Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/file.h>
10#include <linux/poll.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/fs.h>
15#include <linux/log2.h>
16#include <linux/mount.h>
17#include <linux/pseudo_fs.h>
18#include <linux/magic.h>
19#include <linux/pipe_fs_i.h>
20#include <linux/uio.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/audit.h>
24#include <linux/syscalls.h>
25#include <linux/fcntl.h>
26#include <linux/memcontrol.h>
27#include <linux/watch_queue.h>
28#include <linux/sysctl.h>
29
30#include <linux/uaccess.h>
31#include <asm/ioctls.h>
32
33#include "internal.h"
34
35/*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48#define PIPE_MIN_DEF_BUFFERS 2
49
50/*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54static unsigned int pipe_max_size = 1048576;
55
56/* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59static unsigned long pipe_user_pages_hard;
60static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62/*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
79static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80{
81 if (pipe->files)
82 mutex_lock_nested(&pipe->mutex, subclass);
83}
84
85void pipe_lock(struct pipe_inode_info *pipe)
86{
87 /*
88 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 */
90 pipe_lock_nested(pipe, I_MUTEX_PARENT);
91}
92EXPORT_SYMBOL(pipe_lock);
93
94void pipe_unlock(struct pipe_inode_info *pipe)
95{
96 if (pipe->files)
97 mutex_unlock(&pipe->mutex);
98}
99EXPORT_SYMBOL(pipe_unlock);
100
101static inline void __pipe_lock(struct pipe_inode_info *pipe)
102{
103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104}
105
106static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107{
108 mutex_unlock(&pipe->mutex);
109}
110
111void pipe_double_lock(struct pipe_inode_info *pipe1,
112 struct pipe_inode_info *pipe2)
113{
114 BUG_ON(pipe1 == pipe2);
115
116 if (pipe1 < pipe2) {
117 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 } else {
120 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 }
123}
124
125static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
127{
128 struct page *page = buf->page;
129
130 /*
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
134 */
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
137 else
138 put_page(page);
139}
140
141static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143{
144 struct page *page = buf->page;
145
146 if (page_count(page) != 1)
147 return false;
148 memcg_kmem_uncharge_page(page, 0);
149 __SetPageLocked(page);
150 return true;
151}
152
153/**
154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
157 *
158 * Description:
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
163 * page cache.
164 */
165bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
167{
168 struct page *page = buf->page;
169
170 /*
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
173 * and return OK.
174 */
175 if (page_count(page) == 1) {
176 lock_page(page);
177 return true;
178 }
179 return false;
180}
181EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183/**
184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to get a reference to
187 *
188 * Description:
189 * This function grabs an extra reference to @buf. It's used in
190 * the tee() system call, when we duplicate the buffers in one
191 * pipe into another.
192 */
193bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194{
195 return try_get_page(buf->page);
196}
197EXPORT_SYMBOL(generic_pipe_buf_get);
198
199/**
200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201 * @pipe: the pipe that the buffer belongs to
202 * @buf: the buffer to put a reference to
203 *
204 * Description:
205 * This function releases a reference to @buf.
206 */
207void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 struct pipe_buffer *buf)
209{
210 put_page(buf->page);
211}
212EXPORT_SYMBOL(generic_pipe_buf_release);
213
214static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 .release = anon_pipe_buf_release,
216 .try_steal = anon_pipe_buf_try_steal,
217 .get = generic_pipe_buf_get,
218};
219
220/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222{
223 unsigned int head = READ_ONCE(pipe->head);
224 unsigned int tail = READ_ONCE(pipe->tail);
225 unsigned int writers = READ_ONCE(pipe->writers);
226
227 return !pipe_empty(head, tail) || !writers;
228}
229
230static ssize_t
231pipe_read(struct kiocb *iocb, struct iov_iter *to)
232{
233 size_t total_len = iov_iter_count(to);
234 struct file *filp = iocb->ki_filp;
235 struct pipe_inode_info *pipe = filp->private_data;
236 bool was_full, wake_next_reader = false;
237 ssize_t ret;
238
239 /* Null read succeeds. */
240 if (unlikely(total_len == 0))
241 return 0;
242
243 ret = 0;
244 __pipe_lock(pipe);
245
246 /*
247 * We only wake up writers if the pipe was full when we started
248 * reading in order to avoid unnecessary wakeups.
249 *
250 * But when we do wake up writers, we do so using a sync wakeup
251 * (WF_SYNC), because we want them to get going and generate more
252 * data for us.
253 */
254 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255 for (;;) {
256 /* Read ->head with a barrier vs post_one_notification() */
257 unsigned int head = smp_load_acquire(&pipe->head);
258 unsigned int tail = pipe->tail;
259 unsigned int mask = pipe->ring_size - 1;
260
261#ifdef CONFIG_WATCH_QUEUE
262 if (pipe->note_loss) {
263 struct watch_notification n;
264
265 if (total_len < 8) {
266 if (ret == 0)
267 ret = -ENOBUFS;
268 break;
269 }
270
271 n.type = WATCH_TYPE_META;
272 n.subtype = WATCH_META_LOSS_NOTIFICATION;
273 n.info = watch_sizeof(n);
274 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275 if (ret == 0)
276 ret = -EFAULT;
277 break;
278 }
279 ret += sizeof(n);
280 total_len -= sizeof(n);
281 pipe->note_loss = false;
282 }
283#endif
284
285 if (!pipe_empty(head, tail)) {
286 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287 size_t chars = buf->len;
288 size_t written;
289 int error;
290
291 if (chars > total_len) {
292 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293 if (ret == 0)
294 ret = -ENOBUFS;
295 break;
296 }
297 chars = total_len;
298 }
299
300 error = pipe_buf_confirm(pipe, buf);
301 if (error) {
302 if (!ret)
303 ret = error;
304 break;
305 }
306
307 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308 if (unlikely(written < chars)) {
309 if (!ret)
310 ret = -EFAULT;
311 break;
312 }
313 ret += chars;
314 buf->offset += chars;
315 buf->len -= chars;
316
317 /* Was it a packet buffer? Clean up and exit */
318 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319 total_len = chars;
320 buf->len = 0;
321 }
322
323 if (!buf->len) {
324 pipe_buf_release(pipe, buf);
325 spin_lock_irq(&pipe->rd_wait.lock);
326#ifdef CONFIG_WATCH_QUEUE
327 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328 pipe->note_loss = true;
329#endif
330 tail++;
331 pipe->tail = tail;
332 spin_unlock_irq(&pipe->rd_wait.lock);
333 }
334 total_len -= chars;
335 if (!total_len)
336 break; /* common path: read succeeded */
337 if (!pipe_empty(head, tail)) /* More to do? */
338 continue;
339 }
340
341 if (!pipe->writers)
342 break;
343 if (ret)
344 break;
345 if (filp->f_flags & O_NONBLOCK) {
346 ret = -EAGAIN;
347 break;
348 }
349 __pipe_unlock(pipe);
350
351 /*
352 * We only get here if we didn't actually read anything.
353 *
354 * However, we could have seen (and removed) a zero-sized
355 * pipe buffer, and might have made space in the buffers
356 * that way.
357 *
358 * You can't make zero-sized pipe buffers by doing an empty
359 * write (not even in packet mode), but they can happen if
360 * the writer gets an EFAULT when trying to fill a buffer
361 * that already got allocated and inserted in the buffer
362 * array.
363 *
364 * So we still need to wake up any pending writers in the
365 * _very_ unlikely case that the pipe was full, but we got
366 * no data.
367 */
368 if (unlikely(was_full))
369 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
370 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
371
372 /*
373 * But because we didn't read anything, at this point we can
374 * just return directly with -ERESTARTSYS if we're interrupted,
375 * since we've done any required wakeups and there's no need
376 * to mark anything accessed. And we've dropped the lock.
377 */
378 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
379 return -ERESTARTSYS;
380
381 __pipe_lock(pipe);
382 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
383 wake_next_reader = true;
384 }
385 if (pipe_empty(pipe->head, pipe->tail))
386 wake_next_reader = false;
387 __pipe_unlock(pipe);
388
389 if (was_full)
390 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391 if (wake_next_reader)
392 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
393 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
394 if (ret > 0)
395 file_accessed(filp);
396 return ret;
397}
398
399static inline int is_packetized(struct file *file)
400{
401 return (file->f_flags & O_DIRECT) != 0;
402}
403
404/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
405static inline bool pipe_writable(const struct pipe_inode_info *pipe)
406{
407 unsigned int head = READ_ONCE(pipe->head);
408 unsigned int tail = READ_ONCE(pipe->tail);
409 unsigned int max_usage = READ_ONCE(pipe->max_usage);
410
411 return !pipe_full(head, tail, max_usage) ||
412 !READ_ONCE(pipe->readers);
413}
414
415static ssize_t
416pipe_write(struct kiocb *iocb, struct iov_iter *from)
417{
418 struct file *filp = iocb->ki_filp;
419 struct pipe_inode_info *pipe = filp->private_data;
420 unsigned int head;
421 ssize_t ret = 0;
422 size_t total_len = iov_iter_count(from);
423 ssize_t chars;
424 bool was_empty = false;
425 bool wake_next_writer = false;
426
427 /* Null write succeeds. */
428 if (unlikely(total_len == 0))
429 return 0;
430
431 __pipe_lock(pipe);
432
433 if (!pipe->readers) {
434 send_sig(SIGPIPE, current, 0);
435 ret = -EPIPE;
436 goto out;
437 }
438
439#ifdef CONFIG_WATCH_QUEUE
440 if (pipe->watch_queue) {
441 ret = -EXDEV;
442 goto out;
443 }
444#endif
445
446 /*
447 * If it wasn't empty we try to merge new data into
448 * the last buffer.
449 *
450 * That naturally merges small writes, but it also
451 * page-aligns the rest of the writes for large writes
452 * spanning multiple pages.
