Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/wait.h>
14#include <linux/mm.h>
15#include <linux/delay.h>
16#include <linux/io.h>
17#include <linux/slab.h>
18#include <linux/netdevice.h>
19#include <linux/if_ether.h>
20#include <linux/vmalloc.h>
21#include <linux/rtnetlink.h>
22#include <linux/prefetch.h>
23#include <linux/filter.h>
24
25#include <asm/sync_bitops.h>
26#include <asm/mshyperv.h>
27
28#include "hyperv_net.h"
29#include "netvsc_trace.h"
30
31/*
32 * Switch the data path from the synthetic interface to the VF
33 * interface.
34 */
35int netvsc_switch_datapath(struct net_device *ndev, bool vf)
36{
37 struct net_device_context *net_device_ctx = netdev_priv(ndev);
38 struct hv_device *dev = net_device_ctx->device_ctx;
39 struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
40 struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
41 int ret, retry = 0;
42
43 /* Block sending traffic to VF if it's about to be gone */
44 if (!vf)
45 net_device_ctx->data_path_is_vf = vf;
46
47 memset(init_pkt, 0, sizeof(struct nvsp_message));
48 init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
49 if (vf)
50 init_pkt->msg.v4_msg.active_dp.active_datapath =
51 NVSP_DATAPATH_VF;
52 else
53 init_pkt->msg.v4_msg.active_dp.active_datapath =
54 NVSP_DATAPATH_SYNTHETIC;
55
56again:
57 trace_nvsp_send(ndev, init_pkt);
58
59 ret = vmbus_sendpacket(dev->channel, init_pkt,
60 sizeof(struct nvsp_message),
61 (unsigned long)init_pkt, VM_PKT_DATA_INBAND,
62 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
63
64 /* If failed to switch to/from VF, let data_path_is_vf stay false,
65 * so we use synthetic path to send data.
66 */
67 if (ret) {
68 if (ret != -EAGAIN) {
69 netdev_err(ndev,
70 "Unable to send sw datapath msg, err: %d\n",
71 ret);
72 return ret;
73 }
74
75 if (retry++ < RETRY_MAX) {
76 usleep_range(RETRY_US_LO, RETRY_US_HI);
77 goto again;
78 } else {
79 netdev_err(
80 ndev,
81 "Retry failed to send sw datapath msg, err: %d\n",
82 ret);
83 return ret;
84 }
85 }
86
87 wait_for_completion(&nv_dev->channel_init_wait);
88 net_device_ctx->data_path_is_vf = vf;
89
90 return 0;
91}
92
93/* Worker to setup sub channels on initial setup
94 * Initial hotplug event occurs in softirq context
95 * and can't wait for channels.
96 */
97static void netvsc_subchan_work(struct work_struct *w)
98{
99 struct netvsc_device *nvdev =
100 container_of(w, struct netvsc_device, subchan_work);
101 struct rndis_device *rdev;
102 int i, ret;
103
104 /* Avoid deadlock with device removal already under RTNL */
105 if (!rtnl_trylock()) {
106 schedule_work(w);
107 return;
108 }
109
110 rdev = nvdev->extension;
111 if (rdev) {
112 ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
113 if (ret == 0) {
114 netif_device_attach(rdev->ndev);
115 } else {
116 /* fallback to only primary channel */
117 for (i = 1; i < nvdev->num_chn; i++)
118 netif_napi_del(&nvdev->chan_table[i].napi);
119
120 nvdev->max_chn = 1;
121 nvdev->num_chn = 1;
122 }
123 }
124
125 rtnl_unlock();
126}
127
128static struct netvsc_device *alloc_net_device(void)
129{
130 struct netvsc_device *net_device;
131
132 net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
133 if (!net_device)
134 return NULL;
135
136 init_waitqueue_head(&net_device->wait_drain);
137 net_device->destroy = false;
138 net_device->tx_disable = true;
139
140 net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
141 net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
142
143 init_completion(&net_device->channel_init_wait);
144 init_waitqueue_head(&net_device->subchan_open);
145 INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
146
147 return net_device;
148}
149
150static void free_netvsc_device(struct rcu_head *head)
151{
152 struct netvsc_device *nvdev
153 = container_of(head, struct netvsc_device, rcu);
154 int i;
155
156 kfree(nvdev->extension);
157
158 if (nvdev->recv_original_buf)
159 vfree(nvdev->recv_original_buf);
160 else
161 vfree(nvdev->recv_buf);
162
163 if (nvdev->send_original_buf)
164 vfree(nvdev->send_original_buf);
165 else
166 vfree(nvdev->send_buf);
167
168 bitmap_free(nvdev->send_section_map);
169
170 for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
171 xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
172 kfree(nvdev->chan_table[i].recv_buf);
173 vfree(nvdev->chan_table[i].mrc.slots);
174 }
175
176 kfree(nvdev);
177}
178
179static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
180{
181 call_rcu(&nvdev->rcu, free_netvsc_device);
182}
183
184static void netvsc_revoke_recv_buf(struct hv_device *device,
185 struct netvsc_device *net_device,
186 struct net_device *ndev)
187{
188 struct nvsp_message *revoke_packet;
189 int ret;
190
191 /*
192 * If we got a section count, it means we received a
193 * SendReceiveBufferComplete msg (ie sent
194 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
195 * to send a revoke msg here
196 */
197 if (net_device->recv_section_cnt) {
198 /* Send the revoke receive buffer */
199 revoke_packet = &net_device->revoke_packet;
200 memset(revoke_packet, 0, sizeof(struct nvsp_message));
201
202 revoke_packet->hdr.msg_type =
203 NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
204 revoke_packet->msg.v1_msg.
205 revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
206
207 trace_nvsp_send(ndev, revoke_packet);
208
209 ret = vmbus_sendpacket(device->channel,
210 revoke_packet,
211 sizeof(struct nvsp_message),
212 VMBUS_RQST_ID_NO_RESPONSE,
213 VM_PKT_DATA_INBAND, 0);
214 /* If the failure is because the channel is rescinded;
215 * ignore the failure since we cannot send on a rescinded
216 * channel. This would allow us to properly cleanup
217 * even when the channel is rescinded.
218 */
219 if (device->channel->rescind)
220 ret = 0;
221 /*
222 * If we failed here, we might as well return and
223 * have a leak rather than continue and a bugchk
224 */
225 if (ret != 0) {
226 netdev_err(ndev, "unable to send "
227 "revoke receive buffer to netvsp\n");
228 return;
229 }
230 net_device->recv_section_cnt = 0;
231 }
232}
233
234static void netvsc_revoke_send_buf(struct hv_device *device,
235 struct netvsc_device *net_device,
236 struct net_device *ndev)
237{
238 struct nvsp_message *revoke_packet;
239 int ret;
240
241 /* Deal with the send buffer we may have setup.
242 * If we got a send section size, it means we received a
243 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
244 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
245 * to send a revoke msg here
246 */
247 if (net_device->send_section_cnt) {
248 /* Send the revoke receive buffer */
249 revoke_packet = &net_device->revoke_packet;
250 memset(revoke_packet, 0, sizeof(struct nvsp_message));
251
252 revoke_packet->hdr.msg_type =
253 NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
254 revoke_packet->msg.v1_msg.revoke_send_buf.id =
255 NETVSC_SEND_BUFFER_ID;
256
257 trace_nvsp_send(ndev, revoke_packet);
258
259 ret = vmbus_sendpacket(device->channel,
260 revoke_packet,
261 sizeof(struct nvsp_message),
262 VMBUS_RQST_ID_NO_RESPONSE,
263 VM_PKT_DATA_INBAND, 0);
264
265 /* If the failure is because the channel is rescinded;
266 * ignore the failure since we cannot send on a rescinded
267 * channel. This would allow us to properly cleanup
268 * even when the channel is rescinded.
269 */
270 if (device->channel->rescind)
271 ret = 0;
272
273 /* If we failed here, we might as well return and
274 * have a leak rather than continue and a bugchk
275 */
276 if (ret != 0) {
277 netdev_err(ndev, "unable to send "
278 "revoke send buffer to netvsp\n");
279 return;
280 }
281 net_device->send_section_cnt = 0;
282 }
283}
284
285static void netvsc_teardown_recv_gpadl(struct hv_device *device,
286 struct netvsc_device *net_device,
287 struct net_device *ndev)
288{
289 int ret;
290
291 if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
292 ret = vmbus_teardown_gpadl(device->channel,
293 &net_device->recv_buf_gpadl_handle);
294
295 /* If we failed here, we might as well return and have a leak
296 * rather than continue and a bugchk
297 */
298 if (ret != 0) {
299 netdev_err(ndev,
300 "unable to teardown receive buffer's gpadl\n");
301 return;
302 }
303 }
304}
305
306static void netvsc_teardown_send_gpadl(struct hv_device *device,
307 struct netvsc_device *net_device,
308 struct net_device *ndev)
309{
310 int ret;
311
312 if (net_device->send_buf_gpadl_handle.gpadl_handle) {
313 ret = vmbus_teardown_gpadl(device->channel,
314 &net_device->send_buf_gpadl_handle);
315
316 /* If we failed here, we might as well return and have a leak
317 * rather than continue and a bugchk
318 */
319 if (ret != 0) {
320 netdev_err(ndev,
321 "unable to teardown send buffer's gpadl\n");
322 return;
323 }
324 }
325}
326
327int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
328{
329 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
330 int node = cpu_to_node(nvchan->channel->target_cpu);
331 size_t size;
332
333 size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
334 nvchan->mrc.slots = vzalloc_node(size, node);
335 if (!nvchan->mrc.slots)
336 nvchan->mrc.slots = vzalloc(size);
337
338 return nvchan->mrc.slots ? 0 : -ENOMEM;
339}
340
341static int netvsc_init_buf(struct hv_device *device,
342 struct netvsc_device *net_device,
343 const struct netvsc_device_info *device_info)
344{
345 struct nvsp_1_message_send_receive_buffer_complete *resp;
346 struct net_device *ndev = hv_get_drvdata(device);
347 struct nvsp_message *init_packet;
348 unsigned int buf_size;
349 int i, ret = 0;
350 void *vaddr;
351
352 /* Get receive buffer area. */
353 buf_size = device_info->recv_sections * device_info->recv_section_size;
354 buf_size = roundup(buf_size, PAGE_SIZE);
355
356 /* Legacy hosts only allow smaller receive buffer */
357 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
358 buf_size = min_t(unsigned int, buf_size,
359 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
360
361 net_device->recv_buf = vzalloc(buf_size);
362 if (!net_device->recv_buf) {
363 netdev_err(ndev,
364 "unable to allocate receive buffer of size %u\n",
365 buf_size);
366 ret = -ENOMEM;
367 goto cleanup;
368 }
369
370 net_device->recv_buf_size = buf_size;
371
372 /*
373 * Establish the gpadl handle for this buffer on this
374 * channel. Note: This call uses the vmbus connection rather
375 * than the channel to establish the gpadl handle.
376 */
377 ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
378 buf_size,
379 &net_device->recv_buf_gpadl_handle);
380 if (ret != 0) {
381 netdev_err(ndev,
382 "unable to establish receive buffer's gpadl\n");
383 goto cleanup;
384 }
385
386 if (hv_isolation_type_snp()) {
387 vaddr = hv_map_memory(net_device->recv_buf, buf_size);
388 if (!vaddr) {
389 ret = -ENOMEM;
390 goto cleanup;
391 }
392
393 net_device->recv_original_buf = net_device->recv_buf;
394 net_device->recv_buf = vaddr;
395 }
396
397 /* Notify the NetVsp of the gpadl handle */
398 init_packet = &net_device->channel_init_pkt;
399 memset(init_packet, 0, sizeof(struct nvsp_message));
400 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
401 init_packet->msg.v1_msg.send_recv_buf.
402 gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
403 init_packet->msg.v1_msg.
404 send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
405
406 trace_nvsp_send(ndev, init_packet);
407
408 /* Send the gpadl notification request */
409 ret = vmbus_sendpacket(device->channel, init_packet,
410 sizeof(struct nvsp_message),
411 (unsigned long)init_packet,
412 VM_PKT_DATA_INBAND,
413 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
414 if (ret != 0) {
415 netdev_err(ndev,
416 "unable to send receive buffer's gpadl to netvsp\n");
417 goto cleanup;
418 }
419
420 wait_for_completion(&net_device->channel_init_wait);
421
422 /* Check the response */
423 resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
424 if (resp->status != NVSP_STAT_SUCCESS) {
425 netdev_err(ndev,
426 "Unable to complete receive buffer initialization with NetVsp - status %d\n",
427 resp->status);
428 ret = -EINVAL;
429 goto cleanup;
430 }
431
432 /* Parse the response */
433 netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
434 resp->num_sections, resp->sections[0].sub_alloc_size,
435 resp->sections[0].num_sub_allocs);
436
437 /* There should only be one section for the entire receive buffer */
438 if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
439 ret = -EINVAL;
440 goto cleanup;
441 }
442
443 net_device->recv_section_size = resp->sections[0].sub_alloc_size;
444 net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
445
446 /* Ensure buffer will not overflow */
447 if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
448 (u64)net_device->recv_section_cnt > (u64)buf_size) {
449 netdev_err(ndev, "invalid recv_section_size %u\n",
450 net_device->recv_section_size);
451 ret = -EINVAL;
452 goto cleanup;
453 }
454
455 for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
456 struct netvsc_channel *nvchan = &net_device->chan_table[i];
457
458 nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
459 if (nvchan->recv_buf == NULL) {
460 ret = -ENOMEM;
461 goto cleanup;
462 }
463 }
464
465 /* Setup receive completion ring.
466 * Add 1 to the recv_section_cnt because at least one entry in a
467 * ring buffer has to be empty.
468 */
469 net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
470 ret = netvsc_alloc_recv_comp_ring(net_device, 0);
471 if (ret)
472 goto cleanup;
473
474 /* Now setup the send buffer. */
475 buf_size = device_info->send_sections * device_info->send_section_size;
476 buf_size = round_up(buf_size, PAGE_SIZE);
477
478 net_device->send_buf = vzalloc(buf_size);
479 if (!net_device->send_buf) {
480 netdev_err(ndev, "unable to allocate send buffer of size %u\n",
481 buf_size);
482 ret = -ENOMEM;
483 goto cleanup;
484 }
485 net_device->send_buf_size = buf_size;
486
487 /* Establish the gpadl handle for this buffer on this
488 * channel. Note: This call uses the vmbus connection rather
489 * than the channel to establish the gpadl handle.
