Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "SMP alternatives: " fmt
   3
   4#include <linux/module.h>
   5#include <linux/sched.h>
   6#include <linux/perf_event.h>
   7#include <linux/mutex.h>
   8#include <linux/list.h>
   9#include <linux/stringify.h>
  10#include <linux/highmem.h>
  11#include <linux/mm.h>
  12#include <linux/vmalloc.h>
  13#include <linux/memory.h>
  14#include <linux/stop_machine.h>
  15#include <linux/slab.h>
  16#include <linux/kdebug.h>
  17#include <linux/kprobes.h>
  18#include <linux/mmu_context.h>
  19#include <linux/bsearch.h>
  20#include <linux/sync_core.h>
  21#include <asm/text-patching.h>
  22#include <asm/alternative.h>
  23#include <asm/sections.h>
  24#include <asm/mce.h>
  25#include <asm/nmi.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/insn.h>
  29#include <asm/io.h>
  30#include <asm/fixmap.h>
  31#include <asm/paravirt.h>
  32#include <asm/asm-prototypes.h>
 
  33
  34int __read_mostly alternatives_patched;
  35
  36EXPORT_SYMBOL_GPL(alternatives_patched);
  37
  38#define MAX_PATCH_LEN (255-1)
  39
  40static int __initdata_or_module debug_alternative;
 
 
 
 
 
 
 
  41
  42static int __init debug_alt(char *str)
  43{
  44	debug_alternative = 1;
 
 
 
 
 
  45	return 1;
  46}
  47__setup("debug-alternative", debug_alt);
  48
  49static int noreplace_smp;
  50
  51static int __init setup_noreplace_smp(char *str)
  52{
  53	noreplace_smp = 1;
  54	return 1;
  55}
  56__setup("noreplace-smp", setup_noreplace_smp);
  57
  58#define DPRINTK(fmt, args...)						\
  59do {									\
  60	if (debug_alternative)						\
  61		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
  62} while (0)
  63
  64#define DUMP_BYTES(buf, len, fmt, args...)				\
  65do {									\
  66	if (unlikely(debug_alternative)) {				\
  67		int j;							\
  68									\
  69		if (!(len))						\
  70			break;						\
  71									\
  72		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
  73		for (j = 0; j < (len) - 1; j++)				\
  74			printk(KERN_CONT "%02hhx ", buf[j]);		\
  75		printk(KERN_CONT "%02hhx\n", buf[j]);			\
  76	}								\
  77} while (0)
  78
  79static const unsigned char x86nops[] =
  80{
  81	BYTES_NOP1,
  82	BYTES_NOP2,
  83	BYTES_NOP3,
  84	BYTES_NOP4,
  85	BYTES_NOP5,
  86	BYTES_NOP6,
  87	BYTES_NOP7,
  88	BYTES_NOP8,
 
 
 
 
 
  89};
  90
  91const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
  92{
  93	NULL,
  94	x86nops,
  95	x86nops + 1,
  96	x86nops + 1 + 2,
  97	x86nops + 1 + 2 + 3,
  98	x86nops + 1 + 2 + 3 + 4,
  99	x86nops + 1 + 2 + 3 + 4 + 5,
 100	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
 101	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 
 
 
 
 
 102};
 103
 104/* Use this to add nops to a buffer, then text_poke the whole buffer. */
 105static void __init_or_module add_nops(void *insns, unsigned int len)
 
 
 
 
 
 
 
 
 106{
 107	while (len > 0) {
 108		unsigned int noplen = len;
 109		if (noplen > ASM_NOP_MAX)
 110			noplen = ASM_NOP_MAX;
 111		memcpy(insns, x86_nops[noplen], noplen);
 112		insns += noplen;
 113		len -= noplen;
 
 114	}
 
 
 
 
 
 
 
 
 
 
 
 115}
 116
 117extern s32 __retpoline_sites[], __retpoline_sites_end[];
 118extern s32 __return_sites[], __return_sites_end[];
 119extern s32 __cfi_sites[], __cfi_sites_end[];
 120extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
 121extern struct alt_instr __alt_instructions[], __alt_instructions_end[];
 122extern s32 __smp_locks[], __smp_locks_end[];
 123void text_poke_early(void *addr, const void *opcode, size_t len);
 124
 125/*
 126 * Are we looking at a near JMP with a 1 or 4-byte displacement.
 127 */
 128static inline bool is_jmp(const u8 opcode)
 129{
 130	return opcode == 0xeb || opcode == 0xe9;
 
 
 
 
 
 
 
 
 
 
 
 131}
 132
 133static void __init_or_module
 134recompute_jump(struct alt_instr *a, u8 *orig_insn, u8 *repl_insn, u8 *insn_buff)
 
 
 
 135{
 136	u8 *next_rip, *tgt_rip;
 137	s32 n_dspl, o_dspl;
 138	int repl_len;
 139
 140	if (a->replacementlen != 5)
 141		return;
 142
 143	o_dspl = *(s32 *)(insn_buff + 1);
 
 
 144
 145	/* next_rip of the replacement JMP */
 146	next_rip = repl_insn + a->replacementlen;
 147	/* target rip of the replacement JMP */
 148	tgt_rip  = next_rip + o_dspl;
 149	n_dspl = tgt_rip - orig_insn;
 150
 151	DPRINTK("target RIP: %px, new_displ: 0x%x", tgt_rip, n_dspl);
 152
 153	if (tgt_rip - orig_insn >= 0) {
 154		if (n_dspl - 2 <= 127)
 155			goto two_byte_jmp;
 156		else
 157			goto five_byte_jmp;
 158	/* negative offset */
 159	} else {
 160		if (((n_dspl - 2) & 0xff) == (n_dspl - 2))
 161			goto two_byte_jmp;
 162		else
 163			goto five_byte_jmp;
 164	}
 165
 166two_byte_jmp:
 167	n_dspl -= 2;
 168
 169	insn_buff[0] = 0xeb;
 170	insn_buff[1] = (s8)n_dspl;
 171	add_nops(insn_buff + 2, 3);
 172
 173	repl_len = 2;
 174	goto done;
 
 
 
 
 
 
 175
 176five_byte_jmp:
 177	n_dspl -= 5;
 
 
 
 
 
 178
 179	insn_buff[0] = 0xe9;
 180	*(s32 *)&insn_buff[1] = n_dspl;
 181
 182	repl_len = 5;
 
 
 183
 184done:
 
 
 
 185
 186	DPRINTK("final displ: 0x%08x, JMP 0x%lx",
 187		n_dspl, (unsigned long)orig_insn + n_dspl + repl_len);
 188}
 189
 190/*
 191 * optimize_nops_range() - Optimize a sequence of single byte NOPs (0x90)
 192 *
 193 * @instr: instruction byte stream
 194 * @instrlen: length of the above
 195 * @off: offset within @instr where the first NOP has been detected
 196 *
 197 * Return: number of NOPs found (and replaced).
 198 */
 199static __always_inline int optimize_nops_range(u8 *instr, u8 instrlen, int off)
 200{
 201	unsigned long flags;
 202	int i = off, nnops;
 203
 204	while (i < instrlen) {
 205		if (instr[i] != 0x90)
 206			break;
 207
 208		i++;
 209	}
 
 
 210
 211	nnops = i - off;
 
 
 212
 213	if (nnops <= 1)
 214		return nnops;
 
 215
 216	local_irq_save(flags);
 217	add_nops(instr + off, nnops);
 
 218	local_irq_restore(flags);
 219
 220	DUMP_BYTES(instr, instrlen, "%px: [%d:%d) optimized NOPs: ", instr, off, i);
 221
 222	return nnops;
 223}
 224
 225/*
 226 * "noinline" to cause control flow change and thus invalidate I$ and
 227 * cause refetch after modification.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228 */
 229static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
 
 
 
 
 
 
 
 
 
 
 
 230{
 231	struct insn insn;
 232	int i = 0;
 
 
 
 
 
 233
 
 
 
 
 234	/*
 235	 * Jump over the non-NOP insns and optimize single-byte NOPs into bigger
 236	 * ones.
 237	 */
 238	for (;;) {
 239		if (insn_decode_kernel(&insn, &instr[i]))
 240			return;
 241
 242		/*
 243		 * See if this and any potentially following NOPs can be
 244		 * optimized.
 245		 */
 246		if (insn.length == 1 && insn.opcode.bytes[0] == 0x90)
 247			i += optimize_nops_range(instr, len, i);
 248		else
 249			i += insn.length;
 250
 251		if (i >= len)
 
 
 
 252			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253	}
 254}
 255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256/*
 257 * Replace instructions with better alternatives for this CPU type. This runs
 258 * before SMP is initialized to avoid SMP problems with self modifying code.
 259 * This implies that asymmetric systems where APs have less capabilities than
 260 * the boot processor are not handled. Tough. Make sure you disable such
 261 * features by hand.
 262 *
 263 * Marked "noinline" to cause control flow change and thus insn cache
 264 * to refetch changed I$ lines.
 265 */
 266void __init_or_module noinline apply_alternatives(struct alt_instr *start,
 267						  struct alt_instr *end)
 268{
 269	struct alt_instr *a;
 270	u8 *instr, *replacement;
 271	u8 insn_buff[MAX_PATCH_LEN];
 272
 273	DPRINTK("alt table %px, -> %px", start, end);
 
 
 
 
 
 
 
 
 
 
 
 274	/*
 275	 * The scan order should be from start to end. A later scanned
 276	 * alternative code can overwrite previously scanned alternative code.
 277	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
 278	 * patch code.
 279	 *
 280	 * So be careful if you want to change the scan order to any other
 281	 * order.
 282	 */
 283	for (a = start; a < end; a++) {
 284		int insn_buff_sz = 0;
 285		/* Mask away "NOT" flag bit for feature to test. */
 286		u16 feature = a->cpuid & ~ALTINSTR_FLAG_INV;
 287
 288		instr = (u8 *)&a->instr_offset + a->instr_offset;
 289		replacement = (u8 *)&a->repl_offset + a->repl_offset;
 290		BUG_ON(a->instrlen > sizeof(insn_buff));
 291		BUG_ON(feature >= (NCAPINTS + NBUGINTS) * 32);
 292
 293		/*
 294		 * Patch if either:
 295		 * - feature is present
 296		 * - feature not present but ALTINSTR_FLAG_INV is set to mean,
 297		 *   patch if feature is *NOT* present.
 298		 */
 299		if (!boot_cpu_has(feature) == !(a->cpuid & ALTINSTR_FLAG_INV))
 300			goto next;
 
 
 301
 302		DPRINTK("feat: %s%d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d)",
 303			(a->cpuid & ALTINSTR_FLAG_INV) ? "!" : "",
 304			feature >> 5,
 305			feature & 0x1f,
 306			instr, instr, a->instrlen,
 307			replacement, a->replacementlen);
 308
 309		DUMP_BYTES(instr, a->instrlen, "%px:   old_insn: ", instr);
 310		DUMP_BYTES(replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
 311
 312		memcpy(insn_buff, replacement, a->replacementlen);
 313		insn_buff_sz = a->replacementlen;
 314
 315		/*
 316		 * 0xe8 is a relative jump; fix the offset.
 317		 *
 318		 * Instruction length is checked before the opcode to avoid
 319		 * accessing uninitialized bytes for zero-length replacements.
 320		 */
 321		if (a->replacementlen == 5 && *insn_buff == 0xe8) {
 322			*(s32 *)(insn_buff + 1) += replacement - instr;
 323			DPRINTK("Fix CALL offset: 0x%x, CALL 0x%lx",
 324				*(s32 *)(insn_buff + 1),
 325				(unsigned long)instr + *(s32 *)(insn_buff + 1) + 5);
 326		}
 327
 328		if (a->replacementlen && is_jmp(replacement[0]))
 329			recompute_jump(a, instr, replacement, insn_buff);
 330
 331		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
 332			insn_buff[insn_buff_sz] = 0x90;
 333
 334		DUMP_BYTES(insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
 335
 336		text_poke_early(instr, insn_buff, insn_buff_sz);
 
 
 337
 338next:
 339		optimize_nops(instr, a->instrlen);
 340	}
 
 
 
 
 
 
 
 
 341}
 342
 343#if defined(CONFIG_RETPOLINE) && defined(CONFIG_OBJTOOL)
 344
 345/*
 346 * CALL/JMP *%\reg
 347 */
 348static int emit_indirect(int op, int reg, u8 *bytes)
 349{
 350	int i = 0;
 351	u8 modrm;
 352
 353	switch (op) {
 354	case CALL_INSN_OPCODE:
 355		modrm = 0x10; /* Reg = 2; CALL r/m */
 356		break;
 357
 358	case JMP32_INSN_OPCODE:
 359		modrm = 0x20; /* Reg = 4; JMP r/m */
 360		break;
 361
 362	default:
 363		WARN_ON_ONCE(1);
 364		return -1;
 365	}
 366
 367	if (reg >= 8) {
 368		bytes[i++] = 0x41; /* REX.B prefix */
 369		reg -= 8;
 370	}
 371
 372	modrm |= 0xc0; /* Mod = 3 */
 373	modrm += reg;
 374
 375	bytes[i++] = 0xff; /* opcode */
 376	bytes[i++] = modrm;
 377
 378	return i;
 379}
 380
 381static inline bool is_jcc32(struct insn *insn)
 382{
 383	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
 384	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
 385}
 386
 387static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
 388{
 389	u8 op = insn->opcode.bytes[0];
 390	int i = 0;
 391
 392	/*
 393	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
 394	 * tail-calls. Deal with them.
 395	 */
 396	if (is_jcc32(insn)) {
 397		bytes[i++] = op;
 398		op = insn->opcode.bytes[1];
 399		goto clang_jcc;
 400	}
 401
 402	if (insn->length == 6)
 403		bytes[i++] = 0x2e; /* CS-prefix */
 404
 405	switch (op) {
 406	case CALL_INSN_OPCODE:
 407		__text_gen_insn(bytes+i, op, addr+i,
 408				__x86_indirect_call_thunk_array[reg],
 409				CALL_INSN_SIZE);
 410		i += CALL_INSN_SIZE;
 411		break;
 412
 413	case JMP32_INSN_OPCODE:
 414clang_jcc:
 415		__text_gen_insn(bytes+i, op, addr+i,
 416				__x86_indirect_jump_thunk_array[reg],
 417				JMP32_INSN_SIZE);
 418		i += JMP32_INSN_SIZE;
 419		break;
 420
 421	default:
 422		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
 423		return -1;
 424	}
 425
 426	WARN_ON_ONCE(i != insn->length);
 427
 428	return i;
 429}
 430
 431/*
 432 * Rewrite the compiler generated retpoline thunk calls.
 433 *
 434 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
 435 * indirect instructions, avoiding the extra indirection.
 436 *
 437 * For example, convert:
 438 *
 439 *   CALL __x86_indirect_thunk_\reg
 440 *
 441 * into:
 442 *
 443 *   CALL *%\reg
 444 *
 445 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
 446 */
 447static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
 448{
 449	retpoline_thunk_t *target;
 450	int reg, ret, i = 0;
 451	u8 op, cc;
 452
 453	target = addr + insn->length + insn->immediate.value;
 454	reg = target - __x86_indirect_thunk_array;
 455
 456	if (WARN_ON_ONCE(reg & ~0xf))
 457		return -1;
 458
 459	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
 460	BUG_ON(reg == 4);
 461
 462	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
 463	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
 464		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
 465			return emit_call_track_retpoline(addr, insn, reg, bytes);
 466
 467		return -1;
 468	}
 469
 470	op = insn->opcode.bytes[0];
 471
 472	/*
 473	 * Convert:
 474	 *
 475	 *   Jcc.d32 __x86_indirect_thunk_\reg
 476	 *
 477	 * into:
 478	 *
 479	 *   Jncc.d8 1f
 480	 *   [ LFENCE ]
 481	 *   JMP *%\reg
 482	 *   [ NOP ]
 483	 * 1:
 484	 */
 485	if (is_jcc32(insn)) {
 486		cc = insn->opcode.bytes[1] & 0xf;
 487		cc ^= 1; /* invert condition */
 488
 489		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
 490		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
 491
 492		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
 493		op = JMP32_INSN_OPCODE;
 494	}
 495
 496	/*
 497	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
 498	 */
 499	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
 500		bytes[i++] = 0x0f;
 501		bytes[i++] = 0xae;
 502		bytes[i++] = 0xe8; /* LFENCE */
 503	}
 504
 505	ret = emit_indirect(op, reg, bytes + i);
 506	if (ret < 0)
 507		return ret;
 508	i += ret;
 509
 510	/*
 511	 * The compiler is supposed to EMIT an INT3 after every unconditional
 512	 * JMP instruction due to AMD BTC. However, if the compiler is too old
 513	 * or SLS isn't enabled, we still need an INT3 after indirect JMPs
 514	 * even on Intel.
 515	 */
 516	if (op == JMP32_INSN_OPCODE && i < insn->length)
 517		bytes[i++] = INT3_INSN_OPCODE;
 518
 519	for (; i < insn->length;)
 520		bytes[i++] = BYTES_NOP1;
 521
 522	return i;
 523}
 524
 525/*
 526 * Generated by 'objtool --retpoline'.
 527 */
 528void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
 529{
 530	s32 *s;
 531
 532	for (s = start; s < end; s++) {
 533		void *addr = (void *)s + *s;
 534		struct insn insn;
 535		int len, ret;
 536		u8 bytes[16];
 537		u8 op1, op2;
 538
 539		ret = insn_decode_kernel(&insn, addr);
 540		if (WARN_ON_ONCE(ret < 0))
 541			continue;
 542
 543		op1 = insn.opcode.bytes[0];
 544		op2 = insn.opcode.bytes[1];
 545
 546		switch (op1) {
 547		case CALL_INSN_OPCODE:
 548		case JMP32_INSN_OPCODE:
 549			break;
 550
 551		case 0x0f: /* escape */
 552			if (op2 >= 0x80 && op2 <= 0x8f)
 553				break;
 554			fallthrough;
 555		default:
 556			WARN_ON_ONCE(1);
 557			continue;
 558		}
 559
 560		DPRINTK("retpoline at: %pS (%px) len: %d to: %pS",
 561			addr, addr, insn.length,
 562			addr + insn.length + insn.immediate.value);
 563
 564		len = patch_retpoline(addr, &insn, bytes);
 565		if (len == insn.length) {
 566			optimize_nops(bytes, len);
 567			DUMP_BYTES(((u8*)addr),  len, "%px: orig: ", addr);
 568			DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
 569			text_poke_early(addr, bytes, len);
 570		}
 571	}
 572}
 573
 574#ifdef CONFIG_RETHUNK
 575
 576#ifdef CONFIG_CALL_THUNKS
 577void (*x86_return_thunk)(void) __ro_after_init = &__x86_return_thunk;
 578#endif
 579
 580/*
 581 * Rewrite the compiler generated return thunk tail-calls.
 582 *
 583 * For example, convert:
 584 *
 585 *   JMP __x86_return_thunk
 586 *
 587 * into:
 588 *
 589 *   RET
 590 */
 591static int patch_return(void *addr, struct insn *insn, u8 *bytes)
 592{
 593	int i = 0;
 594
 
