345	.notifier_call = btf_module_notify,
7346};
7347
7348static int __init btf_module_init(void)
7349{
7350	register_module_notifier(&btf_module_nb);
7351	return 0;
7352}
7353
7354fs_initcall(btf_module_init);
7355#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7356
7357struct module *btf_try_get_module(const struct btf *btf)
7358{
7359	struct module *res = NULL;
7360#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7361	struct btf_module *btf_mod, *tmp;
7362
7363	mutex_lock(&btf_module_mutex);
7364	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7365		if (btf_mod->btf != btf)
7366			continue;
7367
7368		/* We must only consider module whose __init routine has
7369		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7370		 * which is set from the notifier callback for
7371		 * MODULE_STATE_LIVE.
7372		 */
7373		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7374			res = btf_mod->module;
7375
7376		break;
7377	}
7378	mutex_unlock(&btf_module_mutex);
7379#endif
7380
7381	return res;
7382}
7383
7384/* Returns struct btf corresponding to the struct module.
7385 * This function can return NULL or ERR_PTR.
7386 */
7387static struct btf *btf_get_module_btf(const struct module *module)
7388{
7389#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7390	struct btf_module *btf_mod, *tmp;
7391#endif
7392	struct btf *btf = NULL;
7393
7394	if (!module) {
7395		btf = bpf_get_btf_vmlinux();
7396		if (!IS_ERR_OR_NULL(btf))
7397			btf_get(btf);
7398		return btf;
7399	}
7400
7401#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7402	mutex_lock(&btf_module_mutex);
7403	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7404		if (btf_mod->module != module)
7405			continue;
7406
7407		btf_get(btf_mod->btf);
7408		btf = btf_mod->btf;
7409		break;
7410	}
7411	mutex_unlock(&btf_module_mutex);
7412#endif
7413
7414	return btf;
7415}
7416
 
 
 
 
 
 
 
 
 
 
 
7417BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7418{
7419	struct btf *btf = NULL;
7420	int btf_obj_fd = 0;
7421	long ret;
7422
7423	if (flags)
7424		return -EINVAL;
7425
7426	if (name_sz <= 1 || name[name_sz - 1])
7427		return -EINVAL;
7428
7429	ret = bpf_find_btf_id(name, kind, &btf);
7430	if (ret > 0 && btf_is_module(btf)) {
7431		btf_obj_fd = __btf_new_fd(btf);
7432		if (btf_obj_fd < 0) {
7433			btf_put(btf);
7434			return btf_obj_fd;
7435		}
7436		return ret | (((u64)btf_obj_fd) << 32);
7437	}
7438	if (ret > 0)
7439		btf_put(btf);
7440	return ret;
7441}
7442
7443const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7444	.func		= bpf_btf_find_by_name_kind,
7445	.gpl_only	= false,
7446	.ret_type	= RET_INTEGER,
7447	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7448	.arg2_type	= ARG_CONST_SIZE,
7449	.arg3_type	= ARG_ANYTHING,
7450	.arg4_type	= ARG_ANYTHING,
7451};
7452
7453BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7454#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7455BTF_TRACING_TYPE_xxx
7456#undef BTF_TRACING_TYPE
7457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7458/* Kernel Function (kfunc) BTF ID set registration API */
7459
7460static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7461				  struct btf_id_set8 *add_set)
7462{
 
 
7463	bool vmlinux_set = !btf_is_module(btf);
 
7464	struct btf_kfunc_set_tab *tab;
7465	struct btf_id_set8 *set;
7466	u32 set_cnt;
7467	int ret;
7468
7469	if (hook >= BTF_KFUNC_HOOK_MAX) {
7470		ret = -EINVAL;
7471		goto end;
7472	}
7473
7474	if (!add_set->cnt)
7475		return 0;
7476
7477	tab = btf->kfunc_set_tab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7478	if (!tab) {
7479		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
7480		if (!tab)
7481			return -ENOMEM;
7482		btf->kfunc_set_tab = tab;
7483	}
7484
7485	set = tab->sets[hook];
7486	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
7487	 * for module sets.
7488	 */
7489	if (WARN_ON_ONCE(set && !vmlinux_set)) {
7490		ret = -EINVAL;
7491		goto end;
7492	}
7493
7494	/* We don't need to allocate, concatenate, and sort module sets, because
7495	 * only one is allowed per hook. Hence, we can directly assign the
7496	 * pointer and return.
7497	 */
7498	if (!vmlinux_set) {
7499		tab->sets[hook] = add_set;
7500		return 0;
7501	}
7502
7503	/* In case of vmlinux sets, there may be more than one set being
7504	 * registered per hook. To create a unified set, we allocate a new set
7505	 * and concatenate all individual sets being registered. While each set
7506	 * is individually sorted, they may become unsorted when concatenated,
7507	 * hence re-sorting the final set again is required to make binary
7508	 * searching the set using btf_id_set8_contains function work.
7509	 */
7510	set_cnt = set ? set->cnt : 0;
7511
7512	if (set_cnt > U32_MAX - add_set->cnt) {
7513		ret = -EOVERFLOW;
7514		goto end;
7515	}
7516
7517	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
7518		ret = -E2BIG;
7519		goto end;
7520	}
7521
7522	/* Grow set */
7523	set = krealloc(tab->sets[hook],
7524		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
7525		       GFP_KERNEL | __GFP_NOWARN);
7526	if (!set) {
7527		ret = -ENOMEM;
7528		goto end;
7529	}
7530
7531	/* For newly allocated set, initialize set->cnt to 0 */
7532	if (!tab->sets[hook])
7533		set->cnt = 0;
7534	tab->sets[hook] = set;
7535
7536	/* Concatenate the two sets */
7537	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
7538	set->cnt += add_set->cnt;
7539
7540	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
7541
 
 
 
 
 
7542	return 0;
7543end:
7544	btf_free_kfunc_set_tab(btf);
7545	return ret;
7546}
7547
7548static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
7549					enum btf_kfunc_hook hook,
7550					u32 kfunc_btf_id)
 
7551{
 
7552	struct btf_id_set8 *set;
7553	u32 *id;
7554
7555	if (hook >= BTF_KFUNC_HOOK_MAX)
7556		return NULL;
7557	if (!btf->kfunc_set_tab)
7558		return NULL;
 
 
 
 
 
7559	set = btf->kfunc_set_tab->sets[hook];
7560	if (!set)
7561		return NULL;
7562	id = btf_id_set8_contains(set, kfunc_btf_id);
7563	if (!id)
7564		return NULL;
7565	/* The flags for BTF ID are located next to it */
7566	return id + 1;
7567}
7568
7569static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
7570{
7571	switch (prog_type) {
7572	case BPF_PROG_TYPE_UNSPEC:
7573		return BTF_KFUNC_HOOK_COMMON;
7574	case BPF_PROG_TYPE_XDP:
7575		return BTF_KFUNC_HOOK_XDP;
7576	case BPF_PROG_TYPE_SCHED_CLS:
7577		return BTF_KFUNC_HOOK_TC;
7578	case BPF_PROG_TYPE_STRUCT_OPS:
7579		return BTF_KFUNC_HOOK_STRUCT_OPS;
7580	case BPF_PROG_TYPE_TRACING:
7581	case BPF_PROG_TYPE_LSM:
7582		return BTF_KFUNC_HOOK_TRACING;
7583	case BPF_PROG_TYPE_SYSCALL:
7584		return BTF_KFUNC_HOOK_SYSCALL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7585	default:
7586		return BTF_KFUNC_HOOK_MAX;
7587	}
7588}
7589
7590/* Caution:
7591 * Reference to the module (obtained using btf_try_get_module) corresponding to
7592 * the struct btf *MUST* be held when calling this function from verifier
7593 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
7594 * keeping the reference for the duration of the call provides the necessary
7595 * protection for looking up a well-formed btf->kfunc_set_tab.
7596 */
7597u32 *btf_kfunc_id_set_contains(const struct btf *btf,
7598			       enum bpf_prog_type prog_type,
7599			       u32 kfunc_btf_id)
7600{
 
7601	enum btf_kfunc_hook hook;
7602	u32 *kfunc_flags;
7603
7604	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id);
7605	if (kfunc_flags)
7606		return kfunc_flags;
7607
7608	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7609	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id);
7610}
7611
7612u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id)
 
7613{
7614	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id);
7615}
7616
7617static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
7618				       const struct btf_kfunc_id_set *kset)
7619{
7620	struct btf *btf;
7621	int ret;
7622
7623	btf = btf_get_module_btf(kset->owner);
7624	if (!btf) {
7625		if (!kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7626			pr_err("missing vmlinux BTF, cannot register kfuncs\n");
7627			return -ENOENT;
7628		}
7629		if (kset->owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7630			pr_err("missing module BTF, cannot register kfuncs\n");
7631			return -ENOENT;
7632		}
7633		return 0;
7634	}
7635	if (IS_ERR(btf))
7636		return PTR_ERR(btf);
7637
7638	ret = btf_populate_kfunc_set(btf, hook, kset->set);
 
 
 
 
 
 
 
 
 
7639	btf_put(btf);
7640	return ret;
7641}
7642
7643/* This function must be invoked only from initcalls/module init functions */
7644int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
7645			      const struct btf_kfunc_id_set *kset)
7646{
7647	enum btf_kfunc_hook hook;
7648
 
 
 
 
 
 
 
 
7649	hook = bpf_prog_type_to_kfunc_hook(prog_type);
7650	return __register_btf_kfunc_id_set(hook, kset);
7651}
7652EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
7653
7654/* This function must be invoked only from initcalls/module init functions */
7655int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
7656{
7657	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
7658}
7659EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
7660
7661s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
7662{
7663	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
7664	struct btf_id_dtor_kfunc *dtor;
7665
7666	if (!tab)
7667		return -ENOENT;
7668	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
7669	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
7670	 */
7671	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
7672	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
7673	if (!dtor)
7674		return -ENOENT;
7675	return dtor->kfunc_btf_id;
7676}
7677
7678static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
7679{
7680	const struct btf_type *dtor_func, *dtor_func_proto, *t;
7681	const struct btf_param *args;
7682	s32 dtor_btf_id;
7683	u32 nr_args, i;
7684
7685	for (i = 0; i < cnt; i++) {
7686		dtor_btf_id = dtors[i].kfunc_btf_id;
7687
7688		dtor_func = btf_type_by_id(btf, dtor_btf_id);
7689		if (!dtor_func || !btf_type_is_func(dtor_func))
7690			return -EINVAL;
7691
7692		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
7693		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
7694			return -EINVAL;
7695
7696		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
7697		t = btf_type_by_id(btf, dtor_func_proto->type);
7698		if (!t || !btf_type_is_void(t))
7699			return -EINVAL;
7700
7701		nr_args = btf_type_vlen(dtor_func_proto);
7702		if (nr_args != 1)
7703			return -EINVAL;
7704		args = btf_params(dtor_func_proto);
7705		t = btf_type_by_id(btf, args[0].type);
7706		/* Allow any pointer type, as width on targets Linux supports
7707		 * will be same for all pointer types (i.e. sizeof(void *))
7708		 */
7709		if (!t || !btf_type_is_ptr(t))
7710			return -EINVAL;
7711	}
7712	return 0;
7713}
7714
7715/* This function must be invoked only from initcalls/module init functions */
7716int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
7717				struct module *owner)
7718{
7719	struct btf_id_dtor_kfunc_tab *tab;
7720	struct btf *btf;
7721	u32 tab_cnt;
7722	int ret;
7723
7724	btf = btf_get_module_btf(owner);
7725	if (!btf) {
7726		if (!owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7727			pr_err("missing vmlinux BTF, cannot register dtor kfuncs\n");
7728			return -ENOENT;
7729		}
7730		if (owner && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)) {
7731			pr_err("missing module BTF, cannot register dtor kfuncs\n");
7732			return -ENOENT;
7733		}
7734		return 0;
7735	}
7736	if (IS_ERR(btf))
7737		return PTR_ERR(btf);
7738
7739	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7740		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7741		ret = -E2BIG;
7742		goto end;
7743	}
7744
7745	/* Ensure that the prototype of dtor kfuncs being registered is sane */
7746	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
7747	if (ret < 0)
7748		goto end;
7749
7750	tab = btf->dtor_kfunc_tab;
7751	/* Only one call allowed for modules */
7752	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
7753		ret = -EINVAL;
7754		goto end;
7755	}
7756
7757	tab_cnt = tab ? tab->cnt : 0;
7758	if (tab_cnt > U32_MAX - add_cnt) {
7759		ret = -EOVERFLOW;
7760		goto end;
7761	}
7762	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
7763		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
7764		ret = -E2BIG;
7765		goto end;
7766	}
7767
7768	tab = krealloc(btf->dtor_kfunc_tab,
7769		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
7770		       GFP_KERNEL | __GFP_NOWARN);
7771	if (!tab) {
7772		ret = -ENOMEM;
7773		goto end;
7774	}
7775
7776	if (!btf->dtor_kfunc_tab)
7777		tab->cnt = 0;
7778	btf->dtor_kfunc_tab = tab;
7779
7780	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
7781	tab->cnt += add_cnt;
7782
7783	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
7784
7785end:
7786	if (ret)
7787		btf_free_dtor_kfunc_tab(btf);
7788	btf_put(btf);
7789	return ret;
7790}
7791EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
7792
7793#define MAX_TYPES_ARE_COMPAT_DEPTH 2
7794
7795/* Check local and target types for compatibility. This check is used for
7796 * type-based CO-RE relocations and follow slightly different rules than
7797 * field-based relocations. This function assumes that root types were already
7798 * checked for name match. Beyond that initial root-level name check, names
7799 * are completely ignored. Compatibility rules are as follows:
7800 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
7801 *     kind should match for local and target types (i.e., STRUCT is not
7802 *     compatible with UNION);
7803 *   - for ENUMs/ENUM64s, the size is ignored;
7804 *   - for INT, size and signedness are ignored;
7805 *   - for ARRAY, dimensionality is ignored, element types are checked for
7806 *     compatibility recursively;
7807 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
7808 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
7809 *   - FUNC_PROTOs are compatible if they have compatible signature: same
7810 *     number of input args and compatible return and argument types.
7811 * These rules are not set in stone and probably will be adjusted as we get
7812 * more experience with using BPF CO-RE relocations.
7813 */
7814int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
7815			      const struct btf *targ_btf, __u32 targ_id)
7816{
7817	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
7818					   MAX_TYPES_ARE_COMPAT_DEPTH);
7819}
7820
7821#define MAX_TYPES_MATCH_DEPTH 2
7822
7823int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
7824			 const struct btf *targ_btf, u32 targ_id)
7825{
7826	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
7827				      MAX_TYPES_MATCH_DEPTH);
7828}
7829
7830static bool bpf_core_is_flavor_sep(const char *s)
7831{
7832	/* check X___Y name pattern, where X and Y are not underscores */
7833	return s[0] != '_' &&				      /* X */
7834	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
7835	       s[4] != '_';				      /* Y */
7836}
7837
7838size_t bpf_core_essential_name_len(const char *name)
7839{
7840	size_t n = strlen(name);
7841	int i;
7842
7843	for (i = n - 5; i >= 0; i--) {
7844		if (bpf_core_is_flavor_sep(name + i))
7845			return i + 1;
7846	}
7847	return n;
7848}
7849
7850struct bpf_cand_cache {
7851	const char *name;
7852	u32 name_len;
7853	u16 kind;
7854	u16 cnt;
7855	struct {
7856		const struct btf *btf;
7857		u32 id;
7858	} cands[];
7859};
7860
7861static void bpf_free_cands(struct bpf_cand_cache *cands)
7862{
7863	if (!cands->cnt)
7864		/* empty candidate array was allocated on stack */
7865		return;
7866	kfree(cands);
7867}
7868
7869static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
7870{
7871	kfree(cands->name);
7872	kfree(cands);
7873}
7874
7875#define VMLINUX_CAND_CACHE_SIZE 31
7876static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
7877
7878#define MODULE_CAND_CACHE_SIZE 31
7879static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
7880
7881static DEFINE_MUTEX(cand_cache_mutex);
7882
7883static void __print_cand_cache(struct bpf_verifier_log *log,
7884			       struct bpf_cand_cache **cache,
7885			       int cache_size)
7886{
7887	struct bpf_cand_cache *cc;
7888	int i, j;
7889
7890	for (i = 0; i < cache_size; i++) {
7891		cc = cache[i];
7892		if (!cc)
7893			continue;
7894		bpf_log(log, "[%d]%s(", i, cc->name);
7895		for (j = 0; j < cc->cnt; j++) {
7896			bpf_log(log, "%d", cc->cands[j].id);
7897			if (j < cc->cnt - 1)
7898				bpf_log(log, " ");
7899		}
7900		bpf_log(log, "), ");
7901	}
7902}
7903
7904static void print_cand_cache(struct bpf_verifier_log *log)
7905{
7906	mutex_lock(&cand_cache_mutex);
7907	bpf_log(log, "vmlinux_cand_cache:");
7908	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
7909	bpf_log(log, "\nmodule_cand_cache:");
7910	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
7911	bpf_log(log, "\n");
7912	mutex_unlock(&cand_cache_mutex);
7913}
7914
7915static u32 hash_cands(struct bpf_cand_cache *cands)
7916{
7917	return jhash(cands->name, cands->name_len, 0);
7918}
7919
7920static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
7921					       struct bpf_cand_cache **cache,
7922					       int cache_size)
7923{
7924	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
7925
7926	if (cc && cc->name_len == cands->name_len &&
7927	    !strncmp(cc->name, cands->name, cands->name_len))
7928		return cc;
7929	return NULL;
7930}
7931
7932static size_t sizeof_cands(int cnt)
7933{
7934	return offsetof(struct bpf_cand_cache, cands[cnt]);
7935}
7936
7937static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
7938						  struct bpf_cand_cache **cache,
7939						  int cache_size)
7940{
7941	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
7942
7943	if (*cc) {
7944		bpf_free_cands_from_cache(*cc);
7945		*cc = NULL;
7946	}
7947	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
7948	if (!new_cands) {
7949		bpf_free_cands(cands);
7950		return ERR_PTR(-ENOMEM);
7951	}
7952	/* strdup the name, since it will stay in cache.
7953	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
7954	 */
7955	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
7956	bpf_free_cands(cands);
7957	if (!new_cands->name) {
7958		kfree(new_cands);
7959		return ERR_PTR(-ENOMEM);
7960	}
7961	*cc = new_cands;
7962	return new_cands;
7963}
7964
7965#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7966static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
7967			       int cache_size)
7968{
7969	struct bpf_cand_cache *cc;
7970	int i, j;
7971
7972	for (i = 0; i < cache_size; i++) {
7973		cc = cache[i];
7974		if (!cc)
7975			continue;
7976		if (!btf) {
7977			/* when new module is loaded purge all of module_cand_cache,
7978			 * since new module might have candidates with the name
7979			 * that matches cached cands.
7980			 */
7981			bpf_free_cands_from_cache(cc);
7982			cache[i] = NULL;
7983			continue;
7984		}
7985		/* when module is unloaded purge cache entries
7986		 * that match module's btf
7987		 */
7988		for (j = 0; j < cc->cnt; j++)
7989			if (cc->cands[j].btf == btf) {
7990				bpf_free_cands_from_cache(cc);
7991				cache[i] = NULL;
7992				break;
7993			}
7994	}
7995
7996}
7997
7998static void purge_cand_cache(struct btf *btf)
7999{
8000	mutex_lock(&cand_cache_mutex);
8001	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8002	mutex_unlock(&cand_cache_mutex);
8003}
8004#endif
8005
8006static struct bpf_cand_cache *
8007bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8008		   int targ_start_id)
8009{
8010	struct bpf_cand_cache *new_cands;
8011	const struct btf_type *t;
8012	const char *targ_name;
8013	size_t targ_essent_len;
8014	int n, i;
8015
8016	n = btf_nr_types(targ_btf);
8017	for (i = targ_start_id; i < n; i++) {
8018		t = btf_type_by_id(targ_btf, i);
8019		if (btf_kind(t) != cands->kind)
8020			continue;
8021
8022		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8023		if (!targ_name)
8024			continue;
8025
8026		/* the resched point is before strncmp to make sure that search
8027		 * for non-existing name will have a chance to schedule().
8028		 */
8029		cond_resched();
8030
8031		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8032			continue;
8033
8034		targ_essent_len = bpf_core_essential_name_len(targ_name);
8035		if (targ_essent_len != cands->name_len)
8036			continue;
8037
8038		/* most of the time there is only one candidate for a given kind+name pair */
8039		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8040		if (!new_cands) {
8041			bpf_free_cands(cands);
8042			return ERR_PTR(-ENOMEM);
8043		}
8044
8045		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8046		bpf_free_cands(cands);
8047		cands = new_cands;
8048		cands->cands[cands->cnt].btf = targ_btf;
8049		cands->cands[cands->cnt].id = i;
8050		cands->cnt++;
8051	}
8052	return cands;
8053}
8054
8055static struct bpf_cand_cache *
8056bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8057{
8058	struct bpf_cand_cache *cands, *cc, local_cand = {};
8059	const struct btf *local_btf = ctx->btf;
8060	const struct btf_type *local_type;
8061	const struct btf *main_btf;
8062	size_t local_essent_len;
8063	struct btf *mod_btf;
8064	const char *name;
8065	int id;
8066
8067	main_btf = bpf_get_btf_vmlinux();
8068	if (IS_ERR(main_btf))
8069		return ERR_CAST(main_btf);
8070	if (!main_btf)
8071		return ERR_PTR(-EINVAL);
8072
8073	local_type = btf_type_by_id(local_btf, local_type_id);
8074	if (!local_type)
8075		return ERR_PTR(-EINVAL);
8076
8077	name = btf_name_by_offset(local_btf, local_type->name_off);
8078	if (str_is_empty(name))
8079		return ERR_PTR(-EINVAL);
8080	local_essent_len = bpf_core_essential_name_len(name);
8081
8082	cands = &local_cand;
8083	cands->name = name;
8084	cands->kind = btf_kind(local_type);
8085	cands->name_len = local_essent_len;
8086
8087	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8088	/* cands is a pointer to stack here */
8089	if (cc) {
8090		if (cc->cnt)
8091			return cc;
8092		goto check_modules;
8093	}
8094
8095	/* Attempt to find target candidates in vmlinux BTF first */
8096	cands = bpf_core_add_cands(cands, main_btf, 1);
8097	if (IS_ERR(cands))
8098		return ERR_CAST(cands);
8099
8100	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8101
8102	/* populate cache even when cands->cnt == 0 */
8103	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8104	if (IS_ERR(cc))
8105		return ERR_CAST(cc);
8106
8107	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8108	if (cc->cnt)
8109		return cc;
8110
8111check_modules:
8112	/* cands is a pointer to stack here and cands->cnt == 0 */
8113	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8114	if (cc)
8115		/* if cache has it return it even if cc->cnt == 0 */
8116		return cc;
8117
8118	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8119	spin_lock_bh(&btf_idr_lock);
8120	idr_for_each_entry(&btf_idr, mod_btf, id) {
8121		if (!btf_is_module(mod_btf))
8122			continue;
8123		/* linear search could be slow hence unlock/lock
8124		 * the IDR to avoiding holding it for too long
8125		 */
8126		btf_get(mod_btf);
8127		spin_unlock_bh(&btf_idr_lock);
8128		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8129		if (IS_ERR(cands)) {
8130			btf_put(mod_btf);
8131			return ERR_CAST(cands);
8132		}
8133		spin_lock_bh(&btf_idr_lock);
8134		btf_put(mod_btf);
8135	}
8136	spin_unlock_bh(&btf_idr_lock);
8137	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8138	 * or pointer to stack if cands->cnd == 0.
8139	 * Copy it into the cache even when cands->cnt == 0 and
8140	 * return the result.
8141	 */
8142	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8143}
8144
8145int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8146		   int relo_idx, void *insn)
8147{
8148	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8149	struct bpf_core_cand_list cands = {};
8150	struct bpf_core_relo_res targ_res;
8151	struct bpf_core_spec *specs;
8152	int err;
8153
8154	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8155	 * into arrays of btf_ids of struct fields and array indices.
8156	 */
8157	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8158	if (!specs)
8159		return -ENOMEM;
8160
8161	if (need_cands) {
8162		struct bpf_cand_cache *cc;
8163		int i;
8164
8165		mutex_lock(&cand_cache_mutex);
8166		cc = bpf_core_find_cands(ctx, relo->type_id);
8167		if (IS_ERR(cc)) {
8168			bpf_log(ctx->log, "target candidate search failed for %d\n",
8169				relo->type_id);
8170			err = PTR_ERR(cc);
8171			goto out;
8172		}
8173		if (cc->cnt) {
8174			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8175			if (!cands.cands) {
8176				err = -ENOMEM;
8177				goto out;
8178			}
8179		}
8180		for (i = 0; i < cc->cnt; i++) {
8181			bpf_log(ctx->log,
8182				"CO-RE relocating %s %s: found target candidate [%d]\n",
8183				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8184			cands.cands[i].btf = cc->cands[i].btf;
8185			cands.cands[i].id = cc->cands[i].id;
8186		}
8187		cands.len = cc->cnt;
8188		/* cand_cache_mutex needs to span the cache lookup and
8189		 * copy of btf pointer into bpf_core_cand_list,
8190		 * since module can be unloaded while bpf_core_calc_relo_insn
8191		 * is working with module's btf.
8192		 */
8193	}
8194
8195	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8196				      &targ_res);
8197	if (err)
8198		goto out;
8199
8200	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8201				  &targ_res);
8202
8203out:
8204	kfree(specs);
8205	if (need_cands) {
8206		kfree(cands.cands);
8207		mutex_unlock(&cand_cache_mutex);
8208		if (ctx->log->level & BPF_LOG_LEVEL2)
8209			print_cand_cache(ctx->log);
8210	}
8211	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8212}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <uapi/linux/btf.h>
   5#include <uapi/linux/bpf.h>
   6#include <uapi/linux/bpf_perf_event.h>
   7#include <uapi/linux/types.h>
   8#include <linux/seq_file.h>
   9#include <linux/compiler.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/slab.h>
  13#include <linux/anon_inodes.h>
  14#include <linux/file.h>
  15#include <linux/uaccess.h>
  16#include <linux/kernel.h>
  17#include <linux/idr.h>
  18#include <linux/sort.h>
  19#include <linux/bpf_verifier.h>
  20#include <linux/btf.h>
  21#include <linux/btf_ids.h>
  22#include <linux/bpf.h>
  23#include <linux/bpf_lsm.h>
  24#include <linux/skmsg.h>
  25#include <linux/perf_event.h>
  26#include <linux/bsearch.h>
  27#include <linux/kobject.h>
  28#include <linux/sysfs.h>
  29
  30#include <net/netfilter/nf_bpf_link.h>
  31
  32#include <net/sock.h>
  33#include <net/xdp.h>
  34#include "../tools/lib/bpf/relo_core.h"
  35
  36/* BTF (BPF Type Format) is the meta data format which describes
  37 * the data types of BPF program/map.  Hence, it basically focus
  38 * on the C programming language which the modern BPF is primary
  39 * using.
  40 *
  41 * ELF Section:
  42 * ~~~~~~~~~~~
  43 * The BTF data is stored under the ".BTF" ELF section
  44 *
  45 * struct btf_type:
  46 * ~~~~~~~~~~~~~~~
  47 * Each 'struct btf_type' object describes a C data type.
  48 * Depending on the type it is describing, a 'struct btf_type'
  49 * object may be followed by more data.  F.e.
  50 * To describe an array, 'struct btf_type' is followed by
  51 * 'struct btf_array'.
  52 *
  53 * 'struct btf_type' and any extra data following it are
  54 * 4 bytes aligned.
  55 *
  56 * Type section:
  57 * ~~~~~~~~~~~~~
  58 * The BTF type section contains a list of 'struct btf_type' objects.
  59 * Each one describes a C type.  Recall from the above section
  60 * that a 'struct btf_type' object could be immediately followed by extra
  61 * data in order to describe some particular C types.
  62 *
  63 * type_id:
  64 * ~~~~~~~
  65 * Each btf_type object is identified by a type_id.  The type_id
  66 * is implicitly implied by the location of the btf_type object in
  67 * the BTF type section.  The first one has type_id 1.  The second
  68 * one has type_id 2...etc.  Hence, an earlier btf_type has
  69 * a smaller type_id.
  70 *
  71 * A btf_type object may refer to another btf_type object by using
  72 * type_id (i.e. the "type" in the "struct btf_type").
  73 *
  74 * NOTE that we cannot assume any reference-order.
  75 * A btf_type object can refer to an earlier btf_type object
  76 * but it can also refer to a later btf_type object.
  77 *
  78 * For example, to describe "const void *".  A btf_type
  79 * object describing "const" may refer to another btf_type
  80 * object describing "void *".  This type-reference is done
  81 * by specifying type_id:
  82 *
  83 * [1] CONST (anon) type_id=2
  84 * [2] PTR (anon) type_id=0
  85 *
  86 * The above is the btf_verifier debug log:
  87 *   - Each line started with "[?]" is a btf_type object
  88 *   - [?] is the type_id of the btf_type object.
  89 *   - CONST/PTR is the BTF_KIND_XXX
  90 *   - "(anon)" is the name of the type.  It just
  91 *     happens that CONST and PTR has no name.
  92 *   - type_id=XXX is the 'u32 type' in btf_type
  93 *
  94 * NOTE: "void" has type_id 0
  95 *
  96 * String section:
  97 * ~~~~~~~~~~~~~~
  98 * The BTF string section contains the names used by the type section.
  99 * Each string is referred by an "offset" from the beginning of the
 100 * string section.
 101 *
 102 * Each string is '\0' terminated.
 103 *
 104 * The first character in the string section must be '\0'
 105 * which is used to mean 'anonymous'. Some btf_type may not
 106 * have a name.
 107 */
 108
 109/* BTF verification:
 110 *
 111 * To verify BTF data, two passes are needed.
 112 *
 113 * Pass #1
 114 * ~~~~~~~
 115 * The first pass is to collect all btf_type objects to
 116 * an array: "btf->types".
 117 *
 118 * Depending on the C type that a btf_type is describing,
 119 * a btf_type may be followed by extra data.  We don't know
 120 * how many btf_type is there, and more importantly we don't
 121 * know where each btf_type is located in the type section.
 122 *
 123 * Without knowing the location of each type_id, most verifications
 124 * cannot be done.  e.g. an earlier btf_type may refer to a later
 125 * btf_type (recall the "const void *" above), so we cannot
 126 * check this type-reference in the first pass.
 127 *
 128 * In the first pass, it still does some verifications (e.g.
 129 * checking the name is a valid offset to the string section).
 130 *
 131 * Pass #2
 132 * ~~~~~~~
 133 * The main focus is to resolve a btf_type that is referring
 134 * to another type.
 135 *
 136 * We have to ensure the referring type:
 137 * 1) does exist in the BTF (i.e. in btf->types[])
 138 * 2) does not cause a loop:
 139 *	struct A {
 140 *		struct B b;
 141 *	};
 142 *
 143 *	struct B {
 144 *		struct A a;
 145 *	};
 146 *
 147 * btf_type_needs_resolve() decides if a btf_type needs
 148 * to be resolved.
 149 *
 150 * The needs_resolve type implements the "resolve()" ops which
 151 * essentially does a DFS and detects backedge.
 152 *
 153 * During resolve (or DFS), different C types have different
 154 * "RESOLVED" conditions.
 155 *
 156 * When resolving a BTF_KIND_STRUCT, we need to resolve all its
 157 * members because a member is always referring to another
 158 * type.  A struct's member can be treated as "RESOLVED" if
 159 * it is referring to a BTF_KIND_PTR.  Otherwise, the
 160 * following valid C struct would be rejected:
 161 *
 162 *	struct A {
 163 *		int m;
 164 *		struct A *a;
 165 *	};
 166 *
 167 * When resolving a BTF_KIND_PTR, it needs to keep resolving if
 168 * it is referring to another BTF_KIND_PTR.  Otherwise, we cannot
 169 * detect a pointer loop, e.g.:
 170 * BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
 171 *                        ^                                         |
 172 *                        +-----------------------------------------+
 173 *
 174 */
 175
 176#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
 177#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
 178#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
 179#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
 180#define BITS_ROUNDUP_BYTES(bits) \
 181	(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
 182
 183#define BTF_INFO_MASK 0x9f00ffff
 184#define BTF_INT_MASK 0x0fffffff
 185#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
 186#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
 187
 188/* 16MB for 64k structs and each has 16 members and
 189 * a few MB spaces for the string section.
 190 * The hard limit is S32_MAX.
 191 */
 192#define BTF_MAX_SIZE (16 * 1024 * 1024)
 193
 194#define for_each_member_from(i, from, struct_type, member)		\
 195	for (i = from, member = btf_type_member(struct_type) + from;	\
 196	     i < btf_type_vlen(struct_type);				\
 197	     i++, member++)
 198
 199#define for_each_vsi_from(i, from, struct_type, member)				\
 200	for (i = from, member = btf_type_var_secinfo(struct_type) + from;	\
 201	     i < btf_type_vlen(struct_type);					\
 202	     i++, member++)
 203
 204DEFINE_IDR(btf_idr);
 205DEFINE_SPINLOCK(btf_idr_lock);
 206
 207enum btf_kfunc_hook {
 208	BTF_KFUNC_HOOK_COMMON,
 209	BTF_KFUNC_HOOK_XDP,
 210	BTF_KFUNC_HOOK_TC,
 211	BTF_KFUNC_HOOK_STRUCT_OPS,
 212	BTF_KFUNC_HOOK_TRACING,
 213	BTF_KFUNC_HOOK_SYSCALL,
 214	BTF_KFUNC_HOOK_FMODRET,
 215	BTF_KFUNC_HOOK_CGROUP_SKB,
 216	BTF_KFUNC_HOOK_SCHED_ACT,
 217	BTF_KFUNC_HOOK_SK_SKB,
 218	BTF_KFUNC_HOOK_SOCKET_FILTER,
 219	BTF_KFUNC_HOOK_LWT,
 220	BTF_KFUNC_HOOK_NETFILTER,
 221	BTF_KFUNC_HOOK_MAX,
 222};
 223
 224enum {
 225	BTF_KFUNC_SET_MAX_CNT = 256,
 226	BTF_DTOR_KFUNC_MAX_CNT = 256,
 227	BTF_KFUNC_FILTER_MAX_CNT = 16,
 228};
 229
 230struct btf_kfunc_hook_filter {
 231	btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
 232	u32 nr_filters;
 233};
 234
 235struct btf_kfunc_set_tab {
 236	struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
 237	struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
 238};
 239
 240struct btf_id_dtor_kfunc_tab {
 241	u32 cnt;
 242	struct btf_id_dtor_kfunc dtors[];
 243};
 244
 245struct btf_struct_ops_tab {
 246	u32 cnt;
 247	u32 capacity;
 248	struct bpf_struct_ops_desc ops[];
 249};
 250
 251struct btf {
 252	void *data;
 253	struct btf_type **types;
 254	u32 *resolved_ids;
 255	u32 *resolved_sizes;
 256	const char *strings;
 257	void *nohdr_data;
 258	struct btf_header hdr;
 259	u32 nr_types; /* includes VOID for base BTF */
 260	u32 types_size;
 261	u32 data_size;
 262	refcount_t refcnt;
 263	u32 id;
 264	struct rcu_head rcu;
 265	struct btf_kfunc_set_tab *kfunc_set_tab;
 266	struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
 267	struct btf_struct_metas *struct_meta_tab;
 268	struct btf_struct_ops_tab *struct_ops_tab;
 269
 270	/* split BTF support */
 271	struct btf *base_btf;
 272	u32 start_id; /* first type ID in this BTF (0 for base BTF) */
 273	u32 start_str_off; /* first string offset (0 for base BTF) */
 274	char name[MODULE_NAME_LEN];
 275	bool kernel_btf;
 276};
 277
 278enum verifier_phase {
 279	CHECK_META,
 280	CHECK_TYPE,
 281};
 282
 283struct resolve_vertex {
 284	const struct btf_type *t;
 285	u32 type_id;
 286	u16 next_member;
 287};
 288
 289enum visit_state {
 290	NOT_VISITED,
 291	VISITED,
 292	RESOLVED,
 293};
 294
 295enum resolve_mode {
 296	RESOLVE_TBD,	/* To Be Determined */
 297	RESOLVE_PTR,	/* Resolving for Pointer */
 298	RESOLVE_STRUCT_OR_ARRAY,	/* Resolving for struct/union
 299					 * or array
 300					 */
 301};
 302
 303#define MAX_RESOLVE_DEPTH 32
 304
 305struct btf_sec_info {
 306	u32 off;
 307	u32 len;
 308};
 309
 310struct btf_verifier_env {
 311	struct btf *btf;
 312	u8 *visit_states;
 313	struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
 314	struct bpf_verifier_log log;
 315	u32 log_type_id;
 316	u32 top_stack;
 317	enum verifier_phase phase;
 318	enum resolve_mode resolve_mode;
 319};
 320
 321static const char * const btf_kind_str[NR_BTF_KINDS] = {
 322	[BTF_KIND_UNKN]		= "UNKNOWN",
 323	[BTF_KIND_INT]		= "INT",
 324	[BTF_KIND_PTR]		= "PTR",
 325	[BTF_KIND_ARRAY]	= "ARRAY",
 326	[BTF_KIND_STRUCT]	= "STRUCT",
 327	[BTF_KIND_UNION]	= "UNION",
 328	[BTF_KIND_ENUM]		= "ENUM",
 329	[BTF_KIND_FWD]		= "FWD",
 330	[BTF_KIND_TYPEDEF]	= "TYPEDEF",
 331	[BTF_KIND_VOLATILE]	= "VOLATILE",
 332	[BTF_KIND_CONST]	= "CONST",
 333	[BTF_KIND_RESTRICT]	= "RESTRICT",
 334	[BTF_KIND_FUNC]		= "FUNC",
 335	[BTF_KIND_FUNC_PROTO]	= "FUNC_PROTO",
 336	[BTF_KIND_VAR]		= "VAR",
 337	[BTF_KIND_DATASEC]	= "DATASEC",
 338	[BTF_KIND_FLOAT]	= "FLOAT",
 339	[BTF_KIND_DECL_TAG]	= "DECL_TAG",
 340	[BTF_KIND_TYPE_TAG]	= "TYPE_TAG",
 341	[BTF_KIND_ENUM64]	= "ENUM64",
 342};
 343
 344const char *btf_type_str(const struct btf_type *t)
 345{
 346	return btf_kind_str[BTF_INFO_KIND(t->info)];
 347}
 348
 349/* Chunk size we use in safe copy of data to be shown. */
 350#define BTF_SHOW_OBJ_SAFE_SIZE		32
 351
 352/*
 353 * This is the maximum size of a base type value (equivalent to a
 354 * 128-bit int); if we are at the end of our safe buffer and have
 355 * less than 16 bytes space we can't be assured of being able
 356 * to copy the next type safely, so in such cases we will initiate
 357 * a new copy.
 358 */
 359#define BTF_SHOW_OBJ_BASE_TYPE_SIZE	16
 360
 361/* Type name size */
 362#define BTF_SHOW_NAME_SIZE		80
 363
 364/*
 365 * The suffix of a type that indicates it cannot alias another type when
 366 * comparing BTF IDs for kfunc invocations.
 367 */
 368#define NOCAST_ALIAS_SUFFIX		"___init"
 369
 370/*
 371 * Common data to all BTF show operations. Private show functions can add
 372 * their own data to a structure containing a struct btf_show and consult it
 373 * in the show callback.  See btf_type_show() below.
 374 *
 375 * One challenge with showing nested data is we want to skip 0-valued
 376 * data, but in order to figure out whether a nested object is all zeros
 377 * we need to walk through it.  As a result, we need to make two passes
 378 * when handling structs, unions and arrays; the first path simply looks
 379 * for nonzero data, while the second actually does the display.  The first
 380 * pass is signalled by show->state.depth_check being set, and if we
 381 * encounter a non-zero value we set show->state.depth_to_show to
 382 * the depth at which we encountered it.  When we have completed the
 383 * first pass, we will know if anything needs to be displayed if
 384 * depth_to_show > depth.  See btf_[struct,array]_show() for the
 385 * implementation of this.
 386 *
 387 * Another problem is we want to ensure the data for display is safe to
 388 * access.  To support this, the anonymous "struct {} obj" tracks the data
 389 * object and our safe copy of it.  We copy portions of the data needed
 390 * to the object "copy" buffer, but because its size is limited to
 391 * BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
 392 * traverse larger objects for display.
 393 *
 394 * The various data type show functions all start with a call to
 395 * btf_show_start_type() which returns a pointer to the safe copy
 396 * of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
 397 * raw data itself).  btf_show_obj_safe() is responsible for
 398 * using copy_from_kernel_nofault() to update the safe data if necessary
 399 * as we traverse the object's data.  skbuff-like semantics are
 400 * used:
 401 *
 402 * - obj.head points to the start of the toplevel object for display
 403 * - obj.size is the size of the toplevel object
 404 * - obj.data points to the current point in the original data at
 405 *   which our safe data starts.  obj.data will advance as we copy
 406 *   portions of the data.
 407 *
 408 * In most cases a single copy will suffice, but larger data structures
 409 * such as "struct task_struct" will require many copies.  The logic in
 410 * btf_show_obj_safe() handles the logic that determines if a new
 411 * copy_from_kernel_nofault() is needed.
 412 */
 413struct btf_show {
 414	u64 flags;
 415	void *target;	/* target of show operation (seq file, buffer) */
 416	void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
 417	const struct btf *btf;
 418	/* below are used during iteration */
 419	struct {
 420		u8 depth;
 421		u8 depth_to_show;
 422		u8 depth_check;
 423		u8 array_member:1,
 424		   array_terminated:1;
 425		u16 array_encoding;
 426		u32 type_id;
 427		int status;			/* non-zero for error */
 428		const struct btf_type *type;
 429		const struct btf_member *member;
 430		char name[BTF_SHOW_NAME_SIZE];	/* space for member name/type */
 431	} state;
 432	struct {
 433		u32 size;
 434		void *head;
 435		void *data;
 436		u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
 437	} obj;
 438};
 439
 440struct btf_kind_operations {
 441	s32 (*check_meta)(struct btf_verifier_env *env,
 442			  const struct btf_type *t,
 443			  u32 meta_left);
 444	int (*resolve)(struct btf_verifier_env *env,
 445		       const struct resolve_vertex *v);
 446	int (*check_member)(struct btf_verifier_env *env,
 447			    const struct btf_type *struct_type,
 448			    const struct btf_member *member,
 449			    const struct btf_type *member_type);
 450	int (*check_kflag_member)(struct btf_verifier_env *env,
 451				  const struct btf_type *struct_type,
 452				  const struct btf_member *member,
 453				  const struct btf_type *member_type);
 454	void (*log_details)(struct btf_verifier_env *env,
 455			    const struct btf_type *t);
 456	void (*show)(const struct btf *btf, const struct btf_type *t,
 457			 u32 type_id, void *data, u8 bits_offsets,
 458			 struct btf_show *show);
 459};
 460
 461static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
 462static struct btf_type btf_void;
 463
 464static int btf_resolve(struct btf_verifier_env *env,
 465		       const struct btf_type *t, u32 type_id);
 466
 467static int btf_func_check(struct btf_verifier_env *env,
 468			  const struct btf_type *t);
 469
 470static bool btf_type_is_modifier(const struct btf_type *t)
 471{
 472	/* Some of them is not strictly a C modifier
 473	 * but they are grouped into the same bucket
 474	 * for BTF concern:
 475	 *   A type (t) that refers to another
 476	 *   type through t->type AND its size cannot
 477	 *   be determined without following the t->type.
 478	 *
 479	 * ptr does not fall into this bucket
 480	 * because its size is always sizeof(void *).
 481	 */
 482	switch (BTF_INFO_KIND(t->info)) {
 483	case BTF_KIND_TYPEDEF:
 484	case BTF_KIND_VOLATILE:
 485	case BTF_KIND_CONST:
 486	case BTF_KIND_RESTRICT:
 487	case BTF_KIND_TYPE_TAG:
 488		return true;
 489	}
 490
 491	return false;
 492}
 493
 494bool btf_type_is_void(const struct btf_type *t)
 495{
 496	return t == &btf_void;
 497}
 498
 499static bool btf_type_is_fwd(const struct btf_type *t)
 500{
 501	return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
 502}
 503
 504static bool btf_type_is_datasec(const struct btf_type *t)
 505{
 506	return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
 
