Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2//
   3// Driver for Cadence QSPI Controller
   4//
   5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
   6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
   7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
   8
   9#include <linux/clk.h>
  10#include <linux/completion.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/err.h>
  15#include <linux/errno.h>
  16#include <linux/firmware/xlnx-zynqmp.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/jiffies.h>
  21#include <linux/kernel.h>
  22#include <linux/log2.h>
  23#include <linux/module.h>
  24#include <linux/of_device.h>
  25#include <linux/of.h>
  26#include <linux/platform_device.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/reset.h>
  29#include <linux/sched.h>
  30#include <linux/spi/spi.h>
  31#include <linux/spi/spi-mem.h>
  32#include <linux/timer.h>
  33
  34#define CQSPI_NAME			"cadence-qspi"
  35#define CQSPI_MAX_CHIPSELECT		16
 
 
  36
  37/* Quirks */
  38#define CQSPI_NEEDS_WR_DELAY		BIT(0)
  39#define CQSPI_DISABLE_DAC_MODE		BIT(1)
  40#define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
  41#define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
  42#define CQSPI_SLOW_SRAM		BIT(4)
 
  43
  44/* Capabilities */
  45#define CQSPI_SUPPORTS_OCTAL		BIT(0)
  46
  47#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
  48
 
 
 
 
 
 
  49struct cqspi_st;
  50
  51struct cqspi_flash_pdata {
  52	struct cqspi_st	*cqspi;
  53	u32		clk_rate;
  54	u32		read_delay;
  55	u32		tshsl_ns;
  56	u32		tsd2d_ns;
  57	u32		tchsh_ns;
  58	u32		tslch_ns;
  59	u8		cs;
  60};
  61
  62struct cqspi_st {
  63	struct platform_device	*pdev;
  64	struct spi_master	*master;
  65	struct clk		*clk;
 
  66	unsigned int		sclk;
  67
  68	void __iomem		*iobase;
  69	void __iomem		*ahb_base;
  70	resource_size_t		ahb_size;
  71	struct completion	transfer_complete;
  72
  73	struct dma_chan		*rx_chan;
  74	struct completion	rx_dma_complete;
  75	dma_addr_t		mmap_phys_base;
  76
  77	int			current_cs;
  78	unsigned long		master_ref_clk_hz;
  79	bool			is_decoded_cs;
  80	u32			fifo_depth;
  81	u32			fifo_width;
  82	u32			num_chipselect;
  83	bool			rclk_en;
  84	u32			trigger_address;
  85	u32			wr_delay;
  86	bool			use_direct_mode;
 
  87	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  88	bool			use_dma_read;
  89	u32			pd_dev_id;
  90	bool			wr_completion;
  91	bool			slow_sram;
 
 
 
  92};
  93
  94struct cqspi_driver_platdata {
  95	u32 hwcaps_mask;
  96	u8 quirks;
  97	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
  98				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
  99	u32 (*get_dma_status)(struct cqspi_st *cqspi);
 
 
 100};
 101
 102/* Operation timeout value */
 103#define CQSPI_TIMEOUT_MS			500
 104#define CQSPI_READ_TIMEOUT_MS			10
 105
 
 
 
 106#define CQSPI_DUMMY_CLKS_PER_BYTE		8
 107#define CQSPI_DUMMY_BYTES_MAX			4
 108#define CQSPI_DUMMY_CLKS_MAX			31
 109
 110#define CQSPI_STIG_DATA_LEN_MAX			8
 111
 112/* Register map */
 113#define CQSPI_REG_CONFIG			0x00
 114#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
 115#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
 116#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
 117#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
 118#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
 119#define CQSPI_REG_CONFIG_BAUD_LSB		19
 120#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
 121#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
 122#define CQSPI_REG_CONFIG_IDLE_LSB		31
 123#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
 124#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
 125
 126#define CQSPI_REG_RD_INSTR			0x04
 127#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
 128#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
 129#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
 130#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
 131#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
 132#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
 133#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
 134#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
 135#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
 136#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
 137
 138#define CQSPI_REG_WR_INSTR			0x08
 139#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
 140#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
 141#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
 142
 143#define CQSPI_REG_DELAY				0x0C
 144#define CQSPI_REG_DELAY_TSLCH_LSB		0
 145#define CQSPI_REG_DELAY_TCHSH_LSB		8
 146#define CQSPI_REG_DELAY_TSD2D_LSB		16
 147#define CQSPI_REG_DELAY_TSHSL_LSB		24
 148#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
 149#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
 150#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
 151#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
 152
 153#define CQSPI_REG_READCAPTURE			0x10
 154#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
 155#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
 156#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
 157
 158#define CQSPI_REG_SIZE				0x14
 159#define CQSPI_REG_SIZE_ADDRESS_LSB		0
 160#define CQSPI_REG_SIZE_PAGE_LSB			4
 161#define CQSPI_REG_SIZE_BLOCK_LSB		16
 162#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
 163#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
 164#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
 165
 166#define CQSPI_REG_SRAMPARTITION			0x18
 167#define CQSPI_REG_INDIRECTTRIGGER		0x1C
 168
 169#define CQSPI_REG_DMA				0x20
 170#define CQSPI_REG_DMA_SINGLE_LSB		0
 171#define CQSPI_REG_DMA_BURST_LSB			8
 172#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
 173#define CQSPI_REG_DMA_BURST_MASK		0xFF
 174
 175#define CQSPI_REG_REMAP				0x24
 176#define CQSPI_REG_MODE_BIT			0x28
 177
 178#define CQSPI_REG_SDRAMLEVEL			0x2C
 179#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
 180#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
 181#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
 182#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
 183
 184#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
 185#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
 186
 187#define CQSPI_REG_IRQSTATUS			0x40
 188#define CQSPI_REG_IRQMASK			0x44
 189
 190#define CQSPI_REG_INDIRECTRD			0x60
 191#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
 192#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
 193#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
 194
 195#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
 196#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
 197#define CQSPI_REG_INDIRECTRDBYTES		0x6C
 198
 199#define CQSPI_REG_CMDCTRL			0x90
 200#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
 201#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
 202#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
 203#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
 204#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
 205#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
 206#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
 207#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
 208#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
 209#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
 210#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
 211#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
 212#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
 213#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
 214
 215#define CQSPI_REG_INDIRECTWR			0x70
 216#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
 217#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
 218#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
 219
 220#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
 221#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
 222#define CQSPI_REG_INDIRECTWRBYTES		0x7C
 223
 224#define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
 225
 226#define CQSPI_REG_CMDADDRESS			0x94
 227#define CQSPI_REG_CMDREADDATALOWER		0xA0
 228#define CQSPI_REG_CMDREADDATAUPPER		0xA4
 229#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
 230#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
 231
 232#define CQSPI_REG_POLLING_STATUS		0xB0
 233#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
 234
 235#define CQSPI_REG_OP_EXT_LOWER			0xE0
 236#define CQSPI_REG_OP_EXT_READ_LSB		24
 237#define CQSPI_REG_OP_EXT_WRITE_LSB		16
 238#define CQSPI_REG_OP_EXT_STIG_LSB		0
 239
 240#define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
 241
 242#define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
 243#define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
 244
 245#define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
 246
 247#define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
 248#define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
 249#define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
 250#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
 251
 252#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
 253
 254#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
 255#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
 256
 257/* Interrupt status bits */
 258#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
 259#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
 260#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
 261#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
 262#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
 263#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
 264#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
 265#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
 266
 267#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
 268					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
 269					 CQSPI_REG_IRQ_IND_COMP)
 270
 271#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
 272					 CQSPI_REG_IRQ_WATERMARK	| \
 273					 CQSPI_REG_IRQ_UNDERFLOW)
 274
 275#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
 276#define CQSPI_DMA_UNALIGN		0x3
 277
 278#define CQSPI_REG_VERSAL_DMA_VAL		0x602
 279
 280static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
 281{
 282	u32 val;
 283
 284	return readl_relaxed_poll_timeout(reg, val,
 285					  (((clr ? ~val : val) & mask) == mask),
 286					  10, CQSPI_TIMEOUT_MS * 1000);
 287}
 288
 289static bool cqspi_is_idle(struct cqspi_st *cqspi)
 290{
 291	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 292
 293	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
 294}
 295
 296static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
 297{
 298	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
 299
 300	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
 301	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
 302}
 303
 304static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
 305{
 306	u32 dma_status;
 307
 308	dma_status = readl(cqspi->iobase +
 309					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 310	writel(dma_status, cqspi->iobase +
 311		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 312
 313	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
 314}
 315
 316static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
 317{
 318	struct cqspi_st *cqspi = dev;
 319	unsigned int irq_status;
 320	struct device *device = &cqspi->pdev->dev;
 321	const struct cqspi_driver_platdata *ddata;
 322
 323	ddata = of_device_get_match_data(device);
 324
 325	/* Read interrupt status */
 326	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
 327
 328	/* Clear interrupt */
 329	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
 330
 331	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
 332		if (ddata->get_dma_status(cqspi)) {
 333			complete(&cqspi->transfer_complete);
 334			return IRQ_HANDLED;
 335		}
 336	}
 337
 338	else if (!cqspi->slow_sram)
 339		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
 340	else
 341		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
 342
 343	if (irq_status)
 344		complete(&cqspi->transfer_complete);
 345
 346	return IRQ_HANDLED;
 347}
 348
 349static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
 350{
 351	u32 rdreg = 0;
 352
 353	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
 354	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
 355	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
 356
 357	return rdreg;
 358}
 359
 360static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
 361{
 362	unsigned int dummy_clk;
 363
 364	if (!op->dummy.nbytes)
 365		return 0;
 366
 367	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
 368	if (op->cmd.dtr)
 369		dummy_clk /= 2;
 370
 371	return dummy_clk;
 372}
 373
 374static int cqspi_wait_idle(struct cqspi_st *cqspi)
 375{
 376	const unsigned int poll_idle_retry = 3;
 377	unsigned int count = 0;
 378	unsigned long timeout;
 379
 380	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
 381	while (1) {
 382		/*
 383		 * Read few times in succession to ensure the controller
 384		 * is indeed idle, that is, the bit does not transition
 385		 * low again.
 386		 */
 387		if (cqspi_is_idle(cqspi))
 388			count++;
 389		else
 390			count = 0;
 391
 392		if (count >= poll_idle_retry)
 393			return 0;
 394
 395		if (time_after(jiffies, timeout)) {
 396			/* Timeout, in busy mode. */
 397			dev_err(&cqspi->pdev->dev,
 398				"QSPI is still busy after %dms timeout.\n",
 399				CQSPI_TIMEOUT_MS);
 400			return -ETIMEDOUT;
 401		}
 402
 403		cpu_relax();
 404	}
 405}
 406
 407static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
 408{
 409	void __iomem *reg_base = cqspi->iobase;
 410	int ret;
 411
 412	/* Write the CMDCTRL without start execution. */
 413	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 414	/* Start execute */
 415	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
 416	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 417
 418	/* Polling for completion. */
 419	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
 420				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
 421	if (ret) {
 422		dev_err(&cqspi->pdev->dev,
 423			"Flash command execution timed out.\n");
 424		return ret;
 425	}
 426
 427	/* Polling QSPI idle status. */
 428	return cqspi_wait_idle(cqspi);
 429}
 430
 431static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
 432				  const struct spi_mem_op *op,
 433				  unsigned int shift)
 434{
 435	struct cqspi_st *cqspi = f_pdata->cqspi;
 436	void __iomem *reg_base = cqspi->iobase;
 437	unsigned int reg;
 438	u8 ext;
 439
 440	if (op->cmd.nbytes != 2)
 441		return -EINVAL;
 442
 443	/* Opcode extension is the LSB. */
 444	ext = op->cmd.opcode & 0xff;
 445
 446	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
 447	reg &= ~(0xff << shift);
 448	reg |= ext << shift;
 449	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
 450
 451	return 0;
 452}
 453
 454static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
 455			    const struct spi_mem_op *op, unsigned int shift)
 456{
 457	struct cqspi_st *cqspi = f_pdata->cqspi;
 458	void __iomem *reg_base = cqspi->iobase;
 459	unsigned int reg;
 460	int ret;
 461
 462	reg = readl(reg_base + CQSPI_REG_CONFIG);
 463
 464	/*
 465	 * We enable dual byte opcode here. The callers have to set up the
 466	 * extension opcode based on which type of operation it is.
 467	 */
 468	if (op->cmd.dtr) {
 469		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
 470		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
 471
 472		/* Set up command opcode extension. */
 473		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
 474		if (ret)
 475			return ret;
 476	} else {
 477		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
 478		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
 479	}
 480
 481	writel(reg, reg_base + CQSPI_REG_CONFIG);
 482
 483	return cqspi_wait_idle(cqspi);
 484}
 485
 486static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
 487			      const struct spi_mem_op *op)
 488{
 489	struct cqspi_st *cqspi = f_pdata->cqspi;
 490	void __iomem *reg_base = cqspi->iobase;
 491	u8 *rxbuf = op->data.buf.in;
 492	u8 opcode;
 493	size_t n_rx = op->data.nbytes;
 494	unsigned int rdreg;
 495	unsigned int reg;
 496	unsigned int dummy_clk;
 497	size_t read_len;
 498	int status;
 499
 500	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 501	if (status)
 502		return status;
 503
 504	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
 505		dev_err(&cqspi->pdev->dev,
 506			"Invalid input argument, len %zu rxbuf 0x%p\n",
 507			n_rx, rxbuf);
 508		return -EINVAL;
 509	}
 510
 511	if (op->cmd.dtr)
 512		opcode = op->cmd.opcode >> 8;
 513	else
 514		opcode = op->cmd.opcode;
 515
 516	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 517
 518	rdreg = cqspi_calc_rdreg(op);
 519	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
 520
 521	dummy_clk = cqspi_calc_dummy(op);
 522	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 523		return -EOPNOTSUPP;
 524
 525	if (dummy_clk)
 526		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
 527		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
 528
 529	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
 530
 531	/* 0 means 1 byte. */
 532	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
 533		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
 
 
 
 
 
 
 
 
 
 
 
 534	status = cqspi_exec_flash_cmd(cqspi, reg);
 535	if (status)
 536		return status;
 537
 538	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
 539
 540	/* Put the read value into rx_buf */
 541	read_len = (n_rx > 4) ? 4 : n_rx;
 542	memcpy(rxbuf, &reg, read_len);
 543	rxbuf += read_len;
 544
 545	if (n_rx > 4) {
 546		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
 547
 548		read_len = n_rx - read_len;
 549		memcpy(rxbuf, &reg, read_len);
 550	}
 551
 
 
 
