Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/blkdev.h>
  10#include <linux/mm.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/task.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mman.h>
  15#include <linux/slab.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/swap.h>
  18#include <linux/vmalloc.h>
  19#include <linux/pagemap.h>
  20#include <linux/namei.h>
  21#include <linux/shmem_fs.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/random.h>
  24#include <linux/writeback.h>
  25#include <linux/proc_fs.h>
  26#include <linux/seq_file.h>
  27#include <linux/init.h>
  28#include <linux/ksm.h>
  29#include <linux/rmap.h>
  30#include <linux/security.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mutex.h>
  33#include <linux/capability.h>
  34#include <linux/syscalls.h>
  35#include <linux/memcontrol.h>
  36#include <linux/poll.h>
  37#include <linux/oom.h>
  38#include <linux/frontswap.h>
  39#include <linux/swapfile.h>
  40#include <linux/export.h>
  41#include <linux/swap_slots.h>
  42#include <linux/sort.h>
  43#include <linux/completion.h>
 
 
 
  44
  45#include <asm/tlbflush.h>
  46#include <linux/swapops.h>
  47#include <linux/swap_cgroup.h>
 
  48#include "swap.h"
  49
  50static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  51				 unsigned char);
  52static void free_swap_count_continuations(struct swap_info_struct *);
  53
  54static DEFINE_SPINLOCK(swap_lock);
  55static unsigned int nr_swapfiles;
  56atomic_long_t nr_swap_pages;
  57/*
  58 * Some modules use swappable objects and may try to swap them out under
  59 * memory pressure (via the shrinker). Before doing so, they may wish to
  60 * check to see if any swap space is available.
  61 */
  62EXPORT_SYMBOL_GPL(nr_swap_pages);
  63/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  64long total_swap_pages;
  65static int least_priority = -1;
  66unsigned long swapfile_maximum_size;
  67#ifdef CONFIG_MIGRATION
  68bool swap_migration_ad_supported;
  69#endif	/* CONFIG_MIGRATION */
  70
  71static const char Bad_file[] = "Bad swap file entry ";
  72static const char Unused_file[] = "Unused swap file entry ";
  73static const char Bad_offset[] = "Bad swap offset entry ";
  74static const char Unused_offset[] = "Unused swap offset entry ";
  75
  76/*
  77 * all active swap_info_structs
  78 * protected with swap_lock, and ordered by priority.
  79 */
  80static PLIST_HEAD(swap_active_head);
  81
  82/*
  83 * all available (active, not full) swap_info_structs
  84 * protected with swap_avail_lock, ordered by priority.
  85 * This is used by folio_alloc_swap() instead of swap_active_head
  86 * because swap_active_head includes all swap_info_structs,
  87 * but folio_alloc_swap() doesn't need to look at full ones.
  88 * This uses its own lock instead of swap_lock because when a
  89 * swap_info_struct changes between not-full/full, it needs to
  90 * add/remove itself to/from this list, but the swap_info_struct->lock
  91 * is held and the locking order requires swap_lock to be taken
  92 * before any swap_info_struct->lock.
  93 */
  94static struct plist_head *swap_avail_heads;
  95static DEFINE_SPINLOCK(swap_avail_lock);
  96
  97struct swap_info_struct *swap_info[MAX_SWAPFILES];
  98
  99static DEFINE_MUTEX(swapon_mutex);
 100
 101static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 102/* Activity counter to indicate that a swapon or swapoff has occurred */
 103static atomic_t proc_poll_event = ATOMIC_INIT(0);
 104
 105atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 106
 107static struct swap_info_struct *swap_type_to_swap_info(int type)
 108{
 109	if (type >= MAX_SWAPFILES)
 110		return NULL;
 111
 112	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 113}
 114
 115static inline unsigned char swap_count(unsigned char ent)
 116{
 117	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 118}
 119
 120/* Reclaim the swap entry anyway if possible */
 121#define TTRS_ANYWAY		0x1
 122/*
 123 * Reclaim the swap entry if there are no more mappings of the
 124 * corresponding page
 125 */
 126#define TTRS_UNMAPPED		0x2
 127/* Reclaim the swap entry if swap is getting full*/
 128#define TTRS_FULL		0x4
 129
 130/* returns 1 if swap entry is freed */
 131static int __try_to_reclaim_swap(struct swap_info_struct *si,
 132				 unsigned long offset, unsigned long flags)
 133{
 134	swp_entry_t entry = swp_entry(si->type, offset);
 135	struct folio *folio;
 136	int ret = 0;
 137
 138	folio = filemap_get_folio(swap_address_space(entry), offset);
 139	if (!folio)
 140		return 0;
 141	/*
 142	 * When this function is called from scan_swap_map_slots() and it's
 143	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 144	 * here. We have to use trylock for avoiding deadlock. This is a special
 145	 * case and you should use folio_free_swap() with explicit folio_lock()
 146	 * in usual operations.
 147	 */
 148	if (folio_trylock(folio)) {
 149		if ((flags & TTRS_ANYWAY) ||
 150		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 151		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
 152			ret = folio_free_swap(folio);
 153		folio_unlock(folio);
 154	}
 155	folio_put(folio);
 156	return ret;
 157}
 158
 159static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 160{
 161	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 162	return rb_entry(rb, struct swap_extent, rb_node);
 163}
 164
 165static inline struct swap_extent *next_se(struct swap_extent *se)
 166{
 167	struct rb_node *rb = rb_next(&se->rb_node);
 168	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 169}
 170
 171/*
 172 * swapon tell device that all the old swap contents can be discarded,
 173 * to allow the swap device to optimize its wear-levelling.
 174 */
 175static int discard_swap(struct swap_info_struct *si)
 176{
 177	struct swap_extent *se;
 178	sector_t start_block;
 179	sector_t nr_blocks;
 180	int err = 0;
 181
 182	/* Do not discard the swap header page! */
 183	se = first_se(si);
 184	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 185	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 186	if (nr_blocks) {
 187		err = blkdev_issue_discard(si->bdev, start_block,
 188				nr_blocks, GFP_KERNEL);
 189		if (err)
 190			return err;
 191		cond_resched();
 192	}
 193
 194	for (se = next_se(se); se; se = next_se(se)) {
 195		start_block = se->start_block << (PAGE_SHIFT - 9);
 196		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 197
 198		err = blkdev_issue_discard(si->bdev, start_block,
 199				nr_blocks, GFP_KERNEL);
 200		if (err)
 201			break;
 202
 203		cond_resched();
 204	}
 205	return err;		/* That will often be -EOPNOTSUPP */
 206}
 207
 208static struct swap_extent *
 209offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 210{
 211	struct swap_extent *se;
 212	struct rb_node *rb;
 213
 214	rb = sis->swap_extent_root.rb_node;
 215	while (rb) {
 216		se = rb_entry(rb, struct swap_extent, rb_node);
 217		if (offset < se->start_page)
 218			rb = rb->rb_left;
 219		else if (offset >= se->start_page + se->nr_pages)
 220			rb = rb->rb_right;
 221		else
 222			return se;
 223	}
 224	/* It *must* be present */
 225	BUG();
 226}
 227
 228sector_t swap_page_sector(struct page *page)
 229{
 230	struct swap_info_struct *sis = page_swap_info(page);
 231	struct swap_extent *se;
 232	sector_t sector;
 233	pgoff_t offset;
 234
 235	offset = __page_file_index(page);
 236	se = offset_to_swap_extent(sis, offset);
 237	sector = se->start_block + (offset - se->start_page);
 238	return sector << (PAGE_SHIFT - 9);
 239}
 240
 241/*
 242 * swap allocation tell device that a cluster of swap can now be discarded,
 243 * to allow the swap device to optimize its wear-levelling.
 244 */
 245static void discard_swap_cluster(struct swap_info_struct *si,
 246				 pgoff_t start_page, pgoff_t nr_pages)
 247{
 248	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 249
 250	while (nr_pages) {
 251		pgoff_t offset = start_page - se->start_page;
 252		sector_t start_block = se->start_block + offset;
 253		sector_t nr_blocks = se->nr_pages - offset;
 254
 255		if (nr_blocks > nr_pages)
 256			nr_blocks = nr_pages;
 257		start_page += nr_blocks;
 258		nr_pages -= nr_blocks;
 259
 260		start_block <<= PAGE_SHIFT - 9;
 261		nr_blocks <<= PAGE_SHIFT - 9;
 262		if (blkdev_issue_discard(si->bdev, start_block,
 263					nr_blocks, GFP_NOIO))
 264			break;
 265
 266		se = next_se(se);
 267	}
 268}
 269
 270#ifdef CONFIG_THP_SWAP
 271#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 272
 273#define swap_entry_size(size)	(size)
 274#else
 275#define SWAPFILE_CLUSTER	256
 276
 277/*
 278 * Define swap_entry_size() as constant to let compiler to optimize
 279 * out some code if !CONFIG_THP_SWAP
 280 */
 281#define swap_entry_size(size)	1
 282#endif
 283#define LATENCY_LIMIT		256
 284
 285static inline void cluster_set_flag(struct swap_cluster_info *info,
 286	unsigned int flag)
 287{
 288	info->flags = flag;
 289}
 290
 291static inline unsigned int cluster_count(struct swap_cluster_info *info)
 292{
 293	return info->data;
 294}
 295
 296static inline void cluster_set_count(struct swap_cluster_info *info,
 297				     unsigned int c)
 298{
 299	info->data = c;
 300}
 301
 302static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 303					 unsigned int c, unsigned int f)
 304{
 305	info->flags = f;
 306	info->data = c;
 307}
 308
 309static inline unsigned int cluster_next(struct swap_cluster_info *info)
 310{
 311	return info->data;
 312}
 313
 314static inline void cluster_set_next(struct swap_cluster_info *info,
 315				    unsigned int n)
 316{
 317	info->data = n;
 318}
 319
 320static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 321					 unsigned int n, unsigned int f)
 322{
 323	info->flags = f;
 324	info->data = n;
 325}
 326
 327static inline bool cluster_is_free(struct swap_cluster_info *info)
 328{
 329	return info->flags & CLUSTER_FLAG_FREE;
 330}
 331
 332static inline bool cluster_is_null(struct swap_cluster_info *info)
 333{
 334	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 335}
 336
 337static inline void cluster_set_null(struct swap_cluster_info *info)
 338{
 339	info->flags = CLUSTER_FLAG_NEXT_NULL;
 340	info->data = 0;
 341}
 342
 343static inline bool cluster_is_huge(struct swap_cluster_info *info)
 344{
 345	if (IS_ENABLED(CONFIG_THP_SWAP))
 346		return info->flags & CLUSTER_FLAG_HUGE;
 347	return false;
 348}
 349
 350static inline void cluster_clear_huge(struct swap_cluster_info *info)
 351{
 352	info->flags &= ~CLUSTER_FLAG_HUGE;
 353}
 354
 355static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 356						     unsigned long offset)
 357{
 358	struct swap_cluster_info *ci;
 359
 360	ci = si->cluster_info;
 361	if (ci) {
 362		ci += offset / SWAPFILE_CLUSTER;
 363		spin_lock(&ci->lock);
 364	}
 365	return ci;
 366}
 367
 368static inline void unlock_cluster(struct swap_cluster_info *ci)
 369{
 370	if (ci)
 371		spin_unlock(&ci->lock);
 372}
 373
 374/*
 375 * Determine the locking method in use for this device.  Return
 376 * swap_cluster_info if SSD-style cluster-based locking is in place.
 377 */
 378static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 379		struct swap_info_struct *si, unsigned long offset)
 380{
 381	struct swap_cluster_info *ci;
 382
 383	/* Try to use fine-grained SSD-style locking if available: */
 384	ci = lock_cluster(si, offset);
 385	/* Otherwise, fall back to traditional, coarse locking: */
 386	if (!ci)
 387		spin_lock(&si->lock);
 388
 389	return ci;
 390}
 391
 392static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 393					       struct swap_cluster_info *ci)
 394{
 395	if (ci)
 396		unlock_cluster(ci);
 397	else
 398		spin_unlock(&si->lock);
 399}
 400
 401static inline bool cluster_list_empty(struct swap_cluster_list *list)
 402{
 403	return cluster_is_null(&list->head);
 404}
 405
 406static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 407{
 408	return cluster_next(&list->head);
 409}
 410
 411static void cluster_list_init(struct swap_cluster_list *list)
 412{
 413	cluster_set_null(&list->head);
 414	cluster_set_null(&list->tail);
 415}
 416
 417static void cluster_list_add_tail(struct swap_cluster_list *list,
 418				  struct swap_cluster_info *ci,
 419				  unsigned int idx)
 420{
 421	if (cluster_list_empty(list)) {
 422		cluster_set_next_flag(&list->head, idx, 0);
 423		cluster_set_next_flag(&list->tail, idx, 0);
 424	} else {
 425		struct swap_cluster_info *ci_tail;
 426		unsigned int tail = cluster_next(&list->tail);
 427
 428		/*
 429		 * Nested cluster lock, but both cluster locks are
 430		 * only acquired when we held swap_info_struct->lock
 431		 */
 432		ci_tail = ci + tail;
 433		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 434		cluster_set_next(ci_tail, idx);
 435		spin_unlock(&ci_tail->lock);
 436		cluster_set_next_flag(&list->tail, idx, 0);
 437	}
 438}
 439
 440static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 441					   struct swap_cluster_info *ci)
 442{
 443	unsigned int idx;
 444
 445	idx = cluster_next(&list->head);
 446	if (cluster_next(&list->tail) == idx) {
 447		cluster_set_null(&list->head);
 448		cluster_set_null(&list->tail);
 449	} else
 450		cluster_set_next_flag(&list->head,
 451				      cluster_next(&ci[idx]), 0);
 452
 453	return idx;
 454}
 455
 456/* Add a cluster to discard list and schedule it to do discard */
 457static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 458		unsigned int idx)
 459{
 460	/*
 461	 * If scan_swap_map_slots() can't find a free cluster, it will check
 462	 * si->swap_map directly. To make sure the discarding cluster isn't
 463	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 464	 * It will be cleared after discard
 465	 */
 466	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 467			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 468
 469	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 470
 471	schedule_work(&si->discard_work);
 472}
 473
 474static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 475{
 476	struct swap_cluster_info *ci = si->cluster_info;
 477
 478	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 479	cluster_list_add_tail(&si->free_clusters, ci, idx);
 480}
 481
 482/*
 483 * Doing discard actually. After a cluster discard is finished, the cluster
 484 * will be added to free cluster list. caller should hold si->lock.
 485*/
 486static void swap_do_scheduled_discard(struct swap_info_struct *si)
 487{
 488	struct swap_cluster_info *info, *ci;
 489	unsigned int idx;
 490
 491	info = si->cluster_info;
 492
 493	while (!cluster_list_empty(&si->discard_clusters)) {
 494		idx = cluster_list_del_first(&si->discard_clusters, info);
 495		spin_unlock(&si->lock);
 496
 497		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 498				SWAPFILE_CLUSTER);
 499
 500		spin_lock(&si->lock);
 501		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 502		__free_cluster(si, idx);
 503		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 504				0, SWAPFILE_CLUSTER);
 505		unlock_cluster(ci);
 506	}
 507}
 508
 509static void swap_discard_work(struct work_struct *work)
 510{
 511	struct swap_info_struct *si;
 512
 513	si = container_of(work, struct swap_info_struct, discard_work);
 514
 515	spin_lock(&si->lock);
 516	swap_do_scheduled_discard(si);
 517	spin_unlock(&si->lock);
 518}
 519
 520static void swap_users_ref_free(struct percpu_ref *ref)
 521{
 522	struct swap_info_struct *si;
 523
 524	si = container_of(ref, struct swap_info_struct, users);
 525	complete(&si->comp);
 526}
 527
 528static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 529{
 530	struct swap_cluster_info *ci = si->cluster_info;
 531
 532	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 533	cluster_list_del_first(&si->free_clusters, ci);
 534	cluster_set_count_flag(ci + idx, 0, 0);
 535}
 536
 537static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 538{
 539	struct swap_cluster_info *ci = si->cluster_info + idx;
 540
 541	VM_BUG_ON(cluster_count(ci) != 0);
 542	/*
 543	 * If the swap is discardable, prepare discard the cluster
 544	 * instead of free it immediately. The cluster will be freed
 545	 * after discard.
 546	 */
 547	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 548	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 549		swap_cluster_schedule_discard(si, idx);
 550		return;
 551	}
 552
 553	__free_cluster(si, idx);
 554}
 555
 556/*
 557 * The cluster corresponding to page_nr will be used. The cluster will be
 558 * removed from free cluster list and its usage counter will be increased.
 559 */
 560static void inc_cluster_info_page(struct swap_info_struct *p,
 561	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 562{
 563	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 564
 565	if (!cluster_info)
 566		return;
 567	if (cluster_is_free(&cluster_info[idx]))
 568		alloc_cluster(p, idx);
 569
 570	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 571	cluster_set_count(&cluster_info[idx],
 572		cluster_count(&cluster_info[idx]) + 1);
 573}
 574
 575/*
 576 * The cluster corresponding to page_nr decreases one usage. If the usage
 577 * counter becomes 0, which means no page in the cluster is in using, we can
 578 * optionally discard the cluster and add it to free cluster list.
 579 */
 580static void dec_cluster_info_page(struct swap_info_struct *p,
 581	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 582{
 583	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 584
 585	if (!cluster_info)
 586		return;
 587
 588	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 589	cluster_set_count(&cluster_info[idx],
 590		cluster_count(&cluster_info[idx]) - 1);
 591
 592	if (cluster_count(&cluster_info[idx]) == 0)
 593		free_cluster(p, idx);
 594}
 595
 596/*
 597 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
 598 * cluster list. Avoiding such abuse to avoid list corruption.
 599 */
 600static bool
 601scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 602	unsigned long offset)
 603{
 604	struct percpu_cluster *percpu_cluster;
 605	bool conflict;
 606
 607	offset /= SWAPFILE_CLUSTER;
 608	conflict = !cluster_list_empty(&si->free_clusters) &&
 609		offset != cluster_list_first(&si->free_clusters) &&
 610		cluster_is_free(&si->cluster_info[offset]);
 611
 612	if (!conflict)
 613		return false;
 614
 615	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 616	cluster_set_null(&percpu_cluster->index);
 617	return true;
 618}
 619
 620/*
 621 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 622 * might involve allocating a new cluster for current CPU too.
 623 */
 624static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 625	unsigned long *offset, unsigned long *scan_base)
 626{
 627	struct percpu_cluster *cluster;
 628	struct swap_cluster_info *ci;
 629	unsigned long tmp, max;
 630
 631new_cluster:
 632	cluster = this_cpu_ptr(si->percpu_cluster);
 633	if (cluster_is_null(&cluster->index)) {
 634		if (!cluster_list_empty(&si->free_clusters)) {
 635			cluster->index = si->free_clusters.head;
 636			cluster->next = cluster_next(&cluster->index) *
 637					SWAPFILE_CLUSTER;
 638		} else if (!cluster_list_empty(&si->discard_clusters)) {
 639			/*
 640			 * we don't have free cluster but have some clusters in
 641			 * discarding, do discard now and reclaim them, then
 642			 * reread cluster_next_cpu since we dropped si->lock
 643			 */
 644			swap_do_scheduled_discard(si);
 645			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 646			*offset = *scan_base;
 647			goto new_cluster;
 648		} else
 649			return false;
 650	}
 651
 652	/*
 653	 * Other CPUs can use our cluster if they can't find a free cluster,
 654	 * check if there is still free entry in the cluster
 655	 */
 656	tmp = cluster->next;
 657	max = min_t(unsigned long, si->max,
 658		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 659	if (tmp < max) {
 660		ci = lock_cluster(si, tmp);
 661		while (tmp < max) {
 662			if (!si->swap_map[tmp])
 663				break;
 664			tmp++;
 665		}
 666		unlock_cluster(ci);
 667	}
 668	if (tmp >= max) {
 669		cluster_set_null(&cluster->index);
 670		goto new_cluster;
 671	}
 672	cluster->next = tmp + 1;
 673	*offset = tmp;
 674	*scan_base = tmp;
 675	return true;
 676}
 677
 678static void __del_from_avail_list(struct swap_info_struct *p)
 679{
 680	int nid;
 681
 