 507}
 508
 509static bool btf_type_is_decl_tag(const struct btf_type *t)
 510{
 511	return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
 512}
 513
 514static bool btf_type_nosize(const struct btf_type *t)
 515{
 516	return btf_type_is_void(t) || btf_type_is_fwd(t) ||
 517	       btf_type_is_func(t) || btf_type_is_func_proto(t) ||
 518	       btf_type_is_decl_tag(t);
 519}
 520
 521static bool btf_type_nosize_or_null(const struct btf_type *t)
 522{
 523	return !t || btf_type_nosize(t);
 524}
 525
 526static bool btf_type_is_decl_tag_target(const struct btf_type *t)
 527{
 528	return btf_type_is_func(t) || btf_type_is_struct(t) ||
 529	       btf_type_is_var(t) || btf_type_is_typedef(t);
 530}
 531
 532u32 btf_nr_types(const struct btf *btf)
 533{
 534	u32 total = 0;
 535
 536	while (btf) {
 537		total += btf->nr_types;
 538		btf = btf->base_btf;
 539	}
 540
 541	return total;
 542}
 543
 544s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
 545{
 546	const struct btf_type *t;
 547	const char *tname;
 548	u32 i, total;
 549
 550	total = btf_nr_types(btf);
 551	for (i = 1; i < total; i++) {
 552		t = btf_type_by_id(btf, i);
 553		if (BTF_INFO_KIND(t->info) != kind)
 554			continue;
 555
 556		tname = btf_name_by_offset(btf, t->name_off);
 557		if (!strcmp(tname, name))
 558			return i;
 559	}
 560
 561	return -ENOENT;
 562}
 563
 564s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
 565{
 566	struct btf *btf;
 567	s32 ret;
 568	int id;
 569
 570	btf = bpf_get_btf_vmlinux();
 571	if (IS_ERR(btf))
 572		return PTR_ERR(btf);
 573	if (!btf)
 574		return -EINVAL;
 575
 576	ret = btf_find_by_name_kind(btf, name, kind);
 577	/* ret is never zero, since btf_find_by_name_kind returns
 578	 * positive btf_id or negative error.
 579	 */
 580	if (ret > 0) {
 581		btf_get(btf);
 582		*btf_p = btf;
 583		return ret;
 584	}
 585
 586	/* If name is not found in vmlinux's BTF then search in module's BTFs */
 587	spin_lock_bh(&btf_idr_lock);
 588	idr_for_each_entry(&btf_idr, btf, id) {
 589		if (!btf_is_module(btf))
 590			continue;
 591		/* linear search could be slow hence unlock/lock
 592		 * the IDR to avoiding holding it for too long
 593		 */
 594		btf_get(btf);
 595		spin_unlock_bh(&btf_idr_lock);
 596		ret = btf_find_by_name_kind(btf, name, kind);
 597		if (ret > 0) {
 598			*btf_p = btf;
 599			return ret;
 600		}
 
 601		btf_put(btf);
 602		spin_lock_bh(&btf_idr_lock);
 603	}
 604	spin_unlock_bh(&btf_idr_lock);
 605	return ret;
 606}
 607
 608const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
 609					       u32 id, u32 *res_id)
 610{
 611	const struct btf_type *t = btf_type_by_id(btf, id);
 612
 613	while (btf_type_is_modifier(t)) {
 614		id = t->type;
 615		t = btf_type_by_id(btf, t->type);
 616	}
 617
 618	if (res_id)
 619		*res_id = id;
 620
 621	return t;
 622}
 623
 624const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
 625					    u32 id, u32 *res_id)
 626{
 627	const struct btf_type *t;
 628
 629	t = btf_type_skip_modifiers(btf, id, NULL);
 630	if (!btf_type_is_ptr(t))
 631		return NULL;
 632
 633	return btf_type_skip_modifiers(btf, t->type, res_id);
 634}
 635
 636const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
 637						 u32 id, u32 *res_id)
 638{
 639	const struct btf_type *ptype;
 640
 641	ptype = btf_type_resolve_ptr(btf, id, res_id);
 642	if (ptype && btf_type_is_func_proto(ptype))
 643		return ptype;
 644
 645	return NULL;
 646}
 647
 648/* Types that act only as a source, not sink or intermediate
 649 * type when resolving.
 650 */
 651static bool btf_type_is_resolve_source_only(const struct btf_type *t)
 652{
 653	return btf_type_is_var(t) ||
 654	       btf_type_is_decl_tag(t) ||
 655	       btf_type_is_datasec(t);
 656}
 657
 658/* What types need to be resolved?
 659 *
 660 * btf_type_is_modifier() is an obvious one.
 661 *
 662 * btf_type_is_struct() because its member refers to
 663 * another type (through member->type).
 664 *
 665 * btf_type_is_var() because the variable refers to
 666 * another type. btf_type_is_datasec() holds multiple
 667 * btf_type_is_var() types that need resolving.
 668 *
 669 * btf_type_is_array() because its element (array->type)
 670 * refers to another type.  Array can be thought of a
 671 * special case of struct while array just has the same
 672 * member-type repeated by array->nelems of times.
 673 */
 674static bool btf_type_needs_resolve(const struct btf_type *t)
 675{
 676	return btf_type_is_modifier(t) ||
 677	       btf_type_is_ptr(t) ||
 678	       btf_type_is_struct(t) ||
 679	       btf_type_is_array(t) ||
 680	       btf_type_is_var(t) ||
 681	       btf_type_is_func(t) ||
 682	       btf_type_is_decl_tag(t) ||
 683	       btf_type_is_datasec(t);
 684}
 685
 686/* t->size can be used */
 687static bool btf_type_has_size(const struct btf_type *t)
 688{
 689	switch (BTF_INFO_KIND(t->info)) {
 690	case BTF_KIND_INT:
 691	case BTF_KIND_STRUCT:
 692	case BTF_KIND_UNION:
 693	case BTF_KIND_ENUM:
 694	case BTF_KIND_DATASEC:
 695	case BTF_KIND_FLOAT:
 696	case BTF_KIND_ENUM64:
 697		return true;
 698	}
 699
 700	return false;
 701}
 702
 703static const char *btf_int_encoding_str(u8 encoding)
 704{
 705	if (encoding == 0)
 706		return "(none)";
 707	else if (encoding == BTF_INT_SIGNED)
 708		return "SIGNED";
 709	else if (encoding == BTF_INT_CHAR)
 710		return "CHAR";
 711	else if (encoding == BTF_INT_BOOL)
 712		return "BOOL";
 713	else
 714		return "UNKN";
 715}
 716
 717static u32 btf_type_int(const struct btf_type *t)
 718{
 719	return *(u32 *)(t + 1);
 720}
 721
 722static const struct btf_array *btf_type_array(const struct btf_type *t)
 723{
 724	return (const struct btf_array *)(t + 1);
 725}
 726
 727static const struct btf_enum *btf_type_enum(const struct btf_type *t)
 728{
 729	return (const struct btf_enum *)(t + 1);
 730}
 731
 732static const struct btf_var *btf_type_var(const struct btf_type *t)
 733{
 734	return (const struct btf_var *)(t + 1);
 735}
 736
 737static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
 738{
 739	return (const struct btf_decl_tag *)(t + 1);
 740}
 741
 742static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
 743{
 744	return (const struct btf_enum64 *)(t + 1);
 745}
 746
 747static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
 748{
 749	return kind_ops[BTF_INFO_KIND(t->info)];
 750}
 751
 752static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
 753{
 754	if (!BTF_STR_OFFSET_VALID(offset))
 755		return false;
 756
 757	while (offset < btf->start_str_off)
 758		btf = btf->base_btf;
 759
 760	offset -= btf->start_str_off;
 761	return offset < btf->hdr.str_len;
 762}
 763
 764static bool __btf_name_char_ok(char c, bool first)
 765{
 766	if ((first ? !isalpha(c) :
 767		     !isalnum(c)) &&
 768	    c != '_' &&
 769	    c != '.')
 
 770		return false;
 771	return true;
 772}
 773
 774static const char *btf_str_by_offset(const struct btf *btf, u32 offset)
 775{
 776	while (offset < btf->start_str_off)
 777		btf = btf->base_btf;
 778
 779	offset -= btf->start_str_off;
 780	if (offset < btf->hdr.str_len)
 781		return &btf->strings[offset];
 782
 783	return NULL;
 784}
 785
 786static bool __btf_name_valid(const struct btf *btf, u32 offset)
 787{
 788	/* offset must be valid */
 789	const char *src = btf_str_by_offset(btf, offset);
 790	const char *src_limit;
 791
 792	if (!__btf_name_char_ok(*src, true))
 793		return false;
 794
 795	/* set a limit on identifier length */
 796	src_limit = src + KSYM_NAME_LEN;
 797	src++;
 798	while (*src && src < src_limit) {
 799		if (!__btf_name_char_ok(*src, false))
 800			return false;
 801		src++;
 802	}
 803
 804	return !*src;
 805}
 806
 
 
 
 807static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
 808{
 809	return __btf_name_valid(btf, offset);
 810}
 811
 812/* Allow any printable character in DATASEC names */
 813static bool btf_name_valid_section(const struct btf *btf, u32 offset)
 814{
 815	/* offset must be valid */
 816	const char *src = btf_str_by_offset(btf, offset);
 817	const char *src_limit;
 818
 819	/* set a limit on identifier length */
 820	src_limit = src + KSYM_NAME_LEN;
 821	src++;
 822	while (*src && src < src_limit) {
 823		if (!isprint(*src))
 824			return false;
 825		src++;
 826	}
 827
 828	return !*src;
 829}
 830
 831static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
 832{
 833	const char *name;
 834
 835	if (!offset)
 836		return "(anon)";
 837
 838	name = btf_str_by_offset(btf, offset);
 839	return name ?: "(invalid-name-offset)";
 840}
 841
 842const char *btf_name_by_offset(const struct btf *btf, u32 offset)
 843{
 844	return btf_str_by_offset(btf, offset);
 845}
 846
 847const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
 848{
 849	while (type_id < btf->start_id)
 850		btf = btf->base_btf;
 851
 852	type_id -= btf->start_id;
 853	if (type_id >= btf->nr_types)
 854		return NULL;
 855	return btf->types[type_id];
 856}
 857EXPORT_SYMBOL_GPL(btf_type_by_id);
 858
 859/*
 860 * Regular int is not a bit field and it must be either
 861 * u8/u16/u32/u64 or __int128.
 862 */
 863static bool btf_type_int_is_regular(const struct btf_type *t)
 864{
 865	u8 nr_bits, nr_bytes;
 866	u32 int_data;
 867
 868	int_data = btf_type_int(t);
 869	nr_bits = BTF_INT_BITS(int_data);
 870	nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
 871	if (BITS_PER_BYTE_MASKED(nr_bits) ||
 872	    BTF_INT_OFFSET(int_data) ||
 873	    (nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
 874	     nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
 875	     nr_bytes != (2 * sizeof(u64)))) {
 876		return false;
 877	}
 878
 879	return true;
 880}
 881
 882/*
 883 * Check that given struct member is a regular int with expected
 884 * offset and size.
 885 */
 886bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
 887			   const struct btf_member *m,
 888			   u32 expected_offset, u32 expected_size)
 889{
 890	const struct btf_type *t;
 891	u32 id, int_data;
 892	u8 nr_bits;
 893
 894	id = m->type;
 895	t = btf_type_id_size(btf, &id, NULL);
 896	if (!t || !btf_type_is_int(t))
 897		return false;
 898
 899	int_data = btf_type_int(t);
 900	nr_bits = BTF_INT_BITS(int_data);
 901	if (btf_type_kflag(s)) {
 902		u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
 903		u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
 904
 905		/* if kflag set, int should be a regular int and
 906		 * bit offset should be at byte boundary.
 907		 */
 908		return !bitfield_size &&
 909		       BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
 910		       BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
 911	}
 912
 913	if (BTF_INT_OFFSET(int_data) ||
 914	    BITS_PER_BYTE_MASKED(m->offset) ||
 915	    BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
 916	    BITS_PER_BYTE_MASKED(nr_bits) ||
 917	    BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
 918		return false;
 919
 920	return true;
 921}
 922
 923/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
 924static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
 925						       u32 id)
 926{
 927	const struct btf_type *t = btf_type_by_id(btf, id);
 928
 929	while (btf_type_is_modifier(t) &&
 930	       BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
 931		t = btf_type_by_id(btf, t->type);
 932	}
 933
 934	return t;
 935}
 936
 937#define BTF_SHOW_MAX_ITER	10
 938
 939#define BTF_KIND_BIT(kind)	(1ULL << kind)
 940
 941/*
 942 * Populate show->state.name with type name information.
 943 * Format of type name is
 944 *
 945 * [.member_name = ] (type_name)
 946 */
 947static const char *btf_show_name(struct btf_show *show)
 948{
 949	/* BTF_MAX_ITER array suffixes "[]" */
 950	const char *array_suffixes = "[][][][][][][][][][]";
 951	const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
 952	/* BTF_MAX_ITER pointer suffixes "*" */
 953	const char *ptr_suffixes = "**********";
 954	const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
 955	const char *name = NULL, *prefix = "", *parens = "";
 956	const struct btf_member *m = show->state.member;
 957	const struct btf_type *t;
 958	const struct btf_array *array;
 959	u32 id = show->state.type_id;
 960	const char *member = NULL;
 961	bool show_member = false;
 962	u64 kinds = 0;
 963	int i;
 964
 965	show->state.name[0] = '\0';
 966
 967	/*
 968	 * Don't show type name if we're showing an array member;
 969	 * in that case we show the array type so don't need to repeat
 970	 * ourselves for each member.
 971	 */
 972	if (show->state.array_member)
 973		return "";
 974
 975	/* Retrieve member name, if any. */
 976	if (m) {
 977		member = btf_name_by_offset(show->btf, m->name_off);
 978		show_member = strlen(member) > 0;
 979		id = m->type;
 980	}
 981
 982	/*
 983	 * Start with type_id, as we have resolved the struct btf_type *
 984	 * via btf_modifier_show() past the parent typedef to the child
 985	 * struct, int etc it is defined as.  In such cases, the type_id
 986	 * still represents the starting type while the struct btf_type *
 987	 * in our show->state points at the resolved type of the typedef.
 988	 */
 989	t = btf_type_by_id(show->btf, id);
 990	if (!t)
 991		return "";
 992
 993	/*
 994	 * The goal here is to build up the right number of pointer and
 995	 * array suffixes while ensuring the type name for a typedef
 996	 * is represented.  Along the way we accumulate a list of
 997	 * BTF kinds we have encountered, since these will inform later
 998	 * display; for example, pointer types will not require an
 999	 * opening "{" for struct, we will just display the pointer value.
1000	 *
1001	 * We also want to accumulate the right number of pointer or array
1002	 * indices in the format string while iterating until we get to
1003	 * the typedef/pointee/array member target type.
1004	 *
1005	 * We start by pointing at the end of pointer and array suffix
1006	 * strings; as we accumulate pointers and arrays we move the pointer
1007	 * or array string backwards so it will show the expected number of
1008	 * '*' or '[]' for the type.  BTF_SHOW_MAX_ITER of nesting of pointers
1009	 * and/or arrays and typedefs are supported as a precaution.
1010	 *
1011	 * We also want to get typedef name while proceeding to resolve
1012	 * type it points to so that we can add parentheses if it is a
1013	 * "typedef struct" etc.
1014	 */
1015	for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
1016
1017		switch (BTF_INFO_KIND(t->info)) {
1018		case BTF_KIND_TYPEDEF:
1019			if (!name)
1020				name = btf_name_by_offset(show->btf,
1021							       t->name_off);
1022			kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
1023			id = t->type;
1024			break;
1025		case BTF_KIND_ARRAY:
1026			kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
1027			parens = "[";
1028			if (!t)
1029				return "";
1030			array = btf_type_array(t);
1031			if (array_suffix > array_suffixes)
1032				array_suffix -= 2;
1033			id = array->type;
1034			break;
1035		case BTF_KIND_PTR:
1036			kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
1037			if (ptr_suffix > ptr_suffixes)
1038				ptr_suffix -= 1;
1039			id = t->type;
1040			break;
1041		default:
1042			id = 0;
1043			break;
1044		}
1045		if (!id)
1046			break;
1047		t = btf_type_skip_qualifiers(show->btf, id);
1048	}
1049	/* We may not be able to represent this type; bail to be safe */
1050	if (i == BTF_SHOW_MAX_ITER)
1051		return "";
1052
1053	if (!name)
1054		name = btf_name_by_offset(show->btf, t->name_off);
1055
1056	switch (BTF_INFO_KIND(t->info)) {
1057	case BTF_KIND_STRUCT:
1058	case BTF_KIND_UNION:
1059		prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
1060			 "struct" : "union";
1061		/* if it's an array of struct/union, parens is already set */
1062		if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
1063			parens = "{";
1064		break;
1065	case BTF_KIND_ENUM:
1066	case BTF_KIND_ENUM64:
1067		prefix = "enum";
1068		break;
1069	default:
1070		break;
1071	}
1072
1073	/* pointer does not require parens */
1074	if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
1075		parens = "";
1076	/* typedef does not require struct/union/enum prefix */
1077	if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
1078		prefix = "";
1079
1080	if (!name)
1081		name = "";
1082
1083	/* Even if we don't want type name info, we want parentheses etc */
1084	if (show->flags & BTF_SHOW_NONAME)
1085		snprintf(show->state.name, sizeof(show->state.name), "%s",
1086			 parens);
1087	else
1088		snprintf(show->state.name, sizeof(show->state.name),
1089			 "%s%s%s(%s%s%s%s%s%s)%s",
1090			 /* first 3 strings comprise ".member = " */
1091			 show_member ? "." : "",
1092			 show_member ? member : "",
1093			 show_member ? " = " : "",
1094			 /* ...next is our prefix (struct, enum, etc) */
1095			 prefix,
1096			 strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
1097			 /* ...this is the type name itself */
1098			 name,
1099			 /* ...suffixed by the appropriate '*', '[]' suffixes */
1100			 strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
1101			 array_suffix, parens);
1102
1103	return show->state.name;
1104}
1105
1106static const char *__btf_show_indent(struct btf_show *show)
1107{
1108	const char *indents = "                                ";
1109	const char *indent = &indents[strlen(indents)];
1110
1111	if ((indent - show->state.depth) >= indents)
1112		return indent - show->state.depth;
1113	return indents;
1114}
1115
1116static const char *btf_show_indent(struct btf_show *show)
1117{
1118	return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
1119}
1120
1121static const char *btf_show_newline(struct btf_show *show)
1122{
1123	return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
1124}
1125
1126static const char *btf_show_delim(struct btf_show *show)
1127{
1128	if (show->state.depth == 0)
1129		return "";
1130
1131	if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
1132		BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
1133		return "|";
1134
1135	return ",";
1136}
1137
1138__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
1139{
1140	va_list args;
1141
1142	if (!show->state.depth_check) {
1143		va_start(args, fmt);
1144		show->showfn(show, fmt, args);
1145		va_end(args);
1146	}
1147}
1148
1149/* Macros are used here as btf_show_type_value[s]() prepends and appends
1150 * format specifiers to the format specifier passed in; these do the work of
1151 * adding indentation, delimiters etc while the caller simply has to specify
1152 * the type value(s) in the format specifier + value(s).
1153 */
1154#define btf_show_type_value(show, fmt, value)				       \
1155	do {								       \
1156		if ((value) != (__typeof__(value))0 ||			       \
1157		    (show->flags & BTF_SHOW_ZERO) ||			       \
1158		    show->state.depth == 0) {				       \
1159			btf_show(show, "%s%s" fmt "%s%s",		       \
1160				 btf_show_indent(show),			       \
1161				 btf_show_name(show),			       \
1162				 value, btf_show_delim(show),		       \
1163				 btf_show_newline(show));		       \
1164			if (show->state.depth > show->state.depth_to_show)     \
1165				show->state.depth_to_show = show->state.depth; \
1166		}							       \
1167	} while (0)
1168
1169#define btf_show_type_values(show, fmt, ...)				       \
1170	do {								       \
1171		btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show),       \
1172			 btf_show_name(show),				       \
1173			 __VA_ARGS__, btf_show_delim(show),		       \
1174			 btf_show_newline(show));			       \
1175		if (show->state.depth > show->state.depth_to_show)	       \
1176			show->state.depth_to_show = show->state.depth;	       \
1177	} while (0)
1178
1179/* How much is left to copy to safe buffer after @data? */
1180static int btf_show_obj_size_left(struct btf_show *show, void *data)
1181{
1182	return show->obj.head + show->obj.size - data;
1183}
1184
1185/* Is object pointed to by @data of @size already copied to our safe buffer? */
1186static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
1187{
1188	return data >= show->obj.data &&
1189	       (data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
1190}
1191
1192/*
1193 * If object pointed to by @data of @size falls within our safe buffer, return
1194 * the equivalent pointer to the same safe data.  Assumes
1195 * copy_from_kernel_nofault() has already happened and our safe buffer is
1196 * populated.
1197 */
1198static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
1199{
1200	if (btf_show_obj_is_safe(show, data, size))
1201		return show->obj.safe + (data - show->obj.data);
1202	return NULL;
1203}
1204
1205/*
1206 * Return a safe-to-access version of data pointed to by @data.
1207 * We do this by copying the relevant amount of information
1208 * to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
1209 *
1210 * If BTF_SHOW_UNSAFE is specified, just return data as-is; no
1211 * safe copy is needed.
1212 *
1213 * Otherwise we need to determine if we have the required amount
1214 * of data (determined by the @data pointer and the size of the
1215 * largest base type we can encounter (represented by
1216 * BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
1217 * that we will be able to print some of the current object,
1218 * and if more is needed a copy will be triggered.
1219 * Some objects such as structs will not fit into the buffer;
1220 * in such cases additional copies when we iterate over their
1221 * members may be needed.
1222 *
1223 * btf_show_obj_safe() is used to return a safe buffer for
1224 * btf_show_start_type(); this ensures that as we recurse into
1225 * nested types we always have safe data for the given type.
1226 * This approach is somewhat wasteful; it's possible for example
1227 * that when iterating over a large union we'll end up copying the
1228 * same data repeatedly, but the goal is safety not performance.
1229 * We use stack data as opposed to per-CPU buffers because the
1230 * iteration over a type can take some time, and preemption handling
1231 * would greatly complicate use of the safe buffer.
1232 */
1233static void *btf_show_obj_safe(struct btf_show *show,
1234			       const struct btf_type *t,
1235			       void *data)
1236{
1237	const struct btf_type *rt;
1238	int size_left, size;
1239	void *safe = NULL;
1240
1241	if (show->flags & BTF_SHOW_UNSAFE)
1242		return data;
1243
1244	rt = btf_resolve_size(show->btf, t, &size);
1245	if (IS_ERR(rt)) {
1246		show->state.status = PTR_ERR(rt);
1247		return NULL;
1248	}
1249
1250	/*
1251	 * Is this toplevel object? If so, set total object size and
1252	 * initialize pointers.  Otherwise check if we still fall within
1253	 * our safe object data.
1254	 */
1255	if (show->state.depth == 0) {
1256		show->obj.size = size;
1257		show->obj.head = data;
1258	} else {
1259		/*
1260		 * If the size of the current object is > our remaining
1261		 * safe buffer we _may_ need to do a new copy.  However
1262		 * consider the case of a nested struct; it's size pushes
1263		 * us over the safe buffer limit, but showing any individual
1264		 * struct members does not.  In such cases, we don't need
1265		 * to initiate a fresh copy yet; however we definitely need
1266		 * at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
1267		 * in our buffer, regardless of the current object size.
1268		 * The logic here is that as we resolve types we will
1269		 * hit a base type at some point, and we need to be sure
1270		 * the next chunk of data is safely available to display
1271		 * that type info safely.  We cannot rely on the size of
1272		 * the current object here because it may be much larger
1273		 * than our current buffer (e.g. task_struct is 8k).
1274		 * All we want to do here is ensure that we can print the
1275		 * next basic type, which we can if either
1276		 * - the current type size is within the safe buffer; or
1277		 * - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
1278		 *   the safe buffer.
1279		 */
1280		safe = __btf_show_obj_safe(show, data,
1281					   min(size,
1282					       BTF_SHOW_OBJ_BASE_TYPE_SIZE));
1283	}
1284
1285	/*
1286	 * We need a new copy to our safe object, either because we haven't
1287	 * yet copied and are initializing safe data, or because the data
1288	 * we want falls outside the boundaries of the safe object.
1289	 */
1290	if (!safe) {
1291		size_left = btf_show_obj_size_left(show, data);
1292		if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
1293			size_left = BTF_SHOW_OBJ_SAFE_SIZE;
1294		show->state.status = copy_from_kernel_nofault(show->obj.safe,
1295							      data, size_left);
1296		if (!show->state.status) {
1297			show->obj.data = data;
1298			safe = show->obj.safe;
1299		}
1300	}
1301
1302	return safe;
1303}
1304
1305/*
1306 * Set the type we are starting to show and return a safe data pointer
1307 * to be used for showing the associated data.
1308 */
1309static void *btf_show_start_type(struct btf_show *show,
1310				 const struct btf_type *t,
1311				 u32 type_id, void *data)
1312{
1313	show->state.type = t;
1314	show->state.type_id = type_id;
1315	show->state.name[0] = '\0';
1316
1317	return btf_show_obj_safe(show, t, data);
1318}
1319
1320static void btf_show_end_type(struct btf_show *show)
1321{
1322	show->state.type = NULL;
1323	show->state.type_id = 0;
1324	show->state.name[0] = '\0';
1325}
1326
1327static void *btf_show_start_aggr_type(struct btf_show *show,
1328				      const struct btf_type *t,
1329				      u32 type_id, void *data)
1330{
1331	void *safe_data = btf_show_start_type(show, t, type_id, data);
1332
1333	if (!safe_data)
1334		return safe_data;
1335
1336	btf_show(show, "%s%s%s", btf_show_indent(show),
1337		 btf_show_name(show),
1338		 btf_show_newline(show));
1339	show->state.depth++;
1340	return safe_data;
1341}
1342
1343static void btf_show_end_aggr_type(struct btf_show *show,
1344				   const char *suffix)
1345{
1346	show->state.depth--;
1347	btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
1348		 btf_show_delim(show), btf_show_newline(show));
1349	btf_show_end_type(show);
1350}
1351
1352static void btf_show_start_member(struct btf_show *show,
1353				  const struct btf_member *m)
1354{
1355	show->state.member = m;
1356}
1357
1358static void btf_show_start_array_member(struct btf_show *show)
1359{
1360	show->state.array_member = 1;
1361	btf_show_start_member(show, NULL);
1362}
1363
1364static void btf_show_end_member(struct btf_show *show)
1365{
1366	show->state.member = NULL;
1367}
1368
1369static void btf_show_end_array_member(struct btf_show *show)
1370{
1371	show->state.array_member = 0;
1372	btf_show_end_member(show);
1373}
1374
1375static void *btf_show_start_array_type(struct btf_show *show,
1376				       const struct btf_type *t,
1377				       u32 type_id,
1378				       u16 array_encoding,
1379				       void *data)
1380{
1381	show->state.array_encoding = array_encoding;
1382	show->state.array_terminated = 0;
1383	return btf_show_start_aggr_type(show, t, type_id, data);
1384}
1385
1386static void btf_show_end_array_type(struct btf_show *show)
1387{
1388	show->state.array_encoding = 0;
1389	show->state.array_terminated = 0;
1390	btf_show_end_aggr_type(show, "]");
1391}
1392
1393static void *btf_show_start_struct_type(struct btf_show *show,
1394					const struct btf_type *t,
1395					u32 type_id,
1396					void *data)
1397{
1398	return btf_show_start_aggr_type(show, t, type_id, data);
1399}
1400
1401static void btf_show_end_struct_type(struct btf_show *show)
1402{
1403	btf_show_end_aggr_type(show, "}");
1404}
1405
1406__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
1407					      const char *fmt, ...)
1408{
1409	va_list args;
1410
1411	va_start(args, fmt);
1412	bpf_verifier_vlog(log, fmt, args);
1413	va_end(args);
1414}
1415
1416__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
1417					    const char *fmt, ...)
1418{
1419	struct bpf_verifier_log *log = &env->log;
1420	va_list args;
1421
1422	if (!bpf_verifier_log_needed(log))
1423		return;
1424
1425	va_start(args, fmt);
1426	bpf_verifier_vlog(log, fmt, args);
1427	va_end(args);
1428}
1429
1430__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
1431						   const struct btf_type *t,
1432						   bool log_details,
1433						   const char *fmt, ...)
1434{
1435	struct bpf_verifier_log *log = &env->log;
1436	struct btf *btf = env->btf;
1437	va_list args;
1438
1439	if (!bpf_verifier_log_needed(log))
1440		return;
1441
1442	if (log->level == BPF_LOG_KERNEL) {
1443		/* btf verifier prints all types it is processing via
1444		 * btf_verifier_log_type(..., fmt = NULL).
1445		 * Skip those prints for in-kernel BTF verification.
1446		 */
1447		if (!fmt)
1448			return;
1449
1450		/* Skip logging when loading module BTF with mismatches permitted */
1451		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1452			return;
1453	}
1454
1455	__btf_verifier_log(log, "[%u] %s %s%s",
1456			   env->log_type_id,
1457			   btf_type_str(t),
1458			   __btf_name_by_offset(btf, t->name_off),
1459			   log_details ? " " : "");
1460
1461	if (log_details)
1462		btf_type_ops(t)->log_details(env, t);
1463
1464	if (fmt && *fmt) {
1465		__btf_verifier_log(log, " ");
1466		va_start(args, fmt);
1467		bpf_verifier_vlog(log, fmt, args);
1468		va_end(args);
1469	}
1470
1471	__btf_verifier_log(log, "\n");
1472}
1473
1474#define btf_verifier_log_type(env, t, ...) \
1475	__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
1476#define btf_verifier_log_basic(env, t, ...) \
1477	__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
1478
1479__printf(4, 5)
1480static void btf_verifier_log_member(struct btf_verifier_env *env,
1481				    const struct btf_type *struct_type,
1482				    const struct btf_member *member,
1483				    const char *fmt, ...)
1484{
1485	struct bpf_verifier_log *log = &env->log;
1486	struct btf *btf = env->btf;
1487	va_list args;
1488
1489	if (!bpf_verifier_log_needed(log))
1490		return;
1491
1492	if (log->level == BPF_LOG_KERNEL) {
1493		if (!fmt)
1494			return;
1495
1496		/* Skip logging when loading module BTF with mismatches permitted */
1497		if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
1498			return;
1499	}
1500
1501	/* The CHECK_META phase already did a btf dump.
1502	 *
1503	 * If member is logged again, it must hit an error in
1504	 * parsing this member.  It is useful to print out which
1505	 * struct this member belongs to.
1506	 */
1507	if (env->phase != CHECK_META)
1508		btf_verifier_log_type(env, struct_type, NULL);
1509
1510	if (btf_type_kflag(struct_type))
1511		__btf_verifier_log(log,
1512				   "\t%s type_id=%u bitfield_size=%u bits_offset=%u",
1513				   __btf_name_by_offset(btf, member->name_off),
1514				   member->type,
1515				   BTF_MEMBER_BITFIELD_SIZE(member->offset),
1516				   BTF_MEMBER_BIT_OFFSET(member->offset));
1517	else
1518		__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
1519				   __btf_name_by_offset(btf, member->name_off),
1520				   member->type, member->offset);
1521
1522	if (fmt && *fmt) {
1523		__btf_verifier_log(log, " ");
1524		va_start(args, fmt);
1525		bpf_verifier_vlog(log, fmt, args);
1526		va_end(args);
1527	}
1528
1529	__btf_verifier_log(log, "\n");
1530}
1531
1532__printf(4, 5)
1533static void btf_verifier_log_vsi(struct btf_verifier_env *env,
1534				 const struct btf_type *datasec_type,
1535				 const struct btf_var_secinfo *vsi,
1536				 const char *fmt, ...)
1537{
1538	struct bpf_verifier_log *log = &env->log;
1539	va_list args;
1540
1541	if (!bpf_verifier_log_needed(log))
1542		return;
1543	if (log->level == BPF_LOG_KERNEL && !fmt)
1544		return;
1545	if (env->phase != CHECK_META)
1546		btf_verifier_log_type(env, datasec_type, NULL);
1547
1548	__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
1549			   vsi->type, vsi->offset, vsi->size);
1550	if (fmt && *fmt) {
1551		__btf_verifier_log(log, " ");
1552		va_start(args, fmt);
1553		bpf_verifier_vlog(log, fmt, args);
1554		va_end(args);
1555	}
1556
1557	__btf_verifier_log(log, "\n");
1558}
1559
1560static void btf_verifier_log_hdr(struct btf_verifier_env *env,
1561				 u32 btf_data_size)
1562{
1563	struct bpf_verifier_log *log = &env->log;
1564	const struct btf *btf = env->btf;
1565	const struct btf_header *hdr;
1566
1567	if (!bpf_verifier_log_needed(log))
1568		return;
1569
1570	if (log->level == BPF_LOG_KERNEL)
1571		return;
1572	hdr = &btf->hdr;
1573	__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
1574	__btf_verifier_log(log, "version: %u\n", hdr->version);
1575	__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
1576	__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
1577	__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
1578	__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
1579	__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
1580	__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
1581	__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
1582}
1583
1584static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
1585{
1586	struct btf *btf = env->btf;
1587
1588	if (btf->types_size == btf->nr_types) {
1589		/* Expand 'types' array */
1590
1591		struct btf_type **new_types;
1592		u32 expand_by, new_size;
1593
1594		if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
1595			btf_verifier_log(env, "Exceeded max num of types");
1596			return -E2BIG;
1597		}
1598
1599		expand_by = max_t(u32, btf->types_size >> 2, 16);
1600		new_size = min_t(u32, BTF_MAX_TYPE,
1601				 btf->types_size + expand_by);
1602
1603		new_types = kvcalloc(new_size, sizeof(*new_types),
1604				     GFP_KERNEL | __GFP_NOWARN);
1605		if (!new_types)
1606			return -ENOMEM;
1607
1608		if (btf->nr_types == 0) {
1609			if (!btf->base_btf) {
1610				/* lazily init VOID type */
1611				new_types[0] = &btf_void;
1612				btf->nr_types++;
1613			}
1614		} else {
1615			memcpy(new_types, btf->types,
1616			       sizeof(*btf->types) * btf->nr_types);
1617		}
1618
1619		kvfree(btf->types);
1620		btf->types = new_types;
1621		btf->types_size = new_size;
1622	}
1623
1624	btf->types[btf->nr_types++] = t;
1625
1626	return 0;
1627}
1628
1629static int btf_alloc_id(struct btf *btf)
1630{
1631	int id;
1632
1633	idr_preload(GFP_KERNEL);
1634	spin_lock_bh(&btf_idr_lock);
1635	id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
1636	if (id > 0)
1637		btf->id = id;
1638	spin_unlock_bh(&btf_idr_lock);
1639	idr_preload_end();
1640
1641	if (WARN_ON_ONCE(!id))
1642		return -ENOSPC;
1643
1644	return id > 0 ? 0 : id;
1645}
1646
1647static void btf_free_id(struct btf *btf)
1648{
1649	unsigned long flags;
1650
1651	/*
1652	 * In map-in-map, calling map_delete_elem() on outer
1653	 * map will call bpf_map_put on the inner map.
1654	 * It will then eventually call btf_free_id()
1655	 * on the inner map.  Some of the map_delete_elem()
1656	 * implementation may have irq disabled, so
1657	 * we need to use the _irqsave() version instead
1658	 * of the _bh() version.
1659	 */
1660	spin_lock_irqsave(&btf_idr_lock, flags);
1661	idr_remove(&btf_idr, btf->id);
1662	spin_unlock_irqrestore(&btf_idr_lock, flags);
1663}
1664
1665static void btf_free_kfunc_set_tab(struct btf *btf)
1666{
1667	struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
1668	int hook;
1669
1670	if (!tab)
1671		return;
1672	/* For module BTF, we directly assign the sets being registered, so
1673	 * there is nothing to free except kfunc_set_tab.
1674	 */
1675	if (btf_is_module(btf))
1676		goto free_tab;
1677	for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
1678		kfree(tab->sets[hook]);
1679free_tab:
1680	kfree(tab);
1681	btf->kfunc_set_tab = NULL;
1682}
1683
1684static void btf_free_dtor_kfunc_tab(struct btf *btf)
1685{
1686	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
1687
1688	if (!tab)
1689		return;
1690	kfree(tab);
1691	btf->dtor_kfunc_tab = NULL;
1692}
1693
1694static void btf_struct_metas_free(struct btf_struct_metas *tab)
1695{
1696	int i;
1697
1698	if (!tab)
1699		return;
1700	for (i = 0; i < tab->cnt; i++)
1701		btf_record_free(tab->types[i].record);
 