453 */
454 head = pipe->head;
455 was_empty = pipe_empty(head, pipe->tail);
456 chars = total_len & (PAGE_SIZE-1);
457 if (chars && !was_empty) {
458 unsigned int mask = pipe->ring_size - 1;
459 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
460 int offset = buf->offset + buf->len;
461
462 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
463 offset + chars <= PAGE_SIZE) {
464 ret = pipe_buf_confirm(pipe, buf);
465 if (ret)
466 goto out;
467
468 ret = copy_page_from_iter(buf->page, offset, chars, from);
469 if (unlikely(ret < chars)) {
470 ret = -EFAULT;
471 goto out;
472 }
473
474 buf->len += ret;
475 if (!iov_iter_count(from))
476 goto out;
477 }
478 }
479
480 for (;;) {
481 if (!pipe->readers) {
482 send_sig(SIGPIPE, current, 0);
483 if (!ret)
484 ret = -EPIPE;
485 break;
486 }
487
488 head = pipe->head;
489 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
490 unsigned int mask = pipe->ring_size - 1;
491 struct pipe_buffer *buf = &pipe->bufs[head & mask];
492 struct page *page = pipe->tmp_page;
493 int copied;
494
495 if (!page) {
496 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
497 if (unlikely(!page)) {
498 ret = ret ? : -ENOMEM;
499 break;
500 }
501 pipe->tmp_page = page;
502 }
503
504 /* Allocate a slot in the ring in advance and attach an
505 * empty buffer. If we fault or otherwise fail to use
506 * it, either the reader will consume it or it'll still
507 * be there for the next write.
508 */
509 spin_lock_irq(&pipe->rd_wait.lock);
510
511 head = pipe->head;
512 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
513 spin_unlock_irq(&pipe->rd_wait.lock);
514 continue;
515 }
516
517 pipe->head = head + 1;
518 spin_unlock_irq(&pipe->rd_wait.lock);
519
520 /* Insert it into the buffer array */
521 buf = &pipe->bufs[head & mask];
522 buf->page = page;
523 buf->ops = &anon_pipe_buf_ops;
524 buf->offset = 0;
525 buf->len = 0;
526 if (is_packetized(filp))
527 buf->flags = PIPE_BUF_FLAG_PACKET;
528 else
529 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
530 pipe->tmp_page = NULL;
531
532 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
533 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
534 if (!ret)
535 ret = -EFAULT;
536 break;
537 }
538 ret += copied;
539 buf->offset = 0;
540 buf->len = copied;
541
542 if (!iov_iter_count(from))
543 break;
544 }
545
546 if (!pipe_full(head, pipe->tail, pipe->max_usage))
547 continue;
548
549 /* Wait for buffer space to become available. */
550 if (filp->f_flags & O_NONBLOCK) {
551 if (!ret)
552 ret = -EAGAIN;
553 break;
554 }
555 if (signal_pending(current)) {
556 if (!ret)
557 ret = -ERESTARTSYS;
558 break;
559 }
560
561 /*
562 * We're going to release the pipe lock and wait for more
563 * space. We wake up any readers if necessary, and then
564 * after waiting we need to re-check whether the pipe
565 * become empty while we dropped the lock.
566 */
567 __pipe_unlock(pipe);
568 if (was_empty)
569 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
570 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
571 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
572 __pipe_lock(pipe);
573 was_empty = pipe_empty(pipe->head, pipe->tail);
574 wake_next_writer = true;
575 }
576out:
577 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
578 wake_next_writer = false;
579 __pipe_unlock(pipe);
580
581 /*
582 * If we do do a wakeup event, we do a 'sync' wakeup, because we
583 * want the reader to start processing things asap, rather than
584 * leave the data pending.
585 *
586 * This is particularly important for small writes, because of
587 * how (for example) the GNU make jobserver uses small writes to
588 * wake up pending jobs
589 *
590 * Epoll nonsensically wants a wakeup whether the pipe
591 * was already empty or not.
592 */
593 if (was_empty || pipe->poll_usage)
594 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
595 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
596 if (wake_next_writer)
597 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
598 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
599 int err = file_update_time(filp);
600 if (err)
601 ret = err;
602 sb_end_write(file_inode(filp)->i_sb);
603 }
604 return ret;
605}
606
607static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
608{
609 struct pipe_inode_info *pipe = filp->private_data;
610 unsigned int count, head, tail, mask;
611
612 switch (cmd) {
613 case FIONREAD:
614 __pipe_lock(pipe);
615 count = 0;
616 head = pipe->head;
617 tail = pipe->tail;
618 mask = pipe->ring_size - 1;
619
620 while (tail != head) {
621 count += pipe->bufs[tail & mask].len;
622 tail++;
623 }
624 __pipe_unlock(pipe);
625
626 return put_user(count, (int __user *)arg);
627
628#ifdef CONFIG_WATCH_QUEUE
629 case IOC_WATCH_QUEUE_SET_SIZE: {
630 int ret;
631 __pipe_lock(pipe);
632 ret = watch_queue_set_size(pipe, arg);
633 __pipe_unlock(pipe);
634 return ret;
635 }
636
637 case IOC_WATCH_QUEUE_SET_FILTER:
638 return watch_queue_set_filter(
639 pipe, (struct watch_notification_filter __user *)arg);
640#endif
641
642 default:
643 return -ENOIOCTLCMD;
644 }
645}
646
647/* No kernel lock held - fine */
648static __poll_t
649pipe_poll(struct file *filp, poll_table *wait)
650{
651 __poll_t mask;
652 struct pipe_inode_info *pipe = filp->private_data;
653 unsigned int head, tail;
654
655 /* Epoll has some historical nasty semantics, this enables them */
656 WRITE_ONCE(pipe->poll_usage, true);
657
658 /*
659 * Reading pipe state only -- no need for acquiring the semaphore.
660 *
661 * But because this is racy, the code has to add the
662 * entry to the poll table _first_ ..
663 */
664 if (filp->f_mode & FMODE_READ)
665 poll_wait(filp, &pipe->rd_wait, wait);
666 if (filp->f_mode & FMODE_WRITE)
667 poll_wait(filp, &pipe->wr_wait, wait);
668
669 /*
670 * .. and only then can you do the racy tests. That way,
671 * if something changes and you got it wrong, the poll
672 * table entry will wake you up and fix it.
673 */
674 head = READ_ONCE(pipe->head);
675 tail = READ_ONCE(pipe->tail);
676
677 mask = 0;
678 if (filp->f_mode & FMODE_READ) {
679 if (!pipe_empty(head, tail))
680 mask |= EPOLLIN | EPOLLRDNORM;
681 if (!pipe->writers && filp->f_version != pipe->w_counter)
682 mask |= EPOLLHUP;
683 }
684
685 if (filp->f_mode & FMODE_WRITE) {
686 if (!pipe_full(head, tail, pipe->max_usage))
687 mask |= EPOLLOUT | EPOLLWRNORM;
688 /*
689 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690 * behave exactly like pipes for poll().
691 */
692 if (!pipe->readers)
693 mask |= EPOLLERR;
694 }
695
696 return mask;
697}
698
699static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
700{
701 int kill = 0;
702
703 spin_lock(&inode->i_lock);
704 if (!--pipe->files) {
705 inode->i_pipe = NULL;
706 kill = 1;
707 }
708 spin_unlock(&inode->i_lock);
709
710 if (kill)
711 free_pipe_info(pipe);
712}
713
714static int
715pipe_release(struct inode *inode, struct file *file)
716{
717 struct pipe_inode_info *pipe = file->private_data;
718
719 __pipe_lock(pipe);
720 if (file->f_mode & FMODE_READ)
721 pipe->readers--;
722 if (file->f_mode & FMODE_WRITE)
723 pipe->writers--;
724
725 /* Was that the last reader or writer, but not the other side? */
726 if (!pipe->readers != !pipe->writers) {
727 wake_up_interruptible_all(&pipe->rd_wait);
728 wake_up_interruptible_all(&pipe->wr_wait);
729 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731 }
732 __pipe_unlock(pipe);
733
734 put_pipe_info(inode, pipe);
735 return 0;
736}
737
738static int
739pipe_fasync(int fd, struct file *filp, int on)
740{
741 struct pipe_inode_info *pipe = filp->private_data;
742 int retval = 0;
743
744 __pipe_lock(pipe);
745 if (filp->f_mode & FMODE_READ)
746 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
747 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
748 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
749 if (retval < 0 && (filp->f_mode & FMODE_READ))
750 /* this can happen only if on == T */
751 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
752 }
753 __pipe_unlock(pipe);
754 return retval;
755}
756
757unsigned long account_pipe_buffers(struct user_struct *user,
758 unsigned long old, unsigned long new)
759{
760 return atomic_long_add_return(new - old, &user->pipe_bufs);
761}
762
763bool too_many_pipe_buffers_soft(unsigned long user_bufs)
764{
765 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
766
767 return soft_limit && user_bufs > soft_limit;
768}
769
770bool too_many_pipe_buffers_hard(unsigned long user_bufs)
771{
772 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
773
774 return hard_limit && user_bufs > hard_limit;
775}
776
777bool pipe_is_unprivileged_user(void)
778{
779 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
780}
781
782struct pipe_inode_info *alloc_pipe_info(void)
783{
784 struct pipe_inode_info *pipe;
785 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
786 struct user_struct *user = get_current_user();
787 unsigned long user_bufs;
788 unsigned int max_size = READ_ONCE(pipe_max_size);
789
790 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
791 if (pipe == NULL)
792 goto out_free_uid;
793
794 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
795 pipe_bufs = max_size >> PAGE_SHIFT;
796
797 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
798
799 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
800 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
801 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
802 }
803
804 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
805 goto out_revert_acct;
806
807 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
808 GFP_KERNEL_ACCOUNT);
809
810 if (pipe->bufs) {
811 init_waitqueue_head(&pipe->rd_wait);
812 init_waitqueue_head(&pipe->wr_wait);
813 pipe->r_counter = pipe->w_counter = 1;
814 pipe->max_usage = pipe_bufs;
815 pipe->ring_size = pipe_bufs;
816 pipe->nr_accounted = pipe_bufs;
817 pipe->user = user;
818 mutex_init(&pipe->mutex);
819 return pipe;
820 }
821
822out_revert_acct:
823 (void) account_pipe_buffers(user, pipe_bufs, 0);
824 kfree(pipe);
825out_free_uid:
826 free_uid(user);
827 return NULL;
828}
829
830void free_pipe_info(struct pipe_inode_info *pipe)
831{
832 unsigned int i;
833
834#ifdef CONFIG_WATCH_QUEUE
835 if (pipe->watch_queue)
836 watch_queue_clear(pipe->watch_queue);
837#endif
838
839 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
840 free_uid(pipe->user);
841 for (i = 0; i < pipe->ring_size; i++) {
842 struct pipe_buffer *buf = pipe->bufs + i;
843 if (buf->ops)
844 pipe_buf_release(pipe, buf);
845 }
846#ifdef CONFIG_WATCH_QUEUE
847 if (pipe->watch_queue)
848 put_watch_queue(pipe->watch_queue);
849#endif
850 if (pipe->tmp_page)
851 __free_page(pipe->tmp_page);
852 kfree(pipe->bufs);
853 kfree(pipe);
854}
855
856static struct vfsmount *pipe_mnt __read_mostly;
857
858/*
859 * pipefs_dname() is called from d_path().