 595	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
 596		if (x86_return_thunk == __x86_return_thunk)
 597			return -1;
 598
 599		i = JMP32_INSN_SIZE;
 600		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
 601	} else {
 
 602		bytes[i++] = RET_INSN_OPCODE;
 603	}
 604
 605	for (; i < insn->length;)
 606		bytes[i++] = INT3_INSN_OPCODE;
 607	return i;
 608}
 609
 610void __init_or_module noinline apply_returns(s32 *start, s32 *end)
 611{
 612	s32 *s;
 613
 
 
 
 614	for (s = start; s < end; s++) {
 615		void *dest = NULL, *addr = (void *)s + *s;
 616		struct insn insn;
 617		int len, ret;
 618		u8 bytes[16];
 619		u8 op;
 620
 621		ret = insn_decode_kernel(&insn, addr);
 622		if (WARN_ON_ONCE(ret < 0))
 623			continue;
 624
 625		op = insn.opcode.bytes[0];
 626		if (op == JMP32_INSN_OPCODE)
 627			dest = addr + insn.length + insn.immediate.value;
 628
 629		if (__static_call_fixup(addr, op, dest) ||
 630		    WARN_ONCE(dest != &__x86_return_thunk,
 631			      "missing return thunk: %pS-%pS: %*ph",
 632			      addr, dest, 5, addr))
 633			continue;
 634
 635		DPRINTK("return thunk at: %pS (%px) len: %d to: %pS",
 636			addr, addr, insn.length,
 637			addr + insn.length + insn.immediate.value);
 638
 639		len = patch_return(addr, &insn, bytes);
 640		if (len == insn.length) {
 641			DUMP_BYTES(((u8*)addr),  len, "%px: orig: ", addr);
 642			DUMP_BYTES(((u8*)bytes), len, "%px: repl: ", addr);
 643			text_poke_early(addr, bytes, len);
 644		}
 645	}
 646}
 647#else
 648void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
 649#endif /* CONFIG_RETHUNK */
 650
 651#else /* !CONFIG_RETPOLINE || !CONFIG_OBJTOOL */
 652
 653void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
 654void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
 655
 656#endif /* CONFIG_RETPOLINE && CONFIG_OBJTOOL */
 657
 658#ifdef CONFIG_X86_KERNEL_IBT
 659
 660static void poison_endbr(void *addr, bool warn)
 
 
 661{
 662	u32 endbr, poison = gen_endbr_poison();
 663
 664	if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
 665		return;
 666
 667	if (!is_endbr(endbr)) {
 668		WARN_ON_ONCE(warn);
 669		return;
 670	}
 671
 672	DPRINTK("ENDBR at: %pS (%px)", addr, addr);
 673
 674	/*
 675	 * When we have IBT, the lack of ENDBR will trigger #CP
 676	 */
 677	DUMP_BYTES(((u8*)addr), 4, "%px: orig: ", addr);
 678	DUMP_BYTES(((u8*)&poison), 4, "%px: repl: ", addr);
 679	text_poke_early(addr, &poison, 4);
 680}
 681
 682/*
 683 * Generated by: objtool --ibt
 
 
 
 684 */
 685void __init_or_module noinline apply_ibt_endbr(s32 *start, s32 *end)
 686{
 687	s32 *s;
 688
 689	for (s = start; s < end; s++) {
 690		void *addr = (void *)s + *s;
 691
 692		poison_endbr(addr, true);
 693		if (IS_ENABLED(CONFIG_FINEIBT))
 694			poison_endbr(addr - 16, false);
 695	}
 696}
 697
 698#else
 699
 700void __init_or_module apply_ibt_endbr(s32 *start, s32 *end) { }
 701
 702#endif /* CONFIG_X86_KERNEL_IBT */
 703
 704#ifdef CONFIG_FINEIBT
 
 
 
 
 
 
 705
 706enum cfi_mode {
 707	CFI_DEFAULT,
 708	CFI_OFF,
 709	CFI_KCFI,
 710	CFI_FINEIBT,
 711};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712
 713static enum cfi_mode cfi_mode __ro_after_init = CFI_DEFAULT;
 714static bool cfi_rand __ro_after_init = true;
 715static u32  cfi_seed __ro_after_init;
 716
 717/*
 718 * Re-hash the CFI hash with a boot-time seed while making sure the result is
 719 * not a valid ENDBR instruction.
 720 */
 721static u32 cfi_rehash(u32 hash)
 722{
 723	hash ^= cfi_seed;
 724	while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
 725		bool lsb = hash & 1;
 726		hash >>= 1;
 727		if (lsb)
 728			hash ^= 0x80200003;
 729	}
 730	return hash;
 731}
 732
 733static __init int cfi_parse_cmdline(char *str)
 734{
 735	if (!str)
 736		return -EINVAL;
 737
 738	while (str) {
 739		char *next = strchr(str, ',');
 740		if (next) {
 741			*next = 0;
 742			next++;
 743		}
 744
 745		if (!strcmp(str, "auto")) {
 746			cfi_mode = CFI_DEFAULT;
 747		} else if (!strcmp(str, "off")) {
 748			cfi_mode = CFI_OFF;
 749			cfi_rand = false;
 750		} else if (!strcmp(str, "kcfi")) {
 751			cfi_mode = CFI_KCFI;
 752		} else if (!strcmp(str, "fineibt")) {
 753			cfi_mode = CFI_FINEIBT;
 754		} else if (!strcmp(str, "norand")) {
 755			cfi_rand = false;
 756		} else {
 757			pr_err("Ignoring unknown cfi option (%s).", str);
 758		}
 759
 760		str = next;
 761	}
 762
 763	return 0;
 764}
 765early_param("cfi", cfi_parse_cmdline);
 766
 767/*
 768 * kCFI						FineIBT
 769 *
 770 * __cfi_\func:					__cfi_\func:
 771 *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
 772 *	nop					     subl   $0x12345678,%r10d   // 7
 773 *	nop					     jz     1f			// 2
 774 *	nop					     ud2			// 2
 775 *	nop					1:   nop			// 1
 776 *	nop
 777 *	nop
 778 *	nop
 779 *	nop
 780 *	nop
 781 *	nop
 782 *	nop
 783 *
 784 *
 785 * caller:					caller:
 786 *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
 787 *	addl	$-15(%r11),%r10d	 // 4	     sub    $16,%r11		// 4
 788 *	je	1f			 // 2	     nop4			// 4
 789 *	ud2				 // 2
 790 * 1:	call	__x86_indirect_thunk_r11 // 5	     call   *%r11; nop2;	// 5
 791 *
 792 */
 793
 794asm(	".pushsection .rodata			\n"
 795	"fineibt_preamble_start:		\n"
 796	"	endbr64				\n"
 797	"	subl	$0x12345678, %r10d	\n"
 798	"	je	fineibt_preamble_end	\n"
 799	"	ud2				\n"
 800	"	nop				\n"
 801	"fineibt_preamble_end:			\n"
 802	".popsection\n"
 803);
 804
 805extern u8 fineibt_preamble_start[];
 806extern u8 fineibt_preamble_end[];
 807
 808#define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
 809#define fineibt_preamble_hash 7
 810
 811asm(	".pushsection .rodata			\n"
 812	"fineibt_caller_start:			\n"
 813	"	movl	$0x12345678, %r10d	\n"
 814	"	sub	$16, %r11		\n"
 815	ASM_NOP4
 816	"fineibt_caller_end:			\n"
 817	".popsection				\n"
 818);
 819
 820extern u8 fineibt_caller_start[];
 821extern u8 fineibt_caller_end[];
 822
 823#define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
 824#define fineibt_caller_hash 2
 825
 826#define fineibt_caller_jmp (fineibt_caller_size - 2)
 827
 828static u32 decode_preamble_hash(void *addr)
 829{
 830	u8 *p = addr;
 831
 832	/* b8 78 56 34 12          mov    $0x12345678,%eax */
 833	if (p[0] == 0xb8)
 834		return *(u32 *)(addr + 1);
 835
 836	return 0; /* invalid hash value */
 837}
 838
 839static u32 decode_caller_hash(void *addr)
 840{
 841	u8 *p = addr;
 842
 843	/* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
 844	if (p[0] == 0x41 && p[1] == 0xba)
 845		return -*(u32 *)(addr + 2);
 846
 847	/* e8 0c 78 56 34 12	   jmp.d8  +12 */
 848	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
 849		return -*(u32 *)(addr + 2);
 850
 851	return 0; /* invalid hash value */
 852}
 853
 854/* .retpoline_sites */
 855static int cfi_disable_callers(s32 *start, s32 *end)
 856{
 857	/*
 858	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
 859	 * in tact for later usage. Also see decode_caller_hash() and
 860	 * cfi_rewrite_callers().
 861	 */
 862	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
 863	s32 *s;
 864
 865	for (s = start; s < end; s++) {
 866		void *addr = (void *)s + *s;
 867		u32 hash;
 868
 869		addr -= fineibt_caller_size;
 870		hash = decode_caller_hash(addr);
 871		if (!hash) /* nocfi callers */
 872			continue;
 873
 874		text_poke_early(addr, jmp, 2);
 875	}
 876
 877	return 0;
 878}
 879
 880static int cfi_enable_callers(s32 *start, s32 *end)
 881{
 882	/*
 883	 * Re-enable kCFI, undo what cfi_disable_callers() did.
 884	 */
 885	const u8 mov[] = { 0x41, 0xba };
 886	s32 *s;
 887
 888	for (s = start; s < end; s++) {
 889		void *addr = (void *)s + *s;
 890		u32 hash;
 891
 892		addr -= fineibt_caller_size;
 893		hash = decode_caller_hash(addr);
 894		if (!hash) /* nocfi callers */
 895			continue;
 896
 897		text_poke_early(addr, mov, 2);
 898	}
 899
 900	return 0;
 901}
 902
 903/* .cfi_sites */
 904static int cfi_rand_preamble(s32 *start, s32 *end)
 905{
 906	s32 *s;
 907
 908	for (s = start; s < end; s++) {
 909		void *addr = (void *)s + *s;
 910		u32 hash;
 911
 912		hash = decode_preamble_hash(addr);
 913		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
 914			 addr, addr, 5, addr))
 915			return -EINVAL;
 916
 917		hash = cfi_rehash(hash);
 918		text_poke_early(addr + 1, &hash, 4);
 919	}
 920
 921	return 0;
 922}
 923
 924static int cfi_rewrite_preamble(s32 *start, s32 *end)
 925{
 926	s32 *s;
 927
 928	for (s = start; s < end; s++) {
 929		void *addr = (void *)s + *s;
 930		u32 hash;
 931
 932		hash = decode_preamble_hash(addr);
 933		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
 934			 addr, addr, 5, addr))
 935			return -EINVAL;
 936
 937		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
 938		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
 939		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
 940	}
 941
 942	return 0;
 943}
 944
 
 
 
 
 
 
 
 
 
 
 
 945/* .retpoline_sites */
 946static int cfi_rand_callers(s32 *start, s32 *end)
 947{
 948	s32 *s;
 949
 950	for (s = start; s < end; s++) {
 951		void *addr = (void *)s + *s;
 952		u32 hash;
 953
 954		addr -= fineibt_caller_size;
 955		hash = decode_caller_hash(addr);
 956		if (hash) {
 957			hash = -cfi_rehash(hash);
 958			text_poke_early(addr + 2, &hash, 4);
 959		}
 960	}
 961
 962	return 0;
 963}
 964
 965static int cfi_rewrite_callers(s32 *start, s32 *end)
 966{
 967	s32 *s;
 968
 969	for (s = start; s < end; s++) {
 970		void *addr = (void *)s + *s;
 971		u32 hash;
 972
 973		addr -= fineibt_caller_size;
 974		hash = decode_caller_hash(addr);
 975		if (hash) {
 976			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
 977			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
 978			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
 979		}
 980		/* rely on apply_retpolines() */
 981	}
 982
 983	return 0;
 984}
 985
 986static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
 987			    s32 *start_cfi, s32 *end_cfi, bool builtin)
 988{
 989	int ret;
 990
 991	if (WARN_ONCE(fineibt_preamble_size != 16,
 992		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
 993		return;
 994
 995	if (cfi_mode == CFI_DEFAULT) {
 996		cfi_mode = CFI_KCFI;
 997		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
 998			cfi_mode = CFI_FINEIBT;
 999	}
1000
1001	/*
1002	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1003	 * rewrite them. This disables all CFI. If this succeeds but any of the
1004	 * later stages fails, we're without CFI.
1005	 */
1006	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1007	if (ret)
1008		goto err;
1009
1010	if (cfi_rand) {
1011		if (builtin)
1012			cfi_seed = get_random_u32();
 
 
 
1013
1014		ret = cfi_rand_preamble(start_cfi, end_cfi);
1015		if (ret)
1016			goto err;
1017
1018		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1019		if (ret)
1020			goto err;
1021	}
1022
1023	switch (cfi_mode) {
1024	case CFI_OFF:
1025		if (builtin)
1026			pr_info("Disabling CFI\n");
1027		return;
1028
1029	case CFI_KCFI:
1030		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1031		if (ret)
1032			goto err;
1033
1034		if (builtin)
1035			pr_info("Using kCFI\n");
1036		return;
1037
1038	case CFI_FINEIBT:
 
1039		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1040		if (ret)
1041			goto err;
1042
 
1043		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1044		if (ret)
1045			goto err;
1046
 
 
 
1047		if (builtin)
1048			pr_info("Using FineIBT CFI\n");
1049		return;
1050
1051	default:
1052		break;
1053	}
1054
1055err:
1056	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1057}
1058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059#else
1060
1061static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1062			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1063{
1064}
1065
 
 
 
