Linux Audio

Check our new training course

Loading...
v6.2
  1#ifndef IOU_CORE_H
  2#define IOU_CORE_H
  3
  4#include <linux/errno.h>
  5#include <linux/lockdep.h>
 
 
 
  6#include <linux/io_uring_types.h>
  7#include <uapi/linux/eventpoll.h>
  8#include "io-wq.h"
  9#include "slist.h"
 10#include "filetable.h"
 11
 12#ifndef CREATE_TRACE_POINTS
 13#include <trace/events/io_uring.h>
 14#endif
 15
 16enum {
 17	IOU_OK			= 0,
 18	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
 19
 20	/*
 
 
 
 
 
 
 
 21	 * Intended only when both IO_URING_F_MULTISHOT is passed
 22	 * to indicate to the poll runner that multishot should be
 23	 * removed and the result is set on req->cqe.res.
 24	 */
 25	IOU_STOP_MULTISHOT	= -ECANCELED,
 26};
 27
 28struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow);
 29bool io_req_cqe_overflow(struct io_kiocb *req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30int io_run_task_work_sig(struct io_ring_ctx *ctx);
 31int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked);
 32int io_run_local_work(struct io_ring_ctx *ctx);
 33void io_req_defer_failed(struct io_kiocb *req, s32 res);
 34void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
 35bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
 36bool io_aux_cqe(struct io_ring_ctx *ctx, bool defer, u64 user_data, s32 res, u32 cflags,
 37		bool allow_overflow);
 38void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
 39
 40struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
 41
 42struct file *io_file_get_normal(struct io_kiocb *req, int fd);
 43struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
 44			       unsigned issue_flags);
 45
 46static inline bool io_req_ffs_set(struct io_kiocb *req)
 47{
 48	return req->flags & REQ_F_FIXED_FILE;
 49}
 50
 51void __io_req_task_work_add(struct io_kiocb *req, bool allow_local);
 52bool io_is_uring_fops(struct file *file);
 53bool io_alloc_async_data(struct io_kiocb *req);
 54void io_req_task_queue(struct io_kiocb *req);
 55void io_queue_iowq(struct io_kiocb *req, bool *dont_use);
 56void io_req_task_complete(struct io_kiocb *req, bool *locked);
 57void io_req_task_queue_fail(struct io_kiocb *req, int ret);
 58void io_req_task_submit(struct io_kiocb *req, bool *locked);
 
 
 59void tctx_task_work(struct callback_head *cb);
 60__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
 61int io_uring_alloc_task_context(struct task_struct *task,
 62				struct io_ring_ctx *ctx);
 63
 64int io_poll_issue(struct io_kiocb *req, bool *locked);
 
 
 
 65int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
 66int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
 67void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node);
 68int io_req_prep_async(struct io_kiocb *req);
 69
 70struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
 71void io_wq_submit_work(struct io_wq_work *work);
 72
 73void io_free_req(struct io_kiocb *req);
 74void io_queue_next(struct io_kiocb *req);
 75void __io_put_task(struct task_struct *task, int nr);
 76void io_task_refs_refill(struct io_uring_task *tctx);
 77bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
 78
 79bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
 80			bool cancel_all);
 81
 82#define io_lockdep_assert_cq_locked(ctx)				\
 83	do {								\
 84		if (ctx->flags & IORING_SETUP_IOPOLL) {			\
 85			lockdep_assert_held(&ctx->uring_lock);		\
 86		} else if (!ctx->task_complete) {			\
 87			lockdep_assert_held(&ctx->completion_lock);	\
 88		} else if (ctx->submitter_task->flags & PF_EXITING) {	\
 89			lockdep_assert(current_work());			\
 90		} else {						\
 91			lockdep_assert(current == ctx->submitter_task);	\
 92		}							\
 93	} while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94
 95static inline void io_req_task_work_add(struct io_kiocb *req)
 96{
 97	__io_req_task_work_add(req, true);
 98}
 99
100#define io_for_each_link(pos, head) \
101	for (pos = (head); pos; pos = pos->link)
102
103void io_cq_unlock_post(struct io_ring_ctx *ctx);
104
105static inline struct io_uring_cqe *io_get_cqe_overflow(struct io_ring_ctx *ctx,
106						       bool overflow)
107{
108	io_lockdep_assert_cq_locked(ctx);
109
110	if (likely(ctx->cqe_cached < ctx->cqe_sentinel)) {
111		struct io_uring_cqe *cqe = ctx->cqe_cached;
112
113		ctx->cached_cq_tail++;
114		ctx->cqe_cached++;
115		if (ctx->flags & IORING_SETUP_CQE32)
116			ctx->cqe_cached++;
117		return cqe;
118	}
119
120	return __io_get_cqe(ctx, overflow);
 