 552	return 0;
 553}
 554
 555static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
 556			       const struct spi_mem_op *op)
 557{
 558	struct cqspi_st *cqspi = f_pdata->cqspi;
 559	void __iomem *reg_base = cqspi->iobase;
 560	u8 opcode;
 561	const u8 *txbuf = op->data.buf.out;
 562	size_t n_tx = op->data.nbytes;
 563	unsigned int reg;
 564	unsigned int data;
 565	size_t write_len;
 566	int ret;
 567
 568	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 569	if (ret)
 570		return ret;
 571
 572	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
 573		dev_err(&cqspi->pdev->dev,
 574			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
 575			n_tx, txbuf);
 576		return -EINVAL;
 577	}
 578
 579	reg = cqspi_calc_rdreg(op);
 580	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 581
 582	if (op->cmd.dtr)
 583		opcode = op->cmd.opcode >> 8;
 584	else
 585		opcode = op->cmd.opcode;
 586
 587	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 588
 589	if (op->addr.nbytes) {
 590		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 591		reg |= ((op->addr.nbytes - 1) &
 592			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 593			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 594
 595		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 596	}
 597
 598	if (n_tx) {
 599		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
 600		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
 601			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
 602		data = 0;
 603		write_len = (n_tx > 4) ? 4 : n_tx;
 604		memcpy(&data, txbuf, write_len);
 605		txbuf += write_len;
 606		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
 607
 608		if (n_tx > 4) {
 609			data = 0;
 610			write_len = n_tx - 4;
 611			memcpy(&data, txbuf, write_len);
 612			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
 613		}
 614	}
 615
 616	return cqspi_exec_flash_cmd(cqspi, reg);
 
 
 
 
 
 617}
 618
 619static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
 620			    const struct spi_mem_op *op)
 621{
 622	struct cqspi_st *cqspi = f_pdata->cqspi;
 623	void __iomem *reg_base = cqspi->iobase;
 624	unsigned int dummy_clk = 0;
 625	unsigned int reg;
 626	int ret;
 627	u8 opcode;
 628
 629	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
 630	if (ret)
 631		return ret;
 632
 633	if (op->cmd.dtr)
 634		opcode = op->cmd.opcode >> 8;
 635	else
 636		opcode = op->cmd.opcode;
 637
 638	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
 639	reg |= cqspi_calc_rdreg(op);
 640
 641	/* Setup dummy clock cycles */
 642	dummy_clk = cqspi_calc_dummy(op);
 643
 644	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 645		return -EOPNOTSUPP;
 646
 647	if (dummy_clk)
 648		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
 649		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
 650
 651	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 652
 653	/* Set address width */
 654	reg = readl(reg_base + CQSPI_REG_SIZE);
 655	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 656	reg |= (op->addr.nbytes - 1);
 657	writel(reg, reg_base + CQSPI_REG_SIZE);
 658	return 0;
 659}
 660
 661static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
 662				       u8 *rxbuf, loff_t from_addr,
 663				       const size_t n_rx)
 664{
 665	struct cqspi_st *cqspi = f_pdata->cqspi;
 666	struct device *dev = &cqspi->pdev->dev;
 667	void __iomem *reg_base = cqspi->iobase;
 668	void __iomem *ahb_base = cqspi->ahb_base;
 669	unsigned int remaining = n_rx;
 670	unsigned int mod_bytes = n_rx % 4;
 671	unsigned int bytes_to_read = 0;
 672	u8 *rxbuf_end = rxbuf + n_rx;
 673	int ret = 0;
 674
 675	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 676	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 677
 678	/* Clear all interrupts. */
 679	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 680
 681	/*
 682	 * On SoCFPGA platform reading the SRAM is slow due to
 683	 * hardware limitation and causing read interrupt storm to CPU,
 684	 * so enabling only watermark interrupt to disable all read
 685	 * interrupts later as we want to run "bytes to read" loop with
 686	 * all the read interrupts disabled for max performance.
 687	 */
 688
 689	if (!cqspi->slow_sram)
 690		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
 691	else
 692		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 693
 694	reinit_completion(&cqspi->transfer_complete);
 695	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 696	       reg_base + CQSPI_REG_INDIRECTRD);
 697
 698	while (remaining > 0) {
 699		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 700						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
 701			ret = -ETIMEDOUT;
 702
 703		/*
 704		 * Disable all read interrupts until
 705		 * we are out of "bytes to read"
 706		 */
 707		if (cqspi->slow_sram)
 708			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
 709
 710		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 711
 712		if (ret && bytes_to_read == 0) {
 713			dev_err(dev, "Indirect read timeout, no bytes\n");
 714			goto failrd;
 715		}
 716
 717		while (bytes_to_read != 0) {
 718			unsigned int word_remain = round_down(remaining, 4);
 719
 720			bytes_to_read *= cqspi->fifo_width;
 721			bytes_to_read = bytes_to_read > remaining ?
 722					remaining : bytes_to_read;
 723			bytes_to_read = round_down(bytes_to_read, 4);
 724			/* Read 4 byte word chunks then single bytes */
 725			if (bytes_to_read) {
 726				ioread32_rep(ahb_base, rxbuf,
 727					     (bytes_to_read / 4));
 728			} else if (!word_remain && mod_bytes) {
 729				unsigned int temp = ioread32(ahb_base);
 730
 731				bytes_to_read = mod_bytes;
 732				memcpy(rxbuf, &temp, min((unsigned int)
 733							 (rxbuf_end - rxbuf),
 734							 bytes_to_read));
 735			}
 736			rxbuf += bytes_to_read;
 737			remaining -= bytes_to_read;
 738			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 739		}
 740
 741		if (remaining > 0) {
 742			reinit_completion(&cqspi->transfer_complete);
 743			if (cqspi->slow_sram)
 744				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 745		}
 746	}
 747
 748	/* Check indirect done status */
 749	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
 750				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
 751	if (ret) {
 752		dev_err(dev, "Indirect read completion error (%i)\n", ret);
 753		goto failrd;
 754	}
 755
 756	/* Disable interrupt */
 757	writel(0, reg_base + CQSPI_REG_IRQMASK);
 758
 759	/* Clear indirect completion status */
 760	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
 761
 762	return 0;
 763
 764failrd:
 765	/* Disable interrupt */
 766	writel(0, reg_base + CQSPI_REG_IRQMASK);
 767
 768	/* Cancel the indirect read */
 769	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 770	       reg_base + CQSPI_REG_INDIRECTRD);
 771	return ret;
 772}
 773
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 774static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
 775					  u_char *rxbuf, loff_t from_addr,
 776					  size_t n_rx)
 777{
 778	struct cqspi_st *cqspi = f_pdata->cqspi;
 779	struct device *dev = &cqspi->pdev->dev;
 780	void __iomem *reg_base = cqspi->iobase;
 781	u32 reg, bytes_to_dma;
 782	loff_t addr = from_addr;
 783	void *buf = rxbuf;
 784	dma_addr_t dma_addr;
 785	u8 bytes_rem;
 786	int ret = 0;
 787
 788	bytes_rem = n_rx % 4;
 789	bytes_to_dma = (n_rx - bytes_rem);
 790
 791	if (!bytes_to_dma)
 792		goto nondmard;
 793
 794	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
 795	if (ret)
 796		return ret;
 797
 
 
 798	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 799	reg |= CQSPI_REG_CONFIG_DMA_MASK;
 800	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 801
 
 
 802	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
 803	if (dma_mapping_error(dev, dma_addr)) {
 804		dev_err(dev, "dma mapping failed\n");
 805		return -ENOMEM;
 806	}
 807
 808	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 809	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 810	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
 811	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
 812
 813	/* Clear all interrupts. */
 814	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 815
 816	/* Enable DMA done interrupt */
 817	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
 818	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
 819
 820	/* Default DMA periph configuration */
 821	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
 822
 823	/* Configure DMA Dst address */
 824	writel(lower_32_bits(dma_addr),
 825	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
 826	writel(upper_32_bits(dma_addr),
 827	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
 828
 829	/* Configure DMA Src address */
 830	writel(cqspi->trigger_address, reg_base +
 831	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
 832
 833	/* Set DMA destination size */
 834	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
 835
 836	/* Set DMA destination control */
 837	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
 838	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
 839
 840	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 841	       reg_base + CQSPI_REG_INDIRECTRD);
 842
 843	reinit_completion(&cqspi->transfer_complete);
 844
 845	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 846					 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS))) {
 847		ret = -ETIMEDOUT;
 848		goto failrd;
 849	}
 850
 851	/* Disable DMA interrupt */
 852	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 853
 854	/* Clear indirect completion status */
 855	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
 856	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
 857	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 858
 
 
 859	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 860	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 861	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 862
 
 
 863	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
 864					PM_OSPI_MUX_SEL_LINEAR);
 865	if (ret)
 866		return ret;
 867
 868nondmard:
 869	if (bytes_rem) {
 870		addr += bytes_to_dma;
 871		buf += bytes_to_dma;
 872		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
 873						  bytes_rem);
 874		if (ret)
 875			return ret;
 876	}
 877
 878	return 0;
 879
 880failrd:
 881	/* Disable DMA interrupt */
 882	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 883
 884	/* Cancel the indirect read */
 885	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 886	       reg_base + CQSPI_REG_INDIRECTRD);
 887
 888	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 889
 890	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 891	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 892	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 893
 894	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
 895
 896	return ret;
 897}
 898
 899static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
 900			     const struct spi_mem_op *op)
 901{
 902	unsigned int reg;
 903	int ret;
 904	struct cqspi_st *cqspi = f_pdata->cqspi;
 905	void __iomem *reg_base = cqspi->iobase;
 906	u8 opcode;
 907
 908	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
 909	if (ret)
 910		return ret;
 911
 912	if (op->cmd.dtr)
 913		opcode = op->cmd.opcode >> 8;
 914	else
 915		opcode = op->cmd.opcode;
 916
 917	/* Set opcode. */
 918	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
 919	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
 920	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
 921	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
 922	reg = cqspi_calc_rdreg(op);
 923	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 924
 925	/*
 926	 * SPI NAND flashes require the address of the status register to be
 927	 * passed in the Read SR command. Also, some SPI NOR flashes like the
 928	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
 929	 * command in DTR mode.
 930	 *
 931	 * But this controller does not support address phase in the Read SR
 932	 * command when doing auto-HW polling. So, disable write completion
 933	 * polling on the controller's side. spinand and spi-nor will take
 934	 * care of polling the status register.
 935	 */
 936	if (cqspi->wr_completion) {
 937		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
 938		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
 939		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
 
 
 
 
 
 
 940	}
 941
 942	reg = readl(reg_base + CQSPI_REG_SIZE);
 943	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 944	reg |= (op->addr.nbytes - 1);
 945	writel(reg, reg_base + CQSPI_REG_SIZE);
 946	return 0;
 947}
 948
 949static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
 950					loff_t to_addr, const u8 *txbuf,
 951					const size_t n_tx)
 952{
 953	struct cqspi_st *cqspi = f_pdata->cqspi;
 954	struct device *dev = &cqspi->pdev->dev;
 955	void __iomem *reg_base = cqspi->iobase;
 956	unsigned int remaining = n_tx;
 957	unsigned int write_bytes;
 958	int ret;
 959
 960	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
 961	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
 962
 963	/* Clear all interrupts. */
 964	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 965
 966	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
 967
 968	reinit_completion(&cqspi->transfer_complete);
 969	writel(CQSPI_REG_INDIRECTWR_START_MASK,
 970	       reg_base + CQSPI_REG_INDIRECTWR);
 971	/*
 972	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
 973	 * Controller programming sequence, couple of cycles of
 974	 * QSPI_REF_CLK delay is required for the above bit to
 975	 * be internally synchronized by the QSPI module. Provide 5
 976	 * cycles of delay.
 977	 */
 978	if (cqspi->wr_delay)
 979		ndelay(cqspi->wr_delay);
 980
 
 
 
 
 
 
 
