Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/percpu.h>
  3#include <linux/sched.h>
  4#include <linux/osq_lock.h>
  5
  6/*
  7 * An MCS like lock especially tailored for optimistic spinning for sleeping
  8 * lock implementations (mutex, rwsem, etc).
  9 *
 10 * Using a single mcs node per CPU is safe because sleeping locks should not be
 11 * called from interrupt context and we have preemption disabled while
 12 * spinning.
 13 */
 
 
 
 
 
 
 
 14static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
 15
 16/*
 17 * We use the value 0 to represent "no CPU", thus the encoded value
 18 * will be the CPU number incremented by 1.
 19 */
 20static inline int encode_cpu(int cpu_nr)
 21{
 22	return cpu_nr + 1;
 23}
 24
 25static inline int node_cpu(struct optimistic_spin_node *node)
 26{
 27	return node->cpu - 1;
 28}
 29
 30static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
 31{
 32	int cpu_nr = encoded_cpu_val - 1;
 33
 34	return per_cpu_ptr(&osq_node, cpu_nr);
 35}
 36
 37/*
 38 * Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
 39 * Can return NULL in case we were the last queued and we updated @lock instead.
 
 
 
 
 
 40 */
 41static inline struct optimistic_spin_node *
 42osq_wait_next(struct optimistic_spin_queue *lock,
 43	      struct optimistic_spin_node *node,
 44	      struct optimistic_spin_node *prev)
 45{
 46	struct optimistic_spin_node *next = NULL;
 47	int curr = encode_cpu(smp_processor_id());
 48	int old;
 49
 50	/*
 51	 * If there is a prev node in queue, then the 'old' value will be
 52	 * the prev node's CPU #, else it's set to OSQ_UNLOCKED_VAL since if
 53	 * we're currently last in queue, then the queue will then become empty.
 54	 */
 55	old = prev ? prev->cpu : OSQ_UNLOCKED_VAL;
 56
 57	for (;;) {
 58		if (atomic_read(&lock->tail) == curr &&
 59		    atomic_cmpxchg_acquire(&lock->tail, curr, old) == curr) {
 60			/*
 61			 * We were the last queued, we moved @lock back. @prev
 62			 * will now observe @lock and will complete its
 63			 * unlock()/unqueue().
 64			 */
 65			break;
 66		}
 67
 68		/*
 69		 * We must xchg() the @node->next value, because if we were to
 70		 * leave it in, a concurrent unlock()/unqueue() from
 71		 * @node->next might complete Step-A and think its @prev is
 72		 * still valid.
 73		 *
 74		 * If the concurrent unlock()/unqueue() wins the race, we'll
 75		 * wait for either @lock to point to us, through its Step-B, or
 76		 * wait for a new @node->next from its Step-C.
 77		 */
 78		if (node->next) {
 