 
1702	kfree(tab);
1703}
1704
1705static void btf_free_struct_meta_tab(struct btf *btf)
1706{
1707	struct btf_struct_metas *tab = btf->struct_meta_tab;
1708
1709	btf_struct_metas_free(tab);
1710	btf->struct_meta_tab = NULL;
1711}
1712
1713static void btf_free_struct_ops_tab(struct btf *btf)
1714{
1715	struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
1716	u32 i;
1717
1718	if (!tab)
1719		return;
1720
1721	for (i = 0; i < tab->cnt; i++)
1722		bpf_struct_ops_desc_release(&tab->ops[i]);
1723
1724	kfree(tab);
1725	btf->struct_ops_tab = NULL;
1726}
1727
1728static void btf_free(struct btf *btf)
1729{
1730	btf_free_struct_meta_tab(btf);
1731	btf_free_dtor_kfunc_tab(btf);
1732	btf_free_kfunc_set_tab(btf);
1733	btf_free_struct_ops_tab(btf);
1734	kvfree(btf->types);
1735	kvfree(btf->resolved_sizes);
1736	kvfree(btf->resolved_ids);
1737	kvfree(btf->data);
1738	kfree(btf);
1739}
1740
1741static void btf_free_rcu(struct rcu_head *rcu)
1742{
1743	struct btf *btf = container_of(rcu, struct btf, rcu);
1744
1745	btf_free(btf);
1746}
1747
1748const char *btf_get_name(const struct btf *btf)
1749{
1750	return btf->name;
1751}
1752
1753void btf_get(struct btf *btf)
1754{
1755	refcount_inc(&btf->refcnt);
1756}
1757
1758void btf_put(struct btf *btf)
1759{
1760	if (btf && refcount_dec_and_test(&btf->refcnt)) {
1761		btf_free_id(btf);
1762		call_rcu(&btf->rcu, btf_free_rcu);
1763	}
1764}
1765
1766static int env_resolve_init(struct btf_verifier_env *env)
1767{
1768	struct btf *btf = env->btf;
1769	u32 nr_types = btf->nr_types;
1770	u32 *resolved_sizes = NULL;
1771	u32 *resolved_ids = NULL;
1772	u8 *visit_states = NULL;
1773
1774	resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
1775				  GFP_KERNEL | __GFP_NOWARN);
1776	if (!resolved_sizes)
1777		goto nomem;
1778
1779	resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
1780				GFP_KERNEL | __GFP_NOWARN);
1781	if (!resolved_ids)
1782		goto nomem;
1783
1784	visit_states = kvcalloc(nr_types, sizeof(*visit_states),
1785				GFP_KERNEL | __GFP_NOWARN);
1786	if (!visit_states)
1787		goto nomem;
1788
1789	btf->resolved_sizes = resolved_sizes;
1790	btf->resolved_ids = resolved_ids;
1791	env->visit_states = visit_states;
1792
1793	return 0;
1794
1795nomem:
1796	kvfree(resolved_sizes);
1797	kvfree(resolved_ids);
1798	kvfree(visit_states);
1799	return -ENOMEM;
1800}
1801
1802static void btf_verifier_env_free(struct btf_verifier_env *env)
1803{
1804	kvfree(env->visit_states);
1805	kfree(env);
1806}
1807
1808static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
1809				     const struct btf_type *next_type)
1810{
1811	switch (env->resolve_mode) {
1812	case RESOLVE_TBD:
1813		/* int, enum or void is a sink */
1814		return !btf_type_needs_resolve(next_type);
1815	case RESOLVE_PTR:
1816		/* int, enum, void, struct, array, func or func_proto is a sink
1817		 * for ptr
1818		 */
1819		return !btf_type_is_modifier(next_type) &&
1820			!btf_type_is_ptr(next_type);
1821	case RESOLVE_STRUCT_OR_ARRAY:
1822		/* int, enum, void, ptr, func or func_proto is a sink
1823		 * for struct and array
1824		 */
1825		return !btf_type_is_modifier(next_type) &&
1826			!btf_type_is_array(next_type) &&
1827			!btf_type_is_struct(next_type);
1828	default:
1829		BUG();
1830	}
1831}
1832
1833static bool env_type_is_resolved(const struct btf_verifier_env *env,
1834				 u32 type_id)
1835{
1836	/* base BTF types should be resolved by now */
1837	if (type_id < env->btf->start_id)
1838		return true;
1839
1840	return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
1841}
1842
1843static int env_stack_push(struct btf_verifier_env *env,
1844			  const struct btf_type *t, u32 type_id)
1845{
1846	const struct btf *btf = env->btf;
1847	struct resolve_vertex *v;
1848
1849	if (env->top_stack == MAX_RESOLVE_DEPTH)
1850		return -E2BIG;
1851
1852	if (type_id < btf->start_id
1853	    || env->visit_states[type_id - btf->start_id] != NOT_VISITED)
1854		return -EEXIST;
1855
1856	env->visit_states[type_id - btf->start_id] = VISITED;
1857
1858	v = &env->stack[env->top_stack++];
1859	v->t = t;
1860	v->type_id = type_id;
1861	v->next_member = 0;
1862
1863	if (env->resolve_mode == RESOLVE_TBD) {
1864		if (btf_type_is_ptr(t))
1865			env->resolve_mode = RESOLVE_PTR;
1866		else if (btf_type_is_struct(t) || btf_type_is_array(t))
1867			env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
1868	}
1869
1870	return 0;
1871}
1872
1873static void env_stack_set_next_member(struct btf_verifier_env *env,
1874				      u16 next_member)
1875{
1876	env->stack[env->top_stack - 1].next_member = next_member;
1877}
1878
1879static void env_stack_pop_resolved(struct btf_verifier_env *env,
1880				   u32 resolved_type_id,
1881				   u32 resolved_size)
1882{
1883	u32 type_id = env->stack[--(env->top_stack)].type_id;
1884	struct btf *btf = env->btf;
1885
1886	type_id -= btf->start_id; /* adjust to local type id */
1887	btf->resolved_sizes[type_id] = resolved_size;
1888	btf->resolved_ids[type_id] = resolved_type_id;
1889	env->visit_states[type_id] = RESOLVED;
1890}
1891
1892static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
1893{
1894	return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
1895}
1896
1897/* Resolve the size of a passed-in "type"
1898 *
1899 * type: is an array (e.g. u32 array[x][y])
1900 * return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
1901 * *type_size: (x * y * sizeof(u32)).  Hence, *type_size always
1902 *             corresponds to the return type.
1903 * *elem_type: u32
1904 * *elem_id: id of u32
1905 * *total_nelems: (x * y).  Hence, individual elem size is
1906 *                (*type_size / *total_nelems)
1907 * *type_id: id of type if it's changed within the function, 0 if not
1908 *
1909 * type: is not an array (e.g. const struct X)
1910 * return type: type "struct X"
1911 * *type_size: sizeof(struct X)
1912 * *elem_type: same as return type ("struct X")
1913 * *elem_id: 0
1914 * *total_nelems: 1
1915 * *type_id: id of type if it's changed within the function, 0 if not
1916 */
1917static const struct btf_type *
1918__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1919		   u32 *type_size, const struct btf_type **elem_type,
1920		   u32 *elem_id, u32 *total_nelems, u32 *type_id)
1921{
1922	const struct btf_type *array_type = NULL;
1923	const struct btf_array *array = NULL;
1924	u32 i, size, nelems = 1, id = 0;
1925
1926	for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
1927		switch (BTF_INFO_KIND(type->info)) {
1928		/* type->size can be used */
1929		case BTF_KIND_INT:
1930		case BTF_KIND_STRUCT:
1931		case BTF_KIND_UNION:
1932		case BTF_KIND_ENUM:
1933		case BTF_KIND_FLOAT:
1934		case BTF_KIND_ENUM64:
1935			size = type->size;
1936			goto resolved;
1937
1938		case BTF_KIND_PTR:
1939			size = sizeof(void *);
1940			goto resolved;
1941
1942		/* Modifiers */
1943		case BTF_KIND_TYPEDEF:
1944		case BTF_KIND_VOLATILE:
1945		case BTF_KIND_CONST:
1946		case BTF_KIND_RESTRICT:
1947		case BTF_KIND_TYPE_TAG:
1948			id = type->type;
1949			type = btf_type_by_id(btf, type->type);
1950			break;
1951
1952		case BTF_KIND_ARRAY:
1953			if (!array_type)
1954				array_type = type;
1955			array = btf_type_array(type);
1956			if (nelems && array->nelems > U32_MAX / nelems)
1957				return ERR_PTR(-EINVAL);
1958			nelems *= array->nelems;
1959			type = btf_type_by_id(btf, array->type);
1960			break;
1961
1962		/* type without size */
1963		default:
1964			return ERR_PTR(-EINVAL);
1965		}
1966	}
1967
1968	return ERR_PTR(-EINVAL);
1969
1970resolved:
1971	if (nelems && size > U32_MAX / nelems)
1972		return ERR_PTR(-EINVAL);
1973
1974	*type_size = nelems * size;
1975	if (total_nelems)
1976		*total_nelems = nelems;
1977	if (elem_type)
1978		*elem_type = type;
1979	if (elem_id)
1980		*elem_id = array ? array->type : 0;
1981	if (type_id && id)
1982		*type_id = id;
1983
1984	return array_type ? : type;
1985}
1986
1987const struct btf_type *
1988btf_resolve_size(const struct btf *btf, const struct btf_type *type,
1989		 u32 *type_size)
1990{
1991	return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
1992}
1993
1994static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
1995{
1996	while (type_id < btf->start_id)
1997		btf = btf->base_btf;
1998
1999	return btf->resolved_ids[type_id - btf->start_id];
2000}
2001
2002/* The input param "type_id" must point to a needs_resolve type */
2003static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
2004						  u32 *type_id)
2005{
2006	*type_id = btf_resolved_type_id(btf, *type_id);
2007	return btf_type_by_id(btf, *type_id);
2008}
2009
2010static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
2011{
2012	while (type_id < btf->start_id)
2013		btf = btf->base_btf;
2014
2015	return btf->resolved_sizes[type_id - btf->start_id];
2016}
2017
2018const struct btf_type *btf_type_id_size(const struct btf *btf,
2019					u32 *type_id, u32 *ret_size)
2020{
2021	const struct btf_type *size_type;
2022	u32 size_type_id = *type_id;
2023	u32 size = 0;
2024
2025	size_type = btf_type_by_id(btf, size_type_id);
2026	if (btf_type_nosize_or_null(size_type))
2027		return NULL;
2028
2029	if (btf_type_has_size(size_type)) {
2030		size = size_type->size;
2031	} else if (btf_type_is_array(size_type)) {
2032		size = btf_resolved_type_size(btf, size_type_id);
2033	} else if (btf_type_is_ptr(size_type)) {
2034		size = sizeof(void *);
2035	} else {
2036		if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
2037				 !btf_type_is_var(size_type)))
2038			return NULL;
2039
2040		size_type_id = btf_resolved_type_id(btf, size_type_id);
2041		size_type = btf_type_by_id(btf, size_type_id);
2042		if (btf_type_nosize_or_null(size_type))
2043			return NULL;
2044		else if (btf_type_has_size(size_type))
2045			size = size_type->size;
2046		else if (btf_type_is_array(size_type))
2047			size = btf_resolved_type_size(btf, size_type_id);
2048		else if (btf_type_is_ptr(size_type))
2049			size = sizeof(void *);
2050		else
2051			return NULL;
2052	}
2053
2054	*type_id = size_type_id;
2055	if (ret_size)
2056		*ret_size = size;
2057
2058	return size_type;
2059}
2060
2061static int btf_df_check_member(struct btf_verifier_env *env,
2062			       const struct btf_type *struct_type,
2063			       const struct btf_member *member,
2064			       const struct btf_type *member_type)
2065{
2066	btf_verifier_log_basic(env, struct_type,
2067			       "Unsupported check_member");
2068	return -EINVAL;
2069}
2070
2071static int btf_df_check_kflag_member(struct btf_verifier_env *env,
2072				     const struct btf_type *struct_type,
2073				     const struct btf_member *member,
2074				     const struct btf_type *member_type)
2075{
2076	btf_verifier_log_basic(env, struct_type,
2077			       "Unsupported check_kflag_member");
2078	return -EINVAL;
2079}
2080
2081/* Used for ptr, array struct/union and float type members.
2082 * int, enum and modifier types have their specific callback functions.
2083 */
2084static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
2085					  const struct btf_type *struct_type,
2086					  const struct btf_member *member,
2087					  const struct btf_type *member_type)
2088{
2089	if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
2090		btf_verifier_log_member(env, struct_type, member,
2091					"Invalid member bitfield_size");
2092		return -EINVAL;
2093	}
2094
2095	/* bitfield size is 0, so member->offset represents bit offset only.
2096	 * It is safe to call non kflag check_member variants.
2097	 */
2098	return btf_type_ops(member_type)->check_member(env, struct_type,
2099						       member,
2100						       member_type);
2101}
2102
2103static int btf_df_resolve(struct btf_verifier_env *env,
2104			  const struct resolve_vertex *v)
2105{
2106	btf_verifier_log_basic(env, v->t, "Unsupported resolve");
2107	return -EINVAL;
2108}
2109
2110static void btf_df_show(const struct btf *btf, const struct btf_type *t,
2111			u32 type_id, void *data, u8 bits_offsets,
2112			struct btf_show *show)
2113{
2114	btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
2115}
2116
2117static int btf_int_check_member(struct btf_verifier_env *env,
2118				const struct btf_type *struct_type,
2119				const struct btf_member *member,
2120				const struct btf_type *member_type)
2121{
2122	u32 int_data = btf_type_int(member_type);
2123	u32 struct_bits_off = member->offset;
2124	u32 struct_size = struct_type->size;
2125	u32 nr_copy_bits;
2126	u32 bytes_offset;
2127
2128	if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
2129		btf_verifier_log_member(env, struct_type, member,
2130					"bits_offset exceeds U32_MAX");
2131		return -EINVAL;
2132	}
2133
2134	struct_bits_off += BTF_INT_OFFSET(int_data);
2135	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2136	nr_copy_bits = BTF_INT_BITS(int_data) +
2137		BITS_PER_BYTE_MASKED(struct_bits_off);
2138
2139	if (nr_copy_bits > BITS_PER_U128) {
2140		btf_verifier_log_member(env, struct_type, member,
2141					"nr_copy_bits exceeds 128");
2142		return -EINVAL;
2143	}
2144
2145	if (struct_size < bytes_offset ||
2146	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2147		btf_verifier_log_member(env, struct_type, member,
2148					"Member exceeds struct_size");
2149		return -EINVAL;
2150	}
2151
2152	return 0;
2153}
2154
2155static int btf_int_check_kflag_member(struct btf_verifier_env *env,
2156				      const struct btf_type *struct_type,
2157				      const struct btf_member *member,
2158				      const struct btf_type *member_type)
2159{
2160	u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
2161	u32 int_data = btf_type_int(member_type);
2162	u32 struct_size = struct_type->size;
2163	u32 nr_copy_bits;
2164
2165	/* a regular int type is required for the kflag int member */
2166	if (!btf_type_int_is_regular(member_type)) {
2167		btf_verifier_log_member(env, struct_type, member,
2168					"Invalid member base type");
2169		return -EINVAL;
2170	}
2171
2172	/* check sanity of bitfield size */
2173	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
2174	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
2175	nr_int_data_bits = BTF_INT_BITS(int_data);
2176	if (!nr_bits) {
2177		/* Not a bitfield member, member offset must be at byte
2178		 * boundary.
2179		 */
2180		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2181			btf_verifier_log_member(env, struct_type, member,
2182						"Invalid member offset");
2183			return -EINVAL;
2184		}
2185
2186		nr_bits = nr_int_data_bits;
2187	} else if (nr_bits > nr_int_data_bits) {
2188		btf_verifier_log_member(env, struct_type, member,
2189					"Invalid member bitfield_size");
2190		return -EINVAL;
2191	}
2192
2193	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2194	nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
2195	if (nr_copy_bits > BITS_PER_U128) {
2196		btf_verifier_log_member(env, struct_type, member,
2197					"nr_copy_bits exceeds 128");
2198		return -EINVAL;
2199	}
2200
2201	if (struct_size < bytes_offset ||
2202	    struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
2203		btf_verifier_log_member(env, struct_type, member,
2204					"Member exceeds struct_size");
2205		return -EINVAL;
2206	}
2207
2208	return 0;
2209}
2210
2211static s32 btf_int_check_meta(struct btf_verifier_env *env,
2212			      const struct btf_type *t,
2213			      u32 meta_left)
2214{
2215	u32 int_data, nr_bits, meta_needed = sizeof(int_data);
2216	u16 encoding;
2217
2218	if (meta_left < meta_needed) {
2219		btf_verifier_log_basic(env, t,
2220				       "meta_left:%u meta_needed:%u",
2221				       meta_left, meta_needed);
2222		return -EINVAL;
2223	}
2224
2225	if (btf_type_vlen(t)) {
2226		btf_verifier_log_type(env, t, "vlen != 0");
2227		return -EINVAL;
2228	}
2229
2230	if (btf_type_kflag(t)) {
2231		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2232		return -EINVAL;
2233	}
2234
2235	int_data = btf_type_int(t);
2236	if (int_data & ~BTF_INT_MASK) {
2237		btf_verifier_log_basic(env, t, "Invalid int_data:%x",
2238				       int_data);
2239		return -EINVAL;
2240	}
2241
2242	nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
2243
2244	if (nr_bits > BITS_PER_U128) {
2245		btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
2246				      BITS_PER_U128);
2247		return -EINVAL;
2248	}
2249
2250	if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
2251		btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
2252		return -EINVAL;
2253	}
2254
2255	/*
2256	 * Only one of the encoding bits is allowed and it
2257	 * should be sufficient for the pretty print purpose (i.e. decoding).
2258	 * Multiple bits can be allowed later if it is found
2259	 * to be insufficient.
2260	 */
2261	encoding = BTF_INT_ENCODING(int_data);
2262	if (encoding &&
2263	    encoding != BTF_INT_SIGNED &&
2264	    encoding != BTF_INT_CHAR &&
2265	    encoding != BTF_INT_BOOL) {
2266		btf_verifier_log_type(env, t, "Unsupported encoding");
2267		return -ENOTSUPP;
2268	}
2269
2270	btf_verifier_log_type(env, t, NULL);
2271
2272	return meta_needed;
2273}
2274
2275static void btf_int_log(struct btf_verifier_env *env,
2276			const struct btf_type *t)
2277{
2278	int int_data = btf_type_int(t);
2279
2280	btf_verifier_log(env,
2281			 "size=%u bits_offset=%u nr_bits=%u encoding=%s",
2282			 t->size, BTF_INT_OFFSET(int_data),
2283			 BTF_INT_BITS(int_data),
2284			 btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
2285}
2286
2287static void btf_int128_print(struct btf_show *show, void *data)
2288{
2289	/* data points to a __int128 number.
2290	 * Suppose
2291	 *     int128_num = *(__int128 *)data;
2292	 * The below formulas shows what upper_num and lower_num represents:
2293	 *     upper_num = int128_num >> 64;
2294	 *     lower_num = int128_num & 0xffffffffFFFFFFFFULL;
2295	 */
2296	u64 upper_num, lower_num;
2297
2298#ifdef __BIG_ENDIAN_BITFIELD
2299	upper_num = *(u64 *)data;
2300	lower_num = *(u64 *)(data + 8);
2301#else
2302	upper_num = *(u64 *)(data + 8);
2303	lower_num = *(u64 *)data;
2304#endif
2305	if (upper_num == 0)
2306		btf_show_type_value(show, "0x%llx", lower_num);
2307	else
2308		btf_show_type_values(show, "0x%llx%016llx", upper_num,
2309				     lower_num);
2310}
2311
2312static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
2313			     u16 right_shift_bits)
2314{
2315	u64 upper_num, lower_num;
2316
2317#ifdef __BIG_ENDIAN_BITFIELD
2318	upper_num = print_num[0];
2319	lower_num = print_num[1];
2320#else
2321	upper_num = print_num[1];
2322	lower_num = print_num[0];
2323#endif
2324
2325	/* shake out un-needed bits by shift/or operations */
2326	if (left_shift_bits >= 64) {
2327		upper_num = lower_num << (left_shift_bits - 64);
2328		lower_num = 0;
2329	} else {
2330		upper_num = (upper_num << left_shift_bits) |
2331			    (lower_num >> (64 - left_shift_bits));
2332		lower_num = lower_num << left_shift_bits;
2333	}
2334
2335	if (right_shift_bits >= 64) {
2336		lower_num = upper_num >> (right_shift_bits - 64);
2337		upper_num = 0;
2338	} else {
2339		lower_num = (lower_num >> right_shift_bits) |
2340			    (upper_num << (64 - right_shift_bits));
2341		upper_num = upper_num >> right_shift_bits;
2342	}
2343
2344#ifdef __BIG_ENDIAN_BITFIELD
2345	print_num[0] = upper_num;
2346	print_num[1] = lower_num;
2347#else
2348	print_num[0] = lower_num;
2349	print_num[1] = upper_num;
2350#endif
2351}
2352
2353static void btf_bitfield_show(void *data, u8 bits_offset,
2354			      u8 nr_bits, struct btf_show *show)
2355{
2356	u16 left_shift_bits, right_shift_bits;
2357	u8 nr_copy_bytes;
2358	u8 nr_copy_bits;
2359	u64 print_num[2] = {};
2360
2361	nr_copy_bits = nr_bits + bits_offset;
2362	nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
2363
2364	memcpy(print_num, data, nr_copy_bytes);
2365
2366#ifdef __BIG_ENDIAN_BITFIELD
2367	left_shift_bits = bits_offset;
2368#else
2369	left_shift_bits = BITS_PER_U128 - nr_copy_bits;
2370#endif
2371	right_shift_bits = BITS_PER_U128 - nr_bits;
2372
2373	btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
2374	btf_int128_print(show, print_num);
2375}
2376
2377
2378static void btf_int_bits_show(const struct btf *btf,
2379			      const struct btf_type *t,
2380			      void *data, u8 bits_offset,
2381			      struct btf_show *show)
2382{
2383	u32 int_data = btf_type_int(t);
2384	u8 nr_bits = BTF_INT_BITS(int_data);
2385	u8 total_bits_offset;
2386
2387	/*
2388	 * bits_offset is at most 7.
2389	 * BTF_INT_OFFSET() cannot exceed 128 bits.
2390	 */
2391	total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
2392	data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
2393	bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
2394	btf_bitfield_show(data, bits_offset, nr_bits, show);
2395}
2396
2397static void btf_int_show(const struct btf *btf, const struct btf_type *t,
2398			 u32 type_id, void *data, u8 bits_offset,
2399			 struct btf_show *show)
2400{
2401	u32 int_data = btf_type_int(t);
2402	u8 encoding = BTF_INT_ENCODING(int_data);
2403	bool sign = encoding & BTF_INT_SIGNED;
2404	u8 nr_bits = BTF_INT_BITS(int_data);
2405	void *safe_data;
2406
2407	safe_data = btf_show_start_type(show, t, type_id, data);
2408	if (!safe_data)
2409		return;
2410
2411	if (bits_offset || BTF_INT_OFFSET(int_data) ||
2412	    BITS_PER_BYTE_MASKED(nr_bits)) {
2413		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2414		goto out;
2415	}
2416
2417	switch (nr_bits) {
2418	case 128:
2419		btf_int128_print(show, safe_data);
2420		break;
2421	case 64:
2422		if (sign)
2423			btf_show_type_value(show, "%lld", *(s64 *)safe_data);
2424		else
2425			btf_show_type_value(show, "%llu", *(u64 *)safe_data);
2426		break;
2427	case 32:
2428		if (sign)
2429			btf_show_type_value(show, "%d", *(s32 *)safe_data);
2430		else
2431			btf_show_type_value(show, "%u", *(u32 *)safe_data);
2432		break;
2433	case 16:
2434		if (sign)
2435			btf_show_type_value(show, "%d", *(s16 *)safe_data);
2436		else
2437			btf_show_type_value(show, "%u", *(u16 *)safe_data);
2438		break;
2439	case 8:
2440		if (show->state.array_encoding == BTF_INT_CHAR) {
2441			/* check for null terminator */
2442			if (show->state.array_terminated)
2443				break;
2444			if (*(char *)data == '\0') {
2445				show->state.array_terminated = 1;
2446				break;
2447			}
2448			if (isprint(*(char *)data)) {
2449				btf_show_type_value(show, "'%c'",
2450						    *(char *)safe_data);
2451				break;
2452			}
2453		}
2454		if (sign)
2455			btf_show_type_value(show, "%d", *(s8 *)safe_data);
2456		else
2457			btf_show_type_value(show, "%u", *(u8 *)safe_data);
2458		break;
2459	default:
2460		btf_int_bits_show(btf, t, safe_data, bits_offset, show);
2461		break;
2462	}
2463out:
2464	btf_show_end_type(show);
2465}
2466
2467static const struct btf_kind_operations int_ops = {
2468	.check_meta = btf_int_check_meta,
2469	.resolve = btf_df_resolve,
2470	.check_member = btf_int_check_member,
2471	.check_kflag_member = btf_int_check_kflag_member,
2472	.log_details = btf_int_log,
2473	.show = btf_int_show,
2474};
2475
2476static int btf_modifier_check_member(struct btf_verifier_env *env,
2477				     const struct btf_type *struct_type,
2478				     const struct btf_member *member,
2479				     const struct btf_type *member_type)
2480{
2481	const struct btf_type *resolved_type;
2482	u32 resolved_type_id = member->type;
2483	struct btf_member resolved_member;
2484	struct btf *btf = env->btf;
2485
2486	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2487	if (!resolved_type) {
2488		btf_verifier_log_member(env, struct_type, member,
2489					"Invalid member");
2490		return -EINVAL;
2491	}
2492
2493	resolved_member = *member;
2494	resolved_member.type = resolved_type_id;
2495
2496	return btf_type_ops(resolved_type)->check_member(env, struct_type,
2497							 &resolved_member,
2498							 resolved_type);
2499}
2500
2501static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
2502					   const struct btf_type *struct_type,
2503					   const struct btf_member *member,
2504					   const struct btf_type *member_type)
2505{
2506	const struct btf_type *resolved_type;
2507	u32 resolved_type_id = member->type;
2508	struct btf_member resolved_member;
2509	struct btf *btf = env->btf;
2510
2511	resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
2512	if (!resolved_type) {
2513		btf_verifier_log_member(env, struct_type, member,
2514					"Invalid member");
2515		return -EINVAL;
2516	}
2517
2518	resolved_member = *member;
2519	resolved_member.type = resolved_type_id;
2520
2521	return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
2522							       &resolved_member,
2523							       resolved_type);
2524}
2525
2526static int btf_ptr_check_member(struct btf_verifier_env *env,
2527				const struct btf_type *struct_type,
2528				const struct btf_member *member,
2529				const struct btf_type *member_type)
2530{
2531	u32 struct_size, struct_bits_off, bytes_offset;
2532
2533	struct_size = struct_type->size;
2534	struct_bits_off = member->offset;
2535	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2536
2537	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2538		btf_verifier_log_member(env, struct_type, member,
2539					"Member is not byte aligned");
2540		return -EINVAL;
2541	}
2542
2543	if (struct_size - bytes_offset < sizeof(void *)) {
2544		btf_verifier_log_member(env, struct_type, member,
2545					"Member exceeds struct_size");
2546		return -EINVAL;
2547	}
2548
2549	return 0;
2550}
2551
2552static int btf_ref_type_check_meta(struct btf_verifier_env *env,
2553				   const struct btf_type *t,
2554				   u32 meta_left)
2555{
2556	const char *value;
2557
2558	if (btf_type_vlen(t)) {
2559		btf_verifier_log_type(env, t, "vlen != 0");
2560		return -EINVAL;
2561	}
2562
2563	if (btf_type_kflag(t)) {
2564		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2565		return -EINVAL;
2566	}
2567
2568	if (!BTF_TYPE_ID_VALID(t->type)) {
2569		btf_verifier_log_type(env, t, "Invalid type_id");
2570		return -EINVAL;
2571	}
2572
2573	/* typedef/type_tag type must have a valid name, and other ref types,
2574	 * volatile, const, restrict, should have a null name.
2575	 */
2576	if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
2577		if (!t->name_off ||
2578		    !btf_name_valid_identifier(env->btf, t->name_off)) {
2579			btf_verifier_log_type(env, t, "Invalid name");
2580			return -EINVAL;
2581		}
2582	} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
2583		value = btf_name_by_offset(env->btf, t->name_off);
2584		if (!value || !value[0]) {
2585			btf_verifier_log_type(env, t, "Invalid name");
2586			return -EINVAL;
2587		}
2588	} else {
2589		if (t->name_off) {
2590			btf_verifier_log_type(env, t, "Invalid name");
2591			return -EINVAL;
2592		}
2593	}
2594
2595	btf_verifier_log_type(env, t, NULL);
2596
2597	return 0;
2598}
2599
2600static int btf_modifier_resolve(struct btf_verifier_env *env,
2601				const struct resolve_vertex *v)
2602{
2603	const struct btf_type *t = v->t;
2604	const struct btf_type *next_type;
2605	u32 next_type_id = t->type;
2606	struct btf *btf = env->btf;
2607
2608	next_type = btf_type_by_id(btf, next_type_id);
2609	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2610		btf_verifier_log_type(env, v->t, "Invalid type_id");
2611		return -EINVAL;
2612	}
2613
2614	if (!env_type_is_resolve_sink(env, next_type) &&
2615	    !env_type_is_resolved(env, next_type_id))
2616		return env_stack_push(env, next_type, next_type_id);
2617
2618	/* Figure out the resolved next_type_id with size.
2619	 * They will be stored in the current modifier's
2620	 * resolved_ids and resolved_sizes such that it can
2621	 * save us a few type-following when we use it later (e.g. in
2622	 * pretty print).
2623	 */
2624	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2625		if (env_type_is_resolved(env, next_type_id))
2626			next_type = btf_type_id_resolve(btf, &next_type_id);
2627
2628		/* "typedef void new_void", "const void"...etc */
2629		if (!btf_type_is_void(next_type) &&
2630		    !btf_type_is_fwd(next_type) &&
2631		    !btf_type_is_func_proto(next_type)) {
2632			btf_verifier_log_type(env, v->t, "Invalid type_id");
2633			return -EINVAL;
2634		}
2635	}
2636
2637	env_stack_pop_resolved(env, next_type_id, 0);
2638
2639	return 0;
2640}
2641
2642static int btf_var_resolve(struct btf_verifier_env *env,
2643			   const struct resolve_vertex *v)
2644{
2645	const struct btf_type *next_type;
2646	const struct btf_type *t = v->t;
2647	u32 next_type_id = t->type;
2648	struct btf *btf = env->btf;
2649
2650	next_type = btf_type_by_id(btf, next_type_id);
2651	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2652		btf_verifier_log_type(env, v->t, "Invalid type_id");
2653		return -EINVAL;
2654	}
2655
2656	if (!env_type_is_resolve_sink(env, next_type) &&
2657	    !env_type_is_resolved(env, next_type_id))
2658		return env_stack_push(env, next_type, next_type_id);
2659
2660	if (btf_type_is_modifier(next_type)) {
2661		const struct btf_type *resolved_type;
2662		u32 resolved_type_id;
2663
2664		resolved_type_id = next_type_id;
2665		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2666
2667		if (btf_type_is_ptr(resolved_type) &&
2668		    !env_type_is_resolve_sink(env, resolved_type) &&
2669		    !env_type_is_resolved(env, resolved_type_id))
2670			return env_stack_push(env, resolved_type,
2671					      resolved_type_id);
2672	}
2673
2674	/* We must resolve to something concrete at this point, no
2675	 * forward types or similar that would resolve to size of
2676	 * zero is allowed.
2677	 */
2678	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2679		btf_verifier_log_type(env, v->t, "Invalid type_id");
2680		return -EINVAL;
2681	}
2682
2683	env_stack_pop_resolved(env, next_type_id, 0);
2684
2685	return 0;
2686}
2687
2688static int btf_ptr_resolve(struct btf_verifier_env *env,
2689			   const struct resolve_vertex *v)
2690{
2691	const struct btf_type *next_type;
2692	const struct btf_type *t = v->t;
2693	u32 next_type_id = t->type;
2694	struct btf *btf = env->btf;
2695
2696	next_type = btf_type_by_id(btf, next_type_id);
2697	if (!next_type || btf_type_is_resolve_source_only(next_type)) {
2698		btf_verifier_log_type(env, v->t, "Invalid type_id");
2699		return -EINVAL;
2700	}
2701
2702	if (!env_type_is_resolve_sink(env, next_type) &&
2703	    !env_type_is_resolved(env, next_type_id))
2704		return env_stack_push(env, next_type, next_type_id);
2705
2706	/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
2707	 * the modifier may have stopped resolving when it was resolved
2708	 * to a ptr (last-resolved-ptr).
2709	 *
2710	 * We now need to continue from the last-resolved-ptr to
2711	 * ensure the last-resolved-ptr will not referring back to
2712	 * the current ptr (t).
2713	 */
2714	if (btf_type_is_modifier(next_type)) {
2715		const struct btf_type *resolved_type;
2716		u32 resolved_type_id;
2717
2718		resolved_type_id = next_type_id;
2719		resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
2720
2721		if (btf_type_is_ptr(resolved_type) &&
2722		    !env_type_is_resolve_sink(env, resolved_type) &&
2723		    !env_type_is_resolved(env, resolved_type_id))
2724			return env_stack_push(env, resolved_type,
2725					      resolved_type_id);
2726	}
2727
2728	if (!btf_type_id_size(btf, &next_type_id, NULL)) {
2729		if (env_type_is_resolved(env, next_type_id))
2730			next_type = btf_type_id_resolve(btf, &next_type_id);
2731
2732		if (!btf_type_is_void(next_type) &&
2733		    !btf_type_is_fwd(next_type) &&
2734		    !btf_type_is_func_proto(next_type)) {
2735			btf_verifier_log_type(env, v->t, "Invalid type_id");
2736			return -EINVAL;
2737		}
2738	}
2739
2740	env_stack_pop_resolved(env, next_type_id, 0);
2741
2742	return 0;
2743}
2744
2745static void btf_modifier_show(const struct btf *btf,
2746			      const struct btf_type *t,
2747			      u32 type_id, void *data,
2748			      u8 bits_offset, struct btf_show *show)
2749{
2750	if (btf->resolved_ids)
2751		t = btf_type_id_resolve(btf, &type_id);
2752	else
2753		t = btf_type_skip_modifiers(btf, type_id, NULL);
2754
2755	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2756}
2757
2758static void btf_var_show(const struct btf *btf, const struct btf_type *t,
2759			 u32 type_id, void *data, u8 bits_offset,
2760			 struct btf_show *show)
2761{
2762	t = btf_type_id_resolve(btf, &type_id);
2763
2764	btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
2765}
2766
2767static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
2768			 u32 type_id, void *data, u8 bits_offset,
2769			 struct btf_show *show)
2770{
2771	void *safe_data;
2772
2773	safe_data = btf_show_start_type(show, t, type_id, data);
2774	if (!safe_data)
2775		return;
2776
2777	/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
2778	if (show->flags & BTF_SHOW_PTR_RAW)
2779		btf_show_type_value(show, "0x%px", *(void **)safe_data);
2780	else
2781		btf_show_type_value(show, "0x%p", *(void **)safe_data);
2782	btf_show_end_type(show);
2783}
2784
2785static void btf_ref_type_log(struct btf_verifier_env *env,
2786			     const struct btf_type *t)
2787{
2788	btf_verifier_log(env, "type_id=%u", t->type);
2789}
2790
2791static struct btf_kind_operations modifier_ops = {
2792	.check_meta = btf_ref_type_check_meta,
2793	.resolve = btf_modifier_resolve,
2794	.check_member = btf_modifier_check_member,
2795	.check_kflag_member = btf_modifier_check_kflag_member,
2796	.log_details = btf_ref_type_log,
2797	.show = btf_modifier_show,
2798};
2799
2800static struct btf_kind_operations ptr_ops = {
2801	.check_meta = btf_ref_type_check_meta,
2802	.resolve = btf_ptr_resolve,
2803	.check_member = btf_ptr_check_member,
2804	.check_kflag_member = btf_generic_check_kflag_member,
2805	.log_details = btf_ref_type_log,
2806	.show = btf_ptr_show,
2807};
2808
2809static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
2810			      const struct btf_type *t,
2811			      u32 meta_left)
2812{
2813	if (btf_type_vlen(t)) {
2814		btf_verifier_log_type(env, t, "vlen != 0");
2815		return -EINVAL;
2816	}
2817
2818	if (t->type) {
2819		btf_verifier_log_type(env, t, "type != 0");
2820		return -EINVAL;
2821	}
2822
2823	/* fwd type must have a valid name */
2824	if (!t->name_off ||
2825	    !btf_name_valid_identifier(env->btf, t->name_off)) {
2826		btf_verifier_log_type(env, t, "Invalid name");
2827		return -EINVAL;
2828	}
2829
2830	btf_verifier_log_type(env, t, NULL);
2831
2832	return 0;
2833}
2834
2835static void btf_fwd_type_log(struct btf_verifier_env *env,
2836			     const struct btf_type *t)
2837{
2838	btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
2839}
2840
2841static struct btf_kind_operations fwd_ops = {
2842	.check_meta = btf_fwd_check_meta,
2843	.resolve = btf_df_resolve,
2844	.check_member = btf_df_check_member,
2845	.check_kflag_member = btf_df_check_kflag_member,
2846	.log_details = btf_fwd_type_log,
2847	.show = btf_df_show,
2848};
2849
2850static int btf_array_check_member(struct btf_verifier_env *env,
2851				  const struct btf_type *struct_type,
2852				  const struct btf_member *member,
2853				  const struct btf_type *member_type)
2854{
2855	u32 struct_bits_off = member->offset;
2856	u32 struct_size, bytes_offset;
2857	u32 array_type_id, array_size;
2858	struct btf *btf = env->btf;
2859
2860	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
2861		btf_verifier_log_member(env, struct_type, member,
2862					"Member is not byte aligned");
2863		return -EINVAL;
2864	}
2865
2866	array_type_id = member->type;
2867	btf_type_id_size(btf, &array_type_id, &array_size);
2868	struct_size = struct_type->size;
2869	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
2870	if (struct_size - bytes_offset < array_size) {
2871		btf_verifier_log_member(env, struct_type, member,
2872					"Member exceeds struct_size");
2873		return -EINVAL;
2874	}
2875
2876	return 0;
2877}
2878
2879static s32 btf_array_check_meta(struct btf_verifier_env *env,
2880				const struct btf_type *t,
2881				u32 meta_left)
2882{
2883	const struct btf_array *array = btf_type_array(t);
2884	u32 meta_needed = sizeof(*array);
2885
2886	if (meta_left < meta_needed) {
2887		btf_verifier_log_basic(env, t,
2888				       "meta_left:%u meta_needed:%u",
2889				       meta_left, meta_needed);
2890		return -EINVAL;
2891	}
2892
2893	/* array type should not have a name */
2894	if (t->name_off) {
2895		btf_verifier_log_type(env, t, "Invalid name");
2896		return -EINVAL;
2897	}
2898
2899	if (btf_type_vlen(t)) {
2900		btf_verifier_log_type(env, t, "vlen != 0");
2901		return -EINVAL;
2902	}
2903
2904	if (btf_type_kflag(t)) {
2905		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
2906		return -EINVAL;
2907	}
2908
2909	if (t->size) {
2910		btf_verifier_log_type(env, t, "size != 0");
2911		return -EINVAL;
2912	}
2913
2914	/* Array elem type and index type cannot be in type void,
2915	 * so !array->type and !array->index_type are not allowed.
2916	 */
2917	if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
2918		btf_verifier_log_type(env, t, "Invalid elem");
2919		return -EINVAL;
2920	}
2921
2922	if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
2923		btf_verifier_log_type(env, t, "Invalid index");
2924		return -EINVAL;
2925	}
2926
2927	btf_verifier_log_type(env, t, NULL);
2928
2929	return meta_needed;
2930}
2931
2932static int btf_array_resolve(struct btf_verifier_env *env,
2933			     const struct resolve_vertex *v)
2934{
2935	const struct btf_array *array = btf_type_array(v->t);
2936	const struct btf_type *elem_type, *index_type;
2937	u32 elem_type_id, index_type_id;
2938	struct btf *btf = env->btf;
2939	u32 elem_size;
2940
2941	/* Check array->index_type */
2942	index_type_id = array->index_type;
2943	index_type = btf_type_by_id(btf, index_type_id);
2944	if (btf_type_nosize_or_null(index_type) ||
2945	    btf_type_is_resolve_source_only(index_type)) {
2946		btf_verifier_log_type(env, v->t, "Invalid index");
2947		return -EINVAL;
2948	}
2949
2950	if (!env_type_is_resolve_sink(env, index_type) &&
2951	    !env_type_is_resolved(env, index_type_id))
2952		return env_stack_push(env, index_type, index_type_id);
2953
2954	index_type = btf_type_id_size(btf, &index_type_id, NULL);
2955	if (!index_type || !btf_type_is_int(index_type) ||
2956	    !btf_type_int_is_regular(index_type)) {
2957		btf_verifier_log_type(env, v->t, "Invalid index");
2958		return -EINVAL;
2959	}
2960
2961	/* Check array->type */
2962	elem_type_id = array->type;
2963	elem_type = btf_type_by_id(btf, elem_type_id);
2964	if (btf_type_nosize_or_null(elem_type) ||
2965	    btf_type_is_resolve_source_only(elem_type)) {
2966		btf_verifier_log_type(env, v->t,
2967				      "Invalid elem");
2968		return -EINVAL;
2969	}
2970
2971	if (!env_type_is_resolve_sink(env, elem_type) &&
2972	    !env_type_is_resolved(env, elem_type_id))
2973		return env_stack_push(env, elem_type, elem_type_id);
2974
2975	elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
2976	if (!elem_type) {
2977		btf_verifier_log_type(env, v->t, "Invalid elem");
2978		return -EINVAL;
2979	}
2980
2981	if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
2982		btf_verifier_log_type(env, v->t, "Invalid array of int");
2983		return -EINVAL;
2984	}
2985
2986	if (array->nelems && elem_size > U32_MAX / array->nelems) {
2987		btf_verifier_log_type(env, v->t,
2988				      "Array size overflows U32_MAX");
2989		return -EINVAL;
2990	}
2991
2992	env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
2993
2994	return 0;
2995}
2996
2997static void btf_array_log(struct btf_verifier_env *env,
2998			  const struct btf_type *t)
2999{
3000	const struct btf_array *array = btf_type_array(t);
3001
3002	btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
3003			 array->type, array->index_type, array->nelems);
3004}
3005
3006static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
3007			     u32 type_id, void *data, u8 bits_offset,
3008			     struct btf_show *show)
3009{
3010	const struct btf_array *array = btf_type_array(t);
3011	const struct btf_kind_operations *elem_ops;
3012	const struct btf_type *elem_type;
3013	u32 i, elem_size = 0, elem_type_id;
3014	u16 encoding = 0;
3015
3016	elem_type_id = array->type;
3017	elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
3018	if (elem_type && btf_type_has_size(elem_type))
3019		elem_size = elem_type->size;
3020
3021	if (elem_type && btf_type_is_int(elem_type)) {
3022		u32 int_type = btf_type_int(elem_type);
3023
3024		encoding = BTF_INT_ENCODING(int_type);
3025
3026		/*
3027		 * BTF_INT_CHAR encoding never seems to be set for
3028		 * char arrays, so if size is 1 and element is
3029		 * printable as a char, we'll do that.
3030		 */
3031		if (elem_size == 1)
3032			encoding = BTF_INT_CHAR;
3033	}
3034
3035	if (!btf_show_start_array_type(show, t, type_id, encoding, data))
3036		return;
3037
3038	if (!elem_type)
3039		goto out;
3040	elem_ops = btf_type_ops(elem_type);
3041
3042	for (i = 0; i < array->nelems; i++) {
3043
3044		btf_show_start_array_member(show);
3045
3046		elem_ops->show(btf, elem_type, elem_type_id, data,
3047			       bits_offset, show);
3048		data += elem_size;
3049
3050		btf_show_end_array_member(show);
3051
3052		if (show->state.array_terminated)
3053			break;
3054	}
3055out:
3056	btf_show_end_array_type(show);
3057}
3058
3059static void btf_array_show(const struct btf *btf, const struct btf_type *t,
3060			   u32 type_id, void *data, u8 bits_offset,
3061			   struct btf_show *show)
3062{
3063	const struct btf_member *m = show->state.member;
3064
3065	/*
3066	 * First check if any members would be shown (are non-zero).
3067	 * See comments above "struct btf_show" definition for more
3068	 * details on how this works at a high-level.
3069	 */
3070	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
3071		if (!show->state.depth_check) {
3072			show->state.depth_check = show->state.depth + 1;
3073			show->state.depth_to_show = 0;
3074		}
3075		__btf_array_show(btf, t, type_id, data, bits_offset, show);
3076		show->state.member = m;
3077
3078		if (show->state.depth_check != show->state.depth + 1)
3079			return;
3080		show->state.depth_check = 0;
3081
3082		if (show->state.depth_to_show <= show->state.depth)
3083			return;
3084		/*
3085		 * Reaching here indicates we have recursed and found
3086		 * non-zero array member(s).
3087		 */
3088	}
3089	__btf_array_show(btf, t, type_id, data, bits_offset, show);
3090}
3091
3092static struct btf_kind_operations array_ops = {
3093	.check_meta = btf_array_check_meta,
3094	.resolve = btf_array_resolve,
3095	.check_member = btf_array_check_member,
3096	.check_kflag_member = btf_generic_check_kflag_member,
3097	.log_details = btf_array_log,
3098	.show = btf_array_show,
3099};
3100
3101static int btf_struct_check_member(struct btf_verifier_env *env,
3102				   const struct btf_type *struct_type,
3103				   const struct btf_member *member,
3104				   const struct btf_type *member_type)
3105{
3106	u32 struct_bits_off = member->offset;
3107	u32 struct_size, bytes_offset;
3108
3109	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
3110		btf_verifier_log_member(env, struct_type, member,
3111					"Member is not byte aligned");
3112		return -EINVAL;
3113	}
3114
3115	struct_size = struct_type->size;
3116	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
3117	if (struct_size - bytes_offset < member_type->size) {
3118		btf_verifier_log_member(env, struct_type, member,
3119					"Member exceeds struct_size");
3120		return -EINVAL;
3121	}
3122
3123	return 0;
3124}
3125
3126static s32 btf_struct_check_meta(struct btf_verifier_env *env,
3127				 const struct btf_type *t,
3128				 u32 meta_left)
3129{
3130	bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
3131	const struct btf_member *member;
3132	u32 meta_needed, last_offset;
3133	struct btf *btf = env->btf;
3134	u32 struct_size = t->size;
3135	u32 offset;
3136	u16 i;
3137
3138	meta_needed = btf_type_vlen(t) * sizeof(*member);
3139	if (meta_left < meta_needed) {
3140		btf_verifier_log_basic(env, t,
3141				       "meta_left:%u meta_needed:%u",
3142				       meta_left, meta_needed);
3143		return -EINVAL;
3144	}
3145
3146	/* struct type either no name or a valid one */
3147	if (t->name_off &&
3148	    !btf_name_valid_identifier(env->btf, t->name_off)) {
3149		btf_verifier_log_type(env, t, "Invalid name");
3150		return -EINVAL;
3151	}
3152
3153	btf_verifier_log_type(env, t, NULL);
3154
3155	last_offset = 0;
3156	for_each_member(i, t, member) {
3157		if (!btf_name_offset_valid(btf, member->name_off)) {
3158			btf_verifier_log_member(env, t, member,
3159						"Invalid member name_offset:%u",
3160						member->name_off);
3161			return -EINVAL;
3162		}
3163
3164		/* struct member either no name or a valid one */
3165		if (member->name_off &&
3166		    !btf_name_valid_identifier(btf, member->name_off)) {
3167			btf_verifier_log_member(env, t, member, "Invalid name");
3168			return -EINVAL;
3169		}
3170		/* A member cannot be in type void */
3171		if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
3172			btf_verifier_log_member(env, t, member,
3173						"Invalid type_id");
3174			return -EINVAL;
3175		}
3176
3177		offset = __btf_member_bit_offset(t, member);
3178		if (is_union && offset) {
3179			btf_verifier_log_member(env, t, member,
3180						"Invalid member bits_offset");
3181			return -EINVAL;
3182		}
3183
3184		/*
3185		 * ">" instead of ">=" because the last member could be
3186		 * "char a[0];"
3187		 */
3188		if (last_offset > offset) {
3189			btf_verifier_log_member(env, t, member,
3190						"Invalid member bits_offset");
3191			return -EINVAL;
3192		}
3193
3194		if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
3195			btf_verifier_log_member(env, t, member,
3196						"Member bits_offset exceeds its struct size");
3197			return -EINVAL;
3198		}
3199
3200		btf_verifier_log_member(env, t, member, NULL);
3201		last_offset = offset;
3202	}
3203
3204	return meta_needed;
3205}
3206
3207static int btf_struct_resolve(struct btf_verifier_env *env,
3208			      const struct resolve_vertex *v)
3209{
3210	const struct btf_member *member;
3211	int err;
3212	u16 i;
3213
3214	/* Before continue resolving the next_member,
3215	 * ensure the last member is indeed resolved to a
3216	 * type with size info.
3217	 */
3218	if (v->next_member) {
3219		const struct btf_type *last_member_type;
3220		const struct btf_member *last_member;
3221		u32 last_member_type_id;
3222
3223		last_member = btf_type_member(v->t) + v->next_member - 1;
3224		last_member_type_id = last_member->type;
3225		if (WARN_ON_ONCE(!env_type_is_resolved(env,
3226						       last_member_type_id)))
3227			return -EINVAL;
3228
3229		last_member_type = btf_type_by_id(env->btf,
3230						  last_member_type_id);
3231		if (btf_type_kflag(v->t))
3232			err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
3233								last_member,
3234								last_member_type);
3235		else
3236			err = btf_type_ops(last_member_type)->check_member(env, v->t,
3237								last_member,
3238								last_member_type);
3239		if (err)
3240			return err;
3241	}
3242
3243	for_each_member_from(i, v->next_member, v->t, member) {
3244		u32 member_type_id = member->type;
3245		const struct btf_type *member_type = btf_type_by_id(env->btf,
3246								member_type_id);
3247
3248		if (btf_type_nosize_or_null(member_type) ||
3249		    btf_type_is_resolve_source_only(member_type)) {
3250			btf_verifier_log_member(env, v->t, member,
3251						"Invalid member");
3252			return -EINVAL;
3253		}
3254
3255		if (!env_type_is_resolve_sink(env, member_type) &&
3256		    !env_type_is_resolved(env, member_type_id)) {
3257			env_stack_set_next_member(env, i + 1);
3258			return env_stack_push(env, member_type, member_type_id);
3259		}
3260
3261		if (btf_type_kflag(v->t))
3262			err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
3263									    member,
3264									    member_type);
3265		else
3266			err = btf_type_ops(member_type)->check_member(env, v->t,
3267								      member,
3268								      member_type);
3269		if (err)
3270			return err;
3271	}
3272
3273	env_stack_pop_resolved(env, 0, 0);
3274
3275	return 0;
3276}
3277
3278static void btf_struct_log(struct btf_verifier_env *env,
3279			   const struct btf_type *t)
3280{
3281	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
3282}
3283
 