 981	while (remaining > 0) {
 982		size_t write_words, mod_bytes;
 983
 984		write_bytes = remaining;
 985		write_words = write_bytes / 4;
 986		mod_bytes = write_bytes % 4;
 987		/* Write 4 bytes at a time then single bytes. */
 988		if (write_words) {
 989			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
 990			txbuf += (write_words * 4);
 991		}
 992		if (mod_bytes) {
 993			unsigned int temp = 0xFFFFFFFF;
 994
 995			memcpy(&temp, txbuf, mod_bytes);
 996			iowrite32(temp, cqspi->ahb_base);
 997			txbuf += mod_bytes;
 998		}
 999
1000		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1001						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1002			dev_err(dev, "Indirect write timeout\n");
1003			ret = -ETIMEDOUT;
1004			goto failwr;
1005		}
1006
1007		remaining -= write_bytes;
1008
1009		if (remaining > 0)
1010			reinit_completion(&cqspi->transfer_complete);
1011	}
1012
1013	/* Check indirect done status */
1014	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1015				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1016	if (ret) {
1017		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1018		goto failwr;
1019	}
1020
1021	/* Disable interrupt. */
1022	writel(0, reg_base + CQSPI_REG_IRQMASK);
1023
1024	/* Clear indirect completion status */
1025	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1026
1027	cqspi_wait_idle(cqspi);
1028
1029	return 0;
1030
1031failwr:
1032	/* Disable interrupt. */
1033	writel(0, reg_base + CQSPI_REG_IRQMASK);
1034
1035	/* Cancel the indirect write */
1036	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1037	       reg_base + CQSPI_REG_INDIRECTWR);
1038	return ret;
1039}
1040
1041static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1042{
1043	struct cqspi_st *cqspi = f_pdata->cqspi;
1044	void __iomem *reg_base = cqspi->iobase;
1045	unsigned int chip_select = f_pdata->cs;
1046	unsigned int reg;
1047
1048	reg = readl(reg_base + CQSPI_REG_CONFIG);
1049	if (cqspi->is_decoded_cs) {
1050		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1051	} else {
1052		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1053
1054		/* Convert CS if without decoder.
1055		 * CS0 to 4b'1110
1056		 * CS1 to 4b'1101
1057		 * CS2 to 4b'1011
1058		 * CS3 to 4b'0111
1059		 */
1060		chip_select = 0xF & ~(1 << chip_select);
1061	}
1062
1063	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1064		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1065	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1066	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1067	writel(reg, reg_base + CQSPI_REG_CONFIG);
1068}
1069
1070static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1071					   const unsigned int ns_val)
1072{
1073	unsigned int ticks;
1074
1075	ticks = ref_clk_hz / 1000;	/* kHz */
1076	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1077
1078	return ticks;
1079}
1080
1081static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1082{
1083	struct cqspi_st *cqspi = f_pdata->cqspi;
1084	void __iomem *iobase = cqspi->iobase;
1085	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1086	unsigned int tshsl, tchsh, tslch, tsd2d;
1087	unsigned int reg;
1088	unsigned int tsclk;
1089
1090	/* calculate the number of ref ticks for one sclk tick */
1091	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1092
1093	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1094	/* this particular value must be at least one sclk */
1095	if (tshsl < tsclk)
1096		tshsl = tsclk;
1097
1098	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1099	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1100	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1101
1102	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1103	       << CQSPI_REG_DELAY_TSHSL_LSB;
1104	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1105		<< CQSPI_REG_DELAY_TCHSH_LSB;
1106	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1107		<< CQSPI_REG_DELAY_TSLCH_LSB;
1108	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1109		<< CQSPI_REG_DELAY_TSD2D_LSB;
1110	writel(reg, iobase + CQSPI_REG_DELAY);
1111}
1112
1113static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1114{
1115	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1116	void __iomem *reg_base = cqspi->iobase;
1117	u32 reg, div;
1118
1119	/* Recalculate the baudrate divisor based on QSPI specification. */
1120	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1121
1122	/* Maximum baud divisor */
1123	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1124		div = CQSPI_REG_CONFIG_BAUD_MASK;
1125		dev_warn(&cqspi->pdev->dev,
1126			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1127			cqspi->sclk, ref_clk_hz/((div+1)*2));
1128	}
1129
1130	reg = readl(reg_base + CQSPI_REG_CONFIG);
1131	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1132	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1133	writel(reg, reg_base + CQSPI_REG_CONFIG);
1134}
1135
1136static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1137				   const bool bypass,
1138				   const unsigned int delay)
1139{
1140	void __iomem *reg_base = cqspi->iobase;
1141	unsigned int reg;
1142
1143	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1144
1145	if (bypass)
1146		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1147	else
1148		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1149
1150	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1151		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1152
1153	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1154		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1155
1156	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1157}
1158
1159static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1160{
1161	void __iomem *reg_base = cqspi->iobase;
1162	unsigned int reg;
1163
1164	reg = readl(reg_base + CQSPI_REG_CONFIG);
1165
1166	if (enable)
1167		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1168	else
1169		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1170
1171	writel(reg, reg_base + CQSPI_REG_CONFIG);
1172}
1173
1174static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1175			    unsigned long sclk)
1176{
1177	struct cqspi_st *cqspi = f_pdata->cqspi;
1178	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1179	int switch_ck = (cqspi->sclk != sclk);
1180
1181	if (switch_cs || switch_ck)
1182		cqspi_controller_enable(cqspi, 0);
1183
1184	/* Switch chip select. */
1185	if (switch_cs) {
1186		cqspi->current_cs = f_pdata->cs;
1187		cqspi_chipselect(f_pdata);
1188	}
1189
1190	/* Setup baudrate divisor and delays */
1191	if (switch_ck) {
1192		cqspi->sclk = sclk;
1193		cqspi_config_baudrate_div(cqspi);
1194		cqspi_delay(f_pdata);
1195		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1196				       f_pdata->read_delay);
1197	}
1198
1199	if (switch_cs || switch_ck)
1200		cqspi_controller_enable(cqspi, 1);
1201}
1202
1203static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1204			   const struct spi_mem_op *op)
1205{
1206	struct cqspi_st *cqspi = f_pdata->cqspi;
1207	loff_t to = op->addr.val;
1208	size_t len = op->data.nbytes;
1209	const u_char *buf = op->data.buf.out;
1210	int ret;
1211
1212	ret = cqspi_write_setup(f_pdata, op);
1213	if (ret)
1214		return ret;
1215
1216	/*
1217	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1218	 * address (all 0s) with the read status register command in DTR mode.
1219	 * But this controller does not support sending dummy address bytes to
1220	 * the flash when it is polling the write completion register in DTR
1221	 * mode. So, we can not use direct mode when in DTR mode for writing
1222	 * data.
1223	 */
1224	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1225	    ((to + len) <= cqspi->ahb_size)) {
1226		memcpy_toio(cqspi->ahb_base + to, buf, len);
1227		return cqspi_wait_idle(cqspi);
1228	}
1229
1230	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1231}
1232
1233static void cqspi_rx_dma_callback(void *param)
1234{
1235	struct cqspi_st *cqspi = param;
1236
1237	complete(&cqspi->rx_dma_complete);
1238}
1239
1240static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1241				     u_char *buf, loff_t from, size_t len)
1242{
1243	struct cqspi_st *cqspi = f_pdata->cqspi;
1244	struct device *dev = &cqspi->pdev->dev;
1245	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1246	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1247	int ret = 0;
1248	struct dma_async_tx_descriptor *tx;
1249	dma_cookie_t cookie;
1250	dma_addr_t dma_dst;
1251	struct device *ddev;
1252
1253	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1254		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1255		return 0;
1256	}
1257
1258	ddev = cqspi->rx_chan->device->dev;
1259	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1260	if (dma_mapping_error(ddev, dma_dst)) {
1261		dev_err(dev, "dma mapping failed\n");
1262		return -ENOMEM;
1263	}
1264	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1265				       len, flags);
1266	if (!tx) {
1267		dev_err(dev, "device_prep_dma_memcpy error\n");
1268		ret = -EIO;
1269		goto err_unmap;
1270	}
1271
1272	tx->callback = cqspi_rx_dma_callback;
1273	tx->callback_param = cqspi;
1274	cookie = tx->tx_submit(tx);
1275	reinit_completion(&cqspi->rx_dma_complete);
1276
1277	ret = dma_submit_error(cookie);
1278	if (ret) {
1279		dev_err(dev, "dma_submit_error %d\n", cookie);
1280		ret = -EIO;
1281		goto err_unmap;
1282	}
1283
1284	dma_async_issue_pending(cqspi->rx_chan);
1285	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1286					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1287		dmaengine_terminate_sync(cqspi->rx_chan);
1288		dev_err(dev, "DMA wait_for_completion_timeout\n");
1289		ret = -ETIMEDOUT;
1290		goto err_unmap;
1291	}
1292
1293err_unmap:
1294	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1295
1296	return ret;
1297}
1298
1299static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1300			  const struct spi_mem_op *op)
1301{
1302	struct cqspi_st *cqspi = f_pdata->cqspi;
1303	struct device *dev = &cqspi->pdev->dev;
1304	const struct cqspi_driver_platdata *ddata;
1305	loff_t from = op->addr.val;
1306	size_t len = op->data.nbytes;
1307	u_char *buf = op->data.buf.in;
1308	u64 dma_align = (u64)(uintptr_t)buf;
1309	int ret;
1310
1311	ddata = of_device_get_match_data(dev);
1312
1313	ret = cqspi_read_setup(f_pdata, op);
1314	if (ret)
1315		return ret;
1316
1317	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1318		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1319
1320	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1321	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1322		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1323
1324	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1325}
1326
1327static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1328{
1329	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1330	struct cqspi_flash_pdata *f_pdata;
1331
1332	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1333	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1334
1335	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1336		if (!op->addr.nbytes)
 
 
 
 
 
 
1337			return cqspi_command_read(f_pdata, op);
1338
1339		return cqspi_read(f_pdata, op);
1340	}
1341
1342	if (!op->addr.nbytes || !op->data.buf.out)
1343		return cqspi_command_write(f_pdata, op);
1344
1345	return cqspi_write(f_pdata, op);
1346}
1347
1348static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1349{
1350	int ret;
 
 
 
 
 
 
 
 
1351
1352	ret = cqspi_mem_process(mem, op);
 
 
 
 
1353	if (ret)
1354		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1355
1356	return ret;
1357}
1358
1359static bool cqspi_supports_mem_op(struct spi_mem *mem,
1360				  const struct spi_mem_op *op)
1361{
1362	bool all_true, all_false;
1363
1364	/*
1365	 * op->dummy.dtr is required for converting nbytes into ncycles.
1366	 * Also, don't check the dtr field of the op phase having zero nbytes.
1367	 */
1368	all_true = op->cmd.dtr &&
1369		   (!op->addr.nbytes || op->addr.dtr) &&
1370		   (!op->dummy.nbytes || op->dummy.dtr) &&
1371		   (!op->data.nbytes || op->data.dtr);
1372
1373	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1374		    !op->data.dtr;
1375
1376	if (all_true) {
1377		/* Right now we only support 8-8-8 DTR mode. */
1378		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1379			return false;
1380		if (op->addr.nbytes && op->addr.buswidth != 8)
1381			return false;
1382		if (op->data.nbytes && op->data.buswidth != 8)
1383			return false;
1384	} else if (!all_false) {
1385		/* Mixed DTR modes are not supported. */
1386		return false;
1387	}
1388
1389	return spi_mem_default_supports_op(mem, op);
1390}
1391
1392static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1393				    struct cqspi_flash_pdata *f_pdata,
1394				    struct device_node *np)
1395{
1396	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1397		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1398		return -ENXIO;
1399	}
1400
1401	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1402		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1403		return -ENXIO;
1404	}
1405
1406	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1407		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1408		return -ENXIO;
1409	}
1410
1411	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1412		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1413		return -ENXIO;
1414	}
1415
1416	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1417		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1418		return -ENXIO;
1419	}
1420
1421	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1422		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1423		return -ENXIO;
1424	}
1425
1426	return 0;
1427}
1428
1429static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1430{
1431	struct device *dev = &cqspi->pdev->dev;
1432	struct device_node *np = dev->of_node;
1433	u32 id[2];
1434
1435	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1436
1437	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1438		dev_err(dev, "couldn't determine fifo-depth\n");
1439		return -ENXIO;
1440	}
1441
1442	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1443		dev_err(dev, "couldn't determine fifo-width\n");
1444		return -ENXIO;
1445	}
1446
1447	if (of_property_read_u32(np, "cdns,trigger-address",
1448				 &cqspi->trigger_address)) {
1449		dev_err(dev, "couldn't determine trigger-address\n");
1450		return -ENXIO;
1451	}
1452
1453	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1454		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1455
1456	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1457
1458	if (!of_property_read_u32_array(np, "power-domains", id,
1459					ARRAY_SIZE(id)))
1460		cqspi->pd_dev_id = id[1];
1461
1462	return 0;
1463}
1464
1465static void cqspi_controller_init(struct cqspi_st *cqspi)
1466{
1467	u32 reg;
1468
1469	cqspi_controller_enable(cqspi, 0);
1470
1471	/* Configure the remap address register, no remap */
1472	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1473
1474	/* Disable all interrupts. */
1475	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1476
1477	/* Configure the SRAM split to 1:1 . */
1478	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1479
1480	/* Load indirect trigger address. */
1481	writel(cqspi->trigger_address,
1482	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1483
1484	/* Program read watermark -- 1/2 of the FIFO. */
1485	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1486	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1487	/* Program write watermark -- 1/8 of the FIFO. */
1488	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1489	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1490
1491	/* Disable direct access controller */
1492	if (!cqspi->use_direct_mode) {
1493		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1494		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1495		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1496	}
1497
1498	/* Enable DMA interface */
1499	if (cqspi->use_dma_read) {
1500		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1501		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1502		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1503	}
1504
1505	cqspi_controller_enable(cqspi, 1);
1506}
1507
1508static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1509{
1510	dma_cap_mask_t mask;
1511
1512	dma_cap_zero(mask);
1513	dma_cap_set(DMA_MEMCPY, mask);
1514
1515	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1516	if (IS_ERR(cqspi->rx_chan)) {
1517		int ret = PTR_ERR(cqspi->rx_chan);
1518
1519		cqspi->rx_chan = NULL;
1520		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1521	}
1522	init_completion(&cqspi->rx_dma_complete);
1523
1524	return 0;
1525}
1526
1527static const char *cqspi_get_name(struct spi_mem *mem)
1528{
1529	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1530	struct device *dev = &cqspi->pdev->dev;
1531
1532	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
 
1533}
1534
1535static const struct spi_controller_mem_ops cqspi_mem_ops = {
1536	.exec_op = cqspi_exec_mem_op,
1537	.get_name = cqspi_get_name,
1538	.supports_op = cqspi_supports_mem_op,
1539};
1540
1541static const struct spi_controller_mem_caps cqspi_mem_caps = {
1542	.dtr = true,
1543};
1544
1545static int cqspi_setup_flash(struct cqspi_st *cqspi)
1546{
 
1547	struct platform_device *pdev = cqspi->pdev;
1548	struct device *dev = &pdev->dev;
1549	struct device_node *np = dev->of_node;
1550	struct cqspi_flash_pdata *f_pdata;
1551	unsigned int cs;
1552	int ret;
1553
1554	/* Get flash device data */
1555	for_each_available_child_of_node(dev->of_node, np) {
1556		ret = of_property_read_u32(np, "reg", &cs);
1557		if (ret) {
1558			dev_err(dev, "Couldn't determine chip select.\n");
1559			of_node_put(np);
1560			return ret;
1561		}
1562
1563		if (cs >= CQSPI_MAX_CHIPSELECT) {
1564			dev_err(dev, "Chip select %d out of range.\n", cs);
1565			of_node_put(np);
1566			return -EINVAL;
 
 
1567		}
1568
1569		f_pdata = &cqspi->f_pdata[cs];
1570		f_pdata->cqspi = cqspi;
1571		f_pdata->cs = cs;
1572
1573		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1574		if (ret) {
1575			of_node_put(np);
1576			return ret;
1577		}
1578	}
1579
 
1580	return 0;
1581}
1582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1583static int cqspi_probe(struct platform_device *pdev)
1584{
1585	const struct cqspi_driver_platdata *ddata;
1586	struct reset_control *rstc, *rstc_ocp;
1587	struct device *dev = &pdev->dev;
1588	struct spi_master *master;
1589	struct resource *res_ahb;
1590	struct cqspi_st *cqspi;
1591	int ret;
1592	int irq;
1593
1594	master = devm_spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1595	if (!master) {
1596		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1597		return -ENOMEM;
1598	}
1599	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1600	master->mem_ops = &cqspi_mem_ops;
1601	master->mem_caps = &cqspi_mem_caps;
1602	master->dev.of_node = pdev->dev.of_node;
1603
1604	cqspi = spi_master_get_devdata(master);
 
 
 
 
 
1605
1606	cqspi->pdev = pdev;
1607	cqspi->master = master;
 
