Loading...
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/kthread.h>
37#include <linux/list.h>
38#include <linux/mempolicy.h>
39#include <linux/mm.h>
40#include <linux/memory.h>
41#include <linux/export.h>
42#include <linux/mount.h>
43#include <linux/fs_context.h>
44#include <linux/namei.h>
45#include <linux/pagemap.h>
46#include <linux/proc_fs.h>
47#include <linux/rcupdate.h>
48#include <linux/sched.h>
49#include <linux/sched/deadline.h>
50#include <linux/sched/mm.h>
51#include <linux/sched/task.h>
52#include <linux/seq_file.h>
53#include <linux/security.h>
54#include <linux/slab.h>
55#include <linux/spinlock.h>
56#include <linux/stat.h>
57#include <linux/string.h>
58#include <linux/time.h>
59#include <linux/time64.h>
60#include <linux/backing-dev.h>
61#include <linux/sort.h>
62#include <linux/oom.h>
63#include <linux/sched/isolation.h>
64#include <linux/uaccess.h>
65#include <linux/atomic.h>
66#include <linux/mutex.h>
67#include <linux/cgroup.h>
68#include <linux/wait.h>
69
70DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
71DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
72
73/*
74 * There could be abnormal cpuset configurations for cpu or memory
75 * node binding, add this key to provide a quick low-cost judgment
76 * of the situation.
77 */
78DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
79
80/* See "Frequency meter" comments, below. */
81
82struct fmeter {
83 int cnt; /* unprocessed events count */
84 int val; /* most recent output value */
85 time64_t time; /* clock (secs) when val computed */
86 spinlock_t lock; /* guards read or write of above */
87};
88
89/*
90 * Invalid partition error code
91 */
92enum prs_errcode {
93 PERR_NONE = 0,
94 PERR_INVCPUS,
95 PERR_INVPARENT,
96 PERR_NOTPART,
97 PERR_NOTEXCL,
98 PERR_NOCPUS,
99 PERR_HOTPLUG,
100 PERR_CPUSEMPTY,
101};
102
103static const char * const perr_strings[] = {
104 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus",
105 [PERR_INVPARENT] = "Parent is an invalid partition root",
106 [PERR_NOTPART] = "Parent is not a partition root",
107 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
108 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
109 [PERR_HOTPLUG] = "No cpu available due to hotplug",
110 [PERR_CPUSEMPTY] = "cpuset.cpus is empty",
111};
112
113struct cpuset {
114 struct cgroup_subsys_state css;
115
116 unsigned long flags; /* "unsigned long" so bitops work */
117
118 /*
119 * On default hierarchy:
120 *
121 * The user-configured masks can only be changed by writing to
122 * cpuset.cpus and cpuset.mems, and won't be limited by the
123 * parent masks.
124 *
125 * The effective masks is the real masks that apply to the tasks
126 * in the cpuset. They may be changed if the configured masks are
127 * changed or hotplug happens.
128 *
129 * effective_mask == configured_mask & parent's effective_mask,
130 * and if it ends up empty, it will inherit the parent's mask.
131 *
132 *
133 * On legacy hierarchy:
134 *
135 * The user-configured masks are always the same with effective masks.
136 */
137
138 /* user-configured CPUs and Memory Nodes allow to tasks */
139 cpumask_var_t cpus_allowed;
140 nodemask_t mems_allowed;
141
142 /* effective CPUs and Memory Nodes allow to tasks */
143 cpumask_var_t effective_cpus;
144 nodemask_t effective_mems;
145
146 /*
147 * CPUs allocated to child sub-partitions (default hierarchy only)
148 * - CPUs granted by the parent = effective_cpus U subparts_cpus
149 * - effective_cpus and subparts_cpus are mutually exclusive.
150 *
151 * effective_cpus contains only onlined CPUs, but subparts_cpus
152 * may have offlined ones.
153 */
154 cpumask_var_t subparts_cpus;
155
156 /*
157 * This is old Memory Nodes tasks took on.
158 *
159 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
160 * - A new cpuset's old_mems_allowed is initialized when some
161 * task is moved into it.
162 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
163 * cpuset.mems_allowed and have tasks' nodemask updated, and
164 * then old_mems_allowed is updated to mems_allowed.
165 */
166 nodemask_t old_mems_allowed;
167
168 struct fmeter fmeter; /* memory_pressure filter */
169
170 /*
171 * Tasks are being attached to this cpuset. Used to prevent
172 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
173 */
174 int attach_in_progress;
175
176 /* partition number for rebuild_sched_domains() */
177 int pn;
178
179 /* for custom sched domain */
180 int relax_domain_level;
181
182 /* number of CPUs in subparts_cpus */
183 int nr_subparts_cpus;
184
185 /* partition root state */
186 int partition_root_state;
187
188 /*
189 * Default hierarchy only:
190 * use_parent_ecpus - set if using parent's effective_cpus
191 * child_ecpus_count - # of children with use_parent_ecpus set
192 */
193 int use_parent_ecpus;
194 int child_ecpus_count;
195
196 /* Invalid partition error code, not lock protected */
197 enum prs_errcode prs_err;
198
199 /* Handle for cpuset.cpus.partition */
200 struct cgroup_file partition_file;
201};
202
203/*
204 * Partition root states:
205 *
206 * 0 - member (not a partition root)
207 * 1 - partition root
208 * 2 - partition root without load balancing (isolated)
209 * -1 - invalid partition root
210 * -2 - invalid isolated partition root
211 */
212#define PRS_MEMBER 0
213#define PRS_ROOT 1
214#define PRS_ISOLATED 2
215#define PRS_INVALID_ROOT -1
216#define PRS_INVALID_ISOLATED -2
217
218static inline bool is_prs_invalid(int prs_state)
219{
220 return prs_state < 0;
221}
222
223/*
224 * Temporary cpumasks for working with partitions that are passed among
225 * functions to avoid memory allocation in inner functions.
226 */
227struct tmpmasks {
228 cpumask_var_t addmask, delmask; /* For partition root */
229 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
230};
231
232static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
233{
234 return css ? container_of(css, struct cpuset, css) : NULL;
235}
236
237/* Retrieve the cpuset for a task */
238static inline struct cpuset *task_cs(struct task_struct *task)
239{
240 return css_cs(task_css(task, cpuset_cgrp_id));
241}
242
243static inline struct cpuset *parent_cs(struct cpuset *cs)
244{
245 return css_cs(cs->css.parent);
246}
247
248/* bits in struct cpuset flags field */
249typedef enum {
250 CS_ONLINE,
251 CS_CPU_EXCLUSIVE,
252 CS_MEM_EXCLUSIVE,
253 CS_MEM_HARDWALL,
254 CS_MEMORY_MIGRATE,
255 CS_SCHED_LOAD_BALANCE,
256 CS_SPREAD_PAGE,
257 CS_SPREAD_SLAB,
258} cpuset_flagbits_t;
259
260/* convenient tests for these bits */
261static inline bool is_cpuset_online(struct cpuset *cs)
262{
263 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
264}
265
266static inline int is_cpu_exclusive(const struct cpuset *cs)
267{
268 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
269}
270
271static inline int is_mem_exclusive(const struct cpuset *cs)
272{
273 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
274}
275
276static inline int is_mem_hardwall(const struct cpuset *cs)
277{
278 return test_bit(CS_MEM_HARDWALL, &cs->flags);
279}
280
281static inline int is_sched_load_balance(const struct cpuset *cs)
282{
283 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
284}
285
286static inline int is_memory_migrate(const struct cpuset *cs)
287{
288 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
289}
290
291static inline int is_spread_page(const struct cpuset *cs)
292{
293 return test_bit(CS_SPREAD_PAGE, &cs->flags);
294}
295
296static inline int is_spread_slab(const struct cpuset *cs)
297{
298 return test_bit(CS_SPREAD_SLAB, &cs->flags);
299}
300
301static inline int is_partition_valid(const struct cpuset *cs)
302{
303 return cs->partition_root_state > 0;
304}
305
306static inline int is_partition_invalid(const struct cpuset *cs)
307{
308 return cs->partition_root_state < 0;
309}
310
311/*
312 * Callers should hold callback_lock to modify partition_root_state.
313 */
314static inline void make_partition_invalid(struct cpuset *cs)
315{
316 if (is_partition_valid(cs))
317 cs->partition_root_state = -cs->partition_root_state;
318}
319
320/*
321 * Send notification event of whenever partition_root_state changes.
322 */
323static inline void notify_partition_change(struct cpuset *cs, int old_prs)
324{
325 if (old_prs == cs->partition_root_state)
326 return;
327 cgroup_file_notify(&cs->partition_file);
328
329 /* Reset prs_err if not invalid */
330 if (is_partition_valid(cs))
331 WRITE_ONCE(cs->prs_err, PERR_NONE);
332}
333
334static struct cpuset top_cpuset = {
335 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
336 (1 << CS_MEM_EXCLUSIVE)),
337 .partition_root_state = PRS_ROOT,
338};
339
340/**
341 * cpuset_for_each_child - traverse online children of a cpuset
342 * @child_cs: loop cursor pointing to the current child
343 * @pos_css: used for iteration
344 * @parent_cs: target cpuset to walk children of
345 *
346 * Walk @child_cs through the online children of @parent_cs. Must be used
347 * with RCU read locked.
348 */
349#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
350 css_for_each_child((pos_css), &(parent_cs)->css) \
351 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
352
353/**
354 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
355 * @des_cs: loop cursor pointing to the current descendant
356 * @pos_css: used for iteration
357 * @root_cs: target cpuset to walk ancestor of
358 *
359 * Walk @des_cs through the online descendants of @root_cs. Must be used
360 * with RCU read locked. The caller may modify @pos_css by calling
361 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
362 * iteration and the first node to be visited.
363 */
364#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
365 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
366 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
367
368/*
369 * There are two global locks guarding cpuset structures - cpuset_rwsem and
370 * callback_lock. We also require taking task_lock() when dereferencing a
371 * task's cpuset pointer. See "The task_lock() exception", at the end of this
372 * comment. The cpuset code uses only cpuset_rwsem write lock. Other
373 * kernel subsystems can use cpuset_read_lock()/cpuset_read_unlock() to
374 * prevent change to cpuset structures.
375 *
376 * A task must hold both locks to modify cpusets. If a task holds
377 * cpuset_rwsem, it blocks others wanting that rwsem, ensuring that it
378 * is the only task able to also acquire callback_lock and be able to
379 * modify cpusets. It can perform various checks on the cpuset structure
380 * first, knowing nothing will change. It can also allocate memory while
381 * just holding cpuset_rwsem. While it is performing these checks, various
382 * callback routines can briefly acquire callback_lock to query cpusets.
383 * Once it is ready to make the changes, it takes callback_lock, blocking
384 * everyone else.
385 *
386 * Calls to the kernel memory allocator can not be made while holding
387 * callback_lock, as that would risk double tripping on callback_lock
388 * from one of the callbacks into the cpuset code from within
389 * __alloc_pages().
390 *
391 * If a task is only holding callback_lock, then it has read-only
392 * access to cpusets.
393 *
394 * Now, the task_struct fields mems_allowed and mempolicy may be changed
395 * by other task, we use alloc_lock in the task_struct fields to protect
396 * them.
397 *
398 * The cpuset_common_file_read() handlers only hold callback_lock across
399 * small pieces of code, such as when reading out possibly multi-word
400 * cpumasks and nodemasks.
401 *
402 * Accessing a task's cpuset should be done in accordance with the
403 * guidelines for accessing subsystem state in kernel/cgroup.c
404 */
405
406DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem);
407
408void cpuset_read_lock(void)
409{
410 percpu_down_read(&cpuset_rwsem);
411}
412
413void cpuset_read_unlock(void)
414{
415 percpu_up_read(&cpuset_rwsem);
416}
417
418static DEFINE_SPINLOCK(callback_lock);
419
420static struct workqueue_struct *cpuset_migrate_mm_wq;
421
422/*
423 * CPU / memory hotplug is handled asynchronously.
424 */
425static void cpuset_hotplug_workfn(struct work_struct *work);
426static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
427
428static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
429
430static inline void check_insane_mems_config(nodemask_t *nodes)
431{
432 if (!cpusets_insane_config() &&
433 movable_only_nodes(nodes)) {
434 static_branch_enable(&cpusets_insane_config_key);
435 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
436 "Cpuset allocations might fail even with a lot of memory available.\n",
437 nodemask_pr_args(nodes));
438 }
439}
440
441/*
442 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
443 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
444 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
445 * With v2 behavior, "cpus" and "mems" are always what the users have
446 * requested and won't be changed by hotplug events. Only the effective
447 * cpus or mems will be affected.
448 */
449static inline bool is_in_v2_mode(void)
450{
451 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
452 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
453}
454
455/**
456 * partition_is_populated - check if partition has tasks
457 * @cs: partition root to be checked
458 * @excluded_child: a child cpuset to be excluded in task checking
459 * Return: true if there are tasks, false otherwise
460 *
461 * It is assumed that @cs is a valid partition root. @excluded_child should
462 * be non-NULL when this cpuset is going to become a partition itself.
463 */
464static inline bool partition_is_populated(struct cpuset *cs,
465 struct cpuset *excluded_child)
466{
467 struct cgroup_subsys_state *css;
468 struct cpuset *child;
469
470 if (cs->css.cgroup->nr_populated_csets)
471 return true;
472 if (!excluded_child && !cs->nr_subparts_cpus)
473 return cgroup_is_populated(cs->css.cgroup);
474
475 rcu_read_lock();
476 cpuset_for_each_child(child, css, cs) {
477 if (child == excluded_child)
478 continue;
479 if (is_partition_valid(child))
480 continue;
481 if (cgroup_is_populated(child->css.cgroup)) {
482 rcu_read_unlock();
483 return true;
484 }
485 }
486 rcu_read_unlock();
487 return false;
488}
489
490/*
491 * Return in pmask the portion of a task's cpusets's cpus_allowed that
492 * are online and are capable of running the task. If none are found,
493 * walk up the cpuset hierarchy until we find one that does have some
494 * appropriate cpus.
495 *
496 * One way or another, we guarantee to return some non-empty subset
497 * of cpu_online_mask.
498 *
499 * Call with callback_lock or cpuset_rwsem held.
500 */
501static void guarantee_online_cpus(struct task_struct *tsk,
502 struct cpumask *pmask)
503{
504 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
505 struct cpuset *cs;
506
507 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
508 cpumask_copy(pmask, cpu_online_mask);
509
510 rcu_read_lock();
511 cs = task_cs(tsk);
512
513 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
514 cs = parent_cs(cs);
515 if (unlikely(!cs)) {
516 /*
517 * The top cpuset doesn't have any online cpu as a
518 * consequence of a race between cpuset_hotplug_work
519 * and cpu hotplug notifier. But we know the top
520 * cpuset's effective_cpus is on its way to be
521 * identical to cpu_online_mask.
522 */
523 goto out_unlock;
524 }
525 }
526 cpumask_and(pmask, pmask, cs->effective_cpus);
527
528out_unlock:
529 rcu_read_unlock();
530}
531
532/*
533 * Return in *pmask the portion of a cpusets's mems_allowed that
534 * are online, with memory. If none are online with memory, walk
535 * up the cpuset hierarchy until we find one that does have some
536 * online mems. The top cpuset always has some mems online.
537 *
538 * One way or another, we guarantee to return some non-empty subset
539 * of node_states[N_MEMORY].
540 *
541 * Call with callback_lock or cpuset_rwsem held.
542 */
543static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
544{
545 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
546 cs = parent_cs(cs);
547 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
548}
549
550/*
551 * update task's spread flag if cpuset's page/slab spread flag is set
552 *
553 * Call with callback_lock or cpuset_rwsem held. The check can be skipped
554 * if on default hierarchy.
555 */
556static void cpuset_update_task_spread_flags(struct cpuset *cs,
557 struct task_struct *tsk)
558{
559 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
560 return;
561
562 if (is_spread_page(cs))
563 task_set_spread_page(tsk);
564 else
565 task_clear_spread_page(tsk);
566
567 if (is_spread_slab(cs))
568 task_set_spread_slab(tsk);
569 else
570 task_clear_spread_slab(tsk);
571}
572
573/*
574 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
575 *
576 * One cpuset is a subset of another if all its allowed CPUs and
577 * Memory Nodes are a subset of the other, and its exclusive flags
578 * are only set if the other's are set. Call holding cpuset_rwsem.
579 */
580
581static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
582{
583 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
584 nodes_subset(p->mems_allowed, q->mems_allowed) &&
585 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
586 is_mem_exclusive(p) <= is_mem_exclusive(q);
587}
588
589/**
590 * alloc_cpumasks - allocate three cpumasks for cpuset
591 * @cs: the cpuset that have cpumasks to be allocated.
592 * @tmp: the tmpmasks structure pointer
593 * Return: 0 if successful, -ENOMEM otherwise.
594 *
595 * Only one of the two input arguments should be non-NULL.
596 */
597static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
598{
599 cpumask_var_t *pmask1, *pmask2, *pmask3;
600
601 if (cs) {
602 pmask1 = &cs->cpus_allowed;
603 pmask2 = &cs->effective_cpus;
604 pmask3 = &cs->subparts_cpus;
605 } else {
606 pmask1 = &tmp->new_cpus;
607 pmask2 = &tmp->addmask;
608 pmask3 = &tmp->delmask;
609 }
610
611 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
612 return -ENOMEM;
613
614 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
615 goto free_one;
616
617 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
618 goto free_two;
619
620 return 0;
621
622free_two:
623 free_cpumask_var(*pmask2);
624free_one:
625 free_cpumask_var(*pmask1);
626 return -ENOMEM;
627}
628
629/**
630 * free_cpumasks - free cpumasks in a tmpmasks structure
631 * @cs: the cpuset that have cpumasks to be free.
632 * @tmp: the tmpmasks structure pointer
633 */
634static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
635{
636 if (cs) {
637 free_cpumask_var(cs->cpus_allowed);
638 free_cpumask_var(cs->effective_cpus);
639 free_cpumask_var(cs->subparts_cpus);
640 }
641 if (tmp) {
642 free_cpumask_var(tmp->new_cpus);
643 free_cpumask_var(tmp->addmask);
644 free_cpumask_var(tmp->delmask);
645 }
646}
647
648/**
649 * alloc_trial_cpuset - allocate a trial cpuset
650 * @cs: the cpuset that the trial cpuset duplicates
651 */
652static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
653{
654 struct cpuset *trial;
655
656 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
657 if (!trial)
658 return NULL;
659
660 if (alloc_cpumasks(trial, NULL)) {
661 kfree(trial);
662 return NULL;
663 }
664
665 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
666 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
667 return trial;
668}
669
670/**
671 * free_cpuset - free the cpuset
672 * @cs: the cpuset to be freed
673 */
674static inline void free_cpuset(struct cpuset *cs)
675{
676 free_cpumasks(cs, NULL);
677 kfree(cs);
678}
679
680/*
681 * validate_change_legacy() - Validate conditions specific to legacy (v1)
682 * behavior.
683 */
684static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
685{
686 struct cgroup_subsys_state *css;
687 struct cpuset *c, *par;
688 int ret;
689
690 WARN_ON_ONCE(!rcu_read_lock_held());
691
692 /* Each of our child cpusets must be a subset of us */
693 ret = -EBUSY;
694 cpuset_for_each_child(c, css, cur)
695 if (!is_cpuset_subset(c, trial))
696 goto out;
697
698 /* On legacy hierarchy, we must be a subset of our parent cpuset. */
699 ret = -EACCES;
700 par = parent_cs(cur);
701 if (par && !is_cpuset_subset(trial, par))
702 goto out;
703
704 ret = 0;
705out:
706 return ret;
707}
708
709/*
710 * validate_change() - Used to validate that any proposed cpuset change
711 * follows the structural rules for cpusets.
712 *
713 * If we replaced the flag and mask values of the current cpuset
714 * (cur) with those values in the trial cpuset (trial), would
715 * our various subset and exclusive rules still be valid? Presumes
716 * cpuset_rwsem held.
717 *
718 * 'cur' is the address of an actual, in-use cpuset. Operations
719 * such as list traversal that depend on the actual address of the
720 * cpuset in the list must use cur below, not trial.
721 *
722 * 'trial' is the address of bulk structure copy of cur, with
723 * perhaps one or more of the fields cpus_allowed, mems_allowed,
724 * or flags changed to new, trial values.
725 *
726 * Return 0 if valid, -errno if not.
727 */
728
729static int validate_change(struct cpuset *cur, struct cpuset *trial)
730{
731 struct cgroup_subsys_state *css;
732 struct cpuset *c, *par;
733 int ret = 0;
734
735 rcu_read_lock();
736
737 if (!is_in_v2_mode())
738 ret = validate_change_legacy(cur, trial);
739 if (ret)
740 goto out;
741
742 /* Remaining checks don't apply to root cpuset */
743 if (cur == &top_cpuset)
744 goto out;
745
746 par = parent_cs(cur);
747
748 /*
749 * Cpusets with tasks - existing or newly being attached - can't
750 * be changed to have empty cpus_allowed or mems_allowed.
751 */
752 ret = -ENOSPC;
753 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
754 if (!cpumask_empty(cur->cpus_allowed) &&
755 cpumask_empty(trial->cpus_allowed))
756 goto out;
757 if (!nodes_empty(cur->mems_allowed) &&
758 nodes_empty(trial->mems_allowed))
759 goto out;
760 }
761
762 /*
763 * We can't shrink if we won't have enough room for SCHED_DEADLINE
764 * tasks.
765 */
766 ret = -EBUSY;
767 if (is_cpu_exclusive(cur) &&
768 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
769 trial->cpus_allowed))
770 goto out;
771
772 /*
773 * If either I or some sibling (!= me) is exclusive, we can't
774 * overlap
775 */
776 ret = -EINVAL;
777 cpuset_for_each_child(c, css, par) {
778 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
779 c != cur &&
780 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
781 goto out;
782 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
783 c != cur &&
784 nodes_intersects(trial->mems_allowed, c->mems_allowed))
785 goto out;
786 }
787
788 ret = 0;
789out:
790 rcu_read_unlock();
791 return ret;
792}
793
794#ifdef CONFIG_SMP
795/*
796 * Helper routine for generate_sched_domains().
797 * Do cpusets a, b have overlapping effective cpus_allowed masks?
798 */
799static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
800{
801 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
802}
803
804static void
805update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
806{
807 if (dattr->relax_domain_level < c->relax_domain_level)
808 dattr->relax_domain_level = c->relax_domain_level;
809 return;
810}
811
812static void update_domain_attr_tree(struct sched_domain_attr *dattr,
813 struct cpuset *root_cs)
814{
815 struct cpuset *cp;
816 struct cgroup_subsys_state *pos_css;
817
818 rcu_read_lock();
819 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
820 /* skip the whole subtree if @cp doesn't have any CPU */
821 if (cpumask_empty(cp->cpus_allowed)) {
822 pos_css = css_rightmost_descendant(pos_css);
823 continue;
824 }
825
826 if (is_sched_load_balance(cp))
827 update_domain_attr(dattr, cp);
828 }
829 rcu_read_unlock();
830}
831
832/* Must be called with cpuset_rwsem held. */
833static inline int nr_cpusets(void)
834{
835 /* jump label reference count + the top-level cpuset */
836 return static_key_count(&cpusets_enabled_key.key) + 1;
837}
838
839/*
840 * generate_sched_domains()
841 *
842 * This function builds a partial partition of the systems CPUs
843 * A 'partial partition' is a set of non-overlapping subsets whose
844 * union is a subset of that set.
845 * The output of this function needs to be passed to kernel/sched/core.c
846 * partition_sched_domains() routine, which will rebuild the scheduler's
847 * load balancing domains (sched domains) as specified by that partial
848 * partition.
849 *
850 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
851 * for a background explanation of this.
852 *
853 * Does not return errors, on the theory that the callers of this
854 * routine would rather not worry about failures to rebuild sched
855 * domains when operating in the severe memory shortage situations
856 * that could cause allocation failures below.
857 *
858 * Must be called with cpuset_rwsem held.
859 *
860 * The three key local variables below are:
861 * cp - cpuset pointer, used (together with pos_css) to perform a
862 * top-down scan of all cpusets. For our purposes, rebuilding
863 * the schedulers sched domains, we can ignore !is_sched_load_
864 * balance cpusets.
865 * csa - (for CpuSet Array) Array of pointers to all the cpusets
866 * that need to be load balanced, for convenient iterative
867 * access by the subsequent code that finds the best partition,
868 * i.e the set of domains (subsets) of CPUs such that the
869 * cpus_allowed of every cpuset marked is_sched_load_balance
870 * is a subset of one of these domains, while there are as
871 * many such domains as possible, each as small as possible.
872 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
873 * the kernel/sched/core.c routine partition_sched_domains() in a
874 * convenient format, that can be easily compared to the prior
875 * value to determine what partition elements (sched domains)
876 * were changed (added or removed.)
877 *
878 * Finding the best partition (set of domains):
879 * The triple nested loops below over i, j, k scan over the
880 * load balanced cpusets (using the array of cpuset pointers in
881 * csa[]) looking for pairs of cpusets that have overlapping
882 * cpus_allowed, but which don't have the same 'pn' partition
883 * number and gives them in the same partition number. It keeps
884 * looping on the 'restart' label until it can no longer find
885 * any such pairs.
886 *
887 * The union of the cpus_allowed masks from the set of
888 * all cpusets having the same 'pn' value then form the one
889 * element of the partition (one sched domain) to be passed to
890 * partition_sched_domains().
891 */
892static int generate_sched_domains(cpumask_var_t **domains,
893 struct sched_domain_attr **attributes)
894{
895 struct cpuset *cp; /* top-down scan of cpusets */
896 struct cpuset **csa; /* array of all cpuset ptrs */
897 int csn; /* how many cpuset ptrs in csa so far */
898 int i, j, k; /* indices for partition finding loops */
899 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
900 struct sched_domain_attr *dattr; /* attributes for custom domains */
901 int ndoms = 0; /* number of sched domains in result */
902 int nslot; /* next empty doms[] struct cpumask slot */
903 struct cgroup_subsys_state *pos_css;
904 bool root_load_balance = is_sched_load_balance(&top_cpuset);
905
906 doms = NULL;
907 dattr = NULL;
908 csa = NULL;
909
910 /* Special case for the 99% of systems with one, full, sched domain */
911 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
912 ndoms = 1;
913 doms = alloc_sched_domains(ndoms);
914 if (!doms)
915 goto done;
916
917 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
918 if (dattr) {
919 *dattr = SD_ATTR_INIT;
920 update_domain_attr_tree(dattr, &top_cpuset);
921 }
922 cpumask_and(doms[0], top_cpuset.effective_cpus,
923 housekeeping_cpumask(HK_TYPE_DOMAIN));
924
925 goto done;
926 }
927
928 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
929 if (!csa)
930 goto done;
931 csn = 0;
932
933 rcu_read_lock();
934 if (root_load_balance)
935 csa[csn++] = &top_cpuset;
936 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
937 if (cp == &top_cpuset)
938 continue;
939 /*
940 * Continue traversing beyond @cp iff @cp has some CPUs and
941 * isn't load balancing. The former is obvious. The
942 * latter: All child cpusets contain a subset of the
943 * parent's cpus, so just skip them, and then we call
944 * update_domain_attr_tree() to calc relax_domain_level of
945 * the corresponding sched domain.
946 *
947 * If root is load-balancing, we can skip @cp if it
948 * is a subset of the root's effective_cpus.
949 */
950 if (!cpumask_empty(cp->cpus_allowed) &&
951 !(is_sched_load_balance(cp) &&
952 cpumask_intersects(cp->cpus_allowed,
953 housekeeping_cpumask(HK_TYPE_DOMAIN))))
954 continue;
955
956 if (root_load_balance &&
957 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
958 continue;
959
960 if (is_sched_load_balance(cp) &&
961 !cpumask_empty(cp->effective_cpus))
962 csa[csn++] = cp;
963
964 /* skip @cp's subtree if not a partition root */
965 if (!is_partition_valid(cp))
966 pos_css = css_rightmost_descendant(pos_css);
967 }
968 rcu_read_unlock();
969
970 for (i = 0; i < csn; i++)
971 csa[i]->pn = i;
972 ndoms = csn;
973
974restart:
975 /* Find the best partition (set of sched domains) */
976 for (i = 0; i < csn; i++) {
977 struct cpuset *a = csa[i];
978 int apn = a->pn;
979
980 for (j = 0; j < csn; j++) {
981 struct cpuset *b = csa[j];
982 int bpn = b->pn;
983
984 if (apn != bpn && cpusets_overlap(a, b)) {
985 for (k = 0; k < csn; k++) {
986 struct cpuset *c = csa[k];
987
988 if (c->pn == bpn)
989 c->pn = apn;
990 }
991 ndoms--; /* one less element */
992 goto restart;
993 }
994 }
995 }
996
997 /*
998 * Now we know how many domains to create.