490 */
491 ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
492 buf_size,
493 &net_device->send_buf_gpadl_handle);
494 if (ret != 0) {
495 netdev_err(ndev,
496 "unable to establish send buffer's gpadl\n");
497 goto cleanup;
498 }
499
500 if (hv_isolation_type_snp()) {
501 vaddr = hv_map_memory(net_device->send_buf, buf_size);
502 if (!vaddr) {
503 ret = -ENOMEM;
504 goto cleanup;
505 }
506
507 net_device->send_original_buf = net_device->send_buf;
508 net_device->send_buf = vaddr;
509 }
510
511 /* Notify the NetVsp of the gpadl handle */
512 init_packet = &net_device->channel_init_pkt;
513 memset(init_packet, 0, sizeof(struct nvsp_message));
514 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
515 init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
516 net_device->send_buf_gpadl_handle.gpadl_handle;
517 init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
518
519 trace_nvsp_send(ndev, init_packet);
520
521 /* Send the gpadl notification request */
522 ret = vmbus_sendpacket(device->channel, init_packet,
523 sizeof(struct nvsp_message),
524 (unsigned long)init_packet,
525 VM_PKT_DATA_INBAND,
526 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
527 if (ret != 0) {
528 netdev_err(ndev,
529 "unable to send send buffer's gpadl to netvsp\n");
530 goto cleanup;
531 }
532
533 wait_for_completion(&net_device->channel_init_wait);
534
535 /* Check the response */
536 if (init_packet->msg.v1_msg.
537 send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
538 netdev_err(ndev, "Unable to complete send buffer "
539 "initialization with NetVsp - status %d\n",
540 init_packet->msg.v1_msg.
541 send_send_buf_complete.status);
542 ret = -EINVAL;
543 goto cleanup;
544 }
545
546 /* Parse the response */
547 net_device->send_section_size = init_packet->msg.
548 v1_msg.send_send_buf_complete.section_size;
549 if (net_device->send_section_size < NETVSC_MTU_MIN) {
550 netdev_err(ndev, "invalid send_section_size %u\n",
551 net_device->send_section_size);
552 ret = -EINVAL;
553 goto cleanup;
554 }
555
556 /* Section count is simply the size divided by the section size. */
557 net_device->send_section_cnt = buf_size / net_device->send_section_size;
558
559 netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
560 net_device->send_section_size, net_device->send_section_cnt);
561
562 /* Setup state for managing the send buffer. */
563 net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
564 GFP_KERNEL);
565 if (!net_device->send_section_map) {
566 ret = -ENOMEM;
567 goto cleanup;
568 }
569
570 goto exit;
571
572cleanup:
573 netvsc_revoke_recv_buf(device, net_device, ndev);
574 netvsc_revoke_send_buf(device, net_device, ndev);
575 netvsc_teardown_recv_gpadl(device, net_device, ndev);
576 netvsc_teardown_send_gpadl(device, net_device, ndev);
577
578exit:
579 return ret;
580}
581
582/* Negotiate NVSP protocol version */
583static int negotiate_nvsp_ver(struct hv_device *device,
584 struct netvsc_device *net_device,
585 struct nvsp_message *init_packet,
586 u32 nvsp_ver)
587{
588 struct net_device *ndev = hv_get_drvdata(device);
589 int ret;
590
591 memset(init_packet, 0, sizeof(struct nvsp_message));
592 init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
593 init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
594 init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
595 trace_nvsp_send(ndev, init_packet);
596
597 /* Send the init request */
598 ret = vmbus_sendpacket(device->channel, init_packet,
599 sizeof(struct nvsp_message),
600 (unsigned long)init_packet,
601 VM_PKT_DATA_INBAND,
602 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
603
604 if (ret != 0)
605 return ret;
606
607 wait_for_completion(&net_device->channel_init_wait);
608
609 if (init_packet->msg.init_msg.init_complete.status !=
610 NVSP_STAT_SUCCESS)
611 return -EINVAL;
612
613 if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
614 return 0;
615
616 /* NVSPv2 or later: Send NDIS config */
617 memset(init_packet, 0, sizeof(struct nvsp_message));
618 init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
619 init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
620 init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
621
622 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
623 if (hv_is_isolation_supported())
624 netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
625 else
626 init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
627
628 /* Teaming bit is needed to receive link speed updates */
629 init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
630 }
631
632 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
633 init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
634
635 trace_nvsp_send(ndev, init_packet);
636
637 ret = vmbus_sendpacket(device->channel, init_packet,
638 sizeof(struct nvsp_message),
639 VMBUS_RQST_ID_NO_RESPONSE,
640 VM_PKT_DATA_INBAND, 0);
641
642 return ret;
643}
644
645static int netvsc_connect_vsp(struct hv_device *device,
646 struct netvsc_device *net_device,
647 const struct netvsc_device_info *device_info)
648{
649 struct net_device *ndev = hv_get_drvdata(device);
650 static const u32 ver_list[] = {
651 NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
652 NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
653 NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
654 };
655 struct nvsp_message *init_packet;
656 int ndis_version, i, ret;
657
658 init_packet = &net_device->channel_init_pkt;
659
660 /* Negotiate the latest NVSP protocol supported */
661 for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
662 if (negotiate_nvsp_ver(device, net_device, init_packet,
663 ver_list[i]) == 0) {
664 net_device->nvsp_version = ver_list[i];
665 break;
666 }
667
668 if (i < 0) {
669 ret = -EPROTO;
670 goto cleanup;
671 }
672
673 if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
674 netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
675 net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
676 ret = -EPROTO;
677 goto cleanup;
678 }
679
680 pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
681
682 /* Send the ndis version */
683 memset(init_packet, 0, sizeof(struct nvsp_message));
684
685 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
686 ndis_version = 0x00060001;
687 else
688 ndis_version = 0x0006001e;
689
690 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
691 init_packet->msg.v1_msg.
692 send_ndis_ver.ndis_major_ver =
693 (ndis_version & 0xFFFF0000) >> 16;
694 init_packet->msg.v1_msg.
695 send_ndis_ver.ndis_minor_ver =
696 ndis_version & 0xFFFF;
697
698 trace_nvsp_send(ndev, init_packet);
699
700 /* Send the init request */
701 ret = vmbus_sendpacket(device->channel, init_packet,
702 sizeof(struct nvsp_message),
703 VMBUS_RQST_ID_NO_RESPONSE,
704 VM_PKT_DATA_INBAND, 0);
705 if (ret != 0)
706 goto cleanup;
707
708
709 ret = netvsc_init_buf(device, net_device, device_info);
710
711cleanup:
712 return ret;
713}
714
715/*
716 * netvsc_device_remove - Callback when the root bus device is removed
717 */
718void netvsc_device_remove(struct hv_device *device)
719{
720 struct net_device *ndev = hv_get_drvdata(device);
721 struct net_device_context *net_device_ctx = netdev_priv(ndev);
722 struct netvsc_device *net_device
723 = rtnl_dereference(net_device_ctx->nvdev);
724 int i;
725
726 /*
727 * Revoke receive buffer. If host is pre-Win2016 then tear down
728 * receive buffer GPADL. Do the same for send buffer.
729 */
730 netvsc_revoke_recv_buf(device, net_device, ndev);
731 if (vmbus_proto_version < VERSION_WIN10)
732 netvsc_teardown_recv_gpadl(device, net_device, ndev);
733
734 netvsc_revoke_send_buf(device, net_device, ndev);
735 if (vmbus_proto_version < VERSION_WIN10)
736 netvsc_teardown_send_gpadl(device, net_device, ndev);
737
738 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
739
740 /* Disable NAPI and disassociate its context from the device. */
741 for (i = 0; i < net_device->num_chn; i++) {
742 /* See also vmbus_reset_channel_cb(). */
743 napi_disable(&net_device->chan_table[i].napi);
744 netif_napi_del(&net_device->chan_table[i].napi);
745 }
746
747 /*
748 * At this point, no one should be accessing net_device
749 * except in here
750 */
751 netdev_dbg(ndev, "net device safe to remove\n");
752
753 /* Now, we can close the channel safely */
754 vmbus_close(device->channel);
755
756 /*
757 * If host is Win2016 or higher then we do the GPADL tear down
758 * here after VMBus is closed.
759 */
760 if (vmbus_proto_version >= VERSION_WIN10) {
761 netvsc_teardown_recv_gpadl(device, net_device, ndev);
762 netvsc_teardown_send_gpadl(device, net_device, ndev);
763 }
764
765 if (net_device->recv_original_buf)
766 hv_unmap_memory(net_device->recv_buf);
767
768 if (net_device->send_original_buf)
769 hv_unmap_memory(net_device->send_buf);
770
771 /* Release all resources */
772 free_netvsc_device_rcu(net_device);
773}
774
775#define RING_AVAIL_PERCENT_HIWATER 20
776#define RING_AVAIL_PERCENT_LOWATER 10
777
778static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
779 u32 index)
780{
781 sync_change_bit(index, net_device->send_section_map);
782}
783
784static void netvsc_send_tx_complete(struct net_device *ndev,
785 struct netvsc_device *net_device,
786 struct vmbus_channel *channel,
787 const struct vmpacket_descriptor *desc,
788 int budget)
789{
790 struct net_device_context *ndev_ctx = netdev_priv(ndev);
791 struct sk_buff *skb;
792 u16 q_idx = 0;
793 int queue_sends;
794 u64 cmd_rqst;
795
796 cmd_rqst = channel->request_addr_callback(channel, desc->trans_id);
797 if (cmd_rqst == VMBUS_RQST_ERROR) {
798 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
799 return;
800 }
801
802 skb = (struct sk_buff *)(unsigned long)cmd_rqst;
803
804 /* Notify the layer above us */
805 if (likely(skb)) {
806 struct hv_netvsc_packet *packet
807 = (struct hv_netvsc_packet *)skb->cb;
808 u32 send_index = packet->send_buf_index;
809 struct netvsc_stats_tx *tx_stats;
810
811 if (send_index != NETVSC_INVALID_INDEX)
812 netvsc_free_send_slot(net_device, send_index);
813 q_idx = packet->q_idx;
814
815 tx_stats = &net_device->chan_table[q_idx].tx_stats;
816
817 u64_stats_update_begin(&tx_stats->syncp);
818 tx_stats->packets += packet->total_packets;
819 tx_stats->bytes += packet->total_bytes;
820 u64_stats_update_end(&tx_stats->syncp);
821
822 netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
823 napi_consume_skb(skb, budget);
824 }
825
826 queue_sends =
827 atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
828
829 if (unlikely(net_device->destroy)) {
830 if (queue_sends == 0)
831 wake_up(&net_device->wait_drain);
832 } else {
833 struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
834
835 if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
836 (hv_get_avail_to_write_percent(&channel->outbound) >
837 RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
838 netif_tx_wake_queue(txq);
839 ndev_ctx->eth_stats.wake_queue++;
840 }
841 }
842}
843
844static void netvsc_send_completion(struct net_device *ndev,
845 struct netvsc_device *net_device,
846 struct vmbus_channel *incoming_channel,
847 const struct vmpacket_descriptor *desc,
848 int budget)
849{
850 const struct nvsp_message *nvsp_packet;
851 u32 msglen = hv_pkt_datalen(desc);
852 struct nvsp_message *pkt_rqst;
853 u64 cmd_rqst;
854
855 /* First check if this is a VMBUS completion without data payload */
856 if (!msglen) {
857 cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
858 desc->trans_id);
859 if (cmd_rqst == VMBUS_RQST_ERROR) {
860 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
861 return;
862 }
863
864 pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
865 switch (pkt_rqst->hdr.msg_type) {
866 case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
867 complete(&net_device->channel_init_wait);
868 break;
869
870 default:
871 netdev_err(ndev, "Unexpected VMBUS completion!!\n");
872 }
873 return;
874 }
875
876 /* Ensure packet is big enough to read header fields */
877 if (msglen < sizeof(struct nvsp_message_header)) {
878 netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
879 return;
880 }
881
882 nvsp_packet = hv_pkt_data(desc);
883 switch (nvsp_packet->hdr.msg_type) {
884 case NVSP_MSG_TYPE_INIT_COMPLETE:
885 if (msglen < sizeof(struct nvsp_message_header) +
886 sizeof(struct nvsp_message_init_complete)) {
887 netdev_err(ndev, "nvsp_msg length too small: %u\n",
888 msglen);
889 return;
890 }
891 fallthrough;
892
893 case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
894 if (msglen < sizeof(struct nvsp_message_header) +
895 sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
896 netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
897 msglen);
898 return;
899 }
900 fallthrough;
901
902 case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
903 if (msglen < sizeof(struct nvsp_message_header) +
904 sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
905 netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
906 msglen);
907 return;
908 }
909 fallthrough;
910
911 case NVSP_MSG5_TYPE_SUBCHANNEL:
912 if (msglen < sizeof(struct nvsp_message_header) +
913 sizeof(struct nvsp_5_subchannel_complete)) {
914 netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
915 msglen);
916 return;
917 }
918 /* Copy the response back */
919 memcpy(&net_device->channel_init_pkt, nvsp_packet,
920 sizeof(struct nvsp_message));
921 complete(&net_device->channel_init_wait);
922 break;
923
924 case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
925 netvsc_send_tx_complete(ndev, net_device, incoming_channel,
926 desc, budget);
927 break;
928
929 default:
930 netdev_err(ndev,
931 "Unknown send completion type %d received!!\n",
932 nvsp_packet->hdr.msg_type);
933 }
934}
935
936static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
937{
938 unsigned long *map_addr = net_device->send_section_map;
939 unsigned int i;
940
941 for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
942 if (sync_test_and_set_bit(i, map_addr) == 0)
943 return i;
944 }
945
946 return NETVSC_INVALID_INDEX;
947}
948
949static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
950 unsigned int section_index,
951 u32 pend_size,
952 struct hv_netvsc_packet *packet,
953 struct rndis_message *rndis_msg,
954 struct hv_page_buffer *pb,
955 bool xmit_more)
956{
957 char *start = net_device->send_buf;
958 char *dest = start + (section_index * net_device->send_section_size)
959 + pend_size;
960 int i;
961 u32 padding = 0;
962 u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
963 packet->page_buf_cnt;
964 u32 remain;
965
966 /* Add padding */
967 remain = packet->total_data_buflen & (net_device->pkt_align - 1);
968 if (xmit_more && remain) {
969 padding = net_device->pkt_align - remain;
970 rndis_msg->msg_len += padding;
971 packet->total_data_buflen += padding;
972 }
973
974 for (i = 0; i < page_count; i++) {
975 char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
976 u32 offset = pb[i].offset;
977 u32 len = pb[i].len;
978
979 memcpy(dest, (src + offset), len);
980 dest += len;
981 }
982
983 if (padding)
984 memset(dest, 0, padding);
985}
986
987void netvsc_dma_unmap(struct hv_device *hv_dev,
988 struct hv_netvsc_packet *packet)
989{
990 int i;
991
992 if (!hv_is_isolation_supported())
993 return;
994
995 if (!packet->dma_range)
996 return;
997
998 for (i = 0; i < packet->page_buf_cnt; i++)
999 dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
1000 packet->dma_range[i].mapping_size,
1001 DMA_TO_DEVICE);
1002
1003 kfree(packet->dma_range);
1004}
1005
1006/* netvsc_dma_map - Map swiotlb bounce buffer with data page of
1007 * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
1008 * VM.