1608	platform_set_drvdata(pdev, cqspi);
1609
1610	/* Obtain configuration from OF. */
1611	ret = cqspi_of_get_pdata(cqspi);
1612	if (ret) {
1613		dev_err(dev, "Cannot get mandatory OF data.\n");
1614		return -ENODEV;
1615	}
1616
1617	/* Obtain QSPI clock. */
1618	cqspi->clk = devm_clk_get(dev, NULL);
1619	if (IS_ERR(cqspi->clk)) {
1620		dev_err(dev, "Cannot claim QSPI clock.\n");
1621		ret = PTR_ERR(cqspi->clk);
1622		return ret;
1623	}
1624
1625	/* Obtain and remap controller address. */
1626	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1627	if (IS_ERR(cqspi->iobase)) {
1628		dev_err(dev, "Cannot remap controller address.\n");
1629		ret = PTR_ERR(cqspi->iobase);
1630		return ret;
1631	}
1632
1633	/* Obtain and remap AHB address. */
1634	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1635	if (IS_ERR(cqspi->ahb_base)) {
1636		dev_err(dev, "Cannot remap AHB address.\n");
1637		ret = PTR_ERR(cqspi->ahb_base);
1638		return ret;
1639	}
1640	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1641	cqspi->ahb_size = resource_size(res_ahb);
1642
1643	init_completion(&cqspi->transfer_complete);
1644
1645	/* Obtain IRQ line. */
1646	irq = platform_get_irq(pdev, 0);
1647	if (irq < 0)
1648		return -ENXIO;
1649
1650	pm_runtime_enable(dev);
1651	ret = pm_runtime_resume_and_get(dev);
1652	if (ret < 0)
1653		goto probe_pm_failed;
1654
1655	ret = clk_prepare_enable(cqspi->clk);
1656	if (ret) {
1657		dev_err(dev, "Cannot enable QSPI clock.\n");
1658		goto probe_clk_failed;
1659	}
1660
1661	/* Obtain QSPI reset control */
1662	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1663	if (IS_ERR(rstc)) {
1664		ret = PTR_ERR(rstc);
1665		dev_err(dev, "Cannot get QSPI reset.\n");
1666		goto probe_reset_failed;
1667	}
1668
1669	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1670	if (IS_ERR(rstc_ocp)) {
1671		ret = PTR_ERR(rstc_ocp);
1672		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1673		goto probe_reset_failed;
1674	}
1675
 
 
 
 
 
 
 
 
 
 
 
1676	reset_control_assert(rstc);
1677	reset_control_deassert(rstc);
1678
1679	reset_control_assert(rstc_ocp);
1680	reset_control_deassert(rstc_ocp);
1681
1682	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1683	master->max_speed_hz = cqspi->master_ref_clk_hz;
1684
1685	/* write completion is supported by default */
1686	cqspi->wr_completion = true;
1687
1688	ddata  = of_device_get_match_data(dev);
1689	if (ddata) {
1690		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1691			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1692						cqspi->master_ref_clk_hz);
1693		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1694			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1695		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1696			cqspi->use_direct_mode = true;
 
 
1697		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1698			cqspi->use_dma_read = true;
1699		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1700			cqspi->wr_completion = false;
1701		if (ddata->quirks & CQSPI_SLOW_SRAM)
1702			cqspi->slow_sram = true;
 
 
 
 
 
 
 
 
1703
1704		if (of_device_is_compatible(pdev->dev.of_node,
1705					    "xlnx,versal-ospi-1.0"))
1706			dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
 
 
 
1707	}
1708
1709	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1710			       pdev->name, cqspi);
1711	if (ret) {
1712		dev_err(dev, "Cannot request IRQ.\n");
1713		goto probe_reset_failed;
1714	}
1715
1716	cqspi_wait_idle(cqspi);
1717	cqspi_controller_init(cqspi);
1718	cqspi->current_cs = -1;
1719	cqspi->sclk = 0;
1720
1721	master->num_chipselect = cqspi->num_chipselect;
1722
1723	ret = cqspi_setup_flash(cqspi);
1724	if (ret) {
1725		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1726		goto probe_setup_failed;
1727	}
1728
 
 
1729	if (cqspi->use_direct_mode) {
1730		ret = cqspi_request_mmap_dma(cqspi);
1731		if (ret == -EPROBE_DEFER)
1732			goto probe_setup_failed;
1733	}
1734
1735	ret = spi_register_master(master);
 
 
 
 
 
 
 
 
 
 
 
1736	if (ret) {
1737		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1738		goto probe_setup_failed;
1739	}
1740
 
 
 
1741	return 0;
1742probe_setup_failed:
1743	cqspi_controller_enable(cqspi, 0);
1744probe_reset_failed:
 
 
1745	clk_disable_unprepare(cqspi->clk);
1746probe_clk_failed:
1747	pm_runtime_put_sync(dev);
1748probe_pm_failed:
1749	pm_runtime_disable(dev);
1750	return ret;
1751}
1752
1753static int cqspi_remove(struct platform_device *pdev)
1754{
1755	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1756
1757	spi_unregister_master(cqspi->master);
1758	cqspi_controller_enable(cqspi, 0);
1759
1760	if (cqspi->rx_chan)
1761		dma_release_channel(cqspi->rx_chan);
1762
1763	clk_disable_unprepare(cqspi->clk);
1764
 
 
 
1765	pm_runtime_put_sync(&pdev->dev);
1766	pm_runtime_disable(&pdev->dev);
 
 
 
 
 
1767
 
 
1768	return 0;
1769}
1770
1771#ifdef CONFIG_PM_SLEEP
1772static int cqspi_suspend(struct device *dev)
1773{
1774	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1775
1776	cqspi_controller_enable(cqspi, 0);
 
 
 
 
 
1777	return 0;
1778}
1779
 
 
 
 
 
 
 
1780static int cqspi_resume(struct device *dev)
1781{
1782	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1783
1784	cqspi_controller_enable(cqspi, 1);
1785	return 0;
1786}
1787
1788static const struct dev_pm_ops cqspi__dev_pm_ops = {
1789	.suspend = cqspi_suspend,
1790	.resume = cqspi_resume,
1791};
1792
1793#define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1794#else
1795#define CQSPI_DEV_PM_OPS	NULL
1796#endif
1797
1798static const struct cqspi_driver_platdata cdns_qspi = {
1799	.quirks = CQSPI_DISABLE_DAC_MODE,
1800};
1801
1802static const struct cqspi_driver_platdata k2g_qspi = {
1803	.quirks = CQSPI_NEEDS_WR_DELAY,
1804};
1805
1806static const struct cqspi_driver_platdata am654_ospi = {
1807	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1808	.quirks = CQSPI_NEEDS_WR_DELAY,
1809};
1810
1811static const struct cqspi_driver_platdata intel_lgm_qspi = {
1812	.quirks = CQSPI_DISABLE_DAC_MODE,
1813};
1814
1815static const struct cqspi_driver_platdata socfpga_qspi = {
1816	.quirks = CQSPI_DISABLE_DAC_MODE
1817			| CQSPI_NO_SUPPORT_WR_COMPLETION
1818			| CQSPI_SLOW_SRAM,
1819};
1820
1821static const struct cqspi_driver_platdata versal_ospi = {
1822	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1823	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
1824	.indirect_read_dma = cqspi_versal_indirect_read_dma,
1825	.get_dma_status = cqspi_get_versal_dma_status,
1826};
1827
 
 
 
 
 
 
 
 
 
1828static const struct of_device_id cqspi_dt_ids[] = {
1829	{
1830		.compatible = "cdns,qspi-nor",
1831		.data = &cdns_qspi,
1832	},
1833	{
1834		.compatible = "ti,k2g-qspi",
1835		.data = &k2g_qspi,
1836	},
1837	{
1838		.compatible = "ti,am654-ospi",
1839		.data = &am654_ospi,
1840	},
1841	{
1842		.compatible = "intel,lgm-qspi",
1843		.data = &intel_lgm_qspi,
1844	},
1845	{
1846		.compatible = "xlnx,versal-ospi-1.0",
1847		.data = &versal_ospi,
1848	},
1849	{
1850		.compatible = "intel,socfpga-qspi",
1851		.data = &socfpga_qspi,
1852	},
 
 
 
 
 
 
 
 
1853	{ /* end of table */ }
1854};
1855
1856MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1857
1858static struct platform_driver cqspi_platform_driver = {
1859	.probe = cqspi_probe,
1860	.remove = cqspi_remove,
1861	.driver = {
1862		.name = CQSPI_NAME,
1863		.pm = CQSPI_DEV_PM_OPS,
1864		.of_match_table = cqspi_dt_ids,
1865	},
1866};
1867
1868module_platform_driver(cqspi_platform_driver);
1869
1870MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1871MODULE_LICENSE("GPL v2");
1872MODULE_ALIAS("platform:" CQSPI_NAME);
1873MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1874MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1875MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1876MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1877MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2//
   3// Driver for Cadence QSPI Controller
   4//
   5// Copyright Altera Corporation (C) 2012-2014. All rights reserved.
   6// Copyright Intel Corporation (C) 2019-2020. All rights reserved.
   7// Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
   8
   9#include <linux/clk.h>
  10#include <linux/completion.h>
  11#include <linux/delay.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/dmaengine.h>
  14#include <linux/err.h>
  15#include <linux/errno.h>
  16#include <linux/firmware/xlnx-zynqmp.h>
  17#include <linux/interrupt.h>
  18#include <linux/io.h>
  19#include <linux/iopoll.h>
  20#include <linux/jiffies.h>
  21#include <linux/kernel.h>
  22#include <linux/log2.h>
  23#include <linux/module.h>
 