 
 
 
121}
122
123static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
124{
125	return io_get_cqe_overflow(ctx, false);
126}
127
128static inline bool __io_fill_cqe_req(struct io_ring_ctx *ctx,
129				     struct io_kiocb *req)
130{
131	struct io_uring_cqe *cqe;
132
133	/*
134	 * If we can't get a cq entry, userspace overflowed the
135	 * submission (by quite a lot). Increment the overflow count in
136	 * the ring.
137	 */
138	cqe = io_get_cqe(ctx);
139	if (unlikely(!cqe))
140		return false;
141
142	trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
143				req->cqe.res, req->cqe.flags,
144				(req->flags & REQ_F_CQE32_INIT) ? req->extra1 : 0,
145				(req->flags & REQ_F_CQE32_INIT) ? req->extra2 : 0);
146
147	memcpy(cqe, &req->cqe, sizeof(*cqe));
148
149	if (ctx->flags & IORING_SETUP_CQE32) {
150		u64 extra1 = 0, extra2 = 0;
151
152		if (req->flags & REQ_F_CQE32_INIT) {
153			extra1 = req->extra1;
154			extra2 = req->extra2;
155		}
156
157		WRITE_ONCE(cqe->big_cqe[0], extra1);
158		WRITE_ONCE(cqe->big_cqe[1], extra2);
159	}
160	return true;
161}
162
163static inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
164				   struct io_kiocb *req)
165{
166	if (likely(__io_fill_cqe_req(ctx, req)))
167		return true;
168	return io_req_cqe_overflow(req);
169}
170
171static inline void req_set_fail(struct io_kiocb *req)
172{
173	req->flags |= REQ_F_FAIL;
174	if (req->flags & REQ_F_CQE_SKIP) {
175		req->flags &= ~REQ_F_CQE_SKIP;
176		req->flags |= REQ_F_SKIP_LINK_CQES;
177	}
178}
179
180static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
181{
182	req->cqe.res = res;
183	req->cqe.flags = cflags;
184}
185
186static inline bool req_has_async_data(struct io_kiocb *req)
187{
188	return req->flags & REQ_F_ASYNC_DATA;
189}
190
191static inline void io_put_file(struct file *file)
192{
193	if (file)
194		fput(file);
195}
196
197static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
198					 unsigned issue_flags)
199{
200	lockdep_assert_held(&ctx->uring_lock);
201	if (issue_flags & IO_URING_F_UNLOCKED)
202		mutex_unlock(&ctx->uring_lock);
203}
204
205static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
206				       unsigned issue_flags)
207{
208	/*
209	 * "Normal" inline submissions always hold the uring_lock, since we
210	 * grab it from the system call. Same is true for the SQPOLL offload.
211	 * The only exception is when we've detached the request and issue it
212	 * from an async worker thread, grab the lock for that case.
213	 */
214	if (issue_flags & IO_URING_F_UNLOCKED)
215		mutex_lock(&ctx->uring_lock);
216	lockdep_assert_held(&ctx->uring_lock);
217}
218
219static inline void io_commit_cqring(struct io_ring_ctx *ctx)
220{
221	/* order cqe stores with ring update */
222	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
223}
224
225/* requires smb_mb() prior, see wq_has_sleeper() */
226static inline void __io_cqring_wake(struct io_ring_ctx *ctx)
 
 
 
 
 
 
227{
228	/*
229	 * Trigger waitqueue handler on all waiters on our waitqueue. This
230	 * won't necessarily wake up all the tasks, io_should_wake() will make
231	 * that decision.
232	 *
233	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
234	 * set in the mask so that if we recurse back into our own poll
235	 * waitqueue handlers, we know we have a dependency between eventfd or
236	 * epoll and should terminate multishot poll at that point.
237	 */
238	if (waitqueue_active(&ctx->cq_wait))
239		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
240				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
241}
242
243static inline void io_cqring_wake(struct io_ring_ctx *ctx)
244{
245	smp_mb();
246	__io_cqring_wake(ctx);
247}
248
249static inline bool io_sqring_full(struct io_ring_ctx *ctx)
250{
251	struct io_rings *r = ctx->rings;
252
253	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
254}
255
256static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
257{
258	struct io_rings *rings = ctx->rings;
 