860 */
861static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
862{
863 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
864 d_inode(dentry)->i_ino);
865}
866
867static const struct dentry_operations pipefs_dentry_operations = {
868 .d_dname = pipefs_dname,
869};
870
871static struct inode * get_pipe_inode(void)
872{
873 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
874 struct pipe_inode_info *pipe;
875
876 if (!inode)
877 goto fail_inode;
878
879 inode->i_ino = get_next_ino();
880
881 pipe = alloc_pipe_info();
882 if (!pipe)
883 goto fail_iput;
884
885 inode->i_pipe = pipe;
886 pipe->files = 2;
887 pipe->readers = pipe->writers = 1;
888 inode->i_fop = &pipefifo_fops;
889
890 /*
891 * Mark the inode dirty from the very beginning,
892 * that way it will never be moved to the dirty
893 * list because "mark_inode_dirty()" will think
894 * that it already _is_ on the dirty list.
895 */
896 inode->i_state = I_DIRTY;
897 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
898 inode->i_uid = current_fsuid();
899 inode->i_gid = current_fsgid();
900 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
901
902 return inode;
903
904fail_iput:
905 iput(inode);
906
907fail_inode:
908 return NULL;
909}
910
911int create_pipe_files(struct file **res, int flags)
912{
913 struct inode *inode = get_pipe_inode();
914 struct file *f;
915 int error;
916
917 if (!inode)
918 return -ENFILE;
919
920 if (flags & O_NOTIFICATION_PIPE) {
921 error = watch_queue_init(inode->i_pipe);
922 if (error) {
923 free_pipe_info(inode->i_pipe);
924 iput(inode);
925 return error;
926 }
927 }
928
929 f = alloc_file_pseudo(inode, pipe_mnt, "",
930 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
931 &pipefifo_fops);
932 if (IS_ERR(f)) {
933 free_pipe_info(inode->i_pipe);
934 iput(inode);
935 return PTR_ERR(f);
936 }
937
938 f->private_data = inode->i_pipe;
939
940 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
941 &pipefifo_fops);
942 if (IS_ERR(res[0])) {
943 put_pipe_info(inode, inode->i_pipe);
944 fput(f);
945 return PTR_ERR(res[0]);
946 }
947 res[0]->private_data = inode->i_pipe;
948 res[1] = f;
949 stream_open(inode, res[0]);
950 stream_open(inode, res[1]);
951 return 0;
952}
953
954static int __do_pipe_flags(int *fd, struct file **files, int flags)
955{
956 int error;
957 int fdw, fdr;
958
959 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
960 return -EINVAL;
961
962 error = create_pipe_files(files, flags);
963 if (error)
964 return error;
965
966 error = get_unused_fd_flags(flags);
967 if (error < 0)
968 goto err_read_pipe;
969 fdr = error;
970
971 error = get_unused_fd_flags(flags);
972 if (error < 0)
973 goto err_fdr;
974 fdw = error;
975
976 audit_fd_pair(fdr, fdw);
977 fd[0] = fdr;
978 fd[1] = fdw;
979 return 0;
980
981 err_fdr:
982 put_unused_fd(fdr);
983 err_read_pipe:
984 fput(files[0]);
985 fput(files[1]);
986 return error;
987}
988
989int do_pipe_flags(int *fd, int flags)
990{
991 struct file *files[2];
992 int error = __do_pipe_flags(fd, files, flags);
993 if (!error) {
994 fd_install(fd[0], files[0]);
995 fd_install(fd[1], files[1]);
996 }
997 return error;
998}
999
1000/*
1001 * sys_pipe() is the normal C calling standard for creating
1002 * a pipe. It's not the way Unix traditionally does this, though.
1003 */
1004static int do_pipe2(int __user *fildes, int flags)
1005{
1006 struct file *files[2];
1007 int fd[2];
1008 int error;
1009
1010 error = __do_pipe_flags(fd, files, flags);
1011 if (!error) {
1012 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1013 fput(files[0]);
1014 fput(files[1]);
1015 put_unused_fd(fd[0]);
1016 put_unused_fd(fd[1]);
1017 error = -EFAULT;
1018 } else {
1019 fd_install(fd[0], files[0]);
1020 fd_install(fd[1], files[1]);
1021 }
1022 }
1023 return error;
1024}
1025
1026SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1027{
1028 return do_pipe2(fildes, flags);
1029}
1030
1031SYSCALL_DEFINE1(pipe, int __user *, fildes)
1032{
1033 return do_pipe2(fildes, 0);
1034}
1035
1036/*
1037 * This is the stupid "wait for pipe to be readable or writable"
1038 * model.
1039 *
1040 * See pipe_read/write() for the proper kind of exclusive wait,
1041 * but that requires that we wake up any other readers/writers
1042 * if we then do not end up reading everything (ie the whole
1043 * "wake_next_reader/writer" logic in pipe_read/write()).
1044 */
1045void pipe_wait_readable(struct pipe_inode_info *pipe)
1046{
1047 pipe_unlock(pipe);
1048 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1049 pipe_lock(pipe);
1050}
1051
1052void pipe_wait_writable(struct pipe_inode_info *pipe)
1053{
1054 pipe_unlock(pipe);
1055 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1056 pipe_lock(pipe);
1057}
1058
1059/*
1060 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1061 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1062 * race with the count check and waitqueue prep.
1063 *
1064 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1065 * then check the condition you're waiting for, and only then sleep. But
1066 * because of the pipe lock, we can check the condition before being on
1067 * the wait queue.
1068 *
1069 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1070 */
1071static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1072{
1073 DEFINE_WAIT(rdwait);
1074 int cur = *cnt;
1075
1076 while (cur == *cnt) {
1077 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1078 pipe_unlock(pipe);
1079 schedule();
1080 finish_wait(&pipe->rd_wait, &rdwait);
1081 pipe_lock(pipe);
1082 if (signal_pending(current))
1083 break;
1084 }
1085 return cur == *cnt ? -ERESTARTSYS : 0;
1086}
1087
1088static void wake_up_partner(struct pipe_inode_info *pipe)
1089{
1090 wake_up_interruptible_all(&pipe->rd_wait);
1091}
1092
1093static int fifo_open(struct inode *inode, struct file *filp)
1094{
1095 struct pipe_inode_info *pipe;
1096 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1097 int ret;
1098
1099 filp->f_version = 0;
1100
1101 spin_lock(&inode->i_lock);
1102 if (inode->i_pipe) {
1103 pipe = inode->i_pipe;
1104 pipe->files++;
1105 spin_unlock(&inode->i_lock);
1106 } else {
1107 spin_unlock(&inode->i_lock);
1108 pipe = alloc_pipe_info();
1109 if (!pipe)
1110 return -ENOMEM;
1111 pipe->files = 1;
1112 spin_lock(&inode->i_lock);
1113 if (unlikely(inode->i_pipe)) {
1114 inode->i_pipe->files++;
1115 spin_unlock(&inode->i_lock);
1116 free_pipe_info(pipe);
1117 pipe = inode->i_pipe;
1118 } else {
1119 inode->i_pipe = pipe;
1120 spin_unlock(&inode->i_lock);
1121 }
1122 }
1123 filp->private_data = pipe;
1124 /* OK, we have a pipe and it's pinned down */
1125
1126 __pipe_lock(pipe);
1127
1128 /* We can only do regular read/write on fifos */
1129 stream_open(inode, filp);
1130
1131 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1132 case FMODE_READ:
1133 /*
1134 * O_RDONLY
1135 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1136 * opened, even when there is no process writing the FIFO.
1137 */
1138 pipe->r_counter++;
1139 if (pipe->readers++ == 0)
1140 wake_up_partner(pipe);
1141
1142 if (!is_pipe && !pipe->writers) {
1143 if ((filp->f_flags & O_NONBLOCK)) {
1144 /* suppress EPOLLHUP until we have
1145 * seen a writer */
1146 filp->f_version = pipe->w_counter;
1147 } else {
1148 if (wait_for_partner(pipe, &pipe->w_counter))
1149 goto err_rd;
1150 }
1151 }
1152 break;
1153
1154 case FMODE_WRITE:
1155 /*
1156 * O_WRONLY
1157 * POSIX.1 says that O_NONBLOCK means return -1 with
1158 * errno=ENXIO when there is no process reading the FIFO.
1159 */
1160 ret = -ENXIO;
1161 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1162 goto err;
1163
1164 pipe->w_counter++;
1165 if (!pipe->writers++)
1166 wake_up_partner(pipe);
1167
1168 if (!is_pipe && !pipe->readers) {
1169 if (wait_for_partner(pipe, &pipe->r_counter))
1170 goto err_wr;
1171 }
1172 break;
1173
1174 case FMODE_READ | FMODE_WRITE:
1175 /*
1176 * O_RDWR
1177 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1178 * This implementation will NEVER block on a O_RDWR open, since
1179 * the process can at least talk to itself.
1180 */
1181
1182 pipe->readers++;
1183 pipe->writers++;
1184 pipe->r_counter++;
1185 pipe->w_counter++;
1186 if (pipe->readers == 1 || pipe->writers == 1)
1187 wake_up_partner(pipe);
1188 break;
1189
1190 default:
1191 ret = -EINVAL;
1192 goto err;
1193 }
1194
1195 /* Ok! */
1196 __pipe_unlock(pipe);
1197 return 0;
1198
1199err_rd:
1200 if (!--pipe->readers)
1201 wake_up_interruptible(&pipe->wr_wait);
1202 ret = -ERESTARTSYS;
1203 goto err;
1204
1205err_wr:
1206 if (!--pipe->writers)
1207 wake_up_interruptible_all(&pipe->rd_wait);
1208 ret = -ERESTARTSYS;
1209 goto err;
1210
1211err:
1212 __pipe_unlock(pipe);
1213
1214 put_pipe_info(inode, pipe);
1215 return ret;
1216}
1217
1218const struct file_operations pipefifo_fops = {
1219 .open = fifo_open,
1220 .llseek = no_llseek,
1221 .read_iter = pipe_read,
1222 .write_iter = pipe_write,
1223 .poll = pipe_poll,
1224 .unlocked_ioctl = pipe_ioctl,
1225 .release = pipe_release,
1226 .fasync = pipe_fasync,
1227 .splice_write = iter_file_splice_write,
1228};
1229
1230/*
1231 * Currently we rely on the pipe array holding a power-of-2 number
1232 * of pages. Returns 0 on error.