  24#include <linux/of.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/sched.h>
  29#include <linux/spi/spi.h>
  30#include <linux/spi/spi-mem.h>
  31#include <linux/timer.h>
  32
  33#define CQSPI_NAME			"cadence-qspi"
  34#define CQSPI_MAX_CHIPSELECT		4
  35
  36static_assert(CQSPI_MAX_CHIPSELECT <= SPI_CS_CNT_MAX);
  37
  38/* Quirks */
  39#define CQSPI_NEEDS_WR_DELAY		BIT(0)
  40#define CQSPI_DISABLE_DAC_MODE		BIT(1)
  41#define CQSPI_SUPPORT_EXTERNAL_DMA	BIT(2)
  42#define CQSPI_NO_SUPPORT_WR_COMPLETION	BIT(3)
  43#define CQSPI_SLOW_SRAM		BIT(4)
  44#define CQSPI_NEEDS_APB_AHB_HAZARD_WAR	BIT(5)
  45
  46/* Capabilities */
  47#define CQSPI_SUPPORTS_OCTAL		BIT(0)
  48
  49#define CQSPI_OP_WIDTH(part) ((part).nbytes ? ilog2((part).buswidth) : 0)
  50
  51enum {
  52	CLK_QSPI_APB = 0,
  53	CLK_QSPI_AHB,
  54	CLK_QSPI_NUM,
  55};
  56
  57struct cqspi_st;
  58
  59struct cqspi_flash_pdata {
  60	struct cqspi_st	*cqspi;
  61	u32		clk_rate;
  62	u32		read_delay;
  63	u32		tshsl_ns;
  64	u32		tsd2d_ns;
  65	u32		tchsh_ns;
  66	u32		tslch_ns;
  67	u8		cs;
  68};
  69
  70struct cqspi_st {
  71	struct platform_device	*pdev;
  72	struct spi_controller	*host;
  73	struct clk		*clk;
  74	struct clk		*clks[CLK_QSPI_NUM];
  75	unsigned int		sclk;
  76
  77	void __iomem		*iobase;
  78	void __iomem		*ahb_base;
  79	resource_size_t		ahb_size;
  80	struct completion	transfer_complete;
  81
  82	struct dma_chan		*rx_chan;
  83	struct completion	rx_dma_complete;
  84	dma_addr_t		mmap_phys_base;
  85
  86	int			current_cs;
  87	unsigned long		master_ref_clk_hz;
  88	bool			is_decoded_cs;
  89	u32			fifo_depth;
  90	u32			fifo_width;
  91	u32			num_chipselect;
  92	bool			rclk_en;
  93	u32			trigger_address;
  94	u32			wr_delay;
  95	bool			use_direct_mode;
  96	bool			use_direct_mode_wr;
  97	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
  98	bool			use_dma_read;
  99	u32			pd_dev_id;
 100	bool			wr_completion;
 101	bool			slow_sram;
 102	bool			apb_ahb_hazard;
 103
 104	bool			is_jh7110; /* Flag for StarFive JH7110 SoC */
 105};
 106
 107struct cqspi_driver_platdata {
 108	u32 hwcaps_mask;
 109	u8 quirks;
 110	int (*indirect_read_dma)(struct cqspi_flash_pdata *f_pdata,
 111				 u_char *rxbuf, loff_t from_addr, size_t n_rx);
 112	u32 (*get_dma_status)(struct cqspi_st *cqspi);
 113	int (*jh7110_clk_init)(struct platform_device *pdev,
 114			       struct cqspi_st *cqspi);
 115};
 116
 117/* Operation timeout value */
 118#define CQSPI_TIMEOUT_MS			500
 119#define CQSPI_READ_TIMEOUT_MS			10
 120
 121/* Runtime_pm autosuspend delay */
 122#define CQSPI_AUTOSUSPEND_TIMEOUT		2000
 123
 124#define CQSPI_DUMMY_CLKS_PER_BYTE		8
 125#define CQSPI_DUMMY_BYTES_MAX			4
 126#define CQSPI_DUMMY_CLKS_MAX			31
 127
 128#define CQSPI_STIG_DATA_LEN_MAX			8
 129
 130/* Register map */
 131#define CQSPI_REG_CONFIG			0x00
 132#define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
 133#define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
 134#define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
 135#define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
 136#define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
 137#define CQSPI_REG_CONFIG_BAUD_LSB		19
 138#define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
 139#define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
 140#define CQSPI_REG_CONFIG_IDLE_LSB		31
 141#define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
 142#define CQSPI_REG_CONFIG_BAUD_MASK		0xF
 143
 144#define CQSPI_REG_RD_INSTR			0x04
 145#define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
 146#define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
 147#define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
 148#define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
 149#define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
 150#define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
 151#define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
 152#define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
 153#define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
 154#define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
 155
 156#define CQSPI_REG_WR_INSTR			0x08
 157#define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
 158#define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
 159#define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
 160
 161#define CQSPI_REG_DELAY				0x0C
 162#define CQSPI_REG_DELAY_TSLCH_LSB		0
 163#define CQSPI_REG_DELAY_TCHSH_LSB		8
 164#define CQSPI_REG_DELAY_TSD2D_LSB		16
 165#define CQSPI_REG_DELAY_TSHSL_LSB		24
 166#define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
 167#define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
 168#define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
 169#define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
 170
 171#define CQSPI_REG_READCAPTURE			0x10
 172#define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
 173#define CQSPI_REG_READCAPTURE_DELAY_LSB		1
 174#define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
 175
 176#define CQSPI_REG_SIZE				0x14
 177#define CQSPI_REG_SIZE_ADDRESS_LSB		0
 178#define CQSPI_REG_SIZE_PAGE_LSB			4
 179#define CQSPI_REG_SIZE_BLOCK_LSB		16
 180#define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
 181#define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
 182#define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
 183
 184#define CQSPI_REG_SRAMPARTITION			0x18
 185#define CQSPI_REG_INDIRECTTRIGGER		0x1C
 186
 187#define CQSPI_REG_DMA				0x20
 188#define CQSPI_REG_DMA_SINGLE_LSB		0
 189#define CQSPI_REG_DMA_BURST_LSB			8
 190#define CQSPI_REG_DMA_SINGLE_MASK		0xFF
 191#define CQSPI_REG_DMA_BURST_MASK		0xFF
 192
 193#define CQSPI_REG_REMAP				0x24
 194#define CQSPI_REG_MODE_BIT			0x28
 195
 196#define CQSPI_REG_SDRAMLEVEL			0x2C
 197#define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
 198#define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
 199#define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
 200#define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
 201
 202#define CQSPI_REG_WR_COMPLETION_CTRL		0x38
 203#define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
 204
 205#define CQSPI_REG_IRQSTATUS			0x40
 206#define CQSPI_REG_IRQMASK			0x44
 207
 208#define CQSPI_REG_INDIRECTRD			0x60
 209#define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
 210#define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
 211#define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
 212
 213#define CQSPI_REG_INDIRECTRDWATERMARK		0x64
 214#define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
 215#define CQSPI_REG_INDIRECTRDBYTES		0x6C
 216
 217#define CQSPI_REG_CMDCTRL			0x90
 218#define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
 219#define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
 220#define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
 221#define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
 222#define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
 223#define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
 224#define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
 225#define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
 226#define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
 227#define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
 228#define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
 229#define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
 230#define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
 231#define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
 232
 233#define CQSPI_REG_INDIRECTWR			0x70
 234#define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
 235#define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
 236#define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
 237
 238#define CQSPI_REG_INDIRECTWRWATERMARK		0x74
 239#define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
 240#define CQSPI_REG_INDIRECTWRBYTES		0x7C
 241
 242#define CQSPI_REG_INDTRIG_ADDRRANGE		0x80
 243
 244#define CQSPI_REG_CMDADDRESS			0x94
 245#define CQSPI_REG_CMDREADDATALOWER		0xA0
 246#define CQSPI_REG_CMDREADDATAUPPER		0xA4
 247#define CQSPI_REG_CMDWRITEDATALOWER		0xA8
 248#define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
 249
 250#define CQSPI_REG_POLLING_STATUS		0xB0
 251#define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
 252
 253#define CQSPI_REG_OP_EXT_LOWER			0xE0
 254#define CQSPI_REG_OP_EXT_READ_LSB		24
 255#define CQSPI_REG_OP_EXT_WRITE_LSB		16
 256#define CQSPI_REG_OP_EXT_STIG_LSB		0
 257
 258#define CQSPI_REG_VERSAL_DMA_SRC_ADDR		0x1000
 259
 260#define CQSPI_REG_VERSAL_DMA_DST_ADDR		0x1800
 261#define CQSPI_REG_VERSAL_DMA_DST_SIZE		0x1804
 262
 263#define CQSPI_REG_VERSAL_DMA_DST_CTRL		0x180C
 264
 265#define CQSPI_REG_VERSAL_DMA_DST_I_STS		0x1814
 266#define CQSPI_REG_VERSAL_DMA_DST_I_EN		0x1818
 267#define CQSPI_REG_VERSAL_DMA_DST_I_DIS		0x181C
 268#define CQSPI_REG_VERSAL_DMA_DST_DONE_MASK	BIT(1)
 269
 270#define CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB	0x1828
 271
 272#define CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL	0xF43FFA00
 273#define CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL	0x6
 274
 275/* Interrupt status bits */
 276#define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
 277#define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
 278#define CQSPI_REG_IRQ_IND_COMP			BIT(2)
 279#define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
 280#define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
 281#define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
 282#define CQSPI_REG_IRQ_WATERMARK			BIT(6)
 283#define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
 284
 285#define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
 286					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
 287					 CQSPI_REG_IRQ_IND_COMP)
 288
 289#define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
 290					 CQSPI_REG_IRQ_WATERMARK	| \
 291					 CQSPI_REG_IRQ_UNDERFLOW)
 292
 293#define CQSPI_IRQ_STATUS_MASK		0x1FFFF
 294#define CQSPI_DMA_UNALIGN		0x3
 295
 296#define CQSPI_REG_VERSAL_DMA_VAL		0x602
 297
 298static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
 299{
 300	u32 val;
 301
 302	return readl_relaxed_poll_timeout(reg, val,
 303					  (((clr ? ~val : val) & mask) == mask),
 304					  10, CQSPI_TIMEOUT_MS * 1000);
 305}
 306
 307static bool cqspi_is_idle(struct cqspi_st *cqspi)
 308{
 309	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 310
 311	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
 312}
 313
 314static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
 315{
 316	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
 317
 318	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
 319	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
 320}
 321
 322static u32 cqspi_get_versal_dma_status(struct cqspi_st *cqspi)
 323{
 324	u32 dma_status;
 325
 326	dma_status = readl(cqspi->iobase +
 327					   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 328	writel(dma_status, cqspi->iobase +
 329		   CQSPI_REG_VERSAL_DMA_DST_I_STS);
 330
 331	return dma_status & CQSPI_REG_VERSAL_DMA_DST_DONE_MASK;
 332}
 333
 334static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
 335{
 336	struct cqspi_st *cqspi = dev;
 337	unsigned int irq_status;
 338	struct device *device = &cqspi->pdev->dev;
 339	const struct cqspi_driver_platdata *ddata;
 340
 341	ddata = of_device_get_match_data(device);
 342
 343	/* Read interrupt status */
 344	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
 345
 346	/* Clear interrupt */
 347	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
 348
 349	if (cqspi->use_dma_read && ddata && ddata->get_dma_status) {
 350		if (ddata->get_dma_status(cqspi)) {
 351			complete(&cqspi->transfer_complete);
 352			return IRQ_HANDLED;
 353		}
 354	}
 355
 356	else if (!cqspi->slow_sram)
 357		irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
 358	else
 359		irq_status &= CQSPI_REG_IRQ_WATERMARK | CQSPI_IRQ_MASK_WR;
 360
 361	if (irq_status)
 362		complete(&cqspi->transfer_complete);
 363
 364	return IRQ_HANDLED;
 365}
 366
 367static unsigned int cqspi_calc_rdreg(const struct spi_mem_op *op)
 368{
 369	u32 rdreg = 0;
 370
 371	rdreg |= CQSPI_OP_WIDTH(op->cmd) << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
 372	rdreg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
 373	rdreg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
 374
 375	return rdreg;
 376}
 377
 378static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op)
 379{
 380	unsigned int dummy_clk;
 381
 382	if (!op->dummy.nbytes)
 383		return 0;
 384
 385	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
 386	if (op->cmd.dtr)
 387		dummy_clk /= 2;
 388
 389	return dummy_clk;
 390}
 391
 392static int cqspi_wait_idle(struct cqspi_st *cqspi)
 393{
 394	const unsigned int poll_idle_retry = 3;
 395	unsigned int count = 0;
 396	unsigned long timeout;
 397
 398	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
 399	while (1) {
 400		/*
 401		 * Read few times in succession to ensure the controller
 402		 * is indeed idle, that is, the bit does not transition
 403		 * low again.
 404		 */
 405		if (cqspi_is_idle(cqspi))
 406			count++;
 407		else
 408			count = 0;
 409
 410		if (count >= poll_idle_retry)
 411			return 0;
 412
 413		if (time_after(jiffies, timeout)) {
 414			/* Timeout, in busy mode. */
 415			dev_err(&cqspi->pdev->dev,
 416				"QSPI is still busy after %dms timeout.\n",
 417				CQSPI_TIMEOUT_MS);
 418			return -ETIMEDOUT;
 419		}
 420
 421		cpu_relax();
 422	}
 423}
 424
 425static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
 426{
 427	void __iomem *reg_base = cqspi->iobase;
 428	int ret;
 429
 430	/* Write the CMDCTRL without start execution. */
 431	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 432	/* Start execute */
 433	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
 434	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
 435
 436	/* Polling for completion. */
 437	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
 438				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
 439	if (ret) {
 440		dev_err(&cqspi->pdev->dev,
 441			"Flash command execution timed out.\n");
 442		return ret;
 443	}
 444
 445	/* Polling QSPI idle status. */
 446	return cqspi_wait_idle(cqspi);
 447}
 448
 449static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
 450				  const struct spi_mem_op *op,
 451				  unsigned int shift)
 452{
 453	struct cqspi_st *cqspi = f_pdata->cqspi;
 454	void __iomem *reg_base = cqspi->iobase;
 455	unsigned int reg;
 456	u8 ext;
 457
 458	if (op->cmd.nbytes != 2)
 459		return -EINVAL;
 460
 461	/* Opcode extension is the LSB. */
 462	ext = op->cmd.opcode & 0xff;
 463
 464	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
 465	reg &= ~(0xff << shift);
 466	reg |= ext << shift;
 467	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
 468
 469	return 0;
 470}
 471
 472static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
 473			    const struct spi_mem_op *op, unsigned int shift)
 474{
 475	struct cqspi_st *cqspi = f_pdata->cqspi;
 476	void __iomem *reg_base = cqspi->iobase;
 477	unsigned int reg;
 478	int ret;
 479
 480	reg = readl(reg_base + CQSPI_REG_CONFIG);
 481
 482	/*
 483	 * We enable dual byte opcode here. The callers have to set up the
 484	 * extension opcode based on which type of operation it is.
 485	 */
 486	if (op->cmd.dtr) {
 487		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
 488		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
 489
 490		/* Set up command opcode extension. */
 491		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
 492		if (ret)
 493			return ret;
 494	} else {
 495		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
 496		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
 497	}
 498
 499	writel(reg, reg_base + CQSPI_REG_CONFIG);
 500
 501	return cqspi_wait_idle(cqspi);
 502}
 503
 504static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
 505			      const struct spi_mem_op *op)
 506{
 507	struct cqspi_st *cqspi = f_pdata->cqspi;
 508	void __iomem *reg_base = cqspi->iobase;
 509	u8 *rxbuf = op->data.buf.in;
 510	u8 opcode;
 511	size_t n_rx = op->data.nbytes;
 512	unsigned int rdreg;
 513	unsigned int reg;
 514	unsigned int dummy_clk;
 515	size_t read_len;
 516	int status;
 517
 518	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 519	if (status)
 520		return status;
 521
 522	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
 523		dev_err(&cqspi->pdev->dev,
 524			"Invalid input argument, len %zu rxbuf 0x%p\n",
 525			n_rx, rxbuf);
 526		return -EINVAL;
 527	}
 528
 529	if (op->cmd.dtr)
 530		opcode = op->cmd.opcode >> 8;
 531	else
 532		opcode = op->cmd.opcode;
 533
 534	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 535
 536	rdreg = cqspi_calc_rdreg(op);
 537	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
 538
 539	dummy_clk = cqspi_calc_dummy(op);
 540	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 541		return -EOPNOTSUPP;
 542
 543	if (dummy_clk)
 544		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
 545		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
 546
 547	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
 548
 549	/* 0 means 1 byte. */
 550	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
 551		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
 552
 553	/* setup ADDR BIT field */
 554	if (op->addr.nbytes) {
 555		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 556		reg |= ((op->addr.nbytes - 1) &
 557			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 558			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 559
 560		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 561	}
 562
 563	status = cqspi_exec_flash_cmd(cqspi, reg);