999 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1000 */
1001 doms = alloc_sched_domains(ndoms);
1002 if (!doms)
1003 goto done;
1004
1005 /*
1006 * The rest of the code, including the scheduler, can deal with
1007 * dattr==NULL case. No need to abort if alloc fails.
1008 */
1009 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1010 GFP_KERNEL);
1011
1012 for (nslot = 0, i = 0; i < csn; i++) {
1013 struct cpuset *a = csa[i];
1014 struct cpumask *dp;
1015 int apn = a->pn;
1016
1017 if (apn < 0) {
1018 /* Skip completed partitions */
1019 continue;
1020 }
1021
1022 dp = doms[nslot];
1023
1024 if (nslot == ndoms) {
1025 static int warnings = 10;
1026 if (warnings) {
1027 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1028 nslot, ndoms, csn, i, apn);
1029 warnings--;
1030 }
1031 continue;
1032 }
1033
1034 cpumask_clear(dp);
1035 if (dattr)
1036 *(dattr + nslot) = SD_ATTR_INIT;
1037 for (j = i; j < csn; j++) {
1038 struct cpuset *b = csa[j];
1039
1040 if (apn == b->pn) {
1041 cpumask_or(dp, dp, b->effective_cpus);
1042 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1043 if (dattr)
1044 update_domain_attr_tree(dattr + nslot, b);
1045
1046 /* Done with this partition */
1047 b->pn = -1;
1048 }
1049 }
1050 nslot++;
1051 }
1052 BUG_ON(nslot != ndoms);
1053
1054done:
1055 kfree(csa);
1056
1057 /*
1058 * Fallback to the default domain if kmalloc() failed.
1059 * See comments in partition_sched_domains().
1060 */
1061 if (doms == NULL)
1062 ndoms = 1;
1063
1064 *domains = doms;
1065 *attributes = dattr;
1066 return ndoms;
1067}
1068
1069static void update_tasks_root_domain(struct cpuset *cs)
1070{
1071 struct css_task_iter it;
1072 struct task_struct *task;
1073
1074 css_task_iter_start(&cs->css, 0, &it);
1075
1076 while ((task = css_task_iter_next(&it)))
1077 dl_add_task_root_domain(task);
1078
1079 css_task_iter_end(&it);
1080}
1081
1082static void rebuild_root_domains(void)
1083{
1084 struct cpuset *cs = NULL;
1085 struct cgroup_subsys_state *pos_css;
1086
1087 percpu_rwsem_assert_held(&cpuset_rwsem);
1088 lockdep_assert_cpus_held();
1089 lockdep_assert_held(&sched_domains_mutex);
1090
1091 rcu_read_lock();
1092
1093 /*
1094 * Clear default root domain DL accounting, it will be computed again
1095 * if a task belongs to it.
1096 */
1097 dl_clear_root_domain(&def_root_domain);
1098
1099 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1100
1101 if (cpumask_empty(cs->effective_cpus)) {
1102 pos_css = css_rightmost_descendant(pos_css);
1103 continue;
1104 }
1105
1106 css_get(&cs->css);
1107
1108 rcu_read_unlock();
1109
1110 update_tasks_root_domain(cs);
1111
1112 rcu_read_lock();
1113 css_put(&cs->css);
1114 }
1115 rcu_read_unlock();
1116}
1117
1118static void
1119partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1120 struct sched_domain_attr *dattr_new)
1121{
1122 mutex_lock(&sched_domains_mutex);
1123 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1124 rebuild_root_domains();
1125 mutex_unlock(&sched_domains_mutex);
1126}
1127
1128/*
1129 * Rebuild scheduler domains.
1130 *
1131 * If the flag 'sched_load_balance' of any cpuset with non-empty
1132 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1133 * which has that flag enabled, or if any cpuset with a non-empty
1134 * 'cpus' is removed, then call this routine to rebuild the
1135 * scheduler's dynamic sched domains.
1136 *
1137 * Call with cpuset_rwsem held. Takes cpus_read_lock().
1138 */
1139static void rebuild_sched_domains_locked(void)
1140{
1141 struct cgroup_subsys_state *pos_css;
1142 struct sched_domain_attr *attr;
1143 cpumask_var_t *doms;
1144 struct cpuset *cs;
1145 int ndoms;
1146
1147 lockdep_assert_cpus_held();
1148 percpu_rwsem_assert_held(&cpuset_rwsem);
1149
1150 /*
1151 * If we have raced with CPU hotplug, return early to avoid
1152 * passing doms with offlined cpu to partition_sched_domains().
1153 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1154 *
1155 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1156 * should be the same as the active CPUs, so checking only top_cpuset
1157 * is enough to detect racing CPU offlines.
1158 */
1159 if (!top_cpuset.nr_subparts_cpus &&
1160 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1161 return;
1162
1163 /*
1164 * With subpartition CPUs, however, the effective CPUs of a partition
1165 * root should be only a subset of the active CPUs. Since a CPU in any
1166 * partition root could be offlined, all must be checked.
1167 */
1168 if (top_cpuset.nr_subparts_cpus) {
1169 rcu_read_lock();
1170 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1171 if (!is_partition_valid(cs)) {
1172 pos_css = css_rightmost_descendant(pos_css);
1173 continue;
1174 }
1175 if (!cpumask_subset(cs->effective_cpus,
1176 cpu_active_mask)) {
1177 rcu_read_unlock();
1178 return;
1179 }
1180 }
1181 rcu_read_unlock();
1182 }
1183
1184 /* Generate domain masks and attrs */
1185 ndoms = generate_sched_domains(&doms, &attr);
1186
1187 /* Have scheduler rebuild the domains */
1188 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1189}
1190#else /* !CONFIG_SMP */
1191static void rebuild_sched_domains_locked(void)
1192{
1193}
1194#endif /* CONFIG_SMP */
1195
1196void rebuild_sched_domains(void)
1197{
1198 cpus_read_lock();
1199 percpu_down_write(&cpuset_rwsem);
1200 rebuild_sched_domains_locked();
1201 percpu_up_write(&cpuset_rwsem);
1202 cpus_read_unlock();
1203}
1204
1205/**
1206 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1207 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1208 * @new_cpus: the temp variable for the new effective_cpus mask
1209 *
1210 * Iterate through each task of @cs updating its cpus_allowed to the
1211 * effective cpuset's. As this function is called with cpuset_rwsem held,
1212 * cpuset membership stays stable.
1213 */
1214static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1215{
1216 struct css_task_iter it;
1217 struct task_struct *task;
1218 bool top_cs = cs == &top_cpuset;
1219
1220 css_task_iter_start(&cs->css, 0, &it);
1221 while ((task = css_task_iter_next(&it))) {
1222 /*
1223 * Percpu kthreads in top_cpuset are ignored
1224 */
1225 if (top_cs && (task->flags & PF_KTHREAD) &&
1226 kthread_is_per_cpu(task))
1227 continue;
1228
1229 cpumask_and(new_cpus, cs->effective_cpus,
1230 task_cpu_possible_mask(task));
1231 set_cpus_allowed_ptr(task, new_cpus);
1232 }
1233 css_task_iter_end(&it);
1234}
1235
1236/**
1237 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1238 * @new_cpus: the temp variable for the new effective_cpus mask
1239 * @cs: the cpuset the need to recompute the new effective_cpus mask
1240 * @parent: the parent cpuset
1241 *
1242 * If the parent has subpartition CPUs, include them in the list of
1243 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1244 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1245 * to mask those out.
1246 */
1247static void compute_effective_cpumask(struct cpumask *new_cpus,
1248 struct cpuset *cs, struct cpuset *parent)
1249{
1250 if (parent->nr_subparts_cpus) {
1251 cpumask_or(new_cpus, parent->effective_cpus,
1252 parent->subparts_cpus);
1253 cpumask_and(new_cpus, new_cpus, cs->cpus_allowed);
1254 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1255 } else {
1256 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1257 }
1258}
1259
1260/*
1261 * Commands for update_parent_subparts_cpumask
1262 */
1263enum subparts_cmd {
1264 partcmd_enable, /* Enable partition root */
1265 partcmd_disable, /* Disable partition root */
1266 partcmd_update, /* Update parent's subparts_cpus */
1267 partcmd_invalidate, /* Make partition invalid */
1268};
1269
1270static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1271 int turning_on);
1272/**
1273 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1274 * @cpuset: The cpuset that requests change in partition root state
1275 * @cmd: Partition root state change command
1276 * @newmask: Optional new cpumask for partcmd_update
1277 * @tmp: Temporary addmask and delmask
1278 * Return: 0 or a partition root state error code
1279 *
1280 * For partcmd_enable, the cpuset is being transformed from a non-partition
1281 * root to a partition root. The cpus_allowed mask of the given cpuset will
1282 * be put into parent's subparts_cpus and taken away from parent's
1283 * effective_cpus. The function will return 0 if all the CPUs listed in
1284 * cpus_allowed can be granted or an error code will be returned.
1285 *
1286 * For partcmd_disable, the cpuset is being transformed from a partition
1287 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1288 * parent's subparts_cpus will be taken away from that cpumask and put back
1289 * into parent's effective_cpus. 0 will always be returned.
1290 *
1291 * For partcmd_update, if the optional newmask is specified, the cpu list is
1292 * to be changed from cpus_allowed to newmask. Otherwise, cpus_allowed is
1293 * assumed to remain the same. The cpuset should either be a valid or invalid
1294 * partition root. The partition root state may change from valid to invalid
1295 * or vice versa. An error code will only be returned if transitioning from
1296 * invalid to valid violates the exclusivity rule.
1297 *
1298 * For partcmd_invalidate, the current partition will be made invalid.
1299 *
1300 * The partcmd_enable and partcmd_disable commands are used by
1301 * update_prstate(). An error code may be returned and the caller will check
1302 * for error.
1303 *
1304 * The partcmd_update command is used by update_cpumasks_hier() with newmask
1305 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1306 * by update_cpumask() with NULL newmask. In both cases, the callers won't
1307 * check for error and so partition_root_state and prs_error will be updated
1308 * directly.
1309 */
1310static int update_parent_subparts_cpumask(struct cpuset *cs, int cmd,
1311 struct cpumask *newmask,
1312 struct tmpmasks *tmp)
1313{
1314 struct cpuset *parent = parent_cs(cs);
1315 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1316 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1317 int old_prs, new_prs;
1318 int part_error = PERR_NONE; /* Partition error? */
1319
1320 percpu_rwsem_assert_held(&cpuset_rwsem);
1321
1322 /*
1323 * The parent must be a partition root.
1324 * The new cpumask, if present, or the current cpus_allowed must
1325 * not be empty.
1326 */
1327 if (!is_partition_valid(parent)) {
1328 return is_partition_invalid(parent)
1329 ? PERR_INVPARENT : PERR_NOTPART;
1330 }
1331 if ((newmask && cpumask_empty(newmask)) ||
1332 (!newmask && cpumask_empty(cs->cpus_allowed)))
1333 return PERR_CPUSEMPTY;
1334
1335 /*
1336 * new_prs will only be changed for the partcmd_update and
1337 * partcmd_invalidate commands.
1338 */
1339 adding = deleting = false;
1340 old_prs = new_prs = cs->partition_root_state;
1341 if (cmd == partcmd_enable) {
1342 /*
1343 * Enabling partition root is not allowed if cpus_allowed
1344 * doesn't overlap parent's cpus_allowed.
1345 */
1346 if (!cpumask_intersects(cs->cpus_allowed, parent->cpus_allowed))
1347 return PERR_INVCPUS;
1348
1349 /*
1350 * A parent can be left with no CPU as long as there is no
1351 * task directly associated with the parent partition.
1352 */
1353 if (cpumask_subset(parent->effective_cpus, cs->cpus_allowed) &&
1354 partition_is_populated(parent, cs))
1355 return PERR_NOCPUS;
1356
1357 cpumask_copy(tmp->addmask, cs->cpus_allowed);
1358 adding = true;
1359 } else if (cmd == partcmd_disable) {
1360 /*
1361 * Need to remove cpus from parent's subparts_cpus for valid
1362 * partition root.
1363 */
1364 deleting = !is_prs_invalid(old_prs) &&
1365 cpumask_and(tmp->delmask, cs->cpus_allowed,
1366 parent->subparts_cpus);
1367 } else if (cmd == partcmd_invalidate) {
1368 if (is_prs_invalid(old_prs))
1369 return 0;
1370
1371 /*
1372 * Make the current partition invalid. It is assumed that
1373 * invalidation is caused by violating cpu exclusivity rule.
1374 */
1375 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1376 parent->subparts_cpus);
1377 if (old_prs > 0) {
1378 new_prs = -old_prs;
1379 part_error = PERR_NOTEXCL;
1380 }
1381 } else if (newmask) {
1382 /*
1383 * partcmd_update with newmask:
1384 *
1385 * Compute add/delete mask to/from subparts_cpus
1386 *
1387 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1388 * addmask = newmask & parent->cpus_allowed
1389 * & ~parent->subparts_cpus
1390 */
1391 cpumask_andnot(tmp->delmask, cs->cpus_allowed, newmask);
1392 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1393 parent->subparts_cpus);
1394
1395 cpumask_and(tmp->addmask, newmask, parent->cpus_allowed);
1396 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1397 parent->subparts_cpus);
1398 /*
1399 * Make partition invalid if parent's effective_cpus could
1400 * become empty and there are tasks in the parent.
1401 */
1402 if (adding &&
1403 cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1404 !cpumask_intersects(tmp->delmask, cpu_active_mask) &&
1405 partition_is_populated(parent, cs)) {
1406 part_error = PERR_NOCPUS;
1407 adding = false;
1408 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1409 parent->subparts_cpus);
1410 }
1411 } else {
1412 /*
1413 * partcmd_update w/o newmask:
1414 *
1415 * delmask = cpus_allowed & parent->subparts_cpus
1416 * addmask = cpus_allowed & parent->cpus_allowed
1417 * & ~parent->subparts_cpus
1418 *
1419 * This gets invoked either due to a hotplug event or from
1420 * update_cpumasks_hier(). This can cause the state of a
1421 * partition root to transition from valid to invalid or vice
1422 * versa. So we still need to compute the addmask and delmask.
1423
1424 * A partition error happens when:
1425 * 1) Cpuset is valid partition, but parent does not distribute
1426 * out any CPUs.
1427 * 2) Parent has tasks and all its effective CPUs will have
1428 * to be distributed out.
1429 */
1430 cpumask_and(tmp->addmask, cs->cpus_allowed,
1431 parent->cpus_allowed);
1432 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1433 parent->subparts_cpus);
1434
1435 if ((is_partition_valid(cs) && !parent->nr_subparts_cpus) ||
1436 (adding &&
1437 cpumask_subset(parent->effective_cpus, tmp->addmask) &&
1438 partition_is_populated(parent, cs))) {
1439 part_error = PERR_NOCPUS;
1440 adding = false;
1441 }
1442
1443 if (part_error && is_partition_valid(cs) &&
1444 parent->nr_subparts_cpus)
1445 deleting = cpumask_and(tmp->delmask, cs->cpus_allowed,
1446 parent->subparts_cpus);
1447 }
1448 if (part_error)
1449 WRITE_ONCE(cs->prs_err, part_error);
1450
1451 if (cmd == partcmd_update) {
1452 /*
1453 * Check for possible transition between valid and invalid
1454 * partition root.
1455 */
1456 switch (cs->partition_root_state) {
1457 case PRS_ROOT:
1458 case PRS_ISOLATED:
1459 if (part_error)
1460 new_prs = -old_prs;
1461 break;
1462 case PRS_INVALID_ROOT:
1463 case PRS_INVALID_ISOLATED:
1464 if (!part_error)
1465 new_prs = -old_prs;
1466 break;
1467 }
1468 }
1469
1470 if (!adding && !deleting && (new_prs == old_prs))
1471 return 0;
1472
1473 /*
1474 * Transitioning between invalid to valid or vice versa may require
1475 * changing CS_CPU_EXCLUSIVE and CS_SCHED_LOAD_BALANCE.
1476 */
1477 if (old_prs != new_prs) {
1478 if (is_prs_invalid(old_prs) && !is_cpu_exclusive(cs) &&
1479 (update_flag(CS_CPU_EXCLUSIVE, cs, 1) < 0))
1480 return PERR_NOTEXCL;
1481 if (is_prs_invalid(new_prs) && is_cpu_exclusive(cs))
1482 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1483 }
1484
1485 /*
1486 * Change the parent's subparts_cpus.
1487 * Newly added CPUs will be removed from effective_cpus and
1488 * newly deleted ones will be added back to effective_cpus.
1489 */
1490 spin_lock_irq(&callback_lock);
1491 if (adding) {
1492 cpumask_or(parent->subparts_cpus,
1493 parent->subparts_cpus, tmp->addmask);
1494 cpumask_andnot(parent->effective_cpus,
1495 parent->effective_cpus, tmp->addmask);
1496 }
1497 if (deleting) {
1498 cpumask_andnot(parent->subparts_cpus,
1499 parent->subparts_cpus, tmp->delmask);
1500 /*
1501 * Some of the CPUs in subparts_cpus might have been offlined.
1502 */
1503 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1504 cpumask_or(parent->effective_cpus,
1505 parent->effective_cpus, tmp->delmask);
1506 }
1507
1508 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1509
1510 if (old_prs != new_prs)
1511 cs->partition_root_state = new_prs;
1512
1513 spin_unlock_irq(&callback_lock);
1514
1515 if (adding || deleting)
1516 update_tasks_cpumask(parent, tmp->new_cpus);
1517
1518 /*
1519 * Set or clear CS_SCHED_LOAD_BALANCE when partcmd_update, if necessary.
1520 * rebuild_sched_domains_locked() may be called.
1521 */
1522 if (old_prs != new_prs) {
1523 if (old_prs == PRS_ISOLATED)
1524 update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
1525 else if (new_prs == PRS_ISOLATED)
1526 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1527 }
1528 notify_partition_change(cs, old_prs);
1529 return 0;
1530}
1531
1532/*
1533 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1534 * @cs: the cpuset to consider
1535 * @tmp: temp variables for calculating effective_cpus & partition setup
1536 * @force: don't skip any descendant cpusets if set
1537 *
1538 * When configured cpumask is changed, the effective cpumasks of this cpuset
1539 * and all its descendants need to be updated.
1540 *
1541 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1542 *
1543 * Called with cpuset_rwsem held
1544 */
1545static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
1546 bool force)
1547{
1548 struct cpuset *cp;
1549 struct cgroup_subsys_state *pos_css;
1550 bool need_rebuild_sched_domains = false;
1551 int old_prs, new_prs;
1552
1553 rcu_read_lock();
1554 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1555 struct cpuset *parent = parent_cs(cp);
1556 bool update_parent = false;
1557
1558 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1559
1560 /*
1561 * If it becomes empty, inherit the effective mask of the
1562 * parent, which is guaranteed to have some CPUs unless
1563 * it is a partition root that has explicitly distributed
1564 * out all its CPUs.
1565 */
1566 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1567 if (is_partition_valid(cp) &&
1568 cpumask_equal(cp->cpus_allowed, cp->subparts_cpus))
1569 goto update_parent_subparts;
1570
1571 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1572 if (!cp->use_parent_ecpus) {
1573 cp->use_parent_ecpus = true;
1574 parent->child_ecpus_count++;
1575 }
1576 } else if (cp->use_parent_ecpus) {
1577 cp->use_parent_ecpus = false;
1578 WARN_ON_ONCE(!parent->child_ecpus_count);
1579 parent->child_ecpus_count--;
1580 }
1581
1582 /*
1583 * Skip the whole subtree if the cpumask remains the same
1584 * and has no partition root state and force flag not set.
1585 */
1586 if (!cp->partition_root_state && !force &&
1587 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1588 pos_css = css_rightmost_descendant(pos_css);
1589 continue;
1590 }
1591
1592update_parent_subparts:
1593 /*
1594 * update_parent_subparts_cpumask() should have been called
1595 * for cs already in update_cpumask(). We should also call
1596 * update_tasks_cpumask() again for tasks in the parent
1597 * cpuset if the parent's subparts_cpus changes.
1598 */
1599 old_prs = new_prs = cp->partition_root_state;
1600 if ((cp != cs) && old_prs) {
1601 switch (parent->partition_root_state) {
1602 case PRS_ROOT:
1603 case PRS_ISOLATED:
1604 update_parent = true;
1605 break;
1606
1607 default:
1608 /*
1609 * When parent is not a partition root or is
1610 * invalid, child partition roots become
1611 * invalid too.
1612 */
1613 if (is_partition_valid(cp))
1614 new_prs = -cp->partition_root_state;
1615 WRITE_ONCE(cp->prs_err,
1616 is_partition_invalid(parent)
1617 ? PERR_INVPARENT : PERR_NOTPART);
1618 break;
1619 }
1620 }
1621
1622 if (!css_tryget_online(&cp->css))
1623 continue;
1624 rcu_read_unlock();
1625
1626 if (update_parent) {
1627 update_parent_subparts_cpumask(cp, partcmd_update, NULL,
1628 tmp);
1629 /*
1630 * The cpuset partition_root_state may become
1631 * invalid. Capture it.
1632 */
1633 new_prs = cp->partition_root_state;
1634 }
1635
1636 spin_lock_irq(&callback_lock);
1637
1638 if (cp->nr_subparts_cpus && !is_partition_valid(cp)) {
1639 /*
1640 * Put all active subparts_cpus back to effective_cpus.
1641 */
1642 cpumask_or(tmp->new_cpus, tmp->new_cpus,
1643 cp->subparts_cpus);
1644 cpumask_and(tmp->new_cpus, tmp->new_cpus,
1645 cpu_active_mask);
1646 cp->nr_subparts_cpus = 0;
1647 cpumask_clear(cp->subparts_cpus);
1648 }
1649
1650 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1651 if (cp->nr_subparts_cpus) {
1652 /*
1653 * Make sure that effective_cpus & subparts_cpus
1654 * are mutually exclusive.
1655 */
1656 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1657 cp->subparts_cpus);
1658 }
1659
1660 cp->partition_root_state = new_prs;
1661 spin_unlock_irq(&callback_lock);
1662
1663 notify_partition_change(cp, old_prs);
1664
1665 WARN_ON(!is_in_v2_mode() &&
1666 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1667
1668 update_tasks_cpumask(cp, tmp->new_cpus);
1669
1670 /*
1671 * On legacy hierarchy, if the effective cpumask of any non-
1672 * empty cpuset is changed, we need to rebuild sched domains.
1673 * On default hierarchy, the cpuset needs to be a partition
1674 * root as well.
1675 */
1676 if (!cpumask_empty(cp->cpus_allowed) &&
1677 is_sched_load_balance(cp) &&
1678 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1679 is_partition_valid(cp)))
1680 need_rebuild_sched_domains = true;
1681
1682 rcu_read_lock();
1683 css_put(&cp->css);
1684 }
1685 rcu_read_unlock();
1686
1687 if (need_rebuild_sched_domains)
1688 rebuild_sched_domains_locked();
1689}
1690
1691/**
1692 * update_sibling_cpumasks - Update siblings cpumasks
1693 * @parent: Parent cpuset
1694 * @cs: Current cpuset
1695 * @tmp: Temp variables
1696 */
1697static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1698 struct tmpmasks *tmp)
1699{
1700 struct cpuset *sibling;
1701 struct cgroup_subsys_state *pos_css;
1702
1703 percpu_rwsem_assert_held(&cpuset_rwsem);
1704
1705 /*
1706 * Check all its siblings and call update_cpumasks_hier()
1707 * if their use_parent_ecpus flag is set in order for them
1708 * to use the right effective_cpus value.
1709 *
1710 * The update_cpumasks_hier() function may sleep. So we have to
1711 * release the RCU read lock before calling it.
1712 */
1713 rcu_read_lock();
1714 cpuset_for_each_child(sibling, pos_css, parent) {
1715 if (sibling == cs)
1716 continue;
1717 if (!sibling->use_parent_ecpus)
1718 continue;
1719 if (!css_tryget_online(&sibling->css))
1720 continue;
1721
1722 rcu_read_unlock();
1723 update_cpumasks_hier(sibling, tmp, false);
1724 rcu_read_lock();
1725 css_put(&sibling->css);
1726 }
1727 rcu_read_unlock();
1728}
1729
1730/**
1731 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1732 * @cs: the cpuset to consider
1733 * @trialcs: trial cpuset
1734 * @buf: buffer of cpu numbers written to this cpuset
1735 */
1736static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1737 const char *buf)
1738{
1739 int retval;
1740 struct tmpmasks tmp;
1741 bool invalidate = false;
1742
1743 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1744 if (cs == &top_cpuset)
1745 return -EACCES;
1746
1747 /*
1748 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1749 * Since cpulist_parse() fails on an empty mask, we special case
1750 * that parsing. The validate_change() call ensures that cpusets
1751 * with tasks have cpus.
1752 */
1753 if (!*buf) {
1754 cpumask_clear(trialcs->cpus_allowed);
1755 } else {
1756 retval = cpulist_parse(buf, trialcs->cpus_allowed);
1757 if (retval < 0)
1758 return retval;
1759
1760 if (!cpumask_subset(trialcs->cpus_allowed,
1761 top_cpuset.cpus_allowed))
1762 return -EINVAL;
1763 }
1764
1765 /* Nothing to do if the cpus didn't change */
1766 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
1767 return 0;
1768
1769#ifdef CONFIG_CPUMASK_OFFSTACK
1770 /*
1771 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1772 * to allocated cpumasks.
1773 */
1774 tmp.addmask = trialcs->subparts_cpus;
1775 tmp.delmask = trialcs->effective_cpus;
1776 tmp.new_cpus = trialcs->cpus_allowed;
1777#endif
1778
1779 retval = validate_change(cs, trialcs);
1780
1781 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1782 struct cpuset *cp, *parent;
1783 struct cgroup_subsys_state *css;
1784
1785 /*
1786 * The -EINVAL error code indicates that partition sibling
1787 * CPU exclusivity rule has been violated. We still allow
1788 * the cpumask change to proceed while invalidating the
1789 * partition. However, any conflicting sibling partitions
1790 * have to be marked as invalid too.
1791 */
1792 invalidate = true;
1793 rcu_read_lock();
1794 parent = parent_cs(cs);
1795 cpuset_for_each_child(cp, css, parent)
1796 if (is_partition_valid(cp) &&
1797 cpumask_intersects(trialcs->cpus_allowed, cp->cpus_allowed)) {
1798 rcu_read_unlock();
1799 update_parent_subparts_cpumask(cp, partcmd_invalidate, NULL, &tmp);
1800 rcu_read_lock();
1801 }
1802 rcu_read_unlock();
1803 retval = 0;
1804 }
1805 if (retval < 0)
1806 return retval;
1807
1808 if (cs->partition_root_state) {
1809 if (invalidate)
1810 update_parent_subparts_cpumask(cs, partcmd_invalidate,
1811 NULL, &tmp);
1812 else
1813 update_parent_subparts_cpumask(cs, partcmd_update,
1814 trialcs->cpus_allowed, &tmp);
1815 }
1816
1817 compute_effective_cpumask(trialcs->effective_cpus, trialcs,
1818 parent_cs(cs));
1819 spin_lock_irq(&callback_lock);
1820 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1821
1822 /*
1823 * Make sure that subparts_cpus, if not empty, is a subset of
1824 * cpus_allowed. Clear subparts_cpus if partition not valid or
1825 * empty effective cpus with tasks.
1826 */
1827 if (cs->nr_subparts_cpus) {
1828 if (!is_partition_valid(cs) ||
1829 (cpumask_subset(trialcs->effective_cpus, cs->subparts_cpus) &&
1830 partition_is_populated(cs, NULL))) {
1831 cs->nr_subparts_cpus = 0;
1832 cpumask_clear(cs->subparts_cpus);
1833 } else {
1834 cpumask_and(cs->subparts_cpus, cs->subparts_cpus,
1835 cs->cpus_allowed);
1836 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1837 }
1838 }
1839 spin_unlock_irq(&callback_lock);
1840
1841 /* effective_cpus will be updated here */
1842 update_cpumasks_hier(cs, &tmp, false);
1843
1844 if (cs->partition_root_state) {
1845 struct cpuset *parent = parent_cs(cs);
1846
1847 /*
1848 * For partition root, update the cpumasks of sibling
1849 * cpusets if they use parent's effective_cpus.
1850 */
1851 if (parent->child_ecpus_count)
1852 update_sibling_cpumasks(parent, cs, &tmp);
1853 }
1854 return 0;
1855}
1856
1857/*
1858 * Migrate memory region from one set of nodes to another. This is
1859 * performed asynchronously as it can be called from process migration path
1860 * holding locks involved in process management. All mm migrations are
1861 * performed in the queued order and can be waited for by flushing
1862 * cpuset_migrate_mm_wq.