1009 *
1010 * In isolation VM, netvsc send buffer has been marked visible to
1011 * host and so the data copied to send buffer doesn't need to use
1012 * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
1013 * may not be copied to send buffer and so these pages need to be
1014 * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
1015 * that. The pfns in the struct hv_page_buffer need to be converted
1016 * to bounce buffer's pfn. The loop here is necessary because the
1017 * entries in the page buffer array are not necessarily full
1018 * pages of data. Each entry in the array has a separate offset and
1019 * len that may be non-zero, even for entries in the middle of the
1020 * array. And the entries are not physically contiguous. So each
1021 * entry must be individually mapped rather than as a contiguous unit.
1022 * So not use dma_map_sg() here.
1023 */
1024static int netvsc_dma_map(struct hv_device *hv_dev,
1025 struct hv_netvsc_packet *packet,
1026 struct hv_page_buffer *pb)
1027{
1028 u32 page_count = packet->page_buf_cnt;
1029 dma_addr_t dma;
1030 int i;
1031
1032 if (!hv_is_isolation_supported())
1033 return 0;
1034
1035 packet->dma_range = kcalloc(page_count,
1036 sizeof(*packet->dma_range),
1037 GFP_ATOMIC);
1038 if (!packet->dma_range)
1039 return -ENOMEM;
1040
1041 for (i = 0; i < page_count; i++) {
1042 char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
1043 + pb[i].offset);
1044 u32 len = pb[i].len;
1045
1046 dma = dma_map_single(&hv_dev->device, src, len,
1047 DMA_TO_DEVICE);
1048 if (dma_mapping_error(&hv_dev->device, dma)) {
1049 kfree(packet->dma_range);
1050 return -ENOMEM;
1051 }
1052
1053 /* pb[].offset and pb[].len are not changed during dma mapping
1054 * and so not reassign.
1055 */
1056 packet->dma_range[i].dma = dma;
1057 packet->dma_range[i].mapping_size = len;
1058 pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
1059 }
1060
1061 return 0;
1062}
1063
1064static inline int netvsc_send_pkt(
1065 struct hv_device *device,
1066 struct hv_netvsc_packet *packet,
1067 struct netvsc_device *net_device,
1068 struct hv_page_buffer *pb,
1069 struct sk_buff *skb)
1070{
1071 struct nvsp_message nvmsg;
1072 struct nvsp_1_message_send_rndis_packet *rpkt =
1073 &nvmsg.msg.v1_msg.send_rndis_pkt;
1074 struct netvsc_channel * const nvchan =
1075 &net_device->chan_table[packet->q_idx];
1076 struct vmbus_channel *out_channel = nvchan->channel;
1077 struct net_device *ndev = hv_get_drvdata(device);
1078 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1079 struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
1080 u64 req_id;
1081 int ret;
1082 u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
1083
1084 memset(&nvmsg, 0, sizeof(struct nvsp_message));
1085 nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
1086 if (skb)
1087 rpkt->channel_type = 0; /* 0 is RMC_DATA */
1088 else
1089 rpkt->channel_type = 1; /* 1 is RMC_CONTROL */
1090
1091 rpkt->send_buf_section_index = packet->send_buf_index;
1092 if (packet->send_buf_index == NETVSC_INVALID_INDEX)
1093 rpkt->send_buf_section_size = 0;
1094 else
1095 rpkt->send_buf_section_size = packet->total_data_buflen;
1096
1097 req_id = (ulong)skb;
1098
1099 if (out_channel->rescind)
1100 return -ENODEV;
1101
1102 trace_nvsp_send_pkt(ndev, out_channel, rpkt);
1103
1104 packet->dma_range = NULL;
1105 if (packet->page_buf_cnt) {
1106 if (packet->cp_partial)
1107 pb += packet->rmsg_pgcnt;
1108
1109 ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
1110 if (ret) {
1111 ret = -EAGAIN;
1112 goto exit;
1113 }
1114
1115 ret = vmbus_sendpacket_pagebuffer(out_channel,
1116 pb, packet->page_buf_cnt,
1117 &nvmsg, sizeof(nvmsg),
1118 req_id);
1119
1120 if (ret)
1121 netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
1122 } else {
1123 ret = vmbus_sendpacket(out_channel,
1124 &nvmsg, sizeof(nvmsg),
1125 req_id, VM_PKT_DATA_INBAND,
1126 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1127 }
1128
1129exit:
1130 if (ret == 0) {
1131 atomic_inc_return(&nvchan->queue_sends);
1132
1133 if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
1134 netif_tx_stop_queue(txq);
1135 ndev_ctx->eth_stats.stop_queue++;
1136 }
1137 } else if (ret == -EAGAIN) {
1138 netif_tx_stop_queue(txq);
1139 ndev_ctx->eth_stats.stop_queue++;
1140 } else {
1141 netdev_err(ndev,
1142 "Unable to send packet pages %u len %u, ret %d\n",
1143 packet->page_buf_cnt, packet->total_data_buflen,
1144 ret);
1145 }
1146
1147 if (netif_tx_queue_stopped(txq) &&
1148 atomic_read(&nvchan->queue_sends) < 1 &&
1149 !net_device->tx_disable) {
1150 netif_tx_wake_queue(txq);
1151 ndev_ctx->eth_stats.wake_queue++;
1152 if (ret == -EAGAIN)
1153 ret = -ENOSPC;
1154 }
1155
1156 return ret;
1157}
1158
1159/* Move packet out of multi send data (msd), and clear msd */
1160static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
1161 struct sk_buff **msd_skb,
1162 struct multi_send_data *msdp)
1163{
1164 *msd_skb = msdp->skb;
1165 *msd_send = msdp->pkt;
1166 msdp->skb = NULL;
1167 msdp->pkt = NULL;
1168 msdp->count = 0;
1169}
1170
1171/* RCU already held by caller */
1172/* Batching/bouncing logic is designed to attempt to optimize
1173 * performance.
1174 *
1175 * For small, non-LSO packets we copy the packet to a send buffer
1176 * which is pre-registered with the Hyper-V side. This enables the
1177 * hypervisor to avoid remapping the aperture to access the packet
1178 * descriptor and data.
1179 *
1180 * If we already started using a buffer and the netdev is transmitting
1181 * a burst of packets, keep on copying into the buffer until it is
1182 * full or we are done collecting a burst. If there is an existing
1183 * buffer with space for the RNDIS descriptor but not the packet, copy
1184 * the RNDIS descriptor to the buffer, keeping the packet in place.
1185 *
1186 * If we do batching and send more than one packet using a single
1187 * NetVSC message, free the SKBs of the packets copied, except for the
1188 * last packet. This is done to streamline the handling of the case
1189 * where the last packet only had the RNDIS descriptor copied to the
1190 * send buffer, with the data pointers included in the NetVSC message.
1191 */
1192int netvsc_send(struct net_device *ndev,
1193 struct hv_netvsc_packet *packet,
1194 struct rndis_message *rndis_msg,
1195 struct hv_page_buffer *pb,
1196 struct sk_buff *skb,
1197 bool xdp_tx)
1198{
1199 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1200 struct netvsc_device *net_device
1201 = rcu_dereference_bh(ndev_ctx->nvdev);
1202 struct hv_device *device = ndev_ctx->device_ctx;
1203 int ret = 0;
1204 struct netvsc_channel *nvchan;
1205 u32 pktlen = packet->total_data_buflen, msd_len = 0;
1206 unsigned int section_index = NETVSC_INVALID_INDEX;
1207 struct multi_send_data *msdp;
1208 struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
1209 struct sk_buff *msd_skb = NULL;
1210 bool try_batch, xmit_more;
1211
1212 /* If device is rescinded, return error and packet will get dropped. */
1213 if (unlikely(!net_device || net_device->destroy))
1214 return -ENODEV;
1215
1216 nvchan = &net_device->chan_table[packet->q_idx];
1217 packet->send_buf_index = NETVSC_INVALID_INDEX;
1218 packet->cp_partial = false;
1219
1220 /* Send a control message or XDP packet directly without accessing
1221 * msd (Multi-Send Data) field which may be changed during data packet
1222 * processing.
1223 */
1224 if (!skb || xdp_tx)
1225 return netvsc_send_pkt(device, packet, net_device, pb, skb);
1226
1227 /* batch packets in send buffer if possible */
1228 msdp = &nvchan->msd;
1229 if (msdp->pkt)
1230 msd_len = msdp->pkt->total_data_buflen;
1231
1232 try_batch = msd_len > 0 && msdp->count < net_device->max_pkt;
1233 if (try_batch && msd_len + pktlen + net_device->pkt_align <
1234 net_device->send_section_size) {
1235 section_index = msdp->pkt->send_buf_index;
1236
1237 } else if (try_batch && msd_len + packet->rmsg_size <
1238 net_device->send_section_size) {
1239 section_index = msdp->pkt->send_buf_index;
1240 packet->cp_partial = true;
1241
1242 } else if (pktlen + net_device->pkt_align <
1243 net_device->send_section_size) {
1244 section_index = netvsc_get_next_send_section(net_device);
1245 if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
1246 ++ndev_ctx->eth_stats.tx_send_full;
1247 } else {
1248 move_pkt_msd(&msd_send, &msd_skb, msdp);
1249 msd_len = 0;
1250 }
1251 }
1252
1253 /* Keep aggregating only if stack says more data is coming
1254 * and not doing mixed modes send and not flow blocked
1255 */
1256 xmit_more = netdev_xmit_more() &&
1257 !packet->cp_partial &&
1258 !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
1259
1260 if (section_index != NETVSC_INVALID_INDEX) {
1261 netvsc_copy_to_send_buf(net_device,
1262 section_index, msd_len,
1263 packet, rndis_msg, pb, xmit_more);
1264
1265 packet->send_buf_index = section_index;
1266
1267 if (packet->cp_partial) {
1268 packet->page_buf_cnt -= packet->rmsg_pgcnt;
1269 packet->total_data_buflen = msd_len + packet->rmsg_size;
1270 } else {
1271 packet->page_buf_cnt = 0;
1272 packet->total_data_buflen += msd_len;
1273 }
1274
1275 if (msdp->pkt) {
1276 packet->total_packets += msdp->pkt->total_packets;
1277 packet->total_bytes += msdp->pkt->total_bytes;
1278 }
1279
1280 if (msdp->skb)
1281 dev_consume_skb_any(msdp->skb);
1282
1283 if (xmit_more) {
1284 msdp->skb = skb;
1285 msdp->pkt = packet;
1286 msdp->count++;
1287 } else {
1288 cur_send = packet;
1289 msdp->skb = NULL;
1290 msdp->pkt = NULL;
1291 msdp->count = 0;
1292 }
1293 } else {
1294 move_pkt_msd(&msd_send, &msd_skb, msdp);
1295 cur_send = packet;
1296 }
1297
1298 if (msd_send) {
1299 int m_ret = netvsc_send_pkt(device, msd_send, net_device,
1300 NULL, msd_skb);
1301
1302 if (m_ret != 0) {
1303 netvsc_free_send_slot(net_device,
1304 msd_send->send_buf_index);
1305 dev_kfree_skb_any(msd_skb);
1306 }
1307 }
1308
1309 if (cur_send)
1310 ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
1311
1312 if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
1313 netvsc_free_send_slot(net_device, section_index);
1314
1315 return ret;
1316}
1317
1318/* Send pending recv completions */
1319static int send_recv_completions(struct net_device *ndev,
1320 struct netvsc_device *nvdev,
1321 struct netvsc_channel *nvchan)
1322{
1323 struct multi_recv_comp *mrc = &nvchan->mrc;
1324 struct recv_comp_msg {
1325 struct nvsp_message_header hdr;
1326 u32 status;
1327 } __packed;
1328 struct recv_comp_msg msg = {
1329 .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
1330 };
1331 int ret;
1332
1333 while (mrc->first != mrc->next) {
1334 const struct recv_comp_data *rcd
1335 = mrc->slots + mrc->first;
1336
1337 msg.status = rcd->status;
1338 ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
1339 rcd->tid, VM_PKT_COMP, 0);
1340 if (unlikely(ret)) {
1341 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1342
1343 ++ndev_ctx->eth_stats.rx_comp_busy;
1344 return ret;
1345 }
1346
1347 if (++mrc->first == nvdev->recv_completion_cnt)
1348 mrc->first = 0;
1349 }
1350
1351 /* receive completion ring has been emptied */
1352 if (unlikely(nvdev->destroy))
1353 wake_up(&nvdev->wait_drain);
1354
1355 return 0;
1356}
1357
1358/* Count how many receive completions are outstanding */
1359static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
1360 const struct multi_recv_comp *mrc,
1361 u32 *filled, u32 *avail)
1362{
1363 u32 count = nvdev->recv_completion_cnt;
1364
1365 if (mrc->next >= mrc->first)
1366 *filled = mrc->next - mrc->first;
1367 else
1368 *filled = (count - mrc->first) + mrc->next;
1369
1370 *avail = count - *filled - 1;
1371}
1372
1373/* Add receive complete to ring to send to host. */
1374static void enq_receive_complete(struct net_device *ndev,
1375 struct netvsc_device *nvdev, u16 q_idx,
1376 u64 tid, u32 status)
1377{
1378 struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
1379 struct multi_recv_comp *mrc = &nvchan->mrc;
1380 struct recv_comp_data *rcd;
1381 u32 filled, avail;
1382
1383 recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1384
1385 if (unlikely(filled > NAPI_POLL_WEIGHT)) {
1386 send_recv_completions(ndev, nvdev, nvchan);
1387 recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1388 }
1389
1390 if (unlikely(!avail)) {
1391 netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
1392 q_idx, tid);
1393 return;
1394 }
1395
1396 rcd = mrc->slots + mrc->next;
1397 rcd->tid = tid;
1398 rcd->status = status;
1399
1400 if (++mrc->next == nvdev->recv_completion_cnt)
1401 mrc->next = 0;
1402}
1403
1404static int netvsc_receive(struct net_device *ndev,
1405 struct netvsc_device *net_device,
1406 struct netvsc_channel *nvchan,
1407 const struct vmpacket_descriptor *desc)
1408{
1409 struct net_device_context *net_device_ctx = netdev_priv(ndev);
1410 struct vmbus_channel *channel = nvchan->channel;
1411 const struct vmtransfer_page_packet_header *vmxferpage_packet
1412 = container_of(desc, const struct vmtransfer_page_packet_header, d);
1413 const struct nvsp_message *nvsp = hv_pkt_data(desc);
1414 u32 msglen = hv_pkt_datalen(desc);
1415 u16 q_idx = channel->offermsg.offer.sub_channel_index;
1416 char *recv_buf = net_device->recv_buf;
1417 u32 status = NVSP_STAT_SUCCESS;
1418 int i;
1419 int count = 0;
1420
1421 /* Ensure packet is big enough to read header fields */
1422 if (msglen < sizeof(struct nvsp_message_header)) {
1423 netif_err(net_device_ctx, rx_err, ndev,
1424 "invalid nvsp header, length too small: %u\n",
1425 msglen);
1426 return 0;
1427 }
1428
1429 /* Make sure this is a valid nvsp packet */
1430 if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
1431 netif_err(net_device_ctx, rx_err, ndev,
1432 "Unknown nvsp packet type received %u\n",
1433 nvsp->hdr.msg_type);
1434 return 0;
1435 }
1436
1437 /* Validate xfer page pkt header */
1438 if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
1439 netif_err(net_device_ctx, rx_err, ndev,
1440 "Invalid xfer page pkt, offset too small: %u\n",
1441 desc->offset8 << 3);
1442 return 0;
1443 }
1444
1445 if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
1446 netif_err(net_device_ctx, rx_err, ndev,
1447 "Invalid xfer page set id - expecting %x got %x\n",
1448 NETVSC_RECEIVE_BUFFER_ID,
1449 vmxferpage_packet->xfer_pageset_id);
1450 return 0;
1451 }
1452
1453 count = vmxferpage_packet->range_cnt;
1454
1455 /* Check count for a valid value */
1456 if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
1457 netif_err(net_device_ctx, rx_err, ndev,
1458 "Range count is not valid: %d\n",
1459 count);
1460 return 0;
1461 }
1462
1463 /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
1464 for (i = 0; i < count; i++) {
1465 u32 offset = vmxferpage_packet->ranges[i].byte_offset;
1466 u32 buflen = vmxferpage_packet->ranges[i].byte_count;
1467 void *data;
1468 int ret;
1469
1470 if (unlikely(offset > net_device->recv_buf_size ||
1471 buflen > net_device->recv_buf_size - offset)) {
1472 nvchan->rsc.cnt = 0;
1473 status = NVSP_STAT_FAIL;
1474 netif_err(net_device_ctx, rx_err, ndev,
1475 "Packet offset:%u + len:%u too big\n",
1476 offset, buflen);
1477
1478 continue;
1479 }
1480
1481 /* We're going to copy (sections of) the packet into nvchan->recv_buf;
1482 * make sure that nvchan->recv_buf is large enough to hold the packet.