 682	for_each_node(nid)
 683		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 684}
 685
 686static void del_from_avail_list(struct swap_info_struct *p)
 687{
 688	spin_lock(&swap_avail_lock);
 689	__del_from_avail_list(p);
 690	spin_unlock(&swap_avail_lock);
 691}
 692
 693static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 694			     unsigned int nr_entries)
 695{
 696	unsigned int end = offset + nr_entries - 1;
 697
 698	if (offset == si->lowest_bit)
 699		si->lowest_bit += nr_entries;
 700	if (end == si->highest_bit)
 701		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 702	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
 703	if (si->inuse_pages == si->pages) {
 704		si->lowest_bit = si->max;
 705		si->highest_bit = 0;
 706		del_from_avail_list(si);
 707	}
 708}
 709
 710static void add_to_avail_list(struct swap_info_struct *p)
 711{
 712	int nid;
 713
 714	spin_lock(&swap_avail_lock);
 715	for_each_node(nid) {
 716		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
 717		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 718	}
 719	spin_unlock(&swap_avail_lock);
 720}
 721
 722static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 723			    unsigned int nr_entries)
 724{
 725	unsigned long begin = offset;
 726	unsigned long end = offset + nr_entries - 1;
 727	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 728
 729	if (offset < si->lowest_bit)
 730		si->lowest_bit = offset;
 731	if (end > si->highest_bit) {
 732		bool was_full = !si->highest_bit;
 733
 734		WRITE_ONCE(si->highest_bit, end);
 735		if (was_full && (si->flags & SWP_WRITEOK))
 736			add_to_avail_list(si);
 737	}
 738	atomic_long_add(nr_entries, &nr_swap_pages);
 739	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
 740	if (si->flags & SWP_BLKDEV)
 741		swap_slot_free_notify =
 742			si->bdev->bd_disk->fops->swap_slot_free_notify;
 743	else
 744		swap_slot_free_notify = NULL;
 745	while (offset <= end) {
 746		arch_swap_invalidate_page(si->type, offset);
 747		frontswap_invalidate_page(si->type, offset);
 748		if (swap_slot_free_notify)
 749			swap_slot_free_notify(si->bdev, offset);
 750		offset++;
 751	}
 752	clear_shadow_from_swap_cache(si->type, begin, end);
 753}
 754
 755static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 756{
 757	unsigned long prev;
 758
 759	if (!(si->flags & SWP_SOLIDSTATE)) {
 760		si->cluster_next = next;
 761		return;
 762	}
 763
 764	prev = this_cpu_read(*si->cluster_next_cpu);
 765	/*
 766	 * Cross the swap address space size aligned trunk, choose
 767	 * another trunk randomly to avoid lock contention on swap
 768	 * address space if possible.
 769	 */
 770	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 771	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 772		/* No free swap slots available */
 773		if (si->highest_bit <= si->lowest_bit)
 774			return;
 775		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
 776		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 777		next = max_t(unsigned int, next, si->lowest_bit);
 778	}
 779	this_cpu_write(*si->cluster_next_cpu, next);
 780}
 781
 782static bool swap_offset_available_and_locked(struct swap_info_struct *si,
 783					     unsigned long offset)
 784{
 785	if (data_race(!si->swap_map[offset])) {
 786		spin_lock(&si->lock);
 787		return true;
 788	}
 789
 790	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 791		spin_lock(&si->lock);
 792		return true;
 793	}
 794
 795	return false;
 796}
 797
 798static int scan_swap_map_slots(struct swap_info_struct *si,
 799			       unsigned char usage, int nr,
 800			       swp_entry_t slots[])
 801{
 802	struct swap_cluster_info *ci;
 803	unsigned long offset;
 804	unsigned long scan_base;
 805	unsigned long last_in_cluster = 0;
 806	int latency_ration = LATENCY_LIMIT;
 807	int n_ret = 0;
 808	bool scanned_many = false;
 809
 810	/*
 811	 * We try to cluster swap pages by allocating them sequentially
 812	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 813	 * way, however, we resort to first-free allocation, starting
 814	 * a new cluster.  This prevents us from scattering swap pages
 815	 * all over the entire swap partition, so that we reduce
 816	 * overall disk seek times between swap pages.  -- sct
 817	 * But we do now try to find an empty cluster.  -Andrea
 818	 * And we let swap pages go all over an SSD partition.  Hugh
 819	 */
 820
 821	si->flags += SWP_SCANNING;
 822	/*
 823	 * Use percpu scan base for SSD to reduce lock contention on
 824	 * cluster and swap cache.  For HDD, sequential access is more
 825	 * important.
 826	 */
 827	if (si->flags & SWP_SOLIDSTATE)
 828		scan_base = this_cpu_read(*si->cluster_next_cpu);
 829	else
 830		scan_base = si->cluster_next;
 831	offset = scan_base;
 832
 833	/* SSD algorithm */
 834	if (si->cluster_info) {
 835		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 836			goto scan;
 837	} else if (unlikely(!si->cluster_nr--)) {
 838		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 839			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 840			goto checks;
 841		}
 842
 843		spin_unlock(&si->lock);
 844
 845		/*
 846		 * If seek is expensive, start searching for new cluster from
 847		 * start of partition, to minimize the span of allocated swap.
 848		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 849		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 850		 */
 851		scan_base = offset = si->lowest_bit;
 852		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 853
 854		/* Locate the first empty (unaligned) cluster */
 855		for (; last_in_cluster <= si->highest_bit; offset++) {
 856			if (si->swap_map[offset])
 857				last_in_cluster = offset + SWAPFILE_CLUSTER;
 858			else if (offset == last_in_cluster) {
 859				spin_lock(&si->lock);
 860				offset -= SWAPFILE_CLUSTER - 1;
 861				si->cluster_next = offset;
 862				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 863				goto checks;
 864			}
 865			if (unlikely(--latency_ration < 0)) {
 866				cond_resched();
 867				latency_ration = LATENCY_LIMIT;
 868			}
 869		}
 870
 871		offset = scan_base;
 872		spin_lock(&si->lock);
 873		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 874	}
 875
 876checks:
 877	if (si->cluster_info) {
 878		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 879		/* take a break if we already got some slots */
 880			if (n_ret)
 881				goto done;
 882			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 883							&scan_base))
 884				goto scan;
 885		}
 886	}
 887	if (!(si->flags & SWP_WRITEOK))
 888		goto no_page;
 889	if (!si->highest_bit)
 890		goto no_page;
 891	if (offset > si->highest_bit)
 892		scan_base = offset = si->lowest_bit;
 893
 894	ci = lock_cluster(si, offset);
 895	/* reuse swap entry of cache-only swap if not busy. */
 896	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 897		int swap_was_freed;
 898		unlock_cluster(ci);
 899		spin_unlock(&si->lock);
 900		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 901		spin_lock(&si->lock);
 902		/* entry was freed successfully, try to use this again */
 903		if (swap_was_freed)
 904			goto checks;
 905		goto scan; /* check next one */
 906	}
 907
 908	if (si->swap_map[offset]) {
 909		unlock_cluster(ci);
 910		if (!n_ret)
 911			goto scan;
 912		else
 913			goto done;
 914	}
 915	WRITE_ONCE(si->swap_map[offset], usage);
 916	inc_cluster_info_page(si, si->cluster_info, offset);
 917	unlock_cluster(ci);
 918
 919	swap_range_alloc(si, offset, 1);
 920	slots[n_ret++] = swp_entry(si->type, offset);
 921
 922	/* got enough slots or reach max slots? */
 923	if ((n_ret == nr) || (offset >= si->highest_bit))
 924		goto done;
 925
 926	/* search for next available slot */
 927
 928	/* time to take a break? */
 929	if (unlikely(--latency_ration < 0)) {
 930		if (n_ret)
 931			goto done;
 932		spin_unlock(&si->lock);
 933		cond_resched();
 934		spin_lock(&si->lock);
 935		latency_ration = LATENCY_LIMIT;
 936	}
 937
 938	/* try to get more slots in cluster */
 939	if (si->cluster_info) {
 940		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 941			goto checks;
 942	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 943		/* non-ssd case, still more slots in cluster? */
 944		--si->cluster_nr;
 945		goto checks;
 946	}
 947
 948	/*
 949	 * Even if there's no free clusters available (fragmented),
 950	 * try to scan a little more quickly with lock held unless we
 951	 * have scanned too many slots already.
 952	 */
 953	if (!scanned_many) {
 954		unsigned long scan_limit;
 955
 956		if (offset < scan_base)
 957			scan_limit = scan_base;
 958		else
 959			scan_limit = si->highest_bit;
 960		for (; offset <= scan_limit && --latency_ration > 0;
 961		     offset++) {
 962			if (!si->swap_map[offset])
 963				goto checks;
 964		}
 965	}
 966
 967done:
 968	set_cluster_next(si, offset + 1);
 969	si->flags -= SWP_SCANNING;
 970	return n_ret;
 971
 972scan:
 973	spin_unlock(&si->lock);
 974	while (++offset <= READ_ONCE(si->highest_bit)) {
 975		if (unlikely(--latency_ration < 0)) {
 976			cond_resched();
 977			latency_ration = LATENCY_LIMIT;
 978			scanned_many = true;
 979		}
 980		if (swap_offset_available_and_locked(si, offset))
 981			goto checks;
 982	}
 983	offset = si->lowest_bit;
 984	while (offset < scan_base) {
 985		if (unlikely(--latency_ration < 0)) {
 986			cond_resched();
 987			latency_ration = LATENCY_LIMIT;
 988			scanned_many = true;
 989		}
 990		if (swap_offset_available_and_locked(si, offset))
 991			goto checks;
 992		offset++;
 993	}
 994	spin_lock(&si->lock);
 995
 996no_page:
 997	si->flags -= SWP_SCANNING;
 998	return n_ret;
 999}
1000
1001static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1002{
1003	unsigned long idx;
1004	struct swap_cluster_info *ci;
1005	unsigned long offset;
1006
1007	/*
1008	 * Should not even be attempting cluster allocations when huge
1009	 * page swap is disabled.  Warn and fail the allocation.
1010	 */
1011	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1012		VM_WARN_ON_ONCE(1);
1013		return 0;
1014	}
1015
1016	if (cluster_list_empty(&si->free_clusters))
1017		return 0;
1018
1019	idx = cluster_list_first(&si->free_clusters);
1020	offset = idx * SWAPFILE_CLUSTER;
1021	ci = lock_cluster(si, offset);
1022	alloc_cluster(si, idx);
1023	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1024
1025	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1026	unlock_cluster(ci);
1027	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1028	*slot = swp_entry(si->type, offset);
1029
1030	return 1;
1031}
1032
1033static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1034{
1035	unsigned long offset = idx * SWAPFILE_CLUSTER;
1036	struct swap_cluster_info *ci;
1037
1038	ci = lock_cluster(si, offset);
1039	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1040	cluster_set_count_flag(ci, 0, 0);
1041	free_cluster(si, idx);
1042	unlock_cluster(ci);
1043	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1044}
1045
1046int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1047{
1048	unsigned long size = swap_entry_size(entry_size);
1049	struct swap_info_struct *si, *next;
1050	long avail_pgs;
1051	int n_ret = 0;
1052	int node;
1053
1054	/* Only single cluster request supported */
1055	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1056
1057	spin_lock(&swap_avail_lock);
1058
1059	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060	if (avail_pgs <= 0) {
1061		spin_unlock(&swap_avail_lock);
1062		goto noswap;
1063	}
1064
1065	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1066
1067	atomic_long_sub(n_goal * size, &nr_swap_pages);
1068
1069start_over:
1070	node = numa_node_id();
1071	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072		/* requeue si to after same-priority siblings */
1073		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074		spin_unlock(&swap_avail_lock);
1075		spin_lock(&si->lock);
1076		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077			spin_lock(&swap_avail_lock);
1078			if (plist_node_empty(&si->avail_lists[node])) {
1079				spin_unlock(&si->lock);
1080				goto nextsi;
1081			}
1082			WARN(!si->highest_bit,
1083			     "swap_info %d in list but !highest_bit\n",
1084			     si->type);
1085			WARN(!(si->flags & SWP_WRITEOK),
1086			     "swap_info %d in list but !SWP_WRITEOK\n",
1087			     si->type);
1088			__del_from_avail_list(si);
1089			spin_unlock(&si->lock);
1090			goto nextsi;
1091		}
1092		if (size == SWAPFILE_CLUSTER) {
1093			if (si->flags & SWP_BLKDEV)
1094				n_ret = swap_alloc_cluster(si, swp_entries);
1095		} else
1096			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097						    n_goal, swp_entries);
1098		spin_unlock(&si->lock);
1099		if (n_ret || size == SWAPFILE_CLUSTER)
1100			goto check_out;
1101		pr_debug("scan_swap_map of si %d failed to find offset\n",
1102			si->type);
1103		cond_resched();
1104
1105		spin_lock(&swap_avail_lock);
1106nextsi:
1107		/*
1108		 * if we got here, it's likely that si was almost full before,
1109		 * and since scan_swap_map_slots() can drop the si->lock,
1110		 * multiple callers probably all tried to get a page from the
1111		 * same si and it filled up before we could get one; or, the si
1112		 * filled up between us dropping swap_avail_lock and taking
1113		 * si->lock. Since we dropped the swap_avail_lock, the
1114		 * swap_avail_head list may have been modified; so if next is
1115		 * still in the swap_avail_head list then try it, otherwise
1116		 * start over if we have not gotten any slots.
1117		 */
1118		if (plist_node_empty(&next->avail_lists[node]))
1119			goto start_over;
1120	}
1121
1122	spin_unlock(&swap_avail_lock);
1123
1124check_out:
1125	if (n_ret < n_goal)
1126		atomic_long_add((long)(n_goal - n_ret) * size,
1127				&nr_swap_pages);
1128noswap:
1129	return n_ret;
1130}
1131
1132static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133{
1134	struct swap_info_struct *p;
1135	unsigned long offset;
1136
1137	if (!entry.val)
1138		goto out;
1139	p = swp_swap_info(entry);
1140	if (!p)
1141		goto bad_nofile;
1142	if (data_race(!(p->flags & SWP_USED)))
1143		goto bad_device;
1144	offset = swp_offset(entry);
1145	if (offset >= p->max)
1146		goto bad_offset;
1147	if (data_race(!p->swap_map[swp_offset(entry)]))
1148		goto bad_free;
1149	return p;
1150
1151bad_free:
1152	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153	goto out;
1154bad_offset:
1155	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156	goto out;
1157bad_device:
1158	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159	goto out;
1160bad_nofile:
1161	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162out:
1163	return NULL;
1164}
1165
1166static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167					struct swap_info_struct *q)
1168{
1169	struct swap_info_struct *p;
1170
1171	p = _swap_info_get(entry);
1172
1173	if (p != q) {
1174		if (q != NULL)
1175			spin_unlock(&q->lock);
1176		if (p != NULL)
1177			spin_lock(&p->lock);
1178	}
1179	return p;
1180}
1181
1182static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183					      unsigned long offset,
1184					      unsigned char usage)
1185{
1186	unsigned char count;
1187	unsigned char has_cache;
1188
1189	count = p->swap_map[offset];
1190
1191	has_cache = count & SWAP_HAS_CACHE;
1192	count &= ~SWAP_HAS_CACHE;
1193
1194	if (usage == SWAP_HAS_CACHE) {
1195		VM_BUG_ON(!has_cache);
1196		has_cache = 0;
1197	} else if (count == SWAP_MAP_SHMEM) {
1198		/*
1199		 * Or we could insist on shmem.c using a special
1200		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201		 */
1202		count = 0;
1203	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204		if (count == COUNT_CONTINUED) {
1205			if (swap_count_continued(p, offset, count))
1206				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207			else
1208				count = SWAP_MAP_MAX;
1209		} else
1210			count--;
1211	}
1212
1213	usage = count | has_cache;
1214	if (usage)
1215		WRITE_ONCE(p->swap_map[offset], usage);
1216	else
1217		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219	return usage;
1220}
1221
1222/*
 
 
 
 
 
 
 
1223 * Check whether swap entry is valid in the swap device.  If so,
1224 * return pointer to swap_info_struct, and keep the swap entry valid
1225 * via preventing the swap device from being swapoff, until
1226 * put_swap_device() is called.  Otherwise return NULL.
1227 *
1228 * Notice that swapoff or swapoff+swapon can still happen before the
1229 * percpu_ref_tryget_live() in get_swap_device() or after the
1230 * percpu_ref_put() in put_swap_device() if there isn't any other way
1231 * to prevent swapoff, such as page lock, page table lock, etc.  The
1232 * caller must be prepared for that.  For example, the following
1233 * situation is possible.
1234 *
1235 *   CPU1				CPU2
1236 *   do_swap_page()
1237 *     ...				swapoff+swapon
1238 *     __read_swap_cache_async()
1239 *       swapcache_prepare()
1240 *         __swap_duplicate()
1241 *           // check swap_map
1242 *     // verify PTE not changed
1243 *
1244 * In __swap_duplicate(), the swap_map need to be checked before
1245 * changing partly because the specified swap entry may be for another
1246 * swap device which has been swapoff.  And in do_swap_page(), after
1247 * the page is read from the swap device, the PTE is verified not
1248 * changed with the page table locked to check whether the swap device
1249 * has been swapoff or swapoff+swapon.
1250 */
1251struct swap_info_struct *get_swap_device(swp_entry_t entry)
1252{
1253	struct swap_info_struct *si;
1254	unsigned long offset;
1255
1256	if (!entry.val)
1257		goto out;
1258	si = swp_swap_info(entry);
1259	if (!si)
1260		goto bad_nofile;
1261	if (!percpu_ref_tryget_live(&si->users))
1262		goto out;
1263	/*
1264	 * Guarantee the si->users are checked before accessing other
1265	 * fields of swap_info_struct.
1266	 *
1267	 * Paired with the spin_unlock() after setup_swap_info() in
1268	 * enable_swap_info().
1269	 */
1270	smp_rmb();
1271	offset = swp_offset(entry);
1272	if (offset >= si->max)
1273		goto put_out;
1274
1275	return si;
1276bad_nofile:
1277	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1278out:
1279	return NULL;
1280put_out:
1281	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1282	percpu_ref_put(&si->users);
1283	return NULL;
1284}
1285
1286static unsigned char __swap_entry_free(struct swap_info_struct *p,
1287				       swp_entry_t entry)
1288{
1289	struct swap_cluster_info *ci;
1290	unsigned long offset = swp_offset(entry);
1291	unsigned char usage;
1292
1293	ci = lock_cluster_or_swap_info(p, offset);
1294	usage = __swap_entry_free_locked(p, offset, 1);
1295	unlock_cluster_or_swap_info(p, ci);
1296	if (!usage)
1297		free_swap_slot(entry);
1298
1299	return usage;
1300}
1301
1302static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1303{
1304	struct swap_cluster_info *ci;
1305	unsigned long offset = swp_offset(entry);
1306	unsigned char count;
1307
1308	ci = lock_cluster(p, offset);
1309	count = p->swap_map[offset];
1310	VM_BUG_ON(count != SWAP_HAS_CACHE);
1311	p->swap_map[offset] = 0;
1312	dec_cluster_info_page(p, p->cluster_info, offset);
1313	unlock_cluster(ci);
1314
1315	mem_cgroup_uncharge_swap(entry, 1);
1316	swap_range_free(p, offset, 1);
1317}
1318
1319/*
1320 * Caller has made sure that the swap device corresponding to entry
1321 * is still around or has not been recycled.
1322 */
1323void swap_free(swp_entry_t entry)
1324{
1325	struct swap_info_struct *p;
1326
1327	p = _swap_info_get(entry);
1328	if (p)
1329		__swap_entry_free(p, entry);
1330}
1331
1332/*
1333 * Called after dropping swapcache to decrease refcnt to swap entries.
1334 */
1335void put_swap_folio(struct folio *folio, swp_entry_t entry)
1336{
1337	unsigned long offset = swp_offset(entry);
1338	unsigned long idx = offset / SWAPFILE_CLUSTER;
1339	struct swap_cluster_info *ci;
1340	struct swap_info_struct *si;
1341	unsigned char *map;
1342	unsigned int i, free_entries = 0;
1343	unsigned char val;
1344	int size = swap_entry_size(folio_nr_pages(folio));
1345
1346	si = _swap_info_get(entry);
1347	if (!si)
1348		return;
1349
1350	ci = lock_cluster_or_swap_info(si, offset);
1351	if (size == SWAPFILE_CLUSTER) {
1352		VM_BUG_ON(!cluster_is_huge(ci));
1353		map = si->swap_map + offset;
1354		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1355			val = map[i];
1356			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1357			if (val == SWAP_HAS_CACHE)
1358				free_entries++;
1359		}
1360		cluster_clear_huge(ci);
1361		if (free_entries == SWAPFILE_CLUSTER) {
1362			unlock_cluster_or_swap_info(si, ci);
1363			spin_lock(&si->lock);
1364			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1365			swap_free_cluster(si, idx);
1366			spin_unlock(&si->lock);
1367			return;
1368		}
1369	}
1370	for (i = 0; i < size; i++, entry.val++) {
1371		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1372			unlock_cluster_or_swap_info(si, ci);
1373			free_swap_slot(entry);
1374			if (i == size - 1)
1375				return;
1376			lock_cluster_or_swap_info(si, offset);
1377		}
1378	}
1379	unlock_cluster_or_swap_info(si, ci);
1380}
1381
1382#ifdef CONFIG_THP_SWAP
1383int split_swap_cluster(swp_entry_t entry)
1384{
1385	struct swap_info_struct *si;
1386	struct swap_cluster_info *ci;
1387	unsigned long offset = swp_offset(entry);
1388
1389	si = _swap_info_get(entry);
1390	if (!si)
1391		return -EBUSY;
1392	ci = lock_cluster(si, offset);
1393	cluster_clear_huge(ci);
1394	unlock_cluster(ci);
1395	return 0;
1396}
1397#endif
1398
1399static int swp_entry_cmp(const void *ent1, const void *ent2)
1400{
1401	const swp_entry_t *e1 = ent1, *e2 = ent2;
1402
1403	return (int)swp_type(*e1) - (int)swp_type(*e2);
1404}
1405
1406void swapcache_free_entries(swp_entry_t *entries, int n)
1407{
1408	struct swap_info_struct *p, *prev;
1409	int i;
1410
1411	if (n <= 0)
1412		return;
1413
1414	prev = NULL;
1415	p = NULL;
1416
1417	/*
1418	 * Sort swap entries by swap device, so each lock is only taken once.
1419	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1420	 * so low that it isn't necessary to optimize further.
1421	 */
1422	if (nr_swapfiles > 1)
1423		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1424	for (i = 0; i < n; ++i) {
1425		p = swap_info_get_cont(entries[i], prev);
1426		if (p)
1427			swap_entry_free(p, entries[i]);
1428		prev = p;
1429	}
1430	if (p)
1431		spin_unlock(&p->lock);
1432}
1433
1434int __swap_count(swp_entry_t entry)
1435{
1436	struct swap_info_struct *si;
1437	pgoff_t offset = swp_offset(entry);
1438	int count = 0;
1439
1440	si = get_swap_device(entry);
1441	if (si) {
1442		count = swap_count(si->swap_map[offset]);
1443		put_swap_device(si);
1444	}
1445	return count;
1446}
1447
1448/*
1449 * How many references to @entry are currently swapped out?
1450 * This does not give an exact answer when swap count is continued,
1451 * but does include the high COUNT_CONTINUED flag to allow for that.
1452 */
1453static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454{
1455	pgoff_t offset = swp_offset(entry);
1456	struct swap_cluster_info *ci;
1457	int count;
1458
1459	ci = lock_cluster_or_swap_info(si, offset);
1460	count = swap_count(si->swap_map[offset]);
1461	unlock_cluster_or_swap_info(si, ci);
1462	return count;
1463}
1464
1465/*
1466 * How many references to @entry are currently swapped out?
1467 * This does not give an exact answer when swap count is continued,
1468 * but does include the high COUNT_CONTINUED flag to allow for that.
1469 */
1470int __swp_swapcount(swp_entry_t entry)
1471{
1472	int count = 0;
1473	struct swap_info_struct *si;
1474
1475	si = get_swap_device(entry);
1476	if (si) {
1477		count = swap_swapcount(si, entry);
1478		put_swap_device(si);
1479	}
1480	return count;
1481}
1482
1483/*
1484 * How many references to @entry are currently swapped out?
1485 * This considers COUNT_CONTINUED so it returns exact answer.
1486 */
1487int swp_swapcount(swp_entry_t entry)
1488{
1489	int count, tmp_count, n;
1490	struct swap_info_struct *p;
1491	struct swap_cluster_info *ci;
1492	struct page *page;
1493	pgoff_t offset;
1494	unsigned char *map;
1495
1496	p = _swap_info_get(entry);
1497	if (!p)
1498		return 0;
1499
1500	offset = swp_offset(entry);
1501
1502	ci = lock_cluster_or_swap_info(p, offset);
1503
1504	count = swap_count(p->swap_map[offset]);
1505	if (!(count & COUNT_CONTINUED))
1506		goto out;
1507
1508	count &= ~COUNT_CONTINUED;
1509	n = SWAP_MAP_MAX + 1;
1510
1511	page = vmalloc_to_page(p->swap_map + offset);
1512	offset &= ~PAGE_MASK;
1513	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1514
1515	do {
1516		page = list_next_entry(page, lru);
1517		map = kmap_atomic(page);
1518		tmp_count = map[offset];
1519		kunmap_atomic(map);
1520
1521		count += (tmp_count & ~COUNT_CONTINUED) * n;
1522		n *= (SWAP_CONT_MAX + 1);
1523	} while (tmp_count & COUNT_CONTINUED);
1524out:
1525	unlock_cluster_or_swap_info(p, ci);
1526	return count;
1527}
1528
1529static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1530					 swp_entry_t entry)
1531{
1532	struct swap_cluster_info *ci;
1533	unsigned char *map = si->swap_map;
1534	unsigned long roffset = swp_offset(entry);
1535	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1536	int i;
1537	bool ret = false;
1538
1539	ci = lock_cluster_or_swap_info(si, offset);
1540	if (!ci || !cluster_is_huge(ci)) {
1541		if (swap_count(map[roffset]))
1542			ret = true;
1543		goto unlock_out;
1544	}
1545	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1546		if (swap_count(map[offset + i])) {
1547			ret = true;
1548			break;
1549		}
1550	}
1551unlock_out:
1552	unlock_cluster_or_swap_info(si, ci);
1553	return ret;
1554}
1555
1556static bool folio_swapped(struct folio *folio)
1557{
1558	swp_entry_t entry = folio_swap_entry(folio);
1559	struct swap_info_struct *si = _swap_info_get(entry);
1560
1561	if (!si)
1562		return false;
1563
1564	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1565		return swap_swapcount(si, entry) != 0;
1566
1567	return swap_page_trans_huge_swapped(si, entry);
1568}
1569
1570/**
1571 * folio_free_swap() - Free the swap space used for this folio.
1572 * @folio: The folio to remove.
1573 *
1574 * If swap is getting full, or if there are no more mappings of this folio,
1575 * then call folio_free_swap to free its swap space.
1576 *
1577 * Return: true if we were able to release the swap space.
1578 */
1579bool folio_free_swap(struct folio *folio)
1580{
1581	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1582
1583	if (!folio_test_swapcache(folio))
1584		return false;
1585	if (folio_test_writeback(folio))
1586		return false;
1587	if (folio_swapped(folio))
1588		return false;
1589
1590	/*
1591	 * Once hibernation has begun to create its image of memory,
1592	 * there's a danger that one of the calls to folio_free_swap()
1593	 * - most probably a call from __try_to_reclaim_swap() while
1594	 * hibernation is allocating its own swap pages for the image,
1595	 * but conceivably even a call from memory reclaim - will free
1596	 * the swap from a folio which has already been recorded in the
1597	 * image as a clean swapcache folio, and then reuse its swap for
1598	 * another page of the image.  On waking from hibernation, the
1599	 * original folio might be freed under memory pressure, then
1600	 * later read back in from swap, now with the wrong data.
1601	 *
1602	 * Hibernation suspends storage while it is writing the image
1603	 * to disk so check that here.
1604	 */
1605	if (pm_suspended_storage())
1606		return false;
1607
1608	delete_from_swap_cache(folio);
1609	folio_set_dirty(folio);
1610	return true;
1611}
1612
1613/*
1614 * Free the swap entry like above, but also try to
1615 * free the page cache entry if it is the last user.
1616 */
1617int free_swap_and_cache(swp_entry_t entry)
1618{
1619	struct swap_info_struct *p;
1620	unsigned char count;
1621
1622	if (non_swap_entry(entry))
1623		return 1;
1624
1625	p = _swap_info_get(entry);
1626	if (p) {
1627		count = __swap_entry_free(p, entry);
1628		if (count == SWAP_HAS_CACHE &&
1629		    !swap_page_trans_huge_swapped(p, entry))
1630			__try_to_reclaim_swap(p, swp_offset(entry),
1631					      TTRS_UNMAPPED | TTRS_FULL);
1632	}
1633	return p != NULL;
1634}
1635
1636#ifdef CONFIG_HIBERNATION
1637
1638swp_entry_t get_swap_page_of_type(int type)
1639{
1640	struct swap_info_struct *si = swap_type_to_swap_info(type);
1641	swp_entry_t entry = {0};
1642
1643	if (!si)
1644		goto fail;
1645
1646	/* This is called for allocating swap entry, not cache */
1647	spin_lock(&si->lock);
1648	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1649		atomic_long_dec(&nr_swap_pages);
1650	spin_unlock(&si->lock);
1651fail:
1652	return entry;
1653}
1654
1655/*
1656 * Find the swap type that corresponds to given device (if any).
1657 *
1658 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1659 * from 0, in which the swap header is expected to be located.
1660 *
1661 * This is needed for the suspend to disk (aka swsusp).
1662 */
1663int swap_type_of(dev_t device, sector_t offset)
1664{
1665	int type;
1666
1667	if (!device)
1668		return -1;
1669
1670	spin_lock(&swap_lock);
1671	for (type = 0; type < nr_swapfiles; type++) {
1672		struct swap_info_struct *sis = swap_info[type];
1673
1674		if (!(sis->flags & SWP_WRITEOK))
1675			continue;
1676
1677		if (device == sis->bdev->bd_dev) {
1678			struct swap_extent *se = first_se(sis);
1679
1680			if (se->start_block == offset) {
1681				spin_unlock(&swap_lock);
1682				return type;
1683			}
1684		}
1685	}
1686	spin_unlock(&swap_lock);
1687	return -ENODEV;
1688}
1689
1690int find_first_swap(dev_t *device)
1691{
1692	int type;
1693
1694	spin_lock(&swap_lock);
1695	for (type = 0; type < nr_swapfiles; type++) {
1696		struct swap_info_struct *sis = swap_info[type];
1697
1698		if (!(sis->flags & SWP_WRITEOK))
1699			continue;
1700		*device = sis->bdev->bd_dev;
1701		spin_unlock(&swap_lock);
1702		return type;
1703	}
1704	spin_unlock(&swap_lock);
1705	return -ENODEV;
1706}
1707
1708/*
1709 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1710 * corresponding to given index in swap_info (swap type).
1711 */
1712sector_t swapdev_block(int type, pgoff_t offset)
1713{
1714	struct swap_info_struct *si = swap_type_to_swap_info(type);
1715	struct swap_extent *se;
1716
1717	if (!si || !(si->flags & SWP_WRITEOK))
1718		return 0;
1719	se = offset_to_swap_extent(si, offset);
1720	return se->start_block + (offset - se->start_page);
1721}
1722
1723/*
1724 * Return either the total number of swap pages of given type, or the number
1725 * of free pages of that type (depending on @free)
1726 *
1727 * This is needed for software suspend
1728 */
1729unsigned int count_swap_pages(int type, int free)
1730{
1731	unsigned int n = 0;
1732
1733	spin_lock(&swap_lock);
1734	if ((unsigned int)type < nr_swapfiles) {
1735		struct swap_info_struct *sis = swap_info[type];
1736
1737		spin_lock(&sis->lock);
1738		if (sis->flags & SWP_WRITEOK) {
1739			n = sis->pages;
1740			if (free)
1741				n -= sis->inuse_pages;
1742		}
1743		spin_unlock(&sis->lock);
1744	}
1745	spin_unlock(&swap_lock);
1746	return n;
1747}
1748#endif /* CONFIG_HIBERNATION */
1749
1750static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1751{
1752	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1753}
1754
1755/*
1756 * No need to decide whether this PTE shares the swap entry with others,
1757 * just let do_wp_page work it out if a write is requested later - to
1758 * force COW, vm_page_prot omits write permission from any private vma.
1759 */
1760static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1761		unsigned long addr, swp_entry_t entry, struct folio *folio)
1762{
1763	struct page *page = folio_file_page(folio, swp_offset(entry));
1764	struct page *swapcache;
1765	spinlock_t *ptl;
1766	pte_t *pte, new_pte;
1767	bool hwposioned = false;
1768	int ret = 1;
1769
1770	swapcache = page;
1771	page = ksm_might_need_to_copy(page, vma, addr);
1772	if (unlikely(!page))
1773		return -ENOMEM;
1774	else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1775		hwposioned = true;
 
 
 
 
 
 
1776
1777	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1778	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
 
1779		ret = 0;
1780		goto out;
1781	}
1782
1783	if (unlikely(hwposioned || !PageUptodate(page))) {
 
 
1784		swp_entry_t swp_entry;
1785
1786		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1787		if (hwposioned) {
1788			swp_entry = make_hwpoison_entry(swapcache);
1789			page = swapcache;
1790		} else {
1791			swp_entry = make_swapin_error_entry();
1792		}
1793		new_pte = swp_entry_to_pte(swp_entry);
1794		ret = 0;
1795		goto setpte;
1796	}
1797
1798	/* See do_swap_page() */
1799	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1800	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
 
 
 
1801
1802	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1803	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1804	get_page(page);
1805	if (page == swapcache) {
1806		rmap_t rmap_flags = RMAP_NONE;
1807
1808		/*
1809		 * See do_swap_page(): PageWriteback() would be problematic.
1810		 * However, we do a wait_on_page_writeback() just before this
1811		 * call and have the page locked.
1812		 */
1813		VM_BUG_ON_PAGE(PageWriteback(page), page);
1814		if (pte_swp_exclusive(*pte))
1815			rmap_flags |= RMAP_EXCLUSIVE;
1816
1817		page_add_anon_rmap(page, vma, addr, rmap_flags);
1818	} else { /* ksm created a completely new copy */
1819		page_add_new_anon_rmap(page, vma, addr);
1820		lru_cache_add_inactive_or_unevictable(page, vma);
1821	}
1822	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1823	if (pte_swp_soft_dirty(*pte))
1824		new_pte = pte_mksoft_dirty(new_pte);
1825	if (pte_swp_uffd_wp(*pte))
1826		new_pte = pte_mkuffd_wp(new_pte);
1827setpte:
1828	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1829	swap_free(entry);
1830out:
1831	pte_unmap_unlock(pte, ptl);
1832	if (page != swapcache) {
1833		unlock_page(page);
1834		put_page(page);
 
1835	}
1836	return ret;
1837}
1838
1839static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1840			unsigned long addr, unsigned long end,
1841			unsigned int type)
1842{
1843	swp_entry_t entry;
1844	pte_t *pte;
1845	struct swap_info_struct *si;
1846	int ret = 0;
1847	volatile unsigned char *swap_map;
1848
1849	si = swap_info[type];
1850	pte = pte_offset_map(pmd, addr);
1851	do {
1852		struct folio *folio;
1853		unsigned long offset;
 
 
 
 
 
 
 
 
 
 
1854
1855		if (!is_swap_pte(*pte))
 