 564	if (status)
 565		return status;
 566
 567	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
 568
 569	/* Put the read value into rx_buf */
 570	read_len = (n_rx > 4) ? 4 : n_rx;
 571	memcpy(rxbuf, &reg, read_len);
 572	rxbuf += read_len;
 573
 574	if (n_rx > 4) {
 575		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
 576
 577		read_len = n_rx - read_len;
 578		memcpy(rxbuf, &reg, read_len);
 579	}
 580
 581	/* Reset CMD_CTRL Reg once command read completes */
 582	writel(0, reg_base + CQSPI_REG_CMDCTRL);
 583
 584	return 0;
 585}
 586
 587static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
 588			       const struct spi_mem_op *op)
 589{
 590	struct cqspi_st *cqspi = f_pdata->cqspi;
 591	void __iomem *reg_base = cqspi->iobase;
 592	u8 opcode;
 593	const u8 *txbuf = op->data.buf.out;
 594	size_t n_tx = op->data.nbytes;
 595	unsigned int reg;
 596	unsigned int data;
 597	size_t write_len;
 598	int ret;
 599
 600	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB);
 601	if (ret)
 602		return ret;
 603
 604	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
 605		dev_err(&cqspi->pdev->dev,
 606			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
 607			n_tx, txbuf);
 608		return -EINVAL;
 609	}
 610
 611	reg = cqspi_calc_rdreg(op);
 612	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 613
 614	if (op->cmd.dtr)
 615		opcode = op->cmd.opcode >> 8;
 616	else
 617		opcode = op->cmd.opcode;
 618
 619	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
 620
 621	if (op->addr.nbytes) {
 622		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
 623		reg |= ((op->addr.nbytes - 1) &
 624			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
 625			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
 626
 627		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
 628	}
 629
 630	if (n_tx) {
 631		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
 632		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
 633			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
 634		data = 0;
 635		write_len = (n_tx > 4) ? 4 : n_tx;
 636		memcpy(&data, txbuf, write_len);
 637		txbuf += write_len;
 638		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
 639
 640		if (n_tx > 4) {
 641			data = 0;
 642			write_len = n_tx - 4;
 643			memcpy(&data, txbuf, write_len);
 644			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
 645		}
 646	}
 647
 648	ret = cqspi_exec_flash_cmd(cqspi, reg);
 649
 650	/* Reset CMD_CTRL Reg once command write completes */
 651	writel(0, reg_base + CQSPI_REG_CMDCTRL);
 652
 653	return ret;
 654}
 655
 656static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
 657			    const struct spi_mem_op *op)
 658{
 659	struct cqspi_st *cqspi = f_pdata->cqspi;
 660	void __iomem *reg_base = cqspi->iobase;
 661	unsigned int dummy_clk = 0;
 662	unsigned int reg;
 663	int ret;
 664	u8 opcode;
 665
 666	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB);
 667	if (ret)
 668		return ret;
 669
 670	if (op->cmd.dtr)
 671		opcode = op->cmd.opcode >> 8;
 672	else
 673		opcode = op->cmd.opcode;
 674
 675	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
 676	reg |= cqspi_calc_rdreg(op);
 677
 678	/* Setup dummy clock cycles */
 679	dummy_clk = cqspi_calc_dummy(op);
 680
 681	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
 682		return -EOPNOTSUPP;
 683
 684	if (dummy_clk)
 685		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
 686		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
 687
 688	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 689
 690	/* Set address width */
 691	reg = readl(reg_base + CQSPI_REG_SIZE);
 692	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
 693	reg |= (op->addr.nbytes - 1);
 694	writel(reg, reg_base + CQSPI_REG_SIZE);
 695	return 0;
 696}
 697
 698static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
 699				       u8 *rxbuf, loff_t from_addr,
 700				       const size_t n_rx)
 701{
 702	struct cqspi_st *cqspi = f_pdata->cqspi;
 703	struct device *dev = &cqspi->pdev->dev;
 704	void __iomem *reg_base = cqspi->iobase;
 705	void __iomem *ahb_base = cqspi->ahb_base;
 706	unsigned int remaining = n_rx;
 707	unsigned int mod_bytes = n_rx % 4;
 708	unsigned int bytes_to_read = 0;
 709	u8 *rxbuf_end = rxbuf + n_rx;
 710	int ret = 0;
 711
 712	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 713	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 714
 715	/* Clear all interrupts. */
 716	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 717
 718	/*
 719	 * On SoCFPGA platform reading the SRAM is slow due to
 720	 * hardware limitation and causing read interrupt storm to CPU,
 721	 * so enabling only watermark interrupt to disable all read
 722	 * interrupts later as we want to run "bytes to read" loop with
 723	 * all the read interrupts disabled for max performance.
 724	 */
 725
 726	if (!cqspi->slow_sram)
 727		writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
 728	else
 729		writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 730
 731	reinit_completion(&cqspi->transfer_complete);
 732	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 733	       reg_base + CQSPI_REG_INDIRECTRD);
 734
 735	while (remaining > 0) {
 736		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 737						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
 738			ret = -ETIMEDOUT;
 739
 740		/*
 741		 * Disable all read interrupts until
 742		 * we are out of "bytes to read"
 743		 */
 744		if (cqspi->slow_sram)
 745			writel(0x0, reg_base + CQSPI_REG_IRQMASK);
 746
 747		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 748
 749		if (ret && bytes_to_read == 0) {
 750			dev_err(dev, "Indirect read timeout, no bytes\n");
 751			goto failrd;
 752		}
 753
 754		while (bytes_to_read != 0) {
 755			unsigned int word_remain = round_down(remaining, 4);
 756
 757			bytes_to_read *= cqspi->fifo_width;
 758			bytes_to_read = bytes_to_read > remaining ?
 759					remaining : bytes_to_read;
 760			bytes_to_read = round_down(bytes_to_read, 4);
 761			/* Read 4 byte word chunks then single bytes */
 762			if (bytes_to_read) {
 763				ioread32_rep(ahb_base, rxbuf,
 764					     (bytes_to_read / 4));
 765			} else if (!word_remain && mod_bytes) {
 766				unsigned int temp = ioread32(ahb_base);
 767
 768				bytes_to_read = mod_bytes;
 769				memcpy(rxbuf, &temp, min((unsigned int)
 770							 (rxbuf_end - rxbuf),
 771							 bytes_to_read));
 772			}
 773			rxbuf += bytes_to_read;
 774			remaining -= bytes_to_read;
 775			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
 776		}
 777
 778		if (remaining > 0) {
 779			reinit_completion(&cqspi->transfer_complete);
 780			if (cqspi->slow_sram)
 781				writel(CQSPI_REG_IRQ_WATERMARK, reg_base + CQSPI_REG_IRQMASK);
 782		}
 783	}
 784
 785	/* Check indirect done status */
 786	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
 787				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
 788	if (ret) {
 789		dev_err(dev, "Indirect read completion error (%i)\n", ret);
 790		goto failrd;
 791	}
 792
 793	/* Disable interrupt */
 794	writel(0, reg_base + CQSPI_REG_IRQMASK);
 795
 796	/* Clear indirect completion status */
 797	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
 798
 799	return 0;
 800
 801failrd:
 802	/* Disable interrupt */
 803	writel(0, reg_base + CQSPI_REG_IRQMASK);
 804
 805	/* Cancel the indirect read */
 806	writel(CQSPI_REG_INDIRECTRD_CANCEL_MASK,
 807	       reg_base + CQSPI_REG_INDIRECTRD);
 808	return ret;
 809}
 810
 811static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
 812{
 813	void __iomem *reg_base = cqspi->iobase;
 814	unsigned int reg;
 815
 816	reg = readl(reg_base + CQSPI_REG_CONFIG);
 817
 818	if (enable)
 819		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
 820	else
 821		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
 822
 823	writel(reg, reg_base + CQSPI_REG_CONFIG);
 824}
 825
 826static int cqspi_versal_indirect_read_dma(struct cqspi_flash_pdata *f_pdata,
 827					  u_char *rxbuf, loff_t from_addr,
 828					  size_t n_rx)
 829{
 830	struct cqspi_st *cqspi = f_pdata->cqspi;
 831	struct device *dev = &cqspi->pdev->dev;
 832	void __iomem *reg_base = cqspi->iobase;
 833	u32 reg, bytes_to_dma;
 834	loff_t addr = from_addr;
 835	void *buf = rxbuf;
 836	dma_addr_t dma_addr;
 837	u8 bytes_rem;
 838	int ret = 0;
 839
 840	bytes_rem = n_rx % 4;
 841	bytes_to_dma = (n_rx - bytes_rem);
 842
 843	if (!bytes_to_dma)
 844		goto nondmard;
 845
 846	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_DMA);
 847	if (ret)
 848		return ret;
 849
 850	cqspi_controller_enable(cqspi, 0);
 851
 852	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 853	reg |= CQSPI_REG_CONFIG_DMA_MASK;
 854	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 855
 856	cqspi_controller_enable(cqspi, 1);
 857
 858	dma_addr = dma_map_single(dev, rxbuf, bytes_to_dma, DMA_FROM_DEVICE);
 859	if (dma_mapping_error(dev, dma_addr)) {
 860		dev_err(dev, "dma mapping failed\n");
 861		return -ENOMEM;
 862	}
 863
 864	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
 865	writel(bytes_to_dma, reg_base + CQSPI_REG_INDIRECTRDBYTES);
 866	writel(CQSPI_REG_VERSAL_ADDRRANGE_WIDTH_VAL,
 867	       reg_base + CQSPI_REG_INDTRIG_ADDRRANGE);
 868
 869	/* Clear all interrupts. */
 870	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
 871
 872	/* Enable DMA done interrupt */
 873	writel(CQSPI_REG_VERSAL_DMA_DST_DONE_MASK,
 874	       reg_base + CQSPI_REG_VERSAL_DMA_DST_I_EN);
 875
 876	/* Default DMA periph configuration */
 877	writel(CQSPI_REG_VERSAL_DMA_VAL, reg_base + CQSPI_REG_DMA);
 878
 879	/* Configure DMA Dst address */
 880	writel(lower_32_bits(dma_addr),
 881	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR);
 882	writel(upper_32_bits(dma_addr),
 883	       reg_base + CQSPI_REG_VERSAL_DMA_DST_ADDR_MSB);
 884
 885	/* Configure DMA Src address */
 886	writel(cqspi->trigger_address, reg_base +
 887	       CQSPI_REG_VERSAL_DMA_SRC_ADDR);
 888
 889	/* Set DMA destination size */
 890	writel(bytes_to_dma, reg_base + CQSPI_REG_VERSAL_DMA_DST_SIZE);
 891
 892	/* Set DMA destination control */
 893	writel(CQSPI_REG_VERSAL_DMA_DST_CTRL_VAL,
 894	       reg_base + CQSPI_REG_VERSAL_DMA_DST_CTRL);
 895
 896	writel(CQSPI_REG_INDIRECTRD_START_MASK,
 897	       reg_base + CQSPI_REG_INDIRECTRD);
 898
 899	reinit_completion(&cqspi->transfer_complete);
 900
 901	if (!wait_for_completion_timeout(&cqspi->transfer_complete,
 902					 msecs_to_jiffies(max_t(size_t, bytes_to_dma, 500)))) {
 903		ret = -ETIMEDOUT;
 904		goto failrd;
 905	}
 906
 907	/* Disable DMA interrupt */
 908	writel(0x0, cqspi->iobase + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 909
 910	/* Clear indirect completion status */
 911	writel(CQSPI_REG_INDIRECTRD_DONE_MASK,
 912	       cqspi->iobase + CQSPI_REG_INDIRECTRD);
 913	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 914
 915	cqspi_controller_enable(cqspi, 0);
 916
 917	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 918	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 919	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 920
 921	cqspi_controller_enable(cqspi, 1);
 922
 923	ret = zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id,
 924					PM_OSPI_MUX_SEL_LINEAR);
 925	if (ret)
 926		return ret;
 927
 928nondmard:
 929	if (bytes_rem) {
 930		addr += bytes_to_dma;
 931		buf += bytes_to_dma;
 932		ret = cqspi_indirect_read_execute(f_pdata, buf, addr,
 933						  bytes_rem);
 934		if (ret)
 935			return ret;
 936	}
 937
 938	return 0;
 939
 940failrd:
 941	/* Disable DMA interrupt */
 942	writel(0x0, reg_base + CQSPI_REG_VERSAL_DMA_DST_I_DIS);
 943
 944	/* Cancel the indirect read */
 945	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
 946	       reg_base + CQSPI_REG_INDIRECTRD);
 947
 948	dma_unmap_single(dev, dma_addr, bytes_to_dma, DMA_FROM_DEVICE);
 949
 950	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
 951	reg &= ~CQSPI_REG_CONFIG_DMA_MASK;
 952	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
 953
 954	zynqmp_pm_ospi_mux_select(cqspi->pd_dev_id, PM_OSPI_MUX_SEL_LINEAR);
 955
 956	return ret;
 957}
 958
 959static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
 960			     const struct spi_mem_op *op)
 961{
 962	unsigned int reg;
 963	int ret;
 964	struct cqspi_st *cqspi = f_pdata->cqspi;
 965	void __iomem *reg_base = cqspi->iobase;
 966	u8 opcode;
 967
 968	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB);
 969	if (ret)
 970		return ret;
 971
 972	if (op->cmd.dtr)
 973		opcode = op->cmd.opcode >> 8;
 974	else
 975		opcode = op->cmd.opcode;
 976
 977	/* Set opcode. */
 978	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
 979	reg |= CQSPI_OP_WIDTH(op->data) << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
 980	reg |= CQSPI_OP_WIDTH(op->addr) << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
 981	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
 982	reg = cqspi_calc_rdreg(op);
 983	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
 984
 985	/*
 986	 * SPI NAND flashes require the address of the status register to be
 987	 * passed in the Read SR command. Also, some SPI NOR flashes like the
 988	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
 989	 * command in DTR mode.
 990	 *
 991	 * But this controller does not support address phase in the Read SR
 992	 * command when doing auto-HW polling. So, disable write completion
 993	 * polling on the controller's side. spinand and spi-nor will take
 994	 * care of polling the status register.
 995	 */
 996	if (cqspi->wr_completion) {
 997		reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
 998		reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
 999		writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
1000		/*
1001		 * DAC mode require auto polling as flash needs to be polled
1002		 * for write completion in case of bubble in SPI transaction
1003		 * due to slow CPU/DMA master.
1004		 */
1005		cqspi->use_direct_mode_wr = false;
1006	}
1007
1008	reg = readl(reg_base + CQSPI_REG_SIZE);
1009	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
1010	reg |= (op->addr.nbytes - 1);
1011	writel(reg, reg_base + CQSPI_REG_SIZE);
1012	return 0;
1013}
1014
1015static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
1016					loff_t to_addr, const u8 *txbuf,
1017					const size_t n_tx)
1018{
1019	struct cqspi_st *cqspi = f_pdata->cqspi;
1020	struct device *dev = &cqspi->pdev->dev;
1021	void __iomem *reg_base = cqspi->iobase;
1022	unsigned int remaining = n_tx;
1023	unsigned int write_bytes;
1024	int ret;
1025
1026	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
1027	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
1028
1029	/* Clear all interrupts. */
1030	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
1031
1032	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
1033
1034	reinit_completion(&cqspi->transfer_complete);
1035	writel(CQSPI_REG_INDIRECTWR_START_MASK,
1036	       reg_base + CQSPI_REG_INDIRECTWR);
1037	/*
1038	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
1039	 * Controller programming sequence, couple of cycles of
1040	 * QSPI_REF_CLK delay is required for the above bit to
1041	 * be internally synchronized by the QSPI module. Provide 5
1042	 * cycles of delay.
1043	 */
1044	if (cqspi->wr_delay)
1045		ndelay(cqspi->wr_delay);
1046
1047	/*
1048	 * If a hazard exists between the APB and AHB interfaces, perform a
1049	 * dummy readback from the controller to ensure synchronization.
1050	 */
1051	if (cqspi->apb_ahb_hazard)
1052		readl(reg_base + CQSPI_REG_INDIRECTWR);
1053
1054	while (remaining > 0) {
1055		size_t write_words, mod_bytes;
1056
1057		write_bytes = remaining;
1058		write_words = write_bytes / 4;
1059		mod_bytes = write_bytes % 4;
1060		/* Write 4 bytes at a time then single bytes. */
1061		if (write_words) {
1062			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
1063			txbuf += (write_words * 4);
1064		}
1065		if (mod_bytes) {
1066			unsigned int temp = 0xFFFFFFFF;
1067
1068			memcpy(&temp, txbuf, mod_bytes);
1069			iowrite32(temp, cqspi->ahb_base);
1070			txbuf += mod_bytes;
1071		}
1072
1073		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
1074						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
1075			dev_err(dev, "Indirect write timeout\n");
1076			ret = -ETIMEDOUT;
1077			goto failwr;
1078		}
1079
1080		remaining -= write_bytes;
1081
1082		if (remaining > 0)
1083			reinit_completion(&cqspi->transfer_complete);
1084	}
1085
1086	/* Check indirect done status */
1087	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
1088				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
1089	if (ret) {
1090		dev_err(dev, "Indirect write completion error (%i)\n", ret);
1091		goto failwr;
1092	}
1093
1094	/* Disable interrupt. */
1095	writel(0, reg_base + CQSPI_REG_IRQMASK);
1096
1097	/* Clear indirect completion status */
1098	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
1099
1100	cqspi_wait_idle(cqspi);
1101
1102	return 0;
1103
1104failwr:
1105	/* Disable interrupt. */
1106	writel(0, reg_base + CQSPI_REG_IRQMASK);
1107
1108	/* Cancel the indirect write */
1109	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
1110	       reg_base + CQSPI_REG_INDIRECTWR);
1111	return ret;
1112}
1113
1114static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
1115{
1116	struct cqspi_st *cqspi = f_pdata->cqspi;
1117	void __iomem *reg_base = cqspi->iobase;
1118	unsigned int chip_select = f_pdata->cs;
1119	unsigned int reg;
1120
1121	reg = readl(reg_base + CQSPI_REG_CONFIG);
1122	if (cqspi->is_decoded_cs) {
1123		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
1124	} else {
1125		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
1126
1127		/* Convert CS if without decoder.
1128		 * CS0 to 4b'1110
1129		 * CS1 to 4b'1101
1130		 * CS2 to 4b'1011
1131		 * CS3 to 4b'0111
1132		 */
1133		chip_select = 0xF & ~(1 << chip_select);
1134	}
1135
1136	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