 
 79			next = xchg(&node->next, NULL);
 80			if (next)
 81				break;
 82		}
 83
 84		cpu_relax();
 85	}
 86
 87	return next;
 88}
 89
 90bool osq_lock(struct optimistic_spin_queue *lock)
 91{
 92	struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
 93	struct optimistic_spin_node *prev, *next;
 94	int curr = encode_cpu(smp_processor_id());
 95	int old;
 96
 97	node->locked = 0;
 98	node->next = NULL;
 99	node->cpu = curr;
100
101	/*
102	 * We need both ACQUIRE (pairs with corresponding RELEASE in
103	 * unlock() uncontended, or fastpath) and RELEASE (to publish
104	 * the node fields we just initialised) semantics when updating
105	 * the lock tail.
106	 */
107	old = atomic_xchg(&lock->tail, curr);
108	if (old == OSQ_UNLOCKED_VAL)
109		return true;
110
111	prev = decode_cpu(old);
112	node->prev = prev;
113
114	/*
115	 * osq_lock()			unqueue
116	 *
117	 * node->prev = prev		osq_wait_next()
118	 * WMB				MB
119	 * prev->next = node		next->prev = prev // unqueue-C
120	 *
121	 * Here 'node->prev' and 'next->prev' are the same variable and we need
122	 * to ensure these stores happen in-order to avoid corrupting the list.
123	 */
124	smp_wmb();
125
126	WRITE_ONCE(prev->next, node);
127
128	/*
129	 * Normally @prev is untouchable after the above store; because at that
130	 * moment unlock can proceed and wipe the node element from stack.
131	 *
132	 * However, since our nodes are static per-cpu storage, we're
133	 * guaranteed their existence -- this allows us to apply
134	 * cmpxchg in an attempt to undo our queueing.
135	 */
136
137	/*
138	 * Wait to acquire the lock or cancellation. Note that need_resched()
139	 * will come with an IPI, which will wake smp_cond_load_relaxed() if it
140	 * is implemented with a monitor-wait. vcpu_is_preempted() relies on
141	 * polling, be careful.
142	 */
143	if (smp_cond_load_relaxed(&node->locked, VAL || need_resched() ||
144				  vcpu_is_preempted(node_cpu(node->prev))))
145		return true;
146
147	/* unqueue */
148	/*
149	 * Step - A  -- stabilize @prev
150	 *
151	 * Undo our @prev->next assignment; this will make @prev's
152	 * unlock()/unqueue() wait for a next pointer since @lock points to us
153	 * (or later).
154	 */
155
156	for (;;) {
157		/*
158		 * cpu_relax() below implies a compiler barrier which would
159		 * prevent this comparison being optimized away.
160		 */
161		if (data_race(prev->next) == node &&
162		    cmpxchg(&prev->next, node, NULL) == node)
163			break;
164
165		/*
166		 * We can only fail the cmpxchg() racing against an unlock(),
167		 * in which case we should observe @node->locked becoming
168		 * true.
169		 */
170		if (smp_load_acquire(&node->locked))
171			return true;
172
173		cpu_relax();
174
175		/*
176		 * Or we race against a concurrent unqueue()'s step-B, in which
177		 * case its step-C will write us a new @node->prev pointer.
178		 */
179		prev = READ_ONCE(node->prev);
180	}
181
182	/*
183	 * Step - B -- stabilize @next
184	 *
185	 * Similar to unlock(), wait for @node->next or move @lock from @node
186	 * back to @prev.
187	 */
188
189	next = osq_wait_next(lock, node, prev);
190	if (!next)
191		return false;
192
193	/*
194	 * Step - C -- unlink
195	 *
196	 * @prev is stable because its still waiting for a new @prev->next
197	 * pointer, @next is stable because our @node->next pointer is NULL and
198	 * it will wait in Step-A.
199	 */
200
201	WRITE_ONCE(next->prev, prev);
202	WRITE_ONCE(prev->next, next);
203
204	return false;
205}
206
207void osq_unlock(struct optimistic_spin_queue *lock)
208{
209	struct optimistic_spin_node *node, *next;
210	int curr = encode_cpu(smp_processor_id());
211
212	/*
213	 * Fast path for the uncontended case.
214	 */
215	if (likely(atomic_cmpxchg_release(&lock->tail, curr,
216					  OSQ_UNLOCKED_VAL) == curr))
217		return;
218
219	/*
220	 * Second most likely case.
221	 */
222	node = this_cpu_ptr(&osq_node);
223	next = xchg(&node->next, NULL);
224	if (next) {
225		WRITE_ONCE(next->locked, 1);
226		return;
227	}
228
229	next = osq_wait_next(lock, node, NULL);
230	if (next)
231		WRITE_ONCE(next->locked, 1);
232}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2#include <linux/percpu.h>
  3#include <linux/sched.h>
  4#include <linux/osq_lock.h>
  5
  6/*
  7 * An MCS like lock especially tailored for optimistic spinning for sleeping
  8 * lock implementations (mutex, rwsem, etc).
  9 *
 10 * Using a single mcs node per CPU is safe because sleeping locks should not be
 11 * called from interrupt context and we have preemption disabled while
 12 * spinning.
 13 */
 14
 15struct optimistic_spin_node {
 16	struct optimistic_spin_node *next, *prev;
 17	int locked; /* 1 if lock acquired */
 18	int cpu; /* encoded CPU # + 1 value */
 19};
 20
 21static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
 22
 23/*
 24 * We use the value 0 to represent "no CPU", thus the encoded value
 25 * will be the CPU number incremented by 1.
 26 */
 27static inline int encode_cpu(int cpu_nr)
 28{
 29	return cpu_nr + 1;
 30}
 31
 32static inline int node_cpu(struct optimistic_spin_node *node)
 33{
 34	return node->cpu - 1;
 35}
 36
 37static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
 38{
 39	int cpu_nr = encoded_cpu_val - 1;
 40
 41	return per_cpu_ptr(&osq_node, cpu_nr);
 42}
 43
 44/*
 45 * Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
 46 * Can return NULL in case we were the last queued and we updated @lock instead.
 47 *
 48 * If osq_lock() is being cancelled there must be a previous node
 49 * and 'old_cpu' is its CPU #.
 50 * For osq_unlock() there is never a previous node and old_cpu is
 51 * set to OSQ_UNLOCKED_VAL.
 52 */
 53static inline struct optimistic_spin_node *
 54osq_wait_next(struct optimistic_spin_queue *lock,
 55	      struct optimistic_spin_node *node,
 56	      int old_cpu)
 57{
 
 58	int curr = encode_cpu(smp_processor_id());
 
 
 
 
 
 
 
 
 59
 60	for (;;) {
 61		if (atomic_read(&lock->tail) == curr &&
 62		    atomic_cmpxchg_acquire(&lock->tail, curr, old_cpu) == curr) {
 63			/*
 64			 * We were the last queued, we moved @lock back. @prev
 65			 * will now observe @lock and will complete its
 66			 * unlock()/unqueue().
 67			 */
 68			return NULL;
 69		}
 70
 71		/*
 72		 * We must xchg() the @node->next value, because if we were to
 73		 * leave it in, a concurrent unlock()/unqueue() from
 74		 * @node->next might complete Step-A and think its @prev is
 75		 * still valid.
 76		 *
 77		 * If the concurrent unlock()/unqueue() wins the race, we'll
 78		 * wait for either @lock to point to us, through its Step-B, or
 79		 * wait for a new @node->next from its Step-C.
 80		 */
 81		if (node->next) {
 82			struct optimistic_spin_node *next;
 83
 84			next = xchg(&node->next, NULL);
 85			if (next)
 86				return next;
 87		}
 88
 89		cpu_relax();
 90	}
 