1483 */
1484 if (unlikely(buflen > net_device->recv_section_size)) {
1485 nvchan->rsc.cnt = 0;
1486 status = NVSP_STAT_FAIL;
1487 netif_err(net_device_ctx, rx_err, ndev,
1488 "Packet too big: buflen=%u recv_section_size=%u\n",
1489 buflen, net_device->recv_section_size);
1490
1491 continue;
1492 }
1493
1494 data = recv_buf + offset;
1495
1496 nvchan->rsc.is_last = (i == count - 1);
1497
1498 trace_rndis_recv(ndev, q_idx, data);
1499
1500 /* Pass it to the upper layer */
1501 ret = rndis_filter_receive(ndev, net_device,
1502 nvchan, data, buflen);
1503
1504 if (unlikely(ret != NVSP_STAT_SUCCESS)) {
1505 /* Drop incomplete packet */
1506 nvchan->rsc.cnt = 0;
1507 status = NVSP_STAT_FAIL;
1508 }
1509 }
1510
1511 enq_receive_complete(ndev, net_device, q_idx,
1512 vmxferpage_packet->d.trans_id, status);
1513
1514 return count;
1515}
1516
1517static void netvsc_send_table(struct net_device *ndev,
1518 struct netvsc_device *nvscdev,
1519 const struct nvsp_message *nvmsg,
1520 u32 msglen)
1521{
1522 struct net_device_context *net_device_ctx = netdev_priv(ndev);
1523 u32 count, offset, *tab;
1524 int i;
1525
1526 /* Ensure packet is big enough to read send_table fields */
1527 if (msglen < sizeof(struct nvsp_message_header) +
1528 sizeof(struct nvsp_5_send_indirect_table)) {
1529 netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
1530 return;
1531 }
1532
1533 count = nvmsg->msg.v5_msg.send_table.count;
1534 offset = nvmsg->msg.v5_msg.send_table.offset;
1535
1536 if (count != VRSS_SEND_TAB_SIZE) {
1537 netdev_err(ndev, "Received wrong send-table size:%u\n", count);
1538 return;
1539 }
1540
1541 /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
1542 * wrong due to a host bug. So fix the offset here.
1543 */
1544 if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
1545 msglen >= sizeof(struct nvsp_message_header) +
1546 sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
1547 offset = sizeof(struct nvsp_message_header) +
1548 sizeof(union nvsp_6_message_uber);
1549
1550 /* Boundary check for all versions */
1551 if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
1552 netdev_err(ndev, "Received send-table offset too big:%u\n",
1553 offset);
1554 return;
1555 }
1556
1557 tab = (void *)nvmsg + offset;
1558
1559 for (i = 0; i < count; i++)
1560 net_device_ctx->tx_table[i] = tab[i];
1561}
1562
1563static void netvsc_send_vf(struct net_device *ndev,
1564 const struct nvsp_message *nvmsg,
1565 u32 msglen)
1566{
1567 struct net_device_context *net_device_ctx = netdev_priv(ndev);
1568
1569 /* Ensure packet is big enough to read its fields */
1570 if (msglen < sizeof(struct nvsp_message_header) +
1571 sizeof(struct nvsp_4_send_vf_association)) {
1572 netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
1573 return;
1574 }
1575
1576 net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
1577 net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
1578
1579 if (net_device_ctx->vf_alloc)
1580 complete(&net_device_ctx->vf_add);
1581
1582 netdev_info(ndev, "VF slot %u %s\n",
1583 net_device_ctx->vf_serial,
1584 net_device_ctx->vf_alloc ? "added" : "removed");
1585}
1586
1587static void netvsc_receive_inband(struct net_device *ndev,
1588 struct netvsc_device *nvscdev,
1589 const struct vmpacket_descriptor *desc)
1590{
1591 const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1592 u32 msglen = hv_pkt_datalen(desc);
1593
1594 /* Ensure packet is big enough to read header fields */
1595 if (msglen < sizeof(struct nvsp_message_header)) {
1596 netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
1597 return;
1598 }
1599
1600 switch (nvmsg->hdr.msg_type) {
1601 case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
1602 netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
1603 break;
1604
1605 case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
1606 if (hv_is_isolation_supported())
1607 netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
1608 else
1609 netvsc_send_vf(ndev, nvmsg, msglen);
1610 break;
1611 }
1612}
1613
1614static int netvsc_process_raw_pkt(struct hv_device *device,
1615 struct netvsc_channel *nvchan,
1616 struct netvsc_device *net_device,
1617 struct net_device *ndev,
1618 const struct vmpacket_descriptor *desc,
1619 int budget)
1620{
1621 struct vmbus_channel *channel = nvchan->channel;
1622 const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1623
1624 trace_nvsp_recv(ndev, channel, nvmsg);
1625
1626 switch (desc->type) {
1627 case VM_PKT_COMP:
1628 netvsc_send_completion(ndev, net_device, channel, desc, budget);
1629 break;
1630
1631 case VM_PKT_DATA_USING_XFER_PAGES:
1632 return netvsc_receive(ndev, net_device, nvchan, desc);
1633
1634 case VM_PKT_DATA_INBAND:
1635 netvsc_receive_inband(ndev, net_device, desc);
1636 break;
1637
1638 default:
1639 netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
1640 desc->type, desc->trans_id);
1641 break;
1642 }
1643
1644 return 0;
1645}
1646
1647static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
1648{
1649 struct vmbus_channel *primary = channel->primary_channel;
1650
1651 return primary ? primary->device_obj : channel->device_obj;
1652}
1653
1654/* Network processing softirq
1655 * Process data in incoming ring buffer from host
1656 * Stops when ring is empty or budget is met or exceeded.
1657 */
1658int netvsc_poll(struct napi_struct *napi, int budget)
1659{
1660 struct netvsc_channel *nvchan
1661 = container_of(napi, struct netvsc_channel, napi);
1662 struct netvsc_device *net_device = nvchan->net_device;
1663 struct vmbus_channel *channel = nvchan->channel;
1664 struct hv_device *device = netvsc_channel_to_device(channel);
1665 struct net_device *ndev = hv_get_drvdata(device);
1666 int work_done = 0;
1667 int ret;
1668
1669 /* If starting a new interval */
1670 if (!nvchan->desc)
1671 nvchan->desc = hv_pkt_iter_first(channel);
1672
1673 nvchan->xdp_flush = false;
1674
1675 while (nvchan->desc && work_done < budget) {
1676 work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
1677 ndev, nvchan->desc, budget);
1678 nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
1679 }
1680
1681 if (nvchan->xdp_flush)
1682 xdp_do_flush();
1683
1684 /* Send any pending receive completions */
1685 ret = send_recv_completions(ndev, net_device, nvchan);
1686
1687 /* If it did not exhaust NAPI budget this time
1688 * and not doing busy poll
1689 * then re-enable host interrupts
1690 * and reschedule if ring is not empty
1691 * or sending receive completion failed.
1692 */
1693 if (work_done < budget &&
1694 napi_complete_done(napi, work_done) &&
1695 (ret || hv_end_read(&channel->inbound)) &&
1696 napi_schedule_prep(napi)) {
1697 hv_begin_read(&channel->inbound);
1698 __napi_schedule(napi);
1699 }
1700
1701 /* Driver may overshoot since multiple packets per descriptor */
1702 return min(work_done, budget);
1703}
1704
1705/* Call back when data is available in host ring buffer.
1706 * Processing is deferred until network softirq (NAPI)
1707 */
1708void netvsc_channel_cb(void *context)
1709{
1710 struct netvsc_channel *nvchan = context;
1711 struct vmbus_channel *channel = nvchan->channel;
1712 struct hv_ring_buffer_info *rbi = &channel->inbound;
1713
1714 /* preload first vmpacket descriptor */
1715 prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
1716
1717 if (napi_schedule_prep(&nvchan->napi)) {
1718 /* disable interrupts from host */
1719 hv_begin_read(rbi);
1720
1721 __napi_schedule_irqoff(&nvchan->napi);
1722 }
1723}
1724
1725/*
1726 * netvsc_device_add - Callback when the device belonging to this
1727 * driver is added
1728 */
1729struct netvsc_device *netvsc_device_add(struct hv_device *device,
1730 const struct netvsc_device_info *device_info)
1731{
1732 int i, ret = 0;
1733 struct netvsc_device *net_device;
1734 struct net_device *ndev = hv_get_drvdata(device);
1735 struct net_device_context *net_device_ctx = netdev_priv(ndev);
1736
1737 net_device = alloc_net_device();
1738 if (!net_device)
1739 return ERR_PTR(-ENOMEM);
1740
1741 for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
1742 net_device_ctx->tx_table[i] = 0;
1743
1744 /* Because the device uses NAPI, all the interrupt batching and
1745 * control is done via Net softirq, not the channel handling
1746 */
1747 set_channel_read_mode(device->channel, HV_CALL_ISR);
1748
1749 /* If we're reopening the device we may have multiple queues, fill the
1750 * chn_table with the default channel to use it before subchannels are
1751 * opened.
1752 * Initialize the channel state before we open;
1753 * we can be interrupted as soon as we open the channel.
1754 */
1755
1756 for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
1757 struct netvsc_channel *nvchan = &net_device->chan_table[i];
1758
1759 nvchan->channel = device->channel;
1760 nvchan->net_device = net_device;
1761 u64_stats_init(&nvchan->tx_stats.syncp);
1762 u64_stats_init(&nvchan->rx_stats.syncp);
1763
1764 ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
1765
1766 if (ret) {
1767 netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
1768 goto cleanup2;
1769 }
1770
1771 ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
1772 MEM_TYPE_PAGE_SHARED, NULL);
1773
1774 if (ret) {
1775 netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
1776 goto cleanup2;
1777 }
1778 }
1779
1780 /* Enable NAPI handler before init callbacks */
1781 netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll);
1782
1783 /* Open the channel */
1784 device->channel->next_request_id_callback = vmbus_next_request_id;
1785 device->channel->request_addr_callback = vmbus_request_addr;
1786 device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
1787 device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
1788
1789 ret = vmbus_open(device->channel, netvsc_ring_bytes,
1790 netvsc_ring_bytes, NULL, 0,
1791 netvsc_channel_cb, net_device->chan_table);
1792
1793 if (ret != 0) {
1794 netdev_err(ndev, "unable to open channel: %d\n", ret);
1795 goto cleanup;
1796 }
1797
1798 /* Channel is opened */
1799 netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
1800
1801 napi_enable(&net_device->chan_table[0].napi);
1802
1803 /* Connect with the NetVsp */
1804 ret = netvsc_connect_vsp(device, net_device, device_info);
1805 if (ret != 0) {
1806 netdev_err(ndev,
1807 "unable to connect to NetVSP - %d\n", ret);
1808 goto close;
1809 }
1810
1811 /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
1812 * populated.
1813 */
1814 rcu_assign_pointer(net_device_ctx->nvdev, net_device);
1815
1816 return net_device;
1817
1818close:
1819 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
1820 napi_disable(&net_device->chan_table[0].napi);
1821
1822 /* Now, we can close the channel safely */
1823 vmbus_close(device->channel);
1824
1825cleanup:
1826 netif_napi_del(&net_device->chan_table[0].napi);
1827
1828cleanup2:
1829 if (net_device->recv_original_buf)
1830 hv_unmap_memory(net_device->recv_buf);
1831
1832 if (net_device->send_original_buf)
1833 hv_unmap_memory(net_device->send_buf);
1834
1835 free_netvsc_device(&net_device->rcu);
1836
1837 return ERR_PTR(ret);
1838}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/wait.h>
14#include <linux/mm.h>
15#include <linux/delay.h>
16#include <linux/io.h>
17#include <linux/slab.h>
18#include <linux/netdevice.h>
19#include <linux/if_ether.h>
20#include <linux/vmalloc.h>
21#include <linux/rtnetlink.h>
22#include <linux/prefetch.h>
23#include <linux/filter.h>
24
25#include <asm/sync_bitops.h>
26#include <asm/mshyperv.h>
27
28#include "hyperv_net.h"
29#include "netvsc_trace.h"
30
31/*
32 * Switch the data path from the synthetic interface to the VF
33 * interface.
34 */
35int netvsc_switch_datapath(struct net_device *ndev, bool vf)
36{
37 struct net_device_context *net_device_ctx = netdev_priv(ndev);
38 struct hv_device *dev = net_device_ctx->device_ctx;
39 struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev);
40 struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt;
41 int ret, retry = 0;
42
43 /* Block sending traffic to VF if it's about to be gone */
44 if (!vf)
45 net_device_ctx->data_path_is_vf = vf;
46
47 memset(init_pkt, 0, sizeof(struct nvsp_message));
48 init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH;
49 if (vf)
50 init_pkt->msg.v4_msg.active_dp.active_datapath =
51 NVSP_DATAPATH_VF;
52 else
53 init_pkt->msg.v4_msg.active_dp.active_datapath =
54 NVSP_DATAPATH_SYNTHETIC;
55
56again:
57 trace_nvsp_send(ndev, init_pkt);
58
59 ret = vmbus_sendpacket(dev->channel, init_pkt,
60 sizeof(struct nvsp_message),
61 (unsigned long)init_pkt, VM_PKT_DATA_INBAND,
62 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
63
64 /* If failed to switch to/from VF, let data_path_is_vf stay false,
65 * so we use synthetic path to send data.