259
260	/* make sure SQ entry isn't read before tail */
261	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
 
262}
263
264static inline int io_run_task_work(void)
265{
 
 
266	/*
267	 * Always check-and-clear the task_work notification signal. With how
268	 * signaling works for task_work, we can find it set with nothing to
269	 * run. We need to clear it for that case, like get_signal() does.
270	 */
271	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
272		clear_notify_signal();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273	if (task_work_pending(current)) {
274		__set_current_state(TASK_RUNNING);
275		task_work_run();
276		return 1;
277	}
278
279	return 0;
280}
281
282static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
283{
284	return task_work_pending(current) || !wq_list_empty(&ctx->work_llist);
285}
286
287static inline int io_run_task_work_ctx(struct io_ring_ctx *ctx)
288{
289	int ret = 0;
290	int ret2;
291
292	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
293		ret = io_run_local_work(ctx);
294
295	/* want to run this after in case more is added */
296	ret2 = io_run_task_work();
297
298	/* Try propagate error in favour of if tasks were run,
299	 * but still make sure to run them if requested
300	 */
301	if (ret >= 0)
302		ret += ret2;
303
304	return ret;
305}
306
307static inline int io_run_local_work_locked(struct io_ring_ctx *ctx)
308{
309	bool locked;
310	int ret;
311
312	if (llist_empty(&ctx->work_llist))
313		return 0;
314
315	locked = true;
316	ret = __io_run_local_work(ctx, &locked);
317	/* shouldn't happen! */
318	if (WARN_ON_ONCE(!locked))
319		mutex_lock(&ctx->uring_lock);
320	return ret;
321}
322
323static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
324{
325	if (!*locked) {
326		mutex_lock(&ctx->uring_lock);
327		*locked = true;
328	}
329}
330
331/*
332 * Don't complete immediately but use deferred completion infrastructure.
333 * Protected by ->uring_lock and can only be used either with
334 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
335 */
336static inline void io_req_complete_defer(struct io_kiocb *req)
337	__must_hold(&req->ctx->uring_lock)
338{
339	struct io_submit_state *state = &req->ctx->submit_state;
340
341	lockdep_assert_held(&req->ctx->uring_lock);
342
343	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
344}
345
346static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
347{
348	if (unlikely(ctx->off_timeout_used || ctx->drain_active || ctx->has_evfd))
 
349		__io_commit_cqring_flush(ctx);
350}
351
352/* must to be called somewhat shortly after putting a request */
353static inline void io_put_task(struct task_struct *task, int nr)
354{
355	if (likely(task == current))
356		task->io_uring->cached_refs += nr;
357	else
358		__io_put_task(task, nr);
359}
360
361static inline void io_get_task_refs(int nr)
362{
363	struct io_uring_task *tctx = current->io_uring;
364
365	tctx->cached_refs -= nr;
366	if (unlikely(tctx->cached_refs < 0))
367		io_task_refs_refill(tctx);
368}
369
370static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
371{
372	return !ctx->submit_state.free_list.next;
373}
374
375static inline bool io_alloc_req_refill(struct io_ring_ctx *ctx)
 
 
 
376{
377	if (unlikely(io_req_cache_empty(ctx)))
378		return __io_alloc_req_refill(ctx);
379	return true;
 
 
380}
381
382static inline struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
383{
384	struct io_wq_work_node *node;
 
 
 
 
 
 
385
386	node = wq_stack_extract(&ctx->submit_state.free_list);
387	return container_of(node, struct io_kiocb, comp_list);
 