 
 91}
 92
 93bool osq_lock(struct optimistic_spin_queue *lock)
 94{
 95	struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
 96	struct optimistic_spin_node *prev, *next;
 97	int curr = encode_cpu(smp_processor_id());
 98	int old;
 99
100	node->locked = 0;
101	node->next = NULL;
102	node->cpu = curr;
103
104	/*
105	 * We need both ACQUIRE (pairs with corresponding RELEASE in
106	 * unlock() uncontended, or fastpath) and RELEASE (to publish
107	 * the node fields we just initialised) semantics when updating
108	 * the lock tail.
109	 */
110	old = atomic_xchg(&lock->tail, curr);
111	if (old == OSQ_UNLOCKED_VAL)
112		return true;
113
114	prev = decode_cpu(old);
115	node->prev = prev;
116
117	/*
118	 * osq_lock()			unqueue
119	 *
120	 * node->prev = prev		osq_wait_next()
121	 * WMB				MB
122	 * prev->next = node		next->prev = prev // unqueue-C
123	 *
124	 * Here 'node->prev' and 'next->prev' are the same variable and we need
125	 * to ensure these stores happen in-order to avoid corrupting the list.
126	 */
127	smp_wmb();
128
129	WRITE_ONCE(prev->next, node);
130
131	/*
132	 * Normally @prev is untouchable after the above store; because at that
133	 * moment unlock can proceed and wipe the node element from stack.
134	 *
135	 * However, since our nodes are static per-cpu storage, we're
136	 * guaranteed their existence -- this allows us to apply
137	 * cmpxchg in an attempt to undo our queueing.
138	 */
139
140	/*
141	 * Wait to acquire the lock or cancellation. Note that need_resched()
142	 * will come with an IPI, which will wake smp_cond_load_relaxed() if it
143	 * is implemented with a monitor-wait. vcpu_is_preempted() relies on
144	 * polling, be careful.
145	 */
146	if (smp_cond_load_relaxed(&node->locked, VAL || need_resched() ||
147				  vcpu_is_preempted(node_cpu(node->prev))))
148		return true;
149
150	/* unqueue */
151	/*
152	 * Step - A  -- stabilize @prev
153	 *
154	 * Undo our @prev->next assignment; this will make @prev's
155	 * unlock()/unqueue() wait for a next pointer since @lock points to us
156	 * (or later).
157	 */
158
159	for (;;) {
160		/*
161		 * cpu_relax() below implies a compiler barrier which would
162		 * prevent this comparison being optimized away.
163		 */
164		if (data_race(prev->next) == node &&
165		    cmpxchg(&prev->next, node, NULL) == node)
166			break;
167
168		/*
169		 * We can only fail the cmpxchg() racing against an unlock(),
170		 * in which case we should observe @node->locked becoming
171		 * true.
172		 */
173		if (smp_load_acquire(&node->locked))
174			return true;
175
176		cpu_relax();
177
178		/*
179		 * Or we race against a concurrent unqueue()'s step-B, in which
180		 * case its step-C will write us a new @node->prev pointer.
181		 */
182		prev = READ_ONCE(node->prev);
183	}
184
185	/*
186	 * Step - B -- stabilize @next
187	 *
188	 * Similar to unlock(), wait for @node->next or move @lock from @node
189	 * back to @prev.
190	 */
191
192	next = osq_wait_next(lock, node, prev->cpu);
193	if (!next)
194		return false;
195
196	/*
197	 * Step - C -- unlink
198	 *
199	 * @prev is stable because its still waiting for a new @prev->next
200	 * pointer, @next is stable because our @node->next pointer is NULL and
201	 * it will wait in Step-A.
202	 */
203
204	WRITE_ONCE(next->prev, prev);
205	WRITE_ONCE(prev->next, next);
206
207	return false;
208}
209
210void osq_unlock(struct optimistic_spin_queue *lock)
211{
212	struct optimistic_spin_node *node, *next;
213	int curr = encode_cpu(smp_processor_id());
214
215	/*
216	 * Fast path for the uncontended case.
217	 */
218	if (likely(atomic_cmpxchg_release(&lock->tail, curr,
219					  OSQ_UNLOCKED_VAL) == curr))
220		return;
221
222	/*
223	 * Second most likely case.
224	 */
225	node = this_cpu_ptr(&osq_node);
226	next = xchg(&node->next, NULL);
227	if (next) {
228		WRITE_ONCE(next->locked, 1);
229		return;
230	}
231
232	next = osq_wait_next(lock, node, OSQ_UNLOCKED_VAL);
233	if (next)
234		WRITE_ONCE(next->locked, 1);
235}