 
 
 
 
 
3284enum {
3285	BTF_FIELD_IGNORE = 0,
3286	BTF_FIELD_FOUND  = 1,
3287};
3288
3289struct btf_field_info {
3290	enum btf_field_type type;
3291	u32 off;
3292	union {
3293		struct {
3294			u32 type_id;
3295		} kptr;
3296		struct {
3297			const char *node_name;
3298			u32 value_btf_id;
3299		} graph_root;
3300	};
3301};
3302
3303static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
3304			   u32 off, int sz, enum btf_field_type field_type,
3305			   struct btf_field_info *info)
3306{
3307	if (!__btf_type_is_struct(t))
3308		return BTF_FIELD_IGNORE;
3309	if (t->size != sz)
3310		return BTF_FIELD_IGNORE;
3311	info->type = field_type;
3312	info->off = off;
3313	return BTF_FIELD_FOUND;
3314}
3315
3316static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
3317			 u32 off, int sz, struct btf_field_info *info)
3318{
3319	enum btf_field_type type;
3320	u32 res_id;
3321
3322	/* Permit modifiers on the pointer itself */
3323	if (btf_type_is_volatile(t))
3324		t = btf_type_by_id(btf, t->type);
3325	/* For PTR, sz is always == 8 */
3326	if (!btf_type_is_ptr(t))
3327		return BTF_FIELD_IGNORE;
3328	t = btf_type_by_id(btf, t->type);
3329
3330	if (!btf_type_is_type_tag(t))
3331		return BTF_FIELD_IGNORE;
3332	/* Reject extra tags */
3333	if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
3334		return -EINVAL;
3335	if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
3336		type = BPF_KPTR_UNREF;
3337	else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
3338		type = BPF_KPTR_REF;
3339	else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
3340		type = BPF_KPTR_PERCPU;
3341	else
3342		return -EINVAL;
3343
3344	/* Get the base type */
3345	t = btf_type_skip_modifiers(btf, t->type, &res_id);
3346	/* Only pointer to struct is allowed */
3347	if (!__btf_type_is_struct(t))
3348		return -EINVAL;
3349
3350	info->type = type;
3351	info->off = off;
3352	info->kptr.type_id = res_id;
3353	return BTF_FIELD_FOUND;
3354}
3355
3356int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
3357			   int comp_idx, const char *tag_key, int last_id)
 
3358{
3359	int len = strlen(tag_key);
3360	int i, n;
3361
3362	for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
3363		const struct btf_type *t = btf_type_by_id(btf, i);
 
3364
3365		if (!btf_type_is_decl_tag(t))
3366			continue;
3367		if (pt != btf_type_by_id(btf, t->type))
3368			continue;
3369		if (btf_type_decl_tag(t)->component_idx != comp_idx)
3370			continue;
3371		if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
3372			continue;
3373		return i;
3374	}
3375	return -ENOENT;
3376}
3377
3378const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
3379				    int comp_idx, const char *tag_key)
 
3380{
3381	const char *value = NULL;
3382	const struct btf_type *t;
3383	int len, id;
3384
3385	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
3386	if (id < 0)
3387		return ERR_PTR(id);
3388
3389	t = btf_type_by_id(btf, id);
3390	len = strlen(tag_key);
3391	value = __btf_name_by_offset(btf, t->name_off) + len;
3392
3393	/* Prevent duplicate entries for same type */
3394	id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
3395	if (id >= 0)
3396		return ERR_PTR(-EEXIST);
3397
3398	return value;
3399}
3400
3401static int
3402btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
3403		    const struct btf_type *t, int comp_idx, u32 off,
3404		    int sz, struct btf_field_info *info,
3405		    enum btf_field_type head_type)
3406{
3407	const char *node_field_name;
3408	const char *value_type;
 
3409	s32 id;
3410
3411	if (!__btf_type_is_struct(t))
3412		return BTF_FIELD_IGNORE;
3413	if (t->size != sz)
3414		return BTF_FIELD_IGNORE;
3415	value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
3416	if (IS_ERR(value_type))
3417		return -EINVAL;
3418	node_field_name = strstr(value_type, ":");
3419	if (!node_field_name)
3420		return -EINVAL;
3421	value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
3422	if (!value_type)
3423		return -ENOMEM;
3424	id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
3425	kfree(value_type);
3426	if (id < 0)
3427		return id;
3428	node_field_name++;
3429	if (str_is_empty(node_field_name))
3430		return -EINVAL;
3431	info->type = head_type;
3432	info->off = off;
3433	info->graph_root.value_btf_id = id;
3434	info->graph_root.node_name = node_field_name;
3435	return BTF_FIELD_FOUND;
3436}
3437
3438#define field_mask_test_name(field_type, field_type_str) \
3439	if (field_mask & field_type && !strcmp(name, field_type_str)) { \
3440		type = field_type;					\
3441		goto end;						\
3442	}
3443
3444static int btf_get_field_type(const char *name, u32 field_mask, u32 *seen_mask,
3445			      int *align, int *sz)
3446{
3447	int type = 0;
3448
3449	if (field_mask & BPF_SPIN_LOCK) {
3450		if (!strcmp(name, "bpf_spin_lock")) {
3451			if (*seen_mask & BPF_SPIN_LOCK)
3452				return -E2BIG;
3453			*seen_mask |= BPF_SPIN_LOCK;
3454			type = BPF_SPIN_LOCK;
3455			goto end;
3456		}
3457	}
3458	if (field_mask & BPF_TIMER) {
3459		if (!strcmp(name, "bpf_timer")) {
3460			if (*seen_mask & BPF_TIMER)
3461				return -E2BIG;
3462			*seen_mask |= BPF_TIMER;
3463			type = BPF_TIMER;
3464			goto end;
3465		}
3466	}
3467	field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
3468	field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
3469	field_mask_test_name(BPF_RB_ROOT,   "bpf_rb_root");
3470	field_mask_test_name(BPF_RB_NODE,   "bpf_rb_node");
3471	field_mask_test_name(BPF_REFCOUNT,  "bpf_refcount");
3472
 
 
 
 
 
 
3473	/* Only return BPF_KPTR when all other types with matchable names fail */
3474	if (field_mask & BPF_KPTR) {
3475		type = BPF_KPTR_REF;
3476		goto end;
3477	}
3478	return 0;
3479end:
3480	*sz = btf_field_type_size(type);
3481	*align = btf_field_type_align(type);
3482	return type;
3483}
3484
3485#undef field_mask_test_name
3486
3487static int btf_find_struct_field(const struct btf *btf,
3488				 const struct btf_type *t, u32 field_mask,
3489				 struct btf_field_info *info, int info_cnt)
3490{
3491	int ret, idx = 0, align, sz, field_type;
3492	const struct btf_member *member;
3493	struct btf_field_info tmp;
3494	u32 i, off, seen_mask = 0;
3495
3496	for_each_member(i, t, member) {
3497		const struct btf_type *member_type = btf_type_by_id(btf,
3498								    member->type);
3499
3500		field_type = btf_get_field_type(__btf_name_by_offset(btf, member_type->name_off),
3501						field_mask, &seen_mask, &align, &sz);
3502		if (field_type == 0)
3503			continue;
3504		if (field_type < 0)
3505			return field_type;
3506
3507		off = __btf_member_bit_offset(t, member);
3508		if (off % 8)
3509			/* valid C code cannot generate such BTF */
3510			return -EINVAL;
3511		off /= 8;
3512		if (off % align)
3513			continue;
3514
3515		switch (field_type) {
3516		case BPF_SPIN_LOCK:
3517		case BPF_TIMER:
3518		case BPF_LIST_NODE:
3519		case BPF_RB_NODE:
3520		case BPF_REFCOUNT:
3521			ret = btf_find_struct(btf, member_type, off, sz, field_type,
3522					      idx < info_cnt ? &info[idx] : &tmp);
3523			if (ret < 0)
3524				return ret;
3525			break;
3526		case BPF_KPTR_UNREF:
3527		case BPF_KPTR_REF:
3528		case BPF_KPTR_PERCPU:
3529			ret = btf_find_kptr(btf, member_type, off, sz,
3530					    idx < info_cnt ? &info[idx] : &tmp);
3531			if (ret < 0)
3532				return ret;
3533			break;
3534		case BPF_LIST_HEAD:
3535		case BPF_RB_ROOT:
3536			ret = btf_find_graph_root(btf, t, member_type,
3537						  i, off, sz,
3538						  idx < info_cnt ? &info[idx] : &tmp,
3539						  field_type);
3540			if (ret < 0)
3541				return ret;
3542			break;
3543		default:
3544			return -EFAULT;
3545		}
3546
3547		if (ret == BTF_FIELD_IGNORE)
3548			continue;
3549		if (idx >= info_cnt)
3550			return -E2BIG;
3551		++idx;
3552	}
3553	return idx;
3554}
3555
3556static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
3557				u32 field_mask, struct btf_field_info *info,
3558				int info_cnt)
3559{
3560	int ret, idx = 0, align, sz, field_type;
3561	const struct btf_var_secinfo *vsi;
3562	struct btf_field_info tmp;
3563	u32 i, off, seen_mask = 0;
3564
3565	for_each_vsi(i, t, vsi) {
3566		const struct btf_type *var = btf_type_by_id(btf, vsi->type);
3567		const struct btf_type *var_type = btf_type_by_id(btf, var->type);
3568
3569		field_type = btf_get_field_type(__btf_name_by_offset(btf, var_type->name_off),
3570						field_mask, &seen_mask, &align, &sz);
3571		if (field_type == 0)
3572			continue;
3573		if (field_type < 0)
3574			return field_type;
3575
3576		off = vsi->offset;
3577		if (vsi->size != sz)
3578			continue;
3579		if (off % align)
3580			continue;
3581
3582		switch (field_type) {
3583		case BPF_SPIN_LOCK:
3584		case BPF_TIMER:
3585		case BPF_LIST_NODE:
3586		case BPF_RB_NODE:
3587		case BPF_REFCOUNT:
3588			ret = btf_find_struct(btf, var_type, off, sz, field_type,
3589					      idx < info_cnt ? &info[idx] : &tmp);
3590			if (ret < 0)
3591				return ret;
3592			break;
3593		case BPF_KPTR_UNREF:
3594		case BPF_KPTR_REF:
3595		case BPF_KPTR_PERCPU:
3596			ret = btf_find_kptr(btf, var_type, off, sz,
3597					    idx < info_cnt ? &info[idx] : &tmp);
3598			if (ret < 0)
3599				return ret;
3600			break;
3601		case BPF_LIST_HEAD:
3602		case BPF_RB_ROOT:
3603			ret = btf_find_graph_root(btf, var, var_type,
3604						  -1, off, sz,
3605						  idx < info_cnt ? &info[idx] : &tmp,
3606						  field_type);
3607			if (ret < 0)
3608				return ret;
3609			break;
3610		default:
3611			return -EFAULT;
3612		}
3613
3614		if (ret == BTF_FIELD_IGNORE)
3615			continue;
3616		if (idx >= info_cnt)
3617			return -E2BIG;
3618		++idx;
3619	}
3620	return idx;
3621}
3622
3623static int btf_find_field(const struct btf *btf, const struct btf_type *t,
3624			  u32 field_mask, struct btf_field_info *info,
3625			  int info_cnt)
3626{
3627	if (__btf_type_is_struct(t))
3628		return btf_find_struct_field(btf, t, field_mask, info, info_cnt);
3629	else if (btf_type_is_datasec(t))
3630		return btf_find_datasec_var(btf, t, field_mask, info, info_cnt);
3631	return -EINVAL;
3632}
3633
3634static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
3635			  struct btf_field_info *info)
3636{
3637	struct module *mod = NULL;
3638	const struct btf_type *t;
3639	/* If a matching btf type is found in kernel or module BTFs, kptr_ref
3640	 * is that BTF, otherwise it's program BTF
3641	 */
3642	struct btf *kptr_btf;
3643	int ret;
3644	s32 id;
3645
3646	/* Find type in map BTF, and use it to look up the matching type
3647	 * in vmlinux or module BTFs, by name and kind.
3648	 */
3649	t = btf_type_by_id(btf, info->kptr.type_id);
3650	id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
3651			     &kptr_btf);
3652	if (id == -ENOENT) {
3653		/* btf_parse_kptr should only be called w/ btf = program BTF */
3654		WARN_ON_ONCE(btf_is_kernel(btf));
3655
3656		/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
3657		 * kptr allocated via bpf_obj_new
3658		 */
3659		field->kptr.dtor = NULL;
3660		id = info->kptr.type_id;
3661		kptr_btf = (struct btf *)btf;
3662		btf_get(kptr_btf);
3663		goto found_dtor;
3664	}
3665	if (id < 0)
3666		return id;
3667
3668	/* Find and stash the function pointer for the destruction function that
3669	 * needs to be eventually invoked from the map free path.
3670	 */
3671	if (info->type == BPF_KPTR_REF) {
3672		const struct btf_type *dtor_func;
3673		const char *dtor_func_name;
3674		unsigned long addr;
3675		s32 dtor_btf_id;
3676
3677		/* This call also serves as a whitelist of allowed objects that
3678		 * can be used as a referenced pointer and be stored in a map at
3679		 * the same time.
3680		 */
3681		dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
3682		if (dtor_btf_id < 0) {
3683			ret = dtor_btf_id;
3684			goto end_btf;
3685		}
3686
3687		dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
3688		if (!dtor_func) {
3689			ret = -ENOENT;
3690			goto end_btf;
3691		}
3692
3693		if (btf_is_module(kptr_btf)) {
3694			mod = btf_try_get_module(kptr_btf);
3695			if (!mod) {
3696				ret = -ENXIO;
3697				goto end_btf;
3698			}
3699		}
3700
3701		/* We already verified dtor_func to be btf_type_is_func
3702		 * in register_btf_id_dtor_kfuncs.
3703		 */
3704		dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
3705		addr = kallsyms_lookup_name(dtor_func_name);
3706		if (!addr) {
3707			ret = -EINVAL;
3708			goto end_mod;
3709		}
3710		field->kptr.dtor = (void *)addr;
3711	}
3712
3713found_dtor:
3714	field->kptr.btf_id = id;
3715	field->kptr.btf = kptr_btf;
3716	field->kptr.module = mod;
3717	return 0;
3718end_mod:
3719	module_put(mod);
3720end_btf:
3721	btf_put(kptr_btf);
3722	return ret;
3723}
3724
3725static int btf_parse_graph_root(const struct btf *btf,
3726				struct btf_field *field,
3727				struct btf_field_info *info,
3728				const char *node_type_name,
3729				size_t node_type_align)
3730{
3731	const struct btf_type *t, *n = NULL;
3732	const struct btf_member *member;
3733	u32 offset;
3734	int i;
3735
3736	t = btf_type_by_id(btf, info->graph_root.value_btf_id);
3737	/* We've already checked that value_btf_id is a struct type. We
3738	 * just need to figure out the offset of the list_node, and
3739	 * verify its type.
3740	 */
3741	for_each_member(i, t, member) {
3742		if (strcmp(info->graph_root.node_name,
3743			   __btf_name_by_offset(btf, member->name_off)))
3744			continue;
3745		/* Invalid BTF, two members with same name */
3746		if (n)
3747			return -EINVAL;
3748		n = btf_type_by_id(btf, member->type);
3749		if (!__btf_type_is_struct(n))
3750			return -EINVAL;
3751		if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
3752			return -EINVAL;
3753		offset = __btf_member_bit_offset(n, member);
3754		if (offset % 8)
3755			return -EINVAL;
3756		offset /= 8;
3757		if (offset % node_type_align)
3758			return -EINVAL;
3759
3760		field->graph_root.btf = (struct btf *)btf;
3761		field->graph_root.value_btf_id = info->graph_root.value_btf_id;
3762		field->graph_root.node_offset = offset;
3763	}
3764	if (!n)
3765		return -ENOENT;
3766	return 0;
3767}
3768
3769static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
3770			       struct btf_field_info *info)
3771{
3772	return btf_parse_graph_root(btf, field, info, "bpf_list_node",
3773					    __alignof__(struct bpf_list_node));
3774}
3775
3776static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
3777			     struct btf_field_info *info)
3778{
3779	return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
3780					    __alignof__(struct bpf_rb_node));
3781}
3782
3783static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
3784{
3785	const struct btf_field *a = (const struct btf_field *)_a;
3786	const struct btf_field *b = (const struct btf_field *)_b;
3787
3788	if (a->offset < b->offset)
3789		return -1;
3790	else if (a->offset > b->offset)
3791		return 1;
3792	return 0;
3793}
3794
3795struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
3796				    u32 field_mask, u32 value_size)
3797{
3798	struct btf_field_info info_arr[BTF_FIELDS_MAX];
3799	u32 next_off = 0, field_type_size;
3800	struct btf_record *rec;
 