1863 */
1864
1865struct cpuset_migrate_mm_work {
1866 struct work_struct work;
1867 struct mm_struct *mm;
1868 nodemask_t from;
1869 nodemask_t to;
1870};
1871
1872static void cpuset_migrate_mm_workfn(struct work_struct *work)
1873{
1874 struct cpuset_migrate_mm_work *mwork =
1875 container_of(work, struct cpuset_migrate_mm_work, work);
1876
1877 /* on a wq worker, no need to worry about %current's mems_allowed */
1878 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1879 mmput(mwork->mm);
1880 kfree(mwork);
1881}
1882
1883static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1884 const nodemask_t *to)
1885{
1886 struct cpuset_migrate_mm_work *mwork;
1887
1888 if (nodes_equal(*from, *to)) {
1889 mmput(mm);
1890 return;
1891 }
1892
1893 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1894 if (mwork) {
1895 mwork->mm = mm;
1896 mwork->from = *from;
1897 mwork->to = *to;
1898 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1899 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1900 } else {
1901 mmput(mm);
1902 }
1903}
1904
1905static void cpuset_post_attach(void)
1906{
1907 flush_workqueue(cpuset_migrate_mm_wq);
1908}
1909
1910/*
1911 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1912 * @tsk: the task to change
1913 * @newmems: new nodes that the task will be set
1914 *
1915 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1916 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1917 * parallel, it might temporarily see an empty intersection, which results in
1918 * a seqlock check and retry before OOM or allocation failure.
1919 */
1920static void cpuset_change_task_nodemask(struct task_struct *tsk,
1921 nodemask_t *newmems)
1922{
1923 task_lock(tsk);
1924
1925 local_irq_disable();
1926 write_seqcount_begin(&tsk->mems_allowed_seq);
1927
1928 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1929 mpol_rebind_task(tsk, newmems);
1930 tsk->mems_allowed = *newmems;
1931
1932 write_seqcount_end(&tsk->mems_allowed_seq);
1933 local_irq_enable();
1934
1935 task_unlock(tsk);
1936}
1937
1938static void *cpuset_being_rebound;
1939
1940/**
1941 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1942 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1943 *
1944 * Iterate through each task of @cs updating its mems_allowed to the
1945 * effective cpuset's. As this function is called with cpuset_rwsem held,
1946 * cpuset membership stays stable.
1947 */
1948static void update_tasks_nodemask(struct cpuset *cs)
1949{
1950 static nodemask_t newmems; /* protected by cpuset_rwsem */
1951 struct css_task_iter it;
1952 struct task_struct *task;
1953
1954 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1955
1956 guarantee_online_mems(cs, &newmems);
1957
1958 /*
1959 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1960 * take while holding tasklist_lock. Forks can happen - the
1961 * mpol_dup() cpuset_being_rebound check will catch such forks,
1962 * and rebind their vma mempolicies too. Because we still hold
1963 * the global cpuset_rwsem, we know that no other rebind effort
1964 * will be contending for the global variable cpuset_being_rebound.
1965 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1966 * is idempotent. Also migrate pages in each mm to new nodes.
1967 */
1968 css_task_iter_start(&cs->css, 0, &it);
1969 while ((task = css_task_iter_next(&it))) {
1970 struct mm_struct *mm;
1971 bool migrate;
1972
1973 cpuset_change_task_nodemask(task, &newmems);
1974
1975 mm = get_task_mm(task);
1976 if (!mm)
1977 continue;
1978
1979 migrate = is_memory_migrate(cs);
1980
1981 mpol_rebind_mm(mm, &cs->mems_allowed);
1982 if (migrate)
1983 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1984 else
1985 mmput(mm);
1986 }
1987 css_task_iter_end(&it);
1988
1989 /*
1990 * All the tasks' nodemasks have been updated, update
1991 * cs->old_mems_allowed.
1992 */
1993 cs->old_mems_allowed = newmems;
1994
1995 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1996 cpuset_being_rebound = NULL;
1997}
1998
1999/*
2000 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2001 * @cs: the cpuset to consider
2002 * @new_mems: a temp variable for calculating new effective_mems
2003 *
2004 * When configured nodemask is changed, the effective nodemasks of this cpuset
2005 * and all its descendants need to be updated.
2006 *
2007 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2008 *
2009 * Called with cpuset_rwsem held
2010 */
2011static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2012{
2013 struct cpuset *cp;
2014 struct cgroup_subsys_state *pos_css;
2015
2016 rcu_read_lock();
2017 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2018 struct cpuset *parent = parent_cs(cp);
2019
2020 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2021
2022 /*
2023 * If it becomes empty, inherit the effective mask of the
2024 * parent, which is guaranteed to have some MEMs.
2025 */
2026 if (is_in_v2_mode() && nodes_empty(*new_mems))
2027 *new_mems = parent->effective_mems;
2028
2029 /* Skip the whole subtree if the nodemask remains the same. */
2030 if (nodes_equal(*new_mems, cp->effective_mems)) {
2031 pos_css = css_rightmost_descendant(pos_css);
2032 continue;
2033 }
2034
2035 if (!css_tryget_online(&cp->css))
2036 continue;
2037 rcu_read_unlock();
2038
2039 spin_lock_irq(&callback_lock);
2040 cp->effective_mems = *new_mems;
2041 spin_unlock_irq(&callback_lock);
2042
2043 WARN_ON(!is_in_v2_mode() &&
2044 !nodes_equal(cp->mems_allowed, cp->effective_mems));
2045
2046 update_tasks_nodemask(cp);
2047
2048 rcu_read_lock();
2049 css_put(&cp->css);
2050 }
2051 rcu_read_unlock();
2052}
2053
2054/*
2055 * Handle user request to change the 'mems' memory placement
2056 * of a cpuset. Needs to validate the request, update the
2057 * cpusets mems_allowed, and for each task in the cpuset,
2058 * update mems_allowed and rebind task's mempolicy and any vma
2059 * mempolicies and if the cpuset is marked 'memory_migrate',
2060 * migrate the tasks pages to the new memory.
2061 *
2062 * Call with cpuset_rwsem held. May take callback_lock during call.
2063 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2064 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2065 * their mempolicies to the cpusets new mems_allowed.
2066 */
2067static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2068 const char *buf)
2069{
2070 int retval;
2071
2072 /*
2073 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2074 * it's read-only
2075 */
2076 if (cs == &top_cpuset) {
2077 retval = -EACCES;
2078 goto done;
2079 }
2080
2081 /*
2082 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2083 * Since nodelist_parse() fails on an empty mask, we special case
2084 * that parsing. The validate_change() call ensures that cpusets
2085 * with tasks have memory.
2086 */
2087 if (!*buf) {
2088 nodes_clear(trialcs->mems_allowed);
2089 } else {
2090 retval = nodelist_parse(buf, trialcs->mems_allowed);
2091 if (retval < 0)
2092 goto done;
2093
2094 if (!nodes_subset(trialcs->mems_allowed,
2095 top_cpuset.mems_allowed)) {
2096 retval = -EINVAL;
2097 goto done;
2098 }
2099 }
2100
2101 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2102 retval = 0; /* Too easy - nothing to do */
2103 goto done;
2104 }
2105 retval = validate_change(cs, trialcs);
2106 if (retval < 0)
2107 goto done;
2108
2109 check_insane_mems_config(&trialcs->mems_allowed);
2110
2111 spin_lock_irq(&callback_lock);
2112 cs->mems_allowed = trialcs->mems_allowed;
2113 spin_unlock_irq(&callback_lock);
2114
2115 /* use trialcs->mems_allowed as a temp variable */
2116 update_nodemasks_hier(cs, &trialcs->mems_allowed);
2117done:
2118 return retval;
2119}
2120
2121bool current_cpuset_is_being_rebound(void)
2122{
2123 bool ret;
2124
2125 rcu_read_lock();
2126 ret = task_cs(current) == cpuset_being_rebound;
2127 rcu_read_unlock();
2128
2129 return ret;
2130}
2131
2132static int update_relax_domain_level(struct cpuset *cs, s64 val)
2133{
2134#ifdef CONFIG_SMP
2135 if (val < -1 || val >= sched_domain_level_max)
2136 return -EINVAL;
2137#endif
2138
2139 if (val != cs->relax_domain_level) {
2140 cs->relax_domain_level = val;
2141 if (!cpumask_empty(cs->cpus_allowed) &&
2142 is_sched_load_balance(cs))
2143 rebuild_sched_domains_locked();
2144 }
2145
2146 return 0;
2147}
2148
2149/**
2150 * update_tasks_flags - update the spread flags of tasks in the cpuset.
2151 * @cs: the cpuset in which each task's spread flags needs to be changed
2152 *
2153 * Iterate through each task of @cs updating its spread flags. As this
2154 * function is called with cpuset_rwsem held, cpuset membership stays
2155 * stable.
2156 */
2157static void update_tasks_flags(struct cpuset *cs)
2158{
2159 struct css_task_iter it;
2160 struct task_struct *task;
2161
2162 css_task_iter_start(&cs->css, 0, &it);
2163 while ((task = css_task_iter_next(&it)))
2164 cpuset_update_task_spread_flags(cs, task);
2165 css_task_iter_end(&it);
2166}
2167
2168/*
2169 * update_flag - read a 0 or a 1 in a file and update associated flag
2170 * bit: the bit to update (see cpuset_flagbits_t)
2171 * cs: the cpuset to update
2172 * turning_on: whether the flag is being set or cleared
2173 *
2174 * Call with cpuset_rwsem held.
2175 */
2176
2177static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2178 int turning_on)
2179{
2180 struct cpuset *trialcs;
2181 int balance_flag_changed;
2182 int spread_flag_changed;
2183 int err;
2184
2185 trialcs = alloc_trial_cpuset(cs);
2186 if (!trialcs)
2187 return -ENOMEM;
2188
2189 if (turning_on)
2190 set_bit(bit, &trialcs->flags);
2191 else
2192 clear_bit(bit, &trialcs->flags);
2193
2194 err = validate_change(cs, trialcs);
2195 if (err < 0)
2196 goto out;
2197
2198 balance_flag_changed = (is_sched_load_balance(cs) !=
2199 is_sched_load_balance(trialcs));
2200
2201 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2202 || (is_spread_page(cs) != is_spread_page(trialcs)));
2203
2204 spin_lock_irq(&callback_lock);
2205 cs->flags = trialcs->flags;
2206 spin_unlock_irq(&callback_lock);
2207
2208 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2209 rebuild_sched_domains_locked();
2210
2211 if (spread_flag_changed)
2212 update_tasks_flags(cs);
2213out:
2214 free_cpuset(trialcs);
2215 return err;
2216}
2217
2218/**
2219 * update_prstate - update partition_root_state
2220 * @cs: the cpuset to update
2221 * @new_prs: new partition root state
2222 * Return: 0 if successful, != 0 if error
2223 *
2224 * Call with cpuset_rwsem held.
2225 */
2226static int update_prstate(struct cpuset *cs, int new_prs)
2227{
2228 int err = PERR_NONE, old_prs = cs->partition_root_state;
2229 bool sched_domain_rebuilt = false;
2230 struct cpuset *parent = parent_cs(cs);
2231 struct tmpmasks tmpmask;
2232
2233 if (old_prs == new_prs)
2234 return 0;
2235
2236 /*
2237 * For a previously invalid partition root, leave it at being
2238 * invalid if new_prs is not "member".
2239 */
2240 if (new_prs && is_prs_invalid(old_prs)) {
2241 cs->partition_root_state = -new_prs;
2242 return 0;
2243 }
2244
2245 if (alloc_cpumasks(NULL, &tmpmask))
2246 return -ENOMEM;
2247
2248 if (!old_prs) {
2249 /*
2250 * Turning on partition root requires setting the
2251 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2252 * cannot be empty.
2253 */
2254 if (cpumask_empty(cs->cpus_allowed)) {
2255 err = PERR_CPUSEMPTY;
2256 goto out;
2257 }
2258
2259 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2260 if (err) {
2261 err = PERR_NOTEXCL;
2262 goto out;
2263 }
2264
2265 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2266 NULL, &tmpmask);
2267 if (err) {
2268 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2269 goto out;
2270 }
2271
2272 if (new_prs == PRS_ISOLATED) {
2273 /*
2274 * Disable the load balance flag should not return an
2275 * error unless the system is running out of memory.
2276 */
2277 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2278 sched_domain_rebuilt = true;
2279 }
2280 } else if (old_prs && new_prs) {
2281 /*
2282 * A change in load balance state only, no change in cpumasks.
2283 */
2284 update_flag(CS_SCHED_LOAD_BALANCE, cs, (new_prs != PRS_ISOLATED));
2285 sched_domain_rebuilt = true;
2286 goto out; /* Sched domain is rebuilt in update_flag() */
2287 } else {
2288 /*
2289 * Switching back to member is always allowed even if it
2290 * disables child partitions.
2291 */
2292 update_parent_subparts_cpumask(cs, partcmd_disable, NULL,
2293 &tmpmask);
2294
2295 /*
2296 * If there are child partitions, they will all become invalid.
2297 */
2298 if (unlikely(cs->nr_subparts_cpus)) {
2299 spin_lock_irq(&callback_lock);
2300 cs->nr_subparts_cpus = 0;
2301 cpumask_clear(cs->subparts_cpus);
2302 compute_effective_cpumask(cs->effective_cpus, cs, parent);
2303 spin_unlock_irq(&callback_lock);
2304 }
2305
2306 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2307 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2308
2309 if (!is_sched_load_balance(cs)) {
2310 /* Make sure load balance is on */
2311 update_flag(CS_SCHED_LOAD_BALANCE, cs, 1);
2312 sched_domain_rebuilt = true;
2313 }
2314 }
2315
2316 update_tasks_cpumask(parent, tmpmask.new_cpus);
2317
2318 if (parent->child_ecpus_count)
2319 update_sibling_cpumasks(parent, cs, &tmpmask);
2320
2321 if (!sched_domain_rebuilt)
2322 rebuild_sched_domains_locked();
2323out:
2324 /*
2325 * Make partition invalid if an error happen
2326 */
2327 if (err)
2328 new_prs = -new_prs;
2329 spin_lock_irq(&callback_lock);
2330 cs->partition_root_state = new_prs;
2331 WRITE_ONCE(cs->prs_err, err);
2332 spin_unlock_irq(&callback_lock);
2333 /*
2334 * Update child cpusets, if present.
2335 * Force update if switching back to member.
2336 */
2337 if (!list_empty(&cs->css.children))
2338 update_cpumasks_hier(cs, &tmpmask, !new_prs);
2339
2340 notify_partition_change(cs, old_prs);
2341 free_cpumasks(NULL, &tmpmask);
2342 return 0;
2343}
2344
2345/*
2346 * Frequency meter - How fast is some event occurring?
2347 *
2348 * These routines manage a digitally filtered, constant time based,
2349 * event frequency meter. There are four routines:
2350 * fmeter_init() - initialize a frequency meter.
2351 * fmeter_markevent() - called each time the event happens.
2352 * fmeter_getrate() - returns the recent rate of such events.
2353 * fmeter_update() - internal routine used to update fmeter.
2354 *
2355 * A common data structure is passed to each of these routines,
2356 * which is used to keep track of the state required to manage the
2357 * frequency meter and its digital filter.
2358 *
2359 * The filter works on the number of events marked per unit time.
2360 * The filter is single-pole low-pass recursive (IIR). The time unit
2361 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2362 * simulate 3 decimal digits of precision (multiplied by 1000).
2363 *
2364 * With an FM_COEF of 933, and a time base of 1 second, the filter
2365 * has a half-life of 10 seconds, meaning that if the events quit
2366 * happening, then the rate returned from the fmeter_getrate()
2367 * will be cut in half each 10 seconds, until it converges to zero.
2368 *
2369 * It is not worth doing a real infinitely recursive filter. If more
2370 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2371 * just compute FM_MAXTICKS ticks worth, by which point the level
2372 * will be stable.
2373 *
2374 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2375 * arithmetic overflow in the fmeter_update() routine.
2376 *
2377 * Given the simple 32 bit integer arithmetic used, this meter works
2378 * best for reporting rates between one per millisecond (msec) and
2379 * one per 32 (approx) seconds. At constant rates faster than one
2380 * per msec it maxes out at values just under 1,000,000. At constant
2381 * rates between one per msec, and one per second it will stabilize
2382 * to a value N*1000, where N is the rate of events per second.
2383 * At constant rates between one per second and one per 32 seconds,
2384 * it will be choppy, moving up on the seconds that have an event,
2385 * and then decaying until the next event. At rates slower than
2386 * about one in 32 seconds, it decays all the way back to zero between
2387 * each event.
2388 */
2389
2390#define FM_COEF 933 /* coefficient for half-life of 10 secs */
2391#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2392#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2393#define FM_SCALE 1000 /* faux fixed point scale */
2394
2395/* Initialize a frequency meter */
2396static void fmeter_init(struct fmeter *fmp)
2397{
2398 fmp->cnt = 0;
2399 fmp->val = 0;
2400 fmp->time = 0;
2401 spin_lock_init(&fmp->lock);
2402}
2403
2404/* Internal meter update - process cnt events and update value */
2405static void fmeter_update(struct fmeter *fmp)
2406{
2407 time64_t now;
2408 u32 ticks;
2409
2410 now = ktime_get_seconds();
2411 ticks = now - fmp->time;
2412
2413 if (ticks == 0)
2414 return;
2415
2416 ticks = min(FM_MAXTICKS, ticks);
2417 while (ticks-- > 0)
2418 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2419 fmp->time = now;
2420
2421 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2422 fmp->cnt = 0;
2423}
2424
2425/* Process any previous ticks, then bump cnt by one (times scale). */
2426static void fmeter_markevent(struct fmeter *fmp)
2427{
2428 spin_lock(&fmp->lock);
2429 fmeter_update(fmp);
2430 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2431 spin_unlock(&fmp->lock);
2432}
2433
2434/* Process any previous ticks, then return current value. */
2435static int fmeter_getrate(struct fmeter *fmp)
2436{
2437 int val;
2438
2439 spin_lock(&fmp->lock);
2440 fmeter_update(fmp);
2441 val = fmp->val;
2442 spin_unlock(&fmp->lock);
2443 return val;
2444}
2445
2446static struct cpuset *cpuset_attach_old_cs;
2447
2448/* Called by cgroups to determine if a cpuset is usable; cpuset_rwsem held */
2449static int cpuset_can_attach(struct cgroup_taskset *tset)
2450{
2451 struct cgroup_subsys_state *css;
2452 struct cpuset *cs;
2453 struct task_struct *task;
2454 int ret;
2455
2456 /* used later by cpuset_attach() */
2457 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2458 cs = css_cs(css);
2459
2460 percpu_down_write(&cpuset_rwsem);
2461
2462 /* allow moving tasks into an empty cpuset if on default hierarchy */
2463 ret = -ENOSPC;
2464 if (!is_in_v2_mode() &&
2465 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2466 goto out_unlock;
2467
2468 /*
2469 * Task cannot be moved to a cpuset with empty effective cpus.
2470 */
2471 if (cpumask_empty(cs->effective_cpus))
2472 goto out_unlock;
2473
2474 cgroup_taskset_for_each(task, css, tset) {
2475 ret = task_can_attach(task, cs->effective_cpus);
2476 if (ret)
2477 goto out_unlock;
2478 ret = security_task_setscheduler(task);
2479 if (ret)
2480 goto out_unlock;
2481 }
2482
2483 /*
2484 * Mark attach is in progress. This makes validate_change() fail
2485 * changes which zero cpus/mems_allowed.
2486 */
2487 cs->attach_in_progress++;
2488 ret = 0;
2489out_unlock:
2490 percpu_up_write(&cpuset_rwsem);
2491 return ret;
2492}
2493
2494static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2495{
2496 struct cgroup_subsys_state *css;
2497
2498 cgroup_taskset_first(tset, &css);
2499
2500 percpu_down_write(&cpuset_rwsem);
2501 css_cs(css)->attach_in_progress--;
2502 percpu_up_write(&cpuset_rwsem);
2503}
2504
2505/*
2506 * Protected by cpuset_rwsem. cpus_attach is used only by cpuset_attach()
2507 * but we can't allocate it dynamically there. Define it global and
2508 * allocate from cpuset_init().
2509 */
2510static cpumask_var_t cpus_attach;
2511
2512static void cpuset_attach(struct cgroup_taskset *tset)
2513{
2514 /* static buf protected by cpuset_rwsem */
2515 static nodemask_t cpuset_attach_nodemask_to;
2516 struct task_struct *task;
2517 struct task_struct *leader;
2518 struct cgroup_subsys_state *css;
2519 struct cpuset *cs;
2520 struct cpuset *oldcs = cpuset_attach_old_cs;
2521 bool cpus_updated, mems_updated;
2522
2523 cgroup_taskset_first(tset, &css);
2524 cs = css_cs(css);
2525
2526 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2527 percpu_down_write(&cpuset_rwsem);
2528 cpus_updated = !cpumask_equal(cs->effective_cpus,
2529 oldcs->effective_cpus);
2530 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
2531
2532 /*
2533 * In the default hierarchy, enabling cpuset in the child cgroups
2534 * will trigger a number of cpuset_attach() calls with no change
2535 * in effective cpus and mems. In that case, we can optimize out
2536 * by skipping the task iteration and update.
2537 */
2538 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2539 !cpus_updated && !mems_updated) {
2540 cpuset_attach_nodemask_to = cs->effective_mems;
2541 goto out;
2542 }
2543
2544 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2545
2546 cgroup_taskset_for_each(task, css, tset) {
2547 if (cs != &top_cpuset)
2548 guarantee_online_cpus(task, cpus_attach);
2549 else
2550 cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2551 /*
2552 * can_attach beforehand should guarantee that this doesn't
2553 * fail. TODO: have a better way to handle failure here
2554 */
2555 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
2556
2557 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2558 cpuset_update_task_spread_flags(cs, task);
2559 }
2560
2561 /*
2562 * Change mm for all threadgroup leaders. This is expensive and may
2563 * sleep and should be moved outside migration path proper. Skip it
2564 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
2565 * not set.
2566 */
2567 cpuset_attach_nodemask_to = cs->effective_mems;
2568 if (!is_memory_migrate(cs) && !mems_updated)
2569 goto out;
2570
2571 cgroup_taskset_for_each_leader(leader, css, tset) {
2572 struct mm_struct *mm = get_task_mm(leader);
2573
2574 if (mm) {
2575 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2576
2577 /*
2578 * old_mems_allowed is the same with mems_allowed
2579 * here, except if this task is being moved
2580 * automatically due to hotplug. In that case
2581 * @mems_allowed has been updated and is empty, so
2582 * @old_mems_allowed is the right nodesets that we
2583 * migrate mm from.
2584 */
2585 if (is_memory_migrate(cs))
2586 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2587 &cpuset_attach_nodemask_to);
2588 else
2589 mmput(mm);
2590 }
2591 }
2592
2593out:
2594 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2595
2596 cs->attach_in_progress--;
2597 if (!cs->attach_in_progress)
2598 wake_up(&cpuset_attach_wq);
2599
2600 percpu_up_write(&cpuset_rwsem);
2601}
2602
2603/* The various types of files and directories in a cpuset file system */
2604
2605typedef enum {
2606 FILE_MEMORY_MIGRATE,
2607 FILE_CPULIST,
2608 FILE_MEMLIST,
2609 FILE_EFFECTIVE_CPULIST,
2610 FILE_EFFECTIVE_MEMLIST,
2611 FILE_SUBPARTS_CPULIST,
2612 FILE_CPU_EXCLUSIVE,
2613 FILE_MEM_EXCLUSIVE,
2614 FILE_MEM_HARDWALL,
2615 FILE_SCHED_LOAD_BALANCE,
2616 FILE_PARTITION_ROOT,
2617 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2618 FILE_MEMORY_PRESSURE_ENABLED,
2619 FILE_MEMORY_PRESSURE,
2620 FILE_SPREAD_PAGE,
2621 FILE_SPREAD_SLAB,
2622} cpuset_filetype_t;
2623
2624static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2625 u64 val)
2626{
2627 struct cpuset *cs = css_cs(css);
2628 cpuset_filetype_t type = cft->private;
2629 int retval = 0;
2630
2631 cpus_read_lock();
2632 percpu_down_write(&cpuset_rwsem);
2633 if (!is_cpuset_online(cs)) {
2634 retval = -ENODEV;
2635 goto out_unlock;
2636 }
2637
2638 switch (type) {
2639 case FILE_CPU_EXCLUSIVE:
2640 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2641 break;
2642 case FILE_MEM_EXCLUSIVE:
2643 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2644 break;
2645 case FILE_MEM_HARDWALL:
2646 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2647 break;
2648 case FILE_SCHED_LOAD_BALANCE:
2649 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2650 break;
2651 case FILE_MEMORY_MIGRATE:
2652 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2653 break;
2654 case FILE_MEMORY_PRESSURE_ENABLED:
2655 cpuset_memory_pressure_enabled = !!val;
2656 break;
2657 case FILE_SPREAD_PAGE:
2658 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2659 break;
2660 case FILE_SPREAD_SLAB:
2661 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2662 break;
2663 default:
2664 retval = -EINVAL;
2665 break;
2666 }
2667out_unlock:
2668 percpu_up_write(&cpuset_rwsem);
2669 cpus_read_unlock();
2670 return retval;
2671}
2672
2673static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2674 s64 val)
2675{
2676 struct cpuset *cs = css_cs(css);
2677 cpuset_filetype_t type = cft->private;
2678 int retval = -ENODEV;
2679
2680 cpus_read_lock();
2681 percpu_down_write(&cpuset_rwsem);
2682 if (!is_cpuset_online(cs))
2683 goto out_unlock;
2684
2685 switch (type) {
2686 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2687 retval = update_relax_domain_level(cs, val);
2688 break;
2689 default:
2690 retval = -EINVAL;
2691 break;
2692 }
2693out_unlock:
2694 percpu_up_write(&cpuset_rwsem);
2695 cpus_read_unlock();
2696 return retval;
2697}
2698
2699/*
2700 * Common handling for a write to a "cpus" or "mems" file.
2701 */
2702static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2703 char *buf, size_t nbytes, loff_t off)
2704{
2705 struct cpuset *cs = css_cs(of_css(of));
2706 struct cpuset *trialcs;
2707 int retval = -ENODEV;
2708
2709 buf = strstrip(buf);
2710
2711 /*
2712 * CPU or memory hotunplug may leave @cs w/o any execution
2713 * resources, in which case the hotplug code asynchronously updates
2714 * configuration and transfers all tasks to the nearest ancestor
2715 * which can execute.
2716 *
2717 * As writes to "cpus" or "mems" may restore @cs's execution
2718 * resources, wait for the previously scheduled operations before
2719 * proceeding, so that we don't end up keep removing tasks added
2720 * after execution capability is restored.
2721 *
2722 * cpuset_hotplug_work calls back into cgroup core via
2723 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2724 * operation like this one can lead to a deadlock through kernfs
2725 * active_ref protection. Let's break the protection. Losing the
2726 * protection is okay as we check whether @cs is online after
2727 * grabbing cpuset_rwsem anyway. This only happens on the legacy
2728 * hierarchies.
2729 */
2730 css_get(&cs->css);
2731 kernfs_break_active_protection(of->kn);
2732 flush_work(&cpuset_hotplug_work);
2733
2734 cpus_read_lock();
2735 percpu_down_write(&cpuset_rwsem);
2736 if (!is_cpuset_online(cs))
2737 goto out_unlock;
2738
2739 trialcs = alloc_trial_cpuset(cs);
2740 if (!trialcs) {
2741 retval = -ENOMEM;
2742 goto out_unlock;
2743 }
2744
2745 switch (of_cft(of)->private) {
2746 case FILE_CPULIST:
2747 retval = update_cpumask(cs, trialcs, buf);
2748 break;
2749 case FILE_MEMLIST:
2750 retval = update_nodemask(cs, trialcs, buf);
2751 break;
2752 default:
2753 retval = -EINVAL;
2754 break;
2755 }
2756
2757 free_cpuset(trialcs);
2758out_unlock:
2759 percpu_up_write(&cpuset_rwsem);
2760 cpus_read_unlock();
2761 kernfs_unbreak_active_protection(of->kn);
2762 css_put(&cs->css);
2763 flush_workqueue(cpuset_migrate_mm_wq);
2764 return retval ?: nbytes;
2765}
2766
2767/*
2768 * These ascii lists should be read in a single call, by using a user
2769 * buffer large enough to hold the entire map. If read in smaller
2770 * chunks, there is no guarantee of atomicity. Since the display format
2771 * used, list of ranges of sequential numbers, is variable length,
2772 * and since these maps can change value dynamically, one could read
2773 * gibberish by doing partial reads while a list was changing.