1233 */
1234unsigned int round_pipe_size(unsigned long size)
1235{
1236 if (size > (1U << 31))
1237 return 0;
1238
1239 /* Minimum pipe size, as required by POSIX */
1240 if (size < PAGE_SIZE)
1241 return PAGE_SIZE;
1242
1243 return roundup_pow_of_two(size);
1244}
1245
1246/*
1247 * Resize the pipe ring to a number of slots.
1248 *
1249 * Note the pipe can be reduced in capacity, but only if the current
1250 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1251 * returned instead.
1252 */
1253int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1254{
1255 struct pipe_buffer *bufs;
1256 unsigned int head, tail, mask, n;
1257
1258 bufs = kcalloc(nr_slots, sizeof(*bufs),
1259 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1260 if (unlikely(!bufs))
1261 return -ENOMEM;
1262
1263 spin_lock_irq(&pipe->rd_wait.lock);
1264 mask = pipe->ring_size - 1;
1265 head = pipe->head;
1266 tail = pipe->tail;
1267
1268 n = pipe_occupancy(head, tail);
1269 if (nr_slots < n) {
1270 spin_unlock_irq(&pipe->rd_wait.lock);
1271 kfree(bufs);
1272 return -EBUSY;
1273 }
1274
1275 /*
1276 * The pipe array wraps around, so just start the new one at zero
1277 * and adjust the indices.
1278 */
1279 if (n > 0) {
1280 unsigned int h = head & mask;
1281 unsigned int t = tail & mask;
1282 if (h > t) {
1283 memcpy(bufs, pipe->bufs + t,
1284 n * sizeof(struct pipe_buffer));
1285 } else {
1286 unsigned int tsize = pipe->ring_size - t;
1287 if (h > 0)
1288 memcpy(bufs + tsize, pipe->bufs,
1289 h * sizeof(struct pipe_buffer));
1290 memcpy(bufs, pipe->bufs + t,
1291 tsize * sizeof(struct pipe_buffer));
1292 }
1293 }
1294
1295 head = n;
1296 tail = 0;
1297
1298 kfree(pipe->bufs);
1299 pipe->bufs = bufs;
1300 pipe->ring_size = nr_slots;
1301 if (pipe->max_usage > nr_slots)
1302 pipe->max_usage = nr_slots;
1303 pipe->tail = tail;
1304 pipe->head = head;
1305
1306 spin_unlock_irq(&pipe->rd_wait.lock);
1307
1308 /* This might have made more room for writers */
1309 wake_up_interruptible(&pipe->wr_wait);
1310 return 0;
1311}
1312
1313/*
1314 * Allocate a new array of pipe buffers and copy the info over. Returns the
1315 * pipe size if successful, or return -ERROR on error.
1316 */
1317static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1318{
1319 unsigned long user_bufs;
1320 unsigned int nr_slots, size;
1321 long ret = 0;
1322
1323#ifdef CONFIG_WATCH_QUEUE
1324 if (pipe->watch_queue)
1325 return -EBUSY;
1326#endif
1327
1328 size = round_pipe_size(arg);
1329 nr_slots = size >> PAGE_SHIFT;
1330
1331 if (!nr_slots)
1332 return -EINVAL;
1333
1334 /*
1335 * If trying to increase the pipe capacity, check that an
1336 * unprivileged user is not trying to exceed various limits
1337 * (soft limit check here, hard limit check just below).
1338 * Decreasing the pipe capacity is always permitted, even
1339 * if the user is currently over a limit.
1340 */
1341 if (nr_slots > pipe->max_usage &&
1342 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1343 return -EPERM;
1344
1345 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1346
1347 if (nr_slots > pipe->max_usage &&
1348 (too_many_pipe_buffers_hard(user_bufs) ||
1349 too_many_pipe_buffers_soft(user_bufs)) &&
1350 pipe_is_unprivileged_user()) {
1351 ret = -EPERM;
1352 goto out_revert_acct;
1353 }
1354
1355 ret = pipe_resize_ring(pipe, nr_slots);
1356 if (ret < 0)
1357 goto out_revert_acct;
1358
1359 pipe->max_usage = nr_slots;
1360 pipe->nr_accounted = nr_slots;
1361 return pipe->max_usage * PAGE_SIZE;
1362
1363out_revert_acct:
1364 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1365 return ret;
1366}
1367
1368/*
1369 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1370 * not enough to verify that this is a pipe.
1371 */
1372struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1373{
1374 struct pipe_inode_info *pipe = file->private_data;
1375
1376 if (file->f_op != &pipefifo_fops || !pipe)
1377 return NULL;
1378#ifdef CONFIG_WATCH_QUEUE
1379 if (for_splice && pipe->watch_queue)
1380 return NULL;
1381#endif
1382 return pipe;
1383}
1384
1385long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1386{
1387 struct pipe_inode_info *pipe;
1388 long ret;
1389
1390 pipe = get_pipe_info(file, false);
1391 if (!pipe)
1392 return -EBADF;
1393
1394 __pipe_lock(pipe);
1395
1396 switch (cmd) {
1397 case F_SETPIPE_SZ:
1398 ret = pipe_set_size(pipe, arg);
1399 break;
1400 case F_GETPIPE_SZ:
1401 ret = pipe->max_usage * PAGE_SIZE;
1402 break;
1403 default:
1404 ret = -EINVAL;
1405 break;
1406 }
1407
1408 __pipe_unlock(pipe);
1409 return ret;
1410}
1411
1412static const struct super_operations pipefs_ops = {
1413 .destroy_inode = free_inode_nonrcu,
1414 .statfs = simple_statfs,
1415};
1416
1417/*
1418 * pipefs should _never_ be mounted by userland - too much of security hassle,
1419 * no real gain from having the whole whorehouse mounted. So we don't need
1420 * any operations on the root directory. However, we need a non-trivial
1421 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1422 */
1423
1424static int pipefs_init_fs_context(struct fs_context *fc)
1425{
1426 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1427 if (!ctx)
1428 return -ENOMEM;
1429 ctx->ops = &pipefs_ops;
1430 ctx->dops = &pipefs_dentry_operations;
1431 return 0;
1432}
1433
1434static struct file_system_type pipe_fs_type = {
1435 .name = "pipefs",
1436 .init_fs_context = pipefs_init_fs_context,
1437 .kill_sb = kill_anon_super,
1438};
1439
1440#ifdef CONFIG_SYSCTL
1441static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1442 unsigned int *valp,
1443 int write, void *data)
1444{
1445 if (write) {
1446 unsigned int val;
1447
1448 val = round_pipe_size(*lvalp);
1449 if (val == 0)
1450 return -EINVAL;
1451
1452 *valp = val;
1453 } else {
1454 unsigned int val = *valp;
1455 *lvalp = (unsigned long) val;
1456 }
1457
1458 return 0;
1459}
1460
1461static int proc_dopipe_max_size(struct ctl_table *table, int write,
1462 void *buffer, size_t *lenp, loff_t *ppos)
1463{
1464 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1465 do_proc_dopipe_max_size_conv, NULL);
1466}
1467
1468static struct ctl_table fs_pipe_sysctls[] = {
1469 {
1470 .procname = "pipe-max-size",
1471 .data = &pipe_max_size,
1472 .maxlen = sizeof(pipe_max_size),
1473 .mode = 0644,
1474 .proc_handler = proc_dopipe_max_size,
1475 },
1476 {
1477 .procname = "pipe-user-pages-hard",
1478 .data = &pipe_user_pages_hard,
1479 .maxlen = sizeof(pipe_user_pages_hard),
1480 .mode = 0644,
1481 .proc_handler = proc_doulongvec_minmax,
1482 },
1483 {
1484 .procname = "pipe-user-pages-soft",
1485 .data = &pipe_user_pages_soft,
1486 .maxlen = sizeof(pipe_user_pages_soft),
1487 .mode = 0644,
1488 .proc_handler = proc_doulongvec_minmax,
1489 },
1490 { }
1491};
1492#endif
1493
1494static int __init init_pipe_fs(void)
1495{
1496 int err = register_filesystem(&pipe_fs_type);
1497
1498 if (!err) {
1499 pipe_mnt = kern_mount(&pipe_fs_type);
1500 if (IS_ERR(pipe_mnt)) {
1501 err = PTR_ERR(pipe_mnt);
1502 unregister_filesystem(&pipe_fs_type);
1503 }
1504 }
1505#ifdef CONFIG_SYSCTL
1506 register_sysctl_init("fs", fs_pipe_sysctls);
1507#endif
1508 return err;
1509}
1510
1511fs_initcall(init_pipe_fs);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/file.h>
10#include <linux/poll.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/fs.h>
15#include <linux/log2.h>
16#include <linux/mount.h>
17#include <linux/pseudo_fs.h>
18#include <linux/magic.h>
19#include <linux/pipe_fs_i.h>
20#include <linux/uio.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/audit.h>
24#include <linux/syscalls.h>
25#include <linux/fcntl.h>
26#include <linux/memcontrol.h>
27#include <linux/watch_queue.h>
28#include <linux/sysctl.h>
29
30#include <linux/uaccess.h>
31#include <asm/ioctls.h>
32
33#include "internal.h"
34
35/*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48#define PIPE_MIN_DEF_BUFFERS 2
49
50/*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54static unsigned int pipe_max_size = 1048576;
55
56/* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59static unsigned long pipe_user_pages_hard;
60static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62/*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
79#define cmp_int(l, r) ((l > r) - (l < r))
80
81#ifdef CONFIG_PROVE_LOCKING
82static int pipe_lock_cmp_fn(const struct lockdep_map *a,
83 const struct lockdep_map *b)
84{
85 return cmp_int((unsigned long) a, (unsigned long) b);
86}
87#endif
88
89void pipe_lock(struct pipe_inode_info *pipe)
90{
91 if (pipe->files)
92 mutex_lock(&pipe->mutex);
93}
94EXPORT_SYMBOL(pipe_lock);
95
96void pipe_unlock(struct pipe_inode_info *pipe)
97{
98 if (pipe->files)
99 mutex_unlock(&pipe->mutex);
100}
101EXPORT_SYMBOL(pipe_unlock);
102
103void pipe_double_lock(struct pipe_inode_info *pipe1,
104 struct pipe_inode_info *pipe2)
105{
106 BUG_ON(pipe1 == pipe2);
107
108 if (pipe1 > pipe2)
109 swap(pipe1, pipe2);
110
111 pipe_lock(pipe1);
112 pipe_lock(pipe2);
113}
114
115static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
116 struct pipe_buffer *buf)
117{
118 struct page *page = buf->page;
119
120 /*
121 * If nobody else uses this page, and we don't already have a
122 * temporary page, let's keep track of it as a one-deep
123 * allocation cache. (Otherwise just release our reference to it)
124 */
125 if (page_count(page) == 1 && !pipe->tmp_page)
126 pipe->tmp_page = page;
127 else
128 put_page(page);
129}
130
131static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
132 struct pipe_buffer *buf)
133{
134 struct page *page = buf->page;
135
136 if (page_count(page) != 1)
137 return false;
138 memcg_kmem_uncharge_page(page, 0);
139 __SetPageLocked(page);
140 return true;
141}
142
143/**
144 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
145 * @pipe: the pipe that the buffer belongs to
146 * @buf: the buffer to attempt to steal
147 *
148 * Description:
149 * This function attempts to steal the &struct page attached to
150 * @buf. If successful, this function returns 0 and returns with
151 * the page locked. The caller may then reuse the page for whatever
152 * he wishes; the typical use is insertion into a different file
153 * page cache.