3801	int ret, i, cnt;
3802
3803	ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
3804	if (ret < 0)
3805		return ERR_PTR(ret);
3806	if (!ret)
3807		return NULL;
3808
3809	cnt = ret;
3810	/* This needs to be kzalloc to zero out padding and unused fields, see
3811	 * comment in btf_record_equal.
3812	 */
3813	rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
3814	if (!rec)
3815		return ERR_PTR(-ENOMEM);
3816
3817	rec->spin_lock_off = -EINVAL;
3818	rec->timer_off = -EINVAL;
3819	rec->refcount_off = -EINVAL;
3820	for (i = 0; i < cnt; i++) {
3821		field_type_size = btf_field_type_size(info_arr[i].type);
3822		if (info_arr[i].off + field_type_size > value_size) {
3823			WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
3824			ret = -EFAULT;
3825			goto end;
3826		}
3827		if (info_arr[i].off < next_off) {
3828			ret = -EEXIST;
3829			goto end;
3830		}
3831		next_off = info_arr[i].off + field_type_size;
3832
3833		rec->field_mask |= info_arr[i].type;
3834		rec->fields[i].offset = info_arr[i].off;
3835		rec->fields[i].type = info_arr[i].type;
3836		rec->fields[i].size = field_type_size;
3837
3838		switch (info_arr[i].type) {
3839		case BPF_SPIN_LOCK:
3840			WARN_ON_ONCE(rec->spin_lock_off >= 0);
3841			/* Cache offset for faster lookup at runtime */
3842			rec->spin_lock_off = rec->fields[i].offset;
3843			break;
3844		case BPF_TIMER:
3845			WARN_ON_ONCE(rec->timer_off >= 0);
3846			/* Cache offset for faster lookup at runtime */
3847			rec->timer_off = rec->fields[i].offset;
3848			break;
3849		case BPF_REFCOUNT:
3850			WARN_ON_ONCE(rec->refcount_off >= 0);
3851			/* Cache offset for faster lookup at runtime */
3852			rec->refcount_off = rec->fields[i].offset;
3853			break;
3854		case BPF_KPTR_UNREF:
3855		case BPF_KPTR_REF:
3856		case BPF_KPTR_PERCPU:
3857			ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
3858			if (ret < 0)
3859				goto end;
3860			break;
3861		case BPF_LIST_HEAD:
3862			ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
3863			if (ret < 0)
3864				goto end;
3865			break;
3866		case BPF_RB_ROOT:
3867			ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
3868			if (ret < 0)
3869				goto end;
3870			break;
3871		case BPF_LIST_NODE:
3872		case BPF_RB_NODE:
3873			break;
3874		default:
3875			ret = -EFAULT;
3876			goto end;
3877		}
3878		rec->cnt++;
3879	}
3880
3881	/* bpf_{list_head, rb_node} require bpf_spin_lock */
3882	if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
3883	     btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
3884		ret = -EINVAL;
3885		goto end;
3886	}
3887
3888	if (rec->refcount_off < 0 &&
3889	    btf_record_has_field(rec, BPF_LIST_NODE) &&
3890	    btf_record_has_field(rec, BPF_RB_NODE)) {
3891		ret = -EINVAL;
3892		goto end;
3893	}
3894
3895	sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
3896	       NULL, rec);
3897
3898	return rec;
3899end:
3900	btf_record_free(rec);
3901	return ERR_PTR(ret);
3902}
3903
3904int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
3905{
3906	int i;
3907
3908	/* There are three types that signify ownership of some other type:
3909	 *  kptr_ref, bpf_list_head, bpf_rb_root.
3910	 * kptr_ref only supports storing kernel types, which can't store
3911	 * references to program allocated local types.
3912	 *
3913	 * Hence we only need to ensure that bpf_{list_head,rb_root} ownership
3914	 * does not form cycles.
3915	 */
3916	if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & BPF_GRAPH_ROOT))
3917		return 0;
3918	for (i = 0; i < rec->cnt; i++) {
3919		struct btf_struct_meta *meta;
3920		u32 btf_id;
3921
3922		if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
3923			continue;
3924		btf_id = rec->fields[i].graph_root.value_btf_id;
3925		meta = btf_find_struct_meta(btf, btf_id);
3926		if (!meta)
3927			return -EFAULT;
3928		rec->fields[i].graph_root.value_rec = meta->record;
3929
3930		/* We need to set value_rec for all root types, but no need
3931		 * to check ownership cycle for a type unless it's also a
3932		 * node type.
3933		 */
3934		if (!(rec->field_mask & BPF_GRAPH_NODE))
3935			continue;
3936
3937		/* We need to ensure ownership acyclicity among all types. The
3938		 * proper way to do it would be to topologically sort all BTF
3939		 * IDs based on the ownership edges, since there can be multiple
3940		 * bpf_{list_head,rb_node} in a type. Instead, we use the
3941		 * following resaoning:
3942		 *
3943		 * - A type can only be owned by another type in user BTF if it
3944		 *   has a bpf_{list,rb}_node. Let's call these node types.
3945		 * - A type can only _own_ another type in user BTF if it has a
3946		 *   bpf_{list_head,rb_root}. Let's call these root types.
3947		 *
3948		 * We ensure that if a type is both a root and node, its
3949		 * element types cannot be root types.
3950		 *
3951		 * To ensure acyclicity:
3952		 *
3953		 * When A is an root type but not a node, its ownership
3954		 * chain can be:
3955		 *	A -> B -> C
3956		 * Where:
3957		 * - A is an root, e.g. has bpf_rb_root.
3958		 * - B is both a root and node, e.g. has bpf_rb_node and
3959		 *   bpf_list_head.
3960		 * - C is only an root, e.g. has bpf_list_node
3961		 *
3962		 * When A is both a root and node, some other type already
3963		 * owns it in the BTF domain, hence it can not own
3964		 * another root type through any of the ownership edges.
3965		 *	A -> B
3966		 * Where:
3967		 * - A is both an root and node.
3968		 * - B is only an node.
3969		 */
3970		if (meta->record->field_mask & BPF_GRAPH_ROOT)
3971			return -ELOOP;
3972	}
3973	return 0;
3974}
3975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3976static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
3977			      u32 type_id, void *data, u8 bits_offset,
3978			      struct btf_show *show)
3979{
3980	const struct btf_member *member;
3981	void *safe_data;
3982	u32 i;
3983
3984	safe_data = btf_show_start_struct_type(show, t, type_id, data);
3985	if (!safe_data)
3986		return;
3987
3988	for_each_member(i, t, member) {
3989		const struct btf_type *member_type = btf_type_by_id(btf,
3990								member->type);
3991		const struct btf_kind_operations *ops;
3992		u32 member_offset, bitfield_size;
3993		u32 bytes_offset;
3994		u8 bits8_offset;
3995
3996		btf_show_start_member(show, member);
3997
3998		member_offset = __btf_member_bit_offset(t, member);
3999		bitfield_size = __btf_member_bitfield_size(t, member);
4000		bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
4001		bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
4002		if (bitfield_size) {
4003			safe_data = btf_show_start_type(show, member_type,
4004							member->type,
4005							data + bytes_offset);
4006			if (safe_data)
4007				btf_bitfield_show(safe_data,
4008						  bits8_offset,
4009						  bitfield_size, show);
4010			btf_show_end_type(show);
4011		} else {
4012			ops = btf_type_ops(member_type);
4013			ops->show(btf, member_type, member->type,
4014				  data + bytes_offset, bits8_offset, show);
4015		}
4016
4017		btf_show_end_member(show);
4018	}
4019
4020	btf_show_end_struct_type(show);
4021}
4022
4023static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
4024			    u32 type_id, void *data, u8 bits_offset,
4025			    struct btf_show *show)
4026{
4027	const struct btf_member *m = show->state.member;
4028
4029	/*
4030	 * First check if any members would be shown (are non-zero).
4031	 * See comments above "struct btf_show" definition for more
4032	 * details on how this works at a high-level.
4033	 */
4034	if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
4035		if (!show->state.depth_check) {
4036			show->state.depth_check = show->state.depth + 1;
4037			show->state.depth_to_show = 0;
4038		}
4039		__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4040		/* Restore saved member data here */
4041		show->state.member = m;
4042		if (show->state.depth_check != show->state.depth + 1)
4043			return;
4044		show->state.depth_check = 0;
4045
4046		if (show->state.depth_to_show <= show->state.depth)
4047			return;
4048		/*
4049		 * Reaching here indicates we have recursed and found
4050		 * non-zero child values.
4051		 */
4052	}
4053
4054	__btf_struct_show(btf, t, type_id, data, bits_offset, show);
4055}
4056
4057static struct btf_kind_operations struct_ops = {
4058	.check_meta = btf_struct_check_meta,
4059	.resolve = btf_struct_resolve,
4060	.check_member = btf_struct_check_member,
4061	.check_kflag_member = btf_generic_check_kflag_member,
4062	.log_details = btf_struct_log,
4063	.show = btf_struct_show,
4064};
4065
4066static int btf_enum_check_member(struct btf_verifier_env *env,
4067				 const struct btf_type *struct_type,
4068				 const struct btf_member *member,
4069				 const struct btf_type *member_type)
4070{
4071	u32 struct_bits_off = member->offset;
4072	u32 struct_size, bytes_offset;
4073
4074	if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4075		btf_verifier_log_member(env, struct_type, member,
4076					"Member is not byte aligned");
4077		return -EINVAL;
4078	}
4079
4080	struct_size = struct_type->size;
4081	bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
4082	if (struct_size - bytes_offset < member_type->size) {
4083		btf_verifier_log_member(env, struct_type, member,
4084					"Member exceeds struct_size");
4085		return -EINVAL;
4086	}
4087
4088	return 0;
4089}
4090
4091static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
4092				       const struct btf_type *struct_type,
4093				       const struct btf_member *member,
4094				       const struct btf_type *member_type)
4095{
4096	u32 struct_bits_off, nr_bits, bytes_end, struct_size;
4097	u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
4098
4099	struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
4100	nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
4101	if (!nr_bits) {
4102		if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
4103			btf_verifier_log_member(env, struct_type, member,
4104						"Member is not byte aligned");
4105			return -EINVAL;
4106		}
4107
4108		nr_bits = int_bitsize;
4109	} else if (nr_bits > int_bitsize) {
4110		btf_verifier_log_member(env, struct_type, member,
4111					"Invalid member bitfield_size");
4112		return -EINVAL;
4113	}
4114
4115	struct_size = struct_type->size;
4116	bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
4117	if (struct_size < bytes_end) {
4118		btf_verifier_log_member(env, struct_type, member,
4119					"Member exceeds struct_size");
4120		return -EINVAL;
4121	}
4122
4123	return 0;
4124}
4125
4126static s32 btf_enum_check_meta(struct btf_verifier_env *env,
4127			       const struct btf_type *t,
4128			       u32 meta_left)
4129{
4130	const struct btf_enum *enums = btf_type_enum(t);
4131	struct btf *btf = env->btf;
4132	const char *fmt_str;
4133	u16 i, nr_enums;
4134	u32 meta_needed;
4135
4136	nr_enums = btf_type_vlen(t);
4137	meta_needed = nr_enums * sizeof(*enums);
4138
4139	if (meta_left < meta_needed) {
4140		btf_verifier_log_basic(env, t,
4141				       "meta_left:%u meta_needed:%u",
4142				       meta_left, meta_needed);
4143		return -EINVAL;
4144	}
4145
4146	if (t->size > 8 || !is_power_of_2(t->size)) {
4147		btf_verifier_log_type(env, t, "Unexpected size");
4148		return -EINVAL;
4149	}
4150
4151	/* enum type either no name or a valid one */
4152	if (t->name_off &&
4153	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4154		btf_verifier_log_type(env, t, "Invalid name");
4155		return -EINVAL;
4156	}
4157
4158	btf_verifier_log_type(env, t, NULL);
4159
4160	for (i = 0; i < nr_enums; i++) {
4161		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4162			btf_verifier_log(env, "\tInvalid name_offset:%u",
4163					 enums[i].name_off);
4164			return -EINVAL;
4165		}
4166
4167		/* enum member must have a valid name */
4168		if (!enums[i].name_off ||
4169		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4170			btf_verifier_log_type(env, t, "Invalid name");
4171			return -EINVAL;
4172		}
4173
4174		if (env->log.level == BPF_LOG_KERNEL)
4175			continue;
4176		fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
4177		btf_verifier_log(env, fmt_str,
4178				 __btf_name_by_offset(btf, enums[i].name_off),
4179				 enums[i].val);
4180	}
4181
4182	return meta_needed;
4183}
4184
4185static void btf_enum_log(struct btf_verifier_env *env,
4186			 const struct btf_type *t)
4187{
4188	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4189}
4190
4191static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
4192			  u32 type_id, void *data, u8 bits_offset,
4193			  struct btf_show *show)
4194{
4195	const struct btf_enum *enums = btf_type_enum(t);
4196	u32 i, nr_enums = btf_type_vlen(t);
4197	void *safe_data;
4198	int v;
4199
4200	safe_data = btf_show_start_type(show, t, type_id, data);
4201	if (!safe_data)
4202		return;
4203
4204	v = *(int *)safe_data;
4205
4206	for (i = 0; i < nr_enums; i++) {
4207		if (v != enums[i].val)
4208			continue;
4209
4210		btf_show_type_value(show, "%s",
4211				    __btf_name_by_offset(btf,
4212							 enums[i].name_off));
4213
4214		btf_show_end_type(show);
4215		return;
4216	}
4217
4218	if (btf_type_kflag(t))
4219		btf_show_type_value(show, "%d", v);
4220	else
4221		btf_show_type_value(show, "%u", v);
4222	btf_show_end_type(show);
4223}
4224
4225static struct btf_kind_operations enum_ops = {
4226	.check_meta = btf_enum_check_meta,
4227	.resolve = btf_df_resolve,
4228	.check_member = btf_enum_check_member,
4229	.check_kflag_member = btf_enum_check_kflag_member,
4230	.log_details = btf_enum_log,
4231	.show = btf_enum_show,
4232};
4233
4234static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
4235				 const struct btf_type *t,
4236				 u32 meta_left)
4237{
4238	const struct btf_enum64 *enums = btf_type_enum64(t);
4239	struct btf *btf = env->btf;
4240	const char *fmt_str;
4241	u16 i, nr_enums;
4242	u32 meta_needed;
4243
4244	nr_enums = btf_type_vlen(t);
4245	meta_needed = nr_enums * sizeof(*enums);
4246
4247	if (meta_left < meta_needed) {
4248		btf_verifier_log_basic(env, t,
4249				       "meta_left:%u meta_needed:%u",
4250				       meta_left, meta_needed);
4251		return -EINVAL;
4252	}
4253
4254	if (t->size > 8 || !is_power_of_2(t->size)) {
4255		btf_verifier_log_type(env, t, "Unexpected size");
4256		return -EINVAL;
4257	}
4258
4259	/* enum type either no name or a valid one */
4260	if (t->name_off &&
4261	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4262		btf_verifier_log_type(env, t, "Invalid name");
4263		return -EINVAL;
4264	}
4265
4266	btf_verifier_log_type(env, t, NULL);
4267
4268	for (i = 0; i < nr_enums; i++) {
4269		if (!btf_name_offset_valid(btf, enums[i].name_off)) {
4270			btf_verifier_log(env, "\tInvalid name_offset:%u",
4271					 enums[i].name_off);
4272			return -EINVAL;
4273		}
4274
4275		/* enum member must have a valid name */
4276		if (!enums[i].name_off ||
4277		    !btf_name_valid_identifier(btf, enums[i].name_off)) {
4278			btf_verifier_log_type(env, t, "Invalid name");
4279			return -EINVAL;
4280		}
4281
4282		if (env->log.level == BPF_LOG_KERNEL)
4283			continue;
4284
4285		fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
4286		btf_verifier_log(env, fmt_str,
4287				 __btf_name_by_offset(btf, enums[i].name_off),
4288				 btf_enum64_value(enums + i));
4289	}
4290
4291	return meta_needed;
4292}
4293
4294static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
4295			    u32 type_id, void *data, u8 bits_offset,
4296			    struct btf_show *show)
4297{
4298	const struct btf_enum64 *enums = btf_type_enum64(t);
4299	u32 i, nr_enums = btf_type_vlen(t);
4300	void *safe_data;
4301	s64 v;
4302
4303	safe_data = btf_show_start_type(show, t, type_id, data);
4304	if (!safe_data)
4305		return;
4306
4307	v = *(u64 *)safe_data;
4308
4309	for (i = 0; i < nr_enums; i++) {
4310		if (v != btf_enum64_value(enums + i))
4311			continue;
4312
4313		btf_show_type_value(show, "%s",
4314				    __btf_name_by_offset(btf,
4315							 enums[i].name_off));
4316
4317		btf_show_end_type(show);
4318		return;
4319	}
4320
4321	if (btf_type_kflag(t))
4322		btf_show_type_value(show, "%lld", v);
4323	else
4324		btf_show_type_value(show, "%llu", v);
4325	btf_show_end_type(show);
4326}
4327
4328static struct btf_kind_operations enum64_ops = {
4329	.check_meta = btf_enum64_check_meta,
4330	.resolve = btf_df_resolve,
4331	.check_member = btf_enum_check_member,
4332	.check_kflag_member = btf_enum_check_kflag_member,
4333	.log_details = btf_enum_log,
4334	.show = btf_enum64_show,
4335};
4336
4337static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
4338				     const struct btf_type *t,
4339				     u32 meta_left)
4340{
4341	u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
4342
4343	if (meta_left < meta_needed) {
4344		btf_verifier_log_basic(env, t,
4345				       "meta_left:%u meta_needed:%u",
4346				       meta_left, meta_needed);
4347		return -EINVAL;
4348	}
4349
4350	if (t->name_off) {
4351		btf_verifier_log_type(env, t, "Invalid name");
4352		return -EINVAL;
4353	}
4354
4355	if (btf_type_kflag(t)) {
4356		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4357		return -EINVAL;
4358	}
4359
4360	btf_verifier_log_type(env, t, NULL);
4361
4362	return meta_needed;
4363}
4364
4365static void btf_func_proto_log(struct btf_verifier_env *env,
4366			       const struct btf_type *t)
4367{
4368	const struct btf_param *args = (const struct btf_param *)(t + 1);
4369	u16 nr_args = btf_type_vlen(t), i;
4370
4371	btf_verifier_log(env, "return=%u args=(", t->type);
4372	if (!nr_args) {
4373		btf_verifier_log(env, "void");
4374		goto done;
4375	}
4376
4377	if (nr_args == 1 && !args[0].type) {
4378		/* Only one vararg */
4379		btf_verifier_log(env, "vararg");
4380		goto done;
4381	}
4382
4383	btf_verifier_log(env, "%u %s", args[0].type,
4384			 __btf_name_by_offset(env->btf,
4385					      args[0].name_off));
4386	for (i = 1; i < nr_args - 1; i++)
4387		btf_verifier_log(env, ", %u %s", args[i].type,
4388				 __btf_name_by_offset(env->btf,
4389						      args[i].name_off));
4390
4391	if (nr_args > 1) {
4392		const struct btf_param *last_arg = &args[nr_args - 1];
4393
4394		if (last_arg->type)
4395			btf_verifier_log(env, ", %u %s", last_arg->type,
4396					 __btf_name_by_offset(env->btf,
4397							      last_arg->name_off));
4398		else
4399			btf_verifier_log(env, ", vararg");
4400	}
4401
4402done:
4403	btf_verifier_log(env, ")");
4404}
4405
4406static struct btf_kind_operations func_proto_ops = {
4407	.check_meta = btf_func_proto_check_meta,
4408	.resolve = btf_df_resolve,
4409	/*
4410	 * BTF_KIND_FUNC_PROTO cannot be directly referred by
4411	 * a struct's member.
4412	 *
4413	 * It should be a function pointer instead.
4414	 * (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
4415	 *
4416	 * Hence, there is no btf_func_check_member().
4417	 */
4418	.check_member = btf_df_check_member,
4419	.check_kflag_member = btf_df_check_kflag_member,
4420	.log_details = btf_func_proto_log,
4421	.show = btf_df_show,
4422};
4423
4424static s32 btf_func_check_meta(struct btf_verifier_env *env,
4425			       const struct btf_type *t,
4426			       u32 meta_left)
4427{
4428	if (!t->name_off ||
4429	    !btf_name_valid_identifier(env->btf, t->name_off)) {
4430		btf_verifier_log_type(env, t, "Invalid name");
4431		return -EINVAL;
4432	}
4433
4434	if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
4435		btf_verifier_log_type(env, t, "Invalid func linkage");
4436		return -EINVAL;
4437	}
4438
4439	if (btf_type_kflag(t)) {
4440		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4441		return -EINVAL;
4442	}
4443
4444	btf_verifier_log_type(env, t, NULL);
4445
4446	return 0;
4447}
4448
4449static int btf_func_resolve(struct btf_verifier_env *env,
4450			    const struct resolve_vertex *v)
4451{
4452	const struct btf_type *t = v->t;
4453	u32 next_type_id = t->type;
4454	int err;
4455
4456	err = btf_func_check(env, t);
4457	if (err)
4458		return err;
4459
4460	env_stack_pop_resolved(env, next_type_id, 0);
4461	return 0;
4462}
4463
4464static struct btf_kind_operations func_ops = {
4465	.check_meta = btf_func_check_meta,
4466	.resolve = btf_func_resolve,
4467	.check_member = btf_df_check_member,
4468	.check_kflag_member = btf_df_check_kflag_member,
4469	.log_details = btf_ref_type_log,
4470	.show = btf_df_show,
4471};
4472
4473static s32 btf_var_check_meta(struct btf_verifier_env *env,
4474			      const struct btf_type *t,
4475			      u32 meta_left)
4476{
4477	const struct btf_var *var;
4478	u32 meta_needed = sizeof(*var);
4479
4480	if (meta_left < meta_needed) {
4481		btf_verifier_log_basic(env, t,
4482				       "meta_left:%u meta_needed:%u",
4483				       meta_left, meta_needed);
4484		return -EINVAL;
4485	}
4486
4487	if (btf_type_vlen(t)) {
4488		btf_verifier_log_type(env, t, "vlen != 0");
4489		return -EINVAL;
4490	}
4491
4492	if (btf_type_kflag(t)) {
4493		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4494		return -EINVAL;
4495	}
4496
4497	if (!t->name_off ||
4498	    !__btf_name_valid(env->btf, t->name_off)) {
4499		btf_verifier_log_type(env, t, "Invalid name");
4500		return -EINVAL;
4501	}
4502
4503	/* A var cannot be in type void */
4504	if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
4505		btf_verifier_log_type(env, t, "Invalid type_id");
4506		return -EINVAL;
4507	}
4508
4509	var = btf_type_var(t);
4510	if (var->linkage != BTF_VAR_STATIC &&
4511	    var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
4512		btf_verifier_log_type(env, t, "Linkage not supported");
4513		return -EINVAL;
4514	}
4515
4516	btf_verifier_log_type(env, t, NULL);
4517
4518	return meta_needed;
4519}
4520
4521static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
4522{
4523	const struct btf_var *var = btf_type_var(t);
4524
4525	btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
4526}
4527
4528static const struct btf_kind_operations var_ops = {
4529	.check_meta		= btf_var_check_meta,
4530	.resolve		= btf_var_resolve,
4531	.check_member		= btf_df_check_member,
4532	.check_kflag_member	= btf_df_check_kflag_member,
4533	.log_details		= btf_var_log,
4534	.show			= btf_var_show,
4535};
4536
4537static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
4538				  const struct btf_type *t,
4539				  u32 meta_left)
4540{
4541	const struct btf_var_secinfo *vsi;
4542	u64 last_vsi_end_off = 0, sum = 0;
4543	u32 i, meta_needed;
4544
4545	meta_needed = btf_type_vlen(t) * sizeof(*vsi);
4546	if (meta_left < meta_needed) {
4547		btf_verifier_log_basic(env, t,
4548				       "meta_left:%u meta_needed:%u",
4549				       meta_left, meta_needed);
4550		return -EINVAL;
4551	}
4552
4553	if (!t->size) {
4554		btf_verifier_log_type(env, t, "size == 0");
4555		return -EINVAL;
4556	}
4557
4558	if (btf_type_kflag(t)) {
4559		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4560		return -EINVAL;
4561	}
4562
4563	if (!t->name_off ||
4564	    !btf_name_valid_section(env->btf, t->name_off)) {
4565		btf_verifier_log_type(env, t, "Invalid name");
4566		return -EINVAL;
4567	}
4568
4569	btf_verifier_log_type(env, t, NULL);
4570
4571	for_each_vsi(i, t, vsi) {
4572		/* A var cannot be in type void */
4573		if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
4574			btf_verifier_log_vsi(env, t, vsi,
4575					     "Invalid type_id");
4576			return -EINVAL;
4577		}
4578
4579		if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
4580			btf_verifier_log_vsi(env, t, vsi,
4581					     "Invalid offset");
4582			return -EINVAL;
4583		}
4584
4585		if (!vsi->size || vsi->size > t->size) {
4586			btf_verifier_log_vsi(env, t, vsi,
4587					     "Invalid size");
4588			return -EINVAL;
4589		}
4590
4591		last_vsi_end_off = vsi->offset + vsi->size;
4592		if (last_vsi_end_off > t->size) {
4593			btf_verifier_log_vsi(env, t, vsi,
4594					     "Invalid offset+size");
4595			return -EINVAL;
4596		}
4597
4598		btf_verifier_log_vsi(env, t, vsi, NULL);
4599		sum += vsi->size;
4600	}
4601
4602	if (t->size < sum) {
4603		btf_verifier_log_type(env, t, "Invalid btf_info size");
4604		return -EINVAL;
4605	}
4606
4607	return meta_needed;
4608}
4609
4610static int btf_datasec_resolve(struct btf_verifier_env *env,
4611			       const struct resolve_vertex *v)
4612{
4613	const struct btf_var_secinfo *vsi;
4614	struct btf *btf = env->btf;
4615	u16 i;
4616
4617	env->resolve_mode = RESOLVE_TBD;
4618	for_each_vsi_from(i, v->next_member, v->t, vsi) {
4619		u32 var_type_id = vsi->type, type_id, type_size = 0;
4620		const struct btf_type *var_type = btf_type_by_id(env->btf,
4621								 var_type_id);
4622		if (!var_type || !btf_type_is_var(var_type)) {
4623			btf_verifier_log_vsi(env, v->t, vsi,
4624					     "Not a VAR kind member");
4625			return -EINVAL;
4626		}
4627
4628		if (!env_type_is_resolve_sink(env, var_type) &&
4629		    !env_type_is_resolved(env, var_type_id)) {
4630			env_stack_set_next_member(env, i + 1);
4631			return env_stack_push(env, var_type, var_type_id);
4632		}
4633
4634		type_id = var_type->type;
4635		if (!btf_type_id_size(btf, &type_id, &type_size)) {
4636			btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
4637			return -EINVAL;
4638		}
4639
4640		if (vsi->size < type_size) {
4641			btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
4642			return -EINVAL;
4643		}
4644	}
4645
4646	env_stack_pop_resolved(env, 0, 0);
4647	return 0;
4648}
4649
4650static void btf_datasec_log(struct btf_verifier_env *env,
4651			    const struct btf_type *t)
4652{
4653	btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
4654}
4655
4656static void btf_datasec_show(const struct btf *btf,
4657			     const struct btf_type *t, u32 type_id,
4658			     void *data, u8 bits_offset,
4659			     struct btf_show *show)
4660{
4661	const struct btf_var_secinfo *vsi;
4662	const struct btf_type *var;
4663	u32 i;
4664
4665	if (!btf_show_start_type(show, t, type_id, data))
4666		return;
4667
4668	btf_show_type_value(show, "section (\"%s\") = {",
4669			    __btf_name_by_offset(btf, t->name_off));
4670	for_each_vsi(i, t, vsi) {
4671		var = btf_type_by_id(btf, vsi->type);
4672		if (i)
4673			btf_show(show, ",");
4674		btf_type_ops(var)->show(btf, var, vsi->type,
4675					data + vsi->offset, bits_offset, show);
4676	}
4677	btf_show_end_type(show);
4678}
4679
4680static const struct btf_kind_operations datasec_ops = {
4681	.check_meta		= btf_datasec_check_meta,
4682	.resolve		= btf_datasec_resolve,
4683	.check_member		= btf_df_check_member,
4684	.check_kflag_member	= btf_df_check_kflag_member,
4685	.log_details		= btf_datasec_log,
4686	.show			= btf_datasec_show,
4687};
4688
4689static s32 btf_float_check_meta(struct btf_verifier_env *env,
4690				const struct btf_type *t,
4691				u32 meta_left)
4692{
4693	if (btf_type_vlen(t)) {
4694		btf_verifier_log_type(env, t, "vlen != 0");
4695		return -EINVAL;
4696	}
4697
4698	if (btf_type_kflag(t)) {
4699		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4700		return -EINVAL;
4701	}
4702
4703	if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
4704	    t->size != 16) {
4705		btf_verifier_log_type(env, t, "Invalid type_size");
4706		return -EINVAL;
4707	}
4708
4709	btf_verifier_log_type(env, t, NULL);
4710
4711	return 0;
4712}
4713
4714static int btf_float_check_member(struct btf_verifier_env *env,
4715				  const struct btf_type *struct_type,
4716				  const struct btf_member *member,
4717				  const struct btf_type *member_type)
4718{
4719	u64 start_offset_bytes;
4720	u64 end_offset_bytes;
4721	u64 misalign_bits;
4722	u64 align_bytes;
4723	u64 align_bits;
4724
4725	/* Different architectures have different alignment requirements, so
4726	 * here we check only for the reasonable minimum. This way we ensure
4727	 * that types after CO-RE can pass the kernel BTF verifier.
4728	 */
4729	align_bytes = min_t(u64, sizeof(void *), member_type->size);
4730	align_bits = align_bytes * BITS_PER_BYTE;
4731	div64_u64_rem(member->offset, align_bits, &misalign_bits);
4732	if (misalign_bits) {
4733		btf_verifier_log_member(env, struct_type, member,
4734					"Member is not properly aligned");
4735		return -EINVAL;
4736	}
4737
4738	start_offset_bytes = member->offset / BITS_PER_BYTE;
4739	end_offset_bytes = start_offset_bytes + member_type->size;
4740	if (end_offset_bytes > struct_type->size) {
4741		btf_verifier_log_member(env, struct_type, member,
4742					"Member exceeds struct_size");
4743		return -EINVAL;
4744	}
4745
4746	return 0;
4747}
4748
4749static void btf_float_log(struct btf_verifier_env *env,
4750			  const struct btf_type *t)
4751{
4752	btf_verifier_log(env, "size=%u", t->size);
4753}
4754
4755static const struct btf_kind_operations float_ops = {
4756	.check_meta = btf_float_check_meta,
4757	.resolve = btf_df_resolve,
4758	.check_member = btf_float_check_member,
4759	.check_kflag_member = btf_generic_check_kflag_member,
4760	.log_details = btf_float_log,
4761	.show = btf_df_show,
4762};
4763
4764static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
4765			      const struct btf_type *t,
4766			      u32 meta_left)
4767{
4768	const struct btf_decl_tag *tag;
4769	u32 meta_needed = sizeof(*tag);
4770	s32 component_idx;
4771	const char *value;
4772
4773	if (meta_left < meta_needed) {
4774		btf_verifier_log_basic(env, t,
4775				       "meta_left:%u meta_needed:%u",
4776				       meta_left, meta_needed);
4777		return -EINVAL;
4778	}
4779
4780	value = btf_name_by_offset(env->btf, t->name_off);
4781	if (!value || !value[0]) {
4782		btf_verifier_log_type(env, t, "Invalid value");
4783		return -EINVAL;
4784	}
4785
4786	if (btf_type_vlen(t)) {
4787		btf_verifier_log_type(env, t, "vlen != 0");
4788		return -EINVAL;
4789	}
4790
4791	if (btf_type_kflag(t)) {
4792		btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
4793		return -EINVAL;
4794	}
4795
4796	component_idx = btf_type_decl_tag(t)->component_idx;
4797	if (component_idx < -1) {
4798		btf_verifier_log_type(env, t, "Invalid component_idx");
4799		return -EINVAL;
4800	}
4801
4802	btf_verifier_log_type(env, t, NULL);
4803
4804	return meta_needed;
4805}
4806
4807static int btf_decl_tag_resolve(struct btf_verifier_env *env,
4808			   const struct resolve_vertex *v)
4809{
4810	const struct btf_type *next_type;
4811	const struct btf_type *t = v->t;
4812	u32 next_type_id = t->type;
4813	struct btf *btf = env->btf;
4814	s32 component_idx;
4815	u32 vlen;
4816
4817	next_type = btf_type_by_id(btf, next_type_id);
4818	if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
4819		btf_verifier_log_type(env, v->t, "Invalid type_id");
4820		return -EINVAL;
4821	}
4822
4823	if (!env_type_is_resolve_sink(env, next_type) &&
4824	    !env_type_is_resolved(env, next_type_id))
4825		return env_stack_push(env, next_type, next_type_id);
4826
4827	component_idx = btf_type_decl_tag(t)->component_idx;
4828	if (component_idx != -1) {
4829		if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
4830			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4831			return -EINVAL;
4832		}
4833
4834		if (btf_type_is_struct(next_type)) {
4835			vlen = btf_type_vlen(next_type);
4836		} else {
4837			/* next_type should be a function */
4838			next_type = btf_type_by_id(btf, next_type->type);
4839			vlen = btf_type_vlen(next_type);
4840		}
4841
4842		if ((u32)component_idx >= vlen) {
4843			btf_verifier_log_type(env, v->t, "Invalid component_idx");
4844			return -EINVAL;
4845		}
4846	}
4847
4848	env_stack_pop_resolved(env, next_type_id, 0);
4849
4850	return 0;
4851}
4852
4853static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
4854{
4855	btf_verifier_log(env, "type=%u component_idx=%d", t->type,
4856			 btf_type_decl_tag(t)->component_idx);
4857}
4858
4859static const struct btf_kind_operations decl_tag_ops = {
4860	.check_meta = btf_decl_tag_check_meta,
4861	.resolve = btf_decl_tag_resolve,
4862	.check_member = btf_df_check_member,
4863	.check_kflag_member = btf_df_check_kflag_member,
4864	.log_details = btf_decl_tag_log,
4865	.show = btf_df_show,
4866};
4867
4868static int btf_func_proto_check(struct btf_verifier_env *env,
4869				const struct btf_type *t)
4870{
4871	const struct btf_type *ret_type;
4872	const struct btf_param *args;
4873	const struct btf *btf;
4874	u16 nr_args, i;
4875	int err;
4876
4877	btf = env->btf;
4878	args = (const struct btf_param *)(t + 1);
4879	nr_args = btf_type_vlen(t);
4880
4881	/* Check func return type which could be "void" (t->type == 0) */
4882	if (t->type) {
4883		u32 ret_type_id = t->type;
4884
4885		ret_type = btf_type_by_id(btf, ret_type_id);
4886		if (!ret_type) {
4887			btf_verifier_log_type(env, t, "Invalid return type");
4888			return -EINVAL;
4889		}
4890
4891		if (btf_type_is_resolve_source_only(ret_type)) {
4892			btf_verifier_log_type(env, t, "Invalid return type");
4893			return -EINVAL;
4894		}
4895
4896		if (btf_type_needs_resolve(ret_type) &&
4897		    !env_type_is_resolved(env, ret_type_id)) {
4898			err = btf_resolve(env, ret_type, ret_type_id);
4899			if (err)
4900				return err;
4901		}
4902
4903		/* Ensure the return type is a type that has a size */
4904		if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
4905			btf_verifier_log_type(env, t, "Invalid return type");
4906			return -EINVAL;
4907		}
4908	}
4909
4910	if (!nr_args)
4911		return 0;
4912
4913	/* Last func arg type_id could be 0 if it is a vararg */
4914	if (!args[nr_args - 1].type) {
4915		if (args[nr_args - 1].name_off) {
4916			btf_verifier_log_type(env, t, "Invalid arg#%u",
4917					      nr_args);
4918			return -EINVAL;
4919		}
4920		nr_args--;
4921	}
4922
4923	for (i = 0; i < nr_args; i++) {
4924		const struct btf_type *arg_type;
4925		u32 arg_type_id;
4926
4927		arg_type_id = args[i].type;
4928		arg_type = btf_type_by_id(btf, arg_type_id);
4929		if (!arg_type) {
4930			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4931			return -EINVAL;
4932		}
4933
4934		if (btf_type_is_resolve_source_only(arg_type)) {
4935			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4936			return -EINVAL;
4937		}
4938
4939		if (args[i].name_off &&
4940		    (!btf_name_offset_valid(btf, args[i].name_off) ||
4941		     !btf_name_valid_identifier(btf, args[i].name_off))) {
4942			btf_verifier_log_type(env, t,
4943					      "Invalid arg#%u", i + 1);
4944			return -EINVAL;
4945		}
4946
4947		if (btf_type_needs_resolve(arg_type) &&
4948		    !env_type_is_resolved(env, arg_type_id)) {
4949			err = btf_resolve(env, arg_type, arg_type_id);
4950			if (err)
4951				return err;
4952		}
4953
4954		if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
4955			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4956			return -EINVAL;
4957		}
4958	}
4959
4960	return 0;
4961}
4962
4963static int btf_func_check(struct btf_verifier_env *env,
4964			  const struct btf_type *t)
4965{
4966	const struct btf_type *proto_type;
4967	const struct btf_param *args;
4968	const struct btf *btf;
4969	u16 nr_args, i;
4970
4971	btf = env->btf;
4972	proto_type = btf_type_by_id(btf, t->type);
4973
4974	if (!proto_type || !btf_type_is_func_proto(proto_type)) {
4975		btf_verifier_log_type(env, t, "Invalid type_id");
4976		return -EINVAL;
4977	}
4978
4979	args = (const struct btf_param *)(proto_type + 1);
4980	nr_args = btf_type_vlen(proto_type);
4981	for (i = 0; i < nr_args; i++) {
4982		if (!args[i].name_off && args[i].type) {
4983			btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
4984			return -EINVAL;
4985		}
4986	}
4987
4988	return 0;
4989}
4990
4991static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
4992	[BTF_KIND_INT] = &int_ops,
4993	[BTF_KIND_PTR] = &ptr_ops,
4994	[BTF_KIND_ARRAY] = &array_ops,
4995	[BTF_KIND_STRUCT] = &struct_ops,
4996	[BTF_KIND_UNION] = &struct_ops,
4997	[BTF_KIND_ENUM] = &enum_ops,
4998	[BTF_KIND_FWD] = &fwd_ops,
4999	[BTF_KIND_TYPEDEF] = &modifier_ops,
5000	[BTF_KIND_VOLATILE] = &modifier_ops,
5001	[BTF_KIND_CONST] = &modifier_ops,
5002	[BTF_KIND_RESTRICT] = &modifier_ops,
5003	[BTF_KIND_FUNC] = &func_ops,
5004	[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
5005	[BTF_KIND_VAR] = &var_ops,
5006	[BTF_KIND_DATASEC] = &datasec_ops,
5007	[BTF_KIND_FLOAT] = &float_ops,
5008	[BTF_KIND_DECL_TAG] = &decl_tag_ops,
5009	[BTF_KIND_TYPE_TAG] = &modifier_ops,
5010	[BTF_KIND_ENUM64] = &enum64_ops,
5011};
5012
5013static s32 btf_check_meta(struct btf_verifier_env *env,
5014			  const struct btf_type *t,
5015			  u32 meta_left)
5016{
5017	u32 saved_meta_left = meta_left;
5018	s32 var_meta_size;
5019
5020	if (meta_left < sizeof(*t)) {
5021		btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
5022				 env->log_type_id, meta_left, sizeof(*t));
5023		return -EINVAL;
5024	}
5025	meta_left -= sizeof(*t);
5026
5027	if (t->info & ~BTF_INFO_MASK) {
5028		btf_verifier_log(env, "[%u] Invalid btf_info:%x",
5029				 env->log_type_id, t->info);
5030		return -EINVAL;
5031	}
5032
5033	if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
5034	    BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
5035		btf_verifier_log(env, "[%u] Invalid kind:%u",
5036				 env->log_type_id, BTF_INFO_KIND(t->info));
5037		return -EINVAL;
5038	}
5039
5040	if (!btf_name_offset_valid(env->btf, t->name_off)) {
5041		btf_verifier_log(env, "[%u] Invalid name_offset:%u",
5042				 env->log_type_id, t->name_off);
5043		return -EINVAL;
5044	}
5045
5046	var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
5047	if (var_meta_size < 0)
5048		return var_meta_size;
5049
5050	meta_left -= var_meta_size;
5051
5052	return saved_meta_left - meta_left;
5053}
5054
5055static int btf_check_all_metas(struct btf_verifier_env *env)
5056{
5057	struct btf *btf = env->btf;
5058	struct btf_header *hdr;
5059	void *cur, *end;
5060
5061	hdr = &btf->hdr;
5062	cur = btf->nohdr_data + hdr->type_off;
5063	end = cur + hdr->type_len;
5064
5065	env->log_type_id = btf->base_btf ? btf->start_id : 1;
5066	while (cur < end) {
5067		struct btf_type *t = cur;
5068		s32 meta_size;
5069
5070		meta_size = btf_check_meta(env, t, end - cur);
5071		if (meta_size < 0)
5072			return meta_size;
5073
5074		btf_add_type(env, t);
5075		cur += meta_size;
5076		env->log_type_id++;
5077	}
5078
5079	return 0;
5080}
5081
5082static bool btf_resolve_valid(struct btf_verifier_env *env,
5083			      const struct btf_type *t,
5084			      u32 type_id)
5085{
5086	struct btf *btf = env->btf;
5087
5088	if (!env_type_is_resolved(env, type_id))
5089		return false;
5090
5091	if (btf_type_is_struct(t) || btf_type_is_datasec(t))
5092		return !btf_resolved_type_id(btf, type_id) &&
5093		       !btf_resolved_type_size(btf, type_id);
5094
5095	if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
5096		return btf_resolved_type_id(btf, type_id) &&
5097		       !btf_resolved_type_size(btf, type_id);
5098
5099	if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
5100	    btf_type_is_var(t)) {
5101		t = btf_type_id_resolve(btf, &type_id);
5102		return t &&
5103		       !btf_type_is_modifier(t) &&
5104		       !btf_type_is_var(t) &&
5105		       !btf_type_is_datasec(t);
5106	}
5107
5108	if (btf_type_is_array(t)) {
5109		const struct btf_array *array = btf_type_array(t);
5110		const struct btf_type *elem_type;
5111		u32 elem_type_id = array->type;
5112		u32 elem_size;
5113
5114		elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
5115		return elem_type && !btf_type_is_modifier(elem_type) &&
5116			(array->nelems * elem_size ==
5117			 btf_resolved_type_size(btf, type_id));
5118	}
5119
5120	return false;
5121}
5122
5123static int btf_resolve(struct btf_verifier_env *env,
5124		       const struct btf_type *t, u32 type_id)
5125{
5126	u32 save_log_type_id = env->log_type_id;
5127	const struct resolve_vertex *v;
5128	int err = 0;
5129
5130	env->resolve_mode = RESOLVE_TBD;
5131	env_stack_push(env, t, type_id);
5132	while (!err && (v = env_stack_peak(env))) {
5133		env->log_type_id = v->type_id;
5134		err = btf_type_ops(v->t)->resolve(env, v);
5135	}
5136
5137	env->log_type_id = type_id;
5138	if (err == -E2BIG) {
5139		btf_verifier_log_type(env, t,
5140				      "Exceeded max resolving depth:%u",
5141				      MAX_RESOLVE_DEPTH);
5142	} else if (err == -EEXIST) {
5143		btf_verifier_log_type(env, t, "Loop detected");
5144	}
5145
5146	/* Final sanity check */
5147	if (!err && !btf_resolve_valid(env, t, type_id)) {
5148		btf_verifier_log_type(env, t, "Invalid resolve state");
5149		err = -EINVAL;
5150	}
5151
5152	env->log_type_id = save_log_type_id;
5153	return err;
5154}
5155
5156static int btf_check_all_types(struct btf_verifier_env *env)
5157{
5158	struct btf *btf = env->btf;
5159	const struct btf_type *t;
5160	u32 type_id, i;
5161	int err;
5162
5163	err = env_resolve_init(env);
5164	if (err)
5165		return err;
5166
5167	env->phase++;
5168	for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
5169		type_id = btf->start_id + i;
5170		t = btf_type_by_id(btf, type_id);
5171
5172		env->log_type_id = type_id;
5173		if (btf_type_needs_resolve(t) &&
5174		    !env_type_is_resolved(env, type_id)) {
5175			err = btf_resolve(env, t, type_id);
5176			if (err)
5177				return err;
5178		}
5179
5180		if (btf_type_is_func_proto(t)) {
5181			err = btf_func_proto_check(env, t);
5182			if (err)
5183				return err;
5184		}
5185	}
5186
5187	return 0;
5188}
5189
5190static int btf_parse_type_sec(struct btf_verifier_env *env)
5191{
5192	const struct btf_header *hdr = &env->btf->hdr;
5193	int err;
5194
5195	/* Type section must align to 4 bytes */
5196	if (hdr->type_off & (sizeof(u32) - 1)) {
5197		btf_verifier_log(env, "Unaligned type_off");
5198		return -EINVAL;
5199	}
5200
5201	if (!env->btf->base_btf && !hdr->type_len) {
5202		btf_verifier_log(env, "No type found");
5203		return -EINVAL;
5204	}
5205
5206	err = btf_check_all_metas(env);
5207	if (err)
5208		return err;
5209
5210	return btf_check_all_types(env);
5211}
5212
5213static int btf_parse_str_sec(struct btf_verifier_env *env)
5214{
5215	const struct btf_header *hdr;
5216	struct btf *btf = env->btf;
5217	const char *start, *end;
5218
5219	hdr = &btf->hdr;
5220	start = btf->nohdr_data + hdr->str_off;
5221	end = start + hdr->str_len;
5222
5223	if (end != btf->data + btf->data_size) {
5224		btf_verifier_log(env, "String section is not at the end");
5225		return -EINVAL;
5226	}
5227
5228	btf->strings = start;
5229
5230	if (btf->base_btf && !hdr->str_len)
5231		return 0;
5232	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
5233		btf_verifier_log(env, "Invalid string section");
5234		return -EINVAL;
5235	}
5236	if (!btf->base_btf && start[0]) {
5237		btf_verifier_log(env, "Invalid string section");
5238		return -EINVAL;
5239	}
5240
5241	return 0;
5242}
5243
5244static const size_t btf_sec_info_offset[] = {
5245	offsetof(struct btf_header, type_off),
5246	offsetof(struct btf_header, str_off),
5247};
5248
5249static int btf_sec_info_cmp(const void *a, const void *b)
5250{
5251	const struct btf_sec_info *x = a;
5252	const struct btf_sec_info *y = b;
5253
5254	return (int)(x->off - y->off) ? : (int)(x->len - y->len);
5255}
5256
5257static int btf_check_sec_info(struct btf_verifier_env *env,
5258			      u32 btf_data_size)
5259{
5260	struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
5261	u32 total, expected_total, i;
5262	const struct btf_header *hdr;
5263	const struct btf *btf;
5264
5265	btf = env->btf;
5266	hdr = &btf->hdr;
5267
5268	/* Populate the secs from hdr */
5269	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
5270		secs[i] = *(struct btf_sec_info *)((void *)hdr +
5271						   btf_sec_info_offset[i]);
5272
5273	sort(secs, ARRAY_SIZE(btf_sec_info_offset),
5274	     sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
5275
5276	/* Check for gaps and overlap among sections */
5277	total = 0;
5278	expected_total = btf_data_size - hdr->hdr_len;
5279	for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
5280		if (expected_total < secs[i].off) {
5281			btf_verifier_log(env, "Invalid section offset");
5282			return -EINVAL;
5283		}
5284		if (total < secs[i].off) {
5285			/* gap */
5286			btf_verifier_log(env, "Unsupported section found");
5287			return -EINVAL;
5288		}
5289		if (total > secs[i].off) {
5290			btf_verifier_log(env, "Section overlap found");
5291			return -EINVAL;
5292		}
5293		if (expected_total - total < secs[i].len) {
5294			btf_verifier_log(env,
5295					 "Total section length too long");
5296			return -EINVAL;
5297		}
5298		total += secs[i].len;
5299	}
5300
5301	/* There is data other than hdr and known sections */
5302	if (expected_total != total) {
5303		btf_verifier_log(env, "Unsupported section found");
5304		return -EINVAL;
5305	}
5306
5307	return 0;
5308}
5309
5310static int btf_parse_hdr(struct btf_verifier_env *env)
5311{
5312	u32 hdr_len, hdr_copy, btf_data_size;
5313	const struct btf_header *hdr;
5314	struct btf *btf;
5315
5316	btf = env->btf;
5317	btf_data_size = btf->data_size;
5318
5319	if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
5320		btf_verifier_log(env, "hdr_len not found");
5321		return -EINVAL;
5322	}
5323
5324	hdr = btf->data;
5325	hdr_len = hdr->hdr_len;
5326	if (btf_data_size < hdr_len) {
5327		btf_verifier_log(env, "btf_header not found");
5328		return -EINVAL;
5329	}
5330
5331	/* Ensure the unsupported header fields are zero */
5332	if (hdr_len > sizeof(btf->hdr)) {
5333		u8 *expected_zero = btf->data + sizeof(btf->hdr);
5334		u8 *end = btf->data + hdr_len;
5335
5336		for (; expected_zero < end; expected_zero++) {
5337			if (*expected_zero) {
5338				btf_verifier_log(env, "Unsupported btf_header");
5339				return -E2BIG;
5340			}
5341		}
5342	}
5343
5344	hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
5345	memcpy(&btf->hdr, btf->data, hdr_copy);
5346
5347	hdr = &btf->hdr;
5348
5349	btf_verifier_log_hdr(env, btf_data_size);
5350
5351	if (hdr->magic != BTF_MAGIC) {
5352		btf_verifier_log(env, "Invalid magic");
5353		return -EINVAL;
5354	}
5355
5356	if (hdr->version != BTF_VERSION) {
5357		btf_verifier_log(env, "Unsupported version");
5358		return -ENOTSUPP;
5359	}
5360
5361	if (hdr->flags) {
5362		btf_verifier_log(env, "Unsupported flags");
5363		return -ENOTSUPP;
5364	}
5365
5366	if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
5367		btf_verifier_log(env, "No data");
5368		return -EINVAL;
5369	}
5370
5371	return btf_check_sec_info(env, btf_data_size);
5372}
5373
5374static const char *alloc_obj_fields[] = {
5375	"bpf_spin_lock",
5376	"bpf_list_head",
5377	"bpf_list_node",
5378	"bpf_rb_root",
5379	"bpf_rb_node",
5380	"bpf_refcount",
5381};
5382
5383static struct btf_struct_metas *
5384btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
5385{
5386	union {
5387		struct btf_id_set set;
5388		struct {
5389			u32 _cnt;
5390			u32 _ids[ARRAY_SIZE(alloc_obj_fields)];
5391		} _arr;
5392	} aof;
5393	struct btf_struct_metas *tab = NULL;
5394	int i, n, id, ret;
5395
5396	BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
5397	BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
5398
5399	memset(&aof, 0, sizeof(aof));
5400	for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
5401		/* Try to find whether this special type exists in user BTF, and
5402		 * if so remember its ID so we can easily find it among members
5403		 * of structs that we iterate in the next loop.
5404		 */
5405		id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
5406		if (id < 0)
5407			continue;
5408		aof.set.ids[aof.set.cnt++] = id;
5409	}
5410
5411	if (!aof.set.cnt)
5412		return NULL;
5413	sort(&aof.set.ids, aof.set.cnt, sizeof(aof.set.ids[0]), btf_id_cmp_func, NULL);
5414
5415	n = btf_nr_types(btf);
5416	for (i = 1; i < n; i++) {
5417		struct btf_struct_metas *new_tab;
5418		const struct btf_member *member;
 