 
1066#endif
1067
1068void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1069		   s32 *start_cfi, s32 *end_cfi)
1070{
1071	return __apply_fineibt(start_retpoline, end_retpoline,
1072			       start_cfi, end_cfi,
1073			       /* .builtin = */ false);
1074}
1075
1076#ifdef CONFIG_SMP
1077static void alternatives_smp_lock(const s32 *start, const s32 *end,
1078				  u8 *text, u8 *text_end)
1079{
1080	const s32 *poff;
1081
1082	for (poff = start; poff < end; poff++) {
1083		u8 *ptr = (u8 *)poff + *poff;
1084
1085		if (!*poff || ptr < text || ptr >= text_end)
1086			continue;
1087		/* turn DS segment override prefix into lock prefix */
1088		if (*ptr == 0x3e)
1089			text_poke(ptr, ((unsigned char []){0xf0}), 1);
1090	}
1091}
1092
1093static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1094				    u8 *text, u8 *text_end)
1095{
1096	const s32 *poff;
1097
1098	for (poff = start; poff < end; poff++) {
1099		u8 *ptr = (u8 *)poff + *poff;
1100
1101		if (!*poff || ptr < text || ptr >= text_end)
1102			continue;
1103		/* turn lock prefix into DS segment override prefix */
1104		if (*ptr == 0xf0)
1105			text_poke(ptr, ((unsigned char []){0x3E}), 1);
1106	}
1107}
1108
1109struct smp_alt_module {
1110	/* what is this ??? */
1111	struct module	*mod;
1112	char		*name;
1113
1114	/* ptrs to lock prefixes */
1115	const s32	*locks;
1116	const s32	*locks_end;
1117
1118	/* .text segment, needed to avoid patching init code ;) */
1119	u8		*text;
1120	u8		*text_end;
1121
1122	struct list_head next;
1123};
1124static LIST_HEAD(smp_alt_modules);
1125static bool uniproc_patched = false;	/* protected by text_mutex */
1126
1127void __init_or_module alternatives_smp_module_add(struct module *mod,
1128						  char *name,
1129						  void *locks, void *locks_end,
1130						  void *text,  void *text_end)
1131{
1132	struct smp_alt_module *smp;
1133
1134	mutex_lock(&text_mutex);
1135	if (!uniproc_patched)
1136		goto unlock;
1137
1138	if (num_possible_cpus() == 1)
1139		/* Don't bother remembering, we'll never have to undo it. */
1140		goto smp_unlock;
1141
1142	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1143	if (NULL == smp)
1144		/* we'll run the (safe but slow) SMP code then ... */
1145		goto unlock;
1146
1147	smp->mod	= mod;
1148	smp->name	= name;
1149	smp->locks	= locks;
1150	smp->locks_end	= locks_end;
1151	smp->text	= text;
1152	smp->text_end	= text_end;
1153	DPRINTK("locks %p -> %p, text %p -> %p, name %s\n",
1154		smp->locks, smp->locks_end,
1155		smp->text, smp->text_end, smp->name);
1156
1157	list_add_tail(&smp->next, &smp_alt_modules);
1158smp_unlock:
1159	alternatives_smp_unlock(locks, locks_end, text, text_end);
1160unlock:
1161	mutex_unlock(&text_mutex);
1162}
1163
1164void __init_or_module alternatives_smp_module_del(struct module *mod)
1165{
1166	struct smp_alt_module *item;
1167
1168	mutex_lock(&text_mutex);
1169	list_for_each_entry(item, &smp_alt_modules, next) {
1170		if (mod != item->mod)
1171			continue;
1172		list_del(&item->next);
1173		kfree(item);
1174		break;
1175	}
1176	mutex_unlock(&text_mutex);
1177}
1178
1179void alternatives_enable_smp(void)
1180{
1181	struct smp_alt_module *mod;
1182
1183	/* Why bother if there are no other CPUs? */
1184	BUG_ON(num_possible_cpus() == 1);
1185
1186	mutex_lock(&text_mutex);
1187
1188	if (uniproc_patched) {
1189		pr_info("switching to SMP code\n");
1190		BUG_ON(num_online_cpus() != 1);
1191		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1192		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1193		list_for_each_entry(mod, &smp_alt_modules, next)
1194			alternatives_smp_lock(mod->locks, mod->locks_end,
1195					      mod->text, mod->text_end);
1196		uniproc_patched = false;
1197	}
1198	mutex_unlock(&text_mutex);
1199}
1200
1201/*
1202 * Return 1 if the address range is reserved for SMP-alternatives.
1203 * Must hold text_mutex.
1204 */
1205int alternatives_text_reserved(void *start, void *end)
1206{
1207	struct smp_alt_module *mod;
1208	const s32 *poff;
1209	u8 *text_start = start;
1210	u8 *text_end = end;
1211
1212	lockdep_assert_held(&text_mutex);
1213
1214	list_for_each_entry(mod, &smp_alt_modules, next) {
1215		if (mod->text > text_end || mod->text_end < text_start)
1216			continue;
1217		for (poff = mod->locks; poff < mod->locks_end; poff++) {
1218			const u8 *ptr = (const u8 *)poff + *poff;
1219
1220			if (text_start <= ptr && text_end > ptr)
1221				return 1;
1222		}
1223	}
1224
1225	return 0;
1226}
1227#endif /* CONFIG_SMP */
1228
1229#ifdef CONFIG_PARAVIRT
1230void __init_or_module apply_paravirt(struct paravirt_patch_site *start,
1231				     struct paravirt_patch_site *end)
1232{
1233	struct paravirt_patch_site *p;
1234	char insn_buff[MAX_PATCH_LEN];
1235
1236	for (p = start; p < end; p++) {
1237		unsigned int used;
1238
1239		BUG_ON(p->len > MAX_PATCH_LEN);
1240		/* prep the buffer with the original instructions */
1241		memcpy(insn_buff, p->instr, p->len);
1242		used = paravirt_patch(p->type, insn_buff, (unsigned long)p->instr, p->len);
1243
1244		BUG_ON(used > p->len);
1245
1246		/* Pad the rest with nops */
1247		add_nops(insn_buff + used, p->len - used);
1248		text_poke_early(p->instr, insn_buff, p->len);
1249	}
1250}
1251extern struct paravirt_patch_site __start_parainstructions[],
1252	__stop_parainstructions[];
1253#endif	/* CONFIG_PARAVIRT */
1254
1255/*
1256 * Self-test for the INT3 based CALL emulation code.
1257 *
1258 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1259 * properly and that there is a stack gap between the INT3 frame and the
1260 * previous context. Without this gap doing a virtual PUSH on the interrupted
1261 * stack would corrupt the INT3 IRET frame.
1262 *
1263 * See entry_{32,64}.S for more details.
1264 */
1265
1266/*
1267 * We define the int3_magic() function in assembly to control the calling
1268 * convention such that we can 'call' it from assembly.
1269 */
1270
1271extern void int3_magic(unsigned int *ptr); /* defined in asm */
1272
1273asm (
1274"	.pushsection	.init.text, \"ax\", @progbits\n"
1275"	.type		int3_magic, @function\n"
1276"int3_magic:\n"
1277	ANNOTATE_NOENDBR
1278"	movl	$1, (%" _ASM_ARG1 ")\n"
1279	ASM_RET
1280"	.size		int3_magic, .-int3_magic\n"
1281"	.popsection\n"
1282);
1283
1284extern void int3_selftest_ip(void); /* defined in asm below */
1285
1286static int __init
1287int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1288{
1289	unsigned long selftest = (unsigned long)&int3_selftest_ip;
1290	struct die_args *args = data;
1291	struct pt_regs *regs = args->regs;
1292
1293	OPTIMIZER_HIDE_VAR(selftest);
1294
1295	if (!regs || user_mode(regs))
1296		return NOTIFY_DONE;
1297
1298	if (val != DIE_INT3)
1299		return NOTIFY_DONE;
1300
1301	if (regs->ip - INT3_INSN_SIZE != selftest)
1302		return NOTIFY_DONE;
1303
1304	int3_emulate_call(regs, (unsigned long)&int3_magic);
1305	return NOTIFY_STOP;
1306}
1307
1308/* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1309static noinline void __init int3_selftest(void)
1310{
1311	static __initdata struct notifier_block int3_exception_nb = {
1312		.notifier_call	= int3_exception_notify,
1313		.priority	= INT_MAX-1, /* last */
1314	};
1315	unsigned int val = 0;
1316
1317	BUG_ON(register_die_notifier(&int3_exception_nb));
1318
1319	/*
1320	 * Basically: int3_magic(&val); but really complicated :-)
1321	 *
1322	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1323	 * notifier above will emulate CALL for us.
1324	 */
1325	asm volatile ("int3_selftest_ip:\n\t"
1326		      ANNOTATE_NOENDBR
1327		      "    int3; nop; nop; nop; nop\n\t"
1328		      : ASM_CALL_CONSTRAINT
1329		      : __ASM_SEL_RAW(a, D) (&val)
1330		      : "memory");
1331
1332	BUG_ON(val != 1);
1333
1334	unregister_die_notifier(&int3_exception_nb);
1335}
1336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337void __init alternative_instructions(void)
1338{
1339	int3_selftest();
1340
1341	/*
1342	 * The patching is not fully atomic, so try to avoid local
1343	 * interruptions that might execute the to be patched code.
1344	 * Other CPUs are not running.
1345	 */
1346	stop_nmi();
1347
1348	/*
1349	 * Don't stop machine check exceptions while patching.
1350	 * MCEs only happen when something got corrupted and in this
1351	 * case we must do something about the corruption.
1352	 * Ignoring it is worse than an unlikely patching race.
1353	 * Also machine checks tend to be broadcast and if one CPU
1354	 * goes into machine check the others follow quickly, so we don't
1355	 * expect a machine check to cause undue problems during to code
1356	 * patching.
1357	 */
1358
1359	/*
1360	 * Paravirt patching and alternative patching can be combined to
1361	 * replace a function call with a short direct code sequence (e.g.
1362	 * by setting a constant return value instead of doing that in an
1363	 * external function).
1364	 * In order to make this work the following sequence is required:
1365	 * 1. set (artificial) features depending on used paravirt
1366	 *    functions which can later influence alternative patching
1367	 * 2. apply paravirt patching (generally replacing an indirect
1368	 *    function call with a direct one)
1369	 * 3. apply alternative patching (e.g. replacing a direct function
1370	 *    call with a custom code sequence)
1371	 * Doing paravirt patching after alternative patching would clobber
1372	 * the optimization of the custom code with a function call again.
1373	 */
1374	paravirt_set_cap();
1375
1376	/*
1377	 * First patch paravirt functions, such that we overwrite the indirect
1378	 * call with the direct call.
1379	 */
1380	apply_paravirt(__parainstructions, __parainstructions_end);
1381
1382	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1383			__cfi_sites, __cfi_sites_end, true);
1384
1385	/*
1386	 * Rewrite the retpolines, must be done before alternatives since
1387	 * those can rewrite the retpoline thunks.
1388	 */
1389	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1390	apply_returns(__return_sites, __return_sites_end);
1391
1392	/*
1393	 * Then patch alternatives, such that those paravirt calls that are in
1394	 * alternatives can be overwritten by their immediate fragments.
1395	 */
1396	apply_alternatives(__alt_instructions, __alt_instructions_end);
1397
1398	/*
1399	 * Now all calls are established. Apply the call thunks if
1400	 * required.
1401	 */
1402	callthunks_patch_builtin_calls();
1403
1404	apply_ibt_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
 
 
 
1405
1406#ifdef CONFIG_SMP
1407	/* Patch to UP if other cpus not imminent. */
1408	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1409		uniproc_patched = true;
1410		alternatives_smp_module_add(NULL, "core kernel",
1411					    __smp_locks, __smp_locks_end,
1412					    _text, _etext);
1413	}
1414
1415	if (!uniproc_patched || num_possible_cpus() == 1) {
1416		free_init_pages("SMP alternatives",
1417				(unsigned long)__smp_locks,
1418				(unsigned long)__smp_locks_end);
1419	}
1420#endif
1421
1422	restart_nmi();
1423	alternatives_patched = 1;
 
 
1424}
1425
1426/**
1427 * text_poke_early - Update instructions on a live kernel at boot time
1428 * @addr: address to modify
1429 * @opcode: source of the copy
1430 * @len: length to copy
1431 *
1432 * When you use this code to patch more than one byte of an instruction
1433 * you need to make sure that other CPUs cannot execute this code in parallel.
1434 * Also no thread must be currently preempted in the middle of these
1435 * instructions. And on the local CPU you need to be protected against NMI or
1436 * MCE handlers seeing an inconsistent instruction while you patch.
1437 */
1438void __init_or_module text_poke_early(void *addr, const void *opcode,
1439				      size_t len)
1440{
1441	unsigned long flags;
1442
1443	if (boot_cpu_has(X86_FEATURE_NX) &&
1444	    is_module_text_address((unsigned long)addr)) {
1445		/*
1446		 * Modules text is marked initially as non-executable, so the
1447		 * code cannot be running and speculative code-fetches are
1448		 * prevented. Just change the code.
1449		 */
1450		memcpy(addr, opcode, len);
1451	} else {
1452		local_irq_save(flags);
1453		memcpy(addr, opcode, len);
1454		local_irq_restore(flags);
1455		sync_core();
 
1456
1457		/*
1458		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1459		 * that causes hangs on some VIA CPUs.
1460		 */
1461	}
1462}
1463
1464typedef struct {
1465	struct mm_struct *mm;
1466} temp_mm_state_t;
1467
1468/*
1469 * Using a temporary mm allows to set temporary mappings that are not accessible
1470 * by other CPUs. Such mappings are needed to perform sensitive memory writes
1471 * that override the kernel memory protections (e.g., W^X), without exposing the
1472 * temporary page-table mappings that are required for these write operations to
1473 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1474 * mapping is torn down.
1475 *
1476 * Context: The temporary mm needs to be used exclusively by a single core. To
1477 *          harden security IRQs must be disabled while the temporary mm is
1478 *          loaded, thereby preventing interrupt handler bugs from overriding
1479 *          the kernel memory protection.
1480 */
1481static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1482{
1483	temp_mm_state_t temp_state;
1484
1485	lockdep_assert_irqs_disabled();
1486
1487	/*
1488	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1489	 * with a stale address space WITHOUT being in lazy mode after
1490	 * restoring the previous mm.
1491	 */
1492	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1493		leave_mm(smp_processor_id());
1494
1495	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1496	switch_mm_irqs_off(NULL, mm, current);
1497
1498	/*
1499	 * If breakpoints are enabled, disable them while the temporary mm is
1500	 * used. Userspace might set up watchpoints on addresses that are used
1501	 * in the temporary mm, which would lead to wrong signals being sent or
1502	 * crashes.
1503	 *
1504	 * Note that breakpoints are not disabled selectively, which also causes
1505	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1506	 * undesirable, but still seems reasonable as the code that runs in the
1507	 * temporary mm should be short.
1508	 */
1509	if (hw_breakpoint_active())
1510		hw_breakpoint_disable();
1511
1512	return temp_state;
1513}
1514
1515static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1516{
1517	lockdep_assert_irqs_disabled();
1518	switch_mm_irqs_off(NULL, prev_state.mm, current);
1519
1520	/*
1521	 * Restore the breakpoints if they were disabled before the temporary mm
1522	 * was loaded.
1523	 */
1524	if (hw_breakpoint_active())
1525		hw_breakpoint_restore();
1526}
1527
1528__ro_after_init struct mm_struct *poking_mm;
1529__ro_after_init unsigned long poking_addr;
1530
1531static void text_poke_memcpy(void *dst, const void *src, size_t len)
1532{
1533	memcpy(dst, src, len);
1534}
1535
1536static void text_poke_memset(void *dst, const void *src, size_t len)
1537{
1538	int c = *(const int *)src;
1539
1540	memset(dst, c, len);
1541}
1542
1543typedef void text_poke_f(void *dst, const void *src, size_t len);
1544
1545static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1546{
1547	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1548	struct page *pages[2] = {NULL};
1549	temp_mm_state_t prev;
1550	unsigned long flags;
1551	pte_t pte, *ptep;
1552	spinlock_t *ptl;
1553	pgprot_t pgprot;
1554
1555	/*
1556	 * While boot memory allocator is running we cannot use struct pages as
1557	 * they are not yet initialized. There is no way to recover.
1558	 */
1559	BUG_ON(!after_bootmem);
1560
1561	if (!core_kernel_text((unsigned long)addr)) {
1562		pages[0] = vmalloc_to_page(addr);
1563		if (cross_page_boundary)
1564			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1565	} else {
1566		pages[0] = virt_to_page(addr);
1567		WARN_ON(!PageReserved(pages[0]));
1568		if (cross_page_boundary)
1569			pages[1] = virt_to_page(addr + PAGE_SIZE);
1570	}
1571	/*
1572	 * If something went wrong, crash and burn since recovery paths are not
1573	 * implemented.
1574	 */
1575	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1576
1577	/*
1578	 * Map the page without the global bit, as TLB flushing is done with
1579	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1580	 */
1581	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1582
1583	/*
1584	 * The lock is not really needed, but this allows to avoid open-coding.
1585	 */
1586	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1587
1588	/*
1589	 * This must not fail; preallocated in poking_init().
1590	 */
1591	VM_BUG_ON(!ptep);
1592
1593	local_irq_save(flags);
1594
1595	pte = mk_pte(pages[0], pgprot);
1596	set_pte_at(poking_mm, poking_addr, ptep, pte);
1597
1598	if (cross_page_boundary) {
1599		pte = mk_pte(pages[1], pgprot);
1600		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1601	}
1602
1603	/*
1604	 * Loading the temporary mm behaves as a compiler barrier, which
1605	 * guarantees that the PTE will be set at the time memcpy() is done.
1606	 */
1607	prev = use_temporary_mm(poking_mm);
1608
1609	kasan_disable_current();
1610	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1611	kasan_enable_current();
1612
1613	/*
1614	 * Ensure that the PTE is only cleared after the instructions of memcpy
1615	 * were issued by using a compiler barrier.
1616	 */
1617	barrier();
1618
1619	pte_clear(poking_mm, poking_addr, ptep);
1620	if (cross_page_boundary)
1621		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1622
1623	/*
1624	 * Loading the previous page-table hierarchy requires a serializing
1625	 * instruction that already allows the core to see the updated version.
1626	 * Xen-PV is assumed to serialize execution in a similar manner.
1627	 */
1628	unuse_temporary_mm(prev);
1629
1630	/*
1631	 * Flushing the TLB might involve IPIs, which would require enabled
1632	 * IRQs, but not if the mm is not used, as it is in this point.
1633	 */
1634	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1635			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1636			   PAGE_SHIFT, false);
1637
1638	if (func == text_poke_memcpy) {
1639		/*
1640		 * If the text does not match what we just wrote then something is
1641		 * fundamentally screwy; there's nothing we can really do about that.
1642		 */
1643		BUG_ON(memcmp(addr, src, len));
1644	}
1645
1646	local_irq_restore(flags);
1647	pte_unmap_unlock(ptep, ptl);
1648	return addr;
1649}
1650
1651/**
1652 * text_poke - Update instructions on a live kernel
1653 * @addr: address to modify
1654 * @opcode: source of the copy
1655 * @len: length to copy
1656 *
1657 * Only atomic text poke/set should be allowed when not doing early patching.
1658 * It means the size must be writable atomically and the address must be aligned
1659 * in a way that permits an atomic write. It also makes sure we fit on a single
1660 * page.
1661 *
1662 * Note that the caller must ensure that if the modified code is part of a
1663 * module, the module would not be removed during poking. This can be achieved
1664 * by registering a module notifier, and ordering module removal and patching
1665 * trough a mutex.
1666 */
1667void *text_poke(void *addr, const void *opcode, size_t len)
1668{
1669	lockdep_assert_held(&text_mutex);
1670
1671	return __text_poke(text_poke_memcpy, addr, opcode, len);
1672}
1673
1674/**
1675 * text_poke_kgdb - Update instructions on a live kernel by kgdb
1676 * @addr: address to modify
1677 * @opcode: source of the copy
1678 * @len: length to copy
1679 *
1680 * Only atomic text poke/set should be allowed when not doing early patching.
1681 * It means the size must be writable atomically and the address must be aligned
1682 * in a way that permits an atomic write. It also makes sure we fit on a single
1683 * page.
1684 *
1685 * Context: should only be used by kgdb, which ensures no other core is running,
1686 *	    despite the fact it does not hold the text_mutex.
1687 */
1688void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
1689{
1690	return __text_poke(text_poke_memcpy, addr, opcode, len);
1691}
1692
1693void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
1694			    bool core_ok)
1695{
1696	unsigned long start = (unsigned long)addr;
1697	size_t patched = 0;
1698
1699	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
1700		return NULL;
1701
1702	while (patched < len) {
1703		unsigned long ptr = start + patched;
1704		size_t s;
1705
1706		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1707
1708		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
1709		patched += s;
1710	}
1711	return addr;
1712}
1713
1714/**
1715 * text_poke_copy - Copy instructions into (an unused part of) RX memory
1716 * @addr: address to modify
1717 * @opcode: source of the copy
1718 * @len: length to copy, could be more than 2x PAGE_SIZE
1719 *
1720 * Not safe against concurrent execution; useful for JITs to dump
1721 * new code blocks into unused regions of RX memory. Can be used in
1722 * conjunction with synchronize_rcu_tasks() to wait for existing
1723 * execution to quiesce after having made sure no existing functions
1724 * pointers are live.
1725 */
1726void *text_poke_copy(void *addr, const void *opcode, size_t len)
1727{
1728	mutex_lock(&text_mutex);
1729	addr = text_poke_copy_locked(addr, opcode, len, false);
1730	mutex_unlock(&text_mutex);
1731	return addr;
1732}
1733
1734/**
1735 * text_poke_set - memset into (an unused part of) RX memory
1736 * @addr: address to modify
1737 * @c: the byte to fill the area with
1738 * @len: length to copy, could be more than 2x PAGE_SIZE
1739 *
1740 * This is useful to overwrite unused regions of RX memory with illegal
1741 * instructions.
1742 */
1743void *text_poke_set(void *addr, int c, size_t len)
1744{
1745	unsigned long start = (unsigned long)addr;
1746	size_t patched = 0;
1747
1748	if (WARN_ON_ONCE(core_kernel_text(start)))
1749		return NULL;
1750
1751	mutex_lock(&text_mutex);
1752	while (patched < len) {
1753		unsigned long ptr = start + patched;
1754		size_t s;
1755
1756		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
1757
1758		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
1759		patched += s;
1760	}
1761	mutex_unlock(&text_mutex);
1762	return addr;
1763}
1764
1765static void do_sync_core(void *info)
1766{
1767	sync_core();
1768}
1769
1770void text_poke_sync(void)
1771{
1772	on_each_cpu(do_sync_core, NULL, 1);
1773}
1774
 