154 */
155bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
156 struct pipe_buffer *buf)
157{
158 struct page *page = buf->page;
159
160 /*
161 * A reference of one is golden, that means that the owner of this
162 * page is the only one holding a reference to it. lock the page
163 * and return OK.
164 */
165 if (page_count(page) == 1) {
166 lock_page(page);
167 return true;
168 }
169 return false;
170}
171EXPORT_SYMBOL(generic_pipe_buf_try_steal);
172
173/**
174 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
175 * @pipe: the pipe that the buffer belongs to
176 * @buf: the buffer to get a reference to
177 *
178 * Description:
179 * This function grabs an extra reference to @buf. It's used in
180 * the tee() system call, when we duplicate the buffers in one
181 * pipe into another.
182 */
183bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
184{
185 return try_get_page(buf->page);
186}
187EXPORT_SYMBOL(generic_pipe_buf_get);
188
189/**
190 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
191 * @pipe: the pipe that the buffer belongs to
192 * @buf: the buffer to put a reference to
193 *
194 * Description:
195 * This function releases a reference to @buf.
196 */
197void generic_pipe_buf_release(struct pipe_inode_info *pipe,
198 struct pipe_buffer *buf)
199{
200 put_page(buf->page);
201}
202EXPORT_SYMBOL(generic_pipe_buf_release);
203
204static const struct pipe_buf_operations anon_pipe_buf_ops = {
205 .release = anon_pipe_buf_release,
206 .try_steal = anon_pipe_buf_try_steal,
207 .get = generic_pipe_buf_get,
208};
209
210/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
211static inline bool pipe_readable(const struct pipe_inode_info *pipe)
212{
213 unsigned int head = READ_ONCE(pipe->head);
214 unsigned int tail = READ_ONCE(pipe->tail);
215 unsigned int writers = READ_ONCE(pipe->writers);
216
217 return !pipe_empty(head, tail) || !writers;
218}
219
220static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
221 struct pipe_buffer *buf,
222 unsigned int tail)
223{
224 pipe_buf_release(pipe, buf);
225
226 /*
227 * If the pipe has a watch_queue, we need additional protection
228 * by the spinlock because notifications get posted with only
229 * this spinlock, no mutex
230 */
231 if (pipe_has_watch_queue(pipe)) {
232 spin_lock_irq(&pipe->rd_wait.lock);
233#ifdef CONFIG_WATCH_QUEUE
234 if (buf->flags & PIPE_BUF_FLAG_LOSS)
235 pipe->note_loss = true;
236#endif
237 pipe->tail = ++tail;
238 spin_unlock_irq(&pipe->rd_wait.lock);
239 return tail;
240 }
241
242 /*
243 * Without a watch_queue, we can simply increment the tail
244 * without the spinlock - the mutex is enough.
245 */
246 pipe->tail = ++tail;
247 return tail;
248}
249
250static ssize_t
251pipe_read(struct kiocb *iocb, struct iov_iter *to)
252{
253 size_t total_len = iov_iter_count(to);
254 struct file *filp = iocb->ki_filp;
255 struct pipe_inode_info *pipe = filp->private_data;
256 bool was_full, wake_next_reader = false;
257 ssize_t ret;
258
259 /* Null read succeeds. */
260 if (unlikely(total_len == 0))
261 return 0;
262
263 ret = 0;
264 mutex_lock(&pipe->mutex);
265
266 /*
267 * We only wake up writers if the pipe was full when we started
268 * reading in order to avoid unnecessary wakeups.
269 *
270 * But when we do wake up writers, we do so using a sync wakeup
271 * (WF_SYNC), because we want them to get going and generate more
272 * data for us.
273 */
274 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
275 for (;;) {
276 /* Read ->head with a barrier vs post_one_notification() */
277 unsigned int head = smp_load_acquire(&pipe->head);
278 unsigned int tail = pipe->tail;
279 unsigned int mask = pipe->ring_size - 1;
280
281#ifdef CONFIG_WATCH_QUEUE
282 if (pipe->note_loss) {
283 struct watch_notification n;
284
285 if (total_len < 8) {
286 if (ret == 0)
287 ret = -ENOBUFS;
288 break;
289 }
290
291 n.type = WATCH_TYPE_META;
292 n.subtype = WATCH_META_LOSS_NOTIFICATION;
293 n.info = watch_sizeof(n);
294 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
295 if (ret == 0)
296 ret = -EFAULT;
297 break;
298 }
299 ret += sizeof(n);
300 total_len -= sizeof(n);
301 pipe->note_loss = false;
302 }
303#endif
304
305 if (!pipe_empty(head, tail)) {
306 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
307 size_t chars = buf->len;
308 size_t written;
309 int error;
310
311 if (chars > total_len) {
312 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
313 if (ret == 0)
314 ret = -ENOBUFS;
315 break;
316 }
317 chars = total_len;
318 }
319
320 error = pipe_buf_confirm(pipe, buf);
321 if (error) {
322 if (!ret)
323 ret = error;
324 break;
325 }
326
327 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
328 if (unlikely(written < chars)) {
329 if (!ret)
330 ret = -EFAULT;
331 break;
332 }
333 ret += chars;
334 buf->offset += chars;
335 buf->len -= chars;
336
337 /* Was it a packet buffer? Clean up and exit */
338 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
339 total_len = chars;
340 buf->len = 0;
341 }
342
343 if (!buf->len)
344 tail = pipe_update_tail(pipe, buf, tail);
345 total_len -= chars;
346 if (!total_len)
347 break; /* common path: read succeeded */
348 if (!pipe_empty(head, tail)) /* More to do? */
349 continue;
350 }
351
352 if (!pipe->writers)
353 break;
354 if (ret)
355 break;
356 if ((filp->f_flags & O_NONBLOCK) ||
357 (iocb->ki_flags & IOCB_NOWAIT)) {
358 ret = -EAGAIN;
359 break;
360 }
361 mutex_unlock(&pipe->mutex);
362
363 /*
364 * We only get here if we didn't actually read anything.
365 *
366 * However, we could have seen (and removed) a zero-sized
367 * pipe buffer, and might have made space in the buffers
368 * that way.
369 *
370 * You can't make zero-sized pipe buffers by doing an empty
371 * write (not even in packet mode), but they can happen if
372 * the writer gets an EFAULT when trying to fill a buffer
373 * that already got allocated and inserted in the buffer
374 * array.
375 *
376 * So we still need to wake up any pending writers in the
377 * _very_ unlikely case that the pipe was full, but we got
378 * no data.
379 */
380 if (unlikely(was_full))
381 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
382 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
383
384 /*
385 * But because we didn't read anything, at this point we can
386 * just return directly with -ERESTARTSYS if we're interrupted,
387 * since we've done any required wakeups and there's no need
388 * to mark anything accessed. And we've dropped the lock.
389 */
390 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
391 return -ERESTARTSYS;
392
393 mutex_lock(&pipe->mutex);
394 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
395 wake_next_reader = true;
396 }
397 if (pipe_empty(pipe->head, pipe->tail))
398 wake_next_reader = false;
399 mutex_unlock(&pipe->mutex);
400
401 if (was_full)
402 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
403 if (wake_next_reader)
404 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
405 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
406 if (ret > 0)
407 file_accessed(filp);
408 return ret;
409}
410
411static inline int is_packetized(struct file *file)
412{
413 return (file->f_flags & O_DIRECT) != 0;
414}
415
416/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
417static inline bool pipe_writable(const struct pipe_inode_info *pipe)
418{
419 unsigned int head = READ_ONCE(pipe->head);
420 unsigned int tail = READ_ONCE(pipe->tail);
421 unsigned int max_usage = READ_ONCE(pipe->max_usage);
422
423 return !pipe_full(head, tail, max_usage) ||
424 !READ_ONCE(pipe->readers);
425}
426
427static ssize_t
428pipe_write(struct kiocb *iocb, struct iov_iter *from)
429{
430 struct file *filp = iocb->ki_filp;
431 struct pipe_inode_info *pipe = filp->private_data;
432 unsigned int head;
433 ssize_t ret = 0;
434 size_t total_len = iov_iter_count(from);
435 ssize_t chars;
436 bool was_empty = false;
437 bool wake_next_writer = false;
438
439 /*
440 * Reject writing to watch queue pipes before the point where we lock
441 * the pipe.
442 * Otherwise, lockdep would be unhappy if the caller already has another
443 * pipe locked.
444 * If we had to support locking a normal pipe and a notification pipe at
445 * the same time, we could set up lockdep annotations for that, but
446 * since we don't actually need that, it's simpler to just bail here.