5419		struct btf_struct_meta *type;
5420		struct btf_record *record;
5421		const struct btf_type *t;
5422		int j, tab_cnt;
5423
5424		t = btf_type_by_id(btf, i);
5425		if (!t) {
5426			ret = -EINVAL;
5427			goto free;
5428		}
5429		if (!__btf_type_is_struct(t))
5430			continue;
5431
5432		cond_resched();
5433
5434		for_each_member(j, t, member) {
5435			if (btf_id_set_contains(&aof.set, member->type))
5436				goto parse;
5437		}
5438		continue;
5439	parse:
5440		tab_cnt = tab ? tab->cnt : 0;
5441		new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
5442				   GFP_KERNEL | __GFP_NOWARN);
5443		if (!new_tab) {
5444			ret = -ENOMEM;
5445			goto free;
5446		}
5447		if (!tab)
5448			new_tab->cnt = 0;
5449		tab = new_tab;
5450
5451		type = &tab->types[tab->cnt];
5452		type->btf_id = i;
5453		record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
5454						  BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT, t->size);
5455		/* The record cannot be unset, treat it as an error if so */
5456		if (IS_ERR_OR_NULL(record)) {
5457			ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
5458			goto free;
5459		}
 
 
 
 
 
 
 
 
 
5460		type->record = record;
 
5461		tab->cnt++;
5462	}
5463	return tab;
5464free:
5465	btf_struct_metas_free(tab);
5466	return ERR_PTR(ret);
5467}
5468
5469struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
5470{
5471	struct btf_struct_metas *tab;
5472
5473	BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
5474	tab = btf->struct_meta_tab;
5475	if (!tab)
5476		return NULL;
5477	return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
5478}
5479
5480static int btf_check_type_tags(struct btf_verifier_env *env,
5481			       struct btf *btf, int start_id)
5482{
5483	int i, n, good_id = start_id - 1;
5484	bool in_tags;
5485
5486	n = btf_nr_types(btf);
5487	for (i = start_id; i < n; i++) {
5488		const struct btf_type *t;
5489		int chain_limit = 32;
5490		u32 cur_id = i;
5491
5492		t = btf_type_by_id(btf, i);
5493		if (!t)
5494			return -EINVAL;
5495		if (!btf_type_is_modifier(t))
5496			continue;
5497
5498		cond_resched();
5499
5500		in_tags = btf_type_is_type_tag(t);
5501		while (btf_type_is_modifier(t)) {
5502			if (!chain_limit--) {
5503				btf_verifier_log(env, "Max chain length or cycle detected");
5504				return -ELOOP;
5505			}
5506			if (btf_type_is_type_tag(t)) {
5507				if (!in_tags) {
5508					btf_verifier_log(env, "Type tags don't precede modifiers");
5509					return -EINVAL;
5510				}
5511			} else if (in_tags) {
5512				in_tags = false;
5513			}
5514			if (cur_id <= good_id)
5515				break;
5516			/* Move to next type */
5517			cur_id = t->type;
5518			t = btf_type_by_id(btf, cur_id);
5519			if (!t)
5520				return -EINVAL;
5521		}
5522		good_id = i;
5523	}
5524	return 0;
5525}
5526
5527static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
 
5528{
5529	u32 log_true_size;
5530	int err;
5531
5532	err = bpf_vlog_finalize(log, &log_true_size);
5533
5534	if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
5535	    copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
5536				  &log_true_size, sizeof(log_true_size)))
5537		err = -EFAULT;
5538
5539	return err;
5540}
5541
5542static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
5543{
5544	bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
5545	char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
5546	struct btf_struct_metas *struct_meta_tab;
5547	struct btf_verifier_env *env = NULL;
 
5548	struct btf *btf = NULL;
5549	u8 *data;
5550	int err, ret;
5551
5552	if (attr->btf_size > BTF_MAX_SIZE)
5553		return ERR_PTR(-E2BIG);
5554
5555	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5556	if (!env)
5557		return ERR_PTR(-ENOMEM);
5558
5559	/* user could have requested verbose verifier output
5560	 * and supplied buffer to store the verification trace
5561	 */
5562	err = bpf_vlog_init(&env->log, attr->btf_log_level,
5563			    log_ubuf, attr->btf_log_size);
5564	if (err)
5565		goto errout_free;
 
 
 
 
 
 
 
 
5566
5567	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5568	if (!btf) {
5569		err = -ENOMEM;
5570		goto errout;
5571	}
5572	env->btf = btf;
5573
5574	data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
5575	if (!data) {
5576		err = -ENOMEM;
5577		goto errout;
5578	}
5579
5580	btf->data = data;
5581	btf->data_size = attr->btf_size;
5582
5583	if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
5584		err = -EFAULT;
5585		goto errout;
5586	}
5587
5588	err = btf_parse_hdr(env);
5589	if (err)
5590		goto errout;
5591
5592	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5593
5594	err = btf_parse_str_sec(env);
5595	if (err)
5596		goto errout;
5597
5598	err = btf_parse_type_sec(env);
5599	if (err)
5600		goto errout;
5601
5602	err = btf_check_type_tags(env, btf, 1);
5603	if (err)
5604		goto errout;
5605
5606	struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
5607	if (IS_ERR(struct_meta_tab)) {
5608		err = PTR_ERR(struct_meta_tab);
5609		goto errout;
5610	}
5611	btf->struct_meta_tab = struct_meta_tab;
5612
5613	if (struct_meta_tab) {
5614		int i;
5615
5616		for (i = 0; i < struct_meta_tab->cnt; i++) {
5617			err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
5618			if (err < 0)
5619				goto errout_meta;
5620		}
5621	}
5622
5623	err = finalize_log(&env->log, uattr, uattr_size);
5624	if (err)
5625		goto errout_free;
 
5626
5627	btf_verifier_env_free(env);
5628	refcount_set(&btf->refcnt, 1);
5629	return btf;
5630
5631errout_meta:
5632	btf_free_struct_meta_tab(btf);
5633errout:
5634	/* overwrite err with -ENOSPC or -EFAULT */
5635	ret = finalize_log(&env->log, uattr, uattr_size);
5636	if (ret)
5637		err = ret;
5638errout_free:
5639	btf_verifier_env_free(env);
5640	if (btf)
5641		btf_free(btf);
5642	return ERR_PTR(err);
5643}
5644
5645extern char __weak __start_BTF[];
5646extern char __weak __stop_BTF[];
5647extern struct btf *btf_vmlinux;
5648
5649#define BPF_MAP_TYPE(_id, _ops)
5650#define BPF_LINK_TYPE(_id, _name)
5651static union {
5652	struct bpf_ctx_convert {
5653#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5654	prog_ctx_type _id##_prog; \
5655	kern_ctx_type _id##_kern;
5656#include <linux/bpf_types.h>
5657#undef BPF_PROG_TYPE
5658	} *__t;
5659	/* 't' is written once under lock. Read many times. */
5660	const struct btf_type *t;
5661} bpf_ctx_convert;
5662enum {
5663#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5664	__ctx_convert##_id,
5665#include <linux/bpf_types.h>
5666#undef BPF_PROG_TYPE
5667	__ctx_convert_unused, /* to avoid empty enum in extreme .config */
5668};
5669static u8 bpf_ctx_convert_map[] = {
5670#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
5671	[_id] = __ctx_convert##_id,
5672#include <linux/bpf_types.h>
5673#undef BPF_PROG_TYPE
5674	0, /* avoid empty array */
5675};
5676#undef BPF_MAP_TYPE
5677#undef BPF_LINK_TYPE
5678
5679static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
 
 
 
5680{
5681	const struct btf_type *conv_struct;
 
5682	const struct btf_member *ctx_type;
 
5683
5684	conv_struct = bpf_ctx_convert.t;
5685	if (!conv_struct)
 
5686		return NULL;
5687	/* prog_type is valid bpf program type. No need for bounds check. */
5688	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
5689	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5690	 * Like 'struct __sk_buff'
5691	 */
5692	return btf_type_by_id(btf_vmlinux, ctx_type->type);
5693}
5694
5695static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
5696{
5697	const struct btf_type *conv_struct;
5698	const struct btf_member *ctx_type;
5699
5700	conv_struct = bpf_ctx_convert.t;
5701	if (!conv_struct)
5702		return -EFAULT;
5703	/* prog_type is valid bpf program type. No need for bounds check. */
5704	ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5705	/* ctx_type is a pointer to prog_ctx_type in vmlinux.
5706	 * Like 'struct sk_buff'
5707	 */
5708	return ctx_type->type;
5709}
5710
5711bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5712			  const struct btf_type *t, enum bpf_prog_type prog_type,
5713			  int arg)
5714{
5715	const struct btf_type *ctx_type;
5716	const char *tname, *ctx_tname;
5717
5718	t = btf_type_by_id(btf, t->type);
5719
5720	/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
5721	 * check before we skip all the typedef below.
5722	 */
5723	if (prog_type == BPF_PROG_TYPE_KPROBE) {
5724		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5725			t = btf_type_by_id(btf, t->type);
5726
5727		if (btf_type_is_typedef(t)) {
5728			tname = btf_name_by_offset(btf, t->name_off);
5729			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5730				return true;
5731		}
5732	}
5733
5734	while (btf_type_is_modifier(t))
5735		t = btf_type_by_id(btf, t->type);
5736	if (!btf_type_is_struct(t)) {
5737		/* Only pointer to struct is supported for now.
5738		 * That means that BPF_PROG_TYPE_TRACEPOINT with BTF
5739		 * is not supported yet.
5740		 * BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
5741		 */
5742		return false;
5743	}
5744	tname = btf_name_by_offset(btf, t->name_off);
5745	if (!tname) {
5746		bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
5747		return false;
5748	}
5749
5750	ctx_type = find_canonical_prog_ctx_type(prog_type);
5751	if (!ctx_type) {
5752		bpf_log(log, "btf_vmlinux is malformed\n");
 
 
 
5753		/* should not happen */
5754		return false;
5755	}
5756again:
5757	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5758	if (!ctx_tname) {
5759		/* should not happen */
5760		bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
5761		return false;
5762	}
5763	/* program types without named context types work only with arg:ctx tag */
5764	if (ctx_tname[0] == '\0')
5765		return false;
5766	/* only compare that prog's ctx type name is the same as
5767	 * kernel expects. No need to compare field by field.
5768	 * It's ok for bpf prog to do:
5769	 * struct __sk_buff {};
5770	 * int socket_filter_bpf_prog(struct __sk_buff *skb)
5771	 * { // no fields of skb are ever used }
5772	 */
5773	if (strcmp(ctx_tname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
5774		return true;
5775	if (strcmp(ctx_tname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
5776		return true;
5777	if (strcmp(ctx_tname, tname)) {
5778		/* bpf_user_pt_regs_t is a typedef, so resolve it to
5779		 * underlying struct and check name again
5780		 */
5781		if (!btf_type_is_modifier(ctx_type))
5782			return false;
5783		while (btf_type_is_modifier(ctx_type))
5784			ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5785		goto again;
5786	}
5787	return true;
5788}
5789
5790/* forward declarations for arch-specific underlying types of
5791 * bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
5792 * compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
5793 * works correctly with __builtin_types_compatible_p() on respective
5794 * architectures
5795 */
5796struct user_regs_struct;
5797struct user_pt_regs;
5798
5799static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
5800				      const struct btf_type *t, int arg,
5801				      enum bpf_prog_type prog_type,
5802				      enum bpf_attach_type attach_type)
5803{
5804	const struct btf_type *ctx_type;
5805	const char *tname, *ctx_tname;
5806
5807	if (!btf_is_ptr(t)) {
5808		bpf_log(log, "arg#%d type isn't a pointer\n", arg);
5809		return -EINVAL;
5810	}
5811	t = btf_type_by_id(btf, t->type);
5812
5813	/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
5814	if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
5815		while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
5816			t = btf_type_by_id(btf, t->type);
5817
5818		if (btf_type_is_typedef(t)) {
5819			tname = btf_name_by_offset(btf, t->name_off);
5820			if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
5821				return 0;
5822		}
5823	}
5824
5825	/* all other program types don't use typedefs for context type */
5826	while (btf_type_is_modifier(t))
5827		t = btf_type_by_id(btf, t->type);
5828
5829	/* `void *ctx __arg_ctx` is always valid */
5830	if (btf_type_is_void(t))
5831		return 0;
5832
5833	tname = btf_name_by_offset(btf, t->name_off);
5834	if (str_is_empty(tname)) {
5835		bpf_log(log, "arg#%d type doesn't have a name\n", arg);
5836		return -EINVAL;
5837	}
5838
5839	/* special cases */
5840	switch (prog_type) {
5841	case BPF_PROG_TYPE_KPROBE:
5842		if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5843			return 0;
5844		break;
5845	case BPF_PROG_TYPE_PERF_EVENT:
5846		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
5847		    __btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
5848			return 0;
5849		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
5850		    __btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
5851			return 0;
5852		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
5853		    __btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
5854			return 0;
5855		break;
5856	case BPF_PROG_TYPE_RAW_TRACEPOINT:
5857	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
5858		/* allow u64* as ctx */
5859		if (btf_is_int(t) && t->size == 8)
5860			return 0;
5861		break;
5862	case BPF_PROG_TYPE_TRACING:
5863		switch (attach_type) {
5864		case BPF_TRACE_RAW_TP:
5865			/* tp_btf program is TRACING, so need special case here */
5866			if (__btf_type_is_struct(t) &&
5867			    strcmp(tname, "bpf_raw_tracepoint_args") == 0)
5868				return 0;
5869			/* allow u64* as ctx */
5870			if (btf_is_int(t) && t->size == 8)
5871				return 0;
5872			break;
5873		case BPF_TRACE_ITER:
5874			/* allow struct bpf_iter__xxx types only */
5875			if (__btf_type_is_struct(t) &&
5876			    strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
5877				return 0;
5878			break;
5879		case BPF_TRACE_FENTRY:
5880		case BPF_TRACE_FEXIT:
5881		case BPF_MODIFY_RETURN:
5882			/* allow u64* as ctx */
5883			if (btf_is_int(t) && t->size == 8)
5884				return 0;
5885			break;
5886		default:
5887			break;
5888		}
5889		break;
5890	case BPF_PROG_TYPE_LSM:
5891	case BPF_PROG_TYPE_STRUCT_OPS:
5892		/* allow u64* as ctx */
5893		if (btf_is_int(t) && t->size == 8)
5894			return 0;
5895		break;
5896	case BPF_PROG_TYPE_TRACEPOINT:
5897	case BPF_PROG_TYPE_SYSCALL:
5898	case BPF_PROG_TYPE_EXT:
5899		return 0; /* anything goes */
5900	default:
5901		break;
5902	}
5903
5904	ctx_type = find_canonical_prog_ctx_type(prog_type);
5905	if (!ctx_type) {
5906		/* should not happen */
5907		bpf_log(log, "btf_vmlinux is malformed\n");
5908		return -EINVAL;
5909	}
5910
5911	/* resolve typedefs and check that underlying structs are matching as well */
5912	while (btf_type_is_modifier(ctx_type))
5913		ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
5914
5915	/* if program type doesn't have distinctly named struct type for
5916	 * context, then __arg_ctx argument can only be `void *`, which we
5917	 * already checked above
5918	 */
5919	if (!__btf_type_is_struct(ctx_type)) {
5920		bpf_log(log, "arg#%d should be void pointer\n", arg);
5921		return -EINVAL;
5922	}
5923
5924	ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
5925	if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
5926		bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
5927		return -EINVAL;
5928	}
5929
5930	return 0;
5931}
5932
5933static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
5934				     struct btf *btf,
5935				     const struct btf_type *t,
5936				     enum bpf_prog_type prog_type,
5937				     int arg)
5938{
5939	if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
 
 
 
5940		return -ENOENT;
5941	return find_kern_ctx_type_id(prog_type);
 
5942}
5943
5944int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
5945{
5946	const struct btf_member *kctx_member;
5947	const struct btf_type *conv_struct;
5948	const struct btf_type *kctx_type;
5949	u32 kctx_type_id;
5950
5951	conv_struct = bpf_ctx_convert.t;
5952	/* get member for kernel ctx type */
5953	kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
5954	kctx_type_id = kctx_member->type;
5955	kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
5956	if (!btf_type_is_struct(kctx_type)) {
5957		bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
5958		return -EINVAL;
5959	}
5960
5961	return kctx_type_id;
5962}
5963
5964BTF_ID_LIST(bpf_ctx_convert_btf_id)
5965BTF_ID(struct, bpf_ctx_convert)
5966
5967struct btf *btf_parse_vmlinux(void)
5968{
5969	struct btf_verifier_env *env = NULL;
5970	struct bpf_verifier_log *log;
5971	struct btf *btf = NULL;
5972	int err;
5973
5974	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
5975	if (!env)
5976		return ERR_PTR(-ENOMEM);
5977
5978	log = &env->log;
5979	log->level = BPF_LOG_KERNEL;
5980
5981	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
5982	if (!btf) {
5983		err = -ENOMEM;
5984		goto errout;
5985	}
5986	env->btf = btf;
5987
5988	btf->data = __start_BTF;
5989	btf->data_size = __stop_BTF - __start_BTF;
5990	btf->kernel_btf = true;
5991	snprintf(btf->name, sizeof(btf->name), "vmlinux");
5992
5993	err = btf_parse_hdr(env);
5994	if (err)
5995		goto errout;
5996
5997	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
5998
5999	err = btf_parse_str_sec(env);
6000	if (err)
6001		goto errout;
6002
6003	err = btf_check_all_metas(env);
6004	if (err)
6005		goto errout;
6006
6007	err = btf_check_type_tags(env, btf, 1);
6008	if (err)
6009		goto errout;
6010
6011	/* btf_parse_vmlinux() runs under bpf_verifier_lock */
6012	bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
6013
 
 
6014	refcount_set(&btf->refcnt, 1);
6015
6016	err = btf_alloc_id(btf);
6017	if (err)
6018		goto errout;
6019
6020	btf_verifier_env_free(env);
6021	return btf;
6022
6023errout:
6024	btf_verifier_env_free(env);
6025	if (btf) {
6026		kvfree(btf->types);
6027		kfree(btf);
6028	}
6029	return ERR_PTR(err);
6030}
6031
6032#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
6033
6034static struct btf *btf_parse_module(const char *module_name, const void *data, unsigned int data_size)
6035{
6036	struct btf_verifier_env *env = NULL;
6037	struct bpf_verifier_log *log;
6038	struct btf *btf = NULL, *base_btf;
6039	int err;
6040
6041	base_btf = bpf_get_btf_vmlinux();
6042	if (IS_ERR(base_btf))
6043		return base_btf;
6044	if (!base_btf)
6045		return ERR_PTR(-EINVAL);
6046
6047	env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
6048	if (!env)
6049		return ERR_PTR(-ENOMEM);
6050
6051	log = &env->log;
6052	log->level = BPF_LOG_KERNEL;
6053
6054	btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
6055	if (!btf) {
6056		err = -ENOMEM;
6057		goto errout;
6058	}
6059	env->btf = btf;
6060
6061	btf->base_btf = base_btf;
6062	btf->start_id = base_btf->nr_types;
6063	btf->start_str_off = base_btf->hdr.str_len;
6064	btf->kernel_btf = true;
6065	snprintf(btf->name, sizeof(btf->name), "%s", module_name);
6066
6067	btf->data = kvmalloc(data_size, GFP_KERNEL | __GFP_NOWARN);
6068	if (!btf->data) {
6069		err = -ENOMEM;
6070		goto errout;
6071	}
6072	memcpy(btf->data, data, data_size);
6073	btf->data_size = data_size;
6074
6075	err = btf_parse_hdr(env);
6076	if (err)
6077		goto errout;
6078
6079	btf->nohdr_data = btf->data + btf->hdr.hdr_len;
6080
6081	err = btf_parse_str_sec(env);
6082	if (err)
6083		goto errout;
6084
6085	err = btf_check_all_metas(env);
6086	if (err)
6087		goto errout;
6088
6089	err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
6090	if (err)
6091		goto errout;
6092
6093	btf_verifier_env_free(env);
6094	refcount_set(&btf->refcnt, 1);
6095	return btf;
6096
6097errout:
6098	btf_verifier_env_free(env);
6099	if (btf) {
6100		kvfree(btf->data);
6101		kvfree(btf->types);
6102		kfree(btf);
6103	}
6104	return ERR_PTR(err);
6105}
6106
6107#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
6108
6109struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
6110{
6111	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6112
6113	if (tgt_prog)
6114		return tgt_prog->aux->btf;
6115	else
6116		return prog->aux->attach_btf;
6117}
6118
6119static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
6120{
6121	/* skip modifiers */
6122	t = btf_type_skip_modifiers(btf, t->type, NULL);
 
 
 
 
6123
6124	return btf_type_is_int(t);
6125}
6126
6127static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
6128			   int off)
6129{
6130	const struct btf_param *args;
6131	const struct btf_type *t;
6132	u32 offset = 0, nr_args;
6133	int i;
6134
6135	if (!func_proto)
6136		return off / 8;
6137
6138	nr_args = btf_type_vlen(func_proto);
6139	args = (const struct btf_param *)(func_proto + 1);
6140	for (i = 0; i < nr_args; i++) {
6141		t = btf_type_skip_modifiers(btf, args[i].type, NULL);
6142		offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6143		if (off < offset)
6144			return i;
6145	}
6146
6147	t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
6148	offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
6149	if (off < offset)
6150		return nr_args;
6151
6152	return nr_args + 1;
6153}
6154
6155static bool prog_args_trusted(const struct bpf_prog *prog)
6156{
6157	enum bpf_attach_type atype = prog->expected_attach_type;
6158
6159	switch (prog->type) {
6160	case BPF_PROG_TYPE_TRACING:
6161		return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
6162	case BPF_PROG_TYPE_LSM:
6163		return bpf_lsm_is_trusted(prog);
6164	case BPF_PROG_TYPE_STRUCT_OPS:
6165		return true;
6166	default:
6167		return false;
6168	}
6169}
6170
6171int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
6172		       u32 arg_no)
6173{
6174	const struct btf_param *args;
6175	const struct btf_type *t;
6176	int off = 0, i;
6177	u32 sz;
6178
6179	args = btf_params(func_proto);
6180	for (i = 0; i < arg_no; i++) {
6181		t = btf_type_by_id(btf, args[i].type);
6182		t = btf_resolve_size(btf, t, &sz);
6183		if (IS_ERR(t))
6184			return PTR_ERR(t);
6185		off += roundup(sz, 8);
6186	}
6187
6188	return off;
6189}
6190
6191bool btf_ctx_access(int off, int size, enum bpf_access_type type,
6192		    const struct bpf_prog *prog,
6193		    struct bpf_insn_access_aux *info)
6194{
6195	const struct btf_type *t = prog->aux->attach_func_proto;
6196	struct bpf_prog *tgt_prog = prog->aux->dst_prog;
6197	struct btf *btf = bpf_prog_get_target_btf(prog);
6198	const char *tname = prog->aux->attach_func_name;
6199	struct bpf_verifier_log *log = info->log;
6200	const struct btf_param *args;
6201	const char *tag_value;
6202	u32 nr_args, arg;
6203	int i, ret;
6204
6205	if (off % 8) {
6206		bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
6207			tname, off);
6208		return false;
6209	}
6210	arg = get_ctx_arg_idx(btf, t, off);
6211	args = (const struct btf_param *)(t + 1);
6212	/* if (t == NULL) Fall back to default BPF prog with
6213	 * MAX_BPF_FUNC_REG_ARGS u64 arguments.
6214	 */
6215	nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
6216	if (prog->aux->attach_btf_trace) {
6217		/* skip first 'void *__data' argument in btf_trace_##name typedef */
6218		args++;
6219		nr_args--;
6220	}
6221
6222	if (arg > nr_args) {
6223		bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6224			tname, arg + 1);
6225		return false;
6226	}
6227
6228	if (arg == nr_args) {
6229		switch (prog->expected_attach_type) {
6230		case BPF_LSM_CGROUP:
6231		case BPF_LSM_MAC:
6232		case BPF_TRACE_FEXIT:
6233			/* When LSM programs are attached to void LSM hooks
6234			 * they use FEXIT trampolines and when attached to
6235			 * int LSM hooks, they use MODIFY_RETURN trampolines.
6236			 *
6237			 * While the LSM programs are BPF_MODIFY_RETURN-like
6238			 * the check:
6239			 *
6240			 *	if (ret_type != 'int')
6241			 *		return -EINVAL;
6242			 *
6243			 * is _not_ done here. This is still safe as LSM hooks
6244			 * have only void and int return types.
6245			 */
6246			if (!t)
6247				return true;
6248			t = btf_type_by_id(btf, t->type);
6249			break;
6250		case BPF_MODIFY_RETURN:
6251			/* For now the BPF_MODIFY_RETURN can only be attached to
6252			 * functions that return an int.
6253			 */
6254			if (!t)
6255				return false;
6256
6257			t = btf_type_skip_modifiers(btf, t->type, NULL);
6258			if (!btf_type_is_small_int(t)) {
6259				bpf_log(log,
6260					"ret type %s not allowed for fmod_ret\n",
6261					btf_type_str(t));
6262				return false;
6263			}
6264			break;
6265		default:
6266			bpf_log(log, "func '%s' doesn't have %d-th argument\n",
6267				tname, arg + 1);
6268			return false;
6269		}
6270	} else {
6271		if (!t)
6272			/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
6273			return true;
6274		t = btf_type_by_id(btf, args[arg].type);
6275	}
6276
6277	/* skip modifiers */
6278	while (btf_type_is_modifier(t))
6279		t = btf_type_by_id(btf, t->type);
6280	if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6281		/* accessing a scalar */
6282		return true;
6283	if (!btf_type_is_ptr(t)) {
6284		bpf_log(log,
6285			"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
6286			tname, arg,
6287			__btf_name_by_offset(btf, t->name_off),
6288			btf_type_str(t));
6289		return false;
6290	}
6291
6292	/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
6293	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6294		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6295		u32 type, flag;
6296
6297		type = base_type(ctx_arg_info->reg_type);
6298		flag = type_flag(ctx_arg_info->reg_type);
6299		if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
6300		    (flag & PTR_MAYBE_NULL)) {
6301			info->reg_type = ctx_arg_info->reg_type;
6302			return true;
6303		}
6304	}
6305
6306	if (t->type == 0)
6307		/* This is a pointer to void.
6308		 * It is the same as scalar from the verifier safety pov.
6309		 * No further pointer walking is allowed.
6310		 */
6311		return true;
6312
6313	if (is_int_ptr(btf, t))
6314		return true;
6315
6316	/* this is a pointer to another type */
6317	for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
6318		const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
6319
6320		if (ctx_arg_info->offset == off) {
6321			if (!ctx_arg_info->btf_id) {
6322				bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
6323				return false;
6324			}
6325
6326			info->reg_type = ctx_arg_info->reg_type;
6327			info->btf = ctx_arg_info->btf ? : btf_vmlinux;
6328			info->btf_id = ctx_arg_info->btf_id;
6329			return true;
6330		}
6331	}
6332
6333	info->reg_type = PTR_TO_BTF_ID;
6334	if (prog_args_trusted(prog))
6335		info->reg_type |= PTR_TRUSTED;
6336
6337	if (tgt_prog) {
6338		enum bpf_prog_type tgt_type;
6339
6340		if (tgt_prog->type == BPF_PROG_TYPE_EXT)
6341			tgt_type = tgt_prog->aux->saved_dst_prog_type;
6342		else
6343			tgt_type = tgt_prog->type;
6344
6345		ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
6346		if (ret > 0) {
6347			info->btf = btf_vmlinux;
6348			info->btf_id = ret;
6349			return true;
6350		} else {
6351			return false;
6352		}
6353	}
6354
6355	info->btf = btf;
6356	info->btf_id = t->type;
6357	t = btf_type_by_id(btf, t->type);
6358
6359	if (btf_type_is_type_tag(t)) {
6360		tag_value = __btf_name_by_offset(btf, t->name_off);
6361		if (strcmp(tag_value, "user") == 0)
6362			info->reg_type |= MEM_USER;
6363		if (strcmp(tag_value, "percpu") == 0)
6364			info->reg_type |= MEM_PERCPU;
6365	}
6366
6367	/* skip modifiers */
6368	while (btf_type_is_modifier(t)) {
6369		info->btf_id = t->type;
6370		t = btf_type_by_id(btf, t->type);
6371	}
6372	if (!btf_type_is_struct(t)) {
6373		bpf_log(log,
6374			"func '%s' arg%d type %s is not a struct\n",
6375			tname, arg, btf_type_str(t));
6376		return false;
6377	}
6378	bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
6379		tname, arg, info->btf_id, btf_type_str(t),
6380		__btf_name_by_offset(btf, t->name_off));
6381	return true;
6382}
6383EXPORT_SYMBOL_GPL(btf_ctx_access);
6384
6385enum bpf_struct_walk_result {
6386	/* < 0 error */
6387	WALK_SCALAR = 0,
6388	WALK_PTR,
6389	WALK_STRUCT,
6390};
6391
6392static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
6393			   const struct btf_type *t, int off, int size,
6394			   u32 *next_btf_id, enum bpf_type_flag *flag,
6395			   const char **field_name)
6396{
6397	u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
6398	const struct btf_type *mtype, *elem_type = NULL;
6399	const struct btf_member *member;
6400	const char *tname, *mname, *tag_value;
6401	u32 vlen, elem_id, mid;
6402
6403again:
6404	if (btf_type_is_modifier(t))
6405		t = btf_type_skip_modifiers(btf, t->type, NULL);
6406	tname = __btf_name_by_offset(btf, t->name_off);
6407	if (!btf_type_is_struct(t)) {
6408		bpf_log(log, "Type '%s' is not a struct\n", tname);
6409		return -EINVAL;
6410	}
6411
6412	vlen = btf_type_vlen(t);
6413	if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
6414		/*
6415		 * walking unions yields untrusted pointers
6416		 * with exception of __bpf_md_ptr and other
6417		 * unions with a single member
6418		 */
6419		*flag |= PTR_UNTRUSTED;
6420
6421	if (off + size > t->size) {
6422		/* If the last element is a variable size array, we may
6423		 * need to relax the rule.
6424		 */
6425		struct btf_array *array_elem;
6426
6427		if (vlen == 0)
6428			goto error;
6429
6430		member = btf_type_member(t) + vlen - 1;
6431		mtype = btf_type_skip_modifiers(btf, member->type,
6432						NULL);
6433		if (!btf_type_is_array(mtype))
6434			goto error;
6435
6436		array_elem = (struct btf_array *)(mtype + 1);
6437		if (array_elem->nelems != 0)
6438			goto error;
6439
6440		moff = __btf_member_bit_offset(t, member) / 8;
6441		if (off < moff)
6442			goto error;
6443
6444		/* allow structure and integer */
 