 
 
 
 
1775struct text_poke_loc {
1776	/* addr := _stext + rel_addr */
1777	s32 rel_addr;
1778	s32 disp;
1779	u8 len;
1780	u8 opcode;
1781	const u8 text[POKE_MAX_OPCODE_SIZE];
1782	/* see text_poke_bp_batch() */
1783	u8 old;
1784};
1785
1786struct bp_patching_desc {
1787	struct text_poke_loc *vec;
1788	int nr_entries;
1789	atomic_t refs;
1790};
1791
1792static struct bp_patching_desc bp_desc;
1793
1794static __always_inline
1795struct bp_patching_desc *try_get_desc(void)
1796{
1797	struct bp_patching_desc *desc = &bp_desc;
1798
1799	if (!arch_atomic_inc_not_zero(&desc->refs))
1800		return NULL;
1801
1802	return desc;
1803}
1804
1805static __always_inline void put_desc(void)
1806{
1807	struct bp_patching_desc *desc = &bp_desc;
1808
1809	smp_mb__before_atomic();
1810	arch_atomic_dec(&desc->refs);
1811}
1812
1813static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
1814{
1815	return _stext + tp->rel_addr;
1816}
1817
1818static __always_inline int patch_cmp(const void *key, const void *elt)
1819{
1820	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
1821
1822	if (key < text_poke_addr(tp))
1823		return -1;
1824	if (key > text_poke_addr(tp))
1825		return 1;
1826	return 0;
1827}
1828
1829noinstr int poke_int3_handler(struct pt_regs *regs)
1830{
1831	struct bp_patching_desc *desc;
1832	struct text_poke_loc *tp;
1833	int ret = 0;
1834	void *ip;
1835
1836	if (user_mode(regs))
1837		return 0;
1838
1839	/*
1840	 * Having observed our INT3 instruction, we now must observe
1841	 * bp_desc with non-zero refcount:
1842	 *
1843	 *	bp_desc.refs = 1		INT3
1844	 *	WMB				RMB
1845	 *	write INT3			if (bp_desc.refs != 0)
1846	 */
1847	smp_rmb();
1848
1849	desc = try_get_desc();
1850	if (!desc)
1851		return 0;
1852
1853	/*
1854	 * Discount the INT3. See text_poke_bp_batch().
1855	 */
1856	ip = (void *) regs->ip - INT3_INSN_SIZE;
1857
1858	/*
1859	 * Skip the binary search if there is a single member in the vector.
1860	 */
1861	if (unlikely(desc->nr_entries > 1)) {
1862		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
1863				      sizeof(struct text_poke_loc),
1864				      patch_cmp);
1865		if (!tp)
1866			goto out_put;
1867	} else {
1868		tp = desc->vec;
1869		if (text_poke_addr(tp) != ip)
1870			goto out_put;
1871	}
1872
1873	ip += tp->len;
1874
1875	switch (tp->opcode) {
1876	case INT3_INSN_OPCODE:
1877		/*
1878		 * Someone poked an explicit INT3, they'll want to handle it,
1879		 * do not consume.
1880		 */
1881		goto out_put;
1882
1883	case RET_INSN_OPCODE:
1884		int3_emulate_ret(regs);
1885		break;
1886
1887	case CALL_INSN_OPCODE:
1888		int3_emulate_call(regs, (long)ip + tp->disp);
1889		break;
1890
1891	case JMP32_INSN_OPCODE:
1892	case JMP8_INSN_OPCODE:
1893		int3_emulate_jmp(regs, (long)ip + tp->disp);
1894		break;
1895
 
 
 
 
1896	default:
1897		BUG();
1898	}
1899
1900	ret = 1;
1901
1902out_put:
1903	put_desc();
1904	return ret;
1905}
1906
1907#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
1908static struct text_poke_loc tp_vec[TP_VEC_MAX];
1909static int tp_vec_nr;
1910
1911/**
1912 * text_poke_bp_batch() -- update instructions on live kernel on SMP
1913 * @tp:			vector of instructions to patch
1914 * @nr_entries:		number of entries in the vector
1915 *
1916 * Modify multi-byte instruction by using int3 breakpoint on SMP.
1917 * We completely avoid stop_machine() here, and achieve the
1918 * synchronization using int3 breakpoint.
1919 *
1920 * The way it is done:
1921 *	- For each entry in the vector:
1922 *		- add a int3 trap to the address that will be patched
1923 *	- sync cores
1924 *	- For each entry in the vector:
1925 *		- update all but the first byte of the patched range
1926 *	- sync cores
1927 *	- For each entry in the vector:
1928 *		- replace the first byte (int3) by the first byte of
1929 *		  replacing opcode
1930 *	- sync cores
1931 */
1932static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
1933{
1934	unsigned char int3 = INT3_INSN_OPCODE;
1935	unsigned int i;
1936	int do_sync;
1937
1938	lockdep_assert_held(&text_mutex);
1939
1940	bp_desc.vec = tp;
1941	bp_desc.nr_entries = nr_entries;
1942
1943	/*
1944	 * Corresponds to the implicit memory barrier in try_get_desc() to
1945	 * ensure reading a non-zero refcount provides up to date bp_desc data.
1946	 */
1947	atomic_set_release(&bp_desc.refs, 1);
1948
1949	/*
 
 
 
 
 
 
 
 
 
 
1950	 * Corresponding read barrier in int3 notifier for making sure the
1951	 * nr_entries and handler are correctly ordered wrt. patching.
1952	 */
1953	smp_wmb();
1954
1955	/*
1956	 * First step: add a int3 trap to the address that will be patched.
1957	 */
1958	for (i = 0; i < nr_entries; i++) {
1959		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
1960		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
1961	}
1962
1963	text_poke_sync();
1964
1965	/*
1966	 * Second step: update all but the first byte of the patched range.
1967	 */
1968	for (do_sync = 0, i = 0; i < nr_entries; i++) {
1969		u8 old[POKE_MAX_OPCODE_SIZE] = { tp[i].old, };
 
 
1970		int len = tp[i].len;
1971
1972		if (len - INT3_INSN_SIZE > 0) {
1973			memcpy(old + INT3_INSN_SIZE,
1974			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1975			       len - INT3_INSN_SIZE);
 
 
 
 
 
 
 
1976			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
1977				  (const char *)tp[i].text + INT3_INSN_SIZE,
1978				  len - INT3_INSN_SIZE);
 
1979			do_sync++;
1980		}
1981
1982		/*
1983		 * Emit a perf event to record the text poke, primarily to
1984		 * support Intel PT decoding which must walk the executable code
1985		 * to reconstruct the trace. The flow up to here is:
1986		 *   - write INT3 byte
1987		 *   - IPI-SYNC
1988		 *   - write instruction tail
1989		 * At this point the actual control flow will be through the
1990		 * INT3 and handler and not hit the old or new instruction.
1991		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
1992		 * can still be decoded. Subsequently:
1993		 *   - emit RECORD_TEXT_POKE with the new instruction
1994		 *   - IPI-SYNC
1995		 *   - write first byte
1996		 *   - IPI-SYNC
1997		 * So before the text poke event timestamp, the decoder will see
1998		 * either the old instruction flow or FUP/TIP of INT3. After the
1999		 * text poke event timestamp, the decoder will see either the
2000		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2001		 * use the timestamp as the point at which to modify the
2002		 * executable code.
2003		 * The old instruction is recorded so that the event can be
2004		 * processed forwards or backwards.
2005		 */
2006		perf_event_text_poke(text_poke_addr(&tp[i]), old, len,
2007				     tp[i].text, len);
2008	}
2009
2010	if (do_sync) {
2011		/*
2012		 * According to Intel, this core syncing is very likely
2013		 * not necessary and we'd be safe even without it. But
2014		 * better safe than sorry (plus there's not only Intel).
2015		 */
2016		text_poke_sync();
2017	}
2018
2019	/*
2020	 * Third step: replace the first byte (int3) by the first byte of
2021	 * replacing opcode.
2022	 */
2023	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2024		if (tp[i].text[0] == INT3_INSN_OPCODE)
 
 
 
 
 
2025			continue;
2026
2027		text_poke(text_poke_addr(&tp[i]), tp[i].text, INT3_INSN_SIZE);
2028		do_sync++;
2029	}
2030
2031	if (do_sync)
2032		text_poke_sync();
2033
2034	/*
2035	 * Remove and wait for refs to be zero.
2036	 */
2037	if (!atomic_dec_and_test(&bp_desc.refs))
2038		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2039}
2040
2041static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2042			       const void *opcode, size_t len, const void *emulate)
2043{
2044	struct insn insn;
2045	int ret, i;
2046
2047	memcpy((void *)tp->text, opcode, len);
 
 
2048	if (!emulate)
2049		emulate = opcode;
2050
2051	ret = insn_decode_kernel(&insn, emulate);
2052	BUG_ON(ret < 0);
2053
2054	tp->rel_addr = addr - (void *)_stext;
2055	tp->len = len;
2056	tp->opcode = insn.opcode.bytes[0];
2057
 
 
 
 
 
 
 
2058	switch (tp->opcode) {
2059	case RET_INSN_OPCODE:
2060	case JMP32_INSN_OPCODE:
2061	case JMP8_INSN_OPCODE:
2062		/*
2063		 * Control flow instructions without implied execution of the
2064		 * next instruction can be padded with INT3.
2065		 */
2066		for (i = insn.length; i < len; i++)
2067			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2068		break;
2069
2070	default:
2071		BUG_ON(len != insn.length);
2072	}
2073
2074
2075	switch (tp->opcode) {
2076	case INT3_INSN_OPCODE:
2077	case RET_INSN_OPCODE:
2078		break;
2079
2080	case CALL_INSN_OPCODE:
2081	case JMP32_INSN_OPCODE:
2082	case JMP8_INSN_OPCODE:
 
2083		tp->disp = insn.immediate.value;
2084		break;
2085
2086	default: /* assume NOP */
2087		switch (len) {
2088		case 2: /* NOP2 -- emulate as JMP8+0 */
2089			BUG_ON(memcmp(emulate, x86_nops[len], len));
2090			tp->opcode = JMP8_INSN_OPCODE;
2091			tp->disp = 0;
2092			break;
2093
2094		case 5: /* NOP5 -- emulate as JMP32+0 */
2095			BUG_ON(memcmp(emulate, x86_nops[len], len));
2096			tp->opcode = JMP32_INSN_OPCODE;
2097			tp->disp = 0;
2098			break;
2099
2100		default: /* unknown instruction */
2101			BUG();
2102		}
2103		break;
2104	}
2105}
2106
2107/*
2108 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2109 * early if needed.
2110 */
2111static bool tp_order_fail(void *addr)
2112{
2113	struct text_poke_loc *tp;
2114
2115	if (!tp_vec_nr)
2116		return false;
2117
2118	if (!addr) /* force */
2119		return true;
2120
2121	tp = &tp_vec[tp_vec_nr - 1];
2122	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2123		return true;
2124
2125	return false;
2126}
2127
2128static void text_poke_flush(void *addr)
2129{
2130	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2131		text_poke_bp_batch(tp_vec, tp_vec_nr);
2132		tp_vec_nr = 0;
2133	}
2134}
2135
2136void text_poke_finish(void)
2137{
2138	text_poke_flush(NULL);
2139}
2140
2141void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2142{
2143	struct text_poke_loc *tp;
2144
2145	text_poke_flush(addr);
2146
2147	tp = &tp_vec[tp_vec_nr++];
2148	text_poke_loc_init(tp, addr, opcode, len, emulate);
2149}
2150
2151/**
2152 * text_poke_bp() -- update instructions on live kernel on SMP
2153 * @addr:	address to patch
2154 * @opcode:	opcode of new instruction
2155 * @len:	length to copy
2156 * @emulate:	instruction to be emulated
2157 *
2158 * Update a single instruction with the vector in the stack, avoiding
2159 * dynamically allocated memory. This function should be used when it is
2160 * not possible to allocate memory.
2161 */
2162void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2163{
2164	struct text_poke_loc tp;
2165
2166	text_poke_loc_init(&tp, addr, opcode, len, emulate);
2167	text_poke_bp_batch(&tp, 1);
2168}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#define pr_fmt(fmt) "SMP alternatives: " fmt
   3
   4#include <linux/module.h>
   5#include <linux/sched.h>
   6#include <linux/perf_event.h>
   7#include <linux/mutex.h>
   8#include <linux/list.h>
   9#include <linux/stringify.h>
  10#include <linux/highmem.h>
  11#include <linux/mm.h>
  12#include <linux/vmalloc.h>
  13#include <linux/memory.h>
  14#include <linux/stop_machine.h>
  15#include <linux/slab.h>
  16#include <linux/kdebug.h>
  17#include <linux/kprobes.h>
  18#include <linux/mmu_context.h>
  19#include <linux/bsearch.h>
  20#include <linux/sync_core.h>
  21#include <asm/text-patching.h>
  22#include <asm/alternative.h>
  23#include <asm/sections.h>
  24#include <asm/mce.h>
  25#include <asm/nmi.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/insn.h>
  29#include <asm/io.h>
  30#include <asm/fixmap.h>
  31#include <asm/paravirt.h>
  32#include <asm/asm-prototypes.h>
  33#include <asm/cfi.h>
  34
  35int __read_mostly alternatives_patched;
  36
  37EXPORT_SYMBOL_GPL(alternatives_patched);
  38
  39#define MAX_PATCH_LEN (255-1)
  40
  41#define DA_ALL		(~0)
  42#define DA_ALT		0x01
  43#define DA_RET		0x02
  44#define DA_RETPOLINE	0x04
  45#define DA_ENDBR	0x08
  46#define DA_SMP		0x10
  47
  48static unsigned int debug_alternative;
  49
  50static int __init debug_alt(char *str)
  51{
  52	if (str && *str == '=')
  53		str++;
  54
  55	if (!str || kstrtouint(str, 0, &debug_alternative))
  56		debug_alternative = DA_ALL;
  57
  58	return 1;
  59}
  60__setup("debug-alternative", debug_alt);
  61
  62static int noreplace_smp;
  63
  64static int __init setup_noreplace_smp(char *str)
  65{
  66	noreplace_smp = 1;
  67	return 1;
  68}
  69__setup("noreplace-smp", setup_noreplace_smp);
  70
  71#define DPRINTK(type, fmt, args...)					\
  72do {									\
  73	if (debug_alternative & DA_##type)				\
  74		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
  75} while (0)
  76
  77#define DUMP_BYTES(type, buf, len, fmt, args...)			\
  78do {									\
  79	if (unlikely(debug_alternative & DA_##type)) {			\
  80		int j;							\
  81									\
  82		if (!(len))						\
  83			break;						\
  84									\
  85		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
  86		for (j = 0; j < (len) - 1; j++)				\
  87			printk(KERN_CONT "%02hhx ", buf[j]);		\
  88		printk(KERN_CONT "%02hhx\n", buf[j]);			\
  89	}								\
  90} while (0)
  91
  92static const unsigned char x86nops[] =
  93{
  94	BYTES_NOP1,
  95	BYTES_NOP2,
  96	BYTES_NOP3,
  97	BYTES_NOP4,
  98	BYTES_NOP5,
  99	BYTES_NOP6,
 100	BYTES_NOP7,
 101	BYTES_NOP8,
 102#ifdef CONFIG_64BIT
 103	BYTES_NOP9,
 104	BYTES_NOP10,
 105	BYTES_NOP11,
 106#endif
 107};
 108
 109const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
 110{
 111	NULL,
 112	x86nops,
 113	x86nops + 1,
 114	x86nops + 1 + 2,
 115	x86nops + 1 + 2 + 3,
 116	x86nops + 1 + 2 + 3 + 4,
 117	x86nops + 1 + 2 + 3 + 4 + 5,
 118	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
 119	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
 120#ifdef CONFIG_64BIT
 121	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
 122	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
 123	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
 124#endif
 125};
 126
 127/*
 128 * Fill the buffer with a single effective instruction of size @len.
 129 *
 130 * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
 131 * for every single-byte NOP, try to generate the maximally available NOP of
 132 * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
 133 * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
 134 * *jump* over instead of executing long and daft NOPs.
 135 */
 136static void add_nop(u8 *instr, unsigned int len)
 137{
 138	u8 *target = instr + len;
 139
 140	if (!len)
 141		return;
 142
 143	if (len <= ASM_NOP_MAX) {
 144		memcpy(instr, x86_nops[len], len);
 145		return;
 146	}
 147
 148	if (len < 128) {
 149		__text_gen_insn(instr, JMP8_INSN_OPCODE, instr, target, JMP8_INSN_SIZE);
 150		instr += JMP8_INSN_SIZE;
 151	} else {
 152		__text_gen_insn(instr, JMP32_INSN_OPCODE, instr, target, JMP32_INSN_SIZE);
 153		instr += JMP32_INSN_SIZE;
 154	}
 155
 156	for (;instr < target; instr++)
 157		*instr = INT3_INSN_OPCODE;
 158}
 159
 160extern s32 __retpoline_sites[], __retpoline_sites_end[];
 161extern s32 __return_sites[], __return_sites_end[];
 162extern s32 __cfi_sites[], __cfi_sites_end[];
 163extern s32 __ibt_endbr_seal[], __ibt_endbr_seal_end[];
 
 164extern s32 __smp_locks[], __smp_locks_end[];
 165void text_poke_early(void *addr, const void *opcode, size_t len);
 166
 167/*
 168 * Matches NOP and NOPL, not any of the other possible NOPs.
 169 */
 170static bool insn_is_nop(struct insn *insn)
 171{
 172	/* Anything NOP, but no REP NOP */
 173	if (insn->opcode.bytes[0] == 0x90 &&
 174	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
 175		return true;
 176
 177	/* NOPL */
 178	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
 179		return true;
 180
 181	/* TODO: more nops */
 182
 183	return false;
 184}
 185
 186/*
 187 * Find the offset of the first non-NOP instruction starting at @offset
 188 * but no further than @len.
 189 */
 190static int skip_nops(u8 *instr, int offset, int len)
 191{
 192	struct insn insn;
 
 
 
 
 
 193
 194	for (; offset < len; offset += insn.length) {
 195		if (insn_decode_kernel(&insn, &instr[offset]))
 196			break;
 197
 198		if (!insn_is_nop(&insn))
 199			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200	}
 201
 202	return offset;
 203}
 
 
 
 
 204
 205/*
 206 * Optimize a sequence of NOPs, possibly preceded by an unconditional jump
 207 * to the end of the NOP sequence into a single NOP.
 208 */
 209static bool
 210__optimize_nops(u8 *instr, size_t len, struct insn *insn, int *next, int *prev, int *target)
 211{
 212	int i = *next - insn->length;
 213
 214	switch (insn->opcode.bytes[0]) {
 215	case JMP8_INSN_OPCODE:
 216	case JMP32_INSN_OPCODE:
 217		*prev = i;
 218		*target = *next + insn->immediate.value;
 219		return false;
 220	}
 221
 222	if (insn_is_nop(insn)) {
 223		int nop = i;
 224
 225		*next = skip_nops(instr, *next, len);
 226		if (*target && *next == *target)
 227			nop = *prev;
 228
 229		add_nop(instr + nop, *next - nop);
 230		DUMP_BYTES(ALT, instr, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, *next);
 231		return true;
 232	}
 233
 234	*target = 0;
 235	return false;
 236}
 237
 238/*
 239 * "noinline" to cause control flow change and thus invalidate I$ and
 240 * cause refetch after modification.
 