447 */
448 if (pipe_has_watch_queue(pipe))
449 return -EXDEV;
450
451 /* Null write succeeds. */
452 if (unlikely(total_len == 0))
453 return 0;
454
455 mutex_lock(&pipe->mutex);
456
457 if (!pipe->readers) {
458 send_sig(SIGPIPE, current, 0);
459 ret = -EPIPE;
460 goto out;
461 }
462
463 /*
464 * If it wasn't empty we try to merge new data into
465 * the last buffer.
466 *
467 * That naturally merges small writes, but it also
468 * page-aligns the rest of the writes for large writes
469 * spanning multiple pages.
470 */
471 head = pipe->head;
472 was_empty = pipe_empty(head, pipe->tail);
473 chars = total_len & (PAGE_SIZE-1);
474 if (chars && !was_empty) {
475 unsigned int mask = pipe->ring_size - 1;
476 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
477 int offset = buf->offset + buf->len;
478
479 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
480 offset + chars <= PAGE_SIZE) {
481 ret = pipe_buf_confirm(pipe, buf);
482 if (ret)
483 goto out;
484
485 ret = copy_page_from_iter(buf->page, offset, chars, from);
486 if (unlikely(ret < chars)) {
487 ret = -EFAULT;
488 goto out;
489 }
490
491 buf->len += ret;
492 if (!iov_iter_count(from))
493 goto out;
494 }
495 }
496
497 for (;;) {
498 if (!pipe->readers) {
499 send_sig(SIGPIPE, current, 0);
500 if (!ret)
501 ret = -EPIPE;
502 break;
503 }
504
505 head = pipe->head;
506 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
507 unsigned int mask = pipe->ring_size - 1;
508 struct pipe_buffer *buf;
509 struct page *page = pipe->tmp_page;
510 int copied;
511
512 if (!page) {
513 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
514 if (unlikely(!page)) {
515 ret = ret ? : -ENOMEM;
516 break;
517 }
518 pipe->tmp_page = page;
519 }
520
521 /* Allocate a slot in the ring in advance and attach an
522 * empty buffer. If we fault or otherwise fail to use
523 * it, either the reader will consume it or it'll still
524 * be there for the next write.
525 */
526 pipe->head = head + 1;
527
528 /* Insert it into the buffer array */
529 buf = &pipe->bufs[head & mask];
530 buf->page = page;
531 buf->ops = &anon_pipe_buf_ops;
532 buf->offset = 0;
533 buf->len = 0;
534 if (is_packetized(filp))
535 buf->flags = PIPE_BUF_FLAG_PACKET;
536 else
537 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
538 pipe->tmp_page = NULL;
539
540 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
541 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
542 if (!ret)
543 ret = -EFAULT;
544 break;
545 }
546 ret += copied;
547 buf->len = copied;
548
549 if (!iov_iter_count(from))
550 break;
551 }
552
553 if (!pipe_full(head, pipe->tail, pipe->max_usage))
554 continue;
555
556 /* Wait for buffer space to become available. */
557 if ((filp->f_flags & O_NONBLOCK) ||
558 (iocb->ki_flags & IOCB_NOWAIT)) {
559 if (!ret)
560 ret = -EAGAIN;
561 break;
562 }
563 if (signal_pending(current)) {
564 if (!ret)
565 ret = -ERESTARTSYS;
566 break;
567 }
568
569 /*
570 * We're going to release the pipe lock and wait for more
571 * space. We wake up any readers if necessary, and then
572 * after waiting we need to re-check whether the pipe
573 * become empty while we dropped the lock.
574 */
575 mutex_unlock(&pipe->mutex);
576 if (was_empty)
577 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
578 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
579 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
580 mutex_lock(&pipe->mutex);
581 was_empty = pipe_empty(pipe->head, pipe->tail);
582 wake_next_writer = true;
583 }
584out:
585 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
586 wake_next_writer = false;
587 mutex_unlock(&pipe->mutex);
588
589 /*
590 * If we do do a wakeup event, we do a 'sync' wakeup, because we
591 * want the reader to start processing things asap, rather than
592 * leave the data pending.
593 *
594 * This is particularly important for small writes, because of
595 * how (for example) the GNU make jobserver uses small writes to
596 * wake up pending jobs
597 *
598 * Epoll nonsensically wants a wakeup whether the pipe
599 * was already empty or not.
600 */
601 if (was_empty || pipe->poll_usage)
602 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
603 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
604 if (wake_next_writer)
605 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
606 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
607 int err = file_update_time(filp);
608 if (err)
609 ret = err;
610 sb_end_write(file_inode(filp)->i_sb);
611 }
612 return ret;
613}
614
615static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
616{
617 struct pipe_inode_info *pipe = filp->private_data;
618 unsigned int count, head, tail, mask;
619
620 switch (cmd) {
621 case FIONREAD:
622 mutex_lock(&pipe->mutex);
623 count = 0;
624 head = pipe->head;
625 tail = pipe->tail;
626 mask = pipe->ring_size - 1;
627
628 while (tail != head) {
629 count += pipe->bufs[tail & mask].len;
630 tail++;
631 }
632 mutex_unlock(&pipe->mutex);
633
634 return put_user(count, (int __user *)arg);
635
636#ifdef CONFIG_WATCH_QUEUE
637 case IOC_WATCH_QUEUE_SET_SIZE: {
638 int ret;
639 mutex_lock(&pipe->mutex);
640 ret = watch_queue_set_size(pipe, arg);
641 mutex_unlock(&pipe->mutex);
642 return ret;
643 }
644
645 case IOC_WATCH_QUEUE_SET_FILTER:
646 return watch_queue_set_filter(
647 pipe, (struct watch_notification_filter __user *)arg);
648#endif
649
650 default:
651 return -ENOIOCTLCMD;
652 }
653}
654
655/* No kernel lock held - fine */
656static __poll_t
657pipe_poll(struct file *filp, poll_table *wait)
658{
659 __poll_t mask;
660 struct pipe_inode_info *pipe = filp->private_data;
661 unsigned int head, tail;
662
663 /* Epoll has some historical nasty semantics, this enables them */
664 WRITE_ONCE(pipe->poll_usage, true);
665
666 /*
667 * Reading pipe state only -- no need for acquiring the semaphore.
668 *
669 * But because this is racy, the code has to add the
670 * entry to the poll table _first_ ..
671 */
672 if (filp->f_mode & FMODE_READ)
673 poll_wait(filp, &pipe->rd_wait, wait);
674 if (filp->f_mode & FMODE_WRITE)
675 poll_wait(filp, &pipe->wr_wait, wait);
676
677 /*
678 * .. and only then can you do the racy tests. That way,
679 * if something changes and you got it wrong, the poll
680 * table entry will wake you up and fix it.
681 */
682 head = READ_ONCE(pipe->head);
683 tail = READ_ONCE(pipe->tail);
684
685 mask = 0;
686 if (filp->f_mode & FMODE_READ) {
687 if (!pipe_empty(head, tail))
688 mask |= EPOLLIN | EPOLLRDNORM;
689 if (!pipe->writers && filp->f_version != pipe->w_counter)
690 mask |= EPOLLHUP;
691 }
692
693 if (filp->f_mode & FMODE_WRITE) {
694 if (!pipe_full(head, tail, pipe->max_usage))
695 mask |= EPOLLOUT | EPOLLWRNORM;
696 /*
697 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
698 * behave exactly like pipes for poll().
699 */
700 if (!pipe->readers)
701 mask |= EPOLLERR;
702 }
703
704 return mask;
705}
706
707static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
708{
709 int kill = 0;
710
711 spin_lock(&inode->i_lock);
712 if (!--pipe->files) {
713 inode->i_pipe = NULL;
714 kill = 1;
715 }
716 spin_unlock(&inode->i_lock);
717
718 if (kill)
719 free_pipe_info(pipe);
720}
721
722static int
723pipe_release(struct inode *inode, struct file *file)
724{
725 struct pipe_inode_info *pipe = file->private_data;
726
727 mutex_lock(&pipe->mutex);
728 if (file->f_mode & FMODE_READ)
729 pipe->readers--;
730 if (file->f_mode & FMODE_WRITE)
731 pipe->writers--;
732
733 /* Was that the last reader or writer, but not the other side? */
734 if (!pipe->readers != !pipe->writers) {
735 wake_up_interruptible_all(&pipe->rd_wait);
736 wake_up_interruptible_all(&pipe->wr_wait);
737 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
738 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
739 }
740 mutex_unlock(&pipe->mutex);
741
742 put_pipe_info(inode, pipe);
743 return 0;
744}
745
746static int
747pipe_fasync(int fd, struct file *filp, int on)
748{
749 struct pipe_inode_info *pipe = filp->private_data;
750 int retval = 0;
751
752 mutex_lock(&pipe->mutex);
753 if (filp->f_mode & FMODE_READ)
754 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
755 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
756 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
757 if (retval < 0 && (filp->f_mode & FMODE_READ))
758 /* this can happen only if on == T */
759 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
760 }
761 mutex_unlock(&pipe->mutex);
762 return retval;
763}
764
765unsigned long account_pipe_buffers(struct user_struct *user,
766 unsigned long old, unsigned long new)
767{
768 return atomic_long_add_return(new - old, &user->pipe_bufs);
769}
770
771bool too_many_pipe_buffers_soft(unsigned long user_bufs)
772{
773 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
774
775 return soft_limit && user_bufs > soft_limit;
776}
777
778bool too_many_pipe_buffers_hard(unsigned long user_bufs)
779{
780 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
781
782 return hard_limit && user_bufs > hard_limit;
783}
784
785bool pipe_is_unprivileged_user(void)
786{
787 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
788}
789
790struct pipe_inode_info *alloc_pipe_info(void)
791{
792 struct pipe_inode_info *pipe;
793 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
794 struct user_struct *user = get_current_user();
795 unsigned long user_bufs;
796 unsigned int max_size = READ_ONCE(pipe_max_size);
797
798 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
799 if (pipe == NULL)
800 goto out_free_uid;
801
802 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
803 pipe_bufs = max_size >> PAGE_SHIFT;
804
805 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
806
807 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
808 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
809 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
810 }
811
812 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
813 goto out_revert_acct;
814
815 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
816 GFP_KERNEL_ACCOUNT);
817
818 if (pipe->bufs) {
819 init_waitqueue_head(&pipe->rd_wait);
820 init_waitqueue_head(&pipe->wr_wait);
821 pipe->r_counter = pipe->w_counter = 1;
822 pipe->max_usage = pipe_bufs;
823 pipe->ring_size = pipe_bufs;
824 pipe->nr_accounted = pipe_bufs;
825 pipe->user = user;
826 mutex_init(&pipe->mutex);
827 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
828 return pipe;
829 }
830
831out_revert_acct:
832 (void) account_pipe_buffers(user, pipe_bufs, 0);
833 kfree(pipe);
834out_free_uid:
835 free_uid(user);
836 return NULL;
837}
838
839void free_pipe_info(struct pipe_inode_info *pipe)
840{
841 unsigned int i;
842
843#ifdef CONFIG_WATCH_QUEUE
844 if (pipe->watch_queue)
845 watch_queue_clear(pipe->watch_queue);
846#endif
847
848 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
849 free_uid(pipe->user);
850 for (i = 0; i < pipe->ring_size; i++) {
851 struct pipe_buffer *buf = pipe->bufs + i;
852 if (buf->ops)
853 pipe_buf_release(pipe, buf);
854 }
855#ifdef CONFIG_WATCH_QUEUE
856 if (pipe->watch_queue)
857 put_watch_queue(pipe->watch_queue);
858#endif
859 if (pipe->tmp_page)
860 __free_page(pipe->tmp_page);
861 kfree(pipe->bufs);
862 kfree(pipe);
863}
864
865static struct vfsmount *pipe_mnt __ro_after_init;
866
867/*
868 * pipefs_dname() is called from d_path().