1137		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
1138	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
1139	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
1140	writel(reg, reg_base + CQSPI_REG_CONFIG);
1141}
1142
1143static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
1144					   const unsigned int ns_val)
1145{
1146	unsigned int ticks;
1147
1148	ticks = ref_clk_hz / 1000;	/* kHz */
1149	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
1150
1151	return ticks;
1152}
1153
1154static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
1155{
1156	struct cqspi_st *cqspi = f_pdata->cqspi;
1157	void __iomem *iobase = cqspi->iobase;
1158	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1159	unsigned int tshsl, tchsh, tslch, tsd2d;
1160	unsigned int reg;
1161	unsigned int tsclk;
1162
1163	/* calculate the number of ref ticks for one sclk tick */
1164	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
1165
1166	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
1167	/* this particular value must be at least one sclk */
1168	if (tshsl < tsclk)
1169		tshsl = tsclk;
1170
1171	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
1172	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
1173	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
1174
1175	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
1176	       << CQSPI_REG_DELAY_TSHSL_LSB;
1177	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
1178		<< CQSPI_REG_DELAY_TCHSH_LSB;
1179	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
1180		<< CQSPI_REG_DELAY_TSLCH_LSB;
1181	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
1182		<< CQSPI_REG_DELAY_TSD2D_LSB;
1183	writel(reg, iobase + CQSPI_REG_DELAY);
1184}
1185
1186static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
1187{
1188	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1189	void __iomem *reg_base = cqspi->iobase;
1190	u32 reg, div;
1191
1192	/* Recalculate the baudrate divisor based on QSPI specification. */
1193	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1194
1195	/* Maximum baud divisor */
1196	if (div > CQSPI_REG_CONFIG_BAUD_MASK) {
1197		div = CQSPI_REG_CONFIG_BAUD_MASK;
1198		dev_warn(&cqspi->pdev->dev,
1199			"Unable to adjust clock <= %d hz. Reduced to %d hz\n",
1200			cqspi->sclk, ref_clk_hz/((div+1)*2));
1201	}
1202
1203	reg = readl(reg_base + CQSPI_REG_CONFIG);
1204	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1205	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1206	writel(reg, reg_base + CQSPI_REG_CONFIG);
1207}
1208
1209static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1210				   const bool bypass,
1211				   const unsigned int delay)
1212{
1213	void __iomem *reg_base = cqspi->iobase;
1214	unsigned int reg;
1215
1216	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1217
1218	if (bypass)
1219		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1220	else
1221		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1222
1223	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1224		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1225
1226	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1227		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1228
1229	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1230}
1231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1233			    unsigned long sclk)
1234{
1235	struct cqspi_st *cqspi = f_pdata->cqspi;
1236	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1237	int switch_ck = (cqspi->sclk != sclk);
1238
1239	if (switch_cs || switch_ck)
1240		cqspi_controller_enable(cqspi, 0);
1241
1242	/* Switch chip select. */
1243	if (switch_cs) {
1244		cqspi->current_cs = f_pdata->cs;
1245		cqspi_chipselect(f_pdata);
1246	}
1247
1248	/* Setup baudrate divisor and delays */
1249	if (switch_ck) {
1250		cqspi->sclk = sclk;
1251		cqspi_config_baudrate_div(cqspi);
1252		cqspi_delay(f_pdata);
1253		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1254				       f_pdata->read_delay);
1255	}
1256
1257	if (switch_cs || switch_ck)
1258		cqspi_controller_enable(cqspi, 1);
1259}
1260
1261static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1262			   const struct spi_mem_op *op)
1263{
1264	struct cqspi_st *cqspi = f_pdata->cqspi;
1265	loff_t to = op->addr.val;
1266	size_t len = op->data.nbytes;
1267	const u_char *buf = op->data.buf.out;
1268	int ret;
1269
1270	ret = cqspi_write_setup(f_pdata, op);
1271	if (ret)
1272		return ret;
1273
1274	/*
1275	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1276	 * address (all 0s) with the read status register command in DTR mode.
1277	 * But this controller does not support sending dummy address bytes to
1278	 * the flash when it is polling the write completion register in DTR
1279	 * mode. So, we can not use direct mode when in DTR mode for writing
1280	 * data.
1281	 */
1282	if (!op->cmd.dtr && cqspi->use_direct_mode &&
1283	    cqspi->use_direct_mode_wr && ((to + len) <= cqspi->ahb_size)) {
1284		memcpy_toio(cqspi->ahb_base + to, buf, len);
1285		return cqspi_wait_idle(cqspi);
1286	}
1287
1288	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1289}
1290
1291static void cqspi_rx_dma_callback(void *param)
1292{
1293	struct cqspi_st *cqspi = param;
1294
1295	complete(&cqspi->rx_dma_complete);
1296}
1297
1298static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1299				     u_char *buf, loff_t from, size_t len)
1300{
1301	struct cqspi_st *cqspi = f_pdata->cqspi;
1302	struct device *dev = &cqspi->pdev->dev;
1303	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1304	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1305	int ret = 0;
1306	struct dma_async_tx_descriptor *tx;
1307	dma_cookie_t cookie;
1308	dma_addr_t dma_dst;
1309	struct device *ddev;
1310
1311	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1312		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1313		return 0;
1314	}
1315
1316	ddev = cqspi->rx_chan->device->dev;
1317	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1318	if (dma_mapping_error(ddev, dma_dst)) {
1319		dev_err(dev, "dma mapping failed\n");
1320		return -ENOMEM;
1321	}
1322	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1323				       len, flags);
1324	if (!tx) {
1325		dev_err(dev, "device_prep_dma_memcpy error\n");
1326		ret = -EIO;
1327		goto err_unmap;
1328	}
1329
1330	tx->callback = cqspi_rx_dma_callback;
1331	tx->callback_param = cqspi;
1332	cookie = tx->tx_submit(tx);
1333	reinit_completion(&cqspi->rx_dma_complete);
1334
1335	ret = dma_submit_error(cookie);
1336	if (ret) {
1337		dev_err(dev, "dma_submit_error %d\n", cookie);
1338		ret = -EIO;
1339		goto err_unmap;
1340	}
1341
1342	dma_async_issue_pending(cqspi->rx_chan);
1343	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1344					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1345		dmaengine_terminate_sync(cqspi->rx_chan);
1346		dev_err(dev, "DMA wait_for_completion_timeout\n");
1347		ret = -ETIMEDOUT;
1348		goto err_unmap;
1349	}
1350
1351err_unmap:
1352	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1353
1354	return ret;
1355}
1356
1357static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1358			  const struct spi_mem_op *op)
1359{
1360	struct cqspi_st *cqspi = f_pdata->cqspi;
1361	struct device *dev = &cqspi->pdev->dev;
1362	const struct cqspi_driver_platdata *ddata;
1363	loff_t from = op->addr.val;
1364	size_t len = op->data.nbytes;
1365	u_char *buf = op->data.buf.in;
1366	u64 dma_align = (u64)(uintptr_t)buf;
1367	int ret;
1368
1369	ddata = of_device_get_match_data(dev);
1370
1371	ret = cqspi_read_setup(f_pdata, op);
1372	if (ret)
1373		return ret;
1374
1375	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1376		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1377
1378	if (cqspi->use_dma_read && ddata && ddata->indirect_read_dma &&
1379	    virt_addr_valid(buf) && ((dma_align & CQSPI_DMA_UNALIGN) == 0))
1380		return ddata->indirect_read_dma(f_pdata, buf, from, len);
1381
1382	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1383}
1384
1385static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1386{
1387	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1388	struct cqspi_flash_pdata *f_pdata;
1389
1390	f_pdata = &cqspi->f_pdata[spi_get_chipselect(mem->spi, 0)];
1391	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1392
1393	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1394	/*
1395	 * Performing reads in DAC mode forces to read minimum 4 bytes
1396	 * which is unsupported on some flash devices during register
1397	 * reads, prefer STIG mode for such small reads.
1398	 */
1399		if (!op->addr.nbytes ||
1400		    op->data.nbytes <= CQSPI_STIG_DATA_LEN_MAX)
1401			return cqspi_command_read(f_pdata, op);
1402
1403		return cqspi_read(f_pdata, op);
1404	}
1405
1406	if (!op->addr.nbytes || !op->data.buf.out)
1407		return cqspi_command_write(f_pdata, op);
1408
1409	return cqspi_write(f_pdata, op);
1410}
1411
1412static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1413{
1414	int ret;
1415	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1416	struct device *dev = &cqspi->pdev->dev;
1417
1418	ret = pm_runtime_resume_and_get(dev);
1419	if (ret) {
1420		dev_err(&mem->spi->dev, "resume failed with %d\n", ret);
1421		return ret;
1422	}
1423
1424	ret = cqspi_mem_process(mem, op);
1425
1426	pm_runtime_mark_last_busy(dev);
1427	pm_runtime_put_autosuspend(dev);
1428
1429	if (ret)
1430		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1431
1432	return ret;
1433}
1434
1435static bool cqspi_supports_mem_op(struct spi_mem *mem,
1436				  const struct spi_mem_op *op)
1437{
1438	bool all_true, all_false;
1439
1440	/*
1441	 * op->dummy.dtr is required for converting nbytes into ncycles.
1442	 * Also, don't check the dtr field of the op phase having zero nbytes.
1443	 */
1444	all_true = op->cmd.dtr &&
1445		   (!op->addr.nbytes || op->addr.dtr) &&
1446		   (!op->dummy.nbytes || op->dummy.dtr) &&
1447		   (!op->data.nbytes || op->data.dtr);
1448
1449	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1450		    !op->data.dtr;
1451
1452	if (all_true) {
1453		/* Right now we only support 8-8-8 DTR mode. */
1454		if (op->cmd.nbytes && op->cmd.buswidth != 8)
1455			return false;
1456		if (op->addr.nbytes && op->addr.buswidth != 8)
1457			return false;
1458		if (op->data.nbytes && op->data.buswidth != 8)
1459			return false;
1460	} else if (!all_false) {
1461		/* Mixed DTR modes are not supported. */
1462		return false;
1463	}
1464
1465	return spi_mem_default_supports_op(mem, op);
1466}
1467
1468static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1469				    struct cqspi_flash_pdata *f_pdata,
1470				    struct device_node *np)
1471{
1472	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1473		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1474		return -ENXIO;
1475	}
1476
1477	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1478		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1479		return -ENXIO;
1480	}
1481
1482	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1483		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1484		return -ENXIO;
1485	}
1486
1487	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1488		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1489		return -ENXIO;
1490	}
1491
1492	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1493		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1494		return -ENXIO;
1495	}
1496
1497	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1498		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1499		return -ENXIO;
1500	}
1501
1502	return 0;
1503}
1504
1505static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1506{
1507	struct device *dev = &cqspi->pdev->dev;
1508	struct device_node *np = dev->of_node;
1509	u32 id[2];
1510
1511	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1512
1513	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1514		dev_err(dev, "couldn't determine fifo-depth\n");
1515		return -ENXIO;
1516	}
1517
1518	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1519		dev_err(dev, "couldn't determine fifo-width\n");
1520		return -ENXIO;
1521	}
1522
1523	if (of_property_read_u32(np, "cdns,trigger-address",
1524				 &cqspi->trigger_address)) {
1525		dev_err(dev, "couldn't determine trigger-address\n");
1526		return -ENXIO;
1527	}
1528
1529	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1530		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1531
1532	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1533
1534	if (!of_property_read_u32_array(np, "power-domains", id,
1535					ARRAY_SIZE(id)))
1536		cqspi->pd_dev_id = id[1];
1537
1538	return 0;
1539}
1540
1541static void cqspi_controller_init(struct cqspi_st *cqspi)
1542{
1543	u32 reg;
1544
1545	cqspi_controller_enable(cqspi, 0);
1546
1547	/* Configure the remap address register, no remap */
1548	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1549
1550	/* Disable all interrupts. */
1551	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1552
1553	/* Configure the SRAM split to 1:1 . */
1554	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1555
1556	/* Load indirect trigger address. */
1557	writel(cqspi->trigger_address,
1558	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1559
1560	/* Program read watermark -- 1/2 of the FIFO. */
1561	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1562	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1563	/* Program write watermark -- 1/8 of the FIFO. */
1564	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1565	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1566
1567	/* Disable direct access controller */
1568	if (!cqspi->use_direct_mode) {
1569		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1570		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1571		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1572	}
1573
1574	/* Enable DMA interface */
1575	if (cqspi->use_dma_read) {
1576		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1577		reg |= CQSPI_REG_CONFIG_DMA_MASK;
1578		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1579	}
1580
1581	cqspi_controller_enable(cqspi, 1);
1582}
1583
1584static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1585{
1586	dma_cap_mask_t mask;
1587
1588	dma_cap_zero(mask);
1589	dma_cap_set(DMA_MEMCPY, mask);
1590
1591	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1592	if (IS_ERR(cqspi->rx_chan)) {
1593		int ret = PTR_ERR(cqspi->rx_chan);
1594
1595		cqspi->rx_chan = NULL;
1596		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1597	}
1598	init_completion(&cqspi->rx_dma_complete);
1599
1600	return 0;
1601}
1602
1603static const char *cqspi_get_name(struct spi_mem *mem)
1604{
1605	struct cqspi_st *cqspi = spi_controller_get_devdata(mem->spi->controller);
1606	struct device *dev = &cqspi->pdev->dev;
1607
1608	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
1609			      spi_get_chipselect(mem->spi, 0));
1610}
1611
1612static const struct spi_controller_mem_ops cqspi_mem_ops = {
1613	.exec_op = cqspi_exec_mem_op,
1614	.get_name = cqspi_get_name,
1615	.supports_op = cqspi_supports_mem_op,
1616};
1617
1618static const struct spi_controller_mem_caps cqspi_mem_caps = {
1619	.dtr = true,
1620};
1621
1622static int cqspi_setup_flash(struct cqspi_st *cqspi)
1623{
1624	unsigned int max_cs = cqspi->num_chipselect - 1;
1625	struct platform_device *pdev = cqspi->pdev;
1626	struct device *dev = &pdev->dev;
1627	struct device_node *np = dev->of_node;
1628	struct cqspi_flash_pdata *f_pdata;
1629	unsigned int cs;
1630	int ret;
1631
1632	/* Get flash device data */
1633	for_each_available_child_of_node(dev->of_node, np) {
1634		ret = of_property_read_u32(np, "reg", &cs);
1635		if (ret) {
1636			dev_err(dev, "Couldn't determine chip select.\n");
1637			of_node_put(np);
1638			return ret;
1639		}
1640
1641		if (cs >= cqspi->num_chipselect) {
1642			dev_err(dev, "Chip select %d out of range.\n", cs);
1643			of_node_put(np);
1644			return -EINVAL;
1645		} else if (cs < max_cs) {
1646			max_cs = cs;
1647		}
1648
1649		f_pdata = &cqspi->f_pdata[cs];
1650		f_pdata->cqspi = cqspi;
1651		f_pdata->cs = cs;
1652
1653		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1654		if (ret) {
1655			of_node_put(np);
1656			return ret;
1657		}
1658	}
1659
1660	cqspi->num_chipselect = max_cs + 1;
1661	return 0;
1662}
1663
1664static int cqspi_jh7110_clk_init(struct platform_device *pdev, struct cqspi_st *cqspi)
1665{
1666	static struct clk_bulk_data qspiclk[] = {
1667		{ .id = "apb" },
1668		{ .id = "ahb" },
1669	};
1670
1671	int ret = 0;
1672
1673	ret = devm_clk_bulk_get(&pdev->dev, ARRAY_SIZE(qspiclk), qspiclk);
1674	if (ret) {
1675		dev_err(&pdev->dev, "%s: failed to get qspi clocks\n", __func__);
1676		return ret;
1677	}
1678
1679	cqspi->clks[CLK_QSPI_APB] = qspiclk[0].clk;
1680	cqspi->clks[CLK_QSPI_AHB] = qspiclk[1].clk;
1681
1682	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_APB]);
1683	if (ret) {
1684		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_APB\n", __func__);
1685		return ret;
1686	}
1687
1688	ret = clk_prepare_enable(cqspi->clks[CLK_QSPI_AHB]);
1689	if (ret) {
1690		dev_err(&pdev->dev, "%s: failed to enable CLK_QSPI_AHB\n", __func__);
1691		goto disable_apb_clk;
1692	}
1693
1694	cqspi->is_jh7110 = true;
1695
1696	return 0;
1697
1698disable_apb_clk:
1699	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1700
1701	return ret;
1702}
1703
1704static void cqspi_jh7110_disable_clk(struct platform_device *pdev, struct cqspi_st *cqspi)
1705{
1706	clk_disable_unprepare(cqspi->clks[CLK_QSPI_AHB]);
1707	clk_disable_unprepare(cqspi->clks[CLK_QSPI_APB]);
1708}
1709static int cqspi_probe(struct platform_device *pdev)
1710{
1711	const struct cqspi_driver_platdata *ddata;
1712	struct reset_control *rstc, *rstc_ocp, *rstc_ref;
1713	struct device *dev = &pdev->dev;
1714	struct spi_controller *host;
1715	struct resource *res_ahb;
1716	struct cqspi_st *cqspi;
1717	int ret;
1718	int irq;
1719
1720	host = devm_spi_alloc_host(&pdev->dev, sizeof(*cqspi));
1721	if (!host)
 