 
 
 
 
 241 */
 242static void __init_or_module noinline optimize_nops(u8 *instr, size_t len)
 243{
 244	int prev, target = 0;
 
 245
 246	for (int next, i = 0; i < len; i = next) {
 247		struct insn insn;
 
 248
 249		if (insn_decode_kernel(&insn, &instr[i]))
 250			return;
 251
 252		next = i + insn.length;
 253
 254		__optimize_nops(instr, len, &insn, &next, &prev, &target);
 255	}
 256}
 257
 258static void __init_or_module noinline optimize_nops_inplace(u8 *instr, size_t len)
 259{
 260	unsigned long flags;
 261
 262	local_irq_save(flags);
 263	optimize_nops(instr, len);
 264	sync_core();
 265	local_irq_restore(flags);
 
 
 
 
 266}
 267
 268/*
 269 * In this context, "source" is where the instructions are placed in the
 270 * section .altinstr_replacement, for example during kernel build by the
 271 * toolchain.
 272 * "Destination" is where the instructions are being patched in by this
 273 * machinery.
 274 *
 275 * The source offset is:
 276 *
 277 *   src_imm = target - src_next_ip                  (1)
 278 *
 279 * and the target offset is:
 280 *
 281 *   dst_imm = target - dst_next_ip                  (2)
 282 *
 283 * so rework (1) as an expression for target like:
 284 *
 285 *   target = src_imm + src_next_ip                  (1a)
 286 *
 287 * and substitute in (2) to get:
 288 *
 289 *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
 290 *
 291 * Now, since the instruction stream is 'identical' at src and dst (it
 292 * is being copied after all) it can be stated that:
 293 *
 294 *   src_next_ip = src + ip_offset
 295 *   dst_next_ip = dst + ip_offset                   (4)
 296 *
 297 * Substitute (4) in (3) and observe ip_offset being cancelled out to
 298 * obtain:
 299 *
 300 *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
 301 *           = src_imm + src - dst + ip_offset - ip_offset
 302 *           = src_imm + src - dst                   (5)
 303 *
 304 * IOW, only the relative displacement of the code block matters.
 305 */
 306
 307#define apply_reloc_n(n_, p_, d_)				\
 308	do {							\
 309		s32 v = *(s##n_ *)(p_);				\
 310		v += (d_);					\
 311		BUG_ON((v >> 31) != (v >> (n_-1)));		\
 312		*(s##n_ *)(p_) = (s##n_)v;			\
 313	} while (0)
 314
 315
 316static __always_inline
 317void apply_reloc(int n, void *ptr, uintptr_t diff)
 318{
 319	switch (n) {
 320	case 1: apply_reloc_n(8, ptr, diff); break;
 321	case 2: apply_reloc_n(16, ptr, diff); break;
 322	case 4: apply_reloc_n(32, ptr, diff); break;
 323	default: BUG();
 324	}
 325}
 326
 327static __always_inline
 328bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
 329{
 330	u8 *target = src + offset;
 331	/*
 332	 * If the target is inside the patched block, it's relative to the
 333	 * block itself and does not need relocation.
 334	 */
 335	return (target < src || target > src + src_len);
 336}
 
 337
 338void apply_relocation(u8 *buf, size_t len, u8 *dest, u8 *src, size_t src_len)
 339{
 340	int prev, target = 0;
 
 
 
 
 
 341
 342	for (int next, i = 0; i < len; i = next) {
 343		struct insn insn;
 344
 345		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
 346			return;
 347
 348		next = i + insn.length;
 349
 350		if (__optimize_nops(buf, len, &insn, &next, &prev, &target))
 351			continue;
 352
 353		switch (insn.opcode.bytes[0]) {
 354		case 0x0f:
 355			if (insn.opcode.bytes[1] < 0x80 ||
 356			    insn.opcode.bytes[1] > 0x8f)
 357				break;
 358
 359			fallthrough;	/* Jcc.d32 */
 360		case 0x70 ... 0x7f:	/* Jcc.d8 */
 361		case JMP8_INSN_OPCODE:
 362		case JMP32_INSN_OPCODE:
 363		case CALL_INSN_OPCODE:
 364			if (need_reloc(next + insn.immediate.value, src, src_len)) {
 365				apply_reloc(insn.immediate.nbytes,
 366					    buf + i + insn_offset_immediate(&insn),
 367					    src - dest);
 368			}
 369
 370			/*
 371			 * Where possible, convert JMP.d32 into JMP.d8.
 372			 */
 373			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
 374				s32 imm = insn.immediate.value;
 375				imm += src - dest;
 376				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
 377				if ((imm >> 31) == (imm >> 7)) {
 378					buf[i+0] = JMP8_INSN_OPCODE;
 379					buf[i+1] = (s8)imm;
 380
 381					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
 382				}
 383			}
 384			break;
 385		}
 386
 387		if (insn_rip_relative(&insn)) {
 388			if (need_reloc(next + insn.displacement.value, src, src_len)) {
 389				apply_reloc(insn.displacement.nbytes,
 390					    buf + i + insn_offset_displacement(&insn),
 391					    src - dest);
 392			}
 393		}
 394	}
 395}
 396
 397/* Low-level backend functions usable from alternative code replacements. */
 398DEFINE_ASM_FUNC(nop_func, "", .entry.text);
 399EXPORT_SYMBOL_GPL(nop_func);
 400
 401noinstr void BUG_func(void)
 402{
 403	BUG();
 404}
 405EXPORT_SYMBOL(BUG_func);
 406
 407#define CALL_RIP_REL_OPCODE	0xff
 408#define CALL_RIP_REL_MODRM	0x15
 409
 410/*
 411 * Rewrite the "call BUG_func" replacement to point to the target of the
 412 * indirect pv_ops call "call *disp(%ip)".
 413 */
 414static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
 415{
 416	void *target, *bug = &BUG_func;
 417	s32 disp;
 418
 419	if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
 420		pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
 421		BUG();
 422	}
 423
 424	if (a->instrlen != 6 ||
 425	    instr[0] != CALL_RIP_REL_OPCODE ||
 426	    instr[1] != CALL_RIP_REL_MODRM) {
 427		pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
 428		BUG();
 429	}
 430
 431	/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
 432	disp = *(s32 *)(instr + 2);
 433#ifdef CONFIG_X86_64
 434	/* ff 15 00 00 00 00   call   *0x0(%rip) */
 435	/* target address is stored at "next instruction + disp". */
 436	target = *(void **)(instr + a->instrlen + disp);
 437#else
 438	/* ff 15 00 00 00 00   call   *0x0 */
 439	/* target address is stored at disp. */
 440	target = *(void **)disp;
 441#endif
 442	if (!target)
 443		target = bug;
 444
 445	/* (BUG_func - .) + (target - BUG_func) := target - . */
 446	*(s32 *)(insn_buff + 1) += target - bug;
 447
 448	if (target == &nop_func)
 449		return 0;
 450
 451	return 5;
 452}
 453
 454/*
 455 * Replace instructions with better alternatives for this CPU type. This runs
 456 * before SMP is initialized to avoid SMP problems with self modifying code.
 457 * This implies that asymmetric systems where APs have less capabilities than
 458 * the boot processor are not handled. Tough. Make sure you disable such
 459 * features by hand.
 460 *
 461 * Marked "noinline" to cause control flow change and thus insn cache
 462 * to refetch changed I$ lines.
 463 */
 464void __init_or_module noinline apply_alternatives(struct alt_instr *start,
 465						  struct alt_instr *end)
 466{
 467	struct alt_instr *a;
 468	u8 *instr, *replacement;
 469	u8 insn_buff[MAX_PATCH_LEN];
 470
 471	DPRINTK(ALT, "alt table %px, -> %px", start, end);
 472
 473	/*
 474	 * In the case CONFIG_X86_5LEVEL=y, KASAN_SHADOW_START is defined using
 475	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
 476	 * During the process, KASAN becomes confused seeing partial LA57
 477	 * conversion and triggers a false-positive out-of-bound report.
 478	 *
 479	 * Disable KASAN until the patching is complete.
 480	 */
 481	kasan_disable_current();
 482
 483	/*
 484	 * The scan order should be from start to end. A later scanned
 485	 * alternative code can overwrite previously scanned alternative code.
 486	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
 487	 * patch code.
 488	 *
 489	 * So be careful if you want to change the scan order to any other
 490	 * order.
 491	 */
 492	for (a = start; a < end; a++) {
 493		int insn_buff_sz = 0;
 
 
 494
 495		instr = (u8 *)&a->instr_offset + a->instr_offset;
 496		replacement = (u8 *)&a->repl_offset + a->repl_offset;
 497		BUG_ON(a->instrlen > sizeof(insn_buff));
 498		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
 499
 500		/*
 501		 * Patch if either:
 502		 * - feature is present
 503		 * - feature not present but ALT_FLAG_NOT is set to mean,
 504		 *   patch if feature is *NOT* present.
 505		 */
 506		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
 507			optimize_nops_inplace(instr, a->instrlen);
 508			continue;
 509		}
 510
 511		DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
 512			a->cpuid >> 5,
 513			a->cpuid & 0x1f,
 
 514			instr, instr, a->instrlen,
 515			replacement, a->replacementlen, a->flags);
 
 
 
 516
 517		memcpy(insn_buff, replacement, a->replacementlen);
 518		insn_buff_sz = a->replacementlen;
 519
 520		if (a->flags & ALT_FLAG_DIRECT_CALL) {
 521			insn_buff_sz = alt_replace_call(instr, insn_buff, a);
 522			if (insn_buff_sz < 0)
 523				continue;
 
 
 
 
 
 
 
 524		}
 525
 
 
 
 526		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
 527			insn_buff[insn_buff_sz] = 0x90;
 528
 529		apply_relocation(insn_buff, a->instrlen, instr, replacement, a->replacementlen);
 530
 531		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
 532		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
 533		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
 534
 535		text_poke_early(instr, insn_buff, insn_buff_sz);
 
 536	}
 537
 538	kasan_enable_current();
 539}
 540
 541static inline bool is_jcc32(struct insn *insn)
 542{
 543	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
 544	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
 545}
 546
 547#if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
 548
 549/*
 550 * CALL/JMP *%\reg
 551 */
 552static int emit_indirect(int op, int reg, u8 *bytes)
 553{
 554	int i = 0;
 555	u8 modrm;
 556
 557	switch (op) {
 558	case CALL_INSN_OPCODE:
 559		modrm = 0x10; /* Reg = 2; CALL r/m */
 560		break;
 561
 562	case JMP32_INSN_OPCODE:
 563		modrm = 0x20; /* Reg = 4; JMP r/m */
 564		break;
 565
 566	default:
 567		WARN_ON_ONCE(1);
 568		return -1;
 569	}
 570
 571	if (reg >= 8) {
 572		bytes[i++] = 0x41; /* REX.B prefix */
 573		reg -= 8;
 574	}
 575
 576	modrm |= 0xc0; /* Mod = 3 */
 577	modrm += reg;
 578
 579	bytes[i++] = 0xff; /* opcode */
 580	bytes[i++] = modrm;
 581
 582	return i;
 583}
 584
 
 
 
 
 
 
 585static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
 586{
 587	u8 op = insn->opcode.bytes[0];
 588	int i = 0;
 589
 590	/*
 591	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
 592	 * tail-calls. Deal with them.
 593	 */
 594	if (is_jcc32(insn)) {
 595		bytes[i++] = op;
 596		op = insn->opcode.bytes[1];
 597		goto clang_jcc;
 598	}
 599
 600	if (insn->length == 6)
 601		bytes[i++] = 0x2e; /* CS-prefix */
 602
 603	switch (op) {
 604	case CALL_INSN_OPCODE:
 605		__text_gen_insn(bytes+i, op, addr+i,
 606				__x86_indirect_call_thunk_array[reg],
 607				CALL_INSN_SIZE);
 608		i += CALL_INSN_SIZE;
 609		break;
 610
 611	case JMP32_INSN_OPCODE:
 612clang_jcc:
 613		__text_gen_insn(bytes+i, op, addr+i,
 614				__x86_indirect_jump_thunk_array[reg],
 615				JMP32_INSN_SIZE);
 616		i += JMP32_INSN_SIZE;
 617		break;
 618
 619	default:
 620		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
 621		return -1;
 622	}
 623
 624	WARN_ON_ONCE(i != insn->length);
 625
 626	return i;
 627}
 628
 629/*
 630 * Rewrite the compiler generated retpoline thunk calls.
 631 *
 632 * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
 633 * indirect instructions, avoiding the extra indirection.
 634 *
 635 * For example, convert:
 636 *
 637 *   CALL __x86_indirect_thunk_\reg
 638 *
 639 * into:
 640 *
 641 *   CALL *%\reg
 642 *
 643 * It also tries to inline spectre_v2=retpoline,lfence when size permits.
 644 */
 645static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
 646{
 647	retpoline_thunk_t *target;
 648	int reg, ret, i = 0;
 649	u8 op, cc;
 650
 651	target = addr + insn->length + insn->immediate.value;
 652	reg = target - __x86_indirect_thunk_array;
 653
 654	if (WARN_ON_ONCE(reg & ~0xf))
 655		return -1;
 656
 657	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
 658	BUG_ON(reg == 4);
 659
 660	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
 661	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
 662		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
 663			return emit_call_track_retpoline(addr, insn, reg, bytes);
 664
 665		return -1;
 666	}
 667
 668	op = insn->opcode.bytes[0];
 669
 670	/*
 671	 * Convert:
 672	 *
 673	 *   Jcc.d32 __x86_indirect_thunk_\reg
 674	 *
 675	 * into:
 676	 *
 677	 *   Jncc.d8 1f
 678	 *   [ LFENCE ]
 679	 *   JMP *%\reg
 680	 *   [ NOP ]
 681	 * 1:
 682	 */
 683	if (is_jcc32(insn)) {
 684		cc = insn->opcode.bytes[1] & 0xf;
 685		cc ^= 1; /* invert condition */
 686
 687		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
 688		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
 689
 690		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
 691		op = JMP32_INSN_OPCODE;
 692	}
 693
 694	/*
 695	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
 696	 */
 697	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
 698		bytes[i++] = 0x0f;
 699		bytes[i++] = 0xae;
 700		bytes[i++] = 0xe8; /* LFENCE */
 701	}
 702
 703	ret = emit_indirect(op, reg, bytes + i);
 704	if (ret < 0)
 705		return ret;
 706	i += ret;
 707
 708	/*
 709	 * The compiler is supposed to EMIT an INT3 after every unconditional
 710	 * JMP instruction due to AMD BTC. However, if the compiler is too old
 711	 * or MITIGATION_SLS isn't enabled, we still need an INT3 after
 712	 * indirect JMPs even on Intel.
 713	 */
 714	if (op == JMP32_INSN_OPCODE && i < insn->length)
 715		bytes[i++] = INT3_INSN_OPCODE;
 716
 717	for (; i < insn->length;)
 718		bytes[i++] = BYTES_NOP1;
 719
 720	return i;
 721}
 722
 723/*
 724 * Generated by 'objtool --retpoline'.
 725 */
 726void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
 727{
 728	s32 *s;
 729
 730	for (s = start; s < end; s++) {
 731		void *addr = (void *)s + *s;
 732		struct insn insn;
 733		int len, ret;
 734		u8 bytes[16];
 735		u8 op1, op2;
 736
 737		ret = insn_decode_kernel(&insn, addr);
 738		if (WARN_ON_ONCE(ret < 0))
 739			continue;
 740
 741		op1 = insn.opcode.bytes[0];
 742		op2 = insn.opcode.bytes[1];
 743
 744		switch (op1) {
 745		case CALL_INSN_OPCODE:
 746		case JMP32_INSN_OPCODE:
 747			break;
 748
 749		case 0x0f: /* escape */
 750			if (op2 >= 0x80 && op2 <= 0x8f)
 751				break;
 752			fallthrough;
 753		default:
 754			WARN_ON_ONCE(1);
 755			continue;
 756		}
 757
 758		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
 759			addr, addr, insn.length,
 760			addr + insn.length + insn.immediate.value);
 761
 762		len = patch_retpoline(addr, &insn, bytes);
 763		if (len == insn.length) {
 764			optimize_nops(bytes, len);
 765			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
 766			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
 767			text_poke_early(addr, bytes, len);
 768		}
 769	}
 770}
 771
 772#ifdef CONFIG_MITIGATION_RETHUNK
 
 
 