869 */
870static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
871{
872 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
873 d_inode(dentry)->i_ino);
874}
875
876static const struct dentry_operations pipefs_dentry_operations = {
877 .d_dname = pipefs_dname,
878};
879
880static struct inode * get_pipe_inode(void)
881{
882 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
883 struct pipe_inode_info *pipe;
884
885 if (!inode)
886 goto fail_inode;
887
888 inode->i_ino = get_next_ino();
889
890 pipe = alloc_pipe_info();
891 if (!pipe)
892 goto fail_iput;
893
894 inode->i_pipe = pipe;
895 pipe->files = 2;
896 pipe->readers = pipe->writers = 1;
897 inode->i_fop = &pipefifo_fops;
898
899 /*
900 * Mark the inode dirty from the very beginning,
901 * that way it will never be moved to the dirty
902 * list because "mark_inode_dirty()" will think
903 * that it already _is_ on the dirty list.
904 */
905 inode->i_state = I_DIRTY;
906 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
907 inode->i_uid = current_fsuid();
908 inode->i_gid = current_fsgid();
909 simple_inode_init_ts(inode);
910
911 return inode;
912
913fail_iput:
914 iput(inode);
915
916fail_inode:
917 return NULL;
918}
919
920int create_pipe_files(struct file **res, int flags)
921{
922 struct inode *inode = get_pipe_inode();
923 struct file *f;
924 int error;
925
926 if (!inode)
927 return -ENFILE;
928
929 if (flags & O_NOTIFICATION_PIPE) {
930 error = watch_queue_init(inode->i_pipe);
931 if (error) {
932 free_pipe_info(inode->i_pipe);
933 iput(inode);
934 return error;
935 }
936 }
937
938 f = alloc_file_pseudo(inode, pipe_mnt, "",
939 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
940 &pipefifo_fops);
941 if (IS_ERR(f)) {
942 free_pipe_info(inode->i_pipe);
943 iput(inode);
944 return PTR_ERR(f);
945 }
946
947 f->private_data = inode->i_pipe;
948
949 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
950 &pipefifo_fops);
951 if (IS_ERR(res[0])) {
952 put_pipe_info(inode, inode->i_pipe);
953 fput(f);
954 return PTR_ERR(res[0]);
955 }
956 res[0]->private_data = inode->i_pipe;
957 res[1] = f;
958 stream_open(inode, res[0]);
959 stream_open(inode, res[1]);
960 return 0;
961}
962
963static int __do_pipe_flags(int *fd, struct file **files, int flags)
964{
965 int error;
966 int fdw, fdr;
967
968 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
969 return -EINVAL;
970
971 error = create_pipe_files(files, flags);
972 if (error)
973 return error;
974
975 error = get_unused_fd_flags(flags);
976 if (error < 0)
977 goto err_read_pipe;
978 fdr = error;
979
980 error = get_unused_fd_flags(flags);
981 if (error < 0)
982 goto err_fdr;
983 fdw = error;
984
985 audit_fd_pair(fdr, fdw);
986 fd[0] = fdr;
987 fd[1] = fdw;
988 /* pipe groks IOCB_NOWAIT */
989 files[0]->f_mode |= FMODE_NOWAIT;
990 files[1]->f_mode |= FMODE_NOWAIT;
991 return 0;
992
993 err_fdr:
994 put_unused_fd(fdr);
995 err_read_pipe:
996 fput(files[0]);
997 fput(files[1]);
998 return error;
999}
1000
1001int do_pipe_flags(int *fd, int flags)
1002{
1003 struct file *files[2];
1004 int error = __do_pipe_flags(fd, files, flags);
1005 if (!error) {
1006 fd_install(fd[0], files[0]);
1007 fd_install(fd[1], files[1]);
1008 }
1009 return error;
1010}
1011
1012/*
1013 * sys_pipe() is the normal C calling standard for creating
1014 * a pipe. It's not the way Unix traditionally does this, though.
1015 */
1016static int do_pipe2(int __user *fildes, int flags)
1017{
1018 struct file *files[2];
1019 int fd[2];
1020 int error;
1021
1022 error = __do_pipe_flags(fd, files, flags);
1023 if (!error) {
1024 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1025 fput(files[0]);
1026 fput(files[1]);
1027 put_unused_fd(fd[0]);
1028 put_unused_fd(fd[1]);
1029 error = -EFAULT;
1030 } else {
1031 fd_install(fd[0], files[0]);
1032 fd_install(fd[1], files[1]);
1033 }
1034 }
1035 return error;
1036}
1037
1038SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1039{
1040 return do_pipe2(fildes, flags);
1041}
1042
1043SYSCALL_DEFINE1(pipe, int __user *, fildes)
1044{
1045 return do_pipe2(fildes, 0);
1046}
1047
1048/*
1049 * This is the stupid "wait for pipe to be readable or writable"
1050 * model.
1051 *
1052 * See pipe_read/write() for the proper kind of exclusive wait,
1053 * but that requires that we wake up any other readers/writers
1054 * if we then do not end up reading everything (ie the whole
1055 * "wake_next_reader/writer" logic in pipe_read/write()).
1056 */
1057void pipe_wait_readable(struct pipe_inode_info *pipe)
1058{
1059 pipe_unlock(pipe);
1060 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1061 pipe_lock(pipe);
1062}
1063
1064void pipe_wait_writable(struct pipe_inode_info *pipe)
1065{
1066 pipe_unlock(pipe);
1067 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1068 pipe_lock(pipe);
1069}
1070
1071/*
1072 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1073 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1074 * race with the count check and waitqueue prep.
1075 *
1076 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1077 * then check the condition you're waiting for, and only then sleep. But
1078 * because of the pipe lock, we can check the condition before being on
1079 * the wait queue.
1080 *
1081 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1082 */
1083static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1084{
1085 DEFINE_WAIT(rdwait);
1086 int cur = *cnt;
1087
1088 while (cur == *cnt) {
1089 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1090 pipe_unlock(pipe);
1091 schedule();
1092 finish_wait(&pipe->rd_wait, &rdwait);
1093 pipe_lock(pipe);
1094 if (signal_pending(current))
1095 break;
1096 }
1097 return cur == *cnt ? -ERESTARTSYS : 0;
1098}
1099
1100static void wake_up_partner(struct pipe_inode_info *pipe)
1101{
1102 wake_up_interruptible_all(&pipe->rd_wait);
1103}
1104
1105static int fifo_open(struct inode *inode, struct file *filp)
1106{
1107 struct pipe_inode_info *pipe;
1108 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1109 int ret;
1110
1111 filp->f_version = 0;
1112
1113 spin_lock(&inode->i_lock);
1114 if (inode->i_pipe) {
1115 pipe = inode->i_pipe;
1116 pipe->files++;
1117 spin_unlock(&inode->i_lock);
1118 } else {
1119 spin_unlock(&inode->i_lock);
1120 pipe = alloc_pipe_info();
1121 if (!pipe)
1122 return -ENOMEM;
1123 pipe->files = 1;
1124 spin_lock(&inode->i_lock);
1125 if (unlikely(inode->i_pipe)) {
1126 inode->i_pipe->files++;
1127 spin_unlock(&inode->i_lock);
1128 free_pipe_info(pipe);
1129 pipe = inode->i_pipe;
1130 } else {
1131 inode->i_pipe = pipe;
1132 spin_unlock(&inode->i_lock);
1133 }
1134 }
1135 filp->private_data = pipe;
1136 /* OK, we have a pipe and it's pinned down */
1137
1138 mutex_lock(&pipe->mutex);
1139
1140 /* We can only do regular read/write on fifos */
1141 stream_open(inode, filp);
1142
1143 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1144 case FMODE_READ:
1145 /*
1146 * O_RDONLY
1147 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1148 * opened, even when there is no process writing the FIFO.
1149 */
1150 pipe->r_counter++;
1151 if (pipe->readers++ == 0)
1152 wake_up_partner(pipe);
1153
1154 if (!is_pipe && !pipe->writers) {
1155 if ((filp->f_flags & O_NONBLOCK)) {
1156 /* suppress EPOLLHUP until we have
1157 * seen a writer */
1158 filp->f_version = pipe->w_counter;
1159 } else {
1160 if (wait_for_partner(pipe, &pipe->w_counter))
1161 goto err_rd;
1162 }
1163 }
1164 break;
1165
1166 case FMODE_WRITE:
1167 /*
1168 * O_WRONLY
1169 * POSIX.1 says that O_NONBLOCK means return -1 with
1170 * errno=ENXIO when there is no process reading the FIFO.
1171 */
1172 ret = -ENXIO;
1173 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1174 goto err;
1175
1176 pipe->w_counter++;
1177 if (!pipe->writers++)
1178 wake_up_partner(pipe);
1179
1180 if (!is_pipe && !pipe->readers) {
1181 if (wait_for_partner(pipe, &pipe->r_counter))
1182 goto err_wr;
1183 }
1184 break;
1185
1186 case FMODE_READ | FMODE_WRITE:
1187 /*
1188 * O_RDWR
1189 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1190 * This implementation will NEVER block on a O_RDWR open, since
1191 * the process can at least talk to itself.