 
1856			continue;
1857
1858		entry = pte_to_swp_entry(*pte);
1859		if (swp_type(entry) != type)
1860			continue;
1861
1862		offset = swp_offset(entry);
1863		pte_unmap(pte);
1864		swap_map = &si->swap_map[offset];
 
1865		folio = swap_cache_get_folio(entry, vma, addr);
1866		if (!folio) {
1867			struct page *page;
1868			struct vm_fault vmf = {
1869				.vma = vma,
1870				.address = addr,
1871				.real_address = addr,
1872				.pmd = pmd,
1873			};
1874
1875			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1876						&vmf);
1877			if (page)
1878				folio = page_folio(page);
1879		}
1880		if (!folio) {
1881			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1882				goto try_next;
 
1883			return -ENOMEM;
1884		}
1885
1886		folio_lock(folio);
1887		folio_wait_writeback(folio);
1888		ret = unuse_pte(vma, pmd, addr, entry, folio);
1889		if (ret < 0) {
1890			folio_unlock(folio);
1891			folio_put(folio);
1892			goto out;
1893		}
1894
1895		folio_free_swap(folio);
1896		folio_unlock(folio);
1897		folio_put(folio);
1898try_next:
1899		pte = pte_offset_map(pmd, addr);
1900	} while (pte++, addr += PAGE_SIZE, addr != end);
1901	pte_unmap(pte - 1);
1902
1903	ret = 0;
1904out:
1905	return ret;
1906}
1907
1908static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1909				unsigned long addr, unsigned long end,
1910				unsigned int type)
1911{
1912	pmd_t *pmd;
1913	unsigned long next;
1914	int ret;
1915
1916	pmd = pmd_offset(pud, addr);
1917	do {
1918		cond_resched();
1919		next = pmd_addr_end(addr, end);
1920		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1921			continue;
1922		ret = unuse_pte_range(vma, pmd, addr, next, type);
1923		if (ret)
1924			return ret;
1925	} while (pmd++, addr = next, addr != end);
1926	return 0;
1927}
1928
1929static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1930				unsigned long addr, unsigned long end,
1931				unsigned int type)
1932{
1933	pud_t *pud;
1934	unsigned long next;
1935	int ret;
1936
1937	pud = pud_offset(p4d, addr);
1938	do {
1939		next = pud_addr_end(addr, end);
1940		if (pud_none_or_clear_bad(pud))
1941			continue;
1942		ret = unuse_pmd_range(vma, pud, addr, next, type);
1943		if (ret)
1944			return ret;
1945	} while (pud++, addr = next, addr != end);
1946	return 0;
1947}
1948
1949static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1950				unsigned long addr, unsigned long end,
1951				unsigned int type)
1952{
1953	p4d_t *p4d;
1954	unsigned long next;
1955	int ret;
1956
1957	p4d = p4d_offset(pgd, addr);
1958	do {
1959		next = p4d_addr_end(addr, end);
1960		if (p4d_none_or_clear_bad(p4d))
1961			continue;
1962		ret = unuse_pud_range(vma, p4d, addr, next, type);
1963		if (ret)
1964			return ret;
1965	} while (p4d++, addr = next, addr != end);
1966	return 0;
1967}
1968
1969static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1970{
1971	pgd_t *pgd;
1972	unsigned long addr, end, next;
1973	int ret;
1974
1975	addr = vma->vm_start;
1976	end = vma->vm_end;
1977
1978	pgd = pgd_offset(vma->vm_mm, addr);
1979	do {
1980		next = pgd_addr_end(addr, end);
1981		if (pgd_none_or_clear_bad(pgd))
1982			continue;
1983		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1984		if (ret)
1985			return ret;
1986	} while (pgd++, addr = next, addr != end);
1987	return 0;
1988}
1989
1990static int unuse_mm(struct mm_struct *mm, unsigned int type)
1991{
1992	struct vm_area_struct *vma;
1993	int ret = 0;
1994	VMA_ITERATOR(vmi, mm, 0);
1995
1996	mmap_read_lock(mm);
1997	for_each_vma(vmi, vma) {
1998		if (vma->anon_vma) {
1999			ret = unuse_vma(vma, type);
2000			if (ret)
2001				break;
2002		}
2003
2004		cond_resched();
2005	}
2006	mmap_read_unlock(mm);
2007	return ret;
2008}
2009
2010/*
2011 * Scan swap_map from current position to next entry still in use.
2012 * Return 0 if there are no inuse entries after prev till end of
2013 * the map.
2014 */
2015static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2016					unsigned int prev)
2017{
2018	unsigned int i;
2019	unsigned char count;
2020
2021	/*
2022	 * No need for swap_lock here: we're just looking
2023	 * for whether an entry is in use, not modifying it; false
2024	 * hits are okay, and sys_swapoff() has already prevented new
2025	 * allocations from this area (while holding swap_lock).
2026	 */
2027	for (i = prev + 1; i < si->max; i++) {
2028		count = READ_ONCE(si->swap_map[i]);
2029		if (count && swap_count(count) != SWAP_MAP_BAD)
2030			break;
2031		if ((i % LATENCY_LIMIT) == 0)
2032			cond_resched();
2033	}
2034
2035	if (i == si->max)
2036		i = 0;
2037
2038	return i;
2039}
2040
2041static int try_to_unuse(unsigned int type)
2042{
2043	struct mm_struct *prev_mm;
2044	struct mm_struct *mm;
2045	struct list_head *p;
2046	int retval = 0;
2047	struct swap_info_struct *si = swap_info[type];
2048	struct folio *folio;
2049	swp_entry_t entry;
2050	unsigned int i;
2051
2052	if (!READ_ONCE(si->inuse_pages))
2053		return 0;
2054
2055retry:
2056	retval = shmem_unuse(type);
2057	if (retval)
2058		return retval;
2059
2060	prev_mm = &init_mm;
2061	mmget(prev_mm);
2062
2063	spin_lock(&mmlist_lock);
2064	p = &init_mm.mmlist;
2065	while (READ_ONCE(si->inuse_pages) &&
2066	       !signal_pending(current) &&
2067	       (p = p->next) != &init_mm.mmlist) {
2068
2069		mm = list_entry(p, struct mm_struct, mmlist);
2070		if (!mmget_not_zero(mm))
2071			continue;
2072		spin_unlock(&mmlist_lock);
2073		mmput(prev_mm);
2074		prev_mm = mm;
2075		retval = unuse_mm(mm, type);
2076		if (retval) {
2077			mmput(prev_mm);
2078			return retval;
2079		}
2080
2081		/*
2082		 * Make sure that we aren't completely killing
2083		 * interactive performance.
2084		 */
2085		cond_resched();
2086		spin_lock(&mmlist_lock);
2087	}
2088	spin_unlock(&mmlist_lock);
2089
2090	mmput(prev_mm);
2091
2092	i = 0;
2093	while (READ_ONCE(si->inuse_pages) &&
2094	       !signal_pending(current) &&
2095	       (i = find_next_to_unuse(si, i)) != 0) {
2096
2097		entry = swp_entry(type, i);
2098		folio = filemap_get_folio(swap_address_space(entry), i);
2099		if (!folio)
2100			continue;
2101
2102		/*
2103		 * It is conceivable that a racing task removed this folio from
2104		 * swap cache just before we acquired the page lock. The folio
2105		 * might even be back in swap cache on another swap area. But
2106		 * that is okay, folio_free_swap() only removes stale folios.
2107		 */
2108		folio_lock(folio);
2109		folio_wait_writeback(folio);
2110		folio_free_swap(folio);
2111		folio_unlock(folio);
2112		folio_put(folio);
2113	}
2114
2115	/*
2116	 * Lets check again to see if there are still swap entries in the map.
2117	 * If yes, we would need to do retry the unuse logic again.
2118	 * Under global memory pressure, swap entries can be reinserted back
2119	 * into process space after the mmlist loop above passes over them.
2120	 *
2121	 * Limit the number of retries? No: when mmget_not_zero()
2122	 * above fails, that mm is likely to be freeing swap from
2123	 * exit_mmap(), which proceeds at its own independent pace;
2124	 * and even shmem_writepage() could have been preempted after
2125	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2126	 * and robust (though cpu-intensive) just to keep retrying.
2127	 */
2128	if (READ_ONCE(si->inuse_pages)) {
2129		if (!signal_pending(current))
2130			goto retry;
2131		return -EINTR;
2132	}
2133
2134	return 0;
2135}
2136
2137/*
2138 * After a successful try_to_unuse, if no swap is now in use, we know
2139 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2140 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2141 * added to the mmlist just after page_duplicate - before would be racy.
2142 */
2143static void drain_mmlist(void)
2144{
2145	struct list_head *p, *next;
2146	unsigned int type;
2147
2148	for (type = 0; type < nr_swapfiles; type++)
2149		if (swap_info[type]->inuse_pages)
2150			return;
2151	spin_lock(&mmlist_lock);
2152	list_for_each_safe(p, next, &init_mm.mmlist)
2153		list_del_init(p);
2154	spin_unlock(&mmlist_lock);
2155}
2156
2157/*
2158 * Free all of a swapdev's extent information
2159 */
2160static void destroy_swap_extents(struct swap_info_struct *sis)
2161{
2162	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2163		struct rb_node *rb = sis->swap_extent_root.rb_node;
2164		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2165
2166		rb_erase(rb, &sis->swap_extent_root);
2167		kfree(se);
2168	}
2169
2170	if (sis->flags & SWP_ACTIVATED) {
2171		struct file *swap_file = sis->swap_file;
2172		struct address_space *mapping = swap_file->f_mapping;
2173
2174		sis->flags &= ~SWP_ACTIVATED;
2175		if (mapping->a_ops->swap_deactivate)
2176			mapping->a_ops->swap_deactivate(swap_file);
2177	}
2178}
2179
2180/*
2181 * Add a block range (and the corresponding page range) into this swapdev's
2182 * extent tree.
2183 *
2184 * This function rather assumes that it is called in ascending page order.
2185 */
2186int
2187add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2188		unsigned long nr_pages, sector_t start_block)
2189{
2190	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2191	struct swap_extent *se;
2192	struct swap_extent *new_se;
2193
2194	/*
2195	 * place the new node at the right most since the
2196	 * function is called in ascending page order.
2197	 */
2198	while (*link) {
2199		parent = *link;
2200		link = &parent->rb_right;
2201	}
2202
2203	if (parent) {
2204		se = rb_entry(parent, struct swap_extent, rb_node);
2205		BUG_ON(se->start_page + se->nr_pages != start_page);
2206		if (se->start_block + se->nr_pages == start_block) {
2207			/* Merge it */
2208			se->nr_pages += nr_pages;
2209			return 0;
2210		}
2211	}
2212
2213	/* No merge, insert a new extent. */
2214	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2215	if (new_se == NULL)
2216		return -ENOMEM;
2217	new_se->start_page = start_page;
2218	new_se->nr_pages = nr_pages;
2219	new_se->start_block = start_block;
2220
2221	rb_link_node(&new_se->rb_node, parent, link);
2222	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2223	return 1;
2224}
2225EXPORT_SYMBOL_GPL(add_swap_extent);
2226
2227/*
2228 * A `swap extent' is a simple thing which maps a contiguous range of pages
2229 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2230 * built at swapon time and is then used at swap_writepage/swap_readpage
2231 * time for locating where on disk a page belongs.
2232 *
2233 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2234 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2235 * swap files identically.
2236 *
2237 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2238 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2239 * swapfiles are handled *identically* after swapon time.
2240 *
2241 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2242 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2243 * blocks are found which do not fall within the PAGE_SIZE alignment
2244 * requirements, they are simply tossed out - we will never use those blocks
2245 * for swapping.
2246 *
2247 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2248 * prevents users from writing to the swap device, which will corrupt memory.
2249 *
2250 * The amount of disk space which a single swap extent represents varies.
2251 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2252 * extents in the rbtree. - akpm.
2253 */
2254static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2255{
2256	struct file *swap_file = sis->swap_file;
2257	struct address_space *mapping = swap_file->f_mapping;
2258	struct inode *inode = mapping->host;
2259	int ret;
2260
2261	if (S_ISBLK(inode->i_mode)) {
2262		ret = add_swap_extent(sis, 0, sis->max, 0);
2263		*span = sis->pages;
2264		return ret;
2265	}
2266
2267	if (mapping->a_ops->swap_activate) {
2268		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2269		if (ret < 0)
2270			return ret;
2271		sis->flags |= SWP_ACTIVATED;
2272		if ((sis->flags & SWP_FS_OPS) &&
2273		    sio_pool_init() != 0) {
2274			destroy_swap_extents(sis);
2275			return -ENOMEM;
2276		}
2277		return ret;
2278	}
2279
2280	return generic_swapfile_activate(sis, swap_file, span);
2281}
2282
2283static int swap_node(struct swap_info_struct *p)
2284{
2285	struct block_device *bdev;
2286
2287	if (p->bdev)
2288		bdev = p->bdev;
2289	else
2290		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2291
2292	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2293}
2294
2295static void setup_swap_info(struct swap_info_struct *p, int prio,
2296			    unsigned char *swap_map,
2297			    struct swap_cluster_info *cluster_info)
2298{
2299	int i;
2300
2301	if (prio >= 0)
2302		p->prio = prio;
2303	else
2304		p->prio = --least_priority;
2305	/*
2306	 * the plist prio is negated because plist ordering is
2307	 * low-to-high, while swap ordering is high-to-low
2308	 */
2309	p->list.prio = -p->prio;
2310	for_each_node(i) {
2311		if (p->prio >= 0)
2312			p->avail_lists[i].prio = -p->prio;
2313		else {
2314			if (swap_node(p) == i)
2315				p->avail_lists[i].prio = 1;
2316			else
2317				p->avail_lists[i].prio = -p->prio;
2318		}
2319	}
2320	p->swap_map = swap_map;
2321	p->cluster_info = cluster_info;
2322}
2323
2324static void _enable_swap_info(struct swap_info_struct *p)
2325{
2326	p->flags |= SWP_WRITEOK;
2327	atomic_long_add(p->pages, &nr_swap_pages);
2328	total_swap_pages += p->pages;
2329
2330	assert_spin_locked(&swap_lock);
2331	/*
2332	 * both lists are plists, and thus priority ordered.
2333	 * swap_active_head needs to be priority ordered for swapoff(),
2334	 * which on removal of any swap_info_struct with an auto-assigned
2335	 * (i.e. negative) priority increments the auto-assigned priority
2336	 * of any lower-priority swap_info_structs.
2337	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2338	 * which allocates swap pages from the highest available priority
2339	 * swap_info_struct.
2340	 */
2341	plist_add(&p->list, &swap_active_head);
2342	add_to_avail_list(p);
 
 
 
2343}
2344
2345static void enable_swap_info(struct swap_info_struct *p, int prio,
2346				unsigned char *swap_map,
2347				struct swap_cluster_info *cluster_info,
2348				unsigned long *frontswap_map)
2349{
2350	if (IS_ENABLED(CONFIG_FRONTSWAP))
2351		frontswap_init(p->type, frontswap_map);
2352	spin_lock(&swap_lock);
2353	spin_lock(&p->lock);
2354	setup_swap_info(p, prio, swap_map, cluster_info);
2355	spin_unlock(&p->lock);
2356	spin_unlock(&swap_lock);
2357	/*
2358	 * Finished initializing swap device, now it's safe to reference it.
2359	 */
2360	percpu_ref_resurrect(&p->users);
2361	spin_lock(&swap_lock);
2362	spin_lock(&p->lock);
2363	_enable_swap_info(p);
2364	spin_unlock(&p->lock);
2365	spin_unlock(&swap_lock);
2366}
2367
2368static void reinsert_swap_info(struct swap_info_struct *p)
2369{
2370	spin_lock(&swap_lock);
2371	spin_lock(&p->lock);
2372	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2373	_enable_swap_info(p);
2374	spin_unlock(&p->lock);
2375	spin_unlock(&swap_lock);
2376}
2377
2378bool has_usable_swap(void)
2379{
2380	bool ret = true;
2381
2382	spin_lock(&swap_lock);
2383	if (plist_head_empty(&swap_active_head))
2384		ret = false;
2385	spin_unlock(&swap_lock);
2386	return ret;
2387}
2388
2389SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2390{
2391	struct swap_info_struct *p = NULL;
2392	unsigned char *swap_map;
2393	struct swap_cluster_info *cluster_info;
2394	unsigned long *frontswap_map;
2395	struct file *swap_file, *victim;
2396	struct address_space *mapping;
2397	struct inode *inode;
2398	struct filename *pathname;
2399	int err, found = 0;
2400	unsigned int old_block_size;
2401
2402	if (!capable(CAP_SYS_ADMIN))
2403		return -EPERM;
2404
2405	BUG_ON(!current->mm);
2406
2407	pathname = getname(specialfile);
2408	if (IS_ERR(pathname))
2409		return PTR_ERR(pathname);
2410
2411	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2412	err = PTR_ERR(victim);
2413	if (IS_ERR(victim))
2414		goto out;
2415
2416	mapping = victim->f_mapping;
2417	spin_lock(&swap_lock);
2418	plist_for_each_entry(p, &swap_active_head, list) {
2419		if (p->flags & SWP_WRITEOK) {
2420			if (p->swap_file->f_mapping == mapping) {
2421				found = 1;
2422				break;
2423			}
2424		}
2425	}
2426	if (!found) {
2427		err = -EINVAL;
2428		spin_unlock(&swap_lock);
2429		goto out_dput;
2430	}
2431	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2432		vm_unacct_memory(p->pages);
2433	else {
2434		err = -ENOMEM;
2435		spin_unlock(&swap_lock);
2436		goto out_dput;
2437	}
2438	del_from_avail_list(p);
2439	spin_lock(&p->lock);
 
2440	if (p->prio < 0) {
2441		struct swap_info_struct *si = p;
2442		int nid;
2443
2444		plist_for_each_entry_continue(si, &swap_active_head, list) {
2445			si->prio++;
2446			si->list.prio--;
2447			for_each_node(nid) {
2448				if (si->avail_lists[nid].prio != 1)
2449					si->avail_lists[nid].prio--;
2450			}
2451		}
2452		least_priority++;
2453	}
2454	plist_del(&p->list, &swap_active_head);
2455	atomic_long_sub(p->pages, &nr_swap_pages);
2456	total_swap_pages -= p->pages;
2457	p->flags &= ~SWP_WRITEOK;
2458	spin_unlock(&p->lock);
2459	spin_unlock(&swap_lock);
2460
2461	disable_swap_slots_cache_lock();
2462
2463	set_current_oom_origin();
2464	err = try_to_unuse(p->type);
2465	clear_current_oom_origin();
2466
2467	if (err) {
2468		/* re-insert swap space back into swap_list */
2469		reinsert_swap_info(p);
2470		reenable_swap_slots_cache_unlock();
2471		goto out_dput;
2472	}
2473
2474	reenable_swap_slots_cache_unlock();
2475
2476	/*
2477	 * Wait for swap operations protected by get/put_swap_device()
2478	 * to complete.
2479	 *
2480	 * We need synchronize_rcu() here to protect the accessing to
2481	 * the swap cache data structure.
2482	 */
2483	percpu_ref_kill(&p->users);
2484	synchronize_rcu();
2485	wait_for_completion(&p->comp);
2486
2487	flush_work(&p->discard_work);
2488
2489	destroy_swap_extents(p);
2490	if (p->flags & SWP_CONTINUED)
2491		free_swap_count_continuations(p);
2492
2493	if (!p->bdev || !bdev_nonrot(p->bdev))
2494		atomic_dec(&nr_rotate_swap);
2495
2496	mutex_lock(&swapon_mutex);
2497	spin_lock(&swap_lock);
2498	spin_lock(&p->lock);
2499	drain_mmlist();
2500
2501	/* wait for anyone still in scan_swap_map_slots */
2502	p->highest_bit = 0;		/* cuts scans short */
2503	while (p->flags >= SWP_SCANNING) {
2504		spin_unlock(&p->lock);
2505		spin_unlock(&swap_lock);
2506		schedule_timeout_uninterruptible(1);
2507		spin_lock(&swap_lock);
2508		spin_lock(&p->lock);
2509	}
2510
2511	swap_file = p->swap_file;
2512	old_block_size = p->old_block_size;
2513	p->swap_file = NULL;
2514	p->max = 0;
2515	swap_map = p->swap_map;
2516	p->swap_map = NULL;
2517	cluster_info = p->cluster_info;
2518	p->cluster_info = NULL;
2519	frontswap_map = frontswap_map_get(p);
2520	spin_unlock(&p->lock);
2521	spin_unlock(&swap_lock);
2522	arch_swap_invalidate_area(p->type);
2523	frontswap_invalidate_area(p->type);
2524	frontswap_map_set(p, NULL);
2525	mutex_unlock(&swapon_mutex);
2526	free_percpu(p->percpu_cluster);
2527	p->percpu_cluster = NULL;
2528	free_percpu(p->cluster_next_cpu);
2529	p->cluster_next_cpu = NULL;
2530	vfree(swap_map);
2531	kvfree(cluster_info);
2532	kvfree(frontswap_map);
2533	/* Destroy swap account information */
2534	swap_cgroup_swapoff(p->type);
2535	exit_swap_address_space(p->type);
2536
2537	inode = mapping->host;
2538	if (S_ISBLK(inode->i_mode)) {
2539		struct block_device *bdev = I_BDEV(inode);
2540
2541		set_blocksize(bdev, old_block_size);
2542		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2543	}
2544
2545	inode_lock(inode);
2546	inode->i_flags &= ~S_SWAPFILE;
2547	inode_unlock(inode);
2548	filp_close(swap_file, NULL);
2549
2550	/*
2551	 * Clear the SWP_USED flag after all resources are freed so that swapon
2552	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2553	 * not hold p->lock after we cleared its SWP_WRITEOK.
2554	 */
2555	spin_lock(&swap_lock);
2556	p->flags = 0;
2557	spin_unlock(&swap_lock);
2558
2559	err = 0;
2560	atomic_inc(&proc_poll_event);
2561	wake_up_interruptible(&proc_poll_wait);
2562
2563out_dput:
2564	filp_close(victim, NULL);
2565out:
2566	putname(pathname);
2567	return err;
2568}
2569
2570#ifdef CONFIG_PROC_FS
2571static __poll_t swaps_poll(struct file *file, poll_table *wait)
2572{
2573	struct seq_file *seq = file->private_data;
2574
2575	poll_wait(file, &proc_poll_wait, wait);
2576
2577	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2578		seq->poll_event = atomic_read(&proc_poll_event);
2579		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2580	}
2581
2582	return EPOLLIN | EPOLLRDNORM;
2583}
2584
2585/* iterator */
2586static void *swap_start(struct seq_file *swap, loff_t *pos)
2587{
2588	struct swap_info_struct *si;
2589	int type;
2590	loff_t l = *pos;
2591
2592	mutex_lock(&swapon_mutex);
2593
2594	if (!l)
2595		return SEQ_START_TOKEN;
2596
2597	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2598		if (!(si->flags & SWP_USED) || !si->swap_map)
2599			continue;
2600		if (!--l)
2601			return si;
2602	}
2603
2604	return NULL;
2605}
2606
2607static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2608{
2609	struct swap_info_struct *si = v;
2610	int type;
2611
2612	if (v == SEQ_START_TOKEN)
2613		type = 0;
2614	else
2615		type = si->type + 1;
2616
2617	++(*pos);
2618	for (; (si = swap_type_to_swap_info(type)); type++) {
2619		if (!(si->flags & SWP_USED) || !si->swap_map)
2620			continue;
2621		return si;
2622	}
2623
2624	return NULL;
2625}
2626
2627static void swap_stop(struct seq_file *swap, void *v)
2628{
2629	mutex_unlock(&swapon_mutex);
2630}
2631
2632static int swap_show(struct seq_file *swap, void *v)
2633{
2634	struct swap_info_struct *si = v;
2635	struct file *file;
2636	int len;
2637	unsigned long bytes, inuse;
2638
2639	if (si == SEQ_START_TOKEN) {
2640		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2641		return 0;
2642	}
2643
2644	bytes = si->pages << (PAGE_SHIFT - 10);
2645	inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2646
2647	file = si->swap_file;
2648	len = seq_file_path(swap, file, " \t\n\\");
2649	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2650			len < 40 ? 40 - len : 1, " ",
2651			S_ISBLK(file_inode(file)->i_mode) ?
2652				"partition" : "file\t",
2653			bytes, bytes < 10000000 ? "\t" : "",
2654			inuse, inuse < 10000000 ? "\t" : "",
2655			si->prio);
2656	return 0;
2657}
2658
2659static const struct seq_operations swaps_op = {
2660	.start =	swap_start,
2661	.next =		swap_next,
2662	.stop =		swap_stop,
2663	.show =		swap_show
2664};
2665
2666static int swaps_open(struct inode *inode, struct file *file)
2667{
2668	struct seq_file *seq;
2669	int ret;
2670
2671	ret = seq_open(file, &swaps_op);
2672	if (ret)
2673		return ret;
2674
2675	seq = file->private_data;
2676	seq->poll_event = atomic_read(&proc_poll_event);
2677	return 0;
2678}
2679
2680static const struct proc_ops swaps_proc_ops = {
2681	.proc_flags	= PROC_ENTRY_PERMANENT,
2682	.proc_open	= swaps_open,
2683	.proc_read	= seq_read,
2684	.proc_lseek	= seq_lseek,
2685	.proc_release	= seq_release,
2686	.proc_poll	= swaps_poll,
2687};
2688
2689static int __init procswaps_init(void)
2690{
2691	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2692	return 0;
2693}
2694__initcall(procswaps_init);
2695#endif /* CONFIG_PROC_FS */
2696
2697#ifdef MAX_SWAPFILES_CHECK
2698static int __init max_swapfiles_check(void)
2699{
2700	MAX_SWAPFILES_CHECK();
2701	return 0;
2702}
2703late_initcall(max_swapfiles_check);
2704#endif
2705
2706static struct swap_info_struct *alloc_swap_info(void)
2707{
2708	struct swap_info_struct *p;
2709	struct swap_info_struct *defer = NULL;
2710	unsigned int type;
2711	int i;
2712
2713	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2714	if (!p)
2715		return ERR_PTR(-ENOMEM);
2716
2717	if (percpu_ref_init(&p->users, swap_users_ref_free,
2718			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2719		kvfree(p);
2720		return ERR_PTR(-ENOMEM);
2721	}
2722
2723	spin_lock(&swap_lock);
2724	for (type = 0; type < nr_swapfiles; type++) {
2725		if (!(swap_info[type]->flags & SWP_USED))
2726			break;
2727	}
2728	if (type >= MAX_SWAPFILES) {
2729		spin_unlock(&swap_lock);
2730		percpu_ref_exit(&p->users);
2731		kvfree(p);
2732		return ERR_PTR(-EPERM);
2733	}
2734	if (type >= nr_swapfiles) {
2735		p->type = type;
2736		/*
2737		 * Publish the swap_info_struct after initializing it.
2738		 * Note that kvzalloc() above zeroes all its fields.
2739		 */
2740		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2741		nr_swapfiles++;
2742	} else {
2743		defer = p;
2744		p = swap_info[type];
2745		/*
2746		 * Do not memset this entry: a racing procfs swap_next()
2747		 * would be relying on p->type to remain valid.
2748		 */
2749	}
2750	p->swap_extent_root = RB_ROOT;
2751	plist_node_init(&p->list, 0);
2752	for_each_node(i)
2753		plist_node_init(&p->avail_lists[i], 0);
2754	p->flags = SWP_USED;
2755	spin_unlock(&swap_lock);
2756	if (defer) {
2757		percpu_ref_exit(&defer->users);
2758		kvfree(defer);
2759	}
2760	spin_lock_init(&p->lock);
2761	spin_lock_init(&p->cont_lock);
2762	init_completion(&p->comp);
2763
2764	return p;
2765}
2766
2767static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2768{
2769	int error;
2770
2771	if (S_ISBLK(inode->i_mode)) {
2772		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2773				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2774		if (IS_ERR(p->bdev)) {
2775			error = PTR_ERR(p->bdev);
2776			p->bdev = NULL;
2777			return error;
2778		}
 