388}
389
390static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
391{
392	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
393		      ctx->submitter_task == current);
394}
395
396static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
397{
398	io_req_set_res(req, res, 0);
399	req->io_task_work.func = io_req_task_complete;
400	io_req_task_work_add(req);
401}
402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403#endif
v6.9.4
  1#ifndef IOU_CORE_H
  2#define IOU_CORE_H
  3
  4#include <linux/errno.h>
  5#include <linux/lockdep.h>
  6#include <linux/resume_user_mode.h>
  7#include <linux/kasan.h>
  8#include <linux/poll.h>
  9#include <linux/io_uring_types.h>
 10#include <uapi/linux/eventpoll.h>
 11#include "io-wq.h"
 12#include "slist.h"
 13#include "filetable.h"
 14
 15#ifndef CREATE_TRACE_POINTS
 16#include <trace/events/io_uring.h>
 17#endif
 18
 19enum {
 20	IOU_OK			= 0,
 21	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
 22
 23	/*
 24	 * Requeue the task_work to restart operations on this request. The
 25	 * actual value isn't important, should just be not an otherwise
 26	 * valid error code, yet less than -MAX_ERRNO and valid internally.
 27	 */
 28	IOU_REQUEUE		= -3072,
 29
 30	/*
 31	 * Intended only when both IO_URING_F_MULTISHOT is passed
 32	 * to indicate to the poll runner that multishot should be
 33	 * removed and the result is set on req->cqe.res.
 34	 */
 35	IOU_STOP_MULTISHOT	= -ECANCELED,
 36};
 37
 38struct io_wait_queue {
 39	struct wait_queue_entry wq;
 40	struct io_ring_ctx *ctx;
 41	unsigned cq_tail;
 42	unsigned nr_timeouts;
 43	ktime_t timeout;
 44
 45#ifdef CONFIG_NET_RX_BUSY_POLL
 46	unsigned int napi_busy_poll_to;
 47	bool napi_prefer_busy_poll;
 48#endif
 49};
 50
 51static inline bool io_should_wake(struct io_wait_queue *iowq)
 52{
 53	struct io_ring_ctx *ctx = iowq->ctx;
 54	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
 55
 56	/*
 57	 * Wake up if we have enough events, or if a timeout occurred since we
 58	 * started waiting. For timeouts, we always want to return to userspace,
 59	 * regardless of event count.
 60	 */
 61	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
 62}
 63
 64bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
 65void io_req_cqe_overflow(struct io_kiocb *req);
 66int io_run_task_work_sig(struct io_ring_ctx *ctx);
 
 
 67void io_req_defer_failed(struct io_kiocb *req, s32 res);
 68void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags);
 69bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
 70bool io_fill_cqe_req_aux(struct io_kiocb *req, bool defer, s32 res, u32 cflags);
 
 71void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
 72
 73struct page **io_pin_pages(unsigned long ubuf, unsigned long len, int *npages);
 74
 75struct file *io_file_get_normal(struct io_kiocb *req, int fd);
 76struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
 77			       unsigned issue_flags);
 78
 79void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
 
 
 
 
 
 
 80bool io_alloc_async_data(struct io_kiocb *req);
 81void io_req_task_queue(struct io_kiocb *req);
 82void io_queue_iowq(struct io_kiocb *req, struct io_tw_state *ts_dont_use);
 83void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts);
 84void io_req_task_queue_fail(struct io_kiocb *req, int ret);
 85void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts);
 86struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
 87struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
 88void tctx_task_work(struct callback_head *cb);
 89__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
 90int io_uring_alloc_task_context(struct task_struct *task,
 91				struct io_ring_ctx *ctx);
 92
 93int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
 94				     int start, int end);
 95
 96int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts);
 97int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
 98int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
 99void __io_submit_flush_completions(struct io_ring_ctx *ctx);
100int io_req_prep_async(struct io_kiocb *req);
101
102struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
103void io_wq_submit_work(struct io_wq_work *work);
104
105void io_free_req(struct io_kiocb *req);
106void io_queue_next(struct io_kiocb *req);
 
107void io_task_refs_refill(struct io_uring_task *tctx);
108bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
109
110bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
111			bool cancel_all);
112
113void *io_mem_alloc(size_t size);
114void io_mem_free(void *ptr);
115
116enum {
117	IO_EVENTFD_OP_SIGNAL_BIT,
118	IO_EVENTFD_OP_FREE_BIT,
119};
120
121void io_eventfd_ops(struct rcu_head *rcu);
122void io_activate_pollwq(struct io_ring_ctx *ctx);
123
124#if defined(CONFIG_PROVE_LOCKING)
125static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
126{
127	lockdep_assert(in_task());
128
129	if (ctx->flags & IORING_SETUP_IOPOLL) {
130		lockdep_assert_held(&ctx->uring_lock);
131	} else if (!ctx->task_complete) {
132		lockdep_assert_held(&ctx->completion_lock);
133	} else if (ctx->submitter_task) {
134		/*
135		 * ->submitter_task may be NULL and we can still post a CQE,
136		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
137		 * Not from an SQE, as those cannot be submitted, but via
138		 * updating tagged resources.
139		 */
140		if (ctx->submitter_task->flags & PF_EXITING)
141			lockdep_assert(current_work());
142		else
143			lockdep_assert(current == ctx->submitter_task);
144	}
145}
146#else
147static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
148{
149}
150#endif
151
152static inline void io_req_task_work_add(struct io_kiocb *req)
153{
154	__io_req_task_work_add(req, 0);
155}
156
157#define io_for_each_link(pos, head) \
158	for (pos = (head); pos; pos = pos->link)
159
160static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
161					struct io_uring_cqe **ret,
162					bool overflow)
 