 
 773
 774/*
 775 * Rewrite the compiler generated return thunk tail-calls.
 776 *
 777 * For example, convert:
 778 *
 779 *   JMP __x86_return_thunk
 780 *
 781 * into:
 782 *
 783 *   RET
 784 */
 785static int patch_return(void *addr, struct insn *insn, u8 *bytes)
 786{
 787	int i = 0;
 788
 789	/* Patch the custom return thunks... */
 790	if (cpu_feature_enabled(X86_FEATURE_RETHUNK)) {
 
 
 
 791		i = JMP32_INSN_SIZE;
 792		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
 793	} else {
 794		/* ... or patch them out if not needed. */
 795		bytes[i++] = RET_INSN_OPCODE;
 796	}
 797
 798	for (; i < insn->length;)
 799		bytes[i++] = INT3_INSN_OPCODE;
 800	return i;
 801}
 802
 803void __init_or_module noinline apply_returns(s32 *start, s32 *end)
 804{
 805	s32 *s;
 806
 807	if (cpu_feature_enabled(X86_FEATURE_RETHUNK))
 808		static_call_force_reinit();
 809
 810	for (s = start; s < end; s++) {
 811		void *dest = NULL, *addr = (void *)s + *s;
 812		struct insn insn;
 813		int len, ret;
 814		u8 bytes[16];
 815		u8 op;
 816
 817		ret = insn_decode_kernel(&insn, addr);
 818		if (WARN_ON_ONCE(ret < 0))
 819			continue;
 820
 821		op = insn.opcode.bytes[0];
 822		if (op == JMP32_INSN_OPCODE)
 823			dest = addr + insn.length + insn.immediate.value;
 824
 825		if (__static_call_fixup(addr, op, dest) ||
 826		    WARN_ONCE(dest != &__x86_return_thunk,
 827			      "missing return thunk: %pS-%pS: %*ph",
 828			      addr, dest, 5, addr))
 829			continue;
 830
 831		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
 832			addr, addr, insn.length,
 833			addr + insn.length + insn.immediate.value);
 834
 835		len = patch_return(addr, &insn, bytes);
 836		if (len == insn.length) {
 837			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
 838			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
 839			text_poke_early(addr, bytes, len);
 840		}
 841	}
 842}
 843#else
 844void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
 845#endif /* CONFIG_MITIGATION_RETHUNK */
 846
 847#else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
 848
 849void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
 850void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
 851
 852#endif /* CONFIG_MITIGATION_RETPOLINE && CONFIG_OBJTOOL */
 853
 854#ifdef CONFIG_X86_KERNEL_IBT
 855
 856static void poison_cfi(void *addr);
 857
 858static void __init_or_module poison_endbr(void *addr, bool warn)
 859{
 860	u32 endbr, poison = gen_endbr_poison();
 861
 862	if (WARN_ON_ONCE(get_kernel_nofault(endbr, addr)))
 863		return;
 864
 865	if (!is_endbr(endbr)) {
 866		WARN_ON_ONCE(warn);
 867		return;
 868	}
 869
 870	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
 871
 872	/*
 873	 * When we have IBT, the lack of ENDBR will trigger #CP
 874	 */
 875	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
 876	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
 877	text_poke_early(addr, &poison, 4);
 878}
 879
 880/*
 881 * Generated by: objtool --ibt
 882 *
 883 * Seal the functions for indirect calls by clobbering the ENDBR instructions
 884 * and the kCFI hash value.
 885 */
 886void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
 887{
 888	s32 *s;
 889
 890	for (s = start; s < end; s++) {
 891		void *addr = (void *)s + *s;
 892
 893		poison_endbr(addr, true);
 894		if (IS_ENABLED(CONFIG_FINEIBT))
 895			poison_cfi(addr - 16);
 896	}
 897}
 898
 899#else
 900
 901void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
 902
 903#endif /* CONFIG_X86_KERNEL_IBT */
 904
 905#ifdef CONFIG_FINEIBT
 906#define __CFI_DEFAULT	CFI_DEFAULT
 907#elif defined(CONFIG_CFI_CLANG)
 908#define __CFI_DEFAULT	CFI_KCFI
 909#else
 910#define __CFI_DEFAULT	CFI_OFF
 911#endif
 912
 913enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
 914
 915#ifdef CONFIG_CFI_CLANG
 916struct bpf_insn;
 917
 918/* Must match bpf_func_t / DEFINE_BPF_PROG_RUN() */
 919extern unsigned int __bpf_prog_runX(const void *ctx,
 920				    const struct bpf_insn *insn);
 921
 922/*
 923 * Force a reference to the external symbol so the compiler generates
 924 * __kcfi_typid.
 925 */
 926__ADDRESSABLE(__bpf_prog_runX);
 927
 928/* u32 __ro_after_init cfi_bpf_hash = __kcfi_typeid___bpf_prog_runX; */
 929asm (
 930"	.pushsection	.data..ro_after_init,\"aw\",@progbits	\n"
 931"	.type	cfi_bpf_hash,@object				\n"
 932"	.globl	cfi_bpf_hash					\n"
 933"	.p2align	2, 0x0					\n"
 934"cfi_bpf_hash:							\n"
 935"	.long	__kcfi_typeid___bpf_prog_runX			\n"
 936"	.size	cfi_bpf_hash, 4					\n"
 937"	.popsection						\n"
 938);
 939
 940/* Must match bpf_callback_t */
 941extern u64 __bpf_callback_fn(u64, u64, u64, u64, u64);
 942
 943__ADDRESSABLE(__bpf_callback_fn);
 944
 945/* u32 __ro_after_init cfi_bpf_subprog_hash = __kcfi_typeid___bpf_callback_fn; */
 946asm (
 947"	.pushsection	.data..ro_after_init,\"aw\",@progbits	\n"
 948"	.type	cfi_bpf_subprog_hash,@object			\n"
 949"	.globl	cfi_bpf_subprog_hash				\n"
 950"	.p2align	2, 0x0					\n"
 951"cfi_bpf_subprog_hash:						\n"
 952"	.long	__kcfi_typeid___bpf_callback_fn			\n"
 953"	.size	cfi_bpf_subprog_hash, 4				\n"
 954"	.popsection						\n"
 955);
 956
 957u32 cfi_get_func_hash(void *func)
 958{
 959	u32 hash;
 960
 961	func -= cfi_get_offset();
 962	switch (cfi_mode) {
 963	case CFI_FINEIBT:
 964		func += 7;
 965		break;
 966	case CFI_KCFI:
 967		func += 1;
 968		break;
 969	default:
 970		return 0;
 971	}
 972
 973	if (get_kernel_nofault(hash, func))
 974		return 0;
 975
 976	return hash;
 977}
 978#endif
 979
 980#ifdef CONFIG_FINEIBT
 981
 
 982static bool cfi_rand __ro_after_init = true;
 983static u32  cfi_seed __ro_after_init;
 984
 985/*
 986 * Re-hash the CFI hash with a boot-time seed while making sure the result is
 987 * not a valid ENDBR instruction.
 988 */
 989static u32 cfi_rehash(u32 hash)
 990{
 991	hash ^= cfi_seed;
 992	while (unlikely(is_endbr(hash) || is_endbr(-hash))) {
 993		bool lsb = hash & 1;
 994		hash >>= 1;
 995		if (lsb)
 996			hash ^= 0x80200003;
 997	}
 998	return hash;
 999}
1000
1001static __init int cfi_parse_cmdline(char *str)
1002{
1003	if (!str)
1004		return -EINVAL;
1005
1006	while (str) {
1007		char *next = strchr(str, ',');
1008		if (next) {
1009			*next = 0;
1010			next++;
1011		}
1012
1013		if (!strcmp(str, "auto")) {
1014			cfi_mode = CFI_DEFAULT;
1015		} else if (!strcmp(str, "off")) {
1016			cfi_mode = CFI_OFF;
1017			cfi_rand = false;
1018		} else if (!strcmp(str, "kcfi")) {
1019			cfi_mode = CFI_KCFI;
1020		} else if (!strcmp(str, "fineibt")) {
1021			cfi_mode = CFI_FINEIBT;
1022		} else if (!strcmp(str, "norand")) {
1023			cfi_rand = false;
1024		} else {
1025			pr_err("Ignoring unknown cfi option (%s).", str);
1026		}
1027
1028		str = next;
1029	}
1030
1031	return 0;
1032}
1033early_param("cfi", cfi_parse_cmdline);
1034
1035/*
1036 * kCFI						FineIBT
1037 *
1038 * __cfi_\func:					__cfi_\func:
1039 *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1040 *	nop					     subl   $0x12345678,%r10d   // 7
1041 *	nop					     jz     1f			// 2
1042 *	nop					     ud2			// 2
1043 *	nop					1:   nop			// 1
1044 *	nop
1045 *	nop
1046 *	nop
1047 *	nop
1048 *	nop
1049 *	nop
1050 *	nop
1051 *
1052 *
1053 * caller:					caller:
1054 *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%r10d	// 6
1055 *	addl	$-15(%r11),%r10d	 // 4	     sub    $16,%r11		// 4
1056 *	je	1f			 // 2	     nop4			// 4
1057 *	ud2				 // 2
1058 * 1:	call	__x86_indirect_thunk_r11 // 5	     call   *%r11; nop2;	// 5
1059 *
1060 */
1061
1062asm(	".pushsection .rodata			\n"
1063	"fineibt_preamble_start:		\n"
1064	"	endbr64				\n"
1065	"	subl	$0x12345678, %r10d	\n"
1066	"	je	fineibt_preamble_end	\n"
1067	"	ud2				\n"
1068	"	nop				\n"
1069	"fineibt_preamble_end:			\n"
1070	".popsection\n"
1071);
1072
1073extern u8 fineibt_preamble_start[];
1074extern u8 fineibt_preamble_end[];
1075
1076#define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1077#define fineibt_preamble_hash 7
1078
1079asm(	".pushsection .rodata			\n"
1080	"fineibt_caller_start:			\n"
1081	"	movl	$0x12345678, %r10d	\n"
1082	"	sub	$16, %r11		\n"
1083	ASM_NOP4
1084	"fineibt_caller_end:			\n"
1085	".popsection				\n"
1086);
1087
1088extern u8 fineibt_caller_start[];
1089extern u8 fineibt_caller_end[];
1090
1091#define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1092#define fineibt_caller_hash 2
1093
1094#define fineibt_caller_jmp (fineibt_caller_size - 2)
1095
1096static u32 decode_preamble_hash(void *addr)
1097{
1098	u8 *p = addr;
1099
1100	/* b8 78 56 34 12          mov    $0x12345678,%eax */
1101	if (p[0] == 0xb8)
1102		return *(u32 *)(addr + 1);
1103
1104	return 0; /* invalid hash value */
1105}
1106
1107static u32 decode_caller_hash(void *addr)
1108{
1109	u8 *p = addr;
1110
1111	/* 41 ba 78 56 34 12       mov    $0x12345678,%r10d */
1112	if (p[0] == 0x41 && p[1] == 0xba)
1113		return -*(u32 *)(addr + 2);
1114
1115	/* e8 0c 78 56 34 12	   jmp.d8  +12 */
1116	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1117		return -*(u32 *)(addr + 2);
1118
1119	return 0; /* invalid hash value */
1120}
1121
1122/* .retpoline_sites */
1123static int cfi_disable_callers(s32 *start, s32 *end)
1124{
1125	/*
1126	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1127	 * in tact for later usage. Also see decode_caller_hash() and
1128	 * cfi_rewrite_callers().
1129	 */
1130	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1131	s32 *s;
1132
1133	for (s = start; s < end; s++) {
1134		void *addr = (void *)s + *s;
1135		u32 hash;
1136
1137		addr -= fineibt_caller_size;
1138		hash = decode_caller_hash(addr);
1139		if (!hash) /* nocfi callers */
1140			continue;
1141
1142		text_poke_early(addr, jmp, 2);
1143	}
1144
1145	return 0;
1146}
1147
1148static int cfi_enable_callers(s32 *start, s32 *end)
1149{
1150	/*
1151	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1152	 */
1153	const u8 mov[] = { 0x41, 0xba };
1154	s32 *s;
1155
1156	for (s = start; s < end; s++) {
1157		void *addr = (void *)s + *s;
1158		u32 hash;
1159
1160		addr -= fineibt_caller_size;
1161		hash = decode_caller_hash(addr);
1162		if (!hash) /* nocfi callers */
1163			continue;
1164
1165		text_poke_early(addr, mov, 2);
1166	}
1167
1168	return 0;
1169}
1170
1171/* .cfi_sites */
1172static int cfi_rand_preamble(s32 *start, s32 *end)
1173{
1174	s32 *s;
1175
1176	for (s = start; s < end; s++) {
1177		void *addr = (void *)s + *s;
1178		u32 hash;
1179
1180		hash = decode_preamble_hash(addr);
1181		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1182			 addr, addr, 5, addr))
1183			return -EINVAL;
1184
1185		hash = cfi_rehash(hash);
1186		text_poke_early(addr + 1, &hash, 4);
1187	}
1188
1189	return 0;
1190}
1191
1192static int cfi_rewrite_preamble(s32 *start, s32 *end)
1193{
1194	s32 *s;
1195
1196	for (s = start; s < end; s++) {
1197		void *addr = (void *)s + *s;
1198		u32 hash;
1199
1200		hash = decode_preamble_hash(addr);
1201		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1202			 addr, addr, 5, addr))
1203			return -EINVAL;
1204
1205		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1206		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1207		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1208	}
1209
1210	return 0;
1211}
1212
1213static void cfi_rewrite_endbr(s32 *start, s32 *end)
1214{
1215	s32 *s;
1216
1217	for (s = start; s < end; s++) {
1218		void *addr = (void *)s + *s;
1219
1220		poison_endbr(addr+16, false);
1221	}
1222}
1223
1224/* .retpoline_sites */
1225static int cfi_rand_callers(s32 *start, s32 *end)
1226{
1227	s32 *s;
1228
1229	for (s = start; s < end; s++) {
1230		void *addr = (void *)s + *s;
1231		u32 hash;
1232
1233		addr -= fineibt_caller_size;
1234		hash = decode_caller_hash(addr);
1235		if (hash) {
1236			hash = -cfi_rehash(hash);
1237			text_poke_early(addr + 2, &hash, 4);
1238		}
1239	}
1240
1241	return 0;
1242}
1243
1244static int cfi_rewrite_callers(s32 *start, s32 *end)
1245{
1246	s32 *s;
1247
1248	for (s = start; s < end; s++) {
1249		void *addr = (void *)s + *s;
1250		u32 hash;
1251
1252		addr -= fineibt_caller_size;
1253		hash = decode_caller_hash(addr);
1254		if (hash) {
1255			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1256			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1257			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1258		}
1259		/* rely on apply_retpolines() */
1260	}
1261
1262	return 0;
1263}
1264
1265static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1266			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1267{
1268	int ret;
1269
1270	if (WARN_ONCE(fineibt_preamble_size != 16,
1271		      "FineIBT preamble wrong size: %ld", fineibt_preamble_size))
1272		return;
1273
1274	if (cfi_mode == CFI_DEFAULT) {
1275		cfi_mode = CFI_KCFI;
1276		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1277			cfi_mode = CFI_FINEIBT;
1278	}
1279
1280	/*
1281	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1282	 * rewrite them. This disables all CFI. If this succeeds but any of the
1283	 * later stages fails, we're without CFI.
1284	 */
1285	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1286	if (ret)
1287		goto err;
1288
1289	if (cfi_rand) {
1290		if (builtin) {
1291			cfi_seed = get_random_u32();
1292			cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1293			cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1294		}
1295
1296		ret = cfi_rand_preamble(start_cfi, end_cfi);
1297		if (ret)
1298			goto err;
1299
1300		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1301		if (ret)
1302			goto err;
1303	}
1304
1305	switch (cfi_mode) {
1306	case CFI_OFF:
1307		if (builtin)
1308			pr_info("Disabling CFI\n");
1309		return;
1310
1311	case CFI_KCFI:
1312		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1313		if (ret)
1314			goto err;
1315
1316		if (builtin)
1317			pr_info("Using kCFI\n");
1318		return;
1319
1320	case CFI_FINEIBT:
1321		/* place the FineIBT preamble at func()-16 */
1322		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1323		if (ret)
1324			goto err;
1325
1326		/* rewrite the callers to target func()-16 */
1327		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1328		if (ret)
1329			goto err;
1330
1331		/* now that nobody targets func()+0, remove ENDBR there */
1332		cfi_rewrite_endbr(start_cfi, end_cfi);
1333
1334		if (builtin)
1335			pr_info("Using FineIBT CFI\n");
1336		return;
1337
1338	default:
1339		break;
1340	}
1341
1342err:
1343	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1344}
1345
1346static inline void poison_hash(void *addr)
1347{
1348	*(u32 *)addr = 0;
1349}
1350
1351static void poison_cfi(void *addr)
1352{
1353	switch (cfi_mode) {
1354	case CFI_FINEIBT:
1355		/*
1356		 * __cfi_\func:
1357		 *	osp nopl (%rax)
1358		 *	subl	$0, %r10d
1359		 *	jz	1f
1360		 *	ud2
1361		 * 1:	nop
1362		 */
1363		poison_endbr(addr, false);
1364		poison_hash(addr + fineibt_preamble_hash);
1365		break;
1366
1367	case CFI_KCFI:
1368		/*
1369		 * __cfi_\func:
1370		 *	movl	$0, %eax
1371		 *	.skip	11, 0x90
1372		 */
1373		poison_hash(addr + 1);
1374		break;
1375
1376	default:
1377		break;
1378	}
1379}
1380
1381#else
1382
1383static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1384			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1385{
1386}
1387
1388#ifdef CONFIG_X86_KERNEL_IBT
1389static void poison_cfi(void *addr) { }
1390#endif
1391
1392#endif
1393
1394void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1395		   s32 *start_cfi, s32 *end_cfi)
1396{
1397	return __apply_fineibt(start_retpoline, end_retpoline,
1398			       start_cfi, end_cfi,
1399			       /* .builtin = */ false);
1400}
1401
1402#ifdef CONFIG_SMP
1403static void alternatives_smp_lock(const s32 *start, const s32 *end,
1404				  u8 *text, u8 *text_end)
1405{
1406	const s32 *poff;
1407
1408	for (poff = start; poff < end; poff++) {
1409		u8 *ptr = (u8 *)poff + *poff;
1410
1411		if (!*poff || ptr < text || ptr >= text_end)
1412			continue;
1413		/* turn DS segment override prefix into lock prefix */
1414		if (*ptr == 0x3e)
1415			text_poke(ptr, ((unsigned char []){0xf0}), 1);
1416	}
1417}
1418
1419static void alternatives_smp_unlock(const s32 *start, const s32 *end,
1420				    u8 *text, u8 *text_end)
1421{
1422	const s32 *poff;
1423
1424	for (poff = start; poff < end; poff++) {
1425		u8 *ptr = (u8 *)poff + *poff;
1426
1427		if (!*poff || ptr < text || ptr >= text_end)
1428			continue;
1429		/* turn lock prefix into DS segment override prefix */
1430		if (*ptr == 0xf0)
1431			text_poke(ptr, ((unsigned char []){0x3E}), 1);
1432	}
1433}
1434
1435struct smp_alt_module {
1436	/* what is this ??? */
1437	struct module	*mod;
1438	char		*name;
1439
1440	/* ptrs to lock prefixes */
1441	const s32	*locks;
1442	const s32	*locks_end;
1443
1444	/* .text segment, needed to avoid patching init code ;) */
1445	u8		*text;
1446	u8		*text_end;
1447
1448	struct list_head next;
1449};
1450static LIST_HEAD(smp_alt_modules);
1451static bool uniproc_patched = false;	/* protected by text_mutex */
1452
1453void __init_or_module alternatives_smp_module_add(struct module *mod,
1454						  char *name,
1455						  void *locks, void *locks_end,
1456						  void *text,  void *text_end)
1457{
1458	struct smp_alt_module *smp;
1459
1460	mutex_lock(&text_mutex);
1461	if (!uniproc_patched)
1462		goto unlock;
1463
1464	if (num_possible_cpus() == 1)
1465		/* Don't bother remembering, we'll never have to undo it. */
1466		goto smp_unlock;
1467
1468	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
1469	if (NULL == smp)
1470		/* we'll run the (safe but slow) SMP code then ... */
1471		goto unlock;
1472
1473	smp->mod	= mod;
1474	smp->name	= name;
1475	smp->locks	= locks;
1476	smp->locks_end	= locks_end;
1477	smp->text	= text;
1478	smp->text_end	= text_end;
1479	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
1480		smp->locks, smp->locks_end,
1481		smp->text, smp->text_end, smp->name);
1482
1483	list_add_tail(&smp->next, &smp_alt_modules);
1484smp_unlock:
1485	alternatives_smp_unlock(locks, locks_end, text, text_end);
1486unlock:
1487	mutex_unlock(&text_mutex);
1488}
1489
1490void __init_or_module alternatives_smp_module_del(struct module *mod)
1491{
1492	struct smp_alt_module *item;
1493
1494	mutex_lock(&text_mutex);
1495	list_for_each_entry(item, &smp_alt_modules, next) {
1496		if (mod != item->mod)
1497			continue;
1498		list_del(&item->next);
1499		kfree(item);
1500		break;
1501	}
1502	mutex_unlock(&text_mutex);
1503}
1504
1505void alternatives_enable_smp(void)
1506{
1507	struct smp_alt_module *mod;
1508
1509	/* Why bother if there are no other CPUs? */
1510	BUG_ON(num_possible_cpus() == 1);
1511
1512	mutex_lock(&text_mutex);
1513
1514	if (uniproc_patched) {
1515		pr_info("switching to SMP code\n");
1516		BUG_ON(num_online_cpus() != 1);
1517		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
1518		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
1519		list_for_each_entry(mod, &smp_alt_modules, next)
1520			alternatives_smp_lock(mod->locks, mod->locks_end,
1521					      mod->text, mod->text_end);
1522		uniproc_patched = false;
1523	}
1524	mutex_unlock(&text_mutex);
1525}
1526
1527/*
1528 * Return 1 if the address range is reserved for SMP-alternatives.
1529 * Must hold text_mutex.
1530 */
1531int alternatives_text_reserved(void *start, void *end)
1532{
1533	struct smp_alt_module *mod;
1534	const s32 *poff;
1535	u8 *text_start = start;
1536	u8 *text_end = end;
1537
1538	lockdep_assert_held(&text_mutex);
1539
1540	list_for_each_entry(mod, &smp_alt_modules, next) {
1541		if (mod->text > text_end || mod->text_end < text_start)
1542			continue;
1543		for (poff = mod->locks; poff < mod->locks_end; poff++) {
1544			const u8 *ptr = (const u8 *)poff + *poff;
1545
1546			if (text_start <= ptr && text_end > ptr)
1547				return 1;
1548		}
1549	}
1550
1551	return 0;
1552}
1553#endif /* CONFIG_SMP */
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555/*
1556 * Self-test for the INT3 based CALL emulation code.
1557 *
1558 * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
1559 * properly and that there is a stack gap between the INT3 frame and the
1560 * previous context. Without this gap doing a virtual PUSH on the interrupted
1561 * stack would corrupt the INT3 IRET frame.
1562 *
1563 * See entry_{32,64}.S for more details.
1564 */
1565
1566/*
1567 * We define the int3_magic() function in assembly to control the calling
1568 * convention such that we can 'call' it from assembly.
1569 */
1570
1571extern void int3_magic(unsigned int *ptr); /* defined in asm */
1572
1573asm (
1574"	.pushsection	.init.text, \"ax\", @progbits\n"
1575"	.type		int3_magic, @function\n"
1576"int3_magic:\n"
1577	ANNOTATE_NOENDBR
1578"	movl	$1, (%" _ASM_ARG1 ")\n"
1579	ASM_RET
1580"	.size		int3_magic, .-int3_magic\n"
1581"	.popsection\n"
1582);
1583
1584extern void int3_selftest_ip(void); /* defined in asm below */
1585
1586static int __init
1587int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1588{
1589	unsigned long selftest = (unsigned long)&int3_selftest_ip;
1590	struct die_args *args = data;
1591	struct pt_regs *regs = args->regs;
1592
1593	OPTIMIZER_HIDE_VAR(selftest);
1594
1595	if (!regs || user_mode(regs))
1596		return NOTIFY_DONE;
1597
1598	if (val != DIE_INT3)
1599		return NOTIFY_DONE;
1600
1601	if (regs->ip - INT3_INSN_SIZE != selftest)
1602		return NOTIFY_DONE;
1603
1604	int3_emulate_call(regs, (unsigned long)&int3_magic);
1605	return NOTIFY_STOP;
1606}
1607
1608/* Must be noinline to ensure uniqueness of int3_selftest_ip. */
1609static noinline void __init int3_selftest(void)
1610{
1611	static __initdata struct notifier_block int3_exception_nb = {
1612		.notifier_call	= int3_exception_notify,
1613		.priority	= INT_MAX-1, /* last */
1614	};
1615	unsigned int val = 0;
1616
1617	BUG_ON(register_die_notifier(&int3_exception_nb));
1618
1619	/*
1620	 * Basically: int3_magic(&val); but really complicated :-)
1621	 *
1622	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
1623	 * notifier above will emulate CALL for us.
1624	 */
1625	asm volatile ("int3_selftest_ip:\n\t"
1626		      ANNOTATE_NOENDBR
1627		      "    int3; nop; nop; nop; nop\n\t"
1628		      : ASM_CALL_CONSTRAINT
1629		      : __ASM_SEL_RAW(a, D) (&val)
1630		      : "memory");
1631
1632	BUG_ON(val != 1);
1633
1634	unregister_die_notifier(&int3_exception_nb);
1635}
1636
1637static __initdata int __alt_reloc_selftest_addr;
1638
1639extern void __init __alt_reloc_selftest(void *arg);
1640__visible noinline void __init __alt_reloc_selftest(void *arg)
1641{
1642	WARN_ON(arg != &__alt_reloc_selftest_addr);
1643}
1644
1645static noinline void __init alt_reloc_selftest(void)
1646{
1647	/*
1648	 * Tests apply_relocation().
1649	 *
1650	 * This has a relative immediate (CALL) in a place other than the first
1651	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
1652	 *
1653	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
1654	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
1655	 *
1656	 * Getting this wrong will either crash and burn or tickle the WARN
1657	 * above.
1658	 */
1659	asm_inline volatile (
1660		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
1661		: /* output */
1662		: [mem] "m" (__alt_reloc_selftest_addr)
1663		: _ASM_ARG1
1664	);
1665}
1666
1667void __init alternative_instructions(void)
1668{
1669	int3_selftest();
1670
1671	/*
1672	 * The patching is not fully atomic, so try to avoid local
1673	 * interruptions that might execute the to be patched code.
1674	 * Other CPUs are not running.
1675	 */
1676	stop_nmi();
1677
1678	/*
1679	 * Don't stop machine check exceptions while patching.
1680	 * MCEs only happen when something got corrupted and in this
1681	 * case we must do something about the corruption.
1682	 * Ignoring it is worse than an unlikely patching race.
1683	 * Also machine checks tend to be broadcast and if one CPU
1684	 * goes into machine check the others follow quickly, so we don't
1685	 * expect a machine check to cause undue problems during to code
1686	 * patching.
1687	 */
1688
1689	/*
1690	 * Make sure to set (artificial) features depending on used paravirt
1691	 * functions which can later influence alternative patching.
 