2779		p->old_block_size = block_size(p->bdev);
2780		error = set_blocksize(p->bdev, PAGE_SIZE);
2781		if (error < 0)
2782			return error;
2783		/*
2784		 * Zoned block devices contain zones that have a sequential
2785		 * write only restriction.  Hence zoned block devices are not
2786		 * suitable for swapping.  Disallow them here.
2787		 */
2788		if (bdev_is_zoned(p->bdev))
2789			return -EINVAL;
2790		p->flags |= SWP_BLKDEV;
2791	} else if (S_ISREG(inode->i_mode)) {
2792		p->bdev = inode->i_sb->s_bdev;
2793	}
2794
2795	return 0;
2796}
2797
2798
2799/*
2800 * Find out how many pages are allowed for a single swap device. There
2801 * are two limiting factors:
2802 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2803 * 2) the number of bits in the swap pte, as defined by the different
2804 * architectures.
2805 *
2806 * In order to find the largest possible bit mask, a swap entry with
2807 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2808 * decoded to a swp_entry_t again, and finally the swap offset is
2809 * extracted.
2810 *
2811 * This will mask all the bits from the initial ~0UL mask that can't
2812 * be encoded in either the swp_entry_t or the architecture definition
2813 * of a swap pte.
2814 */
2815unsigned long generic_max_swapfile_size(void)
2816{
2817	return swp_offset(pte_to_swp_entry(
2818			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2819}
2820
2821/* Can be overridden by an architecture for additional checks. */
2822__weak unsigned long arch_max_swapfile_size(void)
2823{
2824	return generic_max_swapfile_size();
2825}
2826
2827static unsigned long read_swap_header(struct swap_info_struct *p,
2828					union swap_header *swap_header,
2829					struct inode *inode)
2830{
2831	int i;
2832	unsigned long maxpages;
2833	unsigned long swapfilepages;
2834	unsigned long last_page;
2835
2836	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2837		pr_err("Unable to find swap-space signature\n");
2838		return 0;
2839	}
2840
2841	/* swap partition endianness hack... */
2842	if (swab32(swap_header->info.version) == 1) {
2843		swab32s(&swap_header->info.version);
2844		swab32s(&swap_header->info.last_page);
2845		swab32s(&swap_header->info.nr_badpages);
2846		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2847			return 0;
2848		for (i = 0; i < swap_header->info.nr_badpages; i++)
2849			swab32s(&swap_header->info.badpages[i]);
2850	}
2851	/* Check the swap header's sub-version */
2852	if (swap_header->info.version != 1) {
2853		pr_warn("Unable to handle swap header version %d\n",
2854			swap_header->info.version);
2855		return 0;
2856	}
2857
2858	p->lowest_bit  = 1;
2859	p->cluster_next = 1;
2860	p->cluster_nr = 0;
2861
2862	maxpages = swapfile_maximum_size;
2863	last_page = swap_header->info.last_page;
2864	if (!last_page) {
2865		pr_warn("Empty swap-file\n");
2866		return 0;
2867	}
2868	if (last_page > maxpages) {
2869		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2870			maxpages << (PAGE_SHIFT - 10),
2871			last_page << (PAGE_SHIFT - 10));
2872	}
2873	if (maxpages > last_page) {
2874		maxpages = last_page + 1;
2875		/* p->max is an unsigned int: don't overflow it */
2876		if ((unsigned int)maxpages == 0)
2877			maxpages = UINT_MAX;
2878	}
2879	p->highest_bit = maxpages - 1;
2880
2881	if (!maxpages)
2882		return 0;
2883	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2884	if (swapfilepages && maxpages > swapfilepages) {
2885		pr_warn("Swap area shorter than signature indicates\n");
2886		return 0;
2887	}
2888	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2889		return 0;
2890	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2891		return 0;
2892
2893	return maxpages;
2894}
2895
2896#define SWAP_CLUSTER_INFO_COLS						\
2897	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2898#define SWAP_CLUSTER_SPACE_COLS						\
2899	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2900#define SWAP_CLUSTER_COLS						\
2901	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2902
2903static int setup_swap_map_and_extents(struct swap_info_struct *p,
2904					union swap_header *swap_header,
2905					unsigned char *swap_map,
2906					struct swap_cluster_info *cluster_info,
2907					unsigned long maxpages,
2908					sector_t *span)
2909{
2910	unsigned int j, k;
2911	unsigned int nr_good_pages;
2912	int nr_extents;
2913	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2914	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2915	unsigned long i, idx;
2916
2917	nr_good_pages = maxpages - 1;	/* omit header page */
2918
2919	cluster_list_init(&p->free_clusters);
2920	cluster_list_init(&p->discard_clusters);
2921
2922	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2923		unsigned int page_nr = swap_header->info.badpages[i];
2924		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2925			return -EINVAL;
2926		if (page_nr < maxpages) {
2927			swap_map[page_nr] = SWAP_MAP_BAD;
2928			nr_good_pages--;
2929			/*
2930			 * Haven't marked the cluster free yet, no list
2931			 * operation involved
2932			 */
2933			inc_cluster_info_page(p, cluster_info, page_nr);
2934		}
2935	}
2936
2937	/* Haven't marked the cluster free yet, no list operation involved */
2938	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2939		inc_cluster_info_page(p, cluster_info, i);
2940
2941	if (nr_good_pages) {
2942		swap_map[0] = SWAP_MAP_BAD;
2943		/*
2944		 * Not mark the cluster free yet, no list
2945		 * operation involved
2946		 */
2947		inc_cluster_info_page(p, cluster_info, 0);
2948		p->max = maxpages;
2949		p->pages = nr_good_pages;
2950		nr_extents = setup_swap_extents(p, span);
2951		if (nr_extents < 0)
2952			return nr_extents;
2953		nr_good_pages = p->pages;
2954	}
2955	if (!nr_good_pages) {
2956		pr_warn("Empty swap-file\n");
2957		return -EINVAL;
2958	}
2959
2960	if (!cluster_info)
2961		return nr_extents;
2962
2963
2964	/*
2965	 * Reduce false cache line sharing between cluster_info and
2966	 * sharing same address space.
2967	 */
2968	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2969		j = (k + col) % SWAP_CLUSTER_COLS;
2970		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2971			idx = i * SWAP_CLUSTER_COLS + j;
2972			if (idx >= nr_clusters)
2973				continue;
2974			if (cluster_count(&cluster_info[idx]))
2975				continue;
2976			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2977			cluster_list_add_tail(&p->free_clusters, cluster_info,
2978					      idx);
2979		}
2980	}
2981	return nr_extents;
2982}
2983
2984SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2985{
2986	struct swap_info_struct *p;
2987	struct filename *name;
2988	struct file *swap_file = NULL;
2989	struct address_space *mapping;
2990	struct dentry *dentry;
2991	int prio;
2992	int error;
2993	union swap_header *swap_header;
2994	int nr_extents;
2995	sector_t span;
2996	unsigned long maxpages;
2997	unsigned char *swap_map = NULL;
2998	struct swap_cluster_info *cluster_info = NULL;
2999	unsigned long *frontswap_map = NULL;
3000	struct page *page = NULL;
3001	struct inode *inode = NULL;
3002	bool inced_nr_rotate_swap = false;
3003
3004	if (swap_flags & ~SWAP_FLAGS_VALID)
3005		return -EINVAL;
3006
3007	if (!capable(CAP_SYS_ADMIN))
3008		return -EPERM;
3009
3010	if (!swap_avail_heads)
3011		return -ENOMEM;
3012
3013	p = alloc_swap_info();
3014	if (IS_ERR(p))
3015		return PTR_ERR(p);
3016
3017	INIT_WORK(&p->discard_work, swap_discard_work);
3018
3019	name = getname(specialfile);
3020	if (IS_ERR(name)) {
3021		error = PTR_ERR(name);
3022		name = NULL;
3023		goto bad_swap;
3024	}
3025	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3026	if (IS_ERR(swap_file)) {
3027		error = PTR_ERR(swap_file);
3028		swap_file = NULL;
3029		goto bad_swap;
3030	}
3031
3032	p->swap_file = swap_file;
3033	mapping = swap_file->f_mapping;
3034	dentry = swap_file->f_path.dentry;
3035	inode = mapping->host;
3036
3037	error = claim_swapfile(p, inode);
3038	if (unlikely(error))
3039		goto bad_swap;
3040
3041	inode_lock(inode);
3042	if (d_unlinked(dentry) || cant_mount(dentry)) {
3043		error = -ENOENT;
3044		goto bad_swap_unlock_inode;
3045	}
3046	if (IS_SWAPFILE(inode)) {
3047		error = -EBUSY;
3048		goto bad_swap_unlock_inode;
3049	}
3050
3051	/*
3052	 * Read the swap header.
3053	 */
3054	if (!mapping->a_ops->read_folio) {
3055		error = -EINVAL;
3056		goto bad_swap_unlock_inode;
3057	}
3058	page = read_mapping_page(mapping, 0, swap_file);
3059	if (IS_ERR(page)) {
3060		error = PTR_ERR(page);
3061		goto bad_swap_unlock_inode;
3062	}
3063	swap_header = kmap(page);
3064
3065	maxpages = read_swap_header(p, swap_header, inode);
3066	if (unlikely(!maxpages)) {
3067		error = -EINVAL;
3068		goto bad_swap_unlock_inode;
3069	}
3070
3071	/* OK, set up the swap map and apply the bad block list */
3072	swap_map = vzalloc(maxpages);
3073	if (!swap_map) {
3074		error = -ENOMEM;
3075		goto bad_swap_unlock_inode;
3076	}
3077
3078	if (p->bdev && bdev_stable_writes(p->bdev))
3079		p->flags |= SWP_STABLE_WRITES;
3080
3081	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3082		p->flags |= SWP_SYNCHRONOUS_IO;
3083
3084	if (p->bdev && bdev_nonrot(p->bdev)) {
3085		int cpu;
3086		unsigned long ci, nr_cluster;
3087
3088		p->flags |= SWP_SOLIDSTATE;
3089		p->cluster_next_cpu = alloc_percpu(unsigned int);
3090		if (!p->cluster_next_cpu) {
3091			error = -ENOMEM;
3092			goto bad_swap_unlock_inode;
3093		}
3094		/*
3095		 * select a random position to start with to help wear leveling
3096		 * SSD
3097		 */
3098		for_each_possible_cpu(cpu) {
3099			per_cpu(*p->cluster_next_cpu, cpu) =
3100				get_random_u32_inclusive(1, p->highest_bit);
3101		}
3102		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3103
3104		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3105					GFP_KERNEL);
3106		if (!cluster_info) {
3107			error = -ENOMEM;
3108			goto bad_swap_unlock_inode;
3109		}
3110
3111		for (ci = 0; ci < nr_cluster; ci++)
3112			spin_lock_init(&((cluster_info + ci)->lock));
3113
3114		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3115		if (!p->percpu_cluster) {
3116			error = -ENOMEM;
3117			goto bad_swap_unlock_inode;
3118		}
3119		for_each_possible_cpu(cpu) {
3120			struct percpu_cluster *cluster;
3121			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3122			cluster_set_null(&cluster->index);
3123		}
3124	} else {
3125		atomic_inc(&nr_rotate_swap);
3126		inced_nr_rotate_swap = true;
3127	}
3128
3129	error = swap_cgroup_swapon(p->type, maxpages);
3130	if (error)
3131		goto bad_swap_unlock_inode;
3132
3133	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3134		cluster_info, maxpages, &span);
3135	if (unlikely(nr_extents < 0)) {
3136		error = nr_extents;
3137		goto bad_swap_unlock_inode;
3138	}
3139	/* frontswap enabled? set up bit-per-page map for frontswap */
3140	if (IS_ENABLED(CONFIG_FRONTSWAP))
3141		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3142					 sizeof(long),
3143					 GFP_KERNEL);
3144
3145	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3146	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3147		/*
3148		 * When discard is enabled for swap with no particular
3149		 * policy flagged, we set all swap discard flags here in
3150		 * order to sustain backward compatibility with older
3151		 * swapon(8) releases.
3152		 */
3153		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3154			     SWP_PAGE_DISCARD);
3155
3156		/*
3157		 * By flagging sys_swapon, a sysadmin can tell us to
3158		 * either do single-time area discards only, or to just
3159		 * perform discards for released swap page-clusters.
3160		 * Now it's time to adjust the p->flags accordingly.
3161		 */
3162		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3163			p->flags &= ~SWP_PAGE_DISCARD;
3164		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3165			p->flags &= ~SWP_AREA_DISCARD;
3166
3167		/* issue a swapon-time discard if it's still required */
3168		if (p->flags & SWP_AREA_DISCARD) {
3169			int err = discard_swap(p);
3170			if (unlikely(err))
3171				pr_err("swapon: discard_swap(%p): %d\n",
3172					p, err);
3173		}
3174	}
3175
3176	error = init_swap_address_space(p->type, maxpages);
3177	if (error)
3178		goto bad_swap_unlock_inode;
3179
3180	/*
3181	 * Flush any pending IO and dirty mappings before we start using this
3182	 * swap device.
3183	 */
3184	inode->i_flags |= S_SWAPFILE;
3185	error = inode_drain_writes(inode);
3186	if (error) {
3187		inode->i_flags &= ~S_SWAPFILE;
3188		goto free_swap_address_space;
3189	}
3190
3191	mutex_lock(&swapon_mutex);
3192	prio = -1;
3193	if (swap_flags & SWAP_FLAG_PREFER)
3194		prio =
3195		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3196	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3197
3198	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3199		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3200		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3201		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3202		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3203		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3204		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3205		(frontswap_map) ? "FS" : "");
3206
3207	mutex_unlock(&swapon_mutex);
3208	atomic_inc(&proc_poll_event);
3209	wake_up_interruptible(&proc_poll_wait);
3210
3211	error = 0;
3212	goto out;
3213free_swap_address_space:
3214	exit_swap_address_space(p->type);
3215bad_swap_unlock_inode:
3216	inode_unlock(inode);
3217bad_swap:
3218	free_percpu(p->percpu_cluster);
3219	p->percpu_cluster = NULL;
3220	free_percpu(p->cluster_next_cpu);
3221	p->cluster_next_cpu = NULL;
3222	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3223		set_blocksize(p->bdev, p->old_block_size);
3224		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
 
3225	}
3226	inode = NULL;
3227	destroy_swap_extents(p);
3228	swap_cgroup_swapoff(p->type);
3229	spin_lock(&swap_lock);
3230	p->swap_file = NULL;
3231	p->flags = 0;
3232	spin_unlock(&swap_lock);
3233	vfree(swap_map);
3234	kvfree(cluster_info);
3235	kvfree(frontswap_map);
3236	if (inced_nr_rotate_swap)
3237		atomic_dec(&nr_rotate_swap);
3238	if (swap_file)
3239		filp_close(swap_file, NULL);
3240out:
3241	if (page && !IS_ERR(page)) {
3242		kunmap(page);
3243		put_page(page);
3244	}
3245	if (name)
3246		putname(name);
3247	if (inode)
3248		inode_unlock(inode);
3249	if (!error)
3250		enable_swap_slots_cache();
3251	return error;
3252}
3253
3254void si_swapinfo(struct sysinfo *val)
3255{
3256	unsigned int type;
3257	unsigned long nr_to_be_unused = 0;
3258
3259	spin_lock(&swap_lock);
3260	for (type = 0; type < nr_swapfiles; type++) {
3261		struct swap_info_struct *si = swap_info[type];
3262
3263		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3264			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3265	}
3266	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3267	val->totalswap = total_swap_pages + nr_to_be_unused;
3268	spin_unlock(&swap_lock);
3269}
3270
3271/*
3272 * Verify that a swap entry is valid and increment its swap map count.
3273 *
3274 * Returns error code in following case.
3275 * - success -> 0
3276 * - swp_entry is invalid -> EINVAL
3277 * - swp_entry is migration entry -> EINVAL
3278 * - swap-cache reference is requested but there is already one. -> EEXIST
3279 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3280 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3281 */
3282static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3283{
3284	struct swap_info_struct *p;
3285	struct swap_cluster_info *ci;
3286	unsigned long offset;
3287	unsigned char count;
3288	unsigned char has_cache;
3289	int err;
3290
3291	p = get_swap_device(entry);
3292	if (!p)
3293		return -EINVAL;
3294
3295	offset = swp_offset(entry);
3296	ci = lock_cluster_or_swap_info(p, offset);
3297
3298	count = p->swap_map[offset];
3299
3300	/*
3301	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3302	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3303	 */
3304	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3305		err = -ENOENT;
3306		goto unlock_out;
3307	}
3308
3309	has_cache = count & SWAP_HAS_CACHE;
3310	count &= ~SWAP_HAS_CACHE;
3311	err = 0;
3312
3313	if (usage == SWAP_HAS_CACHE) {
3314
3315		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3316		if (!has_cache && count)
3317			has_cache = SWAP_HAS_CACHE;
3318		else if (has_cache)		/* someone else added cache */
3319			err = -EEXIST;
3320		else				/* no users remaining */
3321			err = -ENOENT;
3322
3323	} else if (count || has_cache) {
3324
3325		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3326			count += usage;
3327		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3328			err = -EINVAL;
3329		else if (swap_count_continued(p, offset, count))
3330			count = COUNT_CONTINUED;
3331		else
3332			err = -ENOMEM;
3333	} else
3334		err = -ENOENT;			/* unused swap entry */
3335
3336	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3337
3338unlock_out:
3339	unlock_cluster_or_swap_info(p, ci);
3340	put_swap_device(p);
3341	return err;
3342}
3343
3344/*
3345 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3346 * (in which case its reference count is never incremented).
3347 */
3348void swap_shmem_alloc(swp_entry_t entry)
3349{
3350	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3351}
3352
3353/*
3354 * Increase reference count of swap entry by 1.
3355 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3356 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3357 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3358 * might occur if a page table entry has got corrupted.
3359 */
3360int swap_duplicate(swp_entry_t entry)
3361{
3362	int err = 0;
3363
3364	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3365		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3366	return err;
3367}
3368
3369/*
3370 * @entry: swap entry for which we allocate swap cache.
3371 *
3372 * Called when allocating swap cache for existing swap entry,
3373 * This can return error codes. Returns 0 at success.
3374 * -EEXIST means there is a swap cache.
3375 * Note: return code is different from swap_duplicate().
3376 */
3377int swapcache_prepare(swp_entry_t entry)
3378{
3379	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3380}
3381
3382struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3383{
3384	return swap_type_to_swap_info(swp_type(entry));
 
 
 
 
 
 
 
 
3385}
3386
3387struct swap_info_struct *page_swap_info(struct page *page)
3388{
3389	swp_entry_t entry = { .val = page_private(page) };
3390	return swp_swap_info(entry);
3391}
3392
3393/*
3394 * out-of-line methods to avoid include hell.
3395 */
3396struct address_space *swapcache_mapping(struct folio *folio)
3397{
3398	return page_swap_info(&folio->page)->swap_file->f_mapping;
3399}
3400EXPORT_SYMBOL_GPL(swapcache_mapping);
3401
3402pgoff_t __page_file_index(struct page *page)
3403{
3404	swp_entry_t swap = { .val = page_private(page) };
3405	return swp_offset(swap);
3406}
3407EXPORT_SYMBOL_GPL(__page_file_index);
3408
3409/*
3410 * add_swap_count_continuation - called when a swap count is duplicated
3411 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3412 * page of the original vmalloc'ed swap_map, to hold the continuation count
3413 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3414 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3415 *
3416 * These continuation pages are seldom referenced: the common paths all work
3417 * on the original swap_map, only referring to a continuation page when the
3418 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3419 *
3420 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3421 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3422 * can be called after dropping locks.
3423 */
3424int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3425{
3426	struct swap_info_struct *si;
3427	struct swap_cluster_info *ci;
3428	struct page *head;
3429	struct page *page;
3430	struct page *list_page;
3431	pgoff_t offset;
3432	unsigned char count;
3433	int ret = 0;
3434
3435	/*
3436	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3437	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3438	 */
3439	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3440
3441	si = get_swap_device(entry);
3442	if (!si) {
3443		/*
3444		 * An acceptable race has occurred since the failing
3445		 * __swap_duplicate(): the swap device may be swapoff
3446		 */
3447		goto outer;
3448	}
3449	spin_lock(&si->lock);
3450
3451	offset = swp_offset(entry);
3452
3453	ci = lock_cluster(si, offset);
3454
3455	count = swap_count(si->swap_map[offset]);
3456
3457	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3458		/*
3459		 * The higher the swap count, the more likely it is that tasks
3460		 * will race to add swap count continuation: we need to avoid
3461		 * over-provisioning.
3462		 */
3463		goto out;
3464	}
3465
3466	if (!page) {
3467		ret = -ENOMEM;
3468		goto out;
3469	}
3470
3471	/*
3472	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3473	 * no architecture is using highmem pages for kernel page tables: so it
3474	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3475	 */
3476	head = vmalloc_to_page(si->swap_map + offset);
3477	offset &= ~PAGE_MASK;
3478
3479	spin_lock(&si->cont_lock);
3480	/*
3481	 * Page allocation does not initialize the page's lru field,
3482	 * but it does always reset its private field.
3483	 */
3484	if (!page_private(head)) {
3485		BUG_ON(count & COUNT_CONTINUED);
3486		INIT_LIST_HEAD(&head->lru);
3487		set_page_private(head, SWP_CONTINUED);
3488		si->flags |= SWP_CONTINUED;
3489	}
3490
3491	list_for_each_entry(list_page, &head->lru, lru) {
3492		unsigned char *map;
3493
3494		/*
3495		 * If the previous map said no continuation, but we've found
3496		 * a continuation page, free our allocation and use this one.
3497		 */
3498		if (!(count & COUNT_CONTINUED))
3499			goto out_unlock_cont;
3500
3501		map = kmap_atomic(list_page) + offset;
3502		count = *map;
3503		kunmap_atomic(map);
3504
3505		/*
3506		 * If this continuation count now has some space in it,
3507		 * free our allocation and use this one.
3508		 */
3509		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3510			goto out_unlock_cont;
3511	}
3512
3513	list_add_tail(&page->lru, &head->lru);
3514	page = NULL;			/* now it's attached, don't free it */
3515out_unlock_cont:
3516	spin_unlock(&si->cont_lock);
3517out:
3518	unlock_cluster(ci);
3519	spin_unlock(&si->lock);
3520	put_swap_device(si);
3521outer:
3522	if (page)
3523		__free_page(page);
3524	return ret;
3525}
3526
3527/*
3528 * swap_count_continued - when the original swap_map count is incremented
3529 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3530 * into, carry if so, or else fail until a new continuation page is allocated;
3531 * when the original swap_map count is decremented from 0 with continuation,
3532 * borrow from the continuation and report whether it still holds more.
3533 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3534 * lock.
3535 */
3536static bool swap_count_continued(struct swap_info_struct *si,
3537				 pgoff_t offset, unsigned char count)
3538{
3539	struct page *head;
3540	struct page *page;
3541	unsigned char *map;
3542	bool ret;
3543
3544	head = vmalloc_to_page(si->swap_map + offset);
3545	if (page_private(head) != SWP_CONTINUED) {
3546		BUG_ON(count & COUNT_CONTINUED);
3547		return false;		/* need to add count continuation */
3548	}
3549
3550	spin_lock(&si->cont_lock);
3551	offset &= ~PAGE_MASK;
3552	page = list_next_entry(head, lru);
3553	map = kmap_atomic(page) + offset;
3554
3555	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3556		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3557
3558	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3559		/*
3560		 * Think of how you add 1 to 999
3561		 */
3562		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3563			kunmap_atomic(map);
3564			page = list_next_entry(page, lru);
3565			BUG_ON(page == head);
3566			map = kmap_atomic(page) + offset;
3567		}
3568		if (*map == SWAP_CONT_MAX) {
3569			kunmap_atomic(map);
3570			page = list_next_entry(page, lru);
3571			if (page == head) {
3572				ret = false;	/* add count continuation */
3573				goto out;
3574			}
3575			map = kmap_atomic(page) + offset;
3576init_map:		*map = 0;		/* we didn't zero the page */
3577		}
3578		*map += 1;
3579		kunmap_atomic(map);
3580		while ((page = list_prev_entry(page, lru)) != head) {
3581			map = kmap_atomic(page) + offset;
3582			*map = COUNT_CONTINUED;
3583			kunmap_atomic(map);
3584		}
3585		ret = true;			/* incremented */
3586
3587	} else {				/* decrementing */
3588		/*
3589		 * Think of how you subtract 1 from 1000
3590		 */
3591		BUG_ON(count != COUNT_CONTINUED);
3592		while (*map == COUNT_CONTINUED) {
3593			kunmap_atomic(map);
3594			page = list_next_entry(page, lru);
3595			BUG_ON(page == head);
3596			map = kmap_atomic(page) + offset;
3597		}
3598		BUG_ON(*map == 0);
3599		*map -= 1;
3600		if (*map == 0)
3601			count = 0;
3602		kunmap_atomic(map);
3603		while ((page = list_prev_entry(page, lru)) != head) {
3604			map = kmap_atomic(page) + offset;
3605			*map = SWAP_CONT_MAX | count;
3606			count = COUNT_CONTINUED;
3607			kunmap_atomic(map);
3608		}
3609		ret = count == COUNT_CONTINUED;
3610	}
3611out:
3612	spin_unlock(&si->cont_lock);
3613	return ret;
3614}
3615
3616/*
3617 * free_swap_count_continuations - swapoff free all the continuation pages
3618 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3619 */
3620static void free_swap_count_continuations(struct swap_info_struct *si)
3621{
3622	pgoff_t offset;
3623
3624	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3625		struct page *head;
3626		head = vmalloc_to_page(si->swap_map + offset);
3627		if (page_private(head)) {
3628			struct page *page, *next;
3629
3630			list_for_each_entry_safe(page, next, &head->lru, lru) {
3631				list_del(&page->lru);
3632				__free_page(page);
3633			}
3634		}
3635	}
3636}
3637
3638#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3639void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3640{
3641	struct swap_info_struct *si, *next;
3642	int nid = page_to_nid(page);
3643
3644	if (!(gfp_mask & __GFP_IO))
3645		return;
3646
3647	if (!blk_cgroup_congested())
3648		return;
3649
3650	/*
3651	 * We've already scheduled a throttle, avoid taking the global swap
3652	 * lock.
3653	 */
3654	if (current->throttle_queue)
3655		return;
3656
3657	spin_lock(&swap_avail_lock);
3658	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3659				  avail_lists[nid]) {
3660		if (si->bdev) {
3661			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3662			break;
3663		}
3664	}
3665	spin_unlock(&swap_avail_lock);
3666}
3667#endif
3668
3669static int __init swapfile_init(void)
3670{
3671	int nid;
3672
3673	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3674					 GFP_KERNEL);
3675	if (!swap_avail_heads) {
3676		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3677		return -ENOMEM;
3678	}
3679
3680	for_each_node(nid)
3681		plist_head_init(&swap_avail_heads[nid]);
3682
3683	swapfile_maximum_size = arch_max_swapfile_size();
3684
3685#ifdef CONFIG_MIGRATION
3686	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3687		swap_migration_ad_supported = true;
3688#endif	/* CONFIG_MIGRATION */
3689
3690	return 0;
3691}
3692subsys_initcall(swapfile_init);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/swapfile.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *  Swap reorganised 29.12.95, Stephen Tweedie
   7 */
   8
   9#include <linux/blkdev.h>
  10#include <linux/mm.h>
  11#include <linux/sched/mm.h>
  12#include <linux/sched/task.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mman.h>
  15#include <linux/slab.h>
  16#include <linux/kernel_stat.h>
  17#include <linux/swap.h>
  18#include <linux/vmalloc.h>
  19#include <linux/pagemap.h>
  20#include <linux/namei.h>
  21#include <linux/shmem_fs.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/random.h>
  24#include <linux/writeback.h>
  25#include <linux/proc_fs.h>
  26#include <linux/seq_file.h>
  27#include <linux/init.h>
  28#include <linux/ksm.h>
  29#include <linux/rmap.h>
  30#include <linux/security.h>
  31#include <linux/backing-dev.h>
  32#include <linux/mutex.h>
  33#include <linux/capability.h>
  34#include <linux/syscalls.h>
  35#include <linux/memcontrol.h>
  36#include <linux/poll.h>
  37#include <linux/oom.h>
 