163{
164	io_lockdep_assert_cq_locked(ctx);
165
166	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
167		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
168			return false;
 
 
 
 
 
169	}
170	*ret = ctx->cqe_cached;
171	ctx->cached_cq_tail++;
172	ctx->cqe_cached++;
173	if (ctx->flags & IORING_SETUP_CQE32)
174		ctx->cqe_cached++;
175	return true;
176}
177
178static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
179{
180	return io_get_cqe_overflow(ctx, ret, false);
181}
182
183static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
184					    struct io_kiocb *req)
185{
186	struct io_uring_cqe *cqe;
187
188	/*
189	 * If we can't get a cq entry, userspace overflowed the
190	 * submission (by quite a lot). Increment the overflow count in
191	 * the ring.
192	 */
193	if (unlikely(!io_get_cqe(ctx, &cqe)))
 
194		return false;
195
196	if (trace_io_uring_complete_enabled())
197		trace_io_uring_complete(req->ctx, req, req->cqe.user_data,
198					req->cqe.res, req->cqe.flags,
199					req->big_cqe.extra1, req->big_cqe.extra2);
200
201	memcpy(cqe, &req->cqe, sizeof(*cqe));
 
202	if (ctx->flags & IORING_SETUP_CQE32) {
203		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
204		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
 
 
 
 
 
 
 
205	}
206	return true;
207}
208
 
 
 
 
 
 
 
 
209static inline void req_set_fail(struct io_kiocb *req)
210{
211	req->flags |= REQ_F_FAIL;
212	if (req->flags & REQ_F_CQE_SKIP) {
213		req->flags &= ~REQ_F_CQE_SKIP;
214		req->flags |= REQ_F_SKIP_LINK_CQES;
215	}
216}
217
218static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
219{
220	req->cqe.res = res;
221	req->cqe.flags = cflags;
222}
223
224static inline bool req_has_async_data(struct io_kiocb *req)
225{
226	return req->flags & REQ_F_ASYNC_DATA;
227}
228
229static inline void io_put_file(struct io_kiocb *req)
230{
231	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
232		fput(req->file);
233}
234
235static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
236					 unsigned issue_flags)
237{
238	lockdep_assert_held(&ctx->uring_lock);
239	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
240		mutex_unlock(&ctx->uring_lock);
241}
242
243static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
244				       unsigned issue_flags)
245{
246	/*
247	 * "Normal" inline submissions always hold the uring_lock, since we
248	 * grab it from the system call. Same is true for the SQPOLL offload.
249	 * The only exception is when we've detached the request and issue it
250	 * from an async worker thread, grab the lock for that case.
251	 */
252	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
253		mutex_lock(&ctx->uring_lock);
254	lockdep_assert_held(&ctx->uring_lock);
255}
256
257static inline void io_commit_cqring(struct io_ring_ctx *ctx)
258{
259	/* order cqe stores with ring update */
260	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
261}
262
263static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
264{
265	if (wq_has_sleeper(&ctx->poll_wq))
266		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
267				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
268}
269
270static inline void io_cqring_wake(struct io_ring_ctx *ctx)
271{
272	/*
273	 * Trigger waitqueue handler on all waiters on our waitqueue. This
274	 * won't necessarily wake up all the tasks, io_should_wake() will make
275	 * that decision.
276	 *
277	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
278	 * set in the mask so that if we recurse back into our own poll
279	 * waitqueue handlers, we know we have a dependency between eventfd or
280	 * epoll and should terminate multishot poll at that point.
281	 */
282	if (wq_has_sleeper(&ctx->cq_wait))
283		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
284				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
285}
286
 