 
 
 
 
 
 
 
 
 
 
1692	 */
1693	paravirt_set_cap();
1694
 
 
 
 
 
 
1695	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
1696			__cfi_sites, __cfi_sites_end, true);
1697
1698	/*
1699	 * Rewrite the retpolines, must be done before alternatives since
1700	 * those can rewrite the retpoline thunks.
1701	 */
1702	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
1703	apply_returns(__return_sites, __return_sites_end);
1704
 
 
 
 
1705	apply_alternatives(__alt_instructions, __alt_instructions_end);
1706
1707	/*
1708	 * Now all calls are established. Apply the call thunks if
1709	 * required.
1710	 */
1711	callthunks_patch_builtin_calls();
1712
1713	/*
1714	 * Seal all functions that do not have their address taken.
1715	 */
1716	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
1717
1718#ifdef CONFIG_SMP
1719	/* Patch to UP if other cpus not imminent. */
1720	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
1721		uniproc_patched = true;
1722		alternatives_smp_module_add(NULL, "core kernel",
1723					    __smp_locks, __smp_locks_end,
1724					    _text, _etext);
1725	}
1726
1727	if (!uniproc_patched || num_possible_cpus() == 1) {
1728		free_init_pages("SMP alternatives",
1729				(unsigned long)__smp_locks,
1730				(unsigned long)__smp_locks_end);
1731	}
1732#endif
1733
1734	restart_nmi();
1735	alternatives_patched = 1;
1736
1737	alt_reloc_selftest();
1738}
1739
1740/**
1741 * text_poke_early - Update instructions on a live kernel at boot time
1742 * @addr: address to modify
1743 * @opcode: source of the copy
1744 * @len: length to copy
1745 *
1746 * When you use this code to patch more than one byte of an instruction
1747 * you need to make sure that other CPUs cannot execute this code in parallel.
1748 * Also no thread must be currently preempted in the middle of these
1749 * instructions. And on the local CPU you need to be protected against NMI or
1750 * MCE handlers seeing an inconsistent instruction while you patch.
1751 */
1752void __init_or_module text_poke_early(void *addr, const void *opcode,
1753				      size_t len)
1754{
1755	unsigned long flags;
1756
1757	if (boot_cpu_has(X86_FEATURE_NX) &&
1758	    is_module_text_address((unsigned long)addr)) {
1759		/*
1760		 * Modules text is marked initially as non-executable, so the
1761		 * code cannot be running and speculative code-fetches are
1762		 * prevented. Just change the code.
1763		 */
1764		memcpy(addr, opcode, len);
1765	} else {
1766		local_irq_save(flags);
1767		memcpy(addr, opcode, len);
 