1192 */
1193
1194 pipe->readers++;
1195 pipe->writers++;
1196 pipe->r_counter++;
1197 pipe->w_counter++;
1198 if (pipe->readers == 1 || pipe->writers == 1)
1199 wake_up_partner(pipe);
1200 break;
1201
1202 default:
1203 ret = -EINVAL;
1204 goto err;
1205 }
1206
1207 /* Ok! */
1208 mutex_unlock(&pipe->mutex);
1209 return 0;
1210
1211err_rd:
1212 if (!--pipe->readers)
1213 wake_up_interruptible(&pipe->wr_wait);
1214 ret = -ERESTARTSYS;
1215 goto err;
1216
1217err_wr:
1218 if (!--pipe->writers)
1219 wake_up_interruptible_all(&pipe->rd_wait);
1220 ret = -ERESTARTSYS;
1221 goto err;
1222
1223err:
1224 mutex_unlock(&pipe->mutex);
1225
1226 put_pipe_info(inode, pipe);
1227 return ret;
1228}
1229
1230const struct file_operations pipefifo_fops = {
1231 .open = fifo_open,
1232 .llseek = no_llseek,
1233 .read_iter = pipe_read,
1234 .write_iter = pipe_write,
1235 .poll = pipe_poll,
1236 .unlocked_ioctl = pipe_ioctl,
1237 .release = pipe_release,
1238 .fasync = pipe_fasync,
1239 .splice_write = iter_file_splice_write,
1240};
1241
1242/*
1243 * Currently we rely on the pipe array holding a power-of-2 number
1244 * of pages. Returns 0 on error.
1245 */
1246unsigned int round_pipe_size(unsigned int size)
1247{
1248 if (size > (1U << 31))
1249 return 0;
1250
1251 /* Minimum pipe size, as required by POSIX */
1252 if (size < PAGE_SIZE)
1253 return PAGE_SIZE;
1254
1255 return roundup_pow_of_two(size);
1256}
1257
1258/*
1259 * Resize the pipe ring to a number of slots.
1260 *
1261 * Note the pipe can be reduced in capacity, but only if the current
1262 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1263 * returned instead.
1264 */
1265int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1266{
1267 struct pipe_buffer *bufs;
1268 unsigned int head, tail, mask, n;
1269
1270 bufs = kcalloc(nr_slots, sizeof(*bufs),
1271 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1272 if (unlikely(!bufs))
1273 return -ENOMEM;
1274
1275 spin_lock_irq(&pipe->rd_wait.lock);
1276 mask = pipe->ring_size - 1;
1277 head = pipe->head;
1278 tail = pipe->tail;
1279
1280 n = pipe_occupancy(head, tail);
1281 if (nr_slots < n) {
1282 spin_unlock_irq(&pipe->rd_wait.lock);
1283 kfree(bufs);
1284 return -EBUSY;
1285 }
1286
1287 /*
1288 * The pipe array wraps around, so just start the new one at zero
1289 * and adjust the indices.
1290 */
1291 if (n > 0) {
1292 unsigned int h = head & mask;
1293 unsigned int t = tail & mask;
1294 if (h > t) {
1295 memcpy(bufs, pipe->bufs + t,
1296 n * sizeof(struct pipe_buffer));
1297 } else {
1298 unsigned int tsize = pipe->ring_size - t;
1299 if (h > 0)
1300 memcpy(bufs + tsize, pipe->bufs,
1301 h * sizeof(struct pipe_buffer));
1302 memcpy(bufs, pipe->bufs + t,
1303 tsize * sizeof(struct pipe_buffer));
1304 }
1305 }
1306
1307 head = n;
1308 tail = 0;
1309
1310 kfree(pipe->bufs);
1311 pipe->bufs = bufs;
1312 pipe->ring_size = nr_slots;
1313 if (pipe->max_usage > nr_slots)
1314 pipe->max_usage = nr_slots;
1315 pipe->tail = tail;
1316 pipe->head = head;
1317
1318 if (!pipe_has_watch_queue(pipe)) {
1319 pipe->max_usage = nr_slots;
1320 pipe->nr_accounted = nr_slots;
1321 }
1322
1323 spin_unlock_irq(&pipe->rd_wait.lock);
1324
1325 /* This might have made more room for writers */
1326 wake_up_interruptible(&pipe->wr_wait);
1327 return 0;
1328}
1329
1330/*
1331 * Allocate a new array of pipe buffers and copy the info over. Returns the
1332 * pipe size if successful, or return -ERROR on error.
1333 */
1334static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1335{
1336 unsigned long user_bufs;
1337 unsigned int nr_slots, size;
1338 long ret = 0;
1339
1340 if (pipe_has_watch_queue(pipe))
1341 return -EBUSY;
1342
1343 size = round_pipe_size(arg);
1344 nr_slots = size >> PAGE_SHIFT;
1345
1346 if (!nr_slots)
1347 return -EINVAL;
1348
1349 /*
1350 * If trying to increase the pipe capacity, check that an
1351 * unprivileged user is not trying to exceed various limits
1352 * (soft limit check here, hard limit check just below).
1353 * Decreasing the pipe capacity is always permitted, even
1354 * if the user is currently over a limit.
1355 */
1356 if (nr_slots > pipe->max_usage &&
1357 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1358 return -EPERM;
1359
1360 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1361
1362 if (nr_slots > pipe->max_usage &&
1363 (too_many_pipe_buffers_hard(user_bufs) ||
1364 too_many_pipe_buffers_soft(user_bufs)) &&
1365 pipe_is_unprivileged_user()) {
1366 ret = -EPERM;
1367 goto out_revert_acct;
1368 }
1369
1370 ret = pipe_resize_ring(pipe, nr_slots);
1371 if (ret < 0)
1372 goto out_revert_acct;
1373
1374 return pipe->max_usage * PAGE_SIZE;
1375
1376out_revert_acct:
1377 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1378 return ret;
1379}
1380
1381/*
1382 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1383 * not enough to verify that this is a pipe.
1384 */
1385struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1386{
1387 struct pipe_inode_info *pipe = file->private_data;
1388
1389 if (file->f_op != &pipefifo_fops || !pipe)
1390 return NULL;
1391 if (for_splice && pipe_has_watch_queue(pipe))
1392 return NULL;
1393 return pipe;
1394}
1395
1396long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1397{
1398 struct pipe_inode_info *pipe;
1399 long ret;
1400
1401 pipe = get_pipe_info(file, false);
1402 if (!pipe)
1403 return -EBADF;
1404
1405 mutex_lock(&pipe->mutex);
1406
1407 switch (cmd) {
1408 case F_SETPIPE_SZ:
1409 ret = pipe_set_size(pipe, arg);
1410 break;
1411 case F_GETPIPE_SZ:
1412 ret = pipe->max_usage * PAGE_SIZE;
1413 break;
1414 default:
1415 ret = -EINVAL;
1416 break;
1417 }
1418
1419 mutex_unlock(&pipe->mutex);
1420 return ret;
1421}
1422
1423static const struct super_operations pipefs_ops = {
1424 .destroy_inode = free_inode_nonrcu,
1425 .statfs = simple_statfs,
1426};
1427
1428/*
1429 * pipefs should _never_ be mounted by userland - too much of security hassle,
1430 * no real gain from having the whole whorehouse mounted. So we don't need
1431 * any operations on the root directory. However, we need a non-trivial
1432 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1433 */
1434
1435static int pipefs_init_fs_context(struct fs_context *fc)
1436{
1437 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1438 if (!ctx)
1439 return -ENOMEM;
1440 ctx->ops = &pipefs_ops;
1441 ctx->dops = &pipefs_dentry_operations;
1442 return 0;
1443}
1444
1445static struct file_system_type pipe_fs_type = {
1446 .name = "pipefs",
1447 .init_fs_context = pipefs_init_fs_context,
1448 .kill_sb = kill_anon_super,
1449};
1450
1451#ifdef CONFIG_SYSCTL
1452static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1453 unsigned int *valp,
1454 int write, void *data)
1455{
1456 if (write) {
1457 unsigned int val;
1458
1459 val = round_pipe_size(*lvalp);
1460 if (val == 0)
1461 return -EINVAL;
1462
1463 *valp = val;
1464 } else {
1465 unsigned int val = *valp;
1466 *lvalp = (unsigned long) val;
1467 }
1468
1469 return 0;
1470}
1471
1472static int proc_dopipe_max_size(struct ctl_table *table, int write,
1473 void *buffer, size_t *lenp, loff_t *ppos)
1474{
1475 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1476 do_proc_dopipe_max_size_conv, NULL);
1477}
1478
1479static struct ctl_table fs_pipe_sysctls[] = {
1480 {
1481 .procname = "pipe-max-size",
1482 .data = &pipe_max_size,
1483 .maxlen = sizeof(pipe_max_size),
1484 .mode = 0644,
1485 .proc_handler = proc_dopipe_max_size,
1486 },
1487 {
1488 .procname = "pipe-user-pages-hard",
1489 .data = &pipe_user_pages_hard,
1490 .maxlen = sizeof(pipe_user_pages_hard),
1491 .mode = 0644,
1492 .proc_handler = proc_doulongvec_minmax,
1493 },
1494 {
1495 .procname = "pipe-user-pages-soft",
1496 .data = &pipe_user_pages_soft,
1497 .maxlen = sizeof(pipe_user_pages_soft),
1498 .mode = 0644,
1499 .proc_handler = proc_doulongvec_minmax,
1500 },
1501};
1502#endif
1503
1504static int __init init_pipe_fs(void)
1505{
1506 int err = register_filesystem(&pipe_fs_type);
1507
1508 if (!err) {
1509 pipe_mnt = kern_mount(&pipe_fs_type);
1510 if (IS_ERR(pipe_mnt)) {
1511 err = PTR_ERR(pipe_mnt);
1512 unregister_filesystem(&pipe_fs_type);
1513 }
1514 }
1515#ifdef CONFIG_SYSCTL
1516 register_sysctl_init("fs", fs_pipe_sysctls);
1517#endif
1518 return err;
1519}
1520
1521fs_initcall(init_pipe_fs);