2774 */
2775static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2776{
2777 struct cpuset *cs = css_cs(seq_css(sf));
2778 cpuset_filetype_t type = seq_cft(sf)->private;
2779 int ret = 0;
2780
2781 spin_lock_irq(&callback_lock);
2782
2783 switch (type) {
2784 case FILE_CPULIST:
2785 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
2786 break;
2787 case FILE_MEMLIST:
2788 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2789 break;
2790 case FILE_EFFECTIVE_CPULIST:
2791 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2792 break;
2793 case FILE_EFFECTIVE_MEMLIST:
2794 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2795 break;
2796 case FILE_SUBPARTS_CPULIST:
2797 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2798 break;
2799 default:
2800 ret = -EINVAL;
2801 }
2802
2803 spin_unlock_irq(&callback_lock);
2804 return ret;
2805}
2806
2807static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2808{
2809 struct cpuset *cs = css_cs(css);
2810 cpuset_filetype_t type = cft->private;
2811 switch (type) {
2812 case FILE_CPU_EXCLUSIVE:
2813 return is_cpu_exclusive(cs);
2814 case FILE_MEM_EXCLUSIVE:
2815 return is_mem_exclusive(cs);
2816 case FILE_MEM_HARDWALL:
2817 return is_mem_hardwall(cs);
2818 case FILE_SCHED_LOAD_BALANCE:
2819 return is_sched_load_balance(cs);
2820 case FILE_MEMORY_MIGRATE:
2821 return is_memory_migrate(cs);
2822 case FILE_MEMORY_PRESSURE_ENABLED:
2823 return cpuset_memory_pressure_enabled;
2824 case FILE_MEMORY_PRESSURE:
2825 return fmeter_getrate(&cs->fmeter);
2826 case FILE_SPREAD_PAGE:
2827 return is_spread_page(cs);
2828 case FILE_SPREAD_SLAB:
2829 return is_spread_slab(cs);
2830 default:
2831 BUG();
2832 }
2833
2834 /* Unreachable but makes gcc happy */
2835 return 0;
2836}
2837
2838static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2839{
2840 struct cpuset *cs = css_cs(css);
2841 cpuset_filetype_t type = cft->private;
2842 switch (type) {
2843 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2844 return cs->relax_domain_level;
2845 default:
2846 BUG();
2847 }
2848
2849 /* Unreachable but makes gcc happy */
2850 return 0;
2851}
2852
2853static int sched_partition_show(struct seq_file *seq, void *v)
2854{
2855 struct cpuset *cs = css_cs(seq_css(seq));
2856 const char *err, *type = NULL;
2857
2858 switch (cs->partition_root_state) {
2859 case PRS_ROOT:
2860 seq_puts(seq, "root\n");
2861 break;
2862 case PRS_ISOLATED:
2863 seq_puts(seq, "isolated\n");
2864 break;
2865 case PRS_MEMBER:
2866 seq_puts(seq, "member\n");
2867 break;
2868 case PRS_INVALID_ROOT:
2869 type = "root";
2870 fallthrough;
2871 case PRS_INVALID_ISOLATED:
2872 if (!type)
2873 type = "isolated";
2874 err = perr_strings[READ_ONCE(cs->prs_err)];
2875 if (err)
2876 seq_printf(seq, "%s invalid (%s)\n", type, err);
2877 else
2878 seq_printf(seq, "%s invalid\n", type);
2879 break;
2880 }
2881 return 0;
2882}
2883
2884static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2885 size_t nbytes, loff_t off)
2886{
2887 struct cpuset *cs = css_cs(of_css(of));
2888 int val;
2889 int retval = -ENODEV;
2890
2891 buf = strstrip(buf);
2892
2893 /*
2894 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2895 */
2896 if (!strcmp(buf, "root"))
2897 val = PRS_ROOT;
2898 else if (!strcmp(buf, "member"))
2899 val = PRS_MEMBER;
2900 else if (!strcmp(buf, "isolated"))
2901 val = PRS_ISOLATED;
2902 else
2903 return -EINVAL;
2904
2905 css_get(&cs->css);
2906 cpus_read_lock();
2907 percpu_down_write(&cpuset_rwsem);
2908 if (!is_cpuset_online(cs))
2909 goto out_unlock;
2910
2911 retval = update_prstate(cs, val);
2912out_unlock:
2913 percpu_up_write(&cpuset_rwsem);
2914 cpus_read_unlock();
2915 css_put(&cs->css);
2916 return retval ?: nbytes;
2917}
2918
2919/*
2920 * for the common functions, 'private' gives the type of file
2921 */
2922
2923static struct cftype legacy_files[] = {
2924 {
2925 .name = "cpus",
2926 .seq_show = cpuset_common_seq_show,
2927 .write = cpuset_write_resmask,
2928 .max_write_len = (100U + 6 * NR_CPUS),
2929 .private = FILE_CPULIST,
2930 },
2931
2932 {
2933 .name = "mems",
2934 .seq_show = cpuset_common_seq_show,
2935 .write = cpuset_write_resmask,
2936 .max_write_len = (100U + 6 * MAX_NUMNODES),
2937 .private = FILE_MEMLIST,
2938 },
2939
2940 {
2941 .name = "effective_cpus",
2942 .seq_show = cpuset_common_seq_show,
2943 .private = FILE_EFFECTIVE_CPULIST,
2944 },
2945
2946 {
2947 .name = "effective_mems",
2948 .seq_show = cpuset_common_seq_show,
2949 .private = FILE_EFFECTIVE_MEMLIST,
2950 },
2951
2952 {
2953 .name = "cpu_exclusive",
2954 .read_u64 = cpuset_read_u64,
2955 .write_u64 = cpuset_write_u64,
2956 .private = FILE_CPU_EXCLUSIVE,
2957 },
2958
2959 {
2960 .name = "mem_exclusive",
2961 .read_u64 = cpuset_read_u64,
2962 .write_u64 = cpuset_write_u64,
2963 .private = FILE_MEM_EXCLUSIVE,
2964 },
2965
2966 {
2967 .name = "mem_hardwall",
2968 .read_u64 = cpuset_read_u64,
2969 .write_u64 = cpuset_write_u64,
2970 .private = FILE_MEM_HARDWALL,
2971 },
2972
2973 {
2974 .name = "sched_load_balance",
2975 .read_u64 = cpuset_read_u64,
2976 .write_u64 = cpuset_write_u64,
2977 .private = FILE_SCHED_LOAD_BALANCE,
2978 },
2979
2980 {
2981 .name = "sched_relax_domain_level",
2982 .read_s64 = cpuset_read_s64,
2983 .write_s64 = cpuset_write_s64,
2984 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2985 },
2986
2987 {
2988 .name = "memory_migrate",
2989 .read_u64 = cpuset_read_u64,
2990 .write_u64 = cpuset_write_u64,
2991 .private = FILE_MEMORY_MIGRATE,
2992 },
2993
2994 {
2995 .name = "memory_pressure",
2996 .read_u64 = cpuset_read_u64,
2997 .private = FILE_MEMORY_PRESSURE,
2998 },
2999
3000 {
3001 .name = "memory_spread_page",
3002 .read_u64 = cpuset_read_u64,
3003 .write_u64 = cpuset_write_u64,
3004 .private = FILE_SPREAD_PAGE,
3005 },
3006
3007 {
3008 .name = "memory_spread_slab",
3009 .read_u64 = cpuset_read_u64,
3010 .write_u64 = cpuset_write_u64,
3011 .private = FILE_SPREAD_SLAB,
3012 },
3013
3014 {
3015 .name = "memory_pressure_enabled",
3016 .flags = CFTYPE_ONLY_ON_ROOT,
3017 .read_u64 = cpuset_read_u64,
3018 .write_u64 = cpuset_write_u64,
3019 .private = FILE_MEMORY_PRESSURE_ENABLED,
3020 },
3021
3022 { } /* terminate */
3023};
3024
3025/*
3026 * This is currently a minimal set for the default hierarchy. It can be
3027 * expanded later on by migrating more features and control files from v1.
3028 */
3029static struct cftype dfl_files[] = {
3030 {
3031 .name = "cpus",
3032 .seq_show = cpuset_common_seq_show,
3033 .write = cpuset_write_resmask,
3034 .max_write_len = (100U + 6 * NR_CPUS),
3035 .private = FILE_CPULIST,
3036 .flags = CFTYPE_NOT_ON_ROOT,
3037 },
3038
3039 {
3040 .name = "mems",
3041 .seq_show = cpuset_common_seq_show,
3042 .write = cpuset_write_resmask,
3043 .max_write_len = (100U + 6 * MAX_NUMNODES),
3044 .private = FILE_MEMLIST,
3045 .flags = CFTYPE_NOT_ON_ROOT,
3046 },
3047
3048 {
3049 .name = "cpus.effective",
3050 .seq_show = cpuset_common_seq_show,
3051 .private = FILE_EFFECTIVE_CPULIST,
3052 },
3053
3054 {
3055 .name = "mems.effective",
3056 .seq_show = cpuset_common_seq_show,
3057 .private = FILE_EFFECTIVE_MEMLIST,
3058 },
3059
3060 {
3061 .name = "cpus.partition",
3062 .seq_show = sched_partition_show,
3063 .write = sched_partition_write,
3064 .private = FILE_PARTITION_ROOT,
3065 .flags = CFTYPE_NOT_ON_ROOT,
3066 .file_offset = offsetof(struct cpuset, partition_file),
3067 },
3068
3069 {
3070 .name = "cpus.subpartitions",
3071 .seq_show = cpuset_common_seq_show,
3072 .private = FILE_SUBPARTS_CPULIST,
3073 .flags = CFTYPE_DEBUG,
3074 },
3075
3076 { } /* terminate */
3077};
3078
3079
3080/**
3081 * cpuset_css_alloc - Allocate a cpuset css
3082 * @parent_css: Parent css of the control group that the new cpuset will be
3083 * part of
3084 * Return: cpuset css on success, -ENOMEM on failure.
3085 *
3086 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
3087 * top cpuset css otherwise.
3088 */
3089static struct cgroup_subsys_state *
3090cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
3091{
3092 struct cpuset *cs;
3093
3094 if (!parent_css)
3095 return &top_cpuset.css;
3096
3097 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
3098 if (!cs)
3099 return ERR_PTR(-ENOMEM);
3100
3101 if (alloc_cpumasks(cs, NULL)) {
3102 kfree(cs);
3103 return ERR_PTR(-ENOMEM);
3104 }
3105
3106 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
3107 nodes_clear(cs->mems_allowed);
3108 nodes_clear(cs->effective_mems);
3109 fmeter_init(&cs->fmeter);
3110 cs->relax_domain_level = -1;
3111
3112 /* Set CS_MEMORY_MIGRATE for default hierarchy */
3113 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
3114 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
3115
3116 return &cs->css;
3117}
3118
3119static int cpuset_css_online(struct cgroup_subsys_state *css)
3120{
3121 struct cpuset *cs = css_cs(css);
3122 struct cpuset *parent = parent_cs(cs);
3123 struct cpuset *tmp_cs;
3124 struct cgroup_subsys_state *pos_css;
3125
3126 if (!parent)
3127 return 0;
3128
3129 cpus_read_lock();
3130 percpu_down_write(&cpuset_rwsem);
3131
3132 set_bit(CS_ONLINE, &cs->flags);
3133 if (is_spread_page(parent))
3134 set_bit(CS_SPREAD_PAGE, &cs->flags);
3135 if (is_spread_slab(parent))
3136 set_bit(CS_SPREAD_SLAB, &cs->flags);
3137
3138 cpuset_inc();
3139
3140 spin_lock_irq(&callback_lock);
3141 if (is_in_v2_mode()) {
3142 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
3143 cs->effective_mems = parent->effective_mems;
3144 cs->use_parent_ecpus = true;
3145 parent->child_ecpus_count++;
3146 }
3147 spin_unlock_irq(&callback_lock);
3148
3149 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
3150 goto out_unlock;
3151
3152 /*
3153 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
3154 * set. This flag handling is implemented in cgroup core for
3155 * historical reasons - the flag may be specified during mount.
3156 *
3157 * Currently, if any sibling cpusets have exclusive cpus or mem, we
3158 * refuse to clone the configuration - thereby refusing the task to
3159 * be entered, and as a result refusing the sys_unshare() or
3160 * clone() which initiated it. If this becomes a problem for some
3161 * users who wish to allow that scenario, then this could be
3162 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
3163 * (and likewise for mems) to the new cgroup.
3164 */
3165 rcu_read_lock();
3166 cpuset_for_each_child(tmp_cs, pos_css, parent) {
3167 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
3168 rcu_read_unlock();
3169 goto out_unlock;
3170 }
3171 }
3172 rcu_read_unlock();
3173
3174 spin_lock_irq(&callback_lock);
3175 cs->mems_allowed = parent->mems_allowed;
3176 cs->effective_mems = parent->mems_allowed;
3177 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
3178 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
3179 spin_unlock_irq(&callback_lock);
3180out_unlock:
3181 percpu_up_write(&cpuset_rwsem);
3182 cpus_read_unlock();
3183 return 0;
3184}
3185
3186/*
3187 * If the cpuset being removed has its flag 'sched_load_balance'
3188 * enabled, then simulate turning sched_load_balance off, which
3189 * will call rebuild_sched_domains_locked(). That is not needed
3190 * in the default hierarchy where only changes in partition
3191 * will cause repartitioning.
3192 *
3193 * If the cpuset has the 'sched.partition' flag enabled, simulate
3194 * turning 'sched.partition" off.
3195 */
3196
3197static void cpuset_css_offline(struct cgroup_subsys_state *css)
3198{
3199 struct cpuset *cs = css_cs(css);
3200
3201 cpus_read_lock();
3202 percpu_down_write(&cpuset_rwsem);
3203
3204 if (is_partition_valid(cs))
3205 update_prstate(cs, 0);
3206
3207 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3208 is_sched_load_balance(cs))
3209 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3210
3211 if (cs->use_parent_ecpus) {
3212 struct cpuset *parent = parent_cs(cs);
3213
3214 cs->use_parent_ecpus = false;
3215 parent->child_ecpus_count--;
3216 }
3217
3218 cpuset_dec();
3219 clear_bit(CS_ONLINE, &cs->flags);
3220
3221 percpu_up_write(&cpuset_rwsem);
3222 cpus_read_unlock();
3223}
3224
3225static void cpuset_css_free(struct cgroup_subsys_state *css)
3226{
3227 struct cpuset *cs = css_cs(css);
3228
3229 free_cpuset(cs);
3230}
3231
3232static void cpuset_bind(struct cgroup_subsys_state *root_css)
3233{
3234 percpu_down_write(&cpuset_rwsem);
3235 spin_lock_irq(&callback_lock);
3236
3237 if (is_in_v2_mode()) {
3238 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3239 top_cpuset.mems_allowed = node_possible_map;
3240 } else {
3241 cpumask_copy(top_cpuset.cpus_allowed,
3242 top_cpuset.effective_cpus);
3243 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3244 }
3245
3246 spin_unlock_irq(&callback_lock);
3247 percpu_up_write(&cpuset_rwsem);
3248}
3249
3250/*
3251 * Make sure the new task conform to the current state of its parent,
3252 * which could have been changed by cpuset just after it inherits the
3253 * state from the parent and before it sits on the cgroup's task list.
3254 */
3255static void cpuset_fork(struct task_struct *task)
3256{
3257 if (task_css_is_root(task, cpuset_cgrp_id))
3258 return;
3259
3260 set_cpus_allowed_ptr(task, current->cpus_ptr);
3261 task->mems_allowed = current->mems_allowed;
3262}
3263
3264struct cgroup_subsys cpuset_cgrp_subsys = {
3265 .css_alloc = cpuset_css_alloc,
3266 .css_online = cpuset_css_online,
3267 .css_offline = cpuset_css_offline,
3268 .css_free = cpuset_css_free,
3269 .can_attach = cpuset_can_attach,
3270 .cancel_attach = cpuset_cancel_attach,
3271 .attach = cpuset_attach,
3272 .post_attach = cpuset_post_attach,
3273 .bind = cpuset_bind,
3274 .fork = cpuset_fork,
3275 .legacy_cftypes = legacy_files,
3276 .dfl_cftypes = dfl_files,
3277 .early_init = true,
3278 .threaded = true,
3279};
3280
3281/**
3282 * cpuset_init - initialize cpusets at system boot
3283 *
3284 * Description: Initialize top_cpuset
3285 **/
3286
3287int __init cpuset_init(void)
3288{
3289 BUG_ON(percpu_init_rwsem(&cpuset_rwsem));
3290
3291 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3292 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3293 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3294
3295 cpumask_setall(top_cpuset.cpus_allowed);
3296 nodes_setall(top_cpuset.mems_allowed);
3297 cpumask_setall(top_cpuset.effective_cpus);
3298 nodes_setall(top_cpuset.effective_mems);
3299
3300 fmeter_init(&top_cpuset.fmeter);
3301 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3302 top_cpuset.relax_domain_level = -1;
3303
3304 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3305
3306 return 0;
3307}
3308
3309/*
3310 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3311 * or memory nodes, we need to walk over the cpuset hierarchy,
3312 * removing that CPU or node from all cpusets. If this removes the
3313 * last CPU or node from a cpuset, then move the tasks in the empty
3314 * cpuset to its next-highest non-empty parent.
3315 */
3316static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3317{
3318 struct cpuset *parent;
3319
3320 /*
3321 * Find its next-highest non-empty parent, (top cpuset
3322 * has online cpus, so can't be empty).
3323 */
3324 parent = parent_cs(cs);
3325 while (cpumask_empty(parent->cpus_allowed) ||
3326 nodes_empty(parent->mems_allowed))
3327 parent = parent_cs(parent);
3328
3329 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3330 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3331 pr_cont_cgroup_name(cs->css.cgroup);
3332 pr_cont("\n");
3333 }
3334}
3335
3336static void
3337hotplug_update_tasks_legacy(struct cpuset *cs,
3338 struct cpumask *new_cpus, nodemask_t *new_mems,
3339 bool cpus_updated, bool mems_updated)
3340{
3341 bool is_empty;
3342
3343 spin_lock_irq(&callback_lock);
3344 cpumask_copy(cs->cpus_allowed, new_cpus);
3345 cpumask_copy(cs->effective_cpus, new_cpus);
3346 cs->mems_allowed = *new_mems;
3347 cs->effective_mems = *new_mems;
3348 spin_unlock_irq(&callback_lock);
3349
3350 /*
3351 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3352 * as the tasks will be migrated to an ancestor.
3353 */
3354 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3355 update_tasks_cpumask(cs, new_cpus);
3356 if (mems_updated && !nodes_empty(cs->mems_allowed))
3357 update_tasks_nodemask(cs);
3358
3359 is_empty = cpumask_empty(cs->cpus_allowed) ||
3360 nodes_empty(cs->mems_allowed);
3361
3362 percpu_up_write(&cpuset_rwsem);
3363
3364 /*
3365 * Move tasks to the nearest ancestor with execution resources,
3366 * This is full cgroup operation which will also call back into
3367 * cpuset. Should be done outside any lock.
3368 */
3369 if (is_empty)
3370 remove_tasks_in_empty_cpuset(cs);
3371
3372 percpu_down_write(&cpuset_rwsem);
3373}
3374
3375static void
3376hotplug_update_tasks(struct cpuset *cs,
3377 struct cpumask *new_cpus, nodemask_t *new_mems,
3378 bool cpus_updated, bool mems_updated)
3379{
3380 /* A partition root is allowed to have empty effective cpus */
3381 if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
3382 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3383 if (nodes_empty(*new_mems))
3384 *new_mems = parent_cs(cs)->effective_mems;
3385
3386 spin_lock_irq(&callback_lock);
3387 cpumask_copy(cs->effective_cpus, new_cpus);
3388 cs->effective_mems = *new_mems;
3389 spin_unlock_irq(&callback_lock);
3390
3391 if (cpus_updated)
3392 update_tasks_cpumask(cs, new_cpus);
3393 if (mems_updated)
3394 update_tasks_nodemask(cs);
3395}
3396
3397static bool force_rebuild;
3398
3399void cpuset_force_rebuild(void)
3400{
3401 force_rebuild = true;
3402}
3403
3404/**
3405 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3406 * @cs: cpuset in interest
3407 * @tmp: the tmpmasks structure pointer
3408 *
3409 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3410 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3411 * all its tasks are moved to the nearest ancestor with both resources.
3412 */
3413static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3414{
3415 static cpumask_t new_cpus;
3416 static nodemask_t new_mems;
3417 bool cpus_updated;
3418 bool mems_updated;
3419 struct cpuset *parent;
3420retry:
3421 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3422
3423 percpu_down_write(&cpuset_rwsem);
3424
3425 /*
3426 * We have raced with task attaching. We wait until attaching
3427 * is finished, so we won't attach a task to an empty cpuset.
3428 */
3429 if (cs->attach_in_progress) {
3430 percpu_up_write(&cpuset_rwsem);
3431 goto retry;
3432 }
3433
3434 parent = parent_cs(cs);
3435 compute_effective_cpumask(&new_cpus, cs, parent);
3436 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3437
3438 if (cs->nr_subparts_cpus)
3439 /*
3440 * Make sure that CPUs allocated to child partitions
3441 * do not show up in effective_cpus.
3442 */
3443 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3444
3445 if (!tmp || !cs->partition_root_state)
3446 goto update_tasks;
3447
3448 /*
3449 * In the unlikely event that a partition root has empty
3450 * effective_cpus with tasks, we will have to invalidate child
3451 * partitions, if present, by setting nr_subparts_cpus to 0 to
3452 * reclaim their cpus.
3453 */
3454 if (cs->nr_subparts_cpus && is_partition_valid(cs) &&
3455 cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)) {
3456 spin_lock_irq(&callback_lock);
3457 cs->nr_subparts_cpus = 0;
3458 cpumask_clear(cs->subparts_cpus);
3459 spin_unlock_irq(&callback_lock);
3460 compute_effective_cpumask(&new_cpus, cs, parent);
3461 }
3462
3463 /*
3464 * Force the partition to become invalid if either one of
3465 * the following conditions hold:
3466 * 1) empty effective cpus but not valid empty partition.
3467 * 2) parent is invalid or doesn't grant any cpus to child
3468 * partitions.
3469 */
3470 if (is_partition_valid(cs) && (!parent->nr_subparts_cpus ||
3471 (cpumask_empty(&new_cpus) && partition_is_populated(cs, NULL)))) {
3472 int old_prs, parent_prs;
3473
3474 update_parent_subparts_cpumask(cs, partcmd_disable, NULL, tmp);
3475 if (cs->nr_subparts_cpus) {
3476 spin_lock_irq(&callback_lock);
3477 cs->nr_subparts_cpus = 0;
3478 cpumask_clear(cs->subparts_cpus);
3479 spin_unlock_irq(&callback_lock);
3480 compute_effective_cpumask(&new_cpus, cs, parent);
3481 }
3482
3483 old_prs = cs->partition_root_state;
3484 parent_prs = parent->partition_root_state;
3485 if (is_partition_valid(cs)) {
3486 spin_lock_irq(&callback_lock);
3487 make_partition_invalid(cs);
3488 spin_unlock_irq(&callback_lock);
3489 if (is_prs_invalid(parent_prs))
3490 WRITE_ONCE(cs->prs_err, PERR_INVPARENT);
3491 else if (!parent_prs)
3492 WRITE_ONCE(cs->prs_err, PERR_NOTPART);
3493 else
3494 WRITE_ONCE(cs->prs_err, PERR_HOTPLUG);
3495 notify_partition_change(cs, old_prs);
3496 }
3497 cpuset_force_rebuild();
3498 }
3499
3500 /*
3501 * On the other hand, an invalid partition root may be transitioned
3502 * back to a regular one.
3503 */
3504 else if (is_partition_valid(parent) && is_partition_invalid(cs)) {
3505 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp);
3506 if (is_partition_valid(cs))
3507 cpuset_force_rebuild();
3508 }
3509
3510update_tasks:
3511 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3512 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3513
3514 if (mems_updated)
3515 check_insane_mems_config(&new_mems);
3516
3517 if (is_in_v2_mode())
3518 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3519 cpus_updated, mems_updated);
3520 else
3521 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3522 cpus_updated, mems_updated);
3523
3524 percpu_up_write(&cpuset_rwsem);
3525}
3526
3527/**
3528 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3529 *
3530 * This function is called after either CPU or memory configuration has
3531 * changed and updates cpuset accordingly. The top_cpuset is always
3532 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3533 * order to make cpusets transparent (of no affect) on systems that are
3534 * actively using CPU hotplug but making no active use of cpusets.
3535 *
3536 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3537 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3538 * all descendants.
3539 *
3540 * Note that CPU offlining during suspend is ignored. We don't modify
3541 * cpusets across suspend/resume cycles at all.
3542 */
3543static void cpuset_hotplug_workfn(struct work_struct *work)
3544{
3545 static cpumask_t new_cpus;
3546 static nodemask_t new_mems;
3547 bool cpus_updated, mems_updated;
3548 bool on_dfl = is_in_v2_mode();
3549 struct tmpmasks tmp, *ptmp = NULL;
3550
3551 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3552 ptmp = &tmp;
3553
3554 percpu_down_write(&cpuset_rwsem);
3555
3556 /* fetch the available cpus/mems and find out which changed how */
3557 cpumask_copy(&new_cpus, cpu_active_mask);
3558 new_mems = node_states[N_MEMORY];
3559
3560 /*
3561 * If subparts_cpus is populated, it is likely that the check below
3562 * will produce a false positive on cpus_updated when the cpu list
3563 * isn't changed. It is extra work, but it is better to be safe.
3564 */
3565 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3566 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3567
3568 /*
3569 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3570 * we assumed that cpus are updated.
3571 */
3572 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3573 cpus_updated = true;
3574
3575 /* synchronize cpus_allowed to cpu_active_mask */
3576 if (cpus_updated) {
3577 spin_lock_irq(&callback_lock);
3578 if (!on_dfl)
3579 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3580 /*
3581 * Make sure that CPUs allocated to child partitions
3582 * do not show up in effective_cpus. If no CPU is left,
3583 * we clear the subparts_cpus & let the child partitions
3584 * fight for the CPUs again.
3585 */
3586 if (top_cpuset.nr_subparts_cpus) {
3587 if (cpumask_subset(&new_cpus,
3588 top_cpuset.subparts_cpus)) {
3589 top_cpuset.nr_subparts_cpus = 0;
3590 cpumask_clear(top_cpuset.subparts_cpus);
3591 } else {
3592 cpumask_andnot(&new_cpus, &new_cpus,
3593 top_cpuset.subparts_cpus);
3594 }
3595 }
3596 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3597 spin_unlock_irq(&callback_lock);
3598 /* we don't mess with cpumasks of tasks in top_cpuset */
3599 }
3600
3601 /* synchronize mems_allowed to N_MEMORY */
3602 if (mems_updated) {
3603 spin_lock_irq(&callback_lock);
3604 if (!on_dfl)
3605 top_cpuset.mems_allowed = new_mems;
3606 top_cpuset.effective_mems = new_mems;
3607 spin_unlock_irq(&callback_lock);
3608 update_tasks_nodemask(&top_cpuset);
3609 }
3610
3611 percpu_up_write(&cpuset_rwsem);
3612
3613 /* if cpus or mems changed, we need to propagate to descendants */
3614 if (cpus_updated || mems_updated) {
3615 struct cpuset *cs;
3616 struct cgroup_subsys_state *pos_css;
3617
3618 rcu_read_lock();
3619 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3620 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3621 continue;
3622 rcu_read_unlock();
3623
3624 cpuset_hotplug_update_tasks(cs, ptmp);
3625
3626 rcu_read_lock();
3627 css_put(&cs->css);
3628 }
3629 rcu_read_unlock();
3630 }
3631
3632 /* rebuild sched domains if cpus_allowed has changed */
3633 if (cpus_updated || force_rebuild) {
3634 force_rebuild = false;
3635 rebuild_sched_domains();
3636 }
3637
3638 free_cpumasks(NULL, ptmp);
3639}
3640
3641void cpuset_update_active_cpus(void)
3642{
3643 /*
3644 * We're inside cpu hotplug critical region which usually nests
3645 * inside cgroup synchronization. Bounce actual hotplug processing
3646 * to a work item to avoid reverse locking order.
3647 */
3648 schedule_work(&cpuset_hotplug_work);
3649}
3650
3651void cpuset_wait_for_hotplug(void)
3652{
3653 flush_work(&cpuset_hotplug_work);
3654}
3655
3656/*
3657 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3658 * Call this routine anytime after node_states[N_MEMORY] changes.
3659 * See cpuset_update_active_cpus() for CPU hotplug handling.
3660 */
3661static int cpuset_track_online_nodes(struct notifier_block *self,
3662 unsigned long action, void *arg)
3663{
3664 schedule_work(&cpuset_hotplug_work);
3665 return NOTIFY_OK;
3666}
3667
3668/**
3669 * cpuset_init_smp - initialize cpus_allowed
3670 *
3671 * Description: Finish top cpuset after cpu, node maps are initialized
3672 */
3673void __init cpuset_init_smp(void)
3674{
3675 /*
3676 * cpus_allowd/mems_allowed set to v2 values in the initial
3677 * cpuset_bind() call will be reset to v1 values in another
3678 * cpuset_bind() call when v1 cpuset is mounted.