 
6445		t = btf_type_skip_modifiers(btf, array_elem->type,
6446					    NULL);
6447
6448		if (btf_type_is_int(t))
6449			return WALK_SCALAR;
6450
6451		if (!btf_type_is_struct(t))
6452			goto error;
6453
6454		off = (off - moff) % t->size;
6455		goto again;
6456
6457error:
6458		bpf_log(log, "access beyond struct %s at off %u size %u\n",
6459			tname, off, size);
6460		return -EACCES;
6461	}
6462
6463	for_each_member(i, t, member) {
6464		/* offset of the field in bytes */
6465		moff = __btf_member_bit_offset(t, member) / 8;
6466		if (off + size <= moff)
6467			/* won't find anything, field is already too far */
6468			break;
6469
6470		if (__btf_member_bitfield_size(t, member)) {
6471			u32 end_bit = __btf_member_bit_offset(t, member) +
6472				__btf_member_bitfield_size(t, member);
6473
6474			/* off <= moff instead of off == moff because clang
6475			 * does not generate a BTF member for anonymous
6476			 * bitfield like the ":16" here:
6477			 * struct {
6478			 *	int :16;
6479			 *	int x:8;
6480			 * };
6481			 */
6482			if (off <= moff &&
6483			    BITS_ROUNDUP_BYTES(end_bit) <= off + size)
6484				return WALK_SCALAR;
6485
6486			/* off may be accessing a following member
6487			 *
6488			 * or
6489			 *
6490			 * Doing partial access at either end of this
6491			 * bitfield.  Continue on this case also to
6492			 * treat it as not accessing this bitfield
6493			 * and eventually error out as field not
6494			 * found to keep it simple.
6495			 * It could be relaxed if there was a legit
6496			 * partial access case later.
6497			 */
6498			continue;
6499		}
6500
6501		/* In case of "off" is pointing to holes of a struct */
6502		if (off < moff)
6503			break;
6504
6505		/* type of the field */
6506		mid = member->type;
6507		mtype = btf_type_by_id(btf, member->type);
6508		mname = __btf_name_by_offset(btf, member->name_off);
6509
6510		mtype = __btf_resolve_size(btf, mtype, &msize,
6511					   &elem_type, &elem_id, &total_nelems,
6512					   &mid);
6513		if (IS_ERR(mtype)) {
6514			bpf_log(log, "field %s doesn't have size\n", mname);
6515			return -EFAULT;
6516		}
6517
6518		mtrue_end = moff + msize;
6519		if (off >= mtrue_end)
6520			/* no overlap with member, keep iterating */
6521			continue;
6522
6523		if (btf_type_is_array(mtype)) {
6524			u32 elem_idx;
6525
6526			/* __btf_resolve_size() above helps to
6527			 * linearize a multi-dimensional array.
6528			 *
6529			 * The logic here is treating an array
6530			 * in a struct as the following way:
6531			 *
6532			 * struct outer {
6533			 *	struct inner array[2][2];
6534			 * };
6535			 *
6536			 * looks like:
6537			 *
6538			 * struct outer {
6539			 *	struct inner array_elem0;
6540			 *	struct inner array_elem1;
6541			 *	struct inner array_elem2;
6542			 *	struct inner array_elem3;
6543			 * };
6544			 *
6545			 * When accessing outer->array[1][0], it moves
6546			 * moff to "array_elem2", set mtype to
6547			 * "struct inner", and msize also becomes
6548			 * sizeof(struct inner).  Then most of the
6549			 * remaining logic will fall through without
6550			 * caring the current member is an array or
6551			 * not.
6552			 *
6553			 * Unlike mtype/msize/moff, mtrue_end does not
6554			 * change.  The naming difference ("_true") tells
6555			 * that it is not always corresponding to
6556			 * the current mtype/msize/moff.
6557			 * It is the true end of the current
6558			 * member (i.e. array in this case).  That
6559			 * will allow an int array to be accessed like
6560			 * a scratch space,
6561			 * i.e. allow access beyond the size of
6562			 *      the array's element as long as it is
6563			 *      within the mtrue_end boundary.
6564			 */
6565
6566			/* skip empty array */
6567			if (moff == mtrue_end)
6568				continue;
6569
6570			msize /= total_nelems;
6571			elem_idx = (off - moff) / msize;
6572			moff += elem_idx * msize;
6573			mtype = elem_type;
6574			mid = elem_id;
6575		}
6576
6577		/* the 'off' we're looking for is either equal to start
6578		 * of this field or inside of this struct
6579		 */
6580		if (btf_type_is_struct(mtype)) {
6581			/* our field must be inside that union or struct */
6582			t = mtype;
6583
6584			/* return if the offset matches the member offset */
6585			if (off == moff) {
6586				*next_btf_id = mid;
6587				return WALK_STRUCT;
6588			}
6589
6590			/* adjust offset we're looking for */
6591			off -= moff;
6592			goto again;
6593		}
6594
6595		if (btf_type_is_ptr(mtype)) {
6596			const struct btf_type *stype, *t;
6597			enum bpf_type_flag tmp_flag = 0;
6598			u32 id;
6599
6600			if (msize != size || off != moff) {
6601				bpf_log(log,
6602					"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
6603					mname, moff, tname, off, size);
6604				return -EACCES;
6605			}
6606
6607			/* check type tag */
6608			t = btf_type_by_id(btf, mtype->type);
6609			if (btf_type_is_type_tag(t)) {
6610				tag_value = __btf_name_by_offset(btf, t->name_off);
6611				/* check __user tag */
6612				if (strcmp(tag_value, "user") == 0)
6613					tmp_flag = MEM_USER;
6614				/* check __percpu tag */
6615				if (strcmp(tag_value, "percpu") == 0)
6616					tmp_flag = MEM_PERCPU;
6617				/* check __rcu tag */
6618				if (strcmp(tag_value, "rcu") == 0)
6619					tmp_flag = MEM_RCU;
6620			}
6621
6622			stype = btf_type_skip_modifiers(btf, mtype->type, &id);
6623			if (btf_type_is_struct(stype)) {
6624				*next_btf_id = id;
6625				*flag |= tmp_flag;
6626				if (field_name)
6627					*field_name = mname;
6628				return WALK_PTR;
6629			}
6630		}
6631
6632		/* Allow more flexible access within an int as long as
6633		 * it is within mtrue_end.
6634		 * Since mtrue_end could be the end of an array,
6635		 * that also allows using an array of int as a scratch
6636		 * space. e.g. skb->cb[].
6637		 */
6638		if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
6639			bpf_log(log,
6640				"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
6641				mname, mtrue_end, tname, off, size);
6642			return -EACCES;
6643		}
6644
6645		return WALK_SCALAR;
6646	}
6647	bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
6648	return -EINVAL;
6649}
6650
6651int btf_struct_access(struct bpf_verifier_log *log,
6652		      const struct bpf_reg_state *reg,
6653		      int off, int size, enum bpf_access_type atype __maybe_unused,
6654		      u32 *next_btf_id, enum bpf_type_flag *flag,
6655		      const char **field_name)
6656{
6657	const struct btf *btf = reg->btf;
6658	enum bpf_type_flag tmp_flag = 0;
6659	const struct btf_type *t;
6660	u32 id = reg->btf_id;
6661	int err;
6662
6663	while (type_is_alloc(reg->type)) {
6664		struct btf_struct_meta *meta;
6665		struct btf_record *rec;
6666		int i;
6667
6668		meta = btf_find_struct_meta(btf, id);
6669		if (!meta)
6670			break;
6671		rec = meta->record;
6672		for (i = 0; i < rec->cnt; i++) {
6673			struct btf_field *field = &rec->fields[i];
6674			u32 offset = field->offset;
6675			if (off < offset + btf_field_type_size(field->type) && offset < off + size) {
6676				bpf_log(log,
6677					"direct access to %s is disallowed\n",
6678					btf_field_type_name(field->type));
6679				return -EACCES;
6680			}
6681		}
6682		break;
6683	}
6684
6685	t = btf_type_by_id(btf, id);
6686	do {
6687		err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
6688
6689		switch (err) {
6690		case WALK_PTR:
6691			/* For local types, the destination register cannot
6692			 * become a pointer again.
6693			 */
6694			if (type_is_alloc(reg->type))
6695				return SCALAR_VALUE;
6696			/* If we found the pointer or scalar on t+off,
6697			 * we're done.
6698			 */
6699			*next_btf_id = id;
6700			*flag = tmp_flag;
6701			return PTR_TO_BTF_ID;
6702		case WALK_SCALAR:
6703			return SCALAR_VALUE;
6704		case WALK_STRUCT:
6705			/* We found nested struct, so continue the search
6706			 * by diving in it. At this point the offset is
6707			 * aligned with the new type, so set it to 0.
6708			 */
6709			t = btf_type_by_id(btf, id);
6710			off = 0;
6711			break;
6712		default:
6713			/* It's either error or unknown return value..
6714			 * scream and leave.
6715			 */
6716			if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
6717				return -EINVAL;
6718			return err;
6719		}
6720	} while (t);
6721
6722	return -EINVAL;
6723}
6724
6725/* Check that two BTF types, each specified as an BTF object + id, are exactly
6726 * the same. Trivial ID check is not enough due to module BTFs, because we can
6727 * end up with two different module BTFs, but IDs point to the common type in
6728 * vmlinux BTF.
6729 */
6730bool btf_types_are_same(const struct btf *btf1, u32 id1,
6731			const struct btf *btf2, u32 id2)
6732{
6733	if (id1 != id2)
6734		return false;
6735	if (btf1 == btf2)
6736		return true;
6737	return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
6738}
6739
6740bool btf_struct_ids_match(struct bpf_verifier_log *log,
6741			  const struct btf *btf, u32 id, int off,
6742			  const struct btf *need_btf, u32 need_type_id,
6743			  bool strict)
6744{
6745	const struct btf_type *type;
6746	enum bpf_type_flag flag = 0;
6747	int err;
6748
6749	/* Are we already done? */
6750	if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
6751		return true;
6752	/* In case of strict type match, we do not walk struct, the top level
6753	 * type match must succeed. When strict is true, off should have already
6754	 * been 0.
6755	 */
6756	if (strict)
6757		return false;
6758again:
6759	type = btf_type_by_id(btf, id);
6760	if (!type)
6761		return false;
6762	err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
6763	if (err != WALK_STRUCT)
6764		return false;
6765
6766	/* We found nested struct object. If it matches
6767	 * the requested ID, we're done. Otherwise let's
6768	 * continue the search with offset 0 in the new
6769	 * type.
6770	 */
6771	if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
6772		off = 0;
6773		goto again;
6774	}
6775
6776	return true;
6777}
6778
6779static int __get_type_size(struct btf *btf, u32 btf_id,
6780			   const struct btf_type **ret_type)
6781{
6782	const struct btf_type *t;
6783
6784	*ret_type = btf_type_by_id(btf, 0);
6785	if (!btf_id)
6786		/* void */
6787		return 0;
6788	t = btf_type_by_id(btf, btf_id);
6789	while (t && btf_type_is_modifier(t))
6790		t = btf_type_by_id(btf, t->type);
6791	if (!t)
6792		return -EINVAL;
6793	*ret_type = t;
6794	if (btf_type_is_ptr(t))
6795		/* kernel size of pointer. Not BPF's size of pointer*/
6796		return sizeof(void *);
6797	if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
6798		return t->size;
6799	return -EINVAL;
6800}
6801
6802static u8 __get_type_fmodel_flags(const struct btf_type *t)
6803{
6804	u8 flags = 0;
6805
6806	if (__btf_type_is_struct(t))
6807		flags |= BTF_FMODEL_STRUCT_ARG;
6808	if (btf_type_is_signed_int(t))
6809		flags |= BTF_FMODEL_SIGNED_ARG;
6810
6811	return flags;
6812}
6813
6814int btf_distill_func_proto(struct bpf_verifier_log *log,
6815			   struct btf *btf,
6816			   const struct btf_type *func,
6817			   const char *tname,
6818			   struct btf_func_model *m)
6819{
6820	const struct btf_param *args;
6821	const struct btf_type *t;
6822	u32 i, nargs;
6823	int ret;
6824
6825	if (!func) {
6826		/* BTF function prototype doesn't match the verifier types.
6827		 * Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
6828		 */
6829		for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
6830			m->arg_size[i] = 8;
6831			m->arg_flags[i] = 0;
6832		}
6833		m->ret_size = 8;
6834		m->ret_flags = 0;
6835		m->nr_args = MAX_BPF_FUNC_REG_ARGS;
6836		return 0;
6837	}
6838	args = (const struct btf_param *)(func + 1);
6839	nargs = btf_type_vlen(func);
6840	if (nargs > MAX_BPF_FUNC_ARGS) {
6841		bpf_log(log,
6842			"The function %s has %d arguments. Too many.\n",
6843			tname, nargs);
6844		return -EINVAL;
6845	}
6846	ret = __get_type_size(btf, func->type, &t);
6847	if (ret < 0 || __btf_type_is_struct(t)) {
6848		bpf_log(log,
6849			"The function %s return type %s is unsupported.\n",
6850			tname, btf_type_str(t));
6851		return -EINVAL;
6852	}
6853	m->ret_size = ret;
6854	m->ret_flags = __get_type_fmodel_flags(t);
6855
6856	for (i = 0; i < nargs; i++) {
6857		if (i == nargs - 1 && args[i].type == 0) {
6858			bpf_log(log,
6859				"The function %s with variable args is unsupported.\n",
6860				tname);
6861			return -EINVAL;
6862		}
6863		ret = __get_type_size(btf, args[i].type, &t);
6864
6865		/* No support of struct argument size greater than 16 bytes */
6866		if (ret < 0 || ret > 16) {
6867			bpf_log(log,
6868				"The function %s arg%d type %s is unsupported.\n",
6869				tname, i, btf_type_str(t));
6870			return -EINVAL;
6871		}
6872		if (ret == 0) {
6873			bpf_log(log,
6874				"The function %s has malformed void argument.\n",
6875				tname);
6876			return -EINVAL;
6877		}
6878		m->arg_size[i] = ret;
6879		m->arg_flags[i] = __get_type_fmodel_flags(t);
6880	}
6881	m->nr_args = nargs;
6882	return 0;
6883}
6884
6885/* Compare BTFs of two functions assuming only scalars and pointers to context.
6886 * t1 points to BTF_KIND_FUNC in btf1
6887 * t2 points to BTF_KIND_FUNC in btf2
6888 * Returns:
6889 * EINVAL - function prototype mismatch
6890 * EFAULT - verifier bug
6891 * 0 - 99% match. The last 1% is validated by the verifier.
6892 */
6893static int btf_check_func_type_match(struct bpf_verifier_log *log,
6894				     struct btf *btf1, const struct btf_type *t1,
6895				     struct btf *btf2, const struct btf_type *t2)
6896{
6897	const struct btf_param *args1, *args2;
6898	const char *fn1, *fn2, *s1, *s2;
6899	u32 nargs1, nargs2, i;
6900
6901	fn1 = btf_name_by_offset(btf1, t1->name_off);
6902	fn2 = btf_name_by_offset(btf2, t2->name_off);
6903
6904	if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
6905		bpf_log(log, "%s() is not a global function\n", fn1);
6906		return -EINVAL;
6907	}
6908	if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
6909		bpf_log(log, "%s() is not a global function\n", fn2);
6910		return -EINVAL;
6911	}
6912
6913	t1 = btf_type_by_id(btf1, t1->type);
6914	if (!t1 || !btf_type_is_func_proto(t1))
6915		return -EFAULT;
6916	t2 = btf_type_by_id(btf2, t2->type);
6917	if (!t2 || !btf_type_is_func_proto(t2))
6918		return -EFAULT;
6919
6920	args1 = (const struct btf_param *)(t1 + 1);
6921	nargs1 = btf_type_vlen(t1);
6922	args2 = (const struct btf_param *)(t2 + 1);
6923	nargs2 = btf_type_vlen(t2);
6924
6925	if (nargs1 != nargs2) {
6926		bpf_log(log, "%s() has %d args while %s() has %d args\n",
6927			fn1, nargs1, fn2, nargs2);
6928		return -EINVAL;
6929	}
6930
6931	t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6932	t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6933	if (t1->info != t2->info) {
6934		bpf_log(log,
6935			"Return type %s of %s() doesn't match type %s of %s()\n",
6936			btf_type_str(t1), fn1,
6937			btf_type_str(t2), fn2);
6938		return -EINVAL;
6939	}
6940
6941	for (i = 0; i < nargs1; i++) {
6942		t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
6943		t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
6944
6945		if (t1->info != t2->info) {
6946			bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
6947				i, fn1, btf_type_str(t1),
6948				fn2, btf_type_str(t2));
6949			return -EINVAL;
6950		}
6951		if (btf_type_has_size(t1) && t1->size != t2->size) {
6952			bpf_log(log,
6953				"arg%d in %s() has size %d while %s() has %d\n",
6954				i, fn1, t1->size,
6955				fn2, t2->size);
6956			return -EINVAL;
6957		}
6958
6959		/* global functions are validated with scalars and pointers
6960		 * to context only. And only global functions can be replaced.
6961		 * Hence type check only those types.
6962		 */
6963		if (btf_type_is_int(t1) || btf_is_any_enum(t1))
6964			continue;
6965		if (!btf_type_is_ptr(t1)) {
6966			bpf_log(log,
6967				"arg%d in %s() has unrecognized type\n",
6968				i, fn1);
6969			return -EINVAL;
6970		}
6971		t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
6972		t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
6973		if (!btf_type_is_struct(t1)) {
6974			bpf_log(log,
6975				"arg%d in %s() is not a pointer to context\n",
6976				i, fn1);
6977			return -EINVAL;
6978		}
6979		if (!btf_type_is_struct(t2)) {
6980			bpf_log(log,
6981				"arg%d in %s() is not a pointer to context\n",
6982				i, fn2);
6983			return -EINVAL;
6984		}
6985		/* This is an optional check to make program writing easier.
6986		 * Compare names of structs and report an error to the user.
6987		 * btf_prepare_func_args() already checked that t2 struct
6988		 * is a context type. btf_prepare_func_args() will check
6989		 * later that t1 struct is a context type as well.
6990		 */
6991		s1 = btf_name_by_offset(btf1, t1->name_off);
6992		s2 = btf_name_by_offset(btf2, t2->name_off);
6993		if (strcmp(s1, s2)) {
6994			bpf_log(log,
6995				"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
6996				i, fn1, s1, fn2, s2);
6997			return -EINVAL;
6998		}
6999	}
7000	return 0;
7001}
7002
7003/* Compare BTFs of given program with BTF of target program */
7004int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
7005			 struct btf *btf2, const struct btf_type *t2)
7006{
7007	struct btf *btf1 = prog->aux->btf;
7008	const struct btf_type *t1;
7009	u32 btf_id = 0;
7010
7011	if (!prog->aux->func_info) {
7012		bpf_log(log, "Program extension requires BTF\n");
7013		return -EINVAL;
7014	}
7015
7016	btf_id = prog->aux->func_info[0].type_id;
7017	if (!btf_id)
7018		return -EFAULT;
7019
7020	t1 = btf_type_by_id(btf1, btf_id);
7021	if (!t1 || !btf_type_is_func(t1))
7022		return -EFAULT;
7023
7024	return btf_check_func_type_match(log, btf1, t1, btf2, t2);
7025}
7026
7027static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
 
 
 
 
7028{
7029	const char *name;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7030
7031	t = btf_type_by_id(btf, t->type); /* skip PTR */
 
 
 
 
 
 
 
 
 
 
 
 
7032
7033	while (btf_type_is_modifier(t))
7034		t = btf_type_by_id(btf, t->type);
 
 
 
 
 
 
7035
7036	/* allow either struct or struct forward declaration */
7037	if (btf_type_is_struct(t) ||
7038	    (btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
7039		name = btf_str_by_offset(btf, t->name_off);
7040		return name && strcmp(name, "bpf_dynptr") == 0;
 
 
7041	}
7042
7043	return false;
7044}
7045
7046struct bpf_cand_cache {
7047	const char *name;
7048	u32 name_len;
7049	u16 kind;
7050	u16 cnt;
7051	struct {
7052		const struct btf *btf;
7053		u32 id;
7054	} cands[];
7055};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7056
7057static DEFINE_MUTEX(cand_cache_mutex);
 
7058
7059static struct bpf_cand_cache *
7060bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
 
 
 
 
 
 
7061
7062static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
7063				 const struct btf *btf, const struct btf_type *t)
 
 
 
 
 
 
 
 
 
 
 
 
7064{
7065	struct bpf_cand_cache *cc;
7066	struct bpf_core_ctx ctx = {
7067		.btf = btf,
7068		.log = log,
7069	};
7070	u32 kern_type_id, type_id;
7071	int err = 0;
 
 
 
 
 
7072
7073	/* skip PTR and modifiers */
7074	type_id = t->type;
7075	t = btf_type_by_id(btf, t->type);
7076	while (btf_type_is_modifier(t)) {
7077		type_id = t->type;
7078		t = btf_type_by_id(btf, t->type);
7079	}
7080
7081	mutex_lock(&cand_cache_mutex);
7082	cc = bpf_core_find_cands(&ctx, type_id);
7083	if (IS_ERR(cc)) {
7084		err = PTR_ERR(cc);
7085		bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
7086			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7087			err);
7088		goto cand_cache_unlock;
7089	}
7090	if (cc->cnt != 1) {
7091		bpf_log(log, "arg#%d reference type('%s %s') %s\n",
7092			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
7093			cc->cnt == 0 ? "has no matches" : "is ambiguous");
7094		err = cc->cnt == 0 ? -ENOENT : -ESRCH;
7095		goto cand_cache_unlock;
7096	}
7097	if (btf_is_module(cc->cands[0].btf)) {
7098		bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
7099			arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
7100		err = -EOPNOTSUPP;
7101		goto cand_cache_unlock;
7102	}
7103	kern_type_id = cc->cands[0].id;
7104
7105cand_cache_unlock:
7106	mutex_unlock(&cand_cache_mutex);
 
 
7107	if (err)
7108		return err;
7109
7110	return kern_type_id;
7111}
7112
7113enum btf_arg_tag {
7114	ARG_TAG_CTX	 = BIT_ULL(0),
7115	ARG_TAG_NONNULL  = BIT_ULL(1),
7116	ARG_TAG_TRUSTED  = BIT_ULL(2),
7117	ARG_TAG_NULLABLE = BIT_ULL(3),
7118	ARG_TAG_ARENA	 = BIT_ULL(4),
7119};
7120
7121/* Process BTF of a function to produce high-level expectation of function
7122 * arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
7123 * is cached in subprog info for reuse.
7124 * Returns:
7125 * EFAULT - there is a verifier bug. Abort verification.
7126 * EINVAL - cannot convert BTF.
7127 * 0 - Successfully processed BTF and constructed argument expectations.
 
7128 */
7129int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
 
7130{
7131	bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
7132	struct bpf_subprog_info *sub = subprog_info(env, subprog);
7133	struct bpf_verifier_log *log = &env->log;
7134	struct bpf_prog *prog = env->prog;
7135	enum bpf_prog_type prog_type = prog->type;
7136	struct btf *btf = prog->aux->btf;
7137	const struct btf_param *args;
7138	const struct btf_type *t, *ref_t, *fn_t;
7139	u32 i, nargs, btf_id;
7140	const char *tname;
7141
7142	if (sub->args_cached)
7143		return 0;
7144
7145	if (!prog->aux->func_info) {
7146		bpf_log(log, "Verifier bug\n");
7147		return -EFAULT;
7148	}
7149
7150	btf_id = prog->aux->func_info[subprog].type_id;
7151	if (!btf_id) {
7152		if (!is_global) /* not fatal for static funcs */
7153			return -EINVAL;
7154		bpf_log(log, "Global functions need valid BTF\n");
7155		return -EFAULT;
7156	}
7157
7158	fn_t = btf_type_by_id(btf, btf_id);
7159	if (!fn_t || !btf_type_is_func(fn_t)) {
7160		/* These checks were already done by the verifier while loading
7161		 * struct bpf_func_info
7162		 */
7163		bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
7164			subprog);
7165		return -EFAULT;
7166	}
7167	tname = btf_name_by_offset(btf, fn_t->name_off);
 
 
 
 
7168
7169	if (prog->aux->func_info_aux[subprog].unreliable) {
7170		bpf_log(log, "Verifier bug in function %s()\n", tname);
7171		return -EFAULT;
7172	}
7173	if (prog_type == BPF_PROG_TYPE_EXT)
7174		prog_type = prog->aux->dst_prog->type;
7175
7176	t = btf_type_by_id(btf, fn_t->type);
7177	if (!t || !btf_type_is_func_proto(t)) {
7178		bpf_log(log, "Invalid type of function %s()\n", tname);
7179		return -EFAULT;
7180	}
7181	args = (const struct btf_param *)(t + 1);
7182	nargs = btf_type_vlen(t);
7183	if (nargs > MAX_BPF_FUNC_REG_ARGS) {
7184		if (!is_global)
7185			return -EINVAL;
7186		bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
7187			tname, nargs, MAX_BPF_FUNC_REG_ARGS);
7188		return -EINVAL;
7189	}
7190	/* check that function returns int, exception cb also requires this */
7191	t = btf_type_by_id(btf, t->type);
7192	while (btf_type_is_modifier(t))
7193		t = btf_type_by_id(btf, t->type);
7194	if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
7195		if (!is_global)
7196			return -EINVAL;
7197		bpf_log(log,
7198			"Global function %s() doesn't return scalar. Only those are supported.\n",
7199			tname);
7200		return -EINVAL;
7201	}
7202	/* Convert BTF function arguments into verifier types.
7203	 * Only PTR_TO_CTX and SCALAR are supported atm.
7204	 */
7205	for (i = 0; i < nargs; i++) {
7206		u32 tags = 0;
7207		int id = 0;
7208
7209		/* 'arg:<tag>' decl_tag takes precedence over derivation of
7210		 * register type from BTF type itself
7211		 */
7212		while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
7213			const struct btf_type *tag_t = btf_type_by_id(btf, id);
7214			const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
7215
7216			/* disallow arg tags in static subprogs */
7217			if (!is_global) {
7218				bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
7219				return -EOPNOTSUPP;
7220			}
7221
7222			if (strcmp(tag, "ctx") == 0) {
7223				tags |= ARG_TAG_CTX;
7224			} else if (strcmp(tag, "trusted") == 0) {
7225				tags |= ARG_TAG_TRUSTED;
7226			} else if (strcmp(tag, "nonnull") == 0) {
7227				tags |= ARG_TAG_NONNULL;
7228			} else if (strcmp(tag, "nullable") == 0) {
7229				tags |= ARG_TAG_NULLABLE;
7230			} else if (strcmp(tag, "arena") == 0) {
7231				tags |= ARG_TAG_ARENA;
7232			} else {
7233				bpf_log(log, "arg#%d has unsupported set of tags\n", i);
7234				return -EOPNOTSUPP;
7235			}
7236		}
7237		if (id != -ENOENT) {
7238			bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
7239			return id;
7240		}
7241
7242		t = btf_type_by_id(btf, args[i].type);
7243		while (btf_type_is_modifier(t))
7244			t = btf_type_by_id(btf, t->type);
7245		if (!btf_type_is_ptr(t))
7246			goto skip_pointer;
7247
7248		if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
7249			if (tags & ~ARG_TAG_CTX) {
7250				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7251				return -EINVAL;
7252			}
7253			if ((tags & ARG_TAG_CTX) &&
7254			    btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
7255						       prog->expected_attach_type))
7256				return -EINVAL;
7257			sub->args[i].arg_type = ARG_PTR_TO_CTX;
7258			continue;
7259		}
7260		if (btf_is_dynptr_ptr(btf, t)) {
7261			if (tags) {
7262				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7263				return -EINVAL;
7264			}
7265			sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
7266			continue;
7267		}
7268		if (tags & ARG_TAG_TRUSTED) {
7269			int kern_type_id;
7270
7271			if (tags & ARG_TAG_NONNULL) {
7272				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7273				return -EINVAL;
7274			}
7275
7276			kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
7277			if (kern_type_id < 0)
7278				return kern_type_id;
7279
7280			sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
7281			if (tags & ARG_TAG_NULLABLE)
7282				sub->args[i].arg_type |= PTR_MAYBE_NULL;
7283			sub->args[i].btf_id = kern_type_id;
7284			continue;
7285		}
7286		if (tags & ARG_TAG_ARENA) {
7287			if (tags & ~ARG_TAG_ARENA) {
7288				bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
7289				return -EINVAL;
7290			}
7291			sub->args[i].arg_type = ARG_PTR_TO_ARENA;
7292			continue;
7293		}
7294		if (is_global) { /* generic user data pointer */
7295			u32 mem_size;
7296
7297			if (tags & ARG_TAG_NULLABLE) {
7298				bpf_log(log, "arg#%d has invalid combination of tags\n", i);
7299				return -EINVAL;
7300			}
7301
7302			t = btf_type_skip_modifiers(btf, t->type, NULL);
7303			ref_t = btf_resolve_size(btf, t, &mem_size);
7304			if (IS_ERR(ref_t)) {
7305				bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
7306					i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
 
7307					PTR_ERR(ref_t));
7308				return -EINVAL;
7309			}
7310
7311			sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
7312			if (tags & ARG_TAG_NONNULL)
7313				sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
7314			sub->args[i].mem_size = mem_size;
7315			continue;
7316		}
7317
7318skip_pointer:
7319		if (tags) {
7320			bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
7321			return -EINVAL;
7322		}
7323		if (btf_type_is_int(t) || btf_is_any_enum(t)) {
7324			sub->args[i].arg_type = ARG_ANYTHING;
7325			continue;
7326		}
7327		if (!is_global)
7328			return -EINVAL;
7329		bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
7330			i, btf_type_str(t), tname);
7331		return -EINVAL;
7332	}
7333
7334	sub->arg_cnt = nargs;
7335	sub->args_cached = true;
7336
7337	return 0;
7338}
7339
7340static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
7341			  struct btf_show *show)
7342{
7343	const struct btf_type *t = btf_type_by_id(btf, type_id);
7344
7345	show->btf = btf;
7346	memset(&show->state, 0, sizeof(show->state));
7347	memset(&show->obj, 0, sizeof(show->obj));
7348
7349	btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
7350}
7351
7352static void btf_seq_show(struct btf_show *show, const char *fmt,
7353			 va_list args)
7354{
7355	seq_vprintf((struct seq_file *)show->target, fmt, args);
7356}
7357
7358int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
7359			    void *obj, struct seq_file *m, u64 flags)
7360{
7361	struct btf_show sseq;
7362
7363	sseq.target = m;
7364	sseq.showfn = btf_seq_show;
7365	sseq.flags = flags;
7366
7367	btf_type_show(btf, type_id, obj, &sseq);
7368
7369	return sseq.state.status;
7370}
7371
7372void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
7373		       struct seq_file *m)
7374{
7375	(void) btf_type_seq_show_flags(btf, type_id, obj, m,
7376				       BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
7377				       BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
7378}
7379
7380struct btf_show_snprintf {
7381	struct btf_show show;
7382	int len_left;		/* space left in string */
7383	int len;		/* length we would have written */
7384};
7385
7386static void btf_snprintf_show(struct btf_show *show, const char *fmt,
7387			      va_list args)
7388{
7389	struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
7390	int len;
7391
7392	len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
7393
7394	if (len < 0) {
7395		ssnprintf->len_left = 0;
7396		ssnprintf->len = len;
7397	} else if (len >= ssnprintf->len_left) {
7398		/* no space, drive on to get length we would have written */
7399		ssnprintf->len_left = 0;
7400		ssnprintf->len += len;
7401	} else {
7402		ssnprintf->len_left -= len;
7403		ssnprintf->len += len;
7404		show->target += len;
7405	}
7406}
7407
7408int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
7409			   char *buf, int len, u64 flags)
7410{
7411	struct btf_show_snprintf ssnprintf;
7412
7413	ssnprintf.show.target = buf;
7414	ssnprintf.show.flags = flags;
7415	ssnprintf.show.showfn = btf_snprintf_show;
7416	ssnprintf.len_left = len;
7417	ssnprintf.len = 0;
7418
7419	btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
7420
7421	/* If we encountered an error, return it. */
7422	if (ssnprintf.show.state.status)
7423		return ssnprintf.show.state.status;
7424
7425	/* Otherwise return length we would have written */
7426	return ssnprintf.len;
7427}
7428
7429#ifdef CONFIG_PROC_FS
7430static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
7431{
7432	const struct btf *btf = filp->private_data;
7433
7434	seq_printf(m, "btf_id:\t%u\n", btf->id);
7435}
7436#endif
7437
7438static int btf_release(struct inode *inode, struct file *filp)
7439{
7440	btf_put(filp->private_data);
7441	return 0;
7442}
7443
7444const struct file_operations btf_fops = {
7445#ifdef CONFIG_PROC_FS
7446	.show_fdinfo	= bpf_btf_show_fdinfo,
7447#endif
7448	.release	= btf_release,
7449};
7450
7451static int __btf_new_fd(struct btf *btf)
7452{
7453	return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
7454}
7455
7456int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
7457{
7458	struct btf *btf;
7459	int ret;
7460
7461	btf = btf_parse(attr, uattr, uattr_size);
 
 
 
7462	if (IS_ERR(btf))
7463		return PTR_ERR(btf);
7464
7465	ret = btf_alloc_id(btf);
7466	if (ret) {
7467		btf_free(btf);
7468		return ret;
7469	}
7470
7471	/*
7472	 * The BTF ID is published to the userspace.
7473	 * All BTF free must go through call_rcu() from
7474	 * now on (i.e. free by calling btf_put()).
7475	 */
7476
7477	ret = __btf_new_fd(btf);
7478	if (ret < 0)
7479		btf_put(btf);
7480
7481	return ret;
7482}
7483
7484struct btf *btf_get_by_fd(int fd)
7485{
7486	struct btf *btf;
7487	struct fd f;
7488
7489	f = fdget(fd);
7490
7491	if (!f.file)
7492		return ERR_PTR(-EBADF);
7493
7494	if (f.file->f_op != &btf_fops) {
7495		fdput(f);
7496		return ERR_PTR(-EINVAL);
7497	}
7498
7499	btf = f.file->private_data;
7500	refcount_inc(&btf->refcnt);
7501	fdput(f);
7502
7503	return btf;
7504}
7505
7506int btf_get_info_by_fd(const struct btf *btf,
7507		       const union bpf_attr *attr,
7508		       union bpf_attr __user *uattr)
7509{
7510	struct bpf_btf_info __user *uinfo;
7511	struct bpf_btf_info info;
7512	u32 info_copy, btf_copy;
7513	void __user *ubtf;
7514	char __user *uname;
7515	u32 uinfo_len, uname_len, name_len;
7516	int ret = 0;
7517
7518	uinfo = u64_to_user_ptr(attr->info.info);
7519	uinfo_len = attr->info.info_len;
7520
7521	info_copy = min_t(u32, uinfo_len, sizeof(info));
7522	memset(&info, 0, sizeof(info));
7523	if (copy_from_user(&info, uinfo, info_copy))
7524		return -EFAULT;
7525
7526	info.id = btf->id;
7527	ubtf = u64_to_user_ptr(info.btf);
7528	btf_copy = min_t(u32, btf->data_size, info.btf_size);
7529	if (copy_to_user(ubtf, btf->data, btf_copy))
7530		return -EFAULT;
7531	info.btf_size = btf->data_size;
7532
7533	info.kernel_btf = btf->kernel_btf;
7534
7535	uname = u64_to_user_ptr(info.name);
7536	uname_len = info.name_len;
7537	if (!uname ^ !uname_len)
7538		return -EINVAL;
7539
7540	name_len = strlen(btf->name);
7541	info.name_len = name_len;
7542
7543	if (uname) {
7544		if (uname_len >= name_len + 1) {
7545			if (copy_to_user(uname, btf->name, name_len + 1))
7546				return -EFAULT;
7547		} else {
7548			char zero = '\0';
7549
7550			if (copy_to_user(uname, btf->name, uname_len - 1))
7551				return -EFAULT;
7552			if (put_user(zero, uname + uname_len - 1))
7553				return -EFAULT;
7554			/* let user-space know about too short buffer */
7555			ret = -ENOSPC;
7556		}
7557	}
7558
7559	if (copy_to_user(uinfo, &info, info_copy) ||
7560	    put_user(info_copy, &uattr->info.info_len))
7561		return -EFAULT;
7562
7563	return ret;
7564}
7565
7566int btf_get_fd_by_id(u32 id)
7567{
7568	struct btf *btf;
7569	int fd;
7570
7571	rcu_read_lock();
7572	btf = idr_find(&btf_idr, id);
7573	if (!btf || !refcount_inc_not_zero(&btf->refcnt))
7574		btf = ERR_PTR(-ENOENT);
7575	rcu_read_unlock();
7576
7577	if (IS_ERR(btf))
7578		return PTR_ERR(btf);
7579
7580	fd = __btf_new_fd(btf);
7581	if (fd < 0)
7582		btf_put(btf);
7583
7584	return fd;
7585}
7586
7587u32 btf_obj_id(const struct btf *btf)
7588{
7589	return btf->id;
7590}
7591
7592bool btf_is_kernel(const struct btf *btf)
7593{
7594	return btf->kernel_btf;
7595}
7596
7597bool btf_is_module(const struct btf *btf)
7598{
7599	return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
7600}
7601
7602enum {
7603	BTF_MODULE_F_LIVE = (1 << 0),
7604};
7605
7606#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7607struct btf_module {
7608	struct list_head list;
7609	struct module *module;
7610	struct btf *btf;
7611	struct bin_attribute *sysfs_attr;
7612	int flags;
7613};
7614
7615static LIST_HEAD(btf_modules);
7616static DEFINE_MUTEX(btf_module_mutex);
7617
7618static ssize_t
7619btf_module_read(struct file *file, struct kobject *kobj,
7620		struct bin_attribute *bin_attr,
7621		char *buf, loff_t off, size_t len)
7622{
7623	const struct btf *btf = bin_attr->private;
7624
7625	memcpy(buf, btf->data + off, len);
7626	return len;
7627}
7628
7629static void purge_cand_cache(struct btf *btf);
7630
7631static int btf_module_notify(struct notifier_block *nb, unsigned long op,
7632			     void *module)
7633{
7634	struct btf_module *btf_mod, *tmp;
7635	struct module *mod = module;
7636	struct btf *btf;
7637	int err = 0;
7638
7639	if (mod->btf_data_size == 0 ||
7640	    (op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
7641	     op != MODULE_STATE_GOING))
7642		goto out;
7643
7644	switch (op) {
7645	case MODULE_STATE_COMING:
7646		btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
7647		if (!btf_mod) {
7648			err = -ENOMEM;
7649			goto out;
7650		}
7651		btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size);
7652		if (IS_ERR(btf)) {
 