  38#include <linux/swapfile.h>
  39#include <linux/export.h>
  40#include <linux/swap_slots.h>
  41#include <linux/sort.h>
  42#include <linux/completion.h>
  43#include <linux/suspend.h>
  44#include <linux/zswap.h>
  45#include <linux/plist.h>
  46
  47#include <asm/tlbflush.h>
  48#include <linux/swapops.h>
  49#include <linux/swap_cgroup.h>
  50#include "internal.h"
  51#include "swap.h"
  52
  53static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
  54				 unsigned char);
  55static void free_swap_count_continuations(struct swap_info_struct *);
  56
  57static DEFINE_SPINLOCK(swap_lock);
  58static unsigned int nr_swapfiles;
  59atomic_long_t nr_swap_pages;
  60/*
  61 * Some modules use swappable objects and may try to swap them out under
  62 * memory pressure (via the shrinker). Before doing so, they may wish to
  63 * check to see if any swap space is available.
  64 */
  65EXPORT_SYMBOL_GPL(nr_swap_pages);
  66/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
  67long total_swap_pages;
  68static int least_priority = -1;
  69unsigned long swapfile_maximum_size;
  70#ifdef CONFIG_MIGRATION
  71bool swap_migration_ad_supported;
  72#endif	/* CONFIG_MIGRATION */
  73
  74static const char Bad_file[] = "Bad swap file entry ";
  75static const char Unused_file[] = "Unused swap file entry ";
  76static const char Bad_offset[] = "Bad swap offset entry ";
  77static const char Unused_offset[] = "Unused swap offset entry ";
  78
  79/*
  80 * all active swap_info_structs
  81 * protected with swap_lock, and ordered by priority.
  82 */
  83static PLIST_HEAD(swap_active_head);
  84
  85/*
  86 * all available (active, not full) swap_info_structs
  87 * protected with swap_avail_lock, ordered by priority.
  88 * This is used by folio_alloc_swap() instead of swap_active_head
  89 * because swap_active_head includes all swap_info_structs,
  90 * but folio_alloc_swap() doesn't need to look at full ones.
  91 * This uses its own lock instead of swap_lock because when a
  92 * swap_info_struct changes between not-full/full, it needs to
  93 * add/remove itself to/from this list, but the swap_info_struct->lock
  94 * is held and the locking order requires swap_lock to be taken
  95 * before any swap_info_struct->lock.
  96 */
  97static struct plist_head *swap_avail_heads;
  98static DEFINE_SPINLOCK(swap_avail_lock);
  99
 100static struct swap_info_struct *swap_info[MAX_SWAPFILES];
 101
 102static DEFINE_MUTEX(swapon_mutex);
 103
 104static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
 105/* Activity counter to indicate that a swapon or swapoff has occurred */
 106static atomic_t proc_poll_event = ATOMIC_INIT(0);
 107
 108atomic_t nr_rotate_swap = ATOMIC_INIT(0);
 109
 110static struct swap_info_struct *swap_type_to_swap_info(int type)
 111{
 112	if (type >= MAX_SWAPFILES)
 113		return NULL;
 114
 115	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
 116}
 117
 118static inline unsigned char swap_count(unsigned char ent)
 119{
 120	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
 121}
 122
 123/* Reclaim the swap entry anyway if possible */
 124#define TTRS_ANYWAY		0x1
 125/*
 126 * Reclaim the swap entry if there are no more mappings of the
 127 * corresponding page
 128 */
 129#define TTRS_UNMAPPED		0x2
 130/* Reclaim the swap entry if swap is getting full*/
 131#define TTRS_FULL		0x4
 132
 133/* returns 1 if swap entry is freed */
 134static int __try_to_reclaim_swap(struct swap_info_struct *si,
 135				 unsigned long offset, unsigned long flags)
 136{
 137	swp_entry_t entry = swp_entry(si->type, offset);
 138	struct folio *folio;
 139	int ret = 0;
 140
 141	folio = filemap_get_folio(swap_address_space(entry), offset);
 142	if (IS_ERR(folio))
 143		return 0;
 144	/*
 145	 * When this function is called from scan_swap_map_slots() and it's
 146	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
 147	 * here. We have to use trylock for avoiding deadlock. This is a special
 148	 * case and you should use folio_free_swap() with explicit folio_lock()
 149	 * in usual operations.
 150	 */
 151	if (folio_trylock(folio)) {
 152		if ((flags & TTRS_ANYWAY) ||
 153		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
 154		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
 155			ret = folio_free_swap(folio);
 156		folio_unlock(folio);
 157	}
 158	folio_put(folio);
 159	return ret;
 160}
 161
 162static inline struct swap_extent *first_se(struct swap_info_struct *sis)
 163{
 164	struct rb_node *rb = rb_first(&sis->swap_extent_root);
 165	return rb_entry(rb, struct swap_extent, rb_node);
 166}
 167
 168static inline struct swap_extent *next_se(struct swap_extent *se)
 169{
 170	struct rb_node *rb = rb_next(&se->rb_node);
 171	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
 172}
 173
 174/*
 175 * swapon tell device that all the old swap contents can be discarded,
 176 * to allow the swap device to optimize its wear-levelling.
 177 */
 178static int discard_swap(struct swap_info_struct *si)
 179{
 180	struct swap_extent *se;
 181	sector_t start_block;
 182	sector_t nr_blocks;
 183	int err = 0;
 184
 185	/* Do not discard the swap header page! */
 186	se = first_se(si);
 187	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
 188	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
 189	if (nr_blocks) {
 190		err = blkdev_issue_discard(si->bdev, start_block,
 191				nr_blocks, GFP_KERNEL);
 192		if (err)
 193			return err;
 194		cond_resched();
 195	}
 196
 197	for (se = next_se(se); se; se = next_se(se)) {
 198		start_block = se->start_block << (PAGE_SHIFT - 9);
 199		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
 200
 201		err = blkdev_issue_discard(si->bdev, start_block,
 202				nr_blocks, GFP_KERNEL);
 203		if (err)
 204			break;
 205
 206		cond_resched();
 207	}
 208	return err;		/* That will often be -EOPNOTSUPP */
 209}
 210
 211static struct swap_extent *
 212offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
 213{
 214	struct swap_extent *se;
 215	struct rb_node *rb;
 216
 217	rb = sis->swap_extent_root.rb_node;
 218	while (rb) {
 219		se = rb_entry(rb, struct swap_extent, rb_node);
 220		if (offset < se->start_page)
 221			rb = rb->rb_left;
 222		else if (offset >= se->start_page + se->nr_pages)
 223			rb = rb->rb_right;
 224		else
 225			return se;
 226	}
 227	/* It *must* be present */
 228	BUG();
 229}
 230
 231sector_t swap_folio_sector(struct folio *folio)
 232{
 233	struct swap_info_struct *sis = swp_swap_info(folio->swap);
 234	struct swap_extent *se;
 235	sector_t sector;
 236	pgoff_t offset;
 237
 238	offset = swp_offset(folio->swap);
 239	se = offset_to_swap_extent(sis, offset);
 240	sector = se->start_block + (offset - se->start_page);
 241	return sector << (PAGE_SHIFT - 9);
 242}
 243
 244/*
 245 * swap allocation tell device that a cluster of swap can now be discarded,
 246 * to allow the swap device to optimize its wear-levelling.
 247 */
 248static void discard_swap_cluster(struct swap_info_struct *si,
 249				 pgoff_t start_page, pgoff_t nr_pages)
 250{
 251	struct swap_extent *se = offset_to_swap_extent(si, start_page);
 252
 253	while (nr_pages) {
 254		pgoff_t offset = start_page - se->start_page;
 255		sector_t start_block = se->start_block + offset;
 256		sector_t nr_blocks = se->nr_pages - offset;
 257
 258		if (nr_blocks > nr_pages)
 259			nr_blocks = nr_pages;
 260		start_page += nr_blocks;
 261		nr_pages -= nr_blocks;
 262
 263		start_block <<= PAGE_SHIFT - 9;
 264		nr_blocks <<= PAGE_SHIFT - 9;
 265		if (blkdev_issue_discard(si->bdev, start_block,
 266					nr_blocks, GFP_NOIO))
 267			break;
 268
 269		se = next_se(se);
 270	}
 271}
 272
 273#ifdef CONFIG_THP_SWAP
 274#define SWAPFILE_CLUSTER	HPAGE_PMD_NR
 275
 276#define swap_entry_size(size)	(size)
 277#else
 278#define SWAPFILE_CLUSTER	256
 279
 280/*
 281 * Define swap_entry_size() as constant to let compiler to optimize
 282 * out some code if !CONFIG_THP_SWAP
 283 */
 284#define swap_entry_size(size)	1
 285#endif
 286#define LATENCY_LIMIT		256
 287
 288static inline void cluster_set_flag(struct swap_cluster_info *info,
 289	unsigned int flag)
 290{
 291	info->flags = flag;
 292}
 293
 294static inline unsigned int cluster_count(struct swap_cluster_info *info)
 295{
 296	return info->data;
 297}
 298
 299static inline void cluster_set_count(struct swap_cluster_info *info,
 300				     unsigned int c)
 301{
 302	info->data = c;
 303}
 304
 305static inline void cluster_set_count_flag(struct swap_cluster_info *info,
 306					 unsigned int c, unsigned int f)
 307{
 308	info->flags = f;
 309	info->data = c;
 310}
 311
 312static inline unsigned int cluster_next(struct swap_cluster_info *info)
 313{
 314	return info->data;
 315}
 316
 317static inline void cluster_set_next(struct swap_cluster_info *info,
 318				    unsigned int n)
 319{
 320	info->data = n;
 321}
 322
 323static inline void cluster_set_next_flag(struct swap_cluster_info *info,
 324					 unsigned int n, unsigned int f)
 325{
 326	info->flags = f;
 327	info->data = n;
 328}
 329
 330static inline bool cluster_is_free(struct swap_cluster_info *info)
 331{
 332	return info->flags & CLUSTER_FLAG_FREE;
 333}
 334
 335static inline bool cluster_is_null(struct swap_cluster_info *info)
 336{
 337	return info->flags & CLUSTER_FLAG_NEXT_NULL;
 338}
 339
 340static inline void cluster_set_null(struct swap_cluster_info *info)
 341{
 342	info->flags = CLUSTER_FLAG_NEXT_NULL;
 343	info->data = 0;
 344}
 345
 346static inline bool cluster_is_huge(struct swap_cluster_info *info)
 347{
 348	if (IS_ENABLED(CONFIG_THP_SWAP))
 349		return info->flags & CLUSTER_FLAG_HUGE;
 350	return false;
 351}
 352
 353static inline void cluster_clear_huge(struct swap_cluster_info *info)
 354{
 355	info->flags &= ~CLUSTER_FLAG_HUGE;
 356}
 357
 358static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
 359						     unsigned long offset)
 360{
 361	struct swap_cluster_info *ci;
 362
 363	ci = si->cluster_info;
 364	if (ci) {
 365		ci += offset / SWAPFILE_CLUSTER;
 366		spin_lock(&ci->lock);
 367	}
 368	return ci;
 369}
 370
 371static inline void unlock_cluster(struct swap_cluster_info *ci)
 372{
 373	if (ci)
 374		spin_unlock(&ci->lock);
 375}
 376
 377/*
 378 * Determine the locking method in use for this device.  Return
 379 * swap_cluster_info if SSD-style cluster-based locking is in place.
 380 */
 381static inline struct swap_cluster_info *lock_cluster_or_swap_info(
 382		struct swap_info_struct *si, unsigned long offset)
 383{
 384	struct swap_cluster_info *ci;
 385
 386	/* Try to use fine-grained SSD-style locking if available: */
 387	ci = lock_cluster(si, offset);
 388	/* Otherwise, fall back to traditional, coarse locking: */
 389	if (!ci)
 390		spin_lock(&si->lock);
 391
 392	return ci;
 393}
 394
 395static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
 396					       struct swap_cluster_info *ci)
 397{
 398	if (ci)
 399		unlock_cluster(ci);
 400	else
 401		spin_unlock(&si->lock);
 402}
 403
 404static inline bool cluster_list_empty(struct swap_cluster_list *list)
 405{
 406	return cluster_is_null(&list->head);
 407}
 408
 409static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
 410{
 411	return cluster_next(&list->head);
 412}
 413
 414static void cluster_list_init(struct swap_cluster_list *list)
 415{
 416	cluster_set_null(&list->head);
 417	cluster_set_null(&list->tail);
 418}
 419
 420static void cluster_list_add_tail(struct swap_cluster_list *list,
 421				  struct swap_cluster_info *ci,
 422				  unsigned int idx)
 423{
 424	if (cluster_list_empty(list)) {
 425		cluster_set_next_flag(&list->head, idx, 0);
 426		cluster_set_next_flag(&list->tail, idx, 0);
 427	} else {
 428		struct swap_cluster_info *ci_tail;
 429		unsigned int tail = cluster_next(&list->tail);
 430
 431		/*
 432		 * Nested cluster lock, but both cluster locks are
 433		 * only acquired when we held swap_info_struct->lock
 434		 */
 435		ci_tail = ci + tail;
 436		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
 437		cluster_set_next(ci_tail, idx);
 438		spin_unlock(&ci_tail->lock);
 439		cluster_set_next_flag(&list->tail, idx, 0);
 440	}
 441}
 442
 443static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
 444					   struct swap_cluster_info *ci)
 445{
 446	unsigned int idx;
 447
 448	idx = cluster_next(&list->head);
 449	if (cluster_next(&list->tail) == idx) {
 450		cluster_set_null(&list->head);
 451		cluster_set_null(&list->tail);
 452	} else
 453		cluster_set_next_flag(&list->head,
 454				      cluster_next(&ci[idx]), 0);
 455
 456	return idx;
 457}
 458
 459/* Add a cluster to discard list and schedule it to do discard */
 460static void swap_cluster_schedule_discard(struct swap_info_struct *si,
 461		unsigned int idx)
 462{
 463	/*
 464	 * If scan_swap_map_slots() can't find a free cluster, it will check
 465	 * si->swap_map directly. To make sure the discarding cluster isn't
 466	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
 467	 * It will be cleared after discard
 468	 */
 469	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 470			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
 471
 472	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
 473
 474	schedule_work(&si->discard_work);
 475}
 476
 477static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
 478{
 479	struct swap_cluster_info *ci = si->cluster_info;
 480
 481	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
 482	cluster_list_add_tail(&si->free_clusters, ci, idx);
 483}
 484
 485/*
 486 * Doing discard actually. After a cluster discard is finished, the cluster
 487 * will be added to free cluster list. caller should hold si->lock.
 488*/
 489static void swap_do_scheduled_discard(struct swap_info_struct *si)
 490{
 491	struct swap_cluster_info *info, *ci;
 492	unsigned int idx;
 493
 494	info = si->cluster_info;
 495
 496	while (!cluster_list_empty(&si->discard_clusters)) {
 497		idx = cluster_list_del_first(&si->discard_clusters, info);
 498		spin_unlock(&si->lock);
 499
 500		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
 501				SWAPFILE_CLUSTER);
 502
 503		spin_lock(&si->lock);
 504		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
 505		__free_cluster(si, idx);
 506		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
 507				0, SWAPFILE_CLUSTER);
 508		unlock_cluster(ci);
 509	}
 510}
 511
 512static void swap_discard_work(struct work_struct *work)
 513{
 514	struct swap_info_struct *si;
 515
 516	si = container_of(work, struct swap_info_struct, discard_work);
 517
 518	spin_lock(&si->lock);
 519	swap_do_scheduled_discard(si);
 520	spin_unlock(&si->lock);
 521}
 522
 523static void swap_users_ref_free(struct percpu_ref *ref)
 524{
 525	struct swap_info_struct *si;
 526
 527	si = container_of(ref, struct swap_info_struct, users);
 528	complete(&si->comp);
 529}
 530
 531static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
 532{
 533	struct swap_cluster_info *ci = si->cluster_info;
 534
 535	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
 536	cluster_list_del_first(&si->free_clusters, ci);
 537	cluster_set_count_flag(ci + idx, 0, 0);
 538}
 539
 540static void free_cluster(struct swap_info_struct *si, unsigned long idx)
 541{
 542	struct swap_cluster_info *ci = si->cluster_info + idx;
 543
 544	VM_BUG_ON(cluster_count(ci) != 0);
 545	/*
 546	 * If the swap is discardable, prepare discard the cluster
 547	 * instead of free it immediately. The cluster will be freed
 548	 * after discard.
 549	 */
 550	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
 551	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
 552		swap_cluster_schedule_discard(si, idx);
 553		return;
 554	}
 555
 556	__free_cluster(si, idx);
 557}
 558
 559/*
 560 * The cluster corresponding to page_nr will be used. The cluster will be
 561 * removed from free cluster list and its usage counter will be increased.
 562 */
 563static void inc_cluster_info_page(struct swap_info_struct *p,
 564	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 565{
 566	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 567
 568	if (!cluster_info)
 569		return;
 570	if (cluster_is_free(&cluster_info[idx]))
 571		alloc_cluster(p, idx);
 572
 573	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
 574	cluster_set_count(&cluster_info[idx],
 575		cluster_count(&cluster_info[idx]) + 1);
 576}
 577
 578/*
 579 * The cluster corresponding to page_nr decreases one usage. If the usage
 580 * counter becomes 0, which means no page in the cluster is in using, we can
 581 * optionally discard the cluster and add it to free cluster list.
 582 */
 583static void dec_cluster_info_page(struct swap_info_struct *p,
 584	struct swap_cluster_info *cluster_info, unsigned long page_nr)
 585{
 586	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
 587
 588	if (!cluster_info)
 589		return;
 590
 591	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
 592	cluster_set_count(&cluster_info[idx],
 593		cluster_count(&cluster_info[idx]) - 1);
 594
 595	if (cluster_count(&cluster_info[idx]) == 0)
 596		free_cluster(p, idx);
 597}
 598
 599/*
 600 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
 601 * cluster list. Avoiding such abuse to avoid list corruption.
 602 */
 603static bool
 604scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
 605	unsigned long offset)
 606{
 607	struct percpu_cluster *percpu_cluster;
 608	bool conflict;
 609
 610	offset /= SWAPFILE_CLUSTER;
 611	conflict = !cluster_list_empty(&si->free_clusters) &&
 612		offset != cluster_list_first(&si->free_clusters) &&
 613		cluster_is_free(&si->cluster_info[offset]);
 614
 615	if (!conflict)
 616		return false;
 617
 618	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
 619	cluster_set_null(&percpu_cluster->index);
 620	return true;
 621}
 622
 623/*
 624 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
 625 * might involve allocating a new cluster for current CPU too.
 626 */
 627static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
 628	unsigned long *offset, unsigned long *scan_base)
 629{
 630	struct percpu_cluster *cluster;
 631	struct swap_cluster_info *ci;
 632	unsigned long tmp, max;
 633
 634new_cluster:
 635	cluster = this_cpu_ptr(si->percpu_cluster);
 636	if (cluster_is_null(&cluster->index)) {
 637		if (!cluster_list_empty(&si->free_clusters)) {
 638			cluster->index = si->free_clusters.head;
 639			cluster->next = cluster_next(&cluster->index) *
 640					SWAPFILE_CLUSTER;
 641		} else if (!cluster_list_empty(&si->discard_clusters)) {
 642			/*
 643			 * we don't have free cluster but have some clusters in
 644			 * discarding, do discard now and reclaim them, then
 645			 * reread cluster_next_cpu since we dropped si->lock
 646			 */
 647			swap_do_scheduled_discard(si);
 648			*scan_base = this_cpu_read(*si->cluster_next_cpu);
 649			*offset = *scan_base;
 650			goto new_cluster;
 651		} else
 652			return false;
 653	}
 654
 655	/*
 656	 * Other CPUs can use our cluster if they can't find a free cluster,
 657	 * check if there is still free entry in the cluster
 658	 */
 659	tmp = cluster->next;
 660	max = min_t(unsigned long, si->max,
 661		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
 662	if (tmp < max) {
 663		ci = lock_cluster(si, tmp);
 664		while (tmp < max) {
 665			if (!si->swap_map[tmp])
 666				break;
 667			tmp++;
 668		}
 669		unlock_cluster(ci);
 670	}
 671	if (tmp >= max) {
 672		cluster_set_null(&cluster->index);
 673		goto new_cluster;
 674	}
 675	cluster->next = tmp + 1;
 676	*offset = tmp;
 677	*scan_base = tmp;
 678	return true;
 679}
 680
 681static void __del_from_avail_list(struct swap_info_struct *p)
 682{
 683	int nid;
 684
 685	assert_spin_locked(&p->lock);
 686	for_each_node(nid)
 687		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
 688}
 689
 690static void del_from_avail_list(struct swap_info_struct *p)
 691{
 692	spin_lock(&swap_avail_lock);
 693	__del_from_avail_list(p);
 694	spin_unlock(&swap_avail_lock);
 695}
 696
 697static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
 698			     unsigned int nr_entries)
 699{
 700	unsigned int end = offset + nr_entries - 1;
 701
 702	if (offset == si->lowest_bit)
 703		si->lowest_bit += nr_entries;
 704	if (end == si->highest_bit)
 705		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
 706	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
 707	if (si->inuse_pages == si->pages) {
 708		si->lowest_bit = si->max;
 709		si->highest_bit = 0;
 710		del_from_avail_list(si);
 711	}
 712}
 713
 714static void add_to_avail_list(struct swap_info_struct *p)
 715{
 716	int nid;
 717
 718	spin_lock(&swap_avail_lock);
 719	for_each_node(nid)
 
 720		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
 
 721	spin_unlock(&swap_avail_lock);
 722}
 723
 724static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
 725			    unsigned int nr_entries)
 726{
 727	unsigned long begin = offset;
 728	unsigned long end = offset + nr_entries - 1;
 729	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
 730
 731	if (offset < si->lowest_bit)
 732		si->lowest_bit = offset;
 733	if (end > si->highest_bit) {
 734		bool was_full = !si->highest_bit;
 735
 736		WRITE_ONCE(si->highest_bit, end);
 737		if (was_full && (si->flags & SWP_WRITEOK))
 738			add_to_avail_list(si);
 739	}
 740	atomic_long_add(nr_entries, &nr_swap_pages);
 741	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
 742	if (si->flags & SWP_BLKDEV)
 743		swap_slot_free_notify =
 744			si->bdev->bd_disk->fops->swap_slot_free_notify;
 745	else
 746		swap_slot_free_notify = NULL;
 747	while (offset <= end) {
 748		arch_swap_invalidate_page(si->type, offset);
 749		zswap_invalidate(si->type, offset);
 750		if (swap_slot_free_notify)
 751			swap_slot_free_notify(si->bdev, offset);
 752		offset++;
 753	}
 754	clear_shadow_from_swap_cache(si->type, begin, end);
 755}
 756
 757static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
 758{
 759	unsigned long prev;
 760
 761	if (!(si->flags & SWP_SOLIDSTATE)) {
 762		si->cluster_next = next;
 763		return;
 764	}
 765
 766	prev = this_cpu_read(*si->cluster_next_cpu);
 767	/*
 768	 * Cross the swap address space size aligned trunk, choose
 769	 * another trunk randomly to avoid lock contention on swap
 770	 * address space if possible.
 771	 */
 772	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
 773	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
 774		/* No free swap slots available */
 775		if (si->highest_bit <= si->lowest_bit)
 776			return;
 777		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
 778		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
 779		next = max_t(unsigned int, next, si->lowest_bit);
 780	}
 781	this_cpu_write(*si->cluster_next_cpu, next);
 782}
 783
 784static bool swap_offset_available_and_locked(struct swap_info_struct *si,
 785					     unsigned long offset)
 786{
 787	if (data_race(!si->swap_map[offset])) {
 788		spin_lock(&si->lock);
 789		return true;
 790	}
 791
 792	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
 793		spin_lock(&si->lock);
 794		return true;
 795	}
 796
 797	return false;
 798}
 799
 800static int scan_swap_map_slots(struct swap_info_struct *si,
 801			       unsigned char usage, int nr,
 802			       swp_entry_t slots[])
 803{
 804	struct swap_cluster_info *ci;
 805	unsigned long offset;
 806	unsigned long scan_base;
 807	unsigned long last_in_cluster = 0;
 808	int latency_ration = LATENCY_LIMIT;
 809	int n_ret = 0;
 810	bool scanned_many = false;
 811
 812	/*
 813	 * We try to cluster swap pages by allocating them sequentially
 814	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
 815	 * way, however, we resort to first-free allocation, starting
 816	 * a new cluster.  This prevents us from scattering swap pages
 817	 * all over the entire swap partition, so that we reduce
 818	 * overall disk seek times between swap pages.  -- sct
 819	 * But we do now try to find an empty cluster.  -Andrea
 820	 * And we let swap pages go all over an SSD partition.  Hugh
 821	 */
 822
 823	si->flags += SWP_SCANNING;
 824	/*
 825	 * Use percpu scan base for SSD to reduce lock contention on
 826	 * cluster and swap cache.  For HDD, sequential access is more
 827	 * important.
 828	 */
 829	if (si->flags & SWP_SOLIDSTATE)
 830		scan_base = this_cpu_read(*si->cluster_next_cpu);
 831	else
 832		scan_base = si->cluster_next;
 833	offset = scan_base;
 834
 835	/* SSD algorithm */
 836	if (si->cluster_info) {
 837		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 838			goto scan;
 839	} else if (unlikely(!si->cluster_nr--)) {
 840		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
 841			si->cluster_nr = SWAPFILE_CLUSTER - 1;
 842			goto checks;
 843		}
 844
 845		spin_unlock(&si->lock);
 846
 847		/*
 848		 * If seek is expensive, start searching for new cluster from
 849		 * start of partition, to minimize the span of allocated swap.
 850		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
 851		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
 852		 */
 853		scan_base = offset = si->lowest_bit;
 854		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
 855
 856		/* Locate the first empty (unaligned) cluster */
 857		for (; last_in_cluster <= si->highest_bit; offset++) {
 858			if (si->swap_map[offset])
 859				last_in_cluster = offset + SWAPFILE_CLUSTER;
 860			else if (offset == last_in_cluster) {
 861				spin_lock(&si->lock);
 862				offset -= SWAPFILE_CLUSTER - 1;
 863				si->cluster_next = offset;
 864				si->cluster_nr = SWAPFILE_CLUSTER - 1;
 865				goto checks;
 866			}
 867			if (unlikely(--latency_ration < 0)) {
 868				cond_resched();
 869				latency_ration = LATENCY_LIMIT;
 870			}
 871		}
 872
 873		offset = scan_base;
 874		spin_lock(&si->lock);
 875		si->cluster_nr = SWAPFILE_CLUSTER - 1;
 876	}
 877
 878checks:
 879	if (si->cluster_info) {
 880		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
 881		/* take a break if we already got some slots */
 882			if (n_ret)
 883				goto done;
 884			if (!scan_swap_map_try_ssd_cluster(si, &offset,
 885							&scan_base))
 886				goto scan;
 887		}
 888	}
 889	if (!(si->flags & SWP_WRITEOK))
 890		goto no_page;
 891	if (!si->highest_bit)
 892		goto no_page;
 893	if (offset > si->highest_bit)
 894		scan_base = offset = si->lowest_bit;
 895
 896	ci = lock_cluster(si, offset);
 897	/* reuse swap entry of cache-only swap if not busy. */
 898	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
 899		int swap_was_freed;
 900		unlock_cluster(ci);
 901		spin_unlock(&si->lock);
 902		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
 903		spin_lock(&si->lock);
 904		/* entry was freed successfully, try to use this again */
 905		if (swap_was_freed)
 906			goto checks;
 907		goto scan; /* check next one */
 908	}
 909
 910	if (si->swap_map[offset]) {
 911		unlock_cluster(ci);
 912		if (!n_ret)
 913			goto scan;
 914		else
 915			goto done;
 916	}
 917	WRITE_ONCE(si->swap_map[offset], usage);
 918	inc_cluster_info_page(si, si->cluster_info, offset);
 919	unlock_cluster(ci);
 920
 921	swap_range_alloc(si, offset, 1);
 922	slots[n_ret++] = swp_entry(si->type, offset);
 923
 924	/* got enough slots or reach max slots? */
 925	if ((n_ret == nr) || (offset >= si->highest_bit))
 926		goto done;
 927
 928	/* search for next available slot */
 929
 930	/* time to take a break? */
 931	if (unlikely(--latency_ration < 0)) {
 932		if (n_ret)
 933			goto done;
 934		spin_unlock(&si->lock);
 935		cond_resched();
 936		spin_lock(&si->lock);
 937		latency_ration = LATENCY_LIMIT;
 938	}
 939
 940	/* try to get more slots in cluster */
 941	if (si->cluster_info) {
 942		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
 943			goto checks;
 944	} else if (si->cluster_nr && !si->swap_map[++offset]) {
 945		/* non-ssd case, still more slots in cluster? */
 946		--si->cluster_nr;
 947		goto checks;
 948	}
 949
 950	/*
 951	 * Even if there's no free clusters available (fragmented),
 952	 * try to scan a little more quickly with lock held unless we
 953	 * have scanned too many slots already.
 954	 */
 955	if (!scanned_many) {
 956		unsigned long scan_limit;
 957
 958		if (offset < scan_base)
 959			scan_limit = scan_base;
 960		else
 961			scan_limit = si->highest_bit;
 962		for (; offset <= scan_limit && --latency_ration > 0;
 963		     offset++) {
 964			if (!si->swap_map[offset])
 965				goto checks;
 966		}
 967	}
 968
 969done:
 970	set_cluster_next(si, offset + 1);
 971	si->flags -= SWP_SCANNING;
 972	return n_ret;
 973
 974scan:
 975	spin_unlock(&si->lock);
 976	while (++offset <= READ_ONCE(si->highest_bit)) {
 977		if (unlikely(--latency_ration < 0)) {
 978			cond_resched();
 979			latency_ration = LATENCY_LIMIT;
 980			scanned_many = true;
 981		}
 982		if (swap_offset_available_and_locked(si, offset))
 983			goto checks;
 984	}
 985	offset = si->lowest_bit;
 986	while (offset < scan_base) {
 987		if (unlikely(--latency_ration < 0)) {
 988			cond_resched();
 989			latency_ration = LATENCY_LIMIT;
 990			scanned_many = true;
 991		}
 992		if (swap_offset_available_and_locked(si, offset))
 993			goto checks;
 994		offset++;
 995	}
 996	spin_lock(&si->lock);
 997
 998no_page:
 999	si->flags -= SWP_SCANNING;
1000	return n_ret;
1001}
1002
1003static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004{
1005	unsigned long idx;
1006	struct swap_cluster_info *ci;
1007	unsigned long offset;
1008
1009	/*
1010	 * Should not even be attempting cluster allocations when huge
1011	 * page swap is disabled.  Warn and fail the allocation.
1012	 */
1013	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014		VM_WARN_ON_ONCE(1);
1015		return 0;
1016	}
1017
1018	if (cluster_list_empty(&si->free_clusters))
1019		return 0;
1020
1021	idx = cluster_list_first(&si->free_clusters);
1022	offset = idx * SWAPFILE_CLUSTER;
1023	ci = lock_cluster(si, offset);
1024	alloc_cluster(si, idx);
1025	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028	unlock_cluster(ci);
1029	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030	*slot = swp_entry(si->type, offset);
1031
1032	return 1;
1033}
1034
1035static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036{
1037	unsigned long offset = idx * SWAPFILE_CLUSTER;
1038	struct swap_cluster_info *ci;
1039
1040	ci = lock_cluster(si, offset);
1041	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042	cluster_set_count_flag(ci, 0, 0);
1043	free_cluster(si, idx);
1044	unlock_cluster(ci);
1045	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046}
1047
1048int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049{
1050	unsigned long size = swap_entry_size(entry_size);
1051	struct swap_info_struct *si, *next;
1052	long avail_pgs;
1053	int n_ret = 0;
1054	int node;
1055
1056	/* Only single cluster request supported */
1057	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059	spin_lock(&swap_avail_lock);
1060
1061	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062	if (avail_pgs <= 0) {
1063		spin_unlock(&swap_avail_lock);
1064		goto noswap;
1065	}
1066
1067	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068
1069	atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
1071start_over:
1072	node = numa_node_id();
1073	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074		/* requeue si to after same-priority siblings */
1075		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076		spin_unlock(&swap_avail_lock);
1077		spin_lock(&si->lock);
1078		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079			spin_lock(&swap_avail_lock);
1080			if (plist_node_empty(&si->avail_lists[node])) {
1081				spin_unlock(&si->lock);
1082				goto nextsi;
1083			}
1084			WARN(!si->highest_bit,
1085			     "swap_info %d in list but !highest_bit\n",
1086			     si->type);
1087			WARN(!(si->flags & SWP_WRITEOK),
1088			     "swap_info %d in list but !SWP_WRITEOK\n",
1089			     si->type);
1090			__del_from_avail_list(si);
1091			spin_unlock(&si->lock);
1092			goto nextsi;
1093		}
1094		if (size == SWAPFILE_CLUSTER) {
1095			if (si->flags & SWP_BLKDEV)
1096				n_ret = swap_alloc_cluster(si, swp_entries);
1097		} else
1098			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099						    n_goal, swp_entries);
1100		spin_unlock(&si->lock);
1101		if (n_ret || size == SWAPFILE_CLUSTER)
1102			goto check_out;
 