3679 */
3680 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3681
3682 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3683 top_cpuset.effective_mems = node_states[N_MEMORY];
3684
3685 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
3686
3687 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3688 BUG_ON(!cpuset_migrate_mm_wq);
3689}
3690
3691/**
3692 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3693 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3694 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3695 *
3696 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3697 * attached to the specified @tsk. Guaranteed to return some non-empty
3698 * subset of cpu_online_mask, even if this means going outside the
3699 * tasks cpuset, except when the task is in the top cpuset.
3700 **/
3701
3702void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3703{
3704 unsigned long flags;
3705 struct cpuset *cs;
3706
3707 spin_lock_irqsave(&callback_lock, flags);
3708 rcu_read_lock();
3709
3710 cs = task_cs(tsk);
3711 if (cs != &top_cpuset)
3712 guarantee_online_cpus(tsk, pmask);
3713 /*
3714 * Tasks in the top cpuset won't get update to their cpumasks
3715 * when a hotplug online/offline event happens. So we include all
3716 * offline cpus in the allowed cpu list.
3717 */
3718 if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3719 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3720
3721 /*
3722 * We first exclude cpus allocated to partitions. If there is no
3723 * allowable online cpu left, we fall back to all possible cpus.
3724 */
3725 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3726 if (!cpumask_intersects(pmask, cpu_online_mask))
3727 cpumask_copy(pmask, possible_mask);
3728 }
3729
3730 rcu_read_unlock();
3731 spin_unlock_irqrestore(&callback_lock, flags);
3732}
3733
3734/**
3735 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3736 * @tsk: pointer to task_struct with which the scheduler is struggling
3737 *
3738 * Description: In the case that the scheduler cannot find an allowed cpu in
3739 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3740 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3741 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3742 * This is the absolute last resort for the scheduler and it is only used if
3743 * _every_ other avenue has been traveled.
3744 *
3745 * Returns true if the affinity of @tsk was changed, false otherwise.
3746 **/
3747
3748bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3749{
3750 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3751 const struct cpumask *cs_mask;
3752 bool changed = false;
3753
3754 rcu_read_lock();
3755 cs_mask = task_cs(tsk)->cpus_allowed;
3756 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3757 do_set_cpus_allowed(tsk, cs_mask);
3758 changed = true;
3759 }
3760 rcu_read_unlock();
3761
3762 /*
3763 * We own tsk->cpus_allowed, nobody can change it under us.
3764 *
3765 * But we used cs && cs->cpus_allowed lockless and thus can
3766 * race with cgroup_attach_task() or update_cpumask() and get
3767 * the wrong tsk->cpus_allowed. However, both cases imply the
3768 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3769 * which takes task_rq_lock().
3770 *
3771 * If we are called after it dropped the lock we must see all
3772 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3773 * set any mask even if it is not right from task_cs() pov,
3774 * the pending set_cpus_allowed_ptr() will fix things.
3775 *
3776 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3777 * if required.
3778 */
3779 return changed;
3780}
3781
3782void __init cpuset_init_current_mems_allowed(void)
3783{
3784 nodes_setall(current->mems_allowed);
3785}
3786
3787/**
3788 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3789 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3790 *
3791 * Description: Returns the nodemask_t mems_allowed of the cpuset
3792 * attached to the specified @tsk. Guaranteed to return some non-empty
3793 * subset of node_states[N_MEMORY], even if this means going outside the
3794 * tasks cpuset.
3795 **/
3796
3797nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3798{
3799 nodemask_t mask;
3800 unsigned long flags;
3801
3802 spin_lock_irqsave(&callback_lock, flags);
3803 rcu_read_lock();
3804 guarantee_online_mems(task_cs(tsk), &mask);
3805 rcu_read_unlock();
3806 spin_unlock_irqrestore(&callback_lock, flags);
3807
3808 return mask;
3809}
3810
3811/**
3812 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3813 * @nodemask: the nodemask to be checked
3814 *
3815 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3816 */
3817int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3818{
3819 return nodes_intersects(*nodemask, current->mems_allowed);
3820}
3821
3822/*
3823 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3824 * mem_hardwall ancestor to the specified cpuset. Call holding
3825 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3826 * (an unusual configuration), then returns the root cpuset.
3827 */
3828static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3829{
3830 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3831 cs = parent_cs(cs);
3832 return cs;
3833}
3834
3835/*
3836 * __cpuset_node_allowed - Can we allocate on a memory node?
3837 * @node: is this an allowed node?
3838 * @gfp_mask: memory allocation flags
3839 *
3840 * If we're in interrupt, yes, we can always allocate. If @node is set in
3841 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3842 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3843 * yes. If current has access to memory reserves as an oom victim, yes.
3844 * Otherwise, no.
3845 *
3846 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3847 * and do not allow allocations outside the current tasks cpuset
3848 * unless the task has been OOM killed.
3849 * GFP_KERNEL allocations are not so marked, so can escape to the
3850 * nearest enclosing hardwalled ancestor cpuset.
3851 *
3852 * Scanning up parent cpusets requires callback_lock. The
3853 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3854 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3855 * current tasks mems_allowed came up empty on the first pass over
3856 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3857 * cpuset are short of memory, might require taking the callback_lock.
3858 *
3859 * The first call here from mm/page_alloc:get_page_from_freelist()
3860 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3861 * so no allocation on a node outside the cpuset is allowed (unless
3862 * in interrupt, of course).
3863 *
3864 * The second pass through get_page_from_freelist() doesn't even call
3865 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3866 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3867 * in alloc_flags. That logic and the checks below have the combined
3868 * affect that:
3869 * in_interrupt - any node ok (current task context irrelevant)
3870 * GFP_ATOMIC - any node ok
3871 * tsk_is_oom_victim - any node ok
3872 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3873 * GFP_USER - only nodes in current tasks mems allowed ok.
3874 */
3875bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3876{
3877 struct cpuset *cs; /* current cpuset ancestors */
3878 bool allowed; /* is allocation in zone z allowed? */
3879 unsigned long flags;
3880
3881 if (in_interrupt())
3882 return true;
3883 if (node_isset(node, current->mems_allowed))
3884 return true;
3885 /*
3886 * Allow tasks that have access to memory reserves because they have
3887 * been OOM killed to get memory anywhere.
3888 */
3889 if (unlikely(tsk_is_oom_victim(current)))
3890 return true;
3891 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3892 return false;
3893
3894 if (current->flags & PF_EXITING) /* Let dying task have memory */
3895 return true;
3896
3897 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3898 spin_lock_irqsave(&callback_lock, flags);
3899
3900 rcu_read_lock();
3901 cs = nearest_hardwall_ancestor(task_cs(current));
3902 allowed = node_isset(node, cs->mems_allowed);
3903 rcu_read_unlock();
3904
3905 spin_unlock_irqrestore(&callback_lock, flags);
3906 return allowed;
3907}
3908
3909/**
3910 * cpuset_mem_spread_node() - On which node to begin search for a file page
3911 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3912 *
3913 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3914 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3915 * and if the memory allocation used cpuset_mem_spread_node()
3916 * to determine on which node to start looking, as it will for
3917 * certain page cache or slab cache pages such as used for file
3918 * system buffers and inode caches, then instead of starting on the
3919 * local node to look for a free page, rather spread the starting
3920 * node around the tasks mems_allowed nodes.
3921 *
3922 * We don't have to worry about the returned node being offline
3923 * because "it can't happen", and even if it did, it would be ok.
3924 *
3925 * The routines calling guarantee_online_mems() are careful to
3926 * only set nodes in task->mems_allowed that are online. So it
3927 * should not be possible for the following code to return an
3928 * offline node. But if it did, that would be ok, as this routine
3929 * is not returning the node where the allocation must be, only
3930 * the node where the search should start. The zonelist passed to
3931 * __alloc_pages() will include all nodes. If the slab allocator
3932 * is passed an offline node, it will fall back to the local node.
3933 * See kmem_cache_alloc_node().
3934 */
3935
3936static int cpuset_spread_node(int *rotor)
3937{
3938 return *rotor = next_node_in(*rotor, current->mems_allowed);
3939}
3940
3941int cpuset_mem_spread_node(void)
3942{
3943 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3944 current->cpuset_mem_spread_rotor =
3945 node_random(¤t->mems_allowed);
3946
3947 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3948}
3949
3950int cpuset_slab_spread_node(void)
3951{
3952 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3953 current->cpuset_slab_spread_rotor =
3954 node_random(¤t->mems_allowed);
3955
3956 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3957}
3958
3959EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3960
3961/**
3962 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3963 * @tsk1: pointer to task_struct of some task.
3964 * @tsk2: pointer to task_struct of some other task.
3965 *
3966 * Description: Return true if @tsk1's mems_allowed intersects the
3967 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3968 * one of the task's memory usage might impact the memory available
3969 * to the other.
3970 **/
3971
3972int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3973 const struct task_struct *tsk2)
3974{
3975 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3976}
3977
3978/**
3979 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3980 *
3981 * Description: Prints current's name, cpuset name, and cached copy of its
3982 * mems_allowed to the kernel log.
3983 */
3984void cpuset_print_current_mems_allowed(void)
3985{
3986 struct cgroup *cgrp;
3987
3988 rcu_read_lock();
3989
3990 cgrp = task_cs(current)->css.cgroup;
3991 pr_cont(",cpuset=");
3992 pr_cont_cgroup_name(cgrp);
3993 pr_cont(",mems_allowed=%*pbl",
3994 nodemask_pr_args(¤t->mems_allowed));
3995
3996 rcu_read_unlock();
3997}
3998
3999/*
4000 * Collection of memory_pressure is suppressed unless
4001 * this flag is enabled by writing "1" to the special
4002 * cpuset file 'memory_pressure_enabled' in the root cpuset.
4003 */
4004
4005int cpuset_memory_pressure_enabled __read_mostly;
4006
4007/*
4008 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
4009 *
4010 * Keep a running average of the rate of synchronous (direct)
4011 * page reclaim efforts initiated by tasks in each cpuset.
4012 *
4013 * This represents the rate at which some task in the cpuset
4014 * ran low on memory on all nodes it was allowed to use, and
4015 * had to enter the kernels page reclaim code in an effort to
4016 * create more free memory by tossing clean pages or swapping
4017 * or writing dirty pages.
4018 *
4019 * Display to user space in the per-cpuset read-only file
4020 * "memory_pressure". Value displayed is an integer
4021 * representing the recent rate of entry into the synchronous
4022 * (direct) page reclaim by any task attached to the cpuset.
4023 */
4024
4025void __cpuset_memory_pressure_bump(void)
4026{
4027 rcu_read_lock();
4028 fmeter_markevent(&task_cs(current)->fmeter);
4029 rcu_read_unlock();
4030}
4031
4032#ifdef CONFIG_PROC_PID_CPUSET
4033/*
4034 * proc_cpuset_show()
4035 * - Print tasks cpuset path into seq_file.
4036 * - Used for /proc/<pid>/cpuset.
4037 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
4038 * doesn't really matter if tsk->cpuset changes after we read it,
4039 * and we take cpuset_rwsem, keeping cpuset_attach() from changing it
4040 * anyway.
4041 */
4042int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
4043 struct pid *pid, struct task_struct *tsk)
4044{
4045 char *buf;
4046 struct cgroup_subsys_state *css;
4047 int retval;
4048
4049 retval = -ENOMEM;
4050 buf = kmalloc(PATH_MAX, GFP_KERNEL);
4051 if (!buf)
4052 goto out;
4053
4054 css = task_get_css(tsk, cpuset_cgrp_id);
4055 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
4056 current->nsproxy->cgroup_ns);
4057 css_put(css);
4058 if (retval >= PATH_MAX)
4059 retval = -ENAMETOOLONG;
4060 if (retval < 0)
4061 goto out_free;
4062 seq_puts(m, buf);
4063 seq_putc(m, '\n');
4064 retval = 0;
4065out_free:
4066 kfree(buf);
4067out:
4068 return retval;
4069}
4070#endif /* CONFIG_PROC_PID_CPUSET */
4071
4072/* Display task mems_allowed in /proc/<pid>/status file. */
4073void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
4074{
4075 seq_printf(m, "Mems_allowed:\t%*pb\n",
4076 nodemask_pr_args(&task->mems_allowed));
4077 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
4078 nodemask_pr_args(&task->mems_allowed));
4079}
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/delay.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/kernel.h>
32#include <linux/mempolicy.h>
33#include <linux/mm.h>
34#include <linux/memory.h>
35#include <linux/export.h>
36#include <linux/rcupdate.h>
37#include <linux/sched.h>
38#include <linux/sched/deadline.h>
39#include <linux/sched/mm.h>
40#include <linux/sched/task.h>
41#include <linux/security.h>
42#include <linux/spinlock.h>
43#include <linux/oom.h>
44#include <linux/sched/isolation.h>
45#include <linux/cgroup.h>
46#include <linux/wait.h>
47#include <linux/workqueue.h>
48
49DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
50DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
51
52/*
53 * There could be abnormal cpuset configurations for cpu or memory
54 * node binding, add this key to provide a quick low-cost judgment
55 * of the situation.
56 */
57DEFINE_STATIC_KEY_FALSE(cpusets_insane_config_key);
58
59/* See "Frequency meter" comments, below. */
60
61struct fmeter {
62 int cnt; /* unprocessed events count */
63 int val; /* most recent output value */
64 time64_t time; /* clock (secs) when val computed */
65 spinlock_t lock; /* guards read or write of above */
66};
67
68/*
69 * Invalid partition error code
70 */
71enum prs_errcode {
72 PERR_NONE = 0,
73 PERR_INVCPUS,
74 PERR_INVPARENT,
75 PERR_NOTPART,
76 PERR_NOTEXCL,
77 PERR_NOCPUS,
78 PERR_HOTPLUG,
79 PERR_CPUSEMPTY,
80 PERR_HKEEPING,
81};
82
83static const char * const perr_strings[] = {
84 [PERR_INVCPUS] = "Invalid cpu list in cpuset.cpus.exclusive",
85 [PERR_INVPARENT] = "Parent is an invalid partition root",
86 [PERR_NOTPART] = "Parent is not a partition root",
87 [PERR_NOTEXCL] = "Cpu list in cpuset.cpus not exclusive",
88 [PERR_NOCPUS] = "Parent unable to distribute cpu downstream",
89 [PERR_HOTPLUG] = "No cpu available due to hotplug",
90 [PERR_CPUSEMPTY] = "cpuset.cpus is empty",
91 [PERR_HKEEPING] = "partition config conflicts with housekeeping setup",
92};
93
94struct cpuset {
95 struct cgroup_subsys_state css;
96
97 unsigned long flags; /* "unsigned long" so bitops work */
98
99 /*
100 * On default hierarchy:
101 *
102 * The user-configured masks can only be changed by writing to
103 * cpuset.cpus and cpuset.mems, and won't be limited by the
104 * parent masks.
105 *
106 * The effective masks is the real masks that apply to the tasks
107 * in the cpuset. They may be changed if the configured masks are
108 * changed or hotplug happens.
109 *
110 * effective_mask == configured_mask & parent's effective_mask,
111 * and if it ends up empty, it will inherit the parent's mask.
112 *
113 *
114 * On legacy hierarchy:
115 *
116 * The user-configured masks are always the same with effective masks.
117 */
118
119 /* user-configured CPUs and Memory Nodes allow to tasks */
120 cpumask_var_t cpus_allowed;
121 nodemask_t mems_allowed;
122
123 /* effective CPUs and Memory Nodes allow to tasks */
124 cpumask_var_t effective_cpus;
125 nodemask_t effective_mems;
126
127 /*
128 * Exclusive CPUs dedicated to current cgroup (default hierarchy only)
129 *
130 * This exclusive CPUs must be a subset of cpus_allowed. A parent
131 * cgroup can only grant exclusive CPUs to one of its children.
132 *
133 * When the cgroup becomes a valid partition root, effective_xcpus
134 * defaults to cpus_allowed if not set. The effective_cpus of a valid
135 * partition root comes solely from its effective_xcpus and some of the
136 * effective_xcpus may be distributed to sub-partitions below & hence
137 * excluded from its effective_cpus.
138 */
139 cpumask_var_t effective_xcpus;
140
141 /*
142 * Exclusive CPUs as requested by the user (default hierarchy only)
143 */
144 cpumask_var_t exclusive_cpus;
145
146 /*
147 * This is old Memory Nodes tasks took on.
148 *
149 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
150 * - A new cpuset's old_mems_allowed is initialized when some
151 * task is moved into it.
152 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
153 * cpuset.mems_allowed and have tasks' nodemask updated, and
154 * then old_mems_allowed is updated to mems_allowed.
155 */
156 nodemask_t old_mems_allowed;
157
158 struct fmeter fmeter; /* memory_pressure filter */
159
160 /*
161 * Tasks are being attached to this cpuset. Used to prevent
162 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
163 */
164 int attach_in_progress;
165
166 /* partition number for rebuild_sched_domains() */
167 int pn;
168
169 /* for custom sched domain */
170 int relax_domain_level;
171
172 /* number of valid sub-partitions */
173 int nr_subparts;
174
175 /* partition root state */
176 int partition_root_state;
177
178 /*
179 * Default hierarchy only:
180 * use_parent_ecpus - set if using parent's effective_cpus
181 * child_ecpus_count - # of children with use_parent_ecpus set
182 */
183 int use_parent_ecpus;
184 int child_ecpus_count;
185
186 /*
187 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
188 * know when to rebuild associated root domain bandwidth information.
189 */
190 int nr_deadline_tasks;
191 int nr_migrate_dl_tasks;
192 u64 sum_migrate_dl_bw;
193
194 /* Invalid partition error code, not lock protected */
195 enum prs_errcode prs_err;
196
197 /* Handle for cpuset.cpus.partition */
198 struct cgroup_file partition_file;
199
200 /* Remote partition silbling list anchored at remote_children */
201 struct list_head remote_sibling;
202};
203
204/*
205 * Exclusive CPUs distributed out to sub-partitions of top_cpuset
206 */
207static cpumask_var_t subpartitions_cpus;
208
209/*
210 * Exclusive CPUs in isolated partitions
211 */
212static cpumask_var_t isolated_cpus;
213
214/* List of remote partition root children */
215static struct list_head remote_children;
216
217/*
218 * Partition root states:
219 *
220 * 0 - member (not a partition root)
221 * 1 - partition root
222 * 2 - partition root without load balancing (isolated)
223 * -1 - invalid partition root
224 * -2 - invalid isolated partition root
225 */
226#define PRS_MEMBER 0
227#define PRS_ROOT 1
228#define PRS_ISOLATED 2
229#define PRS_INVALID_ROOT -1
230#define PRS_INVALID_ISOLATED -2
231
232static inline bool is_prs_invalid(int prs_state)
233{
234 return prs_state < 0;
235}
236
237/*
238 * Temporary cpumasks for working with partitions that are passed among
239 * functions to avoid memory allocation in inner functions.
240 */
241struct tmpmasks {
242 cpumask_var_t addmask, delmask; /* For partition root */
243 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
244};
245
246static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
247{
248 return css ? container_of(css, struct cpuset, css) : NULL;
249}
250
251/* Retrieve the cpuset for a task */
252static inline struct cpuset *task_cs(struct task_struct *task)
253{
254 return css_cs(task_css(task, cpuset_cgrp_id));
255}
256
257static inline struct cpuset *parent_cs(struct cpuset *cs)
258{
259 return css_cs(cs->css.parent);
260}
261
262void inc_dl_tasks_cs(struct task_struct *p)
263{
264 struct cpuset *cs = task_cs(p);
265
266 cs->nr_deadline_tasks++;
267}
268
269void dec_dl_tasks_cs(struct task_struct *p)
270{
271 struct cpuset *cs = task_cs(p);
272
273 cs->nr_deadline_tasks--;
274}
275
276/* bits in struct cpuset flags field */
277typedef enum {
278 CS_ONLINE,
279 CS_CPU_EXCLUSIVE,
280 CS_MEM_EXCLUSIVE,
281 CS_MEM_HARDWALL,
282 CS_MEMORY_MIGRATE,
283 CS_SCHED_LOAD_BALANCE,
284 CS_SPREAD_PAGE,
285 CS_SPREAD_SLAB,
286} cpuset_flagbits_t;
287
288/* convenient tests for these bits */
289static inline bool is_cpuset_online(struct cpuset *cs)
290{
291 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
292}
293
294static inline int is_cpu_exclusive(const struct cpuset *cs)
295{
296 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
297}
298
299static inline int is_mem_exclusive(const struct cpuset *cs)
300{
301 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
302}
303
304static inline int is_mem_hardwall(const struct cpuset *cs)
305{
306 return test_bit(CS_MEM_HARDWALL, &cs->flags);
307}
308
309static inline int is_sched_load_balance(const struct cpuset *cs)
310{
311 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
312}
313
314static inline int is_memory_migrate(const struct cpuset *cs)
315{
316 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
317}
318
319static inline int is_spread_page(const struct cpuset *cs)
320{
321 return test_bit(CS_SPREAD_PAGE, &cs->flags);
322}
323
324static inline int is_spread_slab(const struct cpuset *cs)
325{
326 return test_bit(CS_SPREAD_SLAB, &cs->flags);
327}
328
329static inline int is_partition_valid(const struct cpuset *cs)
330{
331 return cs->partition_root_state > 0;
332}
333
334static inline int is_partition_invalid(const struct cpuset *cs)
335{
336 return cs->partition_root_state < 0;
337}
338
339/*
340 * Callers should hold callback_lock to modify partition_root_state.
341 */
342static inline void make_partition_invalid(struct cpuset *cs)
343{
344 if (cs->partition_root_state > 0)
345 cs->partition_root_state = -cs->partition_root_state;
346}
347
348/*
349 * Send notification event of whenever partition_root_state changes.
350 */
351static inline void notify_partition_change(struct cpuset *cs, int old_prs)
352{
353 if (old_prs == cs->partition_root_state)
354 return;
355 cgroup_file_notify(&cs->partition_file);
356
357 /* Reset prs_err if not invalid */
358 if (is_partition_valid(cs))
359 WRITE_ONCE(cs->prs_err, PERR_NONE);
360}
361
362static struct cpuset top_cpuset = {
363 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
364 (1 << CS_MEM_EXCLUSIVE)),
365 .partition_root_state = PRS_ROOT,
366 .remote_sibling = LIST_HEAD_INIT(top_cpuset.remote_sibling),
367};
368
369/**
370 * cpuset_for_each_child - traverse online children of a cpuset
371 * @child_cs: loop cursor pointing to the current child
372 * @pos_css: used for iteration
373 * @parent_cs: target cpuset to walk children of
374 *
375 * Walk @child_cs through the online children of @parent_cs. Must be used
376 * with RCU read locked.
377 */
378#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
379 css_for_each_child((pos_css), &(parent_cs)->css) \
380 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
381
382/**
383 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
384 * @des_cs: loop cursor pointing to the current descendant
385 * @pos_css: used for iteration
386 * @root_cs: target cpuset to walk ancestor of
387 *
388 * Walk @des_cs through the online descendants of @root_cs. Must be used
389 * with RCU read locked. The caller may modify @pos_css by calling
390 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
391 * iteration and the first node to be visited.
392 */
393#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
394 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
395 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
396
397/*
398 * There are two global locks guarding cpuset structures - cpuset_mutex and
399 * callback_lock. We also require taking task_lock() when dereferencing a
400 * task's cpuset pointer. See "The task_lock() exception", at the end of this
401 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems
402 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
403 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
404 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
405 * correctness.
406 *
407 * A task must hold both locks to modify cpusets. If a task holds
408 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
409 * also acquire callback_lock and be able to modify cpusets. It can perform
410 * various checks on the cpuset structure first, knowing nothing will change.
411 * It can also allocate memory while just holding cpuset_mutex. While it is
412 * performing these checks, various callback routines can briefly acquire
413 * callback_lock to query cpusets. Once it is ready to make the changes, it
414 * takes callback_lock, blocking everyone else.
415 *
416 * Calls to the kernel memory allocator can not be made while holding
417 * callback_lock, as that would risk double tripping on callback_lock
418 * from one of the callbacks into the cpuset code from within
419 * __alloc_pages().
420 *
421 * If a task is only holding callback_lock, then it has read-only
422 * access to cpusets.
423 *
424 * Now, the task_struct fields mems_allowed and mempolicy may be changed
425 * by other task, we use alloc_lock in the task_struct fields to protect
426 * them.
427 *
428 * The cpuset_common_file_read() handlers only hold callback_lock across
429 * small pieces of code, such as when reading out possibly multi-word
430 * cpumasks and nodemasks.
431 *
432 * Accessing a task's cpuset should be done in accordance with the
433 * guidelines for accessing subsystem state in kernel/cgroup.c
434 */
435
436static DEFINE_MUTEX(cpuset_mutex);
437
438void cpuset_lock(void)
439{
440 mutex_lock(&cpuset_mutex);
441}
442
443void cpuset_unlock(void)
444{
445 mutex_unlock(&cpuset_mutex);
446}
447
448static DEFINE_SPINLOCK(callback_lock);
449
450static struct workqueue_struct *cpuset_migrate_mm_wq;
451
452/*
453 * CPU / memory hotplug is handled asynchronously.
454 */
455static void cpuset_hotplug_workfn(struct work_struct *work);
456static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
457
458static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
459
460static inline void check_insane_mems_config(nodemask_t *nodes)
461{
462 if (!cpusets_insane_config() &&
463 movable_only_nodes(nodes)) {
464 static_branch_enable(&cpusets_insane_config_key);
465 pr_info("Unsupported (movable nodes only) cpuset configuration detected (nmask=%*pbl)!\n"
466 "Cpuset allocations might fail even with a lot of memory available.\n",
467 nodemask_pr_args(nodes));
468 }
469}
470
471/*
472 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
473 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
474 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
475 * With v2 behavior, "cpus" and "mems" are always what the users have
476 * requested and won't be changed by hotplug events. Only the effective
477 * cpus or mems will be affected.
478 */
479static inline bool is_in_v2_mode(void)
480{
481 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
482 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
483}
484
485/**
486 * partition_is_populated - check if partition has tasks
487 * @cs: partition root to be checked
488 * @excluded_child: a child cpuset to be excluded in task checking
489 * Return: true if there are tasks, false otherwise
490 *
491 * It is assumed that @cs is a valid partition root. @excluded_child should
492 * be non-NULL when this cpuset is going to become a partition itself.
493 */
494static inline bool partition_is_populated(struct cpuset *cs,
495 struct cpuset *excluded_child)
496{
497 struct cgroup_subsys_state *css;
498 struct cpuset *child;
499
500 if (cs->css.cgroup->nr_populated_csets)
501 return true;
502 if (!excluded_child && !cs->nr_subparts)
503 return cgroup_is_populated(cs->css.cgroup);
504
505 rcu_read_lock();
506 cpuset_for_each_child(child, css, cs) {
507 if (child == excluded_child)
508 continue;
509 if (is_partition_valid(child))
510 continue;
511 if (cgroup_is_populated(child->css.cgroup)) {
512 rcu_read_unlock();
513 return true;
514 }
515 }
516 rcu_read_unlock();
517 return false;
518}
519
520/*
521 * Return in pmask the portion of a task's cpusets's cpus_allowed that
522 * are online and are capable of running the task. If none are found,
523 * walk up the cpuset hierarchy until we find one that does have some
524 * appropriate cpus.
525 *
526 * One way or another, we guarantee to return some non-empty subset
527 * of cpu_online_mask.
528 *
529 * Call with callback_lock or cpuset_mutex held.
530 */
531static void guarantee_online_cpus(struct task_struct *tsk,
532 struct cpumask *pmask)
533{
534 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
535 struct cpuset *cs;
536
537 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
538 cpumask_copy(pmask, cpu_online_mask);
539
540 rcu_read_lock();
541 cs = task_cs(tsk);
542
543 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
544 cs = parent_cs(cs);
545 if (unlikely(!cs)) {
546 /*
547 * The top cpuset doesn't have any online cpu as a
548 * consequence of a race between cpuset_hotplug_work
549 * and cpu hotplug notifier. But we know the top
550 * cpuset's effective_cpus is on its way to be
551 * identical to cpu_online_mask.
552 */
553 goto out_unlock;
554 }
555 }
556 cpumask_and(pmask, pmask, cs->effective_cpus);
557
558out_unlock:
559 rcu_read_unlock();
560}
561
562/*
563 * Return in *pmask the portion of a cpusets's mems_allowed that
564 * are online, with memory. If none are online with memory, walk
565 * up the cpuset hierarchy until we find one that does have some
566 * online mems. The top cpuset always has some mems online.
567 *
568 * One way or another, we guarantee to return some non-empty subset
569 * of node_states[N_MEMORY].
570 *
571 * Call with callback_lock or cpuset_mutex held.
572 */
573static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
574{
575 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
576 cs = parent_cs(cs);
577 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
578}
579
580/*
581 * update task's spread flag if cpuset's page/slab spread flag is set
582 *
583 * Call with callback_lock or cpuset_mutex held. The check can be skipped
584 * if on default hierarchy.