 
 
 
 
 
287static inline bool io_sqring_full(struct io_ring_ctx *ctx)
288{
289	struct io_rings *r = ctx->rings;
290
291	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
292}
293
294static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
295{
296	struct io_rings *rings = ctx->rings;
297	unsigned int entries;
298
299	/* make sure SQ entry isn't read before tail */
300	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
301	return min(entries, ctx->sq_entries);
302}
303
304static inline int io_run_task_work(void)
305{
306	bool ret = false;
307
308	/*
309	 * Always check-and-clear the task_work notification signal. With how
310	 * signaling works for task_work, we can find it set with nothing to
311	 * run. We need to clear it for that case, like get_signal() does.
312	 */
313	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
314		clear_notify_signal();
315	/*
316	 * PF_IO_WORKER never returns to userspace, so check here if we have
317	 * notify work that needs processing.
318	 */
319	if (current->flags & PF_IO_WORKER) {
320		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
321			__set_current_state(TASK_RUNNING);
322			resume_user_mode_work(NULL);
323		}
324		if (current->io_uring) {
325			unsigned int count = 0;
326
327			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
328			if (count)
329				ret = true;
330		}
331	}
332	if (task_work_pending(current)) {
333		__set_current_state(TASK_RUNNING);
334		task_work_run();
335		ret = true;
336	}
337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338	return ret;
339}
340
341static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
342{
343	return task_work_pending(current) || !llist_empty(&ctx->work_llist);
 
 
 
 
 
 
 
 
 
 
 
344}
345
346static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts)
347{
348	if (!ts->locked) {
349		mutex_lock(&ctx->uring_lock);
350		ts->locked = true;
351	}
352}
353
354/*
355 * Don't complete immediately but use deferred completion infrastructure.
356 * Protected by ->uring_lock and can only be used either with
357 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
358 */
359static inline void io_req_complete_defer(struct io_kiocb *req)
360	__must_hold(&req->ctx->uring_lock)
361{
362	struct io_submit_state *state = &req->ctx->submit_state;
363
364	lockdep_assert_held(&req->ctx->uring_lock);
365
366	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
367}
368
369static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
370{
371	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
372		     ctx->has_evfd || ctx->poll_activated))
373		__io_commit_cqring_flush(ctx);
374}
375
 
 
 
 
 
 
 
 
 
376static inline void io_get_task_refs(int nr)
377{
378	struct io_uring_task *tctx = current->io_uring;
379
380	tctx->cached_refs -= nr;
381	if (unlikely(tctx->cached_refs < 0))
382		io_task_refs_refill(tctx);
383}
384
385static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
386{
387	return !ctx->submit_state.free_list.next;
388}
389
390extern struct kmem_cache *req_cachep;
391extern struct kmem_cache *io_buf_cachep;
392
393static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
394{
395	struct io_kiocb *req;
396
397	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
398	wq_stack_extract(&ctx->submit_state.free_list);
399	return req;
400}
401
402static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
403{
404	if (unlikely(io_req_cache_empty(ctx))) {
405		if (!__io_alloc_req_refill(ctx))
406			return false;
407	}
408	*req = io_extract_req(ctx);
409	return true;
410}
411
412static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
413{
414	return likely(ctx->submitter_task == current);
415}
416
417static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
418{
419	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
420		      ctx->submitter_task == current);
421}
422
423static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
424{
425	io_req_set_res(req, res, 0);
426	req->io_task_work.func = io_req_task_complete;
427	io_req_task_work_add(req);
428}
429
430/*
431 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
432 * slot.
433 */
434static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
435{
436	if (ctx->flags & IORING_SETUP_SQE128)
437		return 2 * sizeof(struct io_uring_sqe);
438	return sizeof(struct io_uring_sqe);
439}
440
441static inline bool io_file_can_poll(struct io_kiocb *req)
442{
443	if (req->flags & REQ_F_CAN_POLL)
444		return true;
445	if (file_can_poll(req->file)) {
446		req->flags |= REQ_F_CAN_POLL;
447		return true;
448	}
449	return false;
450}
451
452enum {
453	IO_CHECK_CQ_OVERFLOW_BIT,
454	IO_CHECK_CQ_DROPPED_BIT,
455};
456
457static inline bool io_has_work(struct io_ring_ctx *ctx)
458{
459	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
460	       !llist_empty(&ctx->work_llist);
461}
462#endif