 
7653			kfree(btf_mod);
7654			if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
7655				pr_warn("failed to validate module [%s] BTF: %ld\n",
7656					mod->name, PTR_ERR(btf));
7657				err = PTR_ERR(btf);
7658			} else {
7659				pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
7660			}
7661			goto out;
7662		}
7663		err = btf_alloc_id(btf);
7664		if (err) {
7665			btf_free(btf);
7666			kfree(btf_mod);
7667			goto out;
7668		}
7669
7670		purge_cand_cache(NULL);
7671		mutex_lock(&btf_module_mutex);
7672		btf_mod->module = module;
7673		btf_mod->btf = btf;
7674		list_add(&btf_mod->list, &btf_modules);
7675		mutex_unlock(&btf_module_mutex);
7676
7677		if (IS_ENABLED(CONFIG_SYSFS)) {
7678			struct bin_attribute *attr;
7679
7680			attr = kzalloc(sizeof(*attr), GFP_KERNEL);
7681			if (!attr)
7682				goto out;
7683
7684			sysfs_bin_attr_init(attr);
7685			attr->attr.name = btf->name;
7686			attr->attr.mode = 0444;
7687			attr->size = btf->data_size;
7688			attr->private = btf;
7689			attr->read = btf_module_read;
7690
7691			err = sysfs_create_bin_file(btf_kobj, attr);
7692			if (err) {
7693				pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
7694					mod->name, err);
7695				kfree(attr);
7696				err = 0;
7697				goto out;
7698			}
7699
7700			btf_mod->sysfs_attr = attr;
7701		}
7702
7703		break;
7704	case MODULE_STATE_LIVE:
7705		mutex_lock(&btf_module_mutex);
7706		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7707			if (btf_mod->module != module)
7708				continue;
7709
7710			btf_mod->flags |= BTF_MODULE_F_LIVE;
7711			break;
7712		}
7713		mutex_unlock(&btf_module_mutex);
7714		break;
7715	case MODULE_STATE_GOING:
7716		mutex_lock(&btf_module_mutex);
7717		list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7718			if (btf_mod->module != module)
7719				continue;
7720
7721			list_del(&btf_mod->list);
7722			if (btf_mod->sysfs_attr)
7723				sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
7724			purge_cand_cache(btf_mod->btf);
7725			btf_put(btf_mod->btf);
7726			kfree(btf_mod->sysfs_attr);
7727			kfree(btf_mod);
7728			break;
7729		}
7730		mutex_unlock(&btf_module_mutex);
7731		break;
7732	}
7733out:
7734	return notifier_from_errno(err);
7735}
7736
7737static struct notifier_block btf_module_nb = {
7738	.notifier_call = btf_module_notify,
7739};
7740
7741static int __init btf_module_init(void)
7742{
7743	register_module_notifier(&btf_module_nb);
7744	return 0;
7745}
7746
7747fs_initcall(btf_module_init);
7748#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
7749
7750struct module *btf_try_get_module(const struct btf *btf)
7751{
7752	struct module *res = NULL;
7753#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7754	struct btf_module *btf_mod, *tmp;
7755
7756	mutex_lock(&btf_module_mutex);
7757	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7758		if (btf_mod->btf != btf)
7759			continue;
7760
7761		/* We must only consider module whose __init routine has
7762		 * finished, hence we must check for BTF_MODULE_F_LIVE flag,
7763		 * which is set from the notifier callback for
7764		 * MODULE_STATE_LIVE.
7765		 */
7766		if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
7767			res = btf_mod->module;
7768
7769		break;
7770	}
7771	mutex_unlock(&btf_module_mutex);
7772#endif
7773
7774	return res;
7775}
7776
7777/* Returns struct btf corresponding to the struct module.
7778 * This function can return NULL or ERR_PTR.
7779 */
7780static struct btf *btf_get_module_btf(const struct module *module)
7781{
7782#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7783	struct btf_module *btf_mod, *tmp;
7784#endif
7785	struct btf *btf = NULL;
7786
7787	if (!module) {
7788		btf = bpf_get_btf_vmlinux();
7789		if (!IS_ERR_OR_NULL(btf))
7790			btf_get(btf);
7791		return btf;
7792	}
7793
7794#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
7795	mutex_lock(&btf_module_mutex);
7796	list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
7797		if (btf_mod->module != module)
7798			continue;
7799
7800		btf_get(btf_mod->btf);
7801		btf = btf_mod->btf;
7802		break;
7803	}
7804	mutex_unlock(&btf_module_mutex);
7805#endif
7806
7807	return btf;
7808}
7809
7810static int check_btf_kconfigs(const struct module *module, const char *feature)
7811{
7812	if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
7813		pr_err("missing vmlinux BTF, cannot register %s\n", feature);
7814		return -ENOENT;
7815	}
7816	if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
7817		pr_warn("missing module BTF, cannot register %s\n", feature);
7818	return 0;
7819}
7820
7821BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
7822{
7823	struct btf *btf = NULL;
7824	int btf_obj_fd = 0;
7825	long ret;
7826
7827	if (flags)
7828		return -EINVAL;
7829
7830	if (name_sz <= 1 || name[name_sz - 1])
7831		return -EINVAL;
7832
7833	ret = bpf_find_btf_id(name, kind, &btf);
7834	if (ret > 0 && btf_is_module(btf)) {
7835		btf_obj_fd = __btf_new_fd(btf);
7836		if (btf_obj_fd < 0) {
7837			btf_put(btf);
7838			return btf_obj_fd;
7839		}
7840		return ret | (((u64)btf_obj_fd) << 32);
7841	}
7842	if (ret > 0)
7843		btf_put(btf);
7844	return ret;
7845}
7846
7847const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
7848	.func		= bpf_btf_find_by_name_kind,
7849	.gpl_only	= false,
7850	.ret_type	= RET_INTEGER,
7851	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7852	.arg2_type	= ARG_CONST_SIZE,
7853	.arg3_type	= ARG_ANYTHING,
7854	.arg4_type	= ARG_ANYTHING,
7855};
7856
7857BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
7858#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
7859BTF_TRACING_TYPE_xxx
7860#undef BTF_TRACING_TYPE
7861
7862static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
7863				 const struct btf_type *func, u32 func_flags)
7864{
7865	u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
7866	const char *name, *sfx, *iter_name;
7867	const struct btf_param *arg;
7868	const struct btf_type *t;
7869	char exp_name[128];
7870	u32 nr_args;
7871
7872	/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
7873	if (!flags || (flags & (flags - 1)))
7874		return -EINVAL;
7875
7876	/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
7877	nr_args = btf_type_vlen(func);
7878	if (nr_args < 1)
7879		return -EINVAL;
7880
7881	arg = &btf_params(func)[0];
7882	t = btf_type_skip_modifiers(btf, arg->type, NULL);
7883	if (!t || !btf_type_is_ptr(t))
7884		return -EINVAL;
7885	t = btf_type_skip_modifiers(btf, t->type, NULL);
7886	if (!t || !__btf_type_is_struct(t))
7887		return -EINVAL;
7888
7889	name = btf_name_by_offset(btf, t->name_off);
7890	if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
7891		return -EINVAL;
7892
7893	/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
7894	 * fit nicely in stack slots
7895	 */
7896	if (t->size == 0 || (t->size % 8))
7897		return -EINVAL;
7898
7899	/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
7900	 * naming pattern
7901	 */
7902	iter_name = name + sizeof(ITER_PREFIX) - 1;
7903	if (flags & KF_ITER_NEW)
7904		sfx = "new";
7905	else if (flags & KF_ITER_NEXT)
7906		sfx = "next";
7907	else /* (flags & KF_ITER_DESTROY) */
7908		sfx = "destroy";
7909
7910	snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
7911	if (strcmp(func_name, exp_name))
7912		return -EINVAL;
7913
7914	/* only iter constructor should have extra arguments */
7915	if (!(flags & KF_ITER_NEW) && nr_args != 1)
7916		return -EINVAL;
7917
7918	if (flags & KF_ITER_NEXT) {
7919		/* bpf_iter_<type>_next() should return pointer */
7920		t = btf_type_skip_modifiers(btf, func->type, NULL);
7921		if (!t || !btf_type_is_ptr(t))
7922			return -EINVAL;
7923	}
7924
7925	if (flags & KF_ITER_DESTROY) {
7926		/* bpf_iter_<type>_destroy() should return void */
7927		t = btf_type_by_id(btf, func->type);
7928		if (!t || !btf_type_is_void(t))
7929			return -EINVAL;
7930	}
7931
7932	return 0;
7933}
7934
7935static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
7936{
7937	const struct btf_type *func;
7938	const char *func_name;
7939	int err;
7940
7941	/* any kfunc should be FUNC -> FUNC_PROTO */
7942	func = btf_type_by_id(btf, func_id);
7943	if (!func || !btf_type_is_func(func))
7944		return -EINVAL;
7945
7946	/* sanity check kfunc name */
7947	func_name = btf_name_by_offset(btf, func->name_off);
7948	if (!func_name || !func_name[0])
7949		return -EINVAL;
7950
7951	func = btf_type_by_id(btf, func->type);
7952	if (!func || !btf_type_is_func_proto(func))
7953		return -EINVAL;
7954
7955	if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
7956		err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
7957		if (err)
7958			return err;
7959	}
7960
7961	return 0;
7962}
7963
7964/* Kernel Function (kfunc) BTF ID set registration API */
7965
7966static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
7967				  const struct btf_kfunc_id_set *kset)
7968{
7969	struct btf_kfunc_hook_filter *hook_filter;
7970	struct btf_id_set8 *add_set = kset->set;
7971	bool vmlinux_set = !btf_is_module(btf);
7972	bool add_filter = !!kset->filter;
7973	struct btf_kfunc_set_tab *tab;
7974	struct btf_id_set8 *set;
7975	u32 set_cnt;
7976	int ret;
7977
7978	if (hook >= BTF_KFUNC_HOOK_MAX) {
7979		ret = -EINVAL;
7980		goto end;
7981	}
7982
7983	if (!add_set->cnt)
7984		return 0;
7985
7986	tab = btf->kfunc_set_tab;
7987
7988	if (tab && add_filter) {
7989		u32 i;
7990
7991		hook_filter = &tab->hook_filters[hook];
7992		for (i = 0; i < hook_filter->nr_filters; i++) {
7993			if (hook_filter->filters[i] == kset->filter) {
7994				add_filter = false;
7995				break;
7996			}
7997		}
7998
7999		if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
8000			ret = -E2BIG;
8001			goto end;
8002		}
8003	}
8004
8005	if (!tab) {
8006		tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
8007		if (!tab)
8008			return -ENOMEM;
8009		btf->kfunc_set_tab = tab;
8010	}
8011
8012	set = tab->sets[hook];
8013	/* Warn when register_btf_kfunc_id_set is called twice for the same hook
8014	 * for module sets.
8015	 */
8016	if (WARN_ON_ONCE(set && !vmlinux_set)) {
8017		ret = -EINVAL;
8018		goto end;
8019	}
8020
8021	/* We don't need to allocate, concatenate, and sort module sets, because
8022	 * only one is allowed per hook. Hence, we can directly assign the
8023	 * pointer and return.
8024	 */
8025	if (!vmlinux_set) {
8026		tab->sets[hook] = add_set;
8027		goto do_add_filter;
8028	}
8029
8030	/* In case of vmlinux sets, there may be more than one set being
8031	 * registered per hook. To create a unified set, we allocate a new set
8032	 * and concatenate all individual sets being registered. While each set
8033	 * is individually sorted, they may become unsorted when concatenated,
8034	 * hence re-sorting the final set again is required to make binary
8035	 * searching the set using btf_id_set8_contains function work.
8036	 */
8037	set_cnt = set ? set->cnt : 0;
8038
8039	if (set_cnt > U32_MAX - add_set->cnt) {
8040		ret = -EOVERFLOW;
8041		goto end;
8042	}
8043
8044	if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
8045		ret = -E2BIG;
8046		goto end;
8047	}
8048
8049	/* Grow set */
8050	set = krealloc(tab->sets[hook],
8051		       offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
8052		       GFP_KERNEL | __GFP_NOWARN);
8053	if (!set) {
8054		ret = -ENOMEM;
8055		goto end;
8056	}
8057
8058	/* For newly allocated set, initialize set->cnt to 0 */
8059	if (!tab->sets[hook])
8060		set->cnt = 0;
8061	tab->sets[hook] = set;
8062
8063	/* Concatenate the two sets */
8064	memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
8065	set->cnt += add_set->cnt;
8066
8067	sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
8068
8069do_add_filter:
8070	if (add_filter) {
8071		hook_filter = &tab->hook_filters[hook];
8072		hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
8073	}
8074	return 0;
8075end:
8076	btf_free_kfunc_set_tab(btf);
8077	return ret;
8078}
8079
8080static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
8081					enum btf_kfunc_hook hook,
8082					u32 kfunc_btf_id,
8083					const struct bpf_prog *prog)
8084{
8085	struct btf_kfunc_hook_filter *hook_filter;
8086	struct btf_id_set8 *set;
8087	u32 *id, i;
8088
8089	if (hook >= BTF_KFUNC_HOOK_MAX)
8090		return NULL;
8091	if (!btf->kfunc_set_tab)
8092		return NULL;
8093	hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
8094	for (i = 0; i < hook_filter->nr_filters; i++) {
8095		if (hook_filter->filters[i](prog, kfunc_btf_id))
8096			return NULL;
8097	}
8098	set = btf->kfunc_set_tab->sets[hook];
8099	if (!set)
8100		return NULL;
8101	id = btf_id_set8_contains(set, kfunc_btf_id);
8102	if (!id)
8103		return NULL;
8104	/* The flags for BTF ID are located next to it */
8105	return id + 1;
8106}
8107
8108static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
8109{
8110	switch (prog_type) {
8111	case BPF_PROG_TYPE_UNSPEC:
8112		return BTF_KFUNC_HOOK_COMMON;
8113	case BPF_PROG_TYPE_XDP:
8114		return BTF_KFUNC_HOOK_XDP;
8115	case BPF_PROG_TYPE_SCHED_CLS:
8116		return BTF_KFUNC_HOOK_TC;
8117	case BPF_PROG_TYPE_STRUCT_OPS:
8118		return BTF_KFUNC_HOOK_STRUCT_OPS;
8119	case BPF_PROG_TYPE_TRACING:
8120	case BPF_PROG_TYPE_LSM:
8121		return BTF_KFUNC_HOOK_TRACING;
8122	case BPF_PROG_TYPE_SYSCALL:
8123		return BTF_KFUNC_HOOK_SYSCALL;
8124	case BPF_PROG_TYPE_CGROUP_SKB:
8125	case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
8126		return BTF_KFUNC_HOOK_CGROUP_SKB;
8127	case BPF_PROG_TYPE_SCHED_ACT:
8128		return BTF_KFUNC_HOOK_SCHED_ACT;
8129	case BPF_PROG_TYPE_SK_SKB:
8130		return BTF_KFUNC_HOOK_SK_SKB;
8131	case BPF_PROG_TYPE_SOCKET_FILTER:
8132		return BTF_KFUNC_HOOK_SOCKET_FILTER;
8133	case BPF_PROG_TYPE_LWT_OUT:
8134	case BPF_PROG_TYPE_LWT_IN:
8135	case BPF_PROG_TYPE_LWT_XMIT:
8136	case BPF_PROG_TYPE_LWT_SEG6LOCAL:
8137		return BTF_KFUNC_HOOK_LWT;
8138	case BPF_PROG_TYPE_NETFILTER:
8139		return BTF_KFUNC_HOOK_NETFILTER;
8140	default:
8141		return BTF_KFUNC_HOOK_MAX;
8142	}
8143}
8144
8145/* Caution:
8146 * Reference to the module (obtained using btf_try_get_module) corresponding to
8147 * the struct btf *MUST* be held when calling this function from verifier
8148 * context. This is usually true as we stash references in prog's kfunc_btf_tab;
8149 * keeping the reference for the duration of the call provides the necessary
8150 * protection for looking up a well-formed btf->kfunc_set_tab.
8151 */
8152u32 *btf_kfunc_id_set_contains(const struct btf *btf,
8153			       u32 kfunc_btf_id,
8154			       const struct bpf_prog *prog)
8155{
8156	enum bpf_prog_type prog_type = resolve_prog_type(prog);
8157	enum btf_kfunc_hook hook;
8158	u32 *kfunc_flags;
8159
8160	kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
8161	if (kfunc_flags)
8162		return kfunc_flags;
8163
8164	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8165	return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
8166}
8167
8168u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
8169				const struct bpf_prog *prog)
8170{
8171	return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
8172}
8173
8174static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
8175				       const struct btf_kfunc_id_set *kset)
8176{
8177	struct btf *btf;
8178	int ret, i;
8179
8180	btf = btf_get_module_btf(kset->owner);
8181	if (!btf)
8182		return check_btf_kconfigs(kset->owner, "kfunc");
 
 
 
 
 
 
 
 
 
8183	if (IS_ERR(btf))
8184		return PTR_ERR(btf);
8185
8186	for (i = 0; i < kset->set->cnt; i++) {
8187		ret = btf_check_kfunc_protos(btf, kset->set->pairs[i].id,
8188					     kset->set->pairs[i].flags);
8189		if (ret)
8190			goto err_out;
8191	}
8192
8193	ret = btf_populate_kfunc_set(btf, hook, kset);
8194
8195err_out:
8196	btf_put(btf);
8197	return ret;
8198}
8199
8200/* This function must be invoked only from initcalls/module init functions */
8201int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
8202			      const struct btf_kfunc_id_set *kset)
8203{
8204	enum btf_kfunc_hook hook;
8205
8206	/* All kfuncs need to be tagged as such in BTF.
8207	 * WARN() for initcall registrations that do not check errors.
8208	 */
8209	if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
8210		WARN_ON(!kset->owner);
8211		return -EINVAL;
8212	}
8213
8214	hook = bpf_prog_type_to_kfunc_hook(prog_type);
8215	return __register_btf_kfunc_id_set(hook, kset);
8216}
8217EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
8218
8219/* This function must be invoked only from initcalls/module init functions */
8220int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
8221{
8222	return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
8223}
8224EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
8225
8226s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
8227{
8228	struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
8229	struct btf_id_dtor_kfunc *dtor;
8230
8231	if (!tab)
8232		return -ENOENT;
8233	/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
8234	 * to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
8235	 */
8236	BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
8237	dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
8238	if (!dtor)
8239		return -ENOENT;
8240	return dtor->kfunc_btf_id;
8241}
8242
8243static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
8244{
8245	const struct btf_type *dtor_func, *dtor_func_proto, *t;
8246	const struct btf_param *args;
8247	s32 dtor_btf_id;
8248	u32 nr_args, i;
8249
8250	for (i = 0; i < cnt; i++) {
8251		dtor_btf_id = dtors[i].kfunc_btf_id;
8252
8253		dtor_func = btf_type_by_id(btf, dtor_btf_id);
8254		if (!dtor_func || !btf_type_is_func(dtor_func))
8255			return -EINVAL;
8256
8257		dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
8258		if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
8259			return -EINVAL;
8260
8261		/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
8262		t = btf_type_by_id(btf, dtor_func_proto->type);
8263		if (!t || !btf_type_is_void(t))
8264			return -EINVAL;
8265
8266		nr_args = btf_type_vlen(dtor_func_proto);
8267		if (nr_args != 1)
8268			return -EINVAL;
8269		args = btf_params(dtor_func_proto);
8270		t = btf_type_by_id(btf, args[0].type);
8271		/* Allow any pointer type, as width on targets Linux supports
8272		 * will be same for all pointer types (i.e. sizeof(void *))
8273		 */
8274		if (!t || !btf_type_is_ptr(t))
8275			return -EINVAL;
8276	}
8277	return 0;
8278}
8279
8280/* This function must be invoked only from initcalls/module init functions */
8281int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
8282				struct module *owner)
8283{
8284	struct btf_id_dtor_kfunc_tab *tab;
8285	struct btf *btf;
8286	u32 tab_cnt;
8287	int ret;
8288
8289	btf = btf_get_module_btf(owner);
8290	if (!btf)
8291		return check_btf_kconfigs(owner, "dtor kfuncs");
 
 
 
 
 
 
 
 
 
8292	if (IS_ERR(btf))
8293		return PTR_ERR(btf);
8294
8295	if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8296		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8297		ret = -E2BIG;
8298		goto end;
8299	}
8300
8301	/* Ensure that the prototype of dtor kfuncs being registered is sane */
8302	ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
8303	if (ret < 0)
8304		goto end;
8305
8306	tab = btf->dtor_kfunc_tab;
8307	/* Only one call allowed for modules */
8308	if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
8309		ret = -EINVAL;
8310		goto end;
8311	}
8312
8313	tab_cnt = tab ? tab->cnt : 0;
8314	if (tab_cnt > U32_MAX - add_cnt) {
8315		ret = -EOVERFLOW;
8316		goto end;
8317	}
8318	if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
8319		pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
8320		ret = -E2BIG;
8321		goto end;
8322	}
8323
8324	tab = krealloc(btf->dtor_kfunc_tab,
8325		       offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
8326		       GFP_KERNEL | __GFP_NOWARN);
8327	if (!tab) {
8328		ret = -ENOMEM;
8329		goto end;
8330	}
8331
8332	if (!btf->dtor_kfunc_tab)
8333		tab->cnt = 0;
8334	btf->dtor_kfunc_tab = tab;
8335
8336	memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
8337	tab->cnt += add_cnt;
8338
8339	sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
8340
8341end:
8342	if (ret)
8343		btf_free_dtor_kfunc_tab(btf);
8344	btf_put(btf);
8345	return ret;
8346}
8347EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
8348
8349#define MAX_TYPES_ARE_COMPAT_DEPTH 2
8350
8351/* Check local and target types for compatibility. This check is used for
8352 * type-based CO-RE relocations and follow slightly different rules than
8353 * field-based relocations. This function assumes that root types were already
8354 * checked for name match. Beyond that initial root-level name check, names
8355 * are completely ignored. Compatibility rules are as follows:
8356 *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
8357 *     kind should match for local and target types (i.e., STRUCT is not
8358 *     compatible with UNION);
8359 *   - for ENUMs/ENUM64s, the size is ignored;
8360 *   - for INT, size and signedness are ignored;
8361 *   - for ARRAY, dimensionality is ignored, element types are checked for
8362 *     compatibility recursively;
8363 *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
8364 *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
8365 *   - FUNC_PROTOs are compatible if they have compatible signature: same
8366 *     number of input args and compatible return and argument types.
8367 * These rules are not set in stone and probably will be adjusted as we get
8368 * more experience with using BPF CO-RE relocations.
8369 */
8370int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
8371			      const struct btf *targ_btf, __u32 targ_id)
8372{
8373	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
8374					   MAX_TYPES_ARE_COMPAT_DEPTH);
8375}
8376
8377#define MAX_TYPES_MATCH_DEPTH 2
8378
8379int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
8380			 const struct btf *targ_btf, u32 targ_id)
8381{
8382	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
8383				      MAX_TYPES_MATCH_DEPTH);
8384}
8385
8386static bool bpf_core_is_flavor_sep(const char *s)
8387{
8388	/* check X___Y name pattern, where X and Y are not underscores */
8389	return s[0] != '_' &&				      /* X */
8390	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
8391	       s[4] != '_';				      /* Y */
8392}
8393
8394size_t bpf_core_essential_name_len(const char *name)
8395{
8396	size_t n = strlen(name);
8397	int i;
8398
8399	for (i = n - 5; i >= 0; i--) {
8400		if (bpf_core_is_flavor_sep(name + i))
8401			return i + 1;
8402	}
8403	return n;
8404}
8405
 
 
 
 
 
 
 
 
 
 
 
8406static void bpf_free_cands(struct bpf_cand_cache *cands)
8407{
8408	if (!cands->cnt)
8409		/* empty candidate array was allocated on stack */
8410		return;
8411	kfree(cands);
8412}
8413
8414static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
8415{
8416	kfree(cands->name);
8417	kfree(cands);
8418}
8419
8420#define VMLINUX_CAND_CACHE_SIZE 31
8421static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
8422
8423#define MODULE_CAND_CACHE_SIZE 31
8424static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
8425
 
 
8426static void __print_cand_cache(struct bpf_verifier_log *log,
8427			       struct bpf_cand_cache **cache,
8428			       int cache_size)
8429{
8430	struct bpf_cand_cache *cc;
8431	int i, j;
8432
8433	for (i = 0; i < cache_size; i++) {
8434		cc = cache[i];
8435		if (!cc)
8436			continue;
8437		bpf_log(log, "[%d]%s(", i, cc->name);
8438		for (j = 0; j < cc->cnt; j++) {
8439			bpf_log(log, "%d", cc->cands[j].id);
8440			if (j < cc->cnt - 1)
8441				bpf_log(log, " ");
8442		}
8443		bpf_log(log, "), ");
8444	}
8445}
8446
8447static void print_cand_cache(struct bpf_verifier_log *log)
8448{
8449	mutex_lock(&cand_cache_mutex);
8450	bpf_log(log, "vmlinux_cand_cache:");
8451	__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8452	bpf_log(log, "\nmodule_cand_cache:");
8453	__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8454	bpf_log(log, "\n");
8455	mutex_unlock(&cand_cache_mutex);
8456}
8457
8458static u32 hash_cands(struct bpf_cand_cache *cands)
8459{
8460	return jhash(cands->name, cands->name_len, 0);
8461}
8462
8463static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
8464					       struct bpf_cand_cache **cache,
8465					       int cache_size)
8466{
8467	struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
8468
8469	if (cc && cc->name_len == cands->name_len &&
8470	    !strncmp(cc->name, cands->name, cands->name_len))
8471		return cc;
8472	return NULL;
8473}
8474
8475static size_t sizeof_cands(int cnt)
8476{
8477	return offsetof(struct bpf_cand_cache, cands[cnt]);
8478}
8479
8480static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
8481						  struct bpf_cand_cache **cache,
8482						  int cache_size)
8483{
8484	struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
8485
8486	if (*cc) {
8487		bpf_free_cands_from_cache(*cc);
8488		*cc = NULL;
8489	}
8490	new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
8491	if (!new_cands) {
8492		bpf_free_cands(cands);
8493		return ERR_PTR(-ENOMEM);
8494	}
8495	/* strdup the name, since it will stay in cache.
8496	 * the cands->name points to strings in prog's BTF and the prog can be unloaded.
8497	 */
8498	new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
8499	bpf_free_cands(cands);
8500	if (!new_cands->name) {
8501		kfree(new_cands);
8502		return ERR_PTR(-ENOMEM);
8503	}
8504	*cc = new_cands;
8505	return new_cands;
8506}
8507
8508#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
8509static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
8510			       int cache_size)
8511{
8512	struct bpf_cand_cache *cc;
8513	int i, j;
8514
8515	for (i = 0; i < cache_size; i++) {
8516		cc = cache[i];
8517		if (!cc)
8518			continue;
8519		if (!btf) {
8520			/* when new module is loaded purge all of module_cand_cache,
8521			 * since new module might have candidates with the name
8522			 * that matches cached cands.
8523			 */
8524			bpf_free_cands_from_cache(cc);
8525			cache[i] = NULL;
8526			continue;
8527		}
8528		/* when module is unloaded purge cache entries
8529		 * that match module's btf
8530		 */
8531		for (j = 0; j < cc->cnt; j++)
8532			if (cc->cands[j].btf == btf) {
8533				bpf_free_cands_from_cache(cc);
8534				cache[i] = NULL;
8535				break;
8536			}
8537	}
8538
8539}
8540
8541static void purge_cand_cache(struct btf *btf)
8542{
8543	mutex_lock(&cand_cache_mutex);
8544	__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8545	mutex_unlock(&cand_cache_mutex);
8546}
8547#endif
8548
8549static struct bpf_cand_cache *
8550bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
8551		   int targ_start_id)
8552{
8553	struct bpf_cand_cache *new_cands;
8554	const struct btf_type *t;
8555	const char *targ_name;
8556	size_t targ_essent_len;
8557	int n, i;
8558
8559	n = btf_nr_types(targ_btf);
8560	for (i = targ_start_id; i < n; i++) {
8561		t = btf_type_by_id(targ_btf, i);
8562		if (btf_kind(t) != cands->kind)
8563			continue;
8564
8565		targ_name = btf_name_by_offset(targ_btf, t->name_off);
8566		if (!targ_name)
8567			continue;
8568
8569		/* the resched point is before strncmp to make sure that search
8570		 * for non-existing name will have a chance to schedule().
8571		 */
8572		cond_resched();
8573
8574		if (strncmp(cands->name, targ_name, cands->name_len) != 0)
8575			continue;
8576
8577		targ_essent_len = bpf_core_essential_name_len(targ_name);
8578		if (targ_essent_len != cands->name_len)
8579			continue;
8580
8581		/* most of the time there is only one candidate for a given kind+name pair */
8582		new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
8583		if (!new_cands) {
8584			bpf_free_cands(cands);
8585			return ERR_PTR(-ENOMEM);
8586		}
8587
8588		memcpy(new_cands, cands, sizeof_cands(cands->cnt));
8589		bpf_free_cands(cands);
8590		cands = new_cands;
8591		cands->cands[cands->cnt].btf = targ_btf;
8592		cands->cands[cands->cnt].id = i;
8593		cands->cnt++;
8594	}
8595	return cands;
8596}
8597
8598static struct bpf_cand_cache *
8599bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
8600{
8601	struct bpf_cand_cache *cands, *cc, local_cand = {};
8602	const struct btf *local_btf = ctx->btf;
8603	const struct btf_type *local_type;
8604	const struct btf *main_btf;
8605	size_t local_essent_len;
8606	struct btf *mod_btf;
8607	const char *name;
8608	int id;
8609
8610	main_btf = bpf_get_btf_vmlinux();
8611	if (IS_ERR(main_btf))
8612		return ERR_CAST(main_btf);
8613	if (!main_btf)
8614		return ERR_PTR(-EINVAL);
8615
8616	local_type = btf_type_by_id(local_btf, local_type_id);
8617	if (!local_type)
8618		return ERR_PTR(-EINVAL);
8619
8620	name = btf_name_by_offset(local_btf, local_type->name_off);
8621	if (str_is_empty(name))
8622		return ERR_PTR(-EINVAL);
8623	local_essent_len = bpf_core_essential_name_len(name);
8624
8625	cands = &local_cand;
8626	cands->name = name;
8627	cands->kind = btf_kind(local_type);
8628	cands->name_len = local_essent_len;
8629
8630	cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8631	/* cands is a pointer to stack here */
8632	if (cc) {
8633		if (cc->cnt)
8634			return cc;
8635		goto check_modules;
8636	}
8637
8638	/* Attempt to find target candidates in vmlinux BTF first */
8639	cands = bpf_core_add_cands(cands, main_btf, 1);
8640	if (IS_ERR(cands))
8641		return ERR_CAST(cands);
8642
8643	/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
8644
8645	/* populate cache even when cands->cnt == 0 */
8646	cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
8647	if (IS_ERR(cc))
8648		return ERR_CAST(cc);
8649
8650	/* if vmlinux BTF has any candidate, don't go for module BTFs */
8651	if (cc->cnt)
8652		return cc;
8653
8654check_modules:
8655	/* cands is a pointer to stack here and cands->cnt == 0 */
8656	cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8657	if (cc)
8658		/* if cache has it return it even if cc->cnt == 0 */
8659		return cc;
8660
8661	/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
8662	spin_lock_bh(&btf_idr_lock);
8663	idr_for_each_entry(&btf_idr, mod_btf, id) {
8664		if (!btf_is_module(mod_btf))
8665			continue;
8666		/* linear search could be slow hence unlock/lock
8667		 * the IDR to avoiding holding it for too long
8668		 */
8669		btf_get(mod_btf);
8670		spin_unlock_bh(&btf_idr_lock);
8671		cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
8672		btf_put(mod_btf);
8673		if (IS_ERR(cands))
8674			return ERR_CAST(cands);
 
8675		spin_lock_bh(&btf_idr_lock);
 
8676	}
8677	spin_unlock_bh(&btf_idr_lock);
8678	/* cands is a pointer to kmalloced memory here if cands->cnt > 0
8679	 * or pointer to stack if cands->cnd == 0.
8680	 * Copy it into the cache even when cands->cnt == 0 and
8681	 * return the result.
8682	 */
8683	return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
8684}
8685
8686int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
8687		   int relo_idx, void *insn)
8688{
8689	bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
8690	struct bpf_core_cand_list cands = {};
8691	struct bpf_core_relo_res targ_res;
8692	struct bpf_core_spec *specs;
8693	int err;
8694
8695	/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
8696	 * into arrays of btf_ids of struct fields and array indices.
8697	 */
8698	specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
8699	if (!specs)
8700		return -ENOMEM;
8701
8702	if (need_cands) {
8703		struct bpf_cand_cache *cc;
8704		int i;
8705
8706		mutex_lock(&cand_cache_mutex);
8707		cc = bpf_core_find_cands(ctx, relo->type_id);
8708		if (IS_ERR(cc)) {
8709			bpf_log(ctx->log, "target candidate search failed for %d\n",
8710				relo->type_id);
8711			err = PTR_ERR(cc);
8712			goto out;
8713		}
8714		if (cc->cnt) {
8715			cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
8716			if (!cands.cands) {
8717				err = -ENOMEM;
8718				goto out;
8719			}
8720		}
8721		for (i = 0; i < cc->cnt; i++) {
8722			bpf_log(ctx->log,
8723				"CO-RE relocating %s %s: found target candidate [%d]\n",
8724				btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
8725			cands.cands[i].btf = cc->cands[i].btf;
8726			cands.cands[i].id = cc->cands[i].id;
8727		}
8728		cands.len = cc->cnt;
8729		/* cand_cache_mutex needs to span the cache lookup and
8730		 * copy of btf pointer into bpf_core_cand_list,
8731		 * since module can be unloaded while bpf_core_calc_relo_insn
8732		 * is working with module's btf.
8733		 */
8734	}
8735
8736	err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
8737				      &targ_res);
8738	if (err)
8739		goto out;
8740
8741	err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
8742				  &targ_res);
8743
8744out:
8745	kfree(specs);
8746	if (need_cands) {
8747		kfree(cands.cands);
8748		mutex_unlock(&cand_cache_mutex);
8749		if (ctx->log->level & BPF_LOG_LEVEL2)
8750			print_cand_cache(ctx->log);
8751	}
8752	return err;
8753}
8754
8755bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
8756				const struct bpf_reg_state *reg,
8757				const char *field_name, u32 btf_id, const char *suffix)
8758{
8759	struct btf *btf = reg->btf;
8760	const struct btf_type *walk_type, *safe_type;
8761	const char *tname;
8762	char safe_tname[64];
8763	long ret, safe_id;
8764	const struct btf_member *member;
8765	u32 i;
8766
8767	walk_type = btf_type_by_id(btf, reg->btf_id);
8768	if (!walk_type)
8769		return false;
8770
8771	tname = btf_name_by_offset(btf, walk_type->name_off);
8772
8773	ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
8774	if (ret >= sizeof(safe_tname))
8775		return false;
8776
8777	safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
8778	if (safe_id < 0)
8779		return false;
8780
8781	safe_type = btf_type_by_id(btf, safe_id);
8782	if (!safe_type)
8783		return false;
8784
8785	for_each_member(i, safe_type, member) {
8786		const char *m_name = __btf_name_by_offset(btf, member->name_off);
8787		const struct btf_type *mtype = btf_type_by_id(btf, member->type);
8788		u32 id;
8789
8790		if (!btf_type_is_ptr(mtype))
8791			continue;
8792
8793		btf_type_skip_modifiers(btf, mtype->type, &id);
8794		/* If we match on both type and name, the field is considered trusted. */
8795		if (btf_id == id && !strcmp(field_name, m_name))
8796			return true;
8797	}
8798
8799	return false;
8800}
8801
8802bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
8803			       const struct btf *reg_btf, u32 reg_id,
8804			       const struct btf *arg_btf, u32 arg_id)
8805{
8806	const char *reg_name, *arg_name, *search_needle;
8807	const struct btf_type *reg_type, *arg_type;
8808	int reg_len, arg_len, cmp_len;
8809	size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
8810
8811	reg_type = btf_type_by_id(reg_btf, reg_id);
8812	if (!reg_type)
8813		return false;
8814
8815	arg_type = btf_type_by_id(arg_btf, arg_id);
8816	if (!arg_type)
8817		return false;
8818
8819	reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
8820	arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
8821
8822	reg_len = strlen(reg_name);
8823	arg_len = strlen(arg_name);
8824
8825	/* Exactly one of the two type names may be suffixed with ___init, so
8826	 * if the strings are the same size, they can't possibly be no-cast
8827	 * aliases of one another. If you have two of the same type names, e.g.
8828	 * they're both nf_conn___init, it would be improper to return true
8829	 * because they are _not_ no-cast aliases, they are the same type.
8830	 */
8831	if (reg_len == arg_len)
8832		return false;
8833
8834	/* Either of the two names must be the other name, suffixed with ___init. */
8835	if ((reg_len != arg_len + pattern_len) &&
8836	    (arg_len != reg_len + pattern_len))
8837		return false;
8838
8839	if (reg_len < arg_len) {
8840		search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
8841		cmp_len = reg_len;
8842	} else {
8843		search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
8844		cmp_len = arg_len;
8845	}
8846
8847	if (!search_needle)
8848		return false;
8849
8850	/* ___init suffix must come at the end of the name */
8851	if (*(search_needle + pattern_len) != '\0')
8852		return false;
8853
8854	return !strncmp(reg_name, arg_name, cmp_len);
8855}
8856
8857#ifdef CONFIG_BPF_JIT
8858static int
8859btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
8860		   struct bpf_verifier_log *log)
8861{
8862	struct btf_struct_ops_tab *tab, *new_tab;
8863	int i, err;
8864
8865	tab = btf->struct_ops_tab;
8866	if (!tab) {
8867		tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
8868			      GFP_KERNEL);
8869		if (!tab)
8870			return -ENOMEM;
8871		tab->capacity = 4;
8872		btf->struct_ops_tab = tab;
8873	}
8874
8875	for (i = 0; i < tab->cnt; i++)
8876		if (tab->ops[i].st_ops == st_ops)
8877			return -EEXIST;
8878
8879	if (tab->cnt == tab->capacity) {
8880		new_tab = krealloc(tab,
8881				   offsetof(struct btf_struct_ops_tab,
8882					    ops[tab->capacity * 2]),
8883				   GFP_KERNEL);
8884		if (!new_tab)
8885			return -ENOMEM;
8886		tab = new_tab;
8887		tab->capacity *= 2;
8888		btf->struct_ops_tab = tab;
8889	}
8890
8891	tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
8892
8893	err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
8894	if (err)
8895		return err;
8896
8897	btf->struct_ops_tab->cnt++;
8898
8899	return 0;
8900}
8901
8902const struct bpf_struct_ops_desc *
8903bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
8904{
8905	const struct bpf_struct_ops_desc *st_ops_list;
8906	unsigned int i;
8907	u32 cnt;
8908
8909	if (!value_id)
8910		return NULL;
8911	if (!btf->struct_ops_tab)
8912		return NULL;
8913
8914	cnt = btf->struct_ops_tab->cnt;
8915	st_ops_list = btf->struct_ops_tab->ops;
8916	for (i = 0; i < cnt; i++) {
8917		if (st_ops_list[i].value_id == value_id)
8918			return &st_ops_list[i];
8919	}
8920
8921	return NULL;
8922}
8923
8924const struct bpf_struct_ops_desc *
8925bpf_struct_ops_find(struct btf *btf, u32 type_id)
8926{
8927	const struct bpf_struct_ops_desc *st_ops_list;
8928	unsigned int i;
8929	u32 cnt;
8930
8931	if (!type_id)
8932		return NULL;
8933	if (!btf->struct_ops_tab)
8934		return NULL;
8935
8936	cnt = btf->struct_ops_tab->cnt;
8937	st_ops_list = btf->struct_ops_tab->ops;
8938	for (i = 0; i < cnt; i++) {
8939		if (st_ops_list[i].type_id == type_id)
8940			return &st_ops_list[i];
8941	}
8942
8943	return NULL;
8944}
8945
8946int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
8947{
8948	struct bpf_verifier_log *log;
8949	struct btf *btf;
8950	int err = 0;
8951
8952	btf = btf_get_module_btf(st_ops->owner);
8953	if (!btf)
8954		return check_btf_kconfigs(st_ops->owner, "struct_ops");
8955	if (IS_ERR(btf))
8956		return PTR_ERR(btf);
8957
8958	log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
8959	if (!log) {
8960		err = -ENOMEM;
8961		goto errout;
8962	}
8963
8964	log->level = BPF_LOG_KERNEL;
8965
8966	err = btf_add_struct_ops(btf, st_ops, log);
8967
8968errout:
8969	kfree(log);
8970	btf_put(btf);
8971
8972	return err;
8973}
8974EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
8975#endif
8976
8977bool btf_param_match_suffix(const struct btf *btf,
8978			    const struct btf_param *arg,
8979			    const char *suffix)
8980{
8981	int suffix_len = strlen(suffix), len;
8982	const char *param_name;
8983
8984	/* In the future, this can be ported to use BTF tagging */
8985	param_name = btf_name_by_offset(btf, arg->name_off);
8986	if (str_is_empty(param_name))
8987		return false;
8988	len = strlen(param_name);
8989	if (len <= suffix_len)
8990		return false;
8991	param_name += len - suffix_len;
8992	return !strncmp(param_name, suffix, suffix_len);
8993}