585 */
586static void cpuset_update_task_spread_flags(struct cpuset *cs,
587 struct task_struct *tsk)
588{
589 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
590 return;
591
592 if (is_spread_page(cs))
593 task_set_spread_page(tsk);
594 else
595 task_clear_spread_page(tsk);
596
597 if (is_spread_slab(cs))
598 task_set_spread_slab(tsk);
599 else
600 task_clear_spread_slab(tsk);
601}
602
603/*
604 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
605 *
606 * One cpuset is a subset of another if all its allowed CPUs and
607 * Memory Nodes are a subset of the other, and its exclusive flags
608 * are only set if the other's are set. Call holding cpuset_mutex.
609 */
610
611static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
612{
613 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
614 nodes_subset(p->mems_allowed, q->mems_allowed) &&
615 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
616 is_mem_exclusive(p) <= is_mem_exclusive(q);
617}
618
619/**
620 * alloc_cpumasks - allocate three cpumasks for cpuset
621 * @cs: the cpuset that have cpumasks to be allocated.
622 * @tmp: the tmpmasks structure pointer
623 * Return: 0 if successful, -ENOMEM otherwise.
624 *
625 * Only one of the two input arguments should be non-NULL.
626 */
627static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
628{
629 cpumask_var_t *pmask1, *pmask2, *pmask3, *pmask4;
630
631 if (cs) {
632 pmask1 = &cs->cpus_allowed;
633 pmask2 = &cs->effective_cpus;
634 pmask3 = &cs->effective_xcpus;
635 pmask4 = &cs->exclusive_cpus;
636 } else {
637 pmask1 = &tmp->new_cpus;
638 pmask2 = &tmp->addmask;
639 pmask3 = &tmp->delmask;
640 pmask4 = NULL;
641 }
642
643 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
644 return -ENOMEM;
645
646 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
647 goto free_one;
648
649 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
650 goto free_two;
651
652 if (pmask4 && !zalloc_cpumask_var(pmask4, GFP_KERNEL))
653 goto free_three;
654
655
656 return 0;
657
658free_three:
659 free_cpumask_var(*pmask3);
660free_two:
661 free_cpumask_var(*pmask2);
662free_one:
663 free_cpumask_var(*pmask1);
664 return -ENOMEM;
665}
666
667/**
668 * free_cpumasks - free cpumasks in a tmpmasks structure
669 * @cs: the cpuset that have cpumasks to be free.
670 * @tmp: the tmpmasks structure pointer
671 */
672static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
673{
674 if (cs) {
675 free_cpumask_var(cs->cpus_allowed);
676 free_cpumask_var(cs->effective_cpus);
677 free_cpumask_var(cs->effective_xcpus);
678 free_cpumask_var(cs->exclusive_cpus);
679 }
680 if (tmp) {
681 free_cpumask_var(tmp->new_cpus);
682 free_cpumask_var(tmp->addmask);
683 free_cpumask_var(tmp->delmask);
684 }
685}
686
687/**
688 * alloc_trial_cpuset - allocate a trial cpuset
689 * @cs: the cpuset that the trial cpuset duplicates
690 */
691static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
692{
693 struct cpuset *trial;
694
695 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
696 if (!trial)
697 return NULL;
698
699 if (alloc_cpumasks(trial, NULL)) {
700 kfree(trial);
701 return NULL;
702 }
703
704 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
705 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
706 cpumask_copy(trial->effective_xcpus, cs->effective_xcpus);
707 cpumask_copy(trial->exclusive_cpus, cs->exclusive_cpus);
708 return trial;
709}
710
711/**
712 * free_cpuset - free the cpuset
713 * @cs: the cpuset to be freed
714 */
715static inline void free_cpuset(struct cpuset *cs)
716{
717 free_cpumasks(cs, NULL);
718 kfree(cs);
719}
720
721static inline struct cpumask *fetch_xcpus(struct cpuset *cs)
722{
723 return !cpumask_empty(cs->exclusive_cpus) ? cs->exclusive_cpus :
724 cpumask_empty(cs->effective_xcpus) ? cs->cpus_allowed
725 : cs->effective_xcpus;
726}
727
728/*
729 * cpusets_are_exclusive() - check if two cpusets are exclusive
730 *
731 * Return true if exclusive, false if not
732 */
733static inline bool cpusets_are_exclusive(struct cpuset *cs1, struct cpuset *cs2)
734{
735 struct cpumask *xcpus1 = fetch_xcpus(cs1);
736 struct cpumask *xcpus2 = fetch_xcpus(cs2);
737
738 if (cpumask_intersects(xcpus1, xcpus2))
739 return false;
740 return true;
741}
742
743/*
744 * validate_change_legacy() - Validate conditions specific to legacy (v1)
745 * behavior.
746 */
747static int validate_change_legacy(struct cpuset *cur, struct cpuset *trial)
748{
749 struct cgroup_subsys_state *css;
750 struct cpuset *c, *par;
751 int ret;
752
753 WARN_ON_ONCE(!rcu_read_lock_held());
754
755 /* Each of our child cpusets must be a subset of us */
756 ret = -EBUSY;
757 cpuset_for_each_child(c, css, cur)
758 if (!is_cpuset_subset(c, trial))
759 goto out;
760
761 /* On legacy hierarchy, we must be a subset of our parent cpuset. */
762 ret = -EACCES;
763 par = parent_cs(cur);
764 if (par && !is_cpuset_subset(trial, par))
765 goto out;
766
767 ret = 0;
768out:
769 return ret;
770}
771
772/*
773 * validate_change() - Used to validate that any proposed cpuset change
774 * follows the structural rules for cpusets.
775 *
776 * If we replaced the flag and mask values of the current cpuset
777 * (cur) with those values in the trial cpuset (trial), would
778 * our various subset and exclusive rules still be valid? Presumes
779 * cpuset_mutex held.
780 *
781 * 'cur' is the address of an actual, in-use cpuset. Operations
782 * such as list traversal that depend on the actual address of the
783 * cpuset in the list must use cur below, not trial.
784 *
785 * 'trial' is the address of bulk structure copy of cur, with
786 * perhaps one or more of the fields cpus_allowed, mems_allowed,
787 * or flags changed to new, trial values.
788 *
789 * Return 0 if valid, -errno if not.
790 */
791
792static int validate_change(struct cpuset *cur, struct cpuset *trial)
793{
794 struct cgroup_subsys_state *css;
795 struct cpuset *c, *par;
796 int ret = 0;
797
798 rcu_read_lock();
799
800 if (!is_in_v2_mode())
801 ret = validate_change_legacy(cur, trial);
802 if (ret)
803 goto out;
804
805 /* Remaining checks don't apply to root cpuset */
806 if (cur == &top_cpuset)
807 goto out;
808
809 par = parent_cs(cur);
810
811 /*
812 * Cpusets with tasks - existing or newly being attached - can't
813 * be changed to have empty cpus_allowed or mems_allowed.
814 */
815 ret = -ENOSPC;
816 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
817 if (!cpumask_empty(cur->cpus_allowed) &&
818 cpumask_empty(trial->cpus_allowed))
819 goto out;
820 if (!nodes_empty(cur->mems_allowed) &&
821 nodes_empty(trial->mems_allowed))
822 goto out;
823 }
824
825 /*
826 * We can't shrink if we won't have enough room for SCHED_DEADLINE
827 * tasks.
828 */
829 ret = -EBUSY;
830 if (is_cpu_exclusive(cur) &&
831 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
832 trial->cpus_allowed))
833 goto out;
834
835 /*
836 * If either I or some sibling (!= me) is exclusive, we can't
837 * overlap
838 */
839 ret = -EINVAL;
840 cpuset_for_each_child(c, css, par) {
841 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
842 c != cur) {
843 if (!cpusets_are_exclusive(trial, c))
844 goto out;
845 }
846 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
847 c != cur &&
848 nodes_intersects(trial->mems_allowed, c->mems_allowed))
849 goto out;
850 }
851
852 ret = 0;
853out:
854 rcu_read_unlock();
855 return ret;
856}
857
858#ifdef CONFIG_SMP
859/*
860 * Helper routine for generate_sched_domains().
861 * Do cpusets a, b have overlapping effective cpus_allowed masks?
862 */
863static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
864{
865 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
866}
867
868static void
869update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
870{
871 if (dattr->relax_domain_level < c->relax_domain_level)
872 dattr->relax_domain_level = c->relax_domain_level;
873 return;
874}
875
876static void update_domain_attr_tree(struct sched_domain_attr *dattr,
877 struct cpuset *root_cs)
878{
879 struct cpuset *cp;
880 struct cgroup_subsys_state *pos_css;
881
882 rcu_read_lock();
883 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
884 /* skip the whole subtree if @cp doesn't have any CPU */
885 if (cpumask_empty(cp->cpus_allowed)) {
886 pos_css = css_rightmost_descendant(pos_css);
887 continue;
888 }
889
890 if (is_sched_load_balance(cp))
891 update_domain_attr(dattr, cp);
892 }
893 rcu_read_unlock();
894}
895
896/* Must be called with cpuset_mutex held. */
897static inline int nr_cpusets(void)
898{
899 /* jump label reference count + the top-level cpuset */
900 return static_key_count(&cpusets_enabled_key.key) + 1;
901}
902
903/*
904 * generate_sched_domains()
905 *
906 * This function builds a partial partition of the systems CPUs
907 * A 'partial partition' is a set of non-overlapping subsets whose
908 * union is a subset of that set.
909 * The output of this function needs to be passed to kernel/sched/core.c
910 * partition_sched_domains() routine, which will rebuild the scheduler's
911 * load balancing domains (sched domains) as specified by that partial
912 * partition.
913 *
914 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
915 * for a background explanation of this.
916 *
917 * Does not return errors, on the theory that the callers of this
918 * routine would rather not worry about failures to rebuild sched
919 * domains when operating in the severe memory shortage situations
920 * that could cause allocation failures below.
921 *
922 * Must be called with cpuset_mutex held.
923 *
924 * The three key local variables below are:
925 * cp - cpuset pointer, used (together with pos_css) to perform a
926 * top-down scan of all cpusets. For our purposes, rebuilding
927 * the schedulers sched domains, we can ignore !is_sched_load_
928 * balance cpusets.
929 * csa - (for CpuSet Array) Array of pointers to all the cpusets
930 * that need to be load balanced, for convenient iterative
931 * access by the subsequent code that finds the best partition,
932 * i.e the set of domains (subsets) of CPUs such that the
933 * cpus_allowed of every cpuset marked is_sched_load_balance
934 * is a subset of one of these domains, while there are as
935 * many such domains as possible, each as small as possible.
936 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
937 * the kernel/sched/core.c routine partition_sched_domains() in a
938 * convenient format, that can be easily compared to the prior
939 * value to determine what partition elements (sched domains)
940 * were changed (added or removed.)
941 *
942 * Finding the best partition (set of domains):
943 * The triple nested loops below over i, j, k scan over the
944 * load balanced cpusets (using the array of cpuset pointers in
945 * csa[]) looking for pairs of cpusets that have overlapping
946 * cpus_allowed, but which don't have the same 'pn' partition
947 * number and gives them in the same partition number. It keeps
948 * looping on the 'restart' label until it can no longer find
949 * any such pairs.
950 *
951 * The union of the cpus_allowed masks from the set of
952 * all cpusets having the same 'pn' value then form the one
953 * element of the partition (one sched domain) to be passed to
954 * partition_sched_domains().
955 */
956static int generate_sched_domains(cpumask_var_t **domains,
957 struct sched_domain_attr **attributes)
958{
959 struct cpuset *cp; /* top-down scan of cpusets */
960 struct cpuset **csa; /* array of all cpuset ptrs */
961 int csn; /* how many cpuset ptrs in csa so far */
962 int i, j, k; /* indices for partition finding loops */
963 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
964 struct sched_domain_attr *dattr; /* attributes for custom domains */
965 int ndoms = 0; /* number of sched domains in result */
966 int nslot; /* next empty doms[] struct cpumask slot */
967 struct cgroup_subsys_state *pos_css;
968 bool root_load_balance = is_sched_load_balance(&top_cpuset);
969
970 doms = NULL;
971 dattr = NULL;
972 csa = NULL;
973
974 /* Special case for the 99% of systems with one, full, sched domain */
975 if (root_load_balance && !top_cpuset.nr_subparts) {
976 ndoms = 1;
977 doms = alloc_sched_domains(ndoms);
978 if (!doms)
979 goto done;
980
981 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
982 if (dattr) {
983 *dattr = SD_ATTR_INIT;
984 update_domain_attr_tree(dattr, &top_cpuset);
985 }
986 cpumask_and(doms[0], top_cpuset.effective_cpus,
987 housekeeping_cpumask(HK_TYPE_DOMAIN));
988
989 goto done;
990 }
991
992 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
993 if (!csa)
994 goto done;
995 csn = 0;
996
997 rcu_read_lock();
998 if (root_load_balance)
999 csa[csn++] = &top_cpuset;
1000 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
1001 if (cp == &top_cpuset)
1002 continue;
1003 /*
1004 * Continue traversing beyond @cp iff @cp has some CPUs and
1005 * isn't load balancing. The former is obvious. The
1006 * latter: All child cpusets contain a subset of the
1007 * parent's cpus, so just skip them, and then we call
1008 * update_domain_attr_tree() to calc relax_domain_level of
1009 * the corresponding sched domain.
1010 *
1011 * If root is load-balancing, we can skip @cp if it
1012 * is a subset of the root's effective_cpus.
1013 */
1014 if (!cpumask_empty(cp->cpus_allowed) &&
1015 !(is_sched_load_balance(cp) &&
1016 cpumask_intersects(cp->cpus_allowed,
1017 housekeeping_cpumask(HK_TYPE_DOMAIN))))
1018 continue;
1019
1020 if (root_load_balance &&
1021 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
1022 continue;
1023
1024 if (is_sched_load_balance(cp) &&
1025 !cpumask_empty(cp->effective_cpus))
1026 csa[csn++] = cp;
1027
1028 /* skip @cp's subtree if not a partition root */
1029 if (!is_partition_valid(cp))
1030 pos_css = css_rightmost_descendant(pos_css);
1031 }
1032 rcu_read_unlock();
1033
1034 for (i = 0; i < csn; i++)
1035 csa[i]->pn = i;
1036 ndoms = csn;
1037
1038restart:
1039 /* Find the best partition (set of sched domains) */
1040 for (i = 0; i < csn; i++) {
1041 struct cpuset *a = csa[i];
1042 int apn = a->pn;
1043
1044 for (j = 0; j < csn; j++) {
1045 struct cpuset *b = csa[j];
1046 int bpn = b->pn;
1047
1048 if (apn != bpn && cpusets_overlap(a, b)) {
1049 for (k = 0; k < csn; k++) {
1050 struct cpuset *c = csa[k];
1051
1052 if (c->pn == bpn)
1053 c->pn = apn;
1054 }
1055 ndoms--; /* one less element */
1056 goto restart;
1057 }
1058 }
1059 }
1060
1061 /*
1062 * Now we know how many domains to create.
1063 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
1064 */
1065 doms = alloc_sched_domains(ndoms);
1066 if (!doms)
1067 goto done;
1068
1069 /*
1070 * The rest of the code, including the scheduler, can deal with
1071 * dattr==NULL case. No need to abort if alloc fails.
1072 */
1073 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
1074 GFP_KERNEL);
1075
1076 for (nslot = 0, i = 0; i < csn; i++) {
1077 struct cpuset *a = csa[i];
1078 struct cpumask *dp;
1079 int apn = a->pn;
1080
1081 if (apn < 0) {
1082 /* Skip completed partitions */
1083 continue;
1084 }
1085
1086 dp = doms[nslot];
1087
1088 if (nslot == ndoms) {
1089 static int warnings = 10;
1090 if (warnings) {
1091 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
1092 nslot, ndoms, csn, i, apn);
1093 warnings--;
1094 }
1095 continue;
1096 }
1097
1098 cpumask_clear(dp);
1099 if (dattr)
1100 *(dattr + nslot) = SD_ATTR_INIT;
1101 for (j = i; j < csn; j++) {
1102 struct cpuset *b = csa[j];
1103
1104 if (apn == b->pn) {
1105 cpumask_or(dp, dp, b->effective_cpus);
1106 cpumask_and(dp, dp, housekeeping_cpumask(HK_TYPE_DOMAIN));
1107 if (dattr)
1108 update_domain_attr_tree(dattr + nslot, b);
1109
1110 /* Done with this partition */
1111 b->pn = -1;
1112 }
1113 }
1114 nslot++;
1115 }
1116 BUG_ON(nslot != ndoms);
1117
1118done:
1119 kfree(csa);
1120
1121 /*
1122 * Fallback to the default domain if kmalloc() failed.
1123 * See comments in partition_sched_domains().
1124 */
1125 if (doms == NULL)
1126 ndoms = 1;
1127
1128 *domains = doms;
1129 *attributes = dattr;
1130 return ndoms;
1131}
1132
1133static void dl_update_tasks_root_domain(struct cpuset *cs)
1134{
1135 struct css_task_iter it;
1136 struct task_struct *task;
1137
1138 if (cs->nr_deadline_tasks == 0)
1139 return;
1140
1141 css_task_iter_start(&cs->css, 0, &it);
1142
1143 while ((task = css_task_iter_next(&it)))
1144 dl_add_task_root_domain(task);
1145
1146 css_task_iter_end(&it);
1147}
1148
1149static void dl_rebuild_rd_accounting(void)
1150{
1151 struct cpuset *cs = NULL;
1152 struct cgroup_subsys_state *pos_css;
1153
1154 lockdep_assert_held(&cpuset_mutex);
1155 lockdep_assert_cpus_held();
1156 lockdep_assert_held(&sched_domains_mutex);
1157
1158 rcu_read_lock();
1159
1160 /*
1161 * Clear default root domain DL accounting, it will be computed again
1162 * if a task belongs to it.
1163 */
1164 dl_clear_root_domain(&def_root_domain);
1165
1166 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1167
1168 if (cpumask_empty(cs->effective_cpus)) {
1169 pos_css = css_rightmost_descendant(pos_css);
1170 continue;
1171 }
1172
1173 css_get(&cs->css);
1174
1175 rcu_read_unlock();
1176
1177 dl_update_tasks_root_domain(cs);
1178
1179 rcu_read_lock();
1180 css_put(&cs->css);
1181 }
1182 rcu_read_unlock();
1183}
1184
1185static void
1186partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1187 struct sched_domain_attr *dattr_new)
1188{
1189 mutex_lock(&sched_domains_mutex);
1190 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1191 dl_rebuild_rd_accounting();
1192 mutex_unlock(&sched_domains_mutex);
1193}
1194
1195/*
1196 * Rebuild scheduler domains.
1197 *
1198 * If the flag 'sched_load_balance' of any cpuset with non-empty
1199 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1200 * which has that flag enabled, or if any cpuset with a non-empty
1201 * 'cpus' is removed, then call this routine to rebuild the
1202 * scheduler's dynamic sched domains.
1203 *
1204 * Call with cpuset_mutex held. Takes cpus_read_lock().
1205 */
1206static void rebuild_sched_domains_locked(void)
1207{
1208 struct cgroup_subsys_state *pos_css;
1209 struct sched_domain_attr *attr;
1210 cpumask_var_t *doms;
1211 struct cpuset *cs;
1212 int ndoms;
1213
1214 lockdep_assert_cpus_held();
1215 lockdep_assert_held(&cpuset_mutex);
1216
1217 /*
1218 * If we have raced with CPU hotplug, return early to avoid
1219 * passing doms with offlined cpu to partition_sched_domains().
1220 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1221 *
1222 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1223 * should be the same as the active CPUs, so checking only top_cpuset
1224 * is enough to detect racing CPU offlines.
1225 */
1226 if (cpumask_empty(subpartitions_cpus) &&
1227 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1228 return;
1229
1230 /*
1231 * With subpartition CPUs, however, the effective CPUs of a partition
1232 * root should be only a subset of the active CPUs. Since a CPU in any
1233 * partition root could be offlined, all must be checked.
1234 */
1235 if (top_cpuset.nr_subparts) {
1236 rcu_read_lock();
1237 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1238 if (!is_partition_valid(cs)) {
1239 pos_css = css_rightmost_descendant(pos_css);
1240 continue;
1241 }
1242 if (!cpumask_subset(cs->effective_cpus,
1243 cpu_active_mask)) {
1244 rcu_read_unlock();
1245 return;
1246 }
1247 }
1248 rcu_read_unlock();
1249 }
1250
1251 /* Generate domain masks and attrs */
1252 ndoms = generate_sched_domains(&doms, &attr);
1253
1254 /* Have scheduler rebuild the domains */
1255 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1256}
1257#else /* !CONFIG_SMP */
1258static void rebuild_sched_domains_locked(void)
1259{
1260}
1261#endif /* CONFIG_SMP */
1262
1263void rebuild_sched_domains(void)
1264{
1265 cpus_read_lock();
1266 mutex_lock(&cpuset_mutex);
1267 rebuild_sched_domains_locked();
1268 mutex_unlock(&cpuset_mutex);
1269 cpus_read_unlock();
1270}
1271
1272/**
1273 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1274 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1275 * @new_cpus: the temp variable for the new effective_cpus mask
1276 *
1277 * Iterate through each task of @cs updating its cpus_allowed to the
1278 * effective cpuset's. As this function is called with cpuset_mutex held,
1279 * cpuset membership stays stable. For top_cpuset, task_cpu_possible_mask()
1280 * is used instead of effective_cpus to make sure all offline CPUs are also
1281 * included as hotplug code won't update cpumasks for tasks in top_cpuset.
1282 */
1283static void update_tasks_cpumask(struct cpuset *cs, struct cpumask *new_cpus)
1284{
1285 struct css_task_iter it;
1286 struct task_struct *task;
1287 bool top_cs = cs == &top_cpuset;
1288
1289 css_task_iter_start(&cs->css, 0, &it);
1290 while ((task = css_task_iter_next(&it))) {
1291 const struct cpumask *possible_mask = task_cpu_possible_mask(task);
1292
1293 if (top_cs) {
1294 /*
1295 * Percpu kthreads in top_cpuset are ignored
1296 */
1297 if (kthread_is_per_cpu(task))
1298 continue;
1299 cpumask_andnot(new_cpus, possible_mask, subpartitions_cpus);
1300 } else {
1301 cpumask_and(new_cpus, possible_mask, cs->effective_cpus);
1302 }
1303 set_cpus_allowed_ptr(task, new_cpus);
1304 }
1305 css_task_iter_end(&it);
1306}
1307
1308/**
1309 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1310 * @new_cpus: the temp variable for the new effective_cpus mask
1311 * @cs: the cpuset the need to recompute the new effective_cpus mask
1312 * @parent: the parent cpuset
1313 *
1314 * The result is valid only if the given cpuset isn't a partition root.
1315 */
1316static void compute_effective_cpumask(struct cpumask *new_cpus,
1317 struct cpuset *cs, struct cpuset *parent)
1318{
1319 cpumask_and(new_cpus, cs->cpus_allowed, parent->effective_cpus);
1320}
1321
1322/*
1323 * Commands for update_parent_effective_cpumask
1324 */
1325enum partition_cmd {
1326 partcmd_enable, /* Enable partition root */
1327 partcmd_enablei, /* Enable isolated partition root */
1328 partcmd_disable, /* Disable partition root */
1329 partcmd_update, /* Update parent's effective_cpus */
1330 partcmd_invalidate, /* Make partition invalid */
1331};
1332
1333static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1334 int turning_on);
1335static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1336 struct tmpmasks *tmp);
1337
1338/*
1339 * Update partition exclusive flag
1340 *
1341 * Return: 0 if successful, an error code otherwise
1342 */
1343static int update_partition_exclusive(struct cpuset *cs, int new_prs)
1344{
1345 bool exclusive = (new_prs > 0);
1346
1347 if (exclusive && !is_cpu_exclusive(cs)) {
1348 if (update_flag(CS_CPU_EXCLUSIVE, cs, 1))
1349 return PERR_NOTEXCL;
1350 } else if (!exclusive && is_cpu_exclusive(cs)) {
1351 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1352 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
1353 }
1354 return 0;
1355}
1356
1357/*
1358 * Update partition load balance flag and/or rebuild sched domain
1359 *
1360 * Changing load balance flag will automatically call
1361 * rebuild_sched_domains_locked().
1362 * This function is for cgroup v2 only.
1363 */
1364static void update_partition_sd_lb(struct cpuset *cs, int old_prs)
1365{
1366 int new_prs = cs->partition_root_state;
1367 bool rebuild_domains = (new_prs > 0) || (old_prs > 0);
1368 bool new_lb;
1369
1370 /*
1371 * If cs is not a valid partition root, the load balance state
1372 * will follow its parent.
1373 */
1374 if (new_prs > 0) {
1375 new_lb = (new_prs != PRS_ISOLATED);
1376 } else {
1377 new_lb = is_sched_load_balance(parent_cs(cs));
1378 }
1379 if (new_lb != !!is_sched_load_balance(cs)) {
1380 rebuild_domains = true;
1381 if (new_lb)
1382 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1383 else
1384 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1385 }
1386
1387 if (rebuild_domains)
1388 rebuild_sched_domains_locked();
1389}
1390
1391/*
1392 * tasks_nocpu_error - Return true if tasks will have no effective_cpus
1393 */
1394static bool tasks_nocpu_error(struct cpuset *parent, struct cpuset *cs,
1395 struct cpumask *xcpus)
1396{
1397 /*
1398 * A populated partition (cs or parent) can't have empty effective_cpus
1399 */
1400 return (cpumask_subset(parent->effective_cpus, xcpus) &&
1401 partition_is_populated(parent, cs)) ||
1402 (!cpumask_intersects(xcpus, cpu_active_mask) &&
1403 partition_is_populated(cs, NULL));
1404}
1405
1406static void reset_partition_data(struct cpuset *cs)
1407{
1408 struct cpuset *parent = parent_cs(cs);
1409
1410 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
1411 return;
1412
1413 lockdep_assert_held(&callback_lock);
1414
1415 cs->nr_subparts = 0;
1416 if (cpumask_empty(cs->exclusive_cpus)) {
1417 cpumask_clear(cs->effective_xcpus);
1418 if (is_cpu_exclusive(cs))
1419 clear_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1420 }
1421 if (!cpumask_and(cs->effective_cpus,
1422 parent->effective_cpus, cs->cpus_allowed)) {
1423 cs->use_parent_ecpus = true;
1424 parent->child_ecpus_count++;
1425 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1426 }
1427}
1428
1429/*
1430 * partition_xcpus_newstate - Exclusive CPUs state change
1431 * @old_prs: old partition_root_state
1432 * @new_prs: new partition_root_state
1433 * @xcpus: exclusive CPUs with state change
1434 */
1435static void partition_xcpus_newstate(int old_prs, int new_prs, struct cpumask *xcpus)
1436{
1437 WARN_ON_ONCE(old_prs == new_prs);
1438 if (new_prs == PRS_ISOLATED)
1439 cpumask_or(isolated_cpus, isolated_cpus, xcpus);
1440 else
1441 cpumask_andnot(isolated_cpus, isolated_cpus, xcpus);
1442}
1443
1444/*
1445 * partition_xcpus_add - Add new exclusive CPUs to partition
1446 * @new_prs: new partition_root_state
1447 * @parent: parent cpuset
1448 * @xcpus: exclusive CPUs to be added
1449 * Return: true if isolated_cpus modified, false otherwise
1450 *
1451 * Remote partition if parent == NULL
1452 */
1453static bool partition_xcpus_add(int new_prs, struct cpuset *parent,
1454 struct cpumask *xcpus)
1455{
1456 bool isolcpus_updated;
1457
1458 WARN_ON_ONCE(new_prs < 0);
1459 lockdep_assert_held(&callback_lock);
1460 if (!parent)
1461 parent = &top_cpuset;
1462
1463
1464 if (parent == &top_cpuset)
1465 cpumask_or(subpartitions_cpus, subpartitions_cpus, xcpus);
1466
1467 isolcpus_updated = (new_prs != parent->partition_root_state);
1468 if (isolcpus_updated)
1469 partition_xcpus_newstate(parent->partition_root_state, new_prs,
1470 xcpus);
1471
1472 cpumask_andnot(parent->effective_cpus, parent->effective_cpus, xcpus);
1473 return isolcpus_updated;
1474}
1475
1476/*
1477 * partition_xcpus_del - Remove exclusive CPUs from partition
1478 * @old_prs: old partition_root_state
1479 * @parent: parent cpuset
1480 * @xcpus: exclusive CPUs to be removed
1481 * Return: true if isolated_cpus modified, false otherwise
1482 *
1483 * Remote partition if parent == NULL
1484 */
1485static bool partition_xcpus_del(int old_prs, struct cpuset *parent,
1486 struct cpumask *xcpus)
1487{
1488 bool isolcpus_updated;
1489
1490 WARN_ON_ONCE(old_prs < 0);
1491 lockdep_assert_held(&callback_lock);
1492 if (!parent)
1493 parent = &top_cpuset;
1494
1495 if (parent == &top_cpuset)
1496 cpumask_andnot(subpartitions_cpus, subpartitions_cpus, xcpus);
1497
1498 isolcpus_updated = (old_prs != parent->partition_root_state);
1499 if (isolcpus_updated)
1500 partition_xcpus_newstate(old_prs, parent->partition_root_state,
1501 xcpus);
1502
1503 cpumask_and(xcpus, xcpus, cpu_active_mask);
1504 cpumask_or(parent->effective_cpus, parent->effective_cpus, xcpus);
1505 return isolcpus_updated;
1506}
1507
1508static void update_unbound_workqueue_cpumask(bool isolcpus_updated)
1509{
1510 int ret;
1511
1512 lockdep_assert_cpus_held();
1513
1514 if (!isolcpus_updated)
1515 return;
1516
1517 ret = workqueue_unbound_exclude_cpumask(isolated_cpus);
1518 WARN_ON_ONCE(ret < 0);
1519}
1520
1521/**
1522 * cpuset_cpu_is_isolated - Check if the given CPU is isolated
1523 * @cpu: the CPU number to be checked
1524 * Return: true if CPU is used in an isolated partition, false otherwise
1525 */
1526bool cpuset_cpu_is_isolated(int cpu)
1527{
1528 return cpumask_test_cpu(cpu, isolated_cpus);
1529}
1530EXPORT_SYMBOL_GPL(cpuset_cpu_is_isolated);
1531
1532/*
1533 * compute_effective_exclusive_cpumask - compute effective exclusive CPUs
1534 * @cs: cpuset
1535 * @xcpus: effective exclusive CPUs value to be set
1536 * Return: true if xcpus is not empty, false otherwise.