1722		return -ENOMEM;
 
 
 
 
 
1723
1724	host->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1725	host->mem_ops = &cqspi_mem_ops;
1726	host->mem_caps = &cqspi_mem_caps;
1727	host->dev.of_node = pdev->dev.of_node;
1728
1729	cqspi = spi_controller_get_devdata(host);
1730
1731	cqspi->pdev = pdev;
1732	cqspi->host = host;
1733	cqspi->is_jh7110 = false;
1734	platform_set_drvdata(pdev, cqspi);
1735
1736	/* Obtain configuration from OF. */
1737	ret = cqspi_of_get_pdata(cqspi);
1738	if (ret) {
1739		dev_err(dev, "Cannot get mandatory OF data.\n");
1740		return -ENODEV;
1741	}
1742
1743	/* Obtain QSPI clock. */
1744	cqspi->clk = devm_clk_get(dev, NULL);
1745	if (IS_ERR(cqspi->clk)) {
1746		dev_err(dev, "Cannot claim QSPI clock.\n");
1747		ret = PTR_ERR(cqspi->clk);
1748		return ret;
1749	}
1750
1751	/* Obtain and remap controller address. */
1752	cqspi->iobase = devm_platform_ioremap_resource(pdev, 0);
1753	if (IS_ERR(cqspi->iobase)) {
1754		dev_err(dev, "Cannot remap controller address.\n");
1755		ret = PTR_ERR(cqspi->iobase);
1756		return ret;
1757	}
1758
1759	/* Obtain and remap AHB address. */
1760	cqspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res_ahb);
1761	if (IS_ERR(cqspi->ahb_base)) {
1762		dev_err(dev, "Cannot remap AHB address.\n");
1763		ret = PTR_ERR(cqspi->ahb_base);
1764		return ret;
1765	}
1766	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1767	cqspi->ahb_size = resource_size(res_ahb);
1768
1769	init_completion(&cqspi->transfer_complete);
1770
1771	/* Obtain IRQ line. */
1772	irq = platform_get_irq(pdev, 0);
1773	if (irq < 0)
1774		return -ENXIO;
1775
1776	ret = pm_runtime_set_active(dev);
1777	if (ret)
1778		return ret;
1779
1780
1781	ret = clk_prepare_enable(cqspi->clk);
1782	if (ret) {
1783		dev_err(dev, "Cannot enable QSPI clock.\n");
1784		goto probe_clk_failed;
1785	}
1786
1787	/* Obtain QSPI reset control */
1788	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1789	if (IS_ERR(rstc)) {
1790		ret = PTR_ERR(rstc);
1791		dev_err(dev, "Cannot get QSPI reset.\n");
1792		goto probe_reset_failed;
1793	}
1794
1795	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1796	if (IS_ERR(rstc_ocp)) {
1797		ret = PTR_ERR(rstc_ocp);
1798		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1799		goto probe_reset_failed;
1800	}
1801
1802	if (of_device_is_compatible(pdev->dev.of_node, "starfive,jh7110-qspi")) {
1803		rstc_ref = devm_reset_control_get_optional_exclusive(dev, "rstc_ref");
1804		if (IS_ERR(rstc_ref)) {
1805			ret = PTR_ERR(rstc_ref);
1806			dev_err(dev, "Cannot get QSPI REF reset.\n");
1807			goto probe_reset_failed;
1808		}
1809		reset_control_assert(rstc_ref);
1810		reset_control_deassert(rstc_ref);
1811	}
1812
1813	reset_control_assert(rstc);
1814	reset_control_deassert(rstc);
1815
1816	reset_control_assert(rstc_ocp);
1817	reset_control_deassert(rstc_ocp);
1818
1819	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1820	host->max_speed_hz = cqspi->master_ref_clk_hz;
1821
1822	/* write completion is supported by default */
1823	cqspi->wr_completion = true;
1824
1825	ddata  = of_device_get_match_data(dev);
1826	if (ddata) {
1827		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1828			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1829						cqspi->master_ref_clk_hz);
1830		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1831			host->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1832		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE)) {
1833			cqspi->use_direct_mode = true;
1834			cqspi->use_direct_mode_wr = true;
1835		}
1836		if (ddata->quirks & CQSPI_SUPPORT_EXTERNAL_DMA)
1837			cqspi->use_dma_read = true;
1838		if (ddata->quirks & CQSPI_NO_SUPPORT_WR_COMPLETION)
1839			cqspi->wr_completion = false;
1840		if (ddata->quirks & CQSPI_SLOW_SRAM)
1841			cqspi->slow_sram = true;
1842		if (ddata->quirks & CQSPI_NEEDS_APB_AHB_HAZARD_WAR)
1843			cqspi->apb_ahb_hazard = true;
1844
1845		if (ddata->jh7110_clk_init) {
1846			ret = cqspi_jh7110_clk_init(pdev, cqspi);
1847			if (ret)
1848				goto probe_reset_failed;
1849		}
1850
1851		if (of_device_is_compatible(pdev->dev.of_node,
1852					    "xlnx,versal-ospi-1.0")) {
1853			ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1854			if (ret)
1855				goto probe_reset_failed;
1856		}
1857	}
1858
1859	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1860			       pdev->name, cqspi);
1861	if (ret) {
1862		dev_err(dev, "Cannot request IRQ.\n");
1863		goto probe_reset_failed;
1864	}
1865
1866	cqspi_wait_idle(cqspi);
1867	cqspi_controller_init(cqspi);
1868	cqspi->current_cs = -1;
1869	cqspi->sclk = 0;
1870
 
 
1871	ret = cqspi_setup_flash(cqspi);
1872	if (ret) {
1873		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1874		goto probe_setup_failed;
1875	}
1876
1877	host->num_chipselect = cqspi->num_chipselect;
1878
1879	if (cqspi->use_direct_mode) {
1880		ret = cqspi_request_mmap_dma(cqspi);
1881		if (ret == -EPROBE_DEFER)
1882			goto probe_setup_failed;
1883	}
1884
1885	ret = devm_pm_runtime_enable(dev);
1886	if (ret) {
1887		if (cqspi->rx_chan)
1888			dma_release_channel(cqspi->rx_chan);
1889		goto probe_setup_failed;
1890	}
1891
1892	pm_runtime_set_autosuspend_delay(dev, CQSPI_AUTOSUSPEND_TIMEOUT);
1893	pm_runtime_use_autosuspend(dev);
1894	pm_runtime_get_noresume(dev);
1895
1896	ret = spi_register_controller(host);
1897	if (ret) {
1898		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1899		goto probe_setup_failed;
1900	}
1901
1902	pm_runtime_mark_last_busy(dev);
1903	pm_runtime_put_autosuspend(dev);
1904
1905	return 0;
1906probe_setup_failed:
1907	cqspi_controller_enable(cqspi, 0);
1908probe_reset_failed:
1909	if (cqspi->is_jh7110)
1910		cqspi_jh7110_disable_clk(pdev, cqspi);
1911	clk_disable_unprepare(cqspi->clk);
1912probe_clk_failed:
 
 
 
1913	return ret;
1914}
1915
1916static void cqspi_remove(struct platform_device *pdev)
1917{
1918	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1919
1920	spi_unregister_controller(cqspi->host);
1921	cqspi_controller_enable(cqspi, 0);
1922
1923	if (cqspi->rx_chan)
1924		dma_release_channel(cqspi->rx_chan);
1925
1926	clk_disable_unprepare(cqspi->clk);
1927
1928	if (cqspi->is_jh7110)
1929		cqspi_jh7110_disable_clk(pdev, cqspi);
1930
1931	pm_runtime_put_sync(&pdev->dev);
1932	pm_runtime_disable(&pdev->dev);
1933}
1934
1935static int cqspi_runtime_suspend(struct device *dev)
1936{
1937	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1938
1939	cqspi_controller_enable(cqspi, 0);
1940	clk_disable_unprepare(cqspi->clk);
1941	return 0;
1942}
1943
1944static int cqspi_runtime_resume(struct device *dev)
 
1945{
1946	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1947
1948	clk_prepare_enable(cqspi->clk);
1949	cqspi_wait_idle(cqspi);
1950	cqspi_controller_init(cqspi);
1951
1952	cqspi->current_cs = -1;
1953	cqspi->sclk = 0;
1954	return 0;
1955}
1956
1957static int cqspi_suspend(struct device *dev)
1958{
1959	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1960
1961	return spi_controller_suspend(cqspi->host);
1962}
1963
1964static int cqspi_resume(struct device *dev)
1965{
1966	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1967
1968	return spi_controller_resume(cqspi->host);
 
1969}
1970
1971static const struct dev_pm_ops cqspi_dev_pm_ops = {
1972	RUNTIME_PM_OPS(cqspi_runtime_suspend, cqspi_runtime_resume, NULL)
1973	SYSTEM_SLEEP_PM_OPS(cqspi_suspend, cqspi_resume)
1974};
1975
 
 
 
 
 
1976static const struct cqspi_driver_platdata cdns_qspi = {
1977	.quirks = CQSPI_DISABLE_DAC_MODE,
1978};
1979
1980static const struct cqspi_driver_platdata k2g_qspi = {
1981	.quirks = CQSPI_NEEDS_WR_DELAY,
1982};
1983
1984static const struct cqspi_driver_platdata am654_ospi = {
1985	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1986	.quirks = CQSPI_NEEDS_WR_DELAY,
1987};
1988
1989static const struct cqspi_driver_platdata intel_lgm_qspi = {
1990	.quirks = CQSPI_DISABLE_DAC_MODE,
1991};
1992
1993static const struct cqspi_driver_platdata socfpga_qspi = {
1994	.quirks = CQSPI_DISABLE_DAC_MODE
1995			| CQSPI_NO_SUPPORT_WR_COMPLETION
1996			| CQSPI_SLOW_SRAM,
1997};
1998
1999static const struct cqspi_driver_platdata versal_ospi = {
2000	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
2001	.quirks = CQSPI_DISABLE_DAC_MODE | CQSPI_SUPPORT_EXTERNAL_DMA,
2002	.indirect_read_dma = cqspi_versal_indirect_read_dma,
2003	.get_dma_status = cqspi_get_versal_dma_status,
2004};
2005
2006static const struct cqspi_driver_platdata jh7110_qspi = {
2007	.quirks = CQSPI_DISABLE_DAC_MODE,
2008	.jh7110_clk_init = cqspi_jh7110_clk_init,
2009};
2010
2011static const struct cqspi_driver_platdata pensando_cdns_qspi = {
2012	.quirks = CQSPI_NEEDS_APB_AHB_HAZARD_WAR | CQSPI_DISABLE_DAC_MODE,
2013};
2014
2015static const struct of_device_id cqspi_dt_ids[] = {
2016	{
2017		.compatible = "cdns,qspi-nor",
2018		.data = &cdns_qspi,
2019	},
2020	{
2021		.compatible = "ti,k2g-qspi",
2022		.data = &k2g_qspi,
2023	},
2024	{
2025		.compatible = "ti,am654-ospi",
2026		.data = &am654_ospi,
2027	},
2028	{
2029		.compatible = "intel,lgm-qspi",
2030		.data = &intel_lgm_qspi,
2031	},
2032	{
2033		.compatible = "xlnx,versal-ospi-1.0",
2034		.data = &versal_ospi,
2035	},
2036	{
2037		.compatible = "intel,socfpga-qspi",
2038		.data = &socfpga_qspi,
2039	},
2040	{
2041		.compatible = "starfive,jh7110-qspi",
2042		.data = &jh7110_qspi,
2043	},
2044	{
2045		.compatible = "amd,pensando-elba-qspi",
2046		.data = &pensando_cdns_qspi,
2047	},
2048	{ /* end of table */ }
2049};
2050
2051MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
2052
2053static struct platform_driver cqspi_platform_driver = {
2054	.probe = cqspi_probe,
2055	.remove_new = cqspi_remove,
2056	.driver = {
2057		.name = CQSPI_NAME,
2058		.pm = pm_ptr(&cqspi_dev_pm_ops),
2059		.of_match_table = cqspi_dt_ids,
2060	},
2061};
2062
2063module_platform_driver(cqspi_platform_driver);
2064
2065MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
2066MODULE_LICENSE("GPL v2");
2067MODULE_ALIAS("platform:" CQSPI_NAME);
2068MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
2069MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
2070MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
2071MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
2072MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");