66 */
67 if (ret) {
68 if (ret != -EAGAIN) {
69 netdev_err(ndev,
70 "Unable to send sw datapath msg, err: %d\n",
71 ret);
72 return ret;
73 }
74
75 if (retry++ < RETRY_MAX) {
76 usleep_range(RETRY_US_LO, RETRY_US_HI);
77 goto again;
78 } else {
79 netdev_err(
80 ndev,
81 "Retry failed to send sw datapath msg, err: %d\n",
82 ret);
83 return ret;
84 }
85 }
86
87 wait_for_completion(&nv_dev->channel_init_wait);
88 net_device_ctx->data_path_is_vf = vf;
89
90 return 0;
91}
92
93/* Worker to setup sub channels on initial setup
94 * Initial hotplug event occurs in softirq context
95 * and can't wait for channels.
96 */
97static void netvsc_subchan_work(struct work_struct *w)
98{
99 struct netvsc_device *nvdev =
100 container_of(w, struct netvsc_device, subchan_work);
101 struct rndis_device *rdev;
102 int i, ret;
103
104 /* Avoid deadlock with device removal already under RTNL */
105 if (!rtnl_trylock()) {
106 schedule_work(w);
107 return;
108 }
109
110 rdev = nvdev->extension;
111 if (rdev) {
112 ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL);
113 if (ret == 0) {
114 netif_device_attach(rdev->ndev);
115 } else {
116 /* fallback to only primary channel */
117 for (i = 1; i < nvdev->num_chn; i++)
118 netif_napi_del(&nvdev->chan_table[i].napi);
119
120 nvdev->max_chn = 1;
121 nvdev->num_chn = 1;
122 }
123 }
124
125 rtnl_unlock();
126}
127
128static struct netvsc_device *alloc_net_device(void)
129{
130 struct netvsc_device *net_device;
131
132 net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL);
133 if (!net_device)
134 return NULL;
135
136 init_waitqueue_head(&net_device->wait_drain);
137 net_device->destroy = false;
138 net_device->tx_disable = true;
139
140 net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT;
141 net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT;
142
143 init_completion(&net_device->channel_init_wait);
144 init_waitqueue_head(&net_device->subchan_open);
145 INIT_WORK(&net_device->subchan_work, netvsc_subchan_work);
146
147 return net_device;
148}
149
150static void free_netvsc_device(struct rcu_head *head)
151{
152 struct netvsc_device *nvdev
153 = container_of(head, struct netvsc_device, rcu);
154 int i;
155
156 kfree(nvdev->extension);
157
158 if (!nvdev->recv_buf_gpadl_handle.decrypted)
159 vfree(nvdev->recv_buf);
160 if (!nvdev->send_buf_gpadl_handle.decrypted)
161 vfree(nvdev->send_buf);
162 bitmap_free(nvdev->send_section_map);
163
164 for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
165 xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq);
166 kfree(nvdev->chan_table[i].recv_buf);
167 vfree(nvdev->chan_table[i].mrc.slots);
168 }
169
170 kfree(nvdev);
171}
172
173static void free_netvsc_device_rcu(struct netvsc_device *nvdev)
174{
175 call_rcu(&nvdev->rcu, free_netvsc_device);
176}
177
178static void netvsc_revoke_recv_buf(struct hv_device *device,
179 struct netvsc_device *net_device,
180 struct net_device *ndev)
181{
182 struct nvsp_message *revoke_packet;
183 int ret;
184
185 /*
186 * If we got a section count, it means we received a
187 * SendReceiveBufferComplete msg (ie sent
188 * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need
189 * to send a revoke msg here
190 */
191 if (net_device->recv_section_cnt) {
192 /* Send the revoke receive buffer */
193 revoke_packet = &net_device->revoke_packet;
194 memset(revoke_packet, 0, sizeof(struct nvsp_message));
195
196 revoke_packet->hdr.msg_type =
197 NVSP_MSG1_TYPE_REVOKE_RECV_BUF;
198 revoke_packet->msg.v1_msg.
199 revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
200
201 trace_nvsp_send(ndev, revoke_packet);
202
203 ret = vmbus_sendpacket(device->channel,
204 revoke_packet,
205 sizeof(struct nvsp_message),
206 VMBUS_RQST_ID_NO_RESPONSE,
207 VM_PKT_DATA_INBAND, 0);
208 /* If the failure is because the channel is rescinded;
209 * ignore the failure since we cannot send on a rescinded
210 * channel. This would allow us to properly cleanup
211 * even when the channel is rescinded.
212 */
213 if (device->channel->rescind)
214 ret = 0;
215 /*
216 * If we failed here, we might as well return and
217 * have a leak rather than continue and a bugchk
218 */
219 if (ret != 0) {
220 netdev_err(ndev, "unable to send "
221 "revoke receive buffer to netvsp\n");
222 return;
223 }
224 net_device->recv_section_cnt = 0;
225 }
226}
227
228static void netvsc_revoke_send_buf(struct hv_device *device,
229 struct netvsc_device *net_device,
230 struct net_device *ndev)
231{
232 struct nvsp_message *revoke_packet;
233 int ret;
234
235 /* Deal with the send buffer we may have setup.
236 * If we got a send section size, it means we received a
237 * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent
238 * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need
239 * to send a revoke msg here
240 */
241 if (net_device->send_section_cnt) {
242 /* Send the revoke receive buffer */
243 revoke_packet = &net_device->revoke_packet;
244 memset(revoke_packet, 0, sizeof(struct nvsp_message));
245
246 revoke_packet->hdr.msg_type =
247 NVSP_MSG1_TYPE_REVOKE_SEND_BUF;
248 revoke_packet->msg.v1_msg.revoke_send_buf.id =
249 NETVSC_SEND_BUFFER_ID;
250
251 trace_nvsp_send(ndev, revoke_packet);
252
253 ret = vmbus_sendpacket(device->channel,
254 revoke_packet,
255 sizeof(struct nvsp_message),
256 VMBUS_RQST_ID_NO_RESPONSE,
257 VM_PKT_DATA_INBAND, 0);
258
259 /* If the failure is because the channel is rescinded;
260 * ignore the failure since we cannot send on a rescinded
261 * channel. This would allow us to properly cleanup
262 * even when the channel is rescinded.
263 */
264 if (device->channel->rescind)
265 ret = 0;
266
267 /* If we failed here, we might as well return and
268 * have a leak rather than continue and a bugchk
269 */
270 if (ret != 0) {
271 netdev_err(ndev, "unable to send "
272 "revoke send buffer to netvsp\n");
273 return;
274 }
275 net_device->send_section_cnt = 0;
276 }
277}
278
279static void netvsc_teardown_recv_gpadl(struct hv_device *device,
280 struct netvsc_device *net_device,
281 struct net_device *ndev)
282{
283 int ret;
284
285 if (net_device->recv_buf_gpadl_handle.gpadl_handle) {
286 ret = vmbus_teardown_gpadl(device->channel,
287 &net_device->recv_buf_gpadl_handle);
288
289 /* If we failed here, we might as well return and have a leak
290 * rather than continue and a bugchk
291 */
292 if (ret != 0) {
293 netdev_err(ndev,
294 "unable to teardown receive buffer's gpadl\n");
295 return;
296 }
297 }
298}
299
300static void netvsc_teardown_send_gpadl(struct hv_device *device,
301 struct netvsc_device *net_device,
302 struct net_device *ndev)
303{
304 int ret;
305
306 if (net_device->send_buf_gpadl_handle.gpadl_handle) {
307 ret = vmbus_teardown_gpadl(device->channel,
308 &net_device->send_buf_gpadl_handle);
309
310 /* If we failed here, we might as well return and have a leak
311 * rather than continue and a bugchk
312 */
313 if (ret != 0) {
314 netdev_err(ndev,
315 "unable to teardown send buffer's gpadl\n");
316 return;
317 }
318 }
319}
320
321int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx)
322{
323 struct netvsc_channel *nvchan = &net_device->chan_table[q_idx];
324 int node = cpu_to_node(nvchan->channel->target_cpu);
325 size_t size;
326
327 size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data);
328 nvchan->mrc.slots = vzalloc_node(size, node);
329 if (!nvchan->mrc.slots)
330 nvchan->mrc.slots = vzalloc(size);
331
332 return nvchan->mrc.slots ? 0 : -ENOMEM;
333}
334
335static int netvsc_init_buf(struct hv_device *device,
336 struct netvsc_device *net_device,
337 const struct netvsc_device_info *device_info)
338{
339 struct nvsp_1_message_send_receive_buffer_complete *resp;
340 struct net_device *ndev = hv_get_drvdata(device);
341 struct nvsp_message *init_packet;
342 unsigned int buf_size;
343 int i, ret = 0;
344
345 /* Get receive buffer area. */
346 buf_size = device_info->recv_sections * device_info->recv_section_size;
347 buf_size = roundup(buf_size, PAGE_SIZE);
348
349 /* Legacy hosts only allow smaller receive buffer */
350 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
351 buf_size = min_t(unsigned int, buf_size,
352 NETVSC_RECEIVE_BUFFER_SIZE_LEGACY);
353
354 net_device->recv_buf = vzalloc(buf_size);
355 if (!net_device->recv_buf) {
356 netdev_err(ndev,
357 "unable to allocate receive buffer of size %u\n",
358 buf_size);
359 ret = -ENOMEM;
360 goto cleanup;
361 }
362
363 net_device->recv_buf_size = buf_size;
364
365 /*
366 * Establish the gpadl handle for this buffer on this
367 * channel. Note: This call uses the vmbus connection rather
368 * than the channel to establish the gpadl handle.
369 */
370 ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf,
371 buf_size,
372 &net_device->recv_buf_gpadl_handle);
373 if (ret != 0) {
374 netdev_err(ndev,
375 "unable to establish receive buffer's gpadl\n");
376 goto cleanup;
377 }
378
379 /* Notify the NetVsp of the gpadl handle */
380 init_packet = &net_device->channel_init_pkt;
381 memset(init_packet, 0, sizeof(struct nvsp_message));
382 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF;
383 init_packet->msg.v1_msg.send_recv_buf.
384 gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle;
385 init_packet->msg.v1_msg.
386 send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID;
387
388 trace_nvsp_send(ndev, init_packet);
389
390 /* Send the gpadl notification request */
391 ret = vmbus_sendpacket(device->channel, init_packet,
392 sizeof(struct nvsp_message),
393 (unsigned long)init_packet,
394 VM_PKT_DATA_INBAND,
395 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
396 if (ret != 0) {
397 netdev_err(ndev,
398 "unable to send receive buffer's gpadl to netvsp\n");
399 goto cleanup;
400 }
401
402 wait_for_completion(&net_device->channel_init_wait);
403
404 /* Check the response */
405 resp = &init_packet->msg.v1_msg.send_recv_buf_complete;
406 if (resp->status != NVSP_STAT_SUCCESS) {
407 netdev_err(ndev,
408 "Unable to complete receive buffer initialization with NetVsp - status %d\n",
409 resp->status);
410 ret = -EINVAL;
411 goto cleanup;
412 }
413
414 /* Parse the response */
415 netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n",
416 resp->num_sections, resp->sections[0].sub_alloc_size,
417 resp->sections[0].num_sub_allocs);
418
419 /* There should only be one section for the entire receive buffer */
420 if (resp->num_sections != 1 || resp->sections[0].offset != 0) {
421 ret = -EINVAL;
422 goto cleanup;
423 }
424
425 net_device->recv_section_size = resp->sections[0].sub_alloc_size;
426 net_device->recv_section_cnt = resp->sections[0].num_sub_allocs;
427
428 /* Ensure buffer will not overflow */
429 if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size *
430 (u64)net_device->recv_section_cnt > (u64)buf_size) {
431 netdev_err(ndev, "invalid recv_section_size %u\n",
432 net_device->recv_section_size);
433 ret = -EINVAL;
434 goto cleanup;
435 }
436
437 for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
438 struct netvsc_channel *nvchan = &net_device->chan_table[i];
439
440 nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL);
441 if (nvchan->recv_buf == NULL) {
442 ret = -ENOMEM;
443 goto cleanup;
444 }
445 }
446
447 /* Setup receive completion ring.
448 * Add 1 to the recv_section_cnt because at least one entry in a
449 * ring buffer has to be empty.
450 */
451 net_device->recv_completion_cnt = net_device->recv_section_cnt + 1;
452 ret = netvsc_alloc_recv_comp_ring(net_device, 0);
453 if (ret)
454 goto cleanup;
455
456 /* Now setup the send buffer. */
457 buf_size = device_info->send_sections * device_info->send_section_size;
458 buf_size = round_up(buf_size, PAGE_SIZE);
459
460 net_device->send_buf = vzalloc(buf_size);
461 if (!net_device->send_buf) {
462 netdev_err(ndev, "unable to allocate send buffer of size %u\n",
463 buf_size);
464 ret = -ENOMEM;
465 goto cleanup;
466 }
467 net_device->send_buf_size = buf_size;
468
469 /* Establish the gpadl handle for this buffer on this
470 * channel. Note: This call uses the vmbus connection rather
471 * than the channel to establish the gpadl handle.
472 */
473 ret = vmbus_establish_gpadl(device->channel, net_device->send_buf,
474 buf_size,
475 &net_device->send_buf_gpadl_handle);
476 if (ret != 0) {
477 netdev_err(ndev,
478 "unable to establish send buffer's gpadl\n");
479 goto cleanup;
480 }
481
482 /* Notify the NetVsp of the gpadl handle */
483 init_packet = &net_device->channel_init_pkt;
484 memset(init_packet, 0, sizeof(struct nvsp_message));
485 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF;
486 init_packet->msg.v1_msg.send_send_buf.gpadl_handle =
487 net_device->send_buf_gpadl_handle.gpadl_handle;
488 init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID;
489
490 trace_nvsp_send(ndev, init_packet);
491
492 /* Send the gpadl notification request */
493 ret = vmbus_sendpacket(device->channel, init_packet,
494 sizeof(struct nvsp_message),
495 (unsigned long)init_packet,
496 VM_PKT_DATA_INBAND,
497 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
498 if (ret != 0) {
499 netdev_err(ndev,
500 "unable to send send buffer's gpadl to netvsp\n");
501 goto cleanup;
502 }
503
504 wait_for_completion(&net_device->channel_init_wait);
505
506 /* Check the response */
507 if (init_packet->msg.v1_msg.
508 send_send_buf_complete.status != NVSP_STAT_SUCCESS) {
509 netdev_err(ndev, "Unable to complete send buffer "
510 "initialization with NetVsp - status %d\n",
511 init_packet->msg.v1_msg.