1537 *
1538 * Starting with exclusive_cpus (cpus_allowed if exclusive_cpus is not set),
1539 * it must be a subset of cpus_allowed and parent's effective_xcpus.
1540 */
1541static bool compute_effective_exclusive_cpumask(struct cpuset *cs,
1542 struct cpumask *xcpus)
1543{
1544 struct cpuset *parent = parent_cs(cs);
1545
1546 if (!xcpus)
1547 xcpus = cs->effective_xcpus;
1548
1549 if (!cpumask_empty(cs->exclusive_cpus))
1550 cpumask_and(xcpus, cs->exclusive_cpus, cs->cpus_allowed);
1551 else
1552 cpumask_copy(xcpus, cs->cpus_allowed);
1553
1554 return cpumask_and(xcpus, xcpus, parent->effective_xcpus);
1555}
1556
1557static inline bool is_remote_partition(struct cpuset *cs)
1558{
1559 return !list_empty(&cs->remote_sibling);
1560}
1561
1562static inline bool is_local_partition(struct cpuset *cs)
1563{
1564 return is_partition_valid(cs) && !is_remote_partition(cs);
1565}
1566
1567/*
1568 * remote_partition_enable - Enable current cpuset as a remote partition root
1569 * @cs: the cpuset to update
1570 * @new_prs: new partition_root_state
1571 * @tmp: temparary masks
1572 * Return: 1 if successful, 0 if error
1573 *
1574 * Enable the current cpuset to become a remote partition root taking CPUs
1575 * directly from the top cpuset. cpuset_mutex must be held by the caller.
1576 */
1577static int remote_partition_enable(struct cpuset *cs, int new_prs,
1578 struct tmpmasks *tmp)
1579{
1580 bool isolcpus_updated;
1581
1582 /*
1583 * The user must have sysadmin privilege.
1584 */
1585 if (!capable(CAP_SYS_ADMIN))
1586 return 0;
1587
1588 /*
1589 * The requested exclusive_cpus must not be allocated to other
1590 * partitions and it can't use up all the root's effective_cpus.
1591 *
1592 * Note that if there is any local partition root above it or
1593 * remote partition root underneath it, its exclusive_cpus must
1594 * have overlapped with subpartitions_cpus.
1595 */
1596 compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1597 if (cpumask_empty(tmp->new_cpus) ||
1598 cpumask_intersects(tmp->new_cpus, subpartitions_cpus) ||
1599 cpumask_subset(top_cpuset.effective_cpus, tmp->new_cpus))
1600 return 0;
1601
1602 spin_lock_irq(&callback_lock);
1603 isolcpus_updated = partition_xcpus_add(new_prs, NULL, tmp->new_cpus);
1604 list_add(&cs->remote_sibling, &remote_children);
1605 if (cs->use_parent_ecpus) {
1606 struct cpuset *parent = parent_cs(cs);
1607
1608 cs->use_parent_ecpus = false;
1609 parent->child_ecpus_count--;
1610 }
1611 spin_unlock_irq(&callback_lock);
1612 update_unbound_workqueue_cpumask(isolcpus_updated);
1613
1614 /*
1615 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1616 */
1617 update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1618 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1619 return 1;
1620}
1621
1622/*
1623 * remote_partition_disable - Remove current cpuset from remote partition list
1624 * @cs: the cpuset to update
1625 * @tmp: temparary masks
1626 *
1627 * The effective_cpus is also updated.
1628 *
1629 * cpuset_mutex must be held by the caller.
1630 */
1631static void remote_partition_disable(struct cpuset *cs, struct tmpmasks *tmp)
1632{
1633 bool isolcpus_updated;
1634
1635 compute_effective_exclusive_cpumask(cs, tmp->new_cpus);
1636 WARN_ON_ONCE(!is_remote_partition(cs));
1637 WARN_ON_ONCE(!cpumask_subset(tmp->new_cpus, subpartitions_cpus));
1638
1639 spin_lock_irq(&callback_lock);
1640 list_del_init(&cs->remote_sibling);
1641 isolcpus_updated = partition_xcpus_del(cs->partition_root_state,
1642 NULL, tmp->new_cpus);
1643 cs->partition_root_state = -cs->partition_root_state;
1644 if (!cs->prs_err)
1645 cs->prs_err = PERR_INVCPUS;
1646 reset_partition_data(cs);
1647 spin_unlock_irq(&callback_lock);
1648 update_unbound_workqueue_cpumask(isolcpus_updated);
1649
1650 /*
1651 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1652 */
1653 update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1654 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1655}
1656
1657/*
1658 * remote_cpus_update - cpus_exclusive change of remote partition
1659 * @cs: the cpuset to be updated
1660 * @newmask: the new effective_xcpus mask
1661 * @tmp: temparary masks
1662 *
1663 * top_cpuset and subpartitions_cpus will be updated or partition can be
1664 * invalidated.
1665 */
1666static void remote_cpus_update(struct cpuset *cs, struct cpumask *newmask,
1667 struct tmpmasks *tmp)
1668{
1669 bool adding, deleting;
1670 int prs = cs->partition_root_state;
1671 int isolcpus_updated = 0;
1672
1673 if (WARN_ON_ONCE(!is_remote_partition(cs)))
1674 return;
1675
1676 WARN_ON_ONCE(!cpumask_subset(cs->effective_xcpus, subpartitions_cpus));
1677
1678 if (cpumask_empty(newmask))
1679 goto invalidate;
1680
1681 adding = cpumask_andnot(tmp->addmask, newmask, cs->effective_xcpus);
1682 deleting = cpumask_andnot(tmp->delmask, cs->effective_xcpus, newmask);
1683
1684 /*
1685 * Additions of remote CPUs is only allowed if those CPUs are
1686 * not allocated to other partitions and there are effective_cpus
1687 * left in the top cpuset.
1688 */
1689 if (adding && (!capable(CAP_SYS_ADMIN) ||
1690 cpumask_intersects(tmp->addmask, subpartitions_cpus) ||
1691 cpumask_subset(top_cpuset.effective_cpus, tmp->addmask)))
1692 goto invalidate;
1693
1694 spin_lock_irq(&callback_lock);
1695 if (adding)
1696 isolcpus_updated += partition_xcpus_add(prs, NULL, tmp->addmask);
1697 if (deleting)
1698 isolcpus_updated += partition_xcpus_del(prs, NULL, tmp->delmask);
1699 spin_unlock_irq(&callback_lock);
1700 update_unbound_workqueue_cpumask(isolcpus_updated);
1701
1702 /*
1703 * Proprogate changes in top_cpuset's effective_cpus down the hierarchy.
1704 */
1705 update_tasks_cpumask(&top_cpuset, tmp->new_cpus);
1706 update_sibling_cpumasks(&top_cpuset, NULL, tmp);
1707 return;
1708
1709invalidate:
1710 remote_partition_disable(cs, tmp);
1711}
1712
1713/*
1714 * remote_partition_check - check if a child remote partition needs update
1715 * @cs: the cpuset to be updated
1716 * @newmask: the new effective_xcpus mask
1717 * @delmask: temporary mask for deletion (not in tmp)
1718 * @tmp: temparary masks
1719 *
1720 * This should be called before the given cs has updated its cpus_allowed
1721 * and/or effective_xcpus.
1722 */
1723static void remote_partition_check(struct cpuset *cs, struct cpumask *newmask,
1724 struct cpumask *delmask, struct tmpmasks *tmp)
1725{
1726 struct cpuset *child, *next;
1727 int disable_cnt = 0;
1728
1729 /*
1730 * Compute the effective exclusive CPUs that will be deleted.
1731 */
1732 if (!cpumask_andnot(delmask, cs->effective_xcpus, newmask) ||
1733 !cpumask_intersects(delmask, subpartitions_cpus))
1734 return; /* No deletion of exclusive CPUs in partitions */
1735
1736 /*
1737 * Searching the remote children list to look for those that will
1738 * be impacted by the deletion of exclusive CPUs.
1739 *
1740 * Since a cpuset must be removed from the remote children list
1741 * before it can go offline and holding cpuset_mutex will prevent
1742 * any change in cpuset status. RCU read lock isn't needed.
1743 */
1744 lockdep_assert_held(&cpuset_mutex);
1745 list_for_each_entry_safe(child, next, &remote_children, remote_sibling)
1746 if (cpumask_intersects(child->effective_cpus, delmask)) {
1747 remote_partition_disable(child, tmp);
1748 disable_cnt++;
1749 }
1750 if (disable_cnt)
1751 rebuild_sched_domains_locked();
1752}
1753
1754/*
1755 * prstate_housekeeping_conflict - check for partition & housekeeping conflicts
1756 * @prstate: partition root state to be checked
1757 * @new_cpus: cpu mask
1758 * Return: true if there is conflict, false otherwise
1759 *
1760 * CPUs outside of housekeeping_cpumask(HK_TYPE_DOMAIN) can only be used in
1761 * an isolated partition.
1762 */
1763static bool prstate_housekeeping_conflict(int prstate, struct cpumask *new_cpus)
1764{
1765 const struct cpumask *hk_domain = housekeeping_cpumask(HK_TYPE_DOMAIN);
1766 bool all_in_hk = cpumask_subset(new_cpus, hk_domain);
1767
1768 if (!all_in_hk && (prstate != PRS_ISOLATED))
1769 return true;
1770
1771 return false;
1772}
1773
1774/**
1775 * update_parent_effective_cpumask - update effective_cpus mask of parent cpuset
1776 * @cs: The cpuset that requests change in partition root state
1777 * @cmd: Partition root state change command
1778 * @newmask: Optional new cpumask for partcmd_update
1779 * @tmp: Temporary addmask and delmask
1780 * Return: 0 or a partition root state error code
1781 *
1782 * For partcmd_enable*, the cpuset is being transformed from a non-partition
1783 * root to a partition root. The effective_xcpus (cpus_allowed if
1784 * effective_xcpus not set) mask of the given cpuset will be taken away from
1785 * parent's effective_cpus. The function will return 0 if all the CPUs listed
1786 * in effective_xcpus can be granted or an error code will be returned.
1787 *
1788 * For partcmd_disable, the cpuset is being transformed from a partition
1789 * root back to a non-partition root. Any CPUs in effective_xcpus will be
1790 * given back to parent's effective_cpus. 0 will always be returned.
1791 *
1792 * For partcmd_update, if the optional newmask is specified, the cpu list is
1793 * to be changed from effective_xcpus to newmask. Otherwise, effective_xcpus is
1794 * assumed to remain the same. The cpuset should either be a valid or invalid
1795 * partition root. The partition root state may change from valid to invalid
1796 * or vice versa. An error code will be returned if transitioning from
1797 * invalid to valid violates the exclusivity rule.
1798 *
1799 * For partcmd_invalidate, the current partition will be made invalid.
1800 *
1801 * The partcmd_enable* and partcmd_disable commands are used by
1802 * update_prstate(). An error code may be returned and the caller will check
1803 * for error.
1804 *
1805 * The partcmd_update command is used by update_cpumasks_hier() with newmask
1806 * NULL and update_cpumask() with newmask set. The partcmd_invalidate is used
1807 * by update_cpumask() with NULL newmask. In both cases, the callers won't
1808 * check for error and so partition_root_state and prs_error will be updated
1809 * directly.
1810 */
1811static int update_parent_effective_cpumask(struct cpuset *cs, int cmd,
1812 struct cpumask *newmask,
1813 struct tmpmasks *tmp)
1814{
1815 struct cpuset *parent = parent_cs(cs);
1816 int adding; /* Adding cpus to parent's effective_cpus */
1817 int deleting; /* Deleting cpus from parent's effective_cpus */
1818 int old_prs, new_prs;
1819 int part_error = PERR_NONE; /* Partition error? */
1820 int subparts_delta = 0;
1821 struct cpumask *xcpus; /* cs effective_xcpus */
1822 int isolcpus_updated = 0;
1823 bool nocpu;
1824
1825 lockdep_assert_held(&cpuset_mutex);
1826
1827 /*
1828 * new_prs will only be changed for the partcmd_update and
1829 * partcmd_invalidate commands.
1830 */
1831 adding = deleting = false;
1832 old_prs = new_prs = cs->partition_root_state;
1833 xcpus = !cpumask_empty(cs->exclusive_cpus)
1834 ? cs->effective_xcpus : cs->cpus_allowed;
1835
1836 if (cmd == partcmd_invalidate) {
1837 if (is_prs_invalid(old_prs))
1838 return 0;
1839
1840 /*
1841 * Make the current partition invalid.
1842 */
1843 if (is_partition_valid(parent))
1844 adding = cpumask_and(tmp->addmask,
1845 xcpus, parent->effective_xcpus);
1846 if (old_prs > 0) {
1847 new_prs = -old_prs;
1848 subparts_delta--;
1849 }
1850 goto write_error;
1851 }
1852
1853 /*
1854 * The parent must be a partition root.
1855 * The new cpumask, if present, or the current cpus_allowed must
1856 * not be empty.
1857 */
1858 if (!is_partition_valid(parent)) {
1859 return is_partition_invalid(parent)
1860 ? PERR_INVPARENT : PERR_NOTPART;
1861 }
1862 if (!newmask && cpumask_empty(cs->cpus_allowed))
1863 return PERR_CPUSEMPTY;
1864
1865 nocpu = tasks_nocpu_error(parent, cs, xcpus);
1866
1867 if ((cmd == partcmd_enable) || (cmd == partcmd_enablei)) {
1868 /*
1869 * Enabling partition root is not allowed if its
1870 * effective_xcpus is empty or doesn't overlap with
1871 * parent's effective_xcpus.
1872 */
1873 if (cpumask_empty(xcpus) ||
1874 !cpumask_intersects(xcpus, parent->effective_xcpus))
1875 return PERR_INVCPUS;
1876
1877 if (prstate_housekeeping_conflict(new_prs, xcpus))
1878 return PERR_HKEEPING;
1879
1880 /*
1881 * A parent can be left with no CPU as long as there is no
1882 * task directly associated with the parent partition.
1883 */
1884 if (nocpu)
1885 return PERR_NOCPUS;
1886
1887 cpumask_copy(tmp->delmask, xcpus);
1888 deleting = true;
1889 subparts_delta++;
1890 new_prs = (cmd == partcmd_enable) ? PRS_ROOT : PRS_ISOLATED;
1891 } else if (cmd == partcmd_disable) {
1892 /*
1893 * May need to add cpus to parent's effective_cpus for
1894 * valid partition root.
1895 */
1896 adding = !is_prs_invalid(old_prs) &&
1897 cpumask_and(tmp->addmask, xcpus, parent->effective_xcpus);
1898 if (adding)
1899 subparts_delta--;
1900 new_prs = PRS_MEMBER;
1901 } else if (newmask) {
1902 /*
1903 * Empty cpumask is not allowed
1904 */
1905 if (cpumask_empty(newmask)) {
1906 part_error = PERR_CPUSEMPTY;
1907 goto write_error;
1908 }
1909
1910 /*
1911 * partcmd_update with newmask:
1912 *
1913 * Compute add/delete mask to/from effective_cpus
1914 *
1915 * For valid partition:
1916 * addmask = exclusive_cpus & ~newmask
1917 * & parent->effective_xcpus
1918 * delmask = newmask & ~exclusive_cpus
1919 * & parent->effective_xcpus
1920 *
1921 * For invalid partition:
1922 * delmask = newmask & parent->effective_xcpus
1923 */
1924 if (is_prs_invalid(old_prs)) {
1925 adding = false;
1926 deleting = cpumask_and(tmp->delmask,
1927 newmask, parent->effective_xcpus);
1928 } else {
1929 cpumask_andnot(tmp->addmask, xcpus, newmask);
1930 adding = cpumask_and(tmp->addmask, tmp->addmask,
1931 parent->effective_xcpus);
1932
1933 cpumask_andnot(tmp->delmask, newmask, xcpus);
1934 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1935 parent->effective_xcpus);
1936 }
1937 /*
1938 * Make partition invalid if parent's effective_cpus could
1939 * become empty and there are tasks in the parent.
1940 */
1941 if (nocpu && (!adding ||
1942 !cpumask_intersects(tmp->addmask, cpu_active_mask))) {
1943 part_error = PERR_NOCPUS;
1944 deleting = false;
1945 adding = cpumask_and(tmp->addmask,
1946 xcpus, parent->effective_xcpus);
1947 }
1948 } else {
1949 /*
1950 * partcmd_update w/o newmask
1951 *
1952 * delmask = effective_xcpus & parent->effective_cpus
1953 *
1954 * This can be called from:
1955 * 1) update_cpumasks_hier()
1956 * 2) cpuset_hotplug_update_tasks()
1957 *
1958 * Check to see if it can be transitioned from valid to
1959 * invalid partition or vice versa.
1960 *
1961 * A partition error happens when parent has tasks and all
1962 * its effective CPUs will have to be distributed out.
1963 */
1964 WARN_ON_ONCE(!is_partition_valid(parent));
1965 if (nocpu) {
1966 part_error = PERR_NOCPUS;
1967 if (is_partition_valid(cs))
1968 adding = cpumask_and(tmp->addmask,
1969 xcpus, parent->effective_xcpus);
1970 } else if (is_partition_invalid(cs) &&
1971 cpumask_subset(xcpus, parent->effective_xcpus)) {
1972 struct cgroup_subsys_state *css;
1973 struct cpuset *child;
1974 bool exclusive = true;
1975
1976 /*
1977 * Convert invalid partition to valid has to
1978 * pass the cpu exclusivity test.
1979 */
1980 rcu_read_lock();
1981 cpuset_for_each_child(child, css, parent) {
1982 if (child == cs)
1983 continue;
1984 if (!cpusets_are_exclusive(cs, child)) {
1985 exclusive = false;
1986 break;
1987 }
1988 }
1989 rcu_read_unlock();
1990 if (exclusive)
1991 deleting = cpumask_and(tmp->delmask,
1992 xcpus, parent->effective_cpus);
1993 else
1994 part_error = PERR_NOTEXCL;
1995 }
1996 }
1997
1998write_error:
1999 if (part_error)
2000 WRITE_ONCE(cs->prs_err, part_error);
2001
2002 if (cmd == partcmd_update) {
2003 /*
2004 * Check for possible transition between valid and invalid
2005 * partition root.
2006 */
2007 switch (cs->partition_root_state) {
2008 case PRS_ROOT:
2009 case PRS_ISOLATED:
2010 if (part_error) {
2011 new_prs = -old_prs;
2012 subparts_delta--;
2013 }
2014 break;
2015 case PRS_INVALID_ROOT:
2016 case PRS_INVALID_ISOLATED:
2017 if (!part_error) {
2018 new_prs = -old_prs;
2019 subparts_delta++;
2020 }
2021 break;
2022 }
2023 }
2024
2025 if (!adding && !deleting && (new_prs == old_prs))
2026 return 0;
2027
2028 /*
2029 * Transitioning between invalid to valid or vice versa may require
2030 * changing CS_CPU_EXCLUSIVE. In the case of partcmd_update,
2031 * validate_change() has already been successfully called and
2032 * CPU lists in cs haven't been updated yet. So defer it to later.
2033 */
2034 if ((old_prs != new_prs) && (cmd != partcmd_update)) {
2035 int err = update_partition_exclusive(cs, new_prs);
2036
2037 if (err)
2038 return err;
2039 }
2040
2041 /*
2042 * Change the parent's effective_cpus & effective_xcpus (top cpuset
2043 * only).
2044 *
2045 * Newly added CPUs will be removed from effective_cpus and
2046 * newly deleted ones will be added back to effective_cpus.
2047 */
2048 spin_lock_irq(&callback_lock);
2049 if (old_prs != new_prs) {
2050 cs->partition_root_state = new_prs;
2051 if (new_prs <= 0)
2052 cs->nr_subparts = 0;
2053 }
2054 /*
2055 * Adding to parent's effective_cpus means deletion CPUs from cs
2056 * and vice versa.
2057 */
2058 if (adding)
2059 isolcpus_updated += partition_xcpus_del(old_prs, parent,
2060 tmp->addmask);
2061 if (deleting)
2062 isolcpus_updated += partition_xcpus_add(new_prs, parent,
2063 tmp->delmask);
2064
2065 if (is_partition_valid(parent)) {
2066 parent->nr_subparts += subparts_delta;
2067 WARN_ON_ONCE(parent->nr_subparts < 0);
2068 }
2069 spin_unlock_irq(&callback_lock);
2070 update_unbound_workqueue_cpumask(isolcpus_updated);
2071
2072 if ((old_prs != new_prs) && (cmd == partcmd_update))
2073 update_partition_exclusive(cs, new_prs);
2074
2075 if (adding || deleting) {
2076 update_tasks_cpumask(parent, tmp->addmask);
2077 update_sibling_cpumasks(parent, cs, tmp);
2078 }
2079
2080 /*
2081 * For partcmd_update without newmask, it is being called from
2082 * cpuset_hotplug_workfn() where cpus_read_lock() wasn't taken.
2083 * Update the load balance flag and scheduling domain if
2084 * cpus_read_trylock() is successful.
2085 */
2086 if ((cmd == partcmd_update) && !newmask && cpus_read_trylock()) {
2087 update_partition_sd_lb(cs, old_prs);
2088 cpus_read_unlock();
2089 }
2090
2091 notify_partition_change(cs, old_prs);
2092 return 0;
2093}
2094
2095/**
2096 * compute_partition_effective_cpumask - compute effective_cpus for partition
2097 * @cs: partition root cpuset
2098 * @new_ecpus: previously computed effective_cpus to be updated
2099 *
2100 * Compute the effective_cpus of a partition root by scanning effective_xcpus
2101 * of child partition roots and excluding their effective_xcpus.
2102 *
2103 * This has the side effect of invalidating valid child partition roots,
2104 * if necessary. Since it is called from either cpuset_hotplug_update_tasks()
2105 * or update_cpumasks_hier() where parent and children are modified
2106 * successively, we don't need to call update_parent_effective_cpumask()
2107 * and the child's effective_cpus will be updated in later iterations.
2108 *
2109 * Note that rcu_read_lock() is assumed to be held.
2110 */
2111static void compute_partition_effective_cpumask(struct cpuset *cs,
2112 struct cpumask *new_ecpus)
2113{
2114 struct cgroup_subsys_state *css;
2115 struct cpuset *child;
2116 bool populated = partition_is_populated(cs, NULL);
2117
2118 /*
2119 * Check child partition roots to see if they should be
2120 * invalidated when
2121 * 1) child effective_xcpus not a subset of new
2122 * excluisve_cpus
2123 * 2) All the effective_cpus will be used up and cp
2124 * has tasks
2125 */
2126 compute_effective_exclusive_cpumask(cs, new_ecpus);
2127 cpumask_and(new_ecpus, new_ecpus, cpu_active_mask);
2128
2129 rcu_read_lock();
2130 cpuset_for_each_child(child, css, cs) {
2131 if (!is_partition_valid(child))
2132 continue;
2133
2134 child->prs_err = 0;
2135 if (!cpumask_subset(child->effective_xcpus,
2136 cs->effective_xcpus))
2137 child->prs_err = PERR_INVCPUS;
2138 else if (populated &&
2139 cpumask_subset(new_ecpus, child->effective_xcpus))
2140 child->prs_err = PERR_NOCPUS;
2141
2142 if (child->prs_err) {
2143 int old_prs = child->partition_root_state;
2144
2145 /*
2146 * Invalidate child partition
2147 */
2148 spin_lock_irq(&callback_lock);
2149 make_partition_invalid(child);
2150 cs->nr_subparts--;
2151 child->nr_subparts = 0;
2152 spin_unlock_irq(&callback_lock);
2153 notify_partition_change(child, old_prs);
2154 continue;
2155 }
2156 cpumask_andnot(new_ecpus, new_ecpus,
2157 child->effective_xcpus);
2158 }
2159 rcu_read_unlock();
2160}
2161
2162/*
2163 * update_cpumasks_hier() flags
2164 */
2165#define HIER_CHECKALL 0x01 /* Check all cpusets with no skipping */
2166#define HIER_NO_SD_REBUILD 0x02 /* Don't rebuild sched domains */
2167
2168/*
2169 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
2170 * @cs: the cpuset to consider
2171 * @tmp: temp variables for calculating effective_cpus & partition setup
2172 * @force: don't skip any descendant cpusets if set
2173 *
2174 * When configured cpumask is changed, the effective cpumasks of this cpuset
2175 * and all its descendants need to be updated.
2176 *
2177 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
2178 *
2179 * Called with cpuset_mutex held
2180 */
2181static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp,
2182 int flags)
2183{
2184 struct cpuset *cp;
2185 struct cgroup_subsys_state *pos_css;
2186 bool need_rebuild_sched_domains = false;
2187 int old_prs, new_prs;
2188
2189 rcu_read_lock();
2190 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2191 struct cpuset *parent = parent_cs(cp);
2192 bool remote = is_remote_partition(cp);
2193 bool update_parent = false;
2194
2195 /*
2196 * Skip descendent remote partition that acquires CPUs
2197 * directly from top cpuset unless it is cs.
2198 */
2199 if (remote && (cp != cs)) {
2200 pos_css = css_rightmost_descendant(pos_css);
2201 continue;
2202 }
2203
2204 /*
2205 * Update effective_xcpus if exclusive_cpus set.
2206 * The case when exclusive_cpus isn't set is handled later.
2207 */
2208 if (!cpumask_empty(cp->exclusive_cpus) && (cp != cs)) {
2209 spin_lock_irq(&callback_lock);
2210 compute_effective_exclusive_cpumask(cp, NULL);
2211 spin_unlock_irq(&callback_lock);
2212 }
2213
2214 old_prs = new_prs = cp->partition_root_state;
2215 if (remote || (is_partition_valid(parent) &&
2216 is_partition_valid(cp)))
2217 compute_partition_effective_cpumask(cp, tmp->new_cpus);
2218 else
2219 compute_effective_cpumask(tmp->new_cpus, cp, parent);
2220
2221 /*
2222 * A partition with no effective_cpus is allowed as long as
2223 * there is no task associated with it. Call
2224 * update_parent_effective_cpumask() to check it.
2225 */
2226 if (is_partition_valid(cp) && cpumask_empty(tmp->new_cpus)) {
2227 update_parent = true;
2228 goto update_parent_effective;
2229 }
2230
2231 /*
2232 * If it becomes empty, inherit the effective mask of the
2233 * parent, which is guaranteed to have some CPUs unless
2234 * it is a partition root that has explicitly distributed
2235 * out all its CPUs.
2236 */
2237 if (is_in_v2_mode() && !remote && cpumask_empty(tmp->new_cpus)) {
2238 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
2239 if (!cp->use_parent_ecpus) {
2240 cp->use_parent_ecpus = true;
2241 parent->child_ecpus_count++;
2242 }
2243 } else if (cp->use_parent_ecpus) {
2244 cp->use_parent_ecpus = false;
2245 WARN_ON_ONCE(!parent->child_ecpus_count);
2246 parent->child_ecpus_count--;
2247 }
2248
2249 if (remote)
2250 goto get_css;
2251
2252 /*
2253 * Skip the whole subtree if
2254 * 1) the cpumask remains the same,
2255 * 2) has no partition root state,
2256 * 3) HIER_CHECKALL flag not set, and
2257 * 4) for v2 load balance state same as its parent.