1768		sync_core();
1769		local_irq_restore(flags);
1770
1771		/*
1772		 * Could also do a CLFLUSH here to speed up CPU recovery; but
1773		 * that causes hangs on some VIA CPUs.
1774		 */
1775	}
1776}
1777
1778typedef struct {
1779	struct mm_struct *mm;
1780} temp_mm_state_t;
1781
1782/*
1783 * Using a temporary mm allows to set temporary mappings that are not accessible
1784 * by other CPUs. Such mappings are needed to perform sensitive memory writes
1785 * that override the kernel memory protections (e.g., W^X), without exposing the
1786 * temporary page-table mappings that are required for these write operations to
1787 * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
1788 * mapping is torn down.
1789 *
1790 * Context: The temporary mm needs to be used exclusively by a single core. To
1791 *          harden security IRQs must be disabled while the temporary mm is
1792 *          loaded, thereby preventing interrupt handler bugs from overriding
1793 *          the kernel memory protection.
1794 */
1795static inline temp_mm_state_t use_temporary_mm(struct mm_struct *mm)
1796{
1797	temp_mm_state_t temp_state;
1798
1799	lockdep_assert_irqs_disabled();
1800
1801	/*
1802	 * Make sure not to be in TLB lazy mode, as otherwise we'll end up
1803	 * with a stale address space WITHOUT being in lazy mode after
1804	 * restoring the previous mm.
1805	 */
1806	if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
1807		leave_mm();
1808
1809	temp_state.mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1810	switch_mm_irqs_off(NULL, mm, current);
1811
1812	/*
1813	 * If breakpoints are enabled, disable them while the temporary mm is
1814	 * used. Userspace might set up watchpoints on addresses that are used
1815	 * in the temporary mm, which would lead to wrong signals being sent or
1816	 * crashes.
1817	 *
1818	 * Note that breakpoints are not disabled selectively, which also causes
1819	 * kernel breakpoints (e.g., perf's) to be disabled. This might be
1820	 * undesirable, but still seems reasonable as the code that runs in the
1821	 * temporary mm should be short.
1822	 */
1823	if (hw_breakpoint_active())
1824		hw_breakpoint_disable();
1825
1826	return temp_state;
1827}
1828
1829static inline void unuse_temporary_mm(temp_mm_state_t prev_state)
1830{
1831	lockdep_assert_irqs_disabled();
1832	switch_mm_irqs_off(NULL, prev_state.mm, current);
1833
1834	/*
1835	 * Restore the breakpoints if they were disabled before the temporary mm
1836	 * was loaded.
1837	 */
1838	if (hw_breakpoint_active())
1839		hw_breakpoint_restore();
1840}
1841
1842__ro_after_init struct mm_struct *poking_mm;
1843__ro_after_init unsigned long poking_addr;
1844
1845static void text_poke_memcpy(void *dst, const void *src, size_t len)
1846{
1847	memcpy(dst, src, len);
1848}
1849
1850static void text_poke_memset(void *dst, const void *src, size_t len)
1851{
1852	int c = *(const int *)src;
1853
1854	memset(dst, c, len);
1855}
1856
1857typedef void text_poke_f(void *dst, const void *src, size_t len);
1858
1859static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
1860{
1861	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
1862	struct page *pages[2] = {NULL};
1863	temp_mm_state_t prev;
1864	unsigned long flags;
1865	pte_t pte, *ptep;
1866	spinlock_t *ptl;
1867	pgprot_t pgprot;
1868
1869	/*
1870	 * While boot memory allocator is running we cannot use struct pages as
1871	 * they are not yet initialized. There is no way to recover.
1872	 */
1873	BUG_ON(!after_bootmem);
1874
1875	if (!core_kernel_text((unsigned long)addr)) {
1876		pages[0] = vmalloc_to_page(addr);
1877		if (cross_page_boundary)
1878			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
1879	} else {
1880		pages[0] = virt_to_page(addr);
1881		WARN_ON(!PageReserved(pages[0]));
1882		if (cross_page_boundary)
1883			pages[1] = virt_to_page(addr + PAGE_SIZE);
1884	}
1885	/*
1886	 * If something went wrong, crash and burn since recovery paths are not
1887	 * implemented.
1888	 */
1889	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
1890
1891	/*
1892	 * Map the page without the global bit, as TLB flushing is done with
1893	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
1894	 */
1895	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
1896
1897	/*
1898	 * The lock is not really needed, but this allows to avoid open-coding.
1899	 */
1900	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
1901
1902	/*
1903	 * This must not fail; preallocated in poking_init().
1904	 */
1905	VM_BUG_ON(!ptep);
1906
1907	local_irq_save(flags);
1908
1909	pte = mk_pte(pages[0], pgprot);
1910	set_pte_at(poking_mm, poking_addr, ptep, pte);
1911
1912	if (cross_page_boundary) {
1913		pte = mk_pte(pages[1], pgprot);
1914		set_pte_at(poking_mm, poking_addr + PAGE_SIZE, ptep + 1, pte);
1915	}
1916
1917	/*
1918	 * Loading the temporary mm behaves as a compiler barrier, which
1919	 * guarantees that the PTE will be set at the time memcpy() is done.
1920	 */
1921	prev = use_temporary_mm(poking_mm);
1922
1923	kasan_disable_current();
1924	func((u8 *)poking_addr + offset_in_page(addr), src, len);
1925	kasan_enable_current();
1926
1927	/*
1928	 * Ensure that the PTE is only cleared after the instructions of memcpy
1929	 * were issued by using a compiler barrier.
1930	 */
1931	barrier();
1932
1933	pte_clear(poking_mm, poking_addr, ptep);
1934	if (cross_page_boundary)
1935		pte_clear(poking_mm, poking_addr + PAGE_SIZE, ptep + 1);
1936
1937	/*
1938	 * Loading the previous page-table hierarchy requires a serializing
1939	 * instruction that already allows the core to see the updated version.
1940	 * Xen-PV is assumed to serialize execution in a similar manner.
1941	 */
1942	unuse_temporary_mm(prev);
1943
1944	/*
1945	 * Flushing the TLB might involve IPIs, which would require enabled
1946	 * IRQs, but not if the mm is not used, as it is in this point.
1947	 */
1948	flush_tlb_mm_range(poking_mm, poking_addr, poking_addr +
1949			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
1950			   PAGE_SHIFT, false);
1951
1952	if (func == text_poke_memcpy) {
1953		/*
1954		 * If the text does not match what we just wrote then something is
1955		 * fundamentally screwy; there's nothing we can really do about that.
1956		 */
1957		BUG_ON(memcmp(addr, src, len));
1958	}
1959
1960	local_irq_restore(flags);
1961	pte_unmap_unlock(ptep, ptl);
1962	return addr;
1963}
1964
1965/**
1966 * text_poke - Update instructions on a live kernel
1967 * @addr: address to modify
1968 * @opcode: source of the copy
1969 * @len: length to copy
1970 *
1971 * Only atomic text poke/set should be allowed when not doing early patching.
1972 * It means the size must be writable atomically and the address must be aligned
1973 * in a way that permits an atomic write. It also makes sure we fit on a single
1974 * page.
1975 *
1976 * Note that the caller must ensure that if the modified code is part of a
1977 * module, the module would not be removed during poking. This can be achieved
1978 * by registering a module notifier, and ordering module removal and patching
1979 * through a mutex.
1980 */
1981void *text_poke(void *addr, const void *opcode, size_t len)
1982{
1983	lockdep_assert_held(&text_mutex);
1984
1985	return __text_poke(text_poke_memcpy, addr, opcode, len);
1986}
1987
1988/**
1989 * text_poke_kgdb - Update instructions on a live kernel by kgdb
1990 * @addr: address to modify
1991 * @opcode: source of the copy
1992 * @len: length to copy
1993 *
1994 * Only atomic text poke/set should be allowed when not doing early patching.
1995 * It means the size must be writable atomically and the address must be aligned
1996 * in a way that permits an atomic write. It also makes sure we fit on a single
1997 * page.
1998 *
1999 * Context: should only be used by kgdb, which ensures no other core is running,
2000 *	    despite the fact it does not hold the text_mutex.
2001 */
2002void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2003{
2004	return __text_poke(text_poke_memcpy, addr, opcode, len);
2005}
2006
2007void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2008			    bool core_ok)
2009{
2010	unsigned long start = (unsigned long)addr;
2011	size_t patched = 0;
2012
2013	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2014		return NULL;
2015
2016	while (patched < len) {
2017		unsigned long ptr = start + patched;
2018		size_t s;
2019
2020		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2021
2022		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2023		patched += s;
2024	}
2025	return addr;
2026}
2027
2028/**
2029 * text_poke_copy - Copy instructions into (an unused part of) RX memory
2030 * @addr: address to modify
2031 * @opcode: source of the copy
2032 * @len: length to copy, could be more than 2x PAGE_SIZE
2033 *
2034 * Not safe against concurrent execution; useful for JITs to dump
2035 * new code blocks into unused regions of RX memory. Can be used in
2036 * conjunction with synchronize_rcu_tasks() to wait for existing
2037 * execution to quiesce after having made sure no existing functions
2038 * pointers are live.
2039 */
2040void *text_poke_copy(void *addr, const void *opcode, size_t len)
2041{
2042	mutex_lock(&text_mutex);
2043	addr = text_poke_copy_locked(addr, opcode, len, false);
2044	mutex_unlock(&text_mutex);
2045	return addr;
2046}
2047
2048/**
2049 * text_poke_set - memset into (an unused part of) RX memory
2050 * @addr: address to modify
2051 * @c: the byte to fill the area with
2052 * @len: length to copy, could be more than 2x PAGE_SIZE
2053 *
2054 * This is useful to overwrite unused regions of RX memory with illegal
2055 * instructions.
2056 */
2057void *text_poke_set(void *addr, int c, size_t len)
2058{
2059	unsigned long start = (unsigned long)addr;
2060	size_t patched = 0;
2061
2062	if (WARN_ON_ONCE(core_kernel_text(start)))
2063		return NULL;
2064
2065	mutex_lock(&text_mutex);
2066	while (patched < len) {
2067		unsigned long ptr = start + patched;
2068		size_t s;
2069
2070		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2071
2072		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2073		patched += s;
2074	}
2075	mutex_unlock(&text_mutex);
2076	return addr;
2077}
2078
2079static void do_sync_core(void *info)
2080{
2081	sync_core();
2082}
2083
2084void text_poke_sync(void)
2085{
2086	on_each_cpu(do_sync_core, NULL, 1);
2087}
2088
2089/*
2090 * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2091 * this thing. When len == 6 everything is prefixed with 0x0f and we map
2092 * opcode to Jcc.d8, using len to distinguish.
2093 */
2094struct text_poke_loc {
2095	/* addr := _stext + rel_addr */
2096	s32 rel_addr;
2097	s32 disp;
2098	u8 len;
2099	u8 opcode;
2100	const u8 text[POKE_MAX_OPCODE_SIZE];
2101	/* see text_poke_bp_batch() */
2102	u8 old;
2103};
2104
2105struct bp_patching_desc {
2106	struct text_poke_loc *vec;
2107	int nr_entries;
2108	atomic_t refs;
2109};
2110
2111static struct bp_patching_desc bp_desc;
2112
2113static __always_inline
2114struct bp_patching_desc *try_get_desc(void)
2115{
2116	struct bp_patching_desc *desc = &bp_desc;
2117
2118	if (!raw_atomic_inc_not_zero(&desc->refs))
2119		return NULL;
2120
2121	return desc;
2122}
2123
2124static __always_inline void put_desc(void)
2125{
2126	struct bp_patching_desc *desc = &bp_desc;
2127
2128	smp_mb__before_atomic();
2129	raw_atomic_dec(&desc->refs);
2130}
2131
2132static __always_inline void *text_poke_addr(struct text_poke_loc *tp)
2133{
2134	return _stext + tp->rel_addr;
2135}
2136
2137static __always_inline int patch_cmp(const void *key, const void *elt)
2138{
2139	struct text_poke_loc *tp = (struct text_poke_loc *) elt;
2140
2141	if (key < text_poke_addr(tp))
2142		return -1;
2143	if (key > text_poke_addr(tp))
2144		return 1;
2145	return 0;
2146}
2147
2148noinstr int poke_int3_handler(struct pt_regs *regs)
2149{
2150	struct bp_patching_desc *desc;
2151	struct text_poke_loc *tp;
2152	int ret = 0;
2153	void *ip;
2154
2155	if (user_mode(regs))
2156		return 0;
2157
2158	/*
2159	 * Having observed our INT3 instruction, we now must observe
2160	 * bp_desc with non-zero refcount:
2161	 *
2162	 *	bp_desc.refs = 1		INT3
2163	 *	WMB				RMB
2164	 *	write INT3			if (bp_desc.refs != 0)
2165	 */
2166	smp_rmb();
2167
2168	desc = try_get_desc();
2169	if (!desc)
2170		return 0;
2171
2172	/*
2173	 * Discount the INT3. See text_poke_bp_batch().
2174	 */
2175	ip = (void *) regs->ip - INT3_INSN_SIZE;
2176
2177	/*
2178	 * Skip the binary search if there is a single member in the vector.
2179	 */
2180	if (unlikely(desc->nr_entries > 1)) {
2181		tp = __inline_bsearch(ip, desc->vec, desc->nr_entries,
2182				      sizeof(struct text_poke_loc),
2183				      patch_cmp);
2184		if (!tp)
2185			goto out_put;
2186	} else {
2187		tp = desc->vec;
2188		if (text_poke_addr(tp) != ip)
2189			goto out_put;
2190	}
2191
2192	ip += tp->len;
2193
2194	switch (tp->opcode) {
2195	case INT3_INSN_OPCODE:
2196		/*
2197		 * Someone poked an explicit INT3, they'll want to handle it,
2198		 * do not consume.
2199		 */
2200		goto out_put;
2201
2202	case RET_INSN_OPCODE:
2203		int3_emulate_ret(regs);
2204		break;
2205
2206	case CALL_INSN_OPCODE:
2207		int3_emulate_call(regs, (long)ip + tp->disp);
2208		break;
2209
2210	case JMP32_INSN_OPCODE:
2211	case JMP8_INSN_OPCODE:
2212		int3_emulate_jmp(regs, (long)ip + tp->disp);
2213		break;
2214
2215	case 0x70 ... 0x7f: /* Jcc */
2216		int3_emulate_jcc(regs, tp->opcode & 0xf, (long)ip, tp->disp);
2217		break;
2218
2219	default:
2220		BUG();
2221	}
2222
2223	ret = 1;
2224
2225out_put:
2226	put_desc();
2227	return ret;
2228}
2229
2230#define TP_VEC_MAX (PAGE_SIZE / sizeof(struct text_poke_loc))
2231static struct text_poke_loc tp_vec[TP_VEC_MAX];
2232static int tp_vec_nr;
2233
2234/**
2235 * text_poke_bp_batch() -- update instructions on live kernel on SMP
2236 * @tp:			vector of instructions to patch
2237 * @nr_entries:		number of entries in the vector
2238 *
2239 * Modify multi-byte instruction by using int3 breakpoint on SMP.
2240 * We completely avoid stop_machine() here, and achieve the
2241 * synchronization using int3 breakpoint.
2242 *
2243 * The way it is done:
2244 *	- For each entry in the vector:
2245 *		- add a int3 trap to the address that will be patched
2246 *	- sync cores
2247 *	- For each entry in the vector:
2248 *		- update all but the first byte of the patched range
2249 *	- sync cores
2250 *	- For each entry in the vector:
2251 *		- replace the first byte (int3) by the first byte of
2252 *		  replacing opcode
2253 *	- sync cores
2254 */
2255static void text_poke_bp_batch(struct text_poke_loc *tp, unsigned int nr_entries)
2256{
2257	unsigned char int3 = INT3_INSN_OPCODE;
2258	unsigned int i;
2259	int do_sync;
2260
2261	lockdep_assert_held(&text_mutex);
2262
2263	bp_desc.vec = tp;
2264	bp_desc.nr_entries = nr_entries;
2265
2266	/*
2267	 * Corresponds to the implicit memory barrier in try_get_desc() to
2268	 * ensure reading a non-zero refcount provides up to date bp_desc data.
2269	 */
2270	atomic_set_release(&bp_desc.refs, 1);
2271
2272	/*
2273	 * Function tracing can enable thousands of places that need to be
2274	 * updated. This can take quite some time, and with full kernel debugging
2275	 * enabled, this could cause the softlockup watchdog to trigger.
2276	 * This function gets called every 256 entries added to be patched.
2277	 * Call cond_resched() here to make sure that other tasks can get scheduled
2278	 * while processing all the functions being patched.
2279	 */
2280	cond_resched();
2281
2282	/*
2283	 * Corresponding read barrier in int3 notifier for making sure the
2284	 * nr_entries and handler are correctly ordered wrt. patching.
2285	 */
2286	smp_wmb();
2287
2288	/*
2289	 * First step: add a int3 trap to the address that will be patched.
2290	 */
2291	for (i = 0; i < nr_entries; i++) {
2292		tp[i].old = *(u8 *)text_poke_addr(&tp[i]);
2293		text_poke(text_poke_addr(&tp[i]), &int3, INT3_INSN_SIZE);
2294	}
2295
2296	text_poke_sync();
2297
2298	/*
2299	 * Second step: update all but the first byte of the patched range.
2300	 */
2301	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2302		u8 old[POKE_MAX_OPCODE_SIZE+1] = { tp[i].old, };
2303		u8 _new[POKE_MAX_OPCODE_SIZE+1];
2304		const u8 *new = tp[i].text;
2305		int len = tp[i].len;
2306
2307		if (len - INT3_INSN_SIZE > 0) {
2308			memcpy(old + INT3_INSN_SIZE,
2309			       text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2310			       len - INT3_INSN_SIZE);
2311
2312			if (len == 6) {
2313				_new[0] = 0x0f;
2314				memcpy(_new + 1, new, 5);
2315				new = _new;
2316			}
2317
2318			text_poke(text_poke_addr(&tp[i]) + INT3_INSN_SIZE,
2319				  new + INT3_INSN_SIZE,
2320				  len - INT3_INSN_SIZE);
2321
2322			do_sync++;
2323		}
2324
2325		/*
2326		 * Emit a perf event to record the text poke, primarily to
2327		 * support Intel PT decoding which must walk the executable code
2328		 * to reconstruct the trace. The flow up to here is:
2329		 *   - write INT3 byte
2330		 *   - IPI-SYNC
2331		 *   - write instruction tail
2332		 * At this point the actual control flow will be through the
2333		 * INT3 and handler and not hit the old or new instruction.
2334		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2335		 * can still be decoded. Subsequently:
2336		 *   - emit RECORD_TEXT_POKE with the new instruction
2337		 *   - IPI-SYNC
2338		 *   - write first byte
2339		 *   - IPI-SYNC
2340		 * So before the text poke event timestamp, the decoder will see
2341		 * either the old instruction flow or FUP/TIP of INT3. After the
2342		 * text poke event timestamp, the decoder will see either the
2343		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2344		 * use the timestamp as the point at which to modify the
2345		 * executable code.
2346		 * The old instruction is recorded so that the event can be
2347		 * processed forwards or backwards.
2348		 */
2349		perf_event_text_poke(text_poke_addr(&tp[i]), old, len, new, len);
 
2350	}
2351
2352	if (do_sync) {
2353		/*
2354		 * According to Intel, this core syncing is very likely
2355		 * not necessary and we'd be safe even without it. But
2356		 * better safe than sorry (plus there's not only Intel).
2357		 */
2358		text_poke_sync();
2359	}
2360
2361	/*
2362	 * Third step: replace the first byte (int3) by the first byte of
2363	 * replacing opcode.
2364	 */
2365	for (do_sync = 0, i = 0; i < nr_entries; i++) {
2366		u8 byte = tp[i].text[0];
2367
2368		if (tp[i].len == 6)
2369			byte = 0x0f;
2370
2371		if (byte == INT3_INSN_OPCODE)
2372			continue;
2373
2374		text_poke(text_poke_addr(&tp[i]), &byte, INT3_INSN_SIZE);
2375		do_sync++;
2376	}
2377
2378	if (do_sync)
2379		text_poke_sync();
2380
2381	/*
2382	 * Remove and wait for refs to be zero.
2383	 */
2384	if (!atomic_dec_and_test(&bp_desc.refs))
2385		atomic_cond_read_acquire(&bp_desc.refs, !VAL);
2386}
2387
2388static void text_poke_loc_init(struct text_poke_loc *tp, void *addr,
2389			       const void *opcode, size_t len, const void *emulate)
2390{
2391	struct insn insn;
2392	int ret, i = 0;
2393
2394	if (len == 6)
2395		i = 1;
2396	memcpy((void *)tp->text, opcode+i, len-i);
2397	if (!emulate)
2398		emulate = opcode;
2399
2400	ret = insn_decode_kernel(&insn, emulate);
2401	BUG_ON(ret < 0);
2402
2403	tp->rel_addr = addr - (void *)_stext;
2404	tp->len = len;
2405	tp->opcode = insn.opcode.bytes[0];
2406
2407	if (is_jcc32(&insn)) {
2408		/*
2409		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
2410		 */
2411		tp->opcode = insn.opcode.bytes[1] - 0x10;
2412	}
2413
2414	switch (tp->opcode) {
2415	case RET_INSN_OPCODE:
2416	case JMP32_INSN_OPCODE:
2417	case JMP8_INSN_OPCODE:
2418		/*
2419		 * Control flow instructions without implied execution of the
2420		 * next instruction can be padded with INT3.
2421		 */
2422		for (i = insn.length; i < len; i++)
2423			BUG_ON(tp->text[i] != INT3_INSN_OPCODE);
2424		break;
2425
2426	default:
2427		BUG_ON(len != insn.length);
2428	}
2429
 
2430	switch (tp->opcode) {
2431	case INT3_INSN_OPCODE:
2432	case RET_INSN_OPCODE:
2433		break;
2434
2435	case CALL_INSN_OPCODE:
2436	case JMP32_INSN_OPCODE:
2437	case JMP8_INSN_OPCODE:
2438	case 0x70 ... 0x7f: /* Jcc */
2439		tp->disp = insn.immediate.value;
2440		break;
2441
2442	default: /* assume NOP */
2443		switch (len) {
2444		case 2: /* NOP2 -- emulate as JMP8+0 */
2445			BUG_ON(memcmp(emulate, x86_nops[len], len));
2446			tp->opcode = JMP8_INSN_OPCODE;
2447			tp->disp = 0;
2448			break;
2449
2450		case 5: /* NOP5 -- emulate as JMP32+0 */
2451			BUG_ON(memcmp(emulate, x86_nops[len], len));
2452			tp->opcode = JMP32_INSN_OPCODE;
2453			tp->disp = 0;
2454			break;
2455
2456		default: /* unknown instruction */
2457			BUG();
2458		}
2459		break;
2460	}
2461}
2462
2463/*
2464 * We hard rely on the tp_vec being ordered; ensure this is so by flushing
2465 * early if needed.
2466 */
2467static bool tp_order_fail(void *addr)
2468{
2469	struct text_poke_loc *tp;
2470
2471	if (!tp_vec_nr)
2472		return false;
2473
2474	if (!addr) /* force */
2475		return true;
2476
2477	tp = &tp_vec[tp_vec_nr - 1];
2478	if ((unsigned long)text_poke_addr(tp) > (unsigned long)addr)
2479		return true;
2480
2481	return false;
2482}
2483
2484static void text_poke_flush(void *addr)
2485{
2486	if (tp_vec_nr == TP_VEC_MAX || tp_order_fail(addr)) {
2487		text_poke_bp_batch(tp_vec, tp_vec_nr);
2488		tp_vec_nr = 0;
2489	}
2490}
2491
2492void text_poke_finish(void)
2493{
2494	text_poke_flush(NULL);
2495}
2496
2497void __ref text_poke_queue(void *addr, const void *opcode, size_t len, const void *emulate)
2498{
2499	struct text_poke_loc *tp;
2500
2501	text_poke_flush(addr);
2502
2503	tp = &tp_vec[tp_vec_nr++];
2504	text_poke_loc_init(tp, addr, opcode, len, emulate);
2505}
2506
2507/**
2508 * text_poke_bp() -- update instructions on live kernel on SMP
2509 * @addr:	address to patch
2510 * @opcode:	opcode of new instruction
2511 * @len:	length to copy
2512 * @emulate:	instruction to be emulated
2513 *
2514 * Update a single instruction with the vector in the stack, avoiding
2515 * dynamically allocated memory. This function should be used when it is
2516 * not possible to allocate memory.
2517 */
2518void __ref text_poke_bp(void *addr, const void *opcode, size_t len, const void *emulate)
2519{
2520	struct text_poke_loc tp;
2521
2522	text_poke_loc_init(&tp, addr, opcode, len, emulate);
2523	text_poke_bp_batch(&tp, 1);
2524}