 
1103		cond_resched();
1104
1105		spin_lock(&swap_avail_lock);
1106nextsi:
1107		/*
1108		 * if we got here, it's likely that si was almost full before,
1109		 * and since scan_swap_map_slots() can drop the si->lock,
1110		 * multiple callers probably all tried to get a page from the
1111		 * same si and it filled up before we could get one; or, the si
1112		 * filled up between us dropping swap_avail_lock and taking
1113		 * si->lock. Since we dropped the swap_avail_lock, the
1114		 * swap_avail_head list may have been modified; so if next is
1115		 * still in the swap_avail_head list then try it, otherwise
1116		 * start over if we have not gotten any slots.
1117		 */
1118		if (plist_node_empty(&next->avail_lists[node]))
1119			goto start_over;
1120	}
1121
1122	spin_unlock(&swap_avail_lock);
1123
1124check_out:
1125	if (n_ret < n_goal)
1126		atomic_long_add((long)(n_goal - n_ret) * size,
1127				&nr_swap_pages);
1128noswap:
1129	return n_ret;
1130}
1131
1132static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1133{
1134	struct swap_info_struct *p;
1135	unsigned long offset;
1136
1137	if (!entry.val)
1138		goto out;
1139	p = swp_swap_info(entry);
1140	if (!p)
1141		goto bad_nofile;
1142	if (data_race(!(p->flags & SWP_USED)))
1143		goto bad_device;
1144	offset = swp_offset(entry);
1145	if (offset >= p->max)
1146		goto bad_offset;
1147	if (data_race(!p->swap_map[swp_offset(entry)]))
1148		goto bad_free;
1149	return p;
1150
1151bad_free:
1152	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1153	goto out;
1154bad_offset:
1155	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1156	goto out;
1157bad_device:
1158	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1159	goto out;
1160bad_nofile:
1161	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162out:
1163	return NULL;
1164}
1165
1166static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167					struct swap_info_struct *q)
1168{
1169	struct swap_info_struct *p;
1170
1171	p = _swap_info_get(entry);
1172
1173	if (p != q) {
1174		if (q != NULL)
1175			spin_unlock(&q->lock);
1176		if (p != NULL)
1177			spin_lock(&p->lock);
1178	}
1179	return p;
1180}
1181
1182static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183					      unsigned long offset,
1184					      unsigned char usage)
1185{
1186	unsigned char count;
1187	unsigned char has_cache;
1188
1189	count = p->swap_map[offset];
1190
1191	has_cache = count & SWAP_HAS_CACHE;
1192	count &= ~SWAP_HAS_CACHE;
1193
1194	if (usage == SWAP_HAS_CACHE) {
1195		VM_BUG_ON(!has_cache);
1196		has_cache = 0;
1197	} else if (count == SWAP_MAP_SHMEM) {
1198		/*
1199		 * Or we could insist on shmem.c using a special
1200		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1201		 */
1202		count = 0;
1203	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204		if (count == COUNT_CONTINUED) {
1205			if (swap_count_continued(p, offset, count))
1206				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1207			else
1208				count = SWAP_MAP_MAX;
1209		} else
1210			count--;
1211	}
1212
1213	usage = count | has_cache;
1214	if (usage)
1215		WRITE_ONCE(p->swap_map[offset], usage);
1216	else
1217		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1218
1219	return usage;
1220}
1221
1222/*
1223 * When we get a swap entry, if there aren't some other ways to
1224 * prevent swapoff, such as the folio in swap cache is locked, page
1225 * table lock is held, etc., the swap entry may become invalid because
1226 * of swapoff.  Then, we need to enclose all swap related functions
1227 * with get_swap_device() and put_swap_device(), unless the swap
1228 * functions call get/put_swap_device() by themselves.
1229 *
1230 * Check whether swap entry is valid in the swap device.  If so,
1231 * return pointer to swap_info_struct, and keep the swap entry valid
1232 * via preventing the swap device from being swapoff, until
1233 * put_swap_device() is called.  Otherwise return NULL.
1234 *
1235 * Notice that swapoff or swapoff+swapon can still happen before the
1236 * percpu_ref_tryget_live() in get_swap_device() or after the
1237 * percpu_ref_put() in put_swap_device() if there isn't any other way
1238 * to prevent swapoff.  The caller must be prepared for that.  For
1239 * example, the following situation is possible.
 
1240 *
1241 *   CPU1				CPU2
1242 *   do_swap_page()
1243 *     ...				swapoff+swapon
1244 *     __read_swap_cache_async()
1245 *       swapcache_prepare()
1246 *         __swap_duplicate()
1247 *           // check swap_map
1248 *     // verify PTE not changed
1249 *
1250 * In __swap_duplicate(), the swap_map need to be checked before
1251 * changing partly because the specified swap entry may be for another
1252 * swap device which has been swapoff.  And in do_swap_page(), after
1253 * the page is read from the swap device, the PTE is verified not
1254 * changed with the page table locked to check whether the swap device
1255 * has been swapoff or swapoff+swapon.
1256 */
1257struct swap_info_struct *get_swap_device(swp_entry_t entry)
1258{
1259	struct swap_info_struct *si;
1260	unsigned long offset;
1261
1262	if (!entry.val)
1263		goto out;
1264	si = swp_swap_info(entry);
1265	if (!si)
1266		goto bad_nofile;
1267	if (!percpu_ref_tryget_live(&si->users))
1268		goto out;
1269	/*
1270	 * Guarantee the si->users are checked before accessing other
1271	 * fields of swap_info_struct.
1272	 *
1273	 * Paired with the spin_unlock() after setup_swap_info() in
1274	 * enable_swap_info().
1275	 */
1276	smp_rmb();
1277	offset = swp_offset(entry);
1278	if (offset >= si->max)
1279		goto put_out;
1280
1281	return si;
1282bad_nofile:
1283	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1284out:
1285	return NULL;
1286put_out:
1287	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1288	percpu_ref_put(&si->users);
1289	return NULL;
1290}
1291
1292static unsigned char __swap_entry_free(struct swap_info_struct *p,
1293				       swp_entry_t entry)
1294{
1295	struct swap_cluster_info *ci;
1296	unsigned long offset = swp_offset(entry);
1297	unsigned char usage;
1298
1299	ci = lock_cluster_or_swap_info(p, offset);
1300	usage = __swap_entry_free_locked(p, offset, 1);
1301	unlock_cluster_or_swap_info(p, ci);
1302	if (!usage)
1303		free_swap_slot(entry);
1304
1305	return usage;
1306}
1307
1308static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1309{
1310	struct swap_cluster_info *ci;
1311	unsigned long offset = swp_offset(entry);
1312	unsigned char count;
1313
1314	ci = lock_cluster(p, offset);
1315	count = p->swap_map[offset];
1316	VM_BUG_ON(count != SWAP_HAS_CACHE);
1317	p->swap_map[offset] = 0;
1318	dec_cluster_info_page(p, p->cluster_info, offset);
1319	unlock_cluster(ci);
1320
1321	mem_cgroup_uncharge_swap(entry, 1);
1322	swap_range_free(p, offset, 1);
1323}
1324
1325/*
1326 * Caller has made sure that the swap device corresponding to entry
1327 * is still around or has not been recycled.
1328 */
1329void swap_free(swp_entry_t entry)
1330{
1331	struct swap_info_struct *p;
1332
1333	p = _swap_info_get(entry);
1334	if (p)
1335		__swap_entry_free(p, entry);
1336}
1337
1338/*
1339 * Called after dropping swapcache to decrease refcnt to swap entries.
1340 */
1341void put_swap_folio(struct folio *folio, swp_entry_t entry)
1342{
1343	unsigned long offset = swp_offset(entry);
1344	unsigned long idx = offset / SWAPFILE_CLUSTER;
1345	struct swap_cluster_info *ci;
1346	struct swap_info_struct *si;
1347	unsigned char *map;
1348	unsigned int i, free_entries = 0;
1349	unsigned char val;
1350	int size = swap_entry_size(folio_nr_pages(folio));
1351
1352	si = _swap_info_get(entry);
1353	if (!si)
1354		return;
1355
1356	ci = lock_cluster_or_swap_info(si, offset);
1357	if (size == SWAPFILE_CLUSTER) {
1358		VM_BUG_ON(!cluster_is_huge(ci));
1359		map = si->swap_map + offset;
1360		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1361			val = map[i];
1362			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1363			if (val == SWAP_HAS_CACHE)
1364				free_entries++;
1365		}
1366		cluster_clear_huge(ci);
1367		if (free_entries == SWAPFILE_CLUSTER) {
1368			unlock_cluster_or_swap_info(si, ci);
1369			spin_lock(&si->lock);
1370			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1371			swap_free_cluster(si, idx);
1372			spin_unlock(&si->lock);
1373			return;
1374		}
1375	}
1376	for (i = 0; i < size; i++, entry.val++) {
1377		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1378			unlock_cluster_or_swap_info(si, ci);
1379			free_swap_slot(entry);
1380			if (i == size - 1)
1381				return;
1382			lock_cluster_or_swap_info(si, offset);
1383		}
1384	}
1385	unlock_cluster_or_swap_info(si, ci);
1386}
1387
1388#ifdef CONFIG_THP_SWAP
1389int split_swap_cluster(swp_entry_t entry)
1390{
1391	struct swap_info_struct *si;
1392	struct swap_cluster_info *ci;
1393	unsigned long offset = swp_offset(entry);
1394
1395	si = _swap_info_get(entry);
1396	if (!si)
1397		return -EBUSY;
1398	ci = lock_cluster(si, offset);
1399	cluster_clear_huge(ci);
1400	unlock_cluster(ci);
1401	return 0;
1402}
1403#endif
1404
1405static int swp_entry_cmp(const void *ent1, const void *ent2)
1406{
1407	const swp_entry_t *e1 = ent1, *e2 = ent2;
1408
1409	return (int)swp_type(*e1) - (int)swp_type(*e2);
1410}
1411
1412void swapcache_free_entries(swp_entry_t *entries, int n)
1413{
1414	struct swap_info_struct *p, *prev;
1415	int i;
1416
1417	if (n <= 0)
1418		return;
1419
1420	prev = NULL;
1421	p = NULL;
1422
1423	/*
1424	 * Sort swap entries by swap device, so each lock is only taken once.
1425	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1426	 * so low that it isn't necessary to optimize further.
1427	 */
1428	if (nr_swapfiles > 1)
1429		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1430	for (i = 0; i < n; ++i) {
1431		p = swap_info_get_cont(entries[i], prev);
1432		if (p)
1433			swap_entry_free(p, entries[i]);
1434		prev = p;
1435	}
1436	if (p)
1437		spin_unlock(&p->lock);
1438}
1439
1440int __swap_count(swp_entry_t entry)
1441{
1442	struct swap_info_struct *si = swp_swap_info(entry);
1443	pgoff_t offset = swp_offset(entry);
 
1444
1445	return swap_count(si->swap_map[offset]);
 
 
 
 
 
1446}
1447
1448/*
1449 * How many references to @entry are currently swapped out?
1450 * This does not give an exact answer when swap count is continued,
1451 * but does include the high COUNT_CONTINUED flag to allow for that.
1452 */
1453int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1454{
1455	pgoff_t offset = swp_offset(entry);
1456	struct swap_cluster_info *ci;
1457	int count;
1458
1459	ci = lock_cluster_or_swap_info(si, offset);
1460	count = swap_count(si->swap_map[offset]);
1461	unlock_cluster_or_swap_info(si, ci);
1462	return count;
1463}
1464
1465/*
1466 * How many references to @entry are currently swapped out?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467 * This considers COUNT_CONTINUED so it returns exact answer.
1468 */
1469int swp_swapcount(swp_entry_t entry)
1470{
1471	int count, tmp_count, n;
1472	struct swap_info_struct *p;
1473	struct swap_cluster_info *ci;
1474	struct page *page;
1475	pgoff_t offset;
1476	unsigned char *map;
1477
1478	p = _swap_info_get(entry);
1479	if (!p)
1480		return 0;
1481
1482	offset = swp_offset(entry);
1483
1484	ci = lock_cluster_or_swap_info(p, offset);
1485
1486	count = swap_count(p->swap_map[offset]);
1487	if (!(count & COUNT_CONTINUED))
1488		goto out;
1489
1490	count &= ~COUNT_CONTINUED;
1491	n = SWAP_MAP_MAX + 1;
1492
1493	page = vmalloc_to_page(p->swap_map + offset);
1494	offset &= ~PAGE_MASK;
1495	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1496
1497	do {
1498		page = list_next_entry(page, lru);
1499		map = kmap_local_page(page);
1500		tmp_count = map[offset];
1501		kunmap_local(map);
1502
1503		count += (tmp_count & ~COUNT_CONTINUED) * n;
1504		n *= (SWAP_CONT_MAX + 1);
1505	} while (tmp_count & COUNT_CONTINUED);
1506out:
1507	unlock_cluster_or_swap_info(p, ci);
1508	return count;
1509}
1510
1511static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1512					 swp_entry_t entry)
1513{
1514	struct swap_cluster_info *ci;
1515	unsigned char *map = si->swap_map;
1516	unsigned long roffset = swp_offset(entry);
1517	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1518	int i;
1519	bool ret = false;
1520
1521	ci = lock_cluster_or_swap_info(si, offset);
1522	if (!ci || !cluster_is_huge(ci)) {
1523		if (swap_count(map[roffset]))
1524			ret = true;
1525		goto unlock_out;
1526	}
1527	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1528		if (swap_count(map[offset + i])) {
1529			ret = true;
1530			break;
1531		}
1532	}
1533unlock_out:
1534	unlock_cluster_or_swap_info(si, ci);
1535	return ret;
1536}
1537
1538static bool folio_swapped(struct folio *folio)
1539{
1540	swp_entry_t entry = folio->swap;
1541	struct swap_info_struct *si = _swap_info_get(entry);
1542
1543	if (!si)
1544		return false;
1545
1546	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1547		return swap_swapcount(si, entry) != 0;
1548
1549	return swap_page_trans_huge_swapped(si, entry);
1550}
1551
1552/**
1553 * folio_free_swap() - Free the swap space used for this folio.
1554 * @folio: The folio to remove.
1555 *
1556 * If swap is getting full, or if there are no more mappings of this folio,
1557 * then call folio_free_swap to free its swap space.
1558 *
1559 * Return: true if we were able to release the swap space.
1560 */
1561bool folio_free_swap(struct folio *folio)
1562{
1563	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1564
1565	if (!folio_test_swapcache(folio))
1566		return false;
1567	if (folio_test_writeback(folio))
1568		return false;
1569	if (folio_swapped(folio))
1570		return false;
1571
1572	/*
1573	 * Once hibernation has begun to create its image of memory,
1574	 * there's a danger that one of the calls to folio_free_swap()
1575	 * - most probably a call from __try_to_reclaim_swap() while
1576	 * hibernation is allocating its own swap pages for the image,
1577	 * but conceivably even a call from memory reclaim - will free
1578	 * the swap from a folio which has already been recorded in the
1579	 * image as a clean swapcache folio, and then reuse its swap for
1580	 * another page of the image.  On waking from hibernation, the
1581	 * original folio might be freed under memory pressure, then
1582	 * later read back in from swap, now with the wrong data.
1583	 *
1584	 * Hibernation suspends storage while it is writing the image
1585	 * to disk so check that here.
1586	 */
1587	if (pm_suspended_storage())
1588		return false;
1589
1590	delete_from_swap_cache(folio);
1591	folio_set_dirty(folio);
1592	return true;
1593}
1594
1595/*
1596 * Free the swap entry like above, but also try to
1597 * free the page cache entry if it is the last user.
1598 */
1599int free_swap_and_cache(swp_entry_t entry)
1600{
1601	struct swap_info_struct *p;
1602	unsigned char count;
1603
1604	if (non_swap_entry(entry))
1605		return 1;
1606
1607	p = _swap_info_get(entry);
1608	if (p) {
1609		count = __swap_entry_free(p, entry);
1610		if (count == SWAP_HAS_CACHE &&
1611		    !swap_page_trans_huge_swapped(p, entry))
1612			__try_to_reclaim_swap(p, swp_offset(entry),
1613					      TTRS_UNMAPPED | TTRS_FULL);
1614	}
1615	return p != NULL;
1616}
1617
1618#ifdef CONFIG_HIBERNATION
1619
1620swp_entry_t get_swap_page_of_type(int type)
1621{
1622	struct swap_info_struct *si = swap_type_to_swap_info(type);
1623	swp_entry_t entry = {0};
1624
1625	if (!si)
1626		goto fail;
1627
1628	/* This is called for allocating swap entry, not cache */
1629	spin_lock(&si->lock);
1630	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1631		atomic_long_dec(&nr_swap_pages);
1632	spin_unlock(&si->lock);
1633fail:
1634	return entry;
1635}
1636
1637/*
1638 * Find the swap type that corresponds to given device (if any).
1639 *
1640 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1641 * from 0, in which the swap header is expected to be located.
1642 *
1643 * This is needed for the suspend to disk (aka swsusp).
1644 */
1645int swap_type_of(dev_t device, sector_t offset)
1646{
1647	int type;
1648
1649	if (!device)
1650		return -1;
1651
1652	spin_lock(&swap_lock);
1653	for (type = 0; type < nr_swapfiles; type++) {
1654		struct swap_info_struct *sis = swap_info[type];
1655
1656		if (!(sis->flags & SWP_WRITEOK))
1657			continue;
1658
1659		if (device == sis->bdev->bd_dev) {
1660			struct swap_extent *se = first_se(sis);
1661
1662			if (se->start_block == offset) {
1663				spin_unlock(&swap_lock);
1664				return type;
1665			}
1666		}
1667	}
1668	spin_unlock(&swap_lock);
1669	return -ENODEV;
1670}
1671
1672int find_first_swap(dev_t *device)
1673{
1674	int type;
1675
1676	spin_lock(&swap_lock);
1677	for (type = 0; type < nr_swapfiles; type++) {
1678		struct swap_info_struct *sis = swap_info[type];
1679
1680		if (!(sis->flags & SWP_WRITEOK))
1681			continue;
1682		*device = sis->bdev->bd_dev;
1683		spin_unlock(&swap_lock);
1684		return type;
1685	}
1686	spin_unlock(&swap_lock);
1687	return -ENODEV;
1688}
1689
1690/*
1691 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1692 * corresponding to given index in swap_info (swap type).
1693 */
1694sector_t swapdev_block(int type, pgoff_t offset)
1695{
1696	struct swap_info_struct *si = swap_type_to_swap_info(type);
1697	struct swap_extent *se;
1698
1699	if (!si || !(si->flags & SWP_WRITEOK))
1700		return 0;
1701	se = offset_to_swap_extent(si, offset);
1702	return se->start_block + (offset - se->start_page);
1703}
1704
1705/*
1706 * Return either the total number of swap pages of given type, or the number
1707 * of free pages of that type (depending on @free)
1708 *
1709 * This is needed for software suspend
1710 */
1711unsigned int count_swap_pages(int type, int free)
1712{
1713	unsigned int n = 0;
1714
1715	spin_lock(&swap_lock);
1716	if ((unsigned int)type < nr_swapfiles) {
1717		struct swap_info_struct *sis = swap_info[type];
1718
1719		spin_lock(&sis->lock);
1720		if (sis->flags & SWP_WRITEOK) {
1721			n = sis->pages;
1722			if (free)
1723				n -= sis->inuse_pages;
1724		}
1725		spin_unlock(&sis->lock);
1726	}
1727	spin_unlock(&swap_lock);
1728	return n;
1729}
1730#endif /* CONFIG_HIBERNATION */
1731
1732static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1733{
1734	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1735}
1736
1737/*
1738 * No need to decide whether this PTE shares the swap entry with others,
1739 * just let do_wp_page work it out if a write is requested later - to
1740 * force COW, vm_page_prot omits write permission from any private vma.
1741 */
1742static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1743		unsigned long addr, swp_entry_t entry, struct folio *folio)
1744{
1745	struct page *page;
1746	struct folio *swapcache;
1747	spinlock_t *ptl;
1748	pte_t *pte, new_pte, old_pte;
1749	bool hwpoisoned = false;
1750	int ret = 1;
1751
1752	swapcache = folio;
1753	folio = ksm_might_need_to_copy(folio, vma, addr);
1754	if (unlikely(!folio))
1755		return -ENOMEM;
1756	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1757		hwpoisoned = true;
1758		folio = swapcache;
1759	}
1760
1761	page = folio_file_page(folio, swp_offset(entry));
1762	if (PageHWPoison(page))
1763		hwpoisoned = true;
1764
1765	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1766	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1767						swp_entry_to_pte(entry)))) {
1768		ret = 0;
1769		goto out;
1770	}
1771
1772	old_pte = ptep_get(pte);
1773
1774	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
1775		swp_entry_t swp_entry;
1776
1777		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1778		if (hwpoisoned) {
1779			swp_entry = make_hwpoison_entry(page);
 
1780		} else {
1781			swp_entry = make_poisoned_swp_entry();
1782		}
1783		new_pte = swp_entry_to_pte(swp_entry);
1784		ret = 0;
1785		goto setpte;
1786	}
1787
1788	/*
1789	 * Some architectures may have to restore extra metadata to the page
1790	 * when reading from swap. This metadata may be indexed by swap entry
1791	 * so this must be called before swap_free().
1792	 */
1793	arch_swap_restore(entry, folio);
1794
1795	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1797	folio_get(folio);
1798	if (folio == swapcache) {
1799		rmap_t rmap_flags = RMAP_NONE;
1800
1801		/*
1802		 * See do_swap_page(): writeback would be problematic.
1803		 * However, we do a folio_wait_writeback() just before this
1804		 * call and have the folio locked.
1805		 */
1806		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
1807		if (pte_swp_exclusive(old_pte))
1808			rmap_flags |= RMAP_EXCLUSIVE;
1809
1810		folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
1811	} else { /* ksm created a completely new copy */
1812		folio_add_new_anon_rmap(folio, vma, addr);
1813		folio_add_lru_vma(folio, vma);
1814	}
1815	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1816	if (pte_swp_soft_dirty(old_pte))
1817		new_pte = pte_mksoft_dirty(new_pte);
1818	if (pte_swp_uffd_wp(old_pte))
1819		new_pte = pte_mkuffd_wp(new_pte);
1820setpte:
1821	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1822	swap_free(entry);
1823out:
1824	if (pte)
1825		pte_unmap_unlock(pte, ptl);
1826	if (folio != swapcache) {
1827		folio_unlock(folio);
1828		folio_put(folio);
1829	}
1830	return ret;
1831}
1832
1833static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1834			unsigned long addr, unsigned long end,
1835			unsigned int type)
1836{
1837	pte_t *pte = NULL;
 