512 send_send_buf_complete.status);
513 ret = -EINVAL;
514 goto cleanup;
515 }
516
517 /* Parse the response */
518 net_device->send_section_size = init_packet->msg.
519 v1_msg.send_send_buf_complete.section_size;
520 if (net_device->send_section_size < NETVSC_MTU_MIN) {
521 netdev_err(ndev, "invalid send_section_size %u\n",
522 net_device->send_section_size);
523 ret = -EINVAL;
524 goto cleanup;
525 }
526
527 /* Section count is simply the size divided by the section size. */
528 net_device->send_section_cnt = buf_size / net_device->send_section_size;
529
530 netdev_dbg(ndev, "Send section size: %d, Section count:%d\n",
531 net_device->send_section_size, net_device->send_section_cnt);
532
533 /* Setup state for managing the send buffer. */
534 net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt,
535 GFP_KERNEL);
536 if (!net_device->send_section_map) {
537 ret = -ENOMEM;
538 goto cleanup;
539 }
540
541 goto exit;
542
543cleanup:
544 netvsc_revoke_recv_buf(device, net_device, ndev);
545 netvsc_revoke_send_buf(device, net_device, ndev);
546 netvsc_teardown_recv_gpadl(device, net_device, ndev);
547 netvsc_teardown_send_gpadl(device, net_device, ndev);
548
549exit:
550 return ret;
551}
552
553/* Negotiate NVSP protocol version */
554static int negotiate_nvsp_ver(struct hv_device *device,
555 struct netvsc_device *net_device,
556 struct nvsp_message *init_packet,
557 u32 nvsp_ver)
558{
559 struct net_device *ndev = hv_get_drvdata(device);
560 int ret;
561
562 memset(init_packet, 0, sizeof(struct nvsp_message));
563 init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT;
564 init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver;
565 init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver;
566 trace_nvsp_send(ndev, init_packet);
567
568 /* Send the init request */
569 ret = vmbus_sendpacket(device->channel, init_packet,
570 sizeof(struct nvsp_message),
571 (unsigned long)init_packet,
572 VM_PKT_DATA_INBAND,
573 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
574
575 if (ret != 0)
576 return ret;
577
578 wait_for_completion(&net_device->channel_init_wait);
579
580 if (init_packet->msg.init_msg.init_complete.status !=
581 NVSP_STAT_SUCCESS)
582 return -EINVAL;
583
584 if (nvsp_ver == NVSP_PROTOCOL_VERSION_1)
585 return 0;
586
587 /* NVSPv2 or later: Send NDIS config */
588 memset(init_packet, 0, sizeof(struct nvsp_message));
589 init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG;
590 init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN;
591 init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1;
592
593 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) {
594 if (hv_is_isolation_supported())
595 netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n");
596 else
597 init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1;
598
599 /* Teaming bit is needed to receive link speed updates */
600 init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1;
601 }
602
603 if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61)
604 init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1;
605
606 trace_nvsp_send(ndev, init_packet);
607
608 ret = vmbus_sendpacket(device->channel, init_packet,
609 sizeof(struct nvsp_message),
610 VMBUS_RQST_ID_NO_RESPONSE,
611 VM_PKT_DATA_INBAND, 0);
612
613 return ret;
614}
615
616static int netvsc_connect_vsp(struct hv_device *device,
617 struct netvsc_device *net_device,
618 const struct netvsc_device_info *device_info)
619{
620 struct net_device *ndev = hv_get_drvdata(device);
621 static const u32 ver_list[] = {
622 NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2,
623 NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5,
624 NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61
625 };
626 struct nvsp_message *init_packet;
627 int ndis_version, i, ret;
628
629 init_packet = &net_device->channel_init_pkt;
630
631 /* Negotiate the latest NVSP protocol supported */
632 for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--)
633 if (negotiate_nvsp_ver(device, net_device, init_packet,
634 ver_list[i]) == 0) {
635 net_device->nvsp_version = ver_list[i];
636 break;
637 }
638
639 if (i < 0) {
640 ret = -EPROTO;
641 goto cleanup;
642 }
643
644 if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) {
645 netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n",
646 net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61);
647 ret = -EPROTO;
648 goto cleanup;
649 }
650
651 pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version);
652
653 /* Send the ndis version */
654 memset(init_packet, 0, sizeof(struct nvsp_message));
655
656 if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4)
657 ndis_version = 0x00060001;
658 else
659 ndis_version = 0x0006001e;
660
661 init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER;
662 init_packet->msg.v1_msg.
663 send_ndis_ver.ndis_major_ver =
664 (ndis_version & 0xFFFF0000) >> 16;
665 init_packet->msg.v1_msg.
666 send_ndis_ver.ndis_minor_ver =
667 ndis_version & 0xFFFF;
668
669 trace_nvsp_send(ndev, init_packet);
670
671 /* Send the init request */
672 ret = vmbus_sendpacket(device->channel, init_packet,
673 sizeof(struct nvsp_message),
674 VMBUS_RQST_ID_NO_RESPONSE,
675 VM_PKT_DATA_INBAND, 0);
676 if (ret != 0)
677 goto cleanup;
678
679
680 ret = netvsc_init_buf(device, net_device, device_info);
681
682cleanup:
683 return ret;
684}
685
686/*
687 * netvsc_device_remove - Callback when the root bus device is removed
688 */
689void netvsc_device_remove(struct hv_device *device)
690{
691 struct net_device *ndev = hv_get_drvdata(device);
692 struct net_device_context *net_device_ctx = netdev_priv(ndev);
693 struct netvsc_device *net_device
694 = rtnl_dereference(net_device_ctx->nvdev);
695 int i;
696
697 /*
698 * Revoke receive buffer. If host is pre-Win2016 then tear down
699 * receive buffer GPADL. Do the same for send buffer.
700 */
701 netvsc_revoke_recv_buf(device, net_device, ndev);
702 if (vmbus_proto_version < VERSION_WIN10)
703 netvsc_teardown_recv_gpadl(device, net_device, ndev);
704
705 netvsc_revoke_send_buf(device, net_device, ndev);
706 if (vmbus_proto_version < VERSION_WIN10)
707 netvsc_teardown_send_gpadl(device, net_device, ndev);
708
709 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
710
711 /* Disable NAPI and disassociate its context from the device. */
712 for (i = 0; i < net_device->num_chn; i++) {
713 /* See also vmbus_reset_channel_cb(). */
714 /* only disable enabled NAPI channel */
715 if (i < ndev->real_num_rx_queues)
716 napi_disable(&net_device->chan_table[i].napi);
717
718 netif_napi_del(&net_device->chan_table[i].napi);
719 }
720
721 /*
722 * At this point, no one should be accessing net_device
723 * except in here
724 */
725 netdev_dbg(ndev, "net device safe to remove\n");
726
727 /* Now, we can close the channel safely */
728 vmbus_close(device->channel);
729
730 /*
731 * If host is Win2016 or higher then we do the GPADL tear down
732 * here after VMBus is closed.
733 */
734 if (vmbus_proto_version >= VERSION_WIN10) {
735 netvsc_teardown_recv_gpadl(device, net_device, ndev);
736 netvsc_teardown_send_gpadl(device, net_device, ndev);
737 }
738
739 /* Release all resources */
740 free_netvsc_device_rcu(net_device);
741}
742
743#define RING_AVAIL_PERCENT_HIWATER 20
744#define RING_AVAIL_PERCENT_LOWATER 10
745
746static inline void netvsc_free_send_slot(struct netvsc_device *net_device,
747 u32 index)
748{
749 sync_change_bit(index, net_device->send_section_map);
750}
751
752static void netvsc_send_tx_complete(struct net_device *ndev,
753 struct netvsc_device *net_device,
754 struct vmbus_channel *channel,
755 const struct vmpacket_descriptor *desc,
756 int budget)
757{
758 struct net_device_context *ndev_ctx = netdev_priv(ndev);
759 struct sk_buff *skb;
760 u16 q_idx = 0;
761 int queue_sends;
762 u64 cmd_rqst;
763
764 cmd_rqst = channel->request_addr_callback(channel, desc->trans_id);
765 if (cmd_rqst == VMBUS_RQST_ERROR) {
766 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
767 return;
768 }
769
770 skb = (struct sk_buff *)(unsigned long)cmd_rqst;
771
772 /* Notify the layer above us */
773 if (likely(skb)) {
774 struct hv_netvsc_packet *packet
775 = (struct hv_netvsc_packet *)skb->cb;
776 u32 send_index = packet->send_buf_index;
777 struct netvsc_stats_tx *tx_stats;
778
779 if (send_index != NETVSC_INVALID_INDEX)
780 netvsc_free_send_slot(net_device, send_index);
781 q_idx = packet->q_idx;
782
783 tx_stats = &net_device->chan_table[q_idx].tx_stats;
784
785 u64_stats_update_begin(&tx_stats->syncp);
786 tx_stats->packets += packet->total_packets;
787 tx_stats->bytes += packet->total_bytes;
788 u64_stats_update_end(&tx_stats->syncp);
789
790 netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
791 napi_consume_skb(skb, budget);
792 }
793
794 queue_sends =
795 atomic_dec_return(&net_device->chan_table[q_idx].queue_sends);
796
797 if (unlikely(net_device->destroy)) {
798 if (queue_sends == 0)
799 wake_up(&net_device->wait_drain);
800 } else {
801 struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx);
802
803 if (netif_tx_queue_stopped(txq) && !net_device->tx_disable &&
804 (hv_get_avail_to_write_percent(&channel->outbound) >
805 RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) {
806 netif_tx_wake_queue(txq);
807 ndev_ctx->eth_stats.wake_queue++;
808 }
809 }
810}
811
812static void netvsc_send_completion(struct net_device *ndev,
813 struct netvsc_device *net_device,
814 struct vmbus_channel *incoming_channel,
815 const struct vmpacket_descriptor *desc,
816 int budget)
817{
818 const struct nvsp_message *nvsp_packet;
819 u32 msglen = hv_pkt_datalen(desc);
820 struct nvsp_message *pkt_rqst;
821 u64 cmd_rqst;
822 u32 status;
823
824 /* First check if this is a VMBUS completion without data payload */
825 if (!msglen) {
826 cmd_rqst = incoming_channel->request_addr_callback(incoming_channel,
827 desc->trans_id);
828 if (cmd_rqst == VMBUS_RQST_ERROR) {
829 netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id);
830 return;
831 }
832
833 pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst;
834 switch (pkt_rqst->hdr.msg_type) {
835 case NVSP_MSG4_TYPE_SWITCH_DATA_PATH:
836 complete(&net_device->channel_init_wait);
837 break;
838
839 default:
840 netdev_err(ndev, "Unexpected VMBUS completion!!\n");
841 }
842 return;
843 }
844
845 /* Ensure packet is big enough to read header fields */
846 if (msglen < sizeof(struct nvsp_message_header)) {
847 netdev_err(ndev, "nvsp_message length too small: %u\n", msglen);
848 return;
849 }
850
851 nvsp_packet = hv_pkt_data(desc);
852 switch (nvsp_packet->hdr.msg_type) {
853 case NVSP_MSG_TYPE_INIT_COMPLETE:
854 if (msglen < sizeof(struct nvsp_message_header) +
855 sizeof(struct nvsp_message_init_complete)) {
856 netdev_err(ndev, "nvsp_msg length too small: %u\n",
857 msglen);
858 return;
859 }
860 break;
861
862 case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE:
863 if (msglen < sizeof(struct nvsp_message_header) +
864 sizeof(struct nvsp_1_message_send_receive_buffer_complete)) {
865 netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
866 msglen);
867 return;
868 }
869 break;
870
871 case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE:
872 if (msglen < sizeof(struct nvsp_message_header) +
873 sizeof(struct nvsp_1_message_send_send_buffer_complete)) {
874 netdev_err(ndev, "nvsp_msg1 length too small: %u\n",
875 msglen);
876 return;
877 }
878 break;
879
880 case NVSP_MSG5_TYPE_SUBCHANNEL:
881 if (msglen < sizeof(struct nvsp_message_header) +
882 sizeof(struct nvsp_5_subchannel_complete)) {
883 netdev_err(ndev, "nvsp_msg5 length too small: %u\n",
884 msglen);
885 return;
886 }
887 break;
888
889 case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE:
890 if (msglen < sizeof(struct nvsp_message_header) +
891 sizeof(struct nvsp_1_message_send_rndis_packet_complete)) {
892 if (net_ratelimit())
893 netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n",
894 msglen);
895 return;
896 }
897
898 /* If status indicates an error, output a message so we know
899 * there's a problem. But process the completion anyway so the
900 * resources are released.
901 */
902 status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status;
903 if (status != NVSP_STAT_SUCCESS && net_ratelimit())
904 netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n",
905 status);
906
907 netvsc_send_tx_complete(ndev, net_device, incoming_channel,
908 desc, budget);
909 return;
910
911 default:
912 netdev_err(ndev,
913 "Unknown send completion type %d received!!\n",
914 nvsp_packet->hdr.msg_type);
915 return;
916 }
917
918 /* Copy the response back */
919 memcpy(&net_device->channel_init_pkt, nvsp_packet,
920 sizeof(struct nvsp_message));
921 complete(&net_device->channel_init_wait);
922}
923
924static u32 netvsc_get_next_send_section(struct netvsc_device *net_device)
925{
926 unsigned long *map_addr = net_device->send_section_map;
927 unsigned int i;
928
929 for_each_clear_bit(i, map_addr, net_device->send_section_cnt) {
930 if (sync_test_and_set_bit(i, map_addr) == 0)
931 return i;
932 }
933
934 return NETVSC_INVALID_INDEX;
935}
936
937static void netvsc_copy_to_send_buf(struct netvsc_device *net_device,
938 unsigned int section_index,
939 u32 pend_size,
940 struct hv_netvsc_packet *packet,
941 struct rndis_message *rndis_msg,
942 struct hv_page_buffer *pb,
943 bool xmit_more)
944{
945 char *start = net_device->send_buf;
946 char *dest = start + (section_index * net_device->send_section_size)
947 + pend_size;
948 int i;
949 u32 padding = 0;
950 u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt :
951 packet->page_buf_cnt;
952 u32 remain;
953
954 /* Add padding */
955 remain = packet->total_data_buflen & (net_device->pkt_align - 1);
956 if (xmit_more && remain) {
957 padding = net_device->pkt_align - remain;
958 rndis_msg->msg_len += padding;
959 packet->total_data_buflen += padding;
960 }
961
962 for (i = 0; i < page_count; i++) {
963 char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT);
964 u32 offset = pb[i].offset;
965 u32 len = pb[i].len;
966
967 memcpy(dest, (src + offset), len);
968 dest += len;
969 }
970
971 if (padding)
972 memset(dest, 0, padding);
973}
974
975void netvsc_dma_unmap(struct hv_device *hv_dev,
976 struct hv_netvsc_packet *packet)
977{
978 int i;
979
980 if (!hv_is_isolation_supported())
981 return;
982
983 if (!packet->dma_range)
984 return;
985
986 for (i = 0; i < packet->page_buf_cnt; i++)
987 dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma,
988 packet->dma_range[i].mapping_size,
989 DMA_TO_DEVICE);
990
991 kfree(packet->dma_range);
992}
993
994/* netvsc_dma_map - Map swiotlb bounce buffer with data page of
995 * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation
996 * VM.