1838	struct swap_info_struct *si;
 
 
1839
1840	si = swap_info[type];
 
1841	do {
1842		struct folio *folio;
1843		unsigned long offset;
1844		unsigned char swp_count;
1845		swp_entry_t entry;
1846		int ret;
1847		pte_t ptent;
1848
1849		if (!pte++) {
1850			pte = pte_offset_map(pmd, addr);
1851			if (!pte)
1852				break;
1853		}
1854
1855		ptent = ptep_get_lockless(pte);
1856
1857		if (!is_swap_pte(ptent))
1858			continue;
1859
1860		entry = pte_to_swp_entry(ptent);
1861		if (swp_type(entry) != type)
1862			continue;
1863
1864		offset = swp_offset(entry);
1865		pte_unmap(pte);
1866		pte = NULL;
1867
1868		folio = swap_cache_get_folio(entry, vma, addr);
1869		if (!folio) {
1870			struct page *page;
1871			struct vm_fault vmf = {
1872				.vma = vma,
1873				.address = addr,
1874				.real_address = addr,
1875				.pmd = pmd,
1876			};
1877
1878			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1879						&vmf);
1880			if (page)
1881				folio = page_folio(page);
1882		}
1883		if (!folio) {
1884			swp_count = READ_ONCE(si->swap_map[offset]);
1885			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1886				continue;
1887			return -ENOMEM;
1888		}
1889
1890		folio_lock(folio);
1891		folio_wait_writeback(folio);
1892		ret = unuse_pte(vma, pmd, addr, entry, folio);
1893		if (ret < 0) {
1894			folio_unlock(folio);
1895			folio_put(folio);
1896			return ret;
1897		}
1898
1899		folio_free_swap(folio);
1900		folio_unlock(folio);
1901		folio_put(folio);
1902	} while (addr += PAGE_SIZE, addr != end);
 
 
 
1903
1904	if (pte)
1905		pte_unmap(pte);
1906	return 0;
1907}
1908
1909static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1910				unsigned long addr, unsigned long end,
1911				unsigned int type)
1912{
1913	pmd_t *pmd;
1914	unsigned long next;
1915	int ret;
1916
1917	pmd = pmd_offset(pud, addr);
1918	do {
1919		cond_resched();
1920		next = pmd_addr_end(addr, end);
 
 
1921		ret = unuse_pte_range(vma, pmd, addr, next, type);
1922		if (ret)
1923			return ret;
1924	} while (pmd++, addr = next, addr != end);
1925	return 0;
1926}
1927
1928static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929				unsigned long addr, unsigned long end,
1930				unsigned int type)
1931{
1932	pud_t *pud;
1933	unsigned long next;
1934	int ret;
1935
1936	pud = pud_offset(p4d, addr);
1937	do {
1938		next = pud_addr_end(addr, end);
1939		if (pud_none_or_clear_bad(pud))
1940			continue;
1941		ret = unuse_pmd_range(vma, pud, addr, next, type);
1942		if (ret)
1943			return ret;
1944	} while (pud++, addr = next, addr != end);
1945	return 0;
1946}
1947
1948static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949				unsigned long addr, unsigned long end,
1950				unsigned int type)
1951{
1952	p4d_t *p4d;
1953	unsigned long next;
1954	int ret;
1955
1956	p4d = p4d_offset(pgd, addr);
1957	do {
1958		next = p4d_addr_end(addr, end);
1959		if (p4d_none_or_clear_bad(p4d))
1960			continue;
1961		ret = unuse_pud_range(vma, p4d, addr, next, type);
1962		if (ret)
1963			return ret;
1964	} while (p4d++, addr = next, addr != end);
1965	return 0;
1966}
1967
1968static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1969{
1970	pgd_t *pgd;
1971	unsigned long addr, end, next;
1972	int ret;
1973
1974	addr = vma->vm_start;
1975	end = vma->vm_end;
1976
1977	pgd = pgd_offset(vma->vm_mm, addr);
1978	do {
1979		next = pgd_addr_end(addr, end);
1980		if (pgd_none_or_clear_bad(pgd))
1981			continue;
1982		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1983		if (ret)
1984			return ret;
1985	} while (pgd++, addr = next, addr != end);
1986	return 0;
1987}
1988
1989static int unuse_mm(struct mm_struct *mm, unsigned int type)
1990{
1991	struct vm_area_struct *vma;
1992	int ret = 0;
1993	VMA_ITERATOR(vmi, mm, 0);
1994
1995	mmap_read_lock(mm);
1996	for_each_vma(vmi, vma) {
1997		if (vma->anon_vma) {
1998			ret = unuse_vma(vma, type);
1999			if (ret)
2000				break;
2001		}
2002
2003		cond_resched();
2004	}
2005	mmap_read_unlock(mm);
2006	return ret;
2007}
2008
2009/*
2010 * Scan swap_map from current position to next entry still in use.
2011 * Return 0 if there are no inuse entries after prev till end of
2012 * the map.
2013 */
2014static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2015					unsigned int prev)
2016{
2017	unsigned int i;
2018	unsigned char count;
2019
2020	/*
2021	 * No need for swap_lock here: we're just looking
2022	 * for whether an entry is in use, not modifying it; false
2023	 * hits are okay, and sys_swapoff() has already prevented new
2024	 * allocations from this area (while holding swap_lock).
2025	 */
2026	for (i = prev + 1; i < si->max; i++) {
2027		count = READ_ONCE(si->swap_map[i]);
2028		if (count && swap_count(count) != SWAP_MAP_BAD)
2029			break;
2030		if ((i % LATENCY_LIMIT) == 0)
2031			cond_resched();
2032	}
2033
2034	if (i == si->max)
2035		i = 0;
2036
2037	return i;
2038}
2039
2040static int try_to_unuse(unsigned int type)
2041{
2042	struct mm_struct *prev_mm;
2043	struct mm_struct *mm;
2044	struct list_head *p;
2045	int retval = 0;
2046	struct swap_info_struct *si = swap_info[type];
2047	struct folio *folio;
2048	swp_entry_t entry;
2049	unsigned int i;
2050
2051	if (!READ_ONCE(si->inuse_pages))
2052		return 0;
2053
2054retry:
2055	retval = shmem_unuse(type);
2056	if (retval)
2057		return retval;
2058
2059	prev_mm = &init_mm;
2060	mmget(prev_mm);
2061
2062	spin_lock(&mmlist_lock);
2063	p = &init_mm.mmlist;
2064	while (READ_ONCE(si->inuse_pages) &&
2065	       !signal_pending(current) &&
2066	       (p = p->next) != &init_mm.mmlist) {
2067
2068		mm = list_entry(p, struct mm_struct, mmlist);
2069		if (!mmget_not_zero(mm))
2070			continue;
2071		spin_unlock(&mmlist_lock);
2072		mmput(prev_mm);
2073		prev_mm = mm;
2074		retval = unuse_mm(mm, type);
2075		if (retval) {
2076			mmput(prev_mm);
2077			return retval;
2078		}
2079
2080		/*
2081		 * Make sure that we aren't completely killing
2082		 * interactive performance.
2083		 */
2084		cond_resched();
2085		spin_lock(&mmlist_lock);
2086	}
2087	spin_unlock(&mmlist_lock);
2088
2089	mmput(prev_mm);
2090
2091	i = 0;
2092	while (READ_ONCE(si->inuse_pages) &&
2093	       !signal_pending(current) &&
2094	       (i = find_next_to_unuse(si, i)) != 0) {
2095
2096		entry = swp_entry(type, i);
2097		folio = filemap_get_folio(swap_address_space(entry), i);
2098		if (IS_ERR(folio))
2099			continue;
2100
2101		/*
2102		 * It is conceivable that a racing task removed this folio from
2103		 * swap cache just before we acquired the page lock. The folio
2104		 * might even be back in swap cache on another swap area. But
2105		 * that is okay, folio_free_swap() only removes stale folios.
2106		 */
2107		folio_lock(folio);
2108		folio_wait_writeback(folio);
2109		folio_free_swap(folio);
2110		folio_unlock(folio);
2111		folio_put(folio);
2112	}
2113
2114	/*
2115	 * Lets check again to see if there are still swap entries in the map.
2116	 * If yes, we would need to do retry the unuse logic again.
2117	 * Under global memory pressure, swap entries can be reinserted back
2118	 * into process space after the mmlist loop above passes over them.
2119	 *
2120	 * Limit the number of retries? No: when mmget_not_zero()
2121	 * above fails, that mm is likely to be freeing swap from
2122	 * exit_mmap(), which proceeds at its own independent pace;
2123	 * and even shmem_writepage() could have been preempted after
2124	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2125	 * and robust (though cpu-intensive) just to keep retrying.
2126	 */
2127	if (READ_ONCE(si->inuse_pages)) {
2128		if (!signal_pending(current))
2129			goto retry;
2130		return -EINTR;
2131	}
2132
2133	return 0;
2134}
2135
2136/*
2137 * After a successful try_to_unuse, if no swap is now in use, we know
2138 * we can empty the mmlist.  swap_lock must be held on entry and exit.
2139 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2140 * added to the mmlist just after page_duplicate - before would be racy.
2141 */
2142static void drain_mmlist(void)
2143{
2144	struct list_head *p, *next;
2145	unsigned int type;
2146
2147	for (type = 0; type < nr_swapfiles; type++)
2148		if (swap_info[type]->inuse_pages)
2149			return;
2150	spin_lock(&mmlist_lock);
2151	list_for_each_safe(p, next, &init_mm.mmlist)
2152		list_del_init(p);
2153	spin_unlock(&mmlist_lock);
2154}
2155
2156/*
2157 * Free all of a swapdev's extent information
2158 */
2159static void destroy_swap_extents(struct swap_info_struct *sis)
2160{
2161	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2162		struct rb_node *rb = sis->swap_extent_root.rb_node;
2163		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2164
2165		rb_erase(rb, &sis->swap_extent_root);
2166		kfree(se);
2167	}
2168
2169	if (sis->flags & SWP_ACTIVATED) {
2170		struct file *swap_file = sis->swap_file;
2171		struct address_space *mapping = swap_file->f_mapping;
2172
2173		sis->flags &= ~SWP_ACTIVATED;
2174		if (mapping->a_ops->swap_deactivate)
2175			mapping->a_ops->swap_deactivate(swap_file);
2176	}
2177}
2178
2179/*
2180 * Add a block range (and the corresponding page range) into this swapdev's
2181 * extent tree.
2182 *
2183 * This function rather assumes that it is called in ascending page order.
2184 */
2185int
2186add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2187		unsigned long nr_pages, sector_t start_block)
2188{
2189	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2190	struct swap_extent *se;
2191	struct swap_extent *new_se;
2192
2193	/*
2194	 * place the new node at the right most since the
2195	 * function is called in ascending page order.
2196	 */
2197	while (*link) {
2198		parent = *link;
2199		link = &parent->rb_right;
2200	}
2201
2202	if (parent) {
2203		se = rb_entry(parent, struct swap_extent, rb_node);
2204		BUG_ON(se->start_page + se->nr_pages != start_page);
2205		if (se->start_block + se->nr_pages == start_block) {
2206			/* Merge it */
2207			se->nr_pages += nr_pages;
2208			return 0;
2209		}
2210	}
2211
2212	/* No merge, insert a new extent. */
2213	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2214	if (new_se == NULL)
2215		return -ENOMEM;
2216	new_se->start_page = start_page;
2217	new_se->nr_pages = nr_pages;
2218	new_se->start_block = start_block;
2219
2220	rb_link_node(&new_se->rb_node, parent, link);
2221	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2222	return 1;
2223}
2224EXPORT_SYMBOL_GPL(add_swap_extent);
2225
2226/*
2227 * A `swap extent' is a simple thing which maps a contiguous range of pages
2228 * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2229 * built at swapon time and is then used at swap_writepage/swap_read_folio
2230 * time for locating where on disk a page belongs.
2231 *
2232 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2233 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2234 * swap files identically.
2235 *
2236 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2237 * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2238 * swapfiles are handled *identically* after swapon time.
2239 *
2240 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2241 * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2242 * blocks are found which do not fall within the PAGE_SIZE alignment
2243 * requirements, they are simply tossed out - we will never use those blocks
2244 * for swapping.
2245 *
2246 * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2247 * prevents users from writing to the swap device, which will corrupt memory.
2248 *
2249 * The amount of disk space which a single swap extent represents varies.
2250 * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2251 * extents in the rbtree. - akpm.
2252 */
2253static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2254{
2255	struct file *swap_file = sis->swap_file;
2256	struct address_space *mapping = swap_file->f_mapping;
2257	struct inode *inode = mapping->host;
2258	int ret;
2259
2260	if (S_ISBLK(inode->i_mode)) {
2261		ret = add_swap_extent(sis, 0, sis->max, 0);
2262		*span = sis->pages;
2263		return ret;
2264	}
2265
2266	if (mapping->a_ops->swap_activate) {
2267		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2268		if (ret < 0)
2269			return ret;
2270		sis->flags |= SWP_ACTIVATED;
2271		if ((sis->flags & SWP_FS_OPS) &&
2272		    sio_pool_init() != 0) {
2273			destroy_swap_extents(sis);
2274			return -ENOMEM;
2275		}
2276		return ret;
2277	}
2278
2279	return generic_swapfile_activate(sis, swap_file, span);
2280}
2281
2282static int swap_node(struct swap_info_struct *p)
2283{
2284	struct block_device *bdev;
2285
2286	if (p->bdev)
2287		bdev = p->bdev;
2288	else
2289		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2290
2291	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2292}
2293
2294static void setup_swap_info(struct swap_info_struct *p, int prio,
2295			    unsigned char *swap_map,
2296			    struct swap_cluster_info *cluster_info)
2297{
2298	int i;
2299
2300	if (prio >= 0)
2301		p->prio = prio;
2302	else
2303		p->prio = --least_priority;
2304	/*
2305	 * the plist prio is negated because plist ordering is
2306	 * low-to-high, while swap ordering is high-to-low
2307	 */
2308	p->list.prio = -p->prio;
2309	for_each_node(i) {
2310		if (p->prio >= 0)
2311			p->avail_lists[i].prio = -p->prio;
2312		else {
2313			if (swap_node(p) == i)
2314				p->avail_lists[i].prio = 1;
2315			else
2316				p->avail_lists[i].prio = -p->prio;
2317		}
2318	}
2319	p->swap_map = swap_map;
2320	p->cluster_info = cluster_info;
2321}
2322
2323static void _enable_swap_info(struct swap_info_struct *p)
2324{
2325	p->flags |= SWP_WRITEOK;
2326	atomic_long_add(p->pages, &nr_swap_pages);
2327	total_swap_pages += p->pages;
2328
2329	assert_spin_locked(&swap_lock);
2330	/*
2331	 * both lists are plists, and thus priority ordered.
2332	 * swap_active_head needs to be priority ordered for swapoff(),
2333	 * which on removal of any swap_info_struct with an auto-assigned
2334	 * (i.e. negative) priority increments the auto-assigned priority
2335	 * of any lower-priority swap_info_structs.
2336	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2337	 * which allocates swap pages from the highest available priority
2338	 * swap_info_struct.
2339	 */
2340	plist_add(&p->list, &swap_active_head);
2341
2342	/* add to available list iff swap device is not full */
2343	if (p->highest_bit)
2344		add_to_avail_list(p);
2345}
2346
2347static void enable_swap_info(struct swap_info_struct *p, int prio,
2348				unsigned char *swap_map,
2349				struct swap_cluster_info *cluster_info)
 
2350{
2351	zswap_swapon(p->type);
2352
2353	spin_lock(&swap_lock);
2354	spin_lock(&p->lock);
2355	setup_swap_info(p, prio, swap_map, cluster_info);
2356	spin_unlock(&p->lock);
2357	spin_unlock(&swap_lock);
2358	/*
2359	 * Finished initializing swap device, now it's safe to reference it.
2360	 */
2361	percpu_ref_resurrect(&p->users);
2362	spin_lock(&swap_lock);
2363	spin_lock(&p->lock);
2364	_enable_swap_info(p);
2365	spin_unlock(&p->lock);
2366	spin_unlock(&swap_lock);
2367}
2368
2369static void reinsert_swap_info(struct swap_info_struct *p)
2370{
2371	spin_lock(&swap_lock);
2372	spin_lock(&p->lock);
2373	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2374	_enable_swap_info(p);
2375	spin_unlock(&p->lock);
2376	spin_unlock(&swap_lock);
2377}
2378
2379bool has_usable_swap(void)
2380{
2381	bool ret = true;
2382
2383	spin_lock(&swap_lock);
2384	if (plist_head_empty(&swap_active_head))
2385		ret = false;
2386	spin_unlock(&swap_lock);
2387	return ret;
2388}
2389
2390SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2391{
2392	struct swap_info_struct *p = NULL;
2393	unsigned char *swap_map;
2394	struct swap_cluster_info *cluster_info;
 
2395	struct file *swap_file, *victim;
2396	struct address_space *mapping;
2397	struct inode *inode;
2398	struct filename *pathname;
2399	int err, found = 0;
2400	unsigned int old_block_size;
2401
2402	if (!capable(CAP_SYS_ADMIN))
2403		return -EPERM;
2404
2405	BUG_ON(!current->mm);
2406
2407	pathname = getname(specialfile);
2408	if (IS_ERR(pathname))
2409		return PTR_ERR(pathname);
2410
2411	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2412	err = PTR_ERR(victim);
2413	if (IS_ERR(victim))
2414		goto out;
2415
2416	mapping = victim->f_mapping;
2417	spin_lock(&swap_lock);
2418	plist_for_each_entry(p, &swap_active_head, list) {
2419		if (p->flags & SWP_WRITEOK) {
2420			if (p->swap_file->f_mapping == mapping) {
2421				found = 1;
2422				break;
2423			}
2424		}
2425	}
2426	if (!found) {
2427		err = -EINVAL;
2428		spin_unlock(&swap_lock);
2429		goto out_dput;
2430	}
2431	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2432		vm_unacct_memory(p->pages);
2433	else {
2434		err = -ENOMEM;
2435		spin_unlock(&swap_lock);
2436		goto out_dput;
2437	}
 
2438	spin_lock(&p->lock);
2439	del_from_avail_list(p);
2440	if (p->prio < 0) {
2441		struct swap_info_struct *si = p;
2442		int nid;
2443
2444		plist_for_each_entry_continue(si, &swap_active_head, list) {
2445			si->prio++;
2446			si->list.prio--;
2447			for_each_node(nid) {
2448				if (si->avail_lists[nid].prio != 1)
2449					si->avail_lists[nid].prio--;
2450			}
2451		}
2452		least_priority++;
2453	}
2454	plist_del(&p->list, &swap_active_head);
2455	atomic_long_sub(p->pages, &nr_swap_pages);
2456	total_swap_pages -= p->pages;
2457	p->flags &= ~SWP_WRITEOK;
2458	spin_unlock(&p->lock);
2459	spin_unlock(&swap_lock);
2460
2461	disable_swap_slots_cache_lock();
2462
2463	set_current_oom_origin();
2464	err = try_to_unuse(p->type);
2465	clear_current_oom_origin();
2466
2467	if (err) {
2468		/* re-insert swap space back into swap_list */
2469		reinsert_swap_info(p);
2470		reenable_swap_slots_cache_unlock();
2471		goto out_dput;
2472	}
2473
2474	reenable_swap_slots_cache_unlock();
2475
2476	/*
2477	 * Wait for swap operations protected by get/put_swap_device()
2478	 * to complete.
2479	 *
2480	 * We need synchronize_rcu() here to protect the accessing to
2481	 * the swap cache data structure.
2482	 */
2483	percpu_ref_kill(&p->users);
2484	synchronize_rcu();
2485	wait_for_completion(&p->comp);
2486
2487	flush_work(&p->discard_work);
2488
2489	destroy_swap_extents(p);
2490	if (p->flags & SWP_CONTINUED)
2491		free_swap_count_continuations(p);
2492
2493	if (!p->bdev || !bdev_nonrot(p->bdev))
2494		atomic_dec(&nr_rotate_swap);
2495
2496	mutex_lock(&swapon_mutex);
2497	spin_lock(&swap_lock);
2498	spin_lock(&p->lock);
2499	drain_mmlist();
2500
2501	/* wait for anyone still in scan_swap_map_slots */
2502	p->highest_bit = 0;		/* cuts scans short */
2503	while (p->flags >= SWP_SCANNING) {
2504		spin_unlock(&p->lock);
2505		spin_unlock(&swap_lock);
2506		schedule_timeout_uninterruptible(1);
2507		spin_lock(&swap_lock);
2508		spin_lock(&p->lock);
2509	}
2510
2511	swap_file = p->swap_file;
2512	old_block_size = p->old_block_size;
2513	p->swap_file = NULL;
2514	p->max = 0;
2515	swap_map = p->swap_map;
2516	p->swap_map = NULL;
2517	cluster_info = p->cluster_info;
2518	p->cluster_info = NULL;
 
2519	spin_unlock(&p->lock);
2520	spin_unlock(&swap_lock);
2521	arch_swap_invalidate_area(p->type);
2522	zswap_swapoff(p->type);
 
2523	mutex_unlock(&swapon_mutex);
2524	free_percpu(p->percpu_cluster);
2525	p->percpu_cluster = NULL;
2526	free_percpu(p->cluster_next_cpu);
2527	p->cluster_next_cpu = NULL;
2528	vfree(swap_map);
2529	kvfree(cluster_info);
 
2530	/* Destroy swap account information */
2531	swap_cgroup_swapoff(p->type);
2532	exit_swap_address_space(p->type);
2533
2534	inode = mapping->host;
2535	if (p->bdev_handle) {
2536		set_blocksize(p->bdev, old_block_size);
2537		bdev_release(p->bdev_handle);
2538		p->bdev_handle = NULL;
 
2539	}
2540
2541	inode_lock(inode);
2542	inode->i_flags &= ~S_SWAPFILE;
2543	inode_unlock(inode);
2544	filp_close(swap_file, NULL);
2545
2546	/*
2547	 * Clear the SWP_USED flag after all resources are freed so that swapon
2548	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2549	 * not hold p->lock after we cleared its SWP_WRITEOK.
2550	 */
2551	spin_lock(&swap_lock);
2552	p->flags = 0;
2553	spin_unlock(&swap_lock);
2554
2555	err = 0;
2556	atomic_inc(&proc_poll_event);
2557	wake_up_interruptible(&proc_poll_wait);
2558
2559out_dput:
2560	filp_close(victim, NULL);
2561out:
2562	putname(pathname);
2563	return err;
2564}
2565
2566#ifdef CONFIG_PROC_FS
2567static __poll_t swaps_poll(struct file *file, poll_table *wait)
2568{
2569	struct seq_file *seq = file->private_data;
2570
2571	poll_wait(file, &proc_poll_wait, wait);
2572
2573	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2574		seq->poll_event = atomic_read(&proc_poll_event);
2575		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2576	}
2577
2578	return EPOLLIN | EPOLLRDNORM;
2579}
2580
2581/* iterator */
2582static void *swap_start(struct seq_file *swap, loff_t *pos)
2583{
2584	struct swap_info_struct *si;
2585	int type;
2586	loff_t l = *pos;
2587
2588	mutex_lock(&swapon_mutex);
2589
2590	if (!l)
2591		return SEQ_START_TOKEN;
2592
2593	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2594		if (!(si->flags & SWP_USED) || !si->swap_map)
2595			continue;
2596		if (!--l)
2597			return si;
2598	}
2599
2600	return NULL;
2601}
2602
2603static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2604{
2605	struct swap_info_struct *si = v;
2606	int type;
2607
2608	if (v == SEQ_START_TOKEN)
2609		type = 0;
2610	else
2611		type = si->type + 1;
2612
2613	++(*pos);
2614	for (; (si = swap_type_to_swap_info(type)); type++) {
2615		if (!(si->flags & SWP_USED) || !si->swap_map)
2616			continue;
2617		return si;
2618	}
2619
2620	return NULL;
2621}
2622
2623static void swap_stop(struct seq_file *swap, void *v)
2624{
2625	mutex_unlock(&swapon_mutex);
2626}
2627
2628static int swap_show(struct seq_file *swap, void *v)
2629{
2630	struct swap_info_struct *si = v;
2631	struct file *file;
2632	int len;
2633	unsigned long bytes, inuse;
2634
2635	if (si == SEQ_START_TOKEN) {
2636		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2637		return 0;
2638	}
2639
2640	bytes = K(si->pages);
2641	inuse = K(READ_ONCE(si->inuse_pages));
2642
2643	file = si->swap_file;
2644	len = seq_file_path(swap, file, " \t\n\\");
2645	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2646			len < 40 ? 40 - len : 1, " ",
2647			S_ISBLK(file_inode(file)->i_mode) ?
2648				"partition" : "file\t",
2649			bytes, bytes < 10000000 ? "\t" : "",
2650			inuse, inuse < 10000000 ? "\t" : "",
2651			si->prio);
2652	return 0;
2653}
2654
2655static const struct seq_operations swaps_op = {
2656	.start =	swap_start,
2657	.next =		swap_next,
2658	.stop =		swap_stop,
2659	.show =		swap_show
2660};
2661
2662static int swaps_open(struct inode *inode, struct file *file)
2663{
2664	struct seq_file *seq;
2665	int ret;
2666
2667	ret = seq_open(file, &swaps_op);
2668	if (ret)
2669		return ret;
2670
2671	seq = file->private_data;
2672	seq->poll_event = atomic_read(&proc_poll_event);
2673	return 0;
2674}
2675
2676static const struct proc_ops swaps_proc_ops = {
2677	.proc_flags	= PROC_ENTRY_PERMANENT,
2678	.proc_open	= swaps_open,
2679	.proc_read	= seq_read,
2680	.proc_lseek	= seq_lseek,
2681	.proc_release	= seq_release,
2682	.proc_poll	= swaps_poll,
2683};
2684
2685static int __init procswaps_init(void)
2686{
2687	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2688	return 0;
2689}
2690__initcall(procswaps_init);
2691#endif /* CONFIG_PROC_FS */
2692
2693#ifdef MAX_SWAPFILES_CHECK
2694static int __init max_swapfiles_check(void)
2695{
2696	MAX_SWAPFILES_CHECK();
2697	return 0;
2698}
2699late_initcall(max_swapfiles_check);
2700#endif
2701
2702static struct swap_info_struct *alloc_swap_info(void)
2703{
2704	struct swap_info_struct *p;
2705	struct swap_info_struct *defer = NULL;
2706	unsigned int type;
2707	int i;
2708
2709	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2710	if (!p)
2711		return ERR_PTR(-ENOMEM);
2712
2713	if (percpu_ref_init(&p->users, swap_users_ref_free,
2714			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2715		kvfree(p);
2716		return ERR_PTR(-ENOMEM);
2717	}
2718
2719	spin_lock(&swap_lock);
2720	for (type = 0; type < nr_swapfiles; type++) {
2721		if (!(swap_info[type]->flags & SWP_USED))
2722			break;
2723	}
2724	if (type >= MAX_SWAPFILES) {
2725		spin_unlock(&swap_lock);
2726		percpu_ref_exit(&p->users);
2727		kvfree(p);
2728		return ERR_PTR(-EPERM);
2729	}
2730	if (type >= nr_swapfiles) {
2731		p->type = type;
2732		/*
2733		 * Publish the swap_info_struct after initializing it.
2734		 * Note that kvzalloc() above zeroes all its fields.
2735		 */
2736		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2737		nr_swapfiles++;
2738	} else {
2739		defer = p;
2740		p = swap_info[type];
2741		/*
2742		 * Do not memset this entry: a racing procfs swap_next()
2743		 * would be relying on p->type to remain valid.
2744		 */
2745	}
2746	p->swap_extent_root = RB_ROOT;
2747	plist_node_init(&p->list, 0);
2748	for_each_node(i)
2749		plist_node_init(&p->avail_lists[i], 0);
2750	p->flags = SWP_USED;
2751	spin_unlock(&swap_lock);
2752	if (defer) {
2753		percpu_ref_exit(&defer->users);
2754		kvfree(defer);
2755	}
2756	spin_lock_init(&p->lock);
2757	spin_lock_init(&p->cont_lock);
2758	init_completion(&p->comp);
2759
2760	return p;
2761}
2762
2763static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2764{
2765	int error;
2766
2767	if (S_ISBLK(inode->i_mode)) {
2768		p->bdev_handle = bdev_open_by_dev(inode->i_rdev,
2769				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2770		if (IS_ERR(p->bdev_handle)) {
2771			error = PTR_ERR(p->bdev_handle);
2772			p->bdev_handle = NULL;
2773			return error;
2774		}
2775		p->bdev = p->bdev_handle->bdev;
2776		p->old_block_size = block_size(p->bdev);
2777		error = set_blocksize(p->bdev, PAGE_SIZE);
2778		if (error < 0)
2779			return error;
2780		/*
2781		 * Zoned block devices contain zones that have a sequential
2782		 * write only restriction.  Hence zoned block devices are not
2783		 * suitable for swapping.  Disallow them here.
2784		 */
2785		if (bdev_is_zoned(p->bdev))
2786			return -EINVAL;
2787		p->flags |= SWP_BLKDEV;
2788	} else if (S_ISREG(inode->i_mode)) {
2789		p->bdev = inode->i_sb->s_bdev;
2790	}
2791
2792	return 0;
2793}
2794
2795
2796/*
2797 * Find out how many pages are allowed for a single swap device. There
2798 * are two limiting factors:
2799 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800 * 2) the number of bits in the swap pte, as defined by the different
2801 * architectures.
2802 *
2803 * In order to find the largest possible bit mask, a swap entry with
2804 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805 * decoded to a swp_entry_t again, and finally the swap offset is
2806 * extracted.
2807 *
2808 * This will mask all the bits from the initial ~0UL mask that can't
2809 * be encoded in either the swp_entry_t or the architecture definition
2810 * of a swap pte.
2811 */
2812unsigned long generic_max_swapfile_size(void)
2813{
2814	return swp_offset(pte_to_swp_entry(
2815			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816}
2817
2818/* Can be overridden by an architecture for additional checks. */
2819__weak unsigned long arch_max_swapfile_size(void)
2820{
2821	return generic_max_swapfile_size();
2822}
2823
2824static unsigned long read_swap_header(struct swap_info_struct *p,
2825					union swap_header *swap_header,
2826					struct inode *inode)
2827{
2828	int i;
2829	unsigned long maxpages;
2830	unsigned long swapfilepages;
2831	unsigned long last_page;
2832
2833	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834		pr_err("Unable to find swap-space signature\n");
2835		return 0;
2836	}
2837
2838	/* swap partition endianness hack... */
2839	if (swab32(swap_header->info.version) == 1) {
2840		swab32s(&swap_header->info.version);
2841		swab32s(&swap_header->info.last_page);
2842		swab32s(&swap_header->info.nr_badpages);
2843		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844			return 0;
2845		for (i = 0; i < swap_header->info.nr_badpages; i++)
2846			swab32s(&swap_header->info.badpages[i]);
2847	}
2848	/* Check the swap header's sub-version */
2849	if (swap_header->info.version != 1) {
2850		pr_warn("Unable to handle swap header version %d\n",
2851			swap_header->info.version);
2852		return 0;
2853	}
2854
2855	p->lowest_bit  = 1;
2856	p->cluster_next = 1;
2857	p->cluster_nr = 0;
2858
2859	maxpages = swapfile_maximum_size;
2860	last_page = swap_header->info.last_page;
2861	if (!last_page) {
2862		pr_warn("Empty swap-file\n");
2863		return 0;
2864	}
2865	if (last_page > maxpages) {
2866		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867			K(maxpages), K(last_page));
 
2868	}
2869	if (maxpages > last_page) {
2870		maxpages = last_page + 1;
2871		/* p->max is an unsigned int: don't overflow it */
2872		if ((unsigned int)maxpages == 0)
2873			maxpages = UINT_MAX;
2874	}
2875	p->highest_bit = maxpages - 1;
2876
2877	if (!maxpages)
2878		return 0;
2879	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2880	if (swapfilepages && maxpages > swapfilepages) {
2881		pr_warn("Swap area shorter than signature indicates\n");
2882		return 0;
2883	}
2884	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2885		return 0;
2886	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2887		return 0;
2888
2889	return maxpages;
2890}
2891
2892#define SWAP_CLUSTER_INFO_COLS						\
2893	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2894#define SWAP_CLUSTER_SPACE_COLS						\
2895	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2896#define SWAP_CLUSTER_COLS						\
2897	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2898
2899static int setup_swap_map_and_extents(struct swap_info_struct *p,
2900					union swap_header *swap_header,
2901					unsigned char *swap_map,
2902					struct swap_cluster_info *cluster_info,
2903					unsigned long maxpages,
2904					sector_t *span)
2905{
2906	unsigned int j, k;
2907	unsigned int nr_good_pages;
2908	int nr_extents;
2909	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2910	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2911	unsigned long i, idx;
2912
2913	nr_good_pages = maxpages - 1;	/* omit header page */
2914
2915	cluster_list_init(&p->free_clusters);
2916	cluster_list_init(&p->discard_clusters);
2917
2918	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2919		unsigned int page_nr = swap_header->info.badpages[i];
2920		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2921			return -EINVAL;
2922		if (page_nr < maxpages) {
2923			swap_map[page_nr] = SWAP_MAP_BAD;
2924			nr_good_pages--;
2925			/*
2926			 * Haven't marked the cluster free yet, no list
2927			 * operation involved
2928			 */
2929			inc_cluster_info_page(p, cluster_info, page_nr);
2930		}
2931	}
2932
2933	/* Haven't marked the cluster free yet, no list operation involved */
2934	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2935		inc_cluster_info_page(p, cluster_info, i);
2936
2937	if (nr_good_pages) {
2938		swap_map[0] = SWAP_MAP_BAD;
2939		/*
2940		 * Not mark the cluster free yet, no list
2941		 * operation involved
2942		 */
2943		inc_cluster_info_page(p, cluster_info, 0);
2944		p->max = maxpages;
2945		p->pages = nr_good_pages;
2946		nr_extents = setup_swap_extents(p, span);
2947		if (nr_extents < 0)
2948			return nr_extents;
2949		nr_good_pages = p->pages;
2950	}
2951	if (!nr_good_pages) {
2952		pr_warn("Empty swap-file\n");
2953		return -EINVAL;
2954	}
2955
2956	if (!cluster_info)
2957		return nr_extents;
2958
2959
2960	/*
2961	 * Reduce false cache line sharing between cluster_info and
2962	 * sharing same address space.
2963	 */
2964	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2965		j = (k + col) % SWAP_CLUSTER_COLS;
2966		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2967			idx = i * SWAP_CLUSTER_COLS + j;
2968			if (idx >= nr_clusters)
2969				continue;
2970			if (cluster_count(&cluster_info[idx]))
2971				continue;
2972			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2973			cluster_list_add_tail(&p->free_clusters, cluster_info,
2974					      idx);
2975		}
2976	}
2977	return nr_extents;
2978}
2979
2980SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2981{
2982	struct swap_info_struct *p;
2983	struct filename *name;
2984	struct file *swap_file = NULL;
2985	struct address_space *mapping;
2986	struct dentry *dentry;
2987	int prio;
2988	int error;
2989	union swap_header *swap_header;
2990	int nr_extents;
2991	sector_t span;
2992	unsigned long maxpages;
2993	unsigned char *swap_map = NULL;
2994	struct swap_cluster_info *cluster_info = NULL;
 
2995	struct page *page = NULL;
2996	struct inode *inode = NULL;
2997	bool inced_nr_rotate_swap = false;
2998
2999	if (swap_flags & ~SWAP_FLAGS_VALID)
3000		return -EINVAL;
3001
3002	if (!capable(CAP_SYS_ADMIN))
3003		return -EPERM;
3004
3005	if (!swap_avail_heads)
3006		return -ENOMEM;
3007
3008	p = alloc_swap_info();
3009	if (IS_ERR(p))
3010		return PTR_ERR(p);
3011
3012	INIT_WORK(&p->discard_work, swap_discard_work);
3013
3014	name = getname(specialfile);
3015	if (IS_ERR(name)) {
3016		error = PTR_ERR(name);
3017		name = NULL;
3018		goto bad_swap;
3019	}
3020	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3021	if (IS_ERR(swap_file)) {
3022		error = PTR_ERR(swap_file);
3023		swap_file = NULL;
3024		goto bad_swap;
3025	}
3026
3027	p->swap_file = swap_file;
3028	mapping = swap_file->f_mapping;
3029	dentry = swap_file->f_path.dentry;
3030	inode = mapping->host;
3031
3032	error = claim_swapfile(p, inode);
3033	if (unlikely(error))
3034		goto bad_swap;
3035
3036	inode_lock(inode);
3037	if (d_unlinked(dentry) || cant_mount(dentry)) {
3038		error = -ENOENT;
3039		goto bad_swap_unlock_inode;
3040	}
3041	if (IS_SWAPFILE(inode)) {
3042		error = -EBUSY;
3043		goto bad_swap_unlock_inode;
3044	}
3045
3046	/*
3047	 * Read the swap header.
3048	 */
3049	if (!mapping->a_ops->read_folio) {
3050		error = -EINVAL;
3051		goto bad_swap_unlock_inode;
3052	}
3053	page = read_mapping_page(mapping, 0, swap_file);
3054	if (IS_ERR(page)) {
3055		error = PTR_ERR(page);
3056		goto bad_swap_unlock_inode;
3057	}
3058	swap_header = kmap(page);
3059
3060	maxpages = read_swap_header(p, swap_header, inode);
3061	if (unlikely(!maxpages)) {
3062		error = -EINVAL;
3063		goto bad_swap_unlock_inode;
3064	}
3065
3066	/* OK, set up the swap map and apply the bad block list */
3067	swap_map = vzalloc(maxpages);
3068	if (!swap_map) {
3069		error = -ENOMEM;
3070		goto bad_swap_unlock_inode;
3071	}
3072
3073	if (p->bdev && bdev_stable_writes(p->bdev))
3074		p->flags |= SWP_STABLE_WRITES;
3075
3076	if (p->bdev && bdev_synchronous(p->bdev))
3077		p->flags |= SWP_SYNCHRONOUS_IO;
3078
3079	if (p->bdev && bdev_nonrot(p->bdev)) {
3080		int cpu;
3081		unsigned long ci, nr_cluster;
3082
3083		p->flags |= SWP_SOLIDSTATE;
3084		p->cluster_next_cpu = alloc_percpu(unsigned int);
3085		if (!p->cluster_next_cpu) {
3086			error = -ENOMEM;
3087			goto bad_swap_unlock_inode;
3088		}
3089		/*
3090		 * select a random position to start with to help wear leveling
3091		 * SSD
3092		 */
3093		for_each_possible_cpu(cpu) {
3094			per_cpu(*p->cluster_next_cpu, cpu) =
3095				get_random_u32_inclusive(1, p->highest_bit);
3096		}
3097		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3098
3099		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3100					GFP_KERNEL);
3101		if (!cluster_info) {
3102			error = -ENOMEM;
3103			goto bad_swap_unlock_inode;
3104		}
3105
3106		for (ci = 0; ci < nr_cluster; ci++)
3107			spin_lock_init(&((cluster_info + ci)->lock));
3108
3109		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3110		if (!p->percpu_cluster) {
3111			error = -ENOMEM;
3112			goto bad_swap_unlock_inode;
3113		}
3114		for_each_possible_cpu(cpu) {
3115			struct percpu_cluster *cluster;
3116			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3117			cluster_set_null(&cluster->index);
3118		}
3119	} else {
3120		atomic_inc(&nr_rotate_swap);
3121		inced_nr_rotate_swap = true;
3122	}
3123
3124	error = swap_cgroup_swapon(p->type, maxpages);
3125	if (error)
3126		goto bad_swap_unlock_inode;
3127
3128	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3129		cluster_info, maxpages, &span);
3130	if (unlikely(nr_extents < 0)) {
3131		error = nr_extents;
3132		goto bad_swap_unlock_inode;
3133	}
 
 
 
 
 
3134
3135	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3136	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3137		/*
3138		 * When discard is enabled for swap with no particular
3139		 * policy flagged, we set all swap discard flags here in
3140		 * order to sustain backward compatibility with older
3141		 * swapon(8) releases.
3142		 */
3143		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3144			     SWP_PAGE_DISCARD);
3145
3146		/*
3147		 * By flagging sys_swapon, a sysadmin can tell us to
3148		 * either do single-time area discards only, or to just
3149		 * perform discards for released swap page-clusters.
3150		 * Now it's time to adjust the p->flags accordingly.
3151		 */
3152		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3153			p->flags &= ~SWP_PAGE_DISCARD;
3154		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3155			p->flags &= ~SWP_AREA_DISCARD;
3156
3157		/* issue a swapon-time discard if it's still required */
3158		if (p->flags & SWP_AREA_DISCARD) {
3159			int err = discard_swap(p);
3160			if (unlikely(err))
3161				pr_err("swapon: discard_swap(%p): %d\n",
3162					p, err);
3163		}
3164	}
3165
3166	error = init_swap_address_space(p->type, maxpages);
3167	if (error)
3168		goto bad_swap_unlock_inode;
3169
3170	/*
3171	 * Flush any pending IO and dirty mappings before we start using this
3172	 * swap device.
3173	 */
3174	inode->i_flags |= S_SWAPFILE;
3175	error = inode_drain_writes(inode);
3176	if (error) {
3177		inode->i_flags &= ~S_SWAPFILE;
3178		goto free_swap_address_space;
3179	}
3180
3181	mutex_lock(&swapon_mutex);
3182	prio = -1;
3183	if (swap_flags & SWAP_FLAG_PREFER)
3184		prio =
3185		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3186	enable_swap_info(p, prio, swap_map, cluster_info);
3187
3188	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3189		K(p->pages), name->name, p->prio, nr_extents,
3190		K((unsigned long long)span),
3191		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3192		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3193		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3194		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
 
3195
3196	mutex_unlock(&swapon_mutex);
3197	atomic_inc(&proc_poll_event);
3198	wake_up_interruptible(&proc_poll_wait);
3199
3200	error = 0;
3201	goto out;
3202free_swap_address_space:
3203	exit_swap_address_space(p->type);
3204bad_swap_unlock_inode:
3205	inode_unlock(inode);
3206bad_swap:
3207	free_percpu(p->percpu_cluster);
3208	p->percpu_cluster = NULL;
3209	free_percpu(p->cluster_next_cpu);
3210	p->cluster_next_cpu = NULL;
3211	if (p->bdev_handle) {
3212		set_blocksize(p->bdev, p->old_block_size);
3213		bdev_release(p->bdev_handle);
3214		p->bdev_handle = NULL;
3215	}
3216	inode = NULL;
3217	destroy_swap_extents(p);
3218	swap_cgroup_swapoff(p->type);
3219	spin_lock(&swap_lock);
3220	p->swap_file = NULL;
3221	p->flags = 0;
3222	spin_unlock(&swap_lock);
3223	vfree(swap_map);
3224	kvfree(cluster_info);
 
3225	if (inced_nr_rotate_swap)
3226		atomic_dec(&nr_rotate_swap);
3227	if (swap_file)
3228		filp_close(swap_file, NULL);
3229out:
3230	if (page && !IS_ERR(page)) {
3231		kunmap(page);
3232		put_page(page);
3233	}
3234	if (name)
3235		putname(name);
3236	if (inode)
3237		inode_unlock(inode);
3238	if (!error)
3239		enable_swap_slots_cache();
3240	return error;
3241}
3242
3243void si_swapinfo(struct sysinfo *val)
3244{
3245	unsigned int type;
3246	unsigned long nr_to_be_unused = 0;
3247
3248	spin_lock(&swap_lock);
3249	for (type = 0; type < nr_swapfiles; type++) {
3250		struct swap_info_struct *si = swap_info[type];
3251
3252		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3253			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3254	}
3255	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3256	val->totalswap = total_swap_pages + nr_to_be_unused;
3257	spin_unlock(&swap_lock);
3258}
3259
3260/*
3261 * Verify that a swap entry is valid and increment its swap map count.
3262 *
3263 * Returns error code in following case.
3264 * - success -> 0
3265 * - swp_entry is invalid -> EINVAL
3266 * - swp_entry is migration entry -> EINVAL
3267 * - swap-cache reference is requested but there is already one. -> EEXIST
3268 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3269 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3270 */
3271static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3272{
3273	struct swap_info_struct *p;
3274	struct swap_cluster_info *ci;
3275	unsigned long offset;
3276	unsigned char count;
3277	unsigned char has_cache;
3278	int err;
3279
3280	p = swp_swap_info(entry);
 
 
3281
3282	offset = swp_offset(entry);
3283	ci = lock_cluster_or_swap_info(p, offset);
3284
3285	count = p->swap_map[offset];
3286
3287	/*
3288	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3289	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3290	 */
3291	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3292		err = -ENOENT;
3293		goto unlock_out;
3294	}
3295
3296	has_cache = count & SWAP_HAS_CACHE;
3297	count &= ~SWAP_HAS_CACHE;
3298	err = 0;
3299
3300	if (usage == SWAP_HAS_CACHE) {
3301
3302		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3303		if (!has_cache && count)
3304			has_cache = SWAP_HAS_CACHE;
3305		else if (has_cache)		/* someone else added cache */
3306			err = -EEXIST;
3307		else				/* no users remaining */
3308			err = -ENOENT;
3309
3310	} else if (count || has_cache) {
3311
3312		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3313			count += usage;
3314		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3315			err = -EINVAL;
3316		else if (swap_count_continued(p, offset, count))
3317			count = COUNT_CONTINUED;
3318		else
3319			err = -ENOMEM;
3320	} else
3321		err = -ENOENT;			/* unused swap entry */
3322
3323	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3324
3325unlock_out:
3326	unlock_cluster_or_swap_info(p, ci);
 
3327	return err;
3328}
3329
3330/*
3331 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3332 * (in which case its reference count is never incremented).
3333 */
3334void swap_shmem_alloc(swp_entry_t entry)
3335{
3336	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3337}
3338
3339/*
3340 * Increase reference count of swap entry by 1.
3341 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3342 * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3343 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3344 * might occur if a page table entry has got corrupted.
3345 */
3346int swap_duplicate(swp_entry_t entry)
3347{
3348	int err = 0;
3349
3350	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3351		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3352	return err;
3353}
3354
3355/*
3356 * @entry: swap entry for which we allocate swap cache.
3357 *
3358 * Called when allocating swap cache for existing swap entry,
3359 * This can return error codes. Returns 0 at success.
3360 * -EEXIST means there is a swap cache.
3361 * Note: return code is different from swap_duplicate().
3362 */
3363int swapcache_prepare(swp_entry_t entry)
3364{
3365	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3366}
3367
3368void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry)
3369{
3370	struct swap_cluster_info *ci;
3371	unsigned long offset = swp_offset(entry);
3372	unsigned char usage;
3373
3374	ci = lock_cluster_or_swap_info(si, offset);
3375	usage = __swap_entry_free_locked(si, offset, SWAP_HAS_CACHE);
3376	unlock_cluster_or_swap_info(si, ci);
3377	if (!usage)
3378		free_swap_slot(entry);
3379}
3380
3381struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3382{
3383	return swap_type_to_swap_info(swp_type(entry));
 
3384}
3385
3386/*
3387 * out-of-line methods to avoid include hell.
3388 */
3389struct address_space *swapcache_mapping(struct folio *folio)
3390{
3391	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3392}
3393EXPORT_SYMBOL_GPL(swapcache_mapping);
3394
3395pgoff_t __page_file_index(struct page *page)
3396{
3397	swp_entry_t swap = page_swap_entry(page);
3398	return swp_offset(swap);
3399}
3400EXPORT_SYMBOL_GPL(__page_file_index);
3401
3402/*
3403 * add_swap_count_continuation - called when a swap count is duplicated
3404 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3405 * page of the original vmalloc'ed swap_map, to hold the continuation count
3406 * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3407 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3408 *
3409 * These continuation pages are seldom referenced: the common paths all work
3410 * on the original swap_map, only referring to a continuation page when the
3411 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3412 *
3413 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3414 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3415 * can be called after dropping locks.
3416 */
3417int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3418{
3419	struct swap_info_struct *si;
3420	struct swap_cluster_info *ci;
3421	struct page *head;
3422	struct page *page;
3423	struct page *list_page;
3424	pgoff_t offset;
3425	unsigned char count;
3426	int ret = 0;
3427
3428	/*
3429	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3430	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3431	 */
3432	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3433
3434	si = get_swap_device(entry);
3435	if (!si) {
3436		/*
3437		 * An acceptable race has occurred since the failing
3438		 * __swap_duplicate(): the swap device may be swapoff
3439		 */
3440		goto outer;
3441	}
3442	spin_lock(&si->lock);
3443
3444	offset = swp_offset(entry);
3445
3446	ci = lock_cluster(si, offset);
3447
3448	count = swap_count(si->swap_map[offset]);
3449
3450	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3451		/*
3452		 * The higher the swap count, the more likely it is that tasks
3453		 * will race to add swap count continuation: we need to avoid
3454		 * over-provisioning.
3455		 */
3456		goto out;
3457	}
3458
3459	if (!page) {
3460		ret = -ENOMEM;
3461		goto out;
3462	}
3463
 
 
 
 
 
3464	head = vmalloc_to_page(si->swap_map + offset);
3465	offset &= ~PAGE_MASK;
3466
3467	spin_lock(&si->cont_lock);
3468	/*
3469	 * Page allocation does not initialize the page's lru field,
3470	 * but it does always reset its private field.
3471	 */
3472	if (!page_private(head)) {
3473		BUG_ON(count & COUNT_CONTINUED);
3474		INIT_LIST_HEAD(&head->lru);
3475		set_page_private(head, SWP_CONTINUED);
3476		si->flags |= SWP_CONTINUED;
3477	}
3478
3479	list_for_each_entry(list_page, &head->lru, lru) {
3480		unsigned char *map;
3481
3482		/*
3483		 * If the previous map said no continuation, but we've found
3484		 * a continuation page, free our allocation and use this one.
3485		 */
3486		if (!(count & COUNT_CONTINUED))
3487			goto out_unlock_cont;
3488
3489		map = kmap_local_page(list_page) + offset;
3490		count = *map;
3491		kunmap_local(map);
3492
3493		/*
3494		 * If this continuation count now has some space in it,
3495		 * free our allocation and use this one.
3496		 */
3497		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3498			goto out_unlock_cont;
3499	}
3500
3501	list_add_tail(&page->lru, &head->lru);
3502	page = NULL;			/* now it's attached, don't free it */
3503out_unlock_cont:
3504	spin_unlock(&si->cont_lock);
3505out:
3506	unlock_cluster(ci);
3507	spin_unlock(&si->lock);
3508	put_swap_device(si);
3509outer:
3510	if (page)
3511		__free_page(page);
3512	return ret;
3513}
3514
3515/*
3516 * swap_count_continued - when the original swap_map count is incremented
3517 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3518 * into, carry if so, or else fail until a new continuation page is allocated;
3519 * when the original swap_map count is decremented from 0 with continuation,
3520 * borrow from the continuation and report whether it still holds more.
3521 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3522 * lock.
3523 */
3524static bool swap_count_continued(struct swap_info_struct *si,
3525				 pgoff_t offset, unsigned char count)
3526{
3527	struct page *head;
3528	struct page *page;
3529	unsigned char *map;
3530	bool ret;
3531
3532	head = vmalloc_to_page(si->swap_map + offset);
3533	if (page_private(head) != SWP_CONTINUED) {
3534		BUG_ON(count & COUNT_CONTINUED);
3535		return false;		/* need to add count continuation */
3536	}
3537
3538	spin_lock(&si->cont_lock);
3539	offset &= ~PAGE_MASK;
3540	page = list_next_entry(head, lru);
3541	map = kmap_local_page(page) + offset;
3542
3543	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3544		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3545
3546	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3547		/*
3548		 * Think of how you add 1 to 999
3549		 */
3550		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3551			kunmap_local(map);
3552			page = list_next_entry(page, lru);
3553			BUG_ON(page == head);
3554			map = kmap_local_page(page) + offset;
3555		}
3556		if (*map == SWAP_CONT_MAX) {
3557			kunmap_local(map);
3558			page = list_next_entry(page, lru);
3559			if (page == head) {
3560				ret = false;	/* add count continuation */
3561				goto out;
3562			}
3563			map = kmap_local_page(page) + offset;
3564init_map:		*map = 0;		/* we didn't zero the page */
3565		}
3566		*map += 1;
3567		kunmap_local(map);
3568		while ((page = list_prev_entry(page, lru)) != head) {
3569			map = kmap_local_page(page) + offset;
3570			*map = COUNT_CONTINUED;
3571			kunmap_local(map);
3572		}
3573		ret = true;			/* incremented */
3574
3575	} else {				/* decrementing */
3576		/*
3577		 * Think of how you subtract 1 from 1000
3578		 */
3579		BUG_ON(count != COUNT_CONTINUED);
3580		while (*map == COUNT_CONTINUED) {
3581			kunmap_local(map);
3582			page = list_next_entry(page, lru);
3583			BUG_ON(page == head);
3584			map = kmap_local_page(page) + offset;
3585		}
3586		BUG_ON(*map == 0);
3587		*map -= 1;
3588		if (*map == 0)
3589			count = 0;
3590		kunmap_local(map);
3591		while ((page = list_prev_entry(page, lru)) != head) {
3592			map = kmap_local_page(page) + offset;
3593			*map = SWAP_CONT_MAX | count;
3594			count = COUNT_CONTINUED;
3595			kunmap_local(map);
3596		}
3597		ret = count == COUNT_CONTINUED;
3598	}
3599out:
3600	spin_unlock(&si->cont_lock);
3601	return ret;
3602}
3603
3604/*
3605 * free_swap_count_continuations - swapoff free all the continuation pages
3606 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3607 */
3608static void free_swap_count_continuations(struct swap_info_struct *si)
3609{
3610	pgoff_t offset;
3611
3612	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3613		struct page *head;
3614		head = vmalloc_to_page(si->swap_map + offset);
3615		if (page_private(head)) {
3616			struct page *page, *next;
3617
3618			list_for_each_entry_safe(page, next, &head->lru, lru) {
3619				list_del(&page->lru);
3620				__free_page(page);
3621			}
3622		}
3623	}
3624}
3625
3626#if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3627void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3628{
3629	struct swap_info_struct *si, *next;
3630	int nid = folio_nid(folio);
3631
3632	if (!(gfp & __GFP_IO))
3633		return;
3634
3635	if (!blk_cgroup_congested())
3636		return;
3637
3638	/*
3639	 * We've already scheduled a throttle, avoid taking the global swap
3640	 * lock.
3641	 */
3642	if (current->throttle_disk)
3643		return;
3644
3645	spin_lock(&swap_avail_lock);
3646	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3647				  avail_lists[nid]) {
3648		if (si->bdev) {
3649			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3650			break;
3651		}
3652	}
3653	spin_unlock(&swap_avail_lock);
3654}
3655#endif
3656
3657static int __init swapfile_init(void)
3658{
3659	int nid;
3660
3661	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3662					 GFP_KERNEL);
3663	if (!swap_avail_heads) {
3664		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3665		return -ENOMEM;
3666	}
3667
3668	for_each_node(nid)
3669		plist_head_init(&swap_avail_heads[nid]);
3670
3671	swapfile_maximum_size = arch_max_swapfile_size();
3672
3673#ifdef CONFIG_MIGRATION
3674	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3675		swap_migration_ad_supported = true;
3676#endif	/* CONFIG_MIGRATION */
3677
3678	return 0;
3679}
3680subsys_initcall(swapfile_init);