997 *
998 * In isolation VM, netvsc send buffer has been marked visible to
999 * host and so the data copied to send buffer doesn't need to use
1000 * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer()
1001 * may not be copied to send buffer and so these pages need to be
1002 * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do
1003 * that. The pfns in the struct hv_page_buffer need to be converted
1004 * to bounce buffer's pfn. The loop here is necessary because the
1005 * entries in the page buffer array are not necessarily full
1006 * pages of data. Each entry in the array has a separate offset and
1007 * len that may be non-zero, even for entries in the middle of the
1008 * array. And the entries are not physically contiguous. So each
1009 * entry must be individually mapped rather than as a contiguous unit.
1010 * So not use dma_map_sg() here.
1011 */
1012static int netvsc_dma_map(struct hv_device *hv_dev,
1013 struct hv_netvsc_packet *packet,
1014 struct hv_page_buffer *pb)
1015{
1016 u32 page_count = packet->page_buf_cnt;
1017 dma_addr_t dma;
1018 int i;
1019
1020 if (!hv_is_isolation_supported())
1021 return 0;
1022
1023 packet->dma_range = kcalloc(page_count,
1024 sizeof(*packet->dma_range),
1025 GFP_ATOMIC);
1026 if (!packet->dma_range)
1027 return -ENOMEM;
1028
1029 for (i = 0; i < page_count; i++) {
1030 char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT)
1031 + pb[i].offset);
1032 u32 len = pb[i].len;
1033
1034 dma = dma_map_single(&hv_dev->device, src, len,
1035 DMA_TO_DEVICE);
1036 if (dma_mapping_error(&hv_dev->device, dma)) {
1037 kfree(packet->dma_range);
1038 return -ENOMEM;
1039 }
1040
1041 /* pb[].offset and pb[].len are not changed during dma mapping
1042 * and so not reassign.
1043 */
1044 packet->dma_range[i].dma = dma;
1045 packet->dma_range[i].mapping_size = len;
1046 pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT;
1047 }
1048
1049 return 0;
1050}
1051
1052static inline int netvsc_send_pkt(
1053 struct hv_device *device,
1054 struct hv_netvsc_packet *packet,
1055 struct netvsc_device *net_device,
1056 struct hv_page_buffer *pb,
1057 struct sk_buff *skb)
1058{
1059 struct nvsp_message nvmsg;
1060 struct nvsp_1_message_send_rndis_packet *rpkt =
1061 &nvmsg.msg.v1_msg.send_rndis_pkt;
1062 struct netvsc_channel * const nvchan =
1063 &net_device->chan_table[packet->q_idx];
1064 struct vmbus_channel *out_channel = nvchan->channel;
1065 struct net_device *ndev = hv_get_drvdata(device);
1066 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1067 struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx);
1068 u64 req_id;
1069 int ret;
1070 u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound);
1071
1072 memset(&nvmsg, 0, sizeof(struct nvsp_message));
1073 nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT;
1074 if (skb)
1075 rpkt->channel_type = 0; /* 0 is RMC_DATA */
1076 else
1077 rpkt->channel_type = 1; /* 1 is RMC_CONTROL */
1078
1079 rpkt->send_buf_section_index = packet->send_buf_index;
1080 if (packet->send_buf_index == NETVSC_INVALID_INDEX)
1081 rpkt->send_buf_section_size = 0;
1082 else
1083 rpkt->send_buf_section_size = packet->total_data_buflen;
1084
1085 req_id = (ulong)skb;
1086
1087 if (out_channel->rescind)
1088 return -ENODEV;
1089
1090 trace_nvsp_send_pkt(ndev, out_channel, rpkt);
1091
1092 packet->dma_range = NULL;
1093 if (packet->page_buf_cnt) {
1094 if (packet->cp_partial)
1095 pb += packet->rmsg_pgcnt;
1096
1097 ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb);
1098 if (ret) {
1099 ret = -EAGAIN;
1100 goto exit;
1101 }
1102
1103 ret = vmbus_sendpacket_pagebuffer(out_channel,
1104 pb, packet->page_buf_cnt,
1105 &nvmsg, sizeof(nvmsg),
1106 req_id);
1107
1108 if (ret)
1109 netvsc_dma_unmap(ndev_ctx->device_ctx, packet);
1110 } else {
1111 ret = vmbus_sendpacket(out_channel,
1112 &nvmsg, sizeof(nvmsg),
1113 req_id, VM_PKT_DATA_INBAND,
1114 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1115 }
1116
1117exit:
1118 if (ret == 0) {
1119 atomic_inc_return(&nvchan->queue_sends);
1120
1121 if (ring_avail < RING_AVAIL_PERCENT_LOWATER) {
1122 netif_tx_stop_queue(txq);
1123 ndev_ctx->eth_stats.stop_queue++;
1124 }
1125 } else if (ret == -EAGAIN) {
1126 netif_tx_stop_queue(txq);
1127 ndev_ctx->eth_stats.stop_queue++;
1128 } else {
1129 netdev_err(ndev,
1130 "Unable to send packet pages %u len %u, ret %d\n",
1131 packet->page_buf_cnt, packet->total_data_buflen,
1132 ret);
1133 }
1134
1135 if (netif_tx_queue_stopped(txq) &&
1136 atomic_read(&nvchan->queue_sends) < 1 &&
1137 !net_device->tx_disable) {
1138 netif_tx_wake_queue(txq);
1139 ndev_ctx->eth_stats.wake_queue++;
1140 if (ret == -EAGAIN)
1141 ret = -ENOSPC;
1142 }
1143
1144 return ret;
1145}
1146
1147/* Move packet out of multi send data (msd), and clear msd */
1148static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send,
1149 struct sk_buff **msd_skb,
1150 struct multi_send_data *msdp)
1151{
1152 *msd_skb = msdp->skb;
1153 *msd_send = msdp->pkt;
1154 msdp->skb = NULL;
1155 msdp->pkt = NULL;
1156 msdp->count = 0;
1157}
1158
1159/* RCU already held by caller */
1160/* Batching/bouncing logic is designed to attempt to optimize
1161 * performance.
1162 *
1163 * For small, non-LSO packets we copy the packet to a send buffer
1164 * which is pre-registered with the Hyper-V side. This enables the
1165 * hypervisor to avoid remapping the aperture to access the packet
1166 * descriptor and data.
1167 *
1168 * If we already started using a buffer and the netdev is transmitting
1169 * a burst of packets, keep on copying into the buffer until it is
1170 * full or we are done collecting a burst. If there is an existing
1171 * buffer with space for the RNDIS descriptor but not the packet, copy
1172 * the RNDIS descriptor to the buffer, keeping the packet in place.
1173 *
1174 * If we do batching and send more than one packet using a single
1175 * NetVSC message, free the SKBs of the packets copied, except for the
1176 * last packet. This is done to streamline the handling of the case
1177 * where the last packet only had the RNDIS descriptor copied to the
1178 * send buffer, with the data pointers included in the NetVSC message.
1179 */
1180int netvsc_send(struct net_device *ndev,
1181 struct hv_netvsc_packet *packet,
1182 struct rndis_message *rndis_msg,
1183 struct hv_page_buffer *pb,
1184 struct sk_buff *skb,
1185 bool xdp_tx)
1186{
1187 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1188 struct netvsc_device *net_device
1189 = rcu_dereference_bh(ndev_ctx->nvdev);
1190 struct hv_device *device = ndev_ctx->device_ctx;
1191 int ret = 0;
1192 struct netvsc_channel *nvchan;
1193 u32 pktlen = packet->total_data_buflen, msd_len = 0;
1194 unsigned int section_index = NETVSC_INVALID_INDEX;
1195 struct multi_send_data *msdp;
1196 struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL;
1197 struct sk_buff *msd_skb = NULL;
1198 bool try_batch, xmit_more;
1199
1200 /* If device is rescinded, return error and packet will get dropped. */
1201 if (unlikely(!net_device || net_device->destroy))
1202 return -ENODEV;
1203
1204 nvchan = &net_device->chan_table[packet->q_idx];
1205 packet->send_buf_index = NETVSC_INVALID_INDEX;
1206 packet->cp_partial = false;
1207
1208 /* Send a control message or XDP packet directly without accessing
1209 * msd (Multi-Send Data) field which may be changed during data packet
1210 * processing.
1211 */
1212 if (!skb || xdp_tx)
1213 return netvsc_send_pkt(device, packet, net_device, pb, skb);
1214
1215 /* batch packets in send buffer if possible */
1216 msdp = &nvchan->msd;
1217 if (msdp->pkt)
1218 msd_len = msdp->pkt->total_data_buflen;
1219
1220 try_batch = msd_len > 0 && msdp->count < net_device->max_pkt;
1221 if (try_batch && msd_len + pktlen + net_device->pkt_align <
1222 net_device->send_section_size) {
1223 section_index = msdp->pkt->send_buf_index;
1224
1225 } else if (try_batch && msd_len + packet->rmsg_size <
1226 net_device->send_section_size) {
1227 section_index = msdp->pkt->send_buf_index;
1228 packet->cp_partial = true;
1229
1230 } else if (pktlen + net_device->pkt_align <
1231 net_device->send_section_size) {
1232 section_index = netvsc_get_next_send_section(net_device);
1233 if (unlikely(section_index == NETVSC_INVALID_INDEX)) {
1234 ++ndev_ctx->eth_stats.tx_send_full;
1235 } else {
1236 move_pkt_msd(&msd_send, &msd_skb, msdp);
1237 msd_len = 0;
1238 }
1239 }
1240
1241 /* Keep aggregating only if stack says more data is coming
1242 * and not doing mixed modes send and not flow blocked
1243 */
1244 xmit_more = netdev_xmit_more() &&
1245 !packet->cp_partial &&
1246 !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx));
1247
1248 if (section_index != NETVSC_INVALID_INDEX) {
1249 netvsc_copy_to_send_buf(net_device,
1250 section_index, msd_len,
1251 packet, rndis_msg, pb, xmit_more);
1252
1253 packet->send_buf_index = section_index;
1254
1255 if (packet->cp_partial) {
1256 packet->page_buf_cnt -= packet->rmsg_pgcnt;
1257 packet->total_data_buflen = msd_len + packet->rmsg_size;
1258 } else {
1259 packet->page_buf_cnt = 0;
1260 packet->total_data_buflen += msd_len;
1261 }
1262
1263 if (msdp->pkt) {
1264 packet->total_packets += msdp->pkt->total_packets;
1265 packet->total_bytes += msdp->pkt->total_bytes;
1266 }
1267
1268 if (msdp->skb)
1269 dev_consume_skb_any(msdp->skb);
1270
1271 if (xmit_more) {
1272 msdp->skb = skb;
1273 msdp->pkt = packet;
1274 msdp->count++;
1275 } else {
1276 cur_send = packet;
1277 msdp->skb = NULL;
1278 msdp->pkt = NULL;
1279 msdp->count = 0;
1280 }
1281 } else {
1282 move_pkt_msd(&msd_send, &msd_skb, msdp);
1283 cur_send = packet;
1284 }
1285
1286 if (msd_send) {
1287 int m_ret = netvsc_send_pkt(device, msd_send, net_device,
1288 NULL, msd_skb);
1289
1290 if (m_ret != 0) {
1291 netvsc_free_send_slot(net_device,
1292 msd_send->send_buf_index);
1293 dev_kfree_skb_any(msd_skb);
1294 }
1295 }
1296
1297 if (cur_send)
1298 ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb);
1299
1300 if (ret != 0 && section_index != NETVSC_INVALID_INDEX)
1301 netvsc_free_send_slot(net_device, section_index);
1302
1303 return ret;
1304}
1305
1306/* Send pending recv completions */
1307static int send_recv_completions(struct net_device *ndev,
1308 struct netvsc_device *nvdev,
1309 struct netvsc_channel *nvchan)
1310{
1311 struct multi_recv_comp *mrc = &nvchan->mrc;
1312 struct recv_comp_msg {
1313 struct nvsp_message_header hdr;
1314 u32 status;
1315 } __packed;
1316 struct recv_comp_msg msg = {
1317 .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE,
1318 };
1319 int ret;
1320
1321 while (mrc->first != mrc->next) {
1322 const struct recv_comp_data *rcd
1323 = mrc->slots + mrc->first;
1324
1325 msg.status = rcd->status;
1326 ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg),
1327 rcd->tid, VM_PKT_COMP, 0);
1328 if (unlikely(ret)) {
1329 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1330
1331 ++ndev_ctx->eth_stats.rx_comp_busy;
1332 return ret;
1333 }
1334
1335 if (++mrc->first == nvdev->recv_completion_cnt)
1336 mrc->first = 0;
1337 }
1338
1339 /* receive completion ring has been emptied */
1340 if (unlikely(nvdev->destroy))
1341 wake_up(&nvdev->wait_drain);
1342
1343 return 0;
1344}
1345
1346/* Count how many receive completions are outstanding */
1347static void recv_comp_slot_avail(const struct netvsc_device *nvdev,
1348 const struct multi_recv_comp *mrc,
1349 u32 *filled, u32 *avail)
1350{
1351 u32 count = nvdev->recv_completion_cnt;
1352
1353 if (mrc->next >= mrc->first)
1354 *filled = mrc->next - mrc->first;
1355 else
1356 *filled = (count - mrc->first) + mrc->next;
1357
1358 *avail = count - *filled - 1;
1359}
1360
1361/* Add receive complete to ring to send to host. */
1362static void enq_receive_complete(struct net_device *ndev,
1363 struct netvsc_device *nvdev, u16 q_idx,
1364 u64 tid, u32 status)
1365{
1366 struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx];
1367 struct multi_recv_comp *mrc = &nvchan->mrc;
1368 struct recv_comp_data *rcd;
1369 u32 filled, avail;
1370
1371 recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1372
1373 if (unlikely(filled > NAPI_POLL_WEIGHT)) {
1374 send_recv_completions(ndev, nvdev, nvchan);
1375 recv_comp_slot_avail(nvdev, mrc, &filled, &avail);
1376 }
1377
1378 if (unlikely(!avail)) {
1379 netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n",
1380 q_idx, tid);
1381 return;
1382 }
1383
1384 rcd = mrc->slots + mrc->next;
1385 rcd->tid = tid;
1386 rcd->status = status;
1387
1388 if (++mrc->next == nvdev->recv_completion_cnt)
1389 mrc->next = 0;
1390}
1391
1392static int netvsc_receive(struct net_device *ndev,
1393 struct netvsc_device *net_device,
1394 struct netvsc_channel *nvchan,
1395 const struct vmpacket_descriptor *desc)
1396{
1397 struct net_device_context *net_device_ctx = netdev_priv(ndev);
1398 struct vmbus_channel *channel = nvchan->channel;
1399 const struct vmtransfer_page_packet_header *vmxferpage_packet
1400 = container_of(desc, const struct vmtransfer_page_packet_header, d);
1401 const struct nvsp_message *nvsp = hv_pkt_data(desc);
1402 u32 msglen = hv_pkt_datalen(desc);
1403 u16 q_idx = channel->offermsg.offer.sub_channel_index;
1404 char *recv_buf = net_device->recv_buf;
1405 u32 status = NVSP_STAT_SUCCESS;
1406 int i;
1407 int count = 0;
1408
1409 /* Ensure packet is big enough to read header fields */
1410 if (msglen < sizeof(struct nvsp_message_header)) {
1411 netif_err(net_device_ctx, rx_err, ndev,
1412 "invalid nvsp header, length too small: %u\n",
1413 msglen);
1414 return 0;
1415 }
1416
1417 /* Make sure this is a valid nvsp packet */
1418 if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) {
1419 netif_err(net_device_ctx, rx_err, ndev,
1420 "Unknown nvsp packet type received %u\n",
1421 nvsp->hdr.msg_type);
1422 return 0;
1423 }
1424
1425 /* Validate xfer page pkt header */
1426 if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) {
1427 netif_err(net_device_ctx, rx_err, ndev,
1428 "Invalid xfer page pkt, offset too small: %u\n",
1429 desc->offset8 << 3);
1430 return 0;
1431 }
1432
1433 if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) {
1434 netif_err(net_device_ctx, rx_err, ndev,
1435 "Invalid xfer page set id - expecting %x got %x\n",
1436 NETVSC_RECEIVE_BUFFER_ID,
1437 vmxferpage_packet->xfer_pageset_id);
1438 return 0;
1439 }
1440
1441 count = vmxferpage_packet->range_cnt;
1442
1443 /* Check count for a valid value */
1444 if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) {
1445 netif_err(net_device_ctx, rx_err, ndev,
1446 "Range count is not valid: %d\n",
1447 count);
1448 return 0;
1449 }
1450
1451 /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */
1452 for (i = 0; i < count; i++) {
1453 u32 offset = vmxferpage_packet->ranges[i].byte_offset;
1454 u32 buflen = vmxferpage_packet->ranges[i].byte_count;
1455 void *data;
1456 int ret;
1457
1458 if (unlikely(offset > net_device->recv_buf_size ||
1459 buflen > net_device->recv_buf_size - offset)) {
1460 nvchan->rsc.cnt = 0;
1461 status = NVSP_STAT_FAIL;
1462 netif_err(net_device_ctx, rx_err, ndev,
1463 "Packet offset:%u + len:%u too big\n",
1464 offset, buflen);
1465
1466 continue;
1467 }
1468
1469 /* We're going to copy (sections of) the packet into nvchan->recv_buf;
1470 * make sure that nvchan->recv_buf is large enough to hold the packet.
1471 */
1472 if (unlikely(buflen > net_device->recv_section_size)) {
1473 nvchan->rsc.cnt = 0;
1474 status = NVSP_STAT_FAIL;
1475 netif_err(net_device_ctx, rx_err, ndev,
1476 "Packet too big: buflen=%u recv_section_size=%u\n",
1477 buflen, net_device->recv_section_size);
1478
1479 continue;
1480 }
1481
1482 data = recv_buf + offset;
1483
1484 nvchan->rsc.is_last = (i == count - 1);
1485
1486 trace_rndis_recv(ndev, q_idx, data);
1487
1488 /* Pass it to the upper layer */
1489 ret = rndis_filter_receive(ndev, net_device,
1490 nvchan, data, buflen);
1491
1492 if (unlikely(ret != NVSP_STAT_SUCCESS)) {
1493 /* Drop incomplete packet */
1494 nvchan->rsc.cnt = 0;
1495 status = NVSP_STAT_FAIL;
1496 }
1497 }
1498
1499 enq_receive_complete(ndev, net_device, q_idx,
1500 vmxferpage_packet->d.trans_id, status);
1501
1502 return count;
1503}
1504
1505static void netvsc_send_table(struct net_device *ndev,
1506 struct netvsc_device *nvscdev,
1507 const struct nvsp_message *nvmsg,
1508 u32 msglen)
1509{
1510 struct net_device_context *net_device_ctx = netdev_priv(ndev);
1511 u32 count, offset, *tab;
1512 int i;
1513
1514 /* Ensure packet is big enough to read send_table fields */
1515 if (msglen < sizeof(struct nvsp_message_header) +
1516 sizeof(struct nvsp_5_send_indirect_table)) {
1517 netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen);
1518 return;
1519 }
1520
1521 count = nvmsg->msg.v5_msg.send_table.count;
1522 offset = nvmsg->msg.v5_msg.send_table.offset;
1523
1524 if (count != VRSS_SEND_TAB_SIZE) {
1525 netdev_err(ndev, "Received wrong send-table size:%u\n", count);
1526 return;
1527 }
1528
1529 /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be
1530 * wrong due to a host bug. So fix the offset here.
1531 */
1532 if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 &&
1533 msglen >= sizeof(struct nvsp_message_header) +
1534 sizeof(union nvsp_6_message_uber) + count * sizeof(u32))
1535 offset = sizeof(struct nvsp_message_header) +
1536 sizeof(union nvsp_6_message_uber);
1537
1538 /* Boundary check for all versions */
1539 if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) {
1540 netdev_err(ndev, "Received send-table offset too big:%u\n",
1541 offset);
1542 return;
1543 }
1544
1545 tab = (void *)nvmsg + offset;
1546
1547 for (i = 0; i < count; i++)
1548 net_device_ctx->tx_table[i] = tab[i];
1549}
1550
1551static void netvsc_send_vf(struct net_device *ndev,
1552 const struct nvsp_message *nvmsg,
1553 u32 msglen)
1554{
1555 struct net_device_context *net_device_ctx = netdev_priv(ndev);
1556
1557 /* Ensure packet is big enough to read its fields */
1558 if (msglen < sizeof(struct nvsp_message_header) +
1559 sizeof(struct nvsp_4_send_vf_association)) {
1560 netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen);
1561 return;
1562 }
1563
1564 net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated;
1565 net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial;
1566
1567 if (net_device_ctx->vf_alloc)
1568 complete(&net_device_ctx->vf_add);
1569
1570 netdev_info(ndev, "VF slot %u %s\n",
1571 net_device_ctx->vf_serial,
1572 net_device_ctx->vf_alloc ? "added" : "removed");
1573}
1574
1575static void netvsc_receive_inband(struct net_device *ndev,
1576 struct netvsc_device *nvscdev,
1577 const struct vmpacket_descriptor *desc)
1578{
1579 const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1580 u32 msglen = hv_pkt_datalen(desc);
1581
1582 /* Ensure packet is big enough to read header fields */
1583 if (msglen < sizeof(struct nvsp_message_header)) {
1584 netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen);
1585 return;
1586 }
1587
1588 switch (nvmsg->hdr.msg_type) {
1589 case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE:
1590 netvsc_send_table(ndev, nvscdev, nvmsg, msglen);
1591 break;
1592
1593 case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION:
1594 if (hv_is_isolation_supported())
1595 netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n");
1596 else
1597 netvsc_send_vf(ndev, nvmsg, msglen);
1598 break;
1599 }
1600}
1601
1602static int netvsc_process_raw_pkt(struct hv_device *device,
1603 struct netvsc_channel *nvchan,
1604 struct netvsc_device *net_device,
1605 struct net_device *ndev,
1606 const struct vmpacket_descriptor *desc,
1607 int budget)
1608{
1609 struct vmbus_channel *channel = nvchan->channel;
1610 const struct nvsp_message *nvmsg = hv_pkt_data(desc);
1611
1612 trace_nvsp_recv(ndev, channel, nvmsg);
1613
1614 switch (desc->type) {
1615 case VM_PKT_COMP:
1616 netvsc_send_completion(ndev, net_device, channel, desc, budget);
1617 break;
1618
1619 case VM_PKT_DATA_USING_XFER_PAGES:
1620 return netvsc_receive(ndev, net_device, nvchan, desc);
1621
1622 case VM_PKT_DATA_INBAND:
1623 netvsc_receive_inband(ndev, net_device, desc);
1624 break;
1625
1626 default:
1627 netdev_err(ndev, "unhandled packet type %d, tid %llx\n",
1628 desc->type, desc->trans_id);
1629 break;
1630 }
1631
1632 return 0;
1633}
1634
1635static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel)
1636{
1637 struct vmbus_channel *primary = channel->primary_channel;
1638
1639 return primary ? primary->device_obj : channel->device_obj;
1640}
1641
1642/* Network processing softirq
1643 * Process data in incoming ring buffer from host
1644 * Stops when ring is empty or budget is met or exceeded.
1645 */
1646int netvsc_poll(struct napi_struct *napi, int budget)
1647{
1648 struct netvsc_channel *nvchan
1649 = container_of(napi, struct netvsc_channel, napi);
1650 struct netvsc_device *net_device = nvchan->net_device;
1651 struct vmbus_channel *channel = nvchan->channel;
1652 struct hv_device *device = netvsc_channel_to_device(channel);
1653 struct net_device *ndev = hv_get_drvdata(device);
1654 int work_done = 0;
1655 int ret;
1656
1657 /* If starting a new interval */
1658 if (!nvchan->desc)
1659 nvchan->desc = hv_pkt_iter_first(channel);
1660
1661 nvchan->xdp_flush = false;
1662
1663 while (nvchan->desc && work_done < budget) {
1664 work_done += netvsc_process_raw_pkt(device, nvchan, net_device,
1665 ndev, nvchan->desc, budget);
1666 nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc);
1667 }
1668
1669 if (nvchan->xdp_flush)
1670 xdp_do_flush();
1671
1672 /* Send any pending receive completions */
1673 ret = send_recv_completions(ndev, net_device, nvchan);
1674
1675 /* If it did not exhaust NAPI budget this time
1676 * and not doing busy poll
1677 * then re-enable host interrupts
1678 * and reschedule if ring is not empty
1679 * or sending receive completion failed.
1680 */
1681 if (work_done < budget &&
1682 napi_complete_done(napi, work_done) &&
1683 (ret || hv_end_read(&channel->inbound)) &&
1684 napi_schedule_prep(napi)) {
1685 hv_begin_read(&channel->inbound);
1686 __napi_schedule(napi);
1687 }
1688
1689 /* Driver may overshoot since multiple packets per descriptor */
1690 return min(work_done, budget);
1691}
1692
1693/* Call back when data is available in host ring buffer.
1694 * Processing is deferred until network softirq (NAPI)
1695 */
1696void netvsc_channel_cb(void *context)
1697{
1698 struct netvsc_channel *nvchan = context;
1699 struct vmbus_channel *channel = nvchan->channel;
1700 struct hv_ring_buffer_info *rbi = &channel->inbound;
1701
1702 /* preload first vmpacket descriptor */
1703 prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index);
1704
1705 if (napi_schedule_prep(&nvchan->napi)) {
1706 /* disable interrupts from host */
1707 hv_begin_read(rbi);
1708
1709 __napi_schedule_irqoff(&nvchan->napi);
1710 }
1711}
1712
1713/*
1714 * netvsc_device_add - Callback when the device belonging to this
1715 * driver is added
1716 */
1717struct netvsc_device *netvsc_device_add(struct hv_device *device,
1718 const struct netvsc_device_info *device_info)
1719{
1720 int i, ret = 0;
1721 struct netvsc_device *net_device;
1722 struct net_device *ndev = hv_get_drvdata(device);
1723 struct net_device_context *net_device_ctx = netdev_priv(ndev);
1724
1725 net_device = alloc_net_device();
1726 if (!net_device)
1727 return ERR_PTR(-ENOMEM);
1728
1729 for (i = 0; i < VRSS_SEND_TAB_SIZE; i++)
1730 net_device_ctx->tx_table[i] = 0;
1731
1732 /* Because the device uses NAPI, all the interrupt batching and
1733 * control is done via Net softirq, not the channel handling
1734 */
1735 set_channel_read_mode(device->channel, HV_CALL_ISR);
1736
1737 /* If we're reopening the device we may have multiple queues, fill the
1738 * chn_table with the default channel to use it before subchannels are
1739 * opened.
1740 * Initialize the channel state before we open;
1741 * we can be interrupted as soon as we open the channel.
1742 */
1743
1744 for (i = 0; i < VRSS_CHANNEL_MAX; i++) {
1745 struct netvsc_channel *nvchan = &net_device->chan_table[i];
1746
1747 nvchan->channel = device->channel;
1748 nvchan->net_device = net_device;
1749 u64_stats_init(&nvchan->tx_stats.syncp);
1750 u64_stats_init(&nvchan->rx_stats.syncp);
1751
1752 ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0);
1753
1754 if (ret) {
1755 netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret);
1756 goto cleanup2;
1757 }
1758
1759 ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq,
1760 MEM_TYPE_PAGE_SHARED, NULL);
1761
1762 if (ret) {
1763 netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret);
1764 goto cleanup2;
1765 }
1766 }
1767
1768 /* Enable NAPI handler before init callbacks */
1769 netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll);
1770
1771 /* Open the channel */
1772 device->channel->next_request_id_callback = vmbus_next_request_id;
1773 device->channel->request_addr_callback = vmbus_request_addr;
1774 device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes);
1775 device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE;
1776
1777 ret = vmbus_open(device->channel, netvsc_ring_bytes,
1778 netvsc_ring_bytes, NULL, 0,
1779 netvsc_channel_cb, net_device->chan_table);
1780
1781 if (ret != 0) {
1782 netdev_err(ndev, "unable to open channel: %d\n", ret);
1783 goto cleanup;
1784 }
1785
1786 /* Channel is opened */
1787 netdev_dbg(ndev, "hv_netvsc channel opened successfully\n");
1788
1789 napi_enable(&net_device->chan_table[0].napi);
1790
1791 /* Connect with the NetVsp */
1792 ret = netvsc_connect_vsp(device, net_device, device_info);
1793 if (ret != 0) {
1794 netdev_err(ndev,
1795 "unable to connect to NetVSP - %d\n", ret);
1796 goto close;
1797 }
1798
1799 /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is
1800 * populated.
1801 */
1802 rcu_assign_pointer(net_device_ctx->nvdev, net_device);
1803
1804 return net_device;
1805
1806close:
1807 RCU_INIT_POINTER(net_device_ctx->nvdev, NULL);
1808 napi_disable(&net_device->chan_table[0].napi);
1809
1810 /* Now, we can close the channel safely */
1811 vmbus_close(device->channel);
1812
1813cleanup:
1814 netif_napi_del(&net_device->chan_table[0].napi);
1815
1816cleanup2:
1817 free_netvsc_device(&net_device->rcu);
1818
1819 return ERR_PTR(ret);
1820}