2258 */
2259 if (!cp->partition_root_state && !(flags & HIER_CHECKALL) &&
2260 cpumask_equal(tmp->new_cpus, cp->effective_cpus) &&
2261 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2262 (is_sched_load_balance(parent) == is_sched_load_balance(cp)))) {
2263 pos_css = css_rightmost_descendant(pos_css);
2264 continue;
2265 }
2266
2267update_parent_effective:
2268 /*
2269 * update_parent_effective_cpumask() should have been called
2270 * for cs already in update_cpumask(). We should also call
2271 * update_tasks_cpumask() again for tasks in the parent
2272 * cpuset if the parent's effective_cpus changes.
2273 */
2274 if ((cp != cs) && old_prs) {
2275 switch (parent->partition_root_state) {
2276 case PRS_ROOT:
2277 case PRS_ISOLATED:
2278 update_parent = true;
2279 break;
2280
2281 default:
2282 /*
2283 * When parent is not a partition root or is
2284 * invalid, child partition roots become
2285 * invalid too.
2286 */
2287 if (is_partition_valid(cp))
2288 new_prs = -cp->partition_root_state;
2289 WRITE_ONCE(cp->prs_err,
2290 is_partition_invalid(parent)
2291 ? PERR_INVPARENT : PERR_NOTPART);
2292 break;
2293 }
2294 }
2295get_css:
2296 if (!css_tryget_online(&cp->css))
2297 continue;
2298 rcu_read_unlock();
2299
2300 if (update_parent) {
2301 update_parent_effective_cpumask(cp, partcmd_update, NULL, tmp);
2302 /*
2303 * The cpuset partition_root_state may become
2304 * invalid. Capture it.
2305 */
2306 new_prs = cp->partition_root_state;
2307 }
2308
2309 spin_lock_irq(&callback_lock);
2310 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
2311 cp->partition_root_state = new_prs;
2312 /*
2313 * Make sure effective_xcpus is properly set for a valid
2314 * partition root.
2315 */
2316 if ((new_prs > 0) && cpumask_empty(cp->exclusive_cpus))
2317 cpumask_and(cp->effective_xcpus,
2318 cp->cpus_allowed, parent->effective_xcpus);
2319 else if (new_prs < 0)
2320 reset_partition_data(cp);
2321 spin_unlock_irq(&callback_lock);
2322
2323 notify_partition_change(cp, old_prs);
2324
2325 WARN_ON(!is_in_v2_mode() &&
2326 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
2327
2328 update_tasks_cpumask(cp, cp->effective_cpus);
2329
2330 /*
2331 * On default hierarchy, inherit the CS_SCHED_LOAD_BALANCE
2332 * from parent if current cpuset isn't a valid partition root
2333 * and their load balance states differ.
2334 */
2335 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
2336 !is_partition_valid(cp) &&
2337 (is_sched_load_balance(parent) != is_sched_load_balance(cp))) {
2338 if (is_sched_load_balance(parent))
2339 set_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2340 else
2341 clear_bit(CS_SCHED_LOAD_BALANCE, &cp->flags);
2342 }
2343
2344 /*
2345 * On legacy hierarchy, if the effective cpumask of any non-
2346 * empty cpuset is changed, we need to rebuild sched domains.
2347 * On default hierarchy, the cpuset needs to be a partition
2348 * root as well.
2349 */
2350 if (!cpumask_empty(cp->cpus_allowed) &&
2351 is_sched_load_balance(cp) &&
2352 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
2353 is_partition_valid(cp)))
2354 need_rebuild_sched_domains = true;
2355
2356 rcu_read_lock();
2357 css_put(&cp->css);
2358 }
2359 rcu_read_unlock();
2360
2361 if (need_rebuild_sched_domains && !(flags & HIER_NO_SD_REBUILD))
2362 rebuild_sched_domains_locked();
2363}
2364
2365/**
2366 * update_sibling_cpumasks - Update siblings cpumasks
2367 * @parent: Parent cpuset
2368 * @cs: Current cpuset
2369 * @tmp: Temp variables
2370 */
2371static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
2372 struct tmpmasks *tmp)
2373{
2374 struct cpuset *sibling;
2375 struct cgroup_subsys_state *pos_css;
2376
2377 lockdep_assert_held(&cpuset_mutex);
2378
2379 /*
2380 * Check all its siblings and call update_cpumasks_hier()
2381 * if their effective_cpus will need to be changed.
2382 *
2383 * With the addition of effective_xcpus which is a subset of
2384 * cpus_allowed. It is possible a change in parent's effective_cpus
2385 * due to a change in a child partition's effective_xcpus will impact
2386 * its siblings even if they do not inherit parent's effective_cpus
2387 * directly.
2388 *
2389 * The update_cpumasks_hier() function may sleep. So we have to
2390 * release the RCU read lock before calling it. HIER_NO_SD_REBUILD
2391 * flag is used to suppress rebuild of sched domains as the callers
2392 * will take care of that.
2393 */
2394 rcu_read_lock();
2395 cpuset_for_each_child(sibling, pos_css, parent) {
2396 if (sibling == cs)
2397 continue;
2398 if (!sibling->use_parent_ecpus &&
2399 !is_partition_valid(sibling)) {
2400 compute_effective_cpumask(tmp->new_cpus, sibling,
2401 parent);
2402 if (cpumask_equal(tmp->new_cpus, sibling->effective_cpus))
2403 continue;
2404 }
2405 if (!css_tryget_online(&sibling->css))
2406 continue;
2407
2408 rcu_read_unlock();
2409 update_cpumasks_hier(sibling, tmp, HIER_NO_SD_REBUILD);
2410 rcu_read_lock();
2411 css_put(&sibling->css);
2412 }
2413 rcu_read_unlock();
2414}
2415
2416/**
2417 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
2418 * @cs: the cpuset to consider
2419 * @trialcs: trial cpuset
2420 * @buf: buffer of cpu numbers written to this cpuset
2421 */
2422static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2423 const char *buf)
2424{
2425 int retval;
2426 struct tmpmasks tmp;
2427 struct cpuset *parent = parent_cs(cs);
2428 bool invalidate = false;
2429 int hier_flags = 0;
2430 int old_prs = cs->partition_root_state;
2431
2432 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
2433 if (cs == &top_cpuset)
2434 return -EACCES;
2435
2436 /*
2437 * An empty cpus_allowed is ok only if the cpuset has no tasks.
2438 * Since cpulist_parse() fails on an empty mask, we special case
2439 * that parsing. The validate_change() call ensures that cpusets
2440 * with tasks have cpus.
2441 */
2442 if (!*buf) {
2443 cpumask_clear(trialcs->cpus_allowed);
2444 cpumask_clear(trialcs->effective_xcpus);
2445 } else {
2446 retval = cpulist_parse(buf, trialcs->cpus_allowed);
2447 if (retval < 0)
2448 return retval;
2449
2450 if (!cpumask_subset(trialcs->cpus_allowed,
2451 top_cpuset.cpus_allowed))
2452 return -EINVAL;
2453
2454 /*
2455 * When exclusive_cpus isn't explicitly set, it is constrainted
2456 * by cpus_allowed and parent's effective_xcpus. Otherwise,
2457 * trialcs->effective_xcpus is used as a temporary cpumask
2458 * for checking validity of the partition root.
2459 */
2460 if (!cpumask_empty(trialcs->exclusive_cpus) || is_partition_valid(cs))
2461 compute_effective_exclusive_cpumask(trialcs, NULL);
2462 }
2463
2464 /* Nothing to do if the cpus didn't change */
2465 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
2466 return 0;
2467
2468 if (alloc_cpumasks(NULL, &tmp))
2469 return -ENOMEM;
2470
2471 if (old_prs) {
2472 if (is_partition_valid(cs) &&
2473 cpumask_empty(trialcs->effective_xcpus)) {
2474 invalidate = true;
2475 cs->prs_err = PERR_INVCPUS;
2476 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2477 invalidate = true;
2478 cs->prs_err = PERR_HKEEPING;
2479 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2480 invalidate = true;
2481 cs->prs_err = PERR_NOCPUS;
2482 }
2483 }
2484
2485 /*
2486 * Check all the descendants in update_cpumasks_hier() if
2487 * effective_xcpus is to be changed.
2488 */
2489 if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2490 hier_flags = HIER_CHECKALL;
2491
2492 retval = validate_change(cs, trialcs);
2493
2494 if ((retval == -EINVAL) && cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2495 struct cgroup_subsys_state *css;
2496 struct cpuset *cp;
2497
2498 /*
2499 * The -EINVAL error code indicates that partition sibling
2500 * CPU exclusivity rule has been violated. We still allow
2501 * the cpumask change to proceed while invalidating the
2502 * partition. However, any conflicting sibling partitions
2503 * have to be marked as invalid too.
2504 */
2505 invalidate = true;
2506 rcu_read_lock();
2507 cpuset_for_each_child(cp, css, parent) {
2508 struct cpumask *xcpus = fetch_xcpus(trialcs);
2509
2510 if (is_partition_valid(cp) &&
2511 cpumask_intersects(xcpus, cp->effective_xcpus)) {
2512 rcu_read_unlock();
2513 update_parent_effective_cpumask(cp, partcmd_invalidate, NULL, &tmp);
2514 rcu_read_lock();
2515 }
2516 }
2517 rcu_read_unlock();
2518 retval = 0;
2519 }
2520
2521 if (retval < 0)
2522 goto out_free;
2523
2524 if (is_partition_valid(cs) ||
2525 (is_partition_invalid(cs) && !invalidate)) {
2526 struct cpumask *xcpus = trialcs->effective_xcpus;
2527
2528 if (cpumask_empty(xcpus) && is_partition_invalid(cs))
2529 xcpus = trialcs->cpus_allowed;
2530
2531 /*
2532 * Call remote_cpus_update() to handle valid remote partition
2533 */
2534 if (is_remote_partition(cs))
2535 remote_cpus_update(cs, xcpus, &tmp);
2536 else if (invalidate)
2537 update_parent_effective_cpumask(cs, partcmd_invalidate,
2538 NULL, &tmp);
2539 else
2540 update_parent_effective_cpumask(cs, partcmd_update,
2541 xcpus, &tmp);
2542 } else if (!cpumask_empty(cs->exclusive_cpus)) {
2543 /*
2544 * Use trialcs->effective_cpus as a temp cpumask
2545 */
2546 remote_partition_check(cs, trialcs->effective_xcpus,
2547 trialcs->effective_cpus, &tmp);
2548 }
2549
2550 spin_lock_irq(&callback_lock);
2551 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
2552 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2553 if ((old_prs > 0) && !is_partition_valid(cs))
2554 reset_partition_data(cs);
2555 spin_unlock_irq(&callback_lock);
2556
2557 /* effective_cpus/effective_xcpus will be updated here */
2558 update_cpumasks_hier(cs, &tmp, hier_flags);
2559
2560 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2561 if (cs->partition_root_state)
2562 update_partition_sd_lb(cs, old_prs);
2563out_free:
2564 free_cpumasks(NULL, &tmp);
2565 return retval;
2566}
2567
2568/**
2569 * update_exclusive_cpumask - update the exclusive_cpus mask of a cpuset
2570 * @cs: the cpuset to consider
2571 * @trialcs: trial cpuset
2572 * @buf: buffer of cpu numbers written to this cpuset
2573 *
2574 * The tasks' cpumask will be updated if cs is a valid partition root.
2575 */
2576static int update_exclusive_cpumask(struct cpuset *cs, struct cpuset *trialcs,
2577 const char *buf)
2578{
2579 int retval;
2580 struct tmpmasks tmp;
2581 struct cpuset *parent = parent_cs(cs);
2582 bool invalidate = false;
2583 int hier_flags = 0;
2584 int old_prs = cs->partition_root_state;
2585
2586 if (!*buf) {
2587 cpumask_clear(trialcs->exclusive_cpus);
2588 cpumask_clear(trialcs->effective_xcpus);
2589 } else {
2590 retval = cpulist_parse(buf, trialcs->exclusive_cpus);
2591 if (retval < 0)
2592 return retval;
2593 if (!is_cpu_exclusive(cs))
2594 set_bit(CS_CPU_EXCLUSIVE, &trialcs->flags);
2595 }
2596
2597 /* Nothing to do if the CPUs didn't change */
2598 if (cpumask_equal(cs->exclusive_cpus, trialcs->exclusive_cpus))
2599 return 0;
2600
2601 if (*buf)
2602 compute_effective_exclusive_cpumask(trialcs, NULL);
2603
2604 /*
2605 * Check all the descendants in update_cpumasks_hier() if
2606 * effective_xcpus is to be changed.
2607 */
2608 if (!cpumask_equal(cs->effective_xcpus, trialcs->effective_xcpus))
2609 hier_flags = HIER_CHECKALL;
2610
2611 retval = validate_change(cs, trialcs);
2612 if (retval)
2613 return retval;
2614
2615 if (alloc_cpumasks(NULL, &tmp))
2616 return -ENOMEM;
2617
2618 if (old_prs) {
2619 if (cpumask_empty(trialcs->effective_xcpus)) {
2620 invalidate = true;
2621 cs->prs_err = PERR_INVCPUS;
2622 } else if (prstate_housekeeping_conflict(old_prs, trialcs->effective_xcpus)) {
2623 invalidate = true;
2624 cs->prs_err = PERR_HKEEPING;
2625 } else if (tasks_nocpu_error(parent, cs, trialcs->effective_xcpus)) {
2626 invalidate = true;
2627 cs->prs_err = PERR_NOCPUS;
2628 }
2629
2630 if (is_remote_partition(cs)) {
2631 if (invalidate)
2632 remote_partition_disable(cs, &tmp);
2633 else
2634 remote_cpus_update(cs, trialcs->effective_xcpus,
2635 &tmp);
2636 } else if (invalidate) {
2637 update_parent_effective_cpumask(cs, partcmd_invalidate,
2638 NULL, &tmp);
2639 } else {
2640 update_parent_effective_cpumask(cs, partcmd_update,
2641 trialcs->effective_xcpus, &tmp);
2642 }
2643 } else if (!cpumask_empty(trialcs->exclusive_cpus)) {
2644 /*
2645 * Use trialcs->effective_cpus as a temp cpumask
2646 */
2647 remote_partition_check(cs, trialcs->effective_xcpus,
2648 trialcs->effective_cpus, &tmp);
2649 }
2650 spin_lock_irq(&callback_lock);
2651 cpumask_copy(cs->exclusive_cpus, trialcs->exclusive_cpus);
2652 cpumask_copy(cs->effective_xcpus, trialcs->effective_xcpus);
2653 if ((old_prs > 0) && !is_partition_valid(cs))
2654 reset_partition_data(cs);
2655 spin_unlock_irq(&callback_lock);
2656
2657 /*
2658 * Call update_cpumasks_hier() to update effective_cpus/effective_xcpus
2659 * of the subtree when it is a valid partition root or effective_xcpus
2660 * is updated.
2661 */
2662 if (is_partition_valid(cs) || hier_flags)
2663 update_cpumasks_hier(cs, &tmp, hier_flags);
2664
2665 /* Update CS_SCHED_LOAD_BALANCE and/or sched_domains, if necessary */
2666 if (cs->partition_root_state)
2667 update_partition_sd_lb(cs, old_prs);
2668
2669 free_cpumasks(NULL, &tmp);
2670 return 0;
2671}
2672
2673/*
2674 * Migrate memory region from one set of nodes to another. This is
2675 * performed asynchronously as it can be called from process migration path
2676 * holding locks involved in process management. All mm migrations are
2677 * performed in the queued order and can be waited for by flushing
2678 * cpuset_migrate_mm_wq.
2679 */
2680
2681struct cpuset_migrate_mm_work {
2682 struct work_struct work;
2683 struct mm_struct *mm;
2684 nodemask_t from;
2685 nodemask_t to;
2686};
2687
2688static void cpuset_migrate_mm_workfn(struct work_struct *work)
2689{
2690 struct cpuset_migrate_mm_work *mwork =
2691 container_of(work, struct cpuset_migrate_mm_work, work);
2692
2693 /* on a wq worker, no need to worry about %current's mems_allowed */
2694 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
2695 mmput(mwork->mm);
2696 kfree(mwork);
2697}
2698
2699static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
2700 const nodemask_t *to)
2701{
2702 struct cpuset_migrate_mm_work *mwork;
2703
2704 if (nodes_equal(*from, *to)) {
2705 mmput(mm);
2706 return;
2707 }
2708
2709 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
2710 if (mwork) {
2711 mwork->mm = mm;
2712 mwork->from = *from;
2713 mwork->to = *to;
2714 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
2715 queue_work(cpuset_migrate_mm_wq, &mwork->work);
2716 } else {
2717 mmput(mm);
2718 }
2719}
2720
2721static void cpuset_post_attach(void)
2722{
2723 flush_workqueue(cpuset_migrate_mm_wq);
2724}
2725
2726/*
2727 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
2728 * @tsk: the task to change
2729 * @newmems: new nodes that the task will be set
2730 *
2731 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
2732 * and rebind an eventual tasks' mempolicy. If the task is allocating in
2733 * parallel, it might temporarily see an empty intersection, which results in
2734 * a seqlock check and retry before OOM or allocation failure.
2735 */
2736static void cpuset_change_task_nodemask(struct task_struct *tsk,
2737 nodemask_t *newmems)
2738{
2739 task_lock(tsk);
2740
2741 local_irq_disable();
2742 write_seqcount_begin(&tsk->mems_allowed_seq);
2743
2744 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
2745 mpol_rebind_task(tsk, newmems);
2746 tsk->mems_allowed = *newmems;
2747
2748 write_seqcount_end(&tsk->mems_allowed_seq);
2749 local_irq_enable();
2750
2751 task_unlock(tsk);
2752}
2753
2754static void *cpuset_being_rebound;
2755
2756/**
2757 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
2758 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
2759 *
2760 * Iterate through each task of @cs updating its mems_allowed to the
2761 * effective cpuset's. As this function is called with cpuset_mutex held,
2762 * cpuset membership stays stable.
2763 */
2764static void update_tasks_nodemask(struct cpuset *cs)
2765{
2766 static nodemask_t newmems; /* protected by cpuset_mutex */
2767 struct css_task_iter it;
2768 struct task_struct *task;
2769
2770 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
2771
2772 guarantee_online_mems(cs, &newmems);
2773
2774 /*
2775 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
2776 * take while holding tasklist_lock. Forks can happen - the
2777 * mpol_dup() cpuset_being_rebound check will catch such forks,
2778 * and rebind their vma mempolicies too. Because we still hold
2779 * the global cpuset_mutex, we know that no other rebind effort
2780 * will be contending for the global variable cpuset_being_rebound.
2781 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
2782 * is idempotent. Also migrate pages in each mm to new nodes.
2783 */
2784 css_task_iter_start(&cs->css, 0, &it);
2785 while ((task = css_task_iter_next(&it))) {
2786 struct mm_struct *mm;
2787 bool migrate;
2788
2789 cpuset_change_task_nodemask(task, &newmems);
2790
2791 mm = get_task_mm(task);
2792 if (!mm)
2793 continue;
2794
2795 migrate = is_memory_migrate(cs);
2796
2797 mpol_rebind_mm(mm, &cs->mems_allowed);
2798 if (migrate)
2799 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
2800 else
2801 mmput(mm);
2802 }
2803 css_task_iter_end(&it);
2804
2805 /*
2806 * All the tasks' nodemasks have been updated, update
2807 * cs->old_mems_allowed.
2808 */
2809 cs->old_mems_allowed = newmems;
2810
2811 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
2812 cpuset_being_rebound = NULL;
2813}
2814
2815/*
2816 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
2817 * @cs: the cpuset to consider
2818 * @new_mems: a temp variable for calculating new effective_mems
2819 *
2820 * When configured nodemask is changed, the effective nodemasks of this cpuset
2821 * and all its descendants need to be updated.
2822 *
2823 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
2824 *
2825 * Called with cpuset_mutex held
2826 */
2827static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
2828{
2829 struct cpuset *cp;
2830 struct cgroup_subsys_state *pos_css;
2831
2832 rcu_read_lock();
2833 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
2834 struct cpuset *parent = parent_cs(cp);
2835
2836 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
2837
2838 /*
2839 * If it becomes empty, inherit the effective mask of the
2840 * parent, which is guaranteed to have some MEMs.
2841 */
2842 if (is_in_v2_mode() && nodes_empty(*new_mems))
2843 *new_mems = parent->effective_mems;
2844
2845 /* Skip the whole subtree if the nodemask remains the same. */
2846 if (nodes_equal(*new_mems, cp->effective_mems)) {
2847 pos_css = css_rightmost_descendant(pos_css);
2848 continue;
2849 }
2850
2851 if (!css_tryget_online(&cp->css))
2852 continue;
2853 rcu_read_unlock();
2854
2855 spin_lock_irq(&callback_lock);
2856 cp->effective_mems = *new_mems;
2857 spin_unlock_irq(&callback_lock);
2858
2859 WARN_ON(!is_in_v2_mode() &&
2860 !nodes_equal(cp->mems_allowed, cp->effective_mems));
2861
2862 update_tasks_nodemask(cp);
2863
2864 rcu_read_lock();
2865 css_put(&cp->css);
2866 }
2867 rcu_read_unlock();
2868}
2869
2870/*
2871 * Handle user request to change the 'mems' memory placement
2872 * of a cpuset. Needs to validate the request, update the
2873 * cpusets mems_allowed, and for each task in the cpuset,
2874 * update mems_allowed and rebind task's mempolicy and any vma
2875 * mempolicies and if the cpuset is marked 'memory_migrate',
2876 * migrate the tasks pages to the new memory.
2877 *
2878 * Call with cpuset_mutex held. May take callback_lock during call.
2879 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
2880 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
2881 * their mempolicies to the cpusets new mems_allowed.
2882 */
2883static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
2884 const char *buf)
2885{
2886 int retval;
2887
2888 /*
2889 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
2890 * it's read-only
2891 */
2892 if (cs == &top_cpuset) {
2893 retval = -EACCES;
2894 goto done;
2895 }
2896
2897 /*
2898 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
2899 * Since nodelist_parse() fails on an empty mask, we special case
2900 * that parsing. The validate_change() call ensures that cpusets
2901 * with tasks have memory.
2902 */
2903 if (!*buf) {
2904 nodes_clear(trialcs->mems_allowed);
2905 } else {
2906 retval = nodelist_parse(buf, trialcs->mems_allowed);
2907 if (retval < 0)
2908 goto done;
2909
2910 if (!nodes_subset(trialcs->mems_allowed,
2911 top_cpuset.mems_allowed)) {
2912 retval = -EINVAL;
2913 goto done;
2914 }
2915 }
2916
2917 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
2918 retval = 0; /* Too easy - nothing to do */
2919 goto done;
2920 }
2921 retval = validate_change(cs, trialcs);
2922 if (retval < 0)
2923 goto done;
2924
2925 check_insane_mems_config(&trialcs->mems_allowed);
2926
2927 spin_lock_irq(&callback_lock);
2928 cs->mems_allowed = trialcs->mems_allowed;
2929 spin_unlock_irq(&callback_lock);
2930
2931 /* use trialcs->mems_allowed as a temp variable */
2932 update_nodemasks_hier(cs, &trialcs->mems_allowed);
2933done:
2934 return retval;
2935}
2936
2937bool current_cpuset_is_being_rebound(void)
2938{
2939 bool ret;
2940
2941 rcu_read_lock();
2942 ret = task_cs(current) == cpuset_being_rebound;
2943 rcu_read_unlock();
2944
2945 return ret;
2946}
2947
2948static int update_relax_domain_level(struct cpuset *cs, s64 val)
2949{
2950#ifdef CONFIG_SMP
2951 if (val < -1 || val >= sched_domain_level_max)
2952 return -EINVAL;
2953#endif
2954
2955 if (val != cs->relax_domain_level) {
2956 cs->relax_domain_level = val;
2957 if (!cpumask_empty(cs->cpus_allowed) &&
2958 is_sched_load_balance(cs))
2959 rebuild_sched_domains_locked();
2960 }
2961
2962 return 0;
2963}
2964
2965/**
2966 * update_tasks_flags - update the spread flags of tasks in the cpuset.
2967 * @cs: the cpuset in which each task's spread flags needs to be changed
2968 *
2969 * Iterate through each task of @cs updating its spread flags. As this
2970 * function is called with cpuset_mutex held, cpuset membership stays
2971 * stable.
2972 */
2973static void update_tasks_flags(struct cpuset *cs)
2974{
2975 struct css_task_iter it;
2976 struct task_struct *task;
2977
2978 css_task_iter_start(&cs->css, 0, &it);
2979 while ((task = css_task_iter_next(&it)))
2980 cpuset_update_task_spread_flags(cs, task);
2981 css_task_iter_end(&it);
2982}
2983
2984/*
2985 * update_flag - read a 0 or a 1 in a file and update associated flag
2986 * bit: the bit to update (see cpuset_flagbits_t)
2987 * cs: the cpuset to update
2988 * turning_on: whether the flag is being set or cleared
2989 *
2990 * Call with cpuset_mutex held.
2991 */
2992
2993static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2994 int turning_on)
2995{
2996 struct cpuset *trialcs;
2997 int balance_flag_changed;
2998 int spread_flag_changed;
2999 int err;
3000
3001 trialcs = alloc_trial_cpuset(cs);
3002 if (!trialcs)
3003 return -ENOMEM;
3004
3005 if (turning_on)
3006 set_bit(bit, &trialcs->flags);
3007 else
3008 clear_bit(bit, &trialcs->flags);
3009
3010 err = validate_change(cs, trialcs);
3011 if (err < 0)
3012 goto out;
3013
3014 balance_flag_changed = (is_sched_load_balance(cs) !=
3015 is_sched_load_balance(trialcs));
3016
3017 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
3018 || (is_spread_page(cs) != is_spread_page(trialcs)));
3019
3020 spin_lock_irq(&callback_lock);
3021 cs->flags = trialcs->flags;
3022 spin_unlock_irq(&callback_lock);
3023
3024 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
3025 rebuild_sched_domains_locked();
3026
3027 if (spread_flag_changed)
3028 update_tasks_flags(cs);
3029out:
3030 free_cpuset(trialcs);
3031 return err;
3032}
3033
3034/**
3035 * update_prstate - update partition_root_state
3036 * @cs: the cpuset to update
3037 * @new_prs: new partition root state
3038 * Return: 0 if successful, != 0 if error
3039 *
3040 * Call with cpuset_mutex held.
3041 */
3042static int update_prstate(struct cpuset *cs, int new_prs)
3043{
3044 int err = PERR_NONE, old_prs = cs->partition_root_state;
3045 struct cpuset *parent = parent_cs(cs);
3046 struct tmpmasks tmpmask;
3047 bool new_xcpus_state = false;
3048
3049 if (old_prs == new_prs)
3050 return 0;
3051
3052 /*
3053 * Treat a previously invalid partition root as if it is a "member".
3054 */
3055 if (new_prs && is_prs_invalid(old_prs))
3056 old_prs = PRS_MEMBER;
3057
3058 if (alloc_cpumasks(NULL, &tmpmask))
3059 return -ENOMEM;
3060
3061 /*
3062 * Setup effective_xcpus if not properly set yet, it will be cleared
3063 * later if partition becomes invalid.
3064 */
3065 if ((new_prs > 0) && cpumask_empty(cs->exclusive_cpus)) {
3066 spin_lock_irq(&callback_lock);
3067 cpumask_and(cs->effective_xcpus,
3068 cs->cpus_allowed, parent->effective_xcpus);
3069 spin_unlock_irq(&callback_lock);
3070 }
3071
3072 err = update_partition_exclusive(cs, new_prs);
3073 if (err)
3074 goto out;
3075
3076 if (!old_prs) {
3077 enum partition_cmd cmd = (new_prs == PRS_ROOT)
3078 ? partcmd_enable : partcmd_enablei;
3079
3080 /*
3081 * cpus_allowed cannot be empty.
3082 */
3083 if (cpumask_empty(cs->cpus_allowed)) {
3084 err = PERR_CPUSEMPTY;
3085 goto out;
3086 }
3087
3088 err = update_parent_effective_cpumask(cs, cmd, NULL, &tmpmask);
3089 /*
3090 * If an attempt to become local partition root fails,
3091 * try to become a remote partition root instead.
3092 */
3093 if (err && remote_partition_enable(cs, new_prs, &tmpmask))
3094 err = 0;
3095 } else if (old_prs && new_prs) {
3096 /*
3097 * A change in load balance state only, no change in cpumasks.
3098 */
3099 new_xcpus_state = true;
3100 } else {
3101 /*
3102 * Switching back to member is always allowed even if it
3103 * disables child partitions.
3104 */
3105 if (is_remote_partition(cs))
3106 remote_partition_disable(cs, &tmpmask);
3107 else
3108 update_parent_effective_cpumask(cs, partcmd_disable,
3109 NULL, &tmpmask);
3110
3111 /*
3112 * Invalidation of child partitions will be done in
3113 * update_cpumasks_hier().
3114 */
3115 }
3116out:
3117 /*
3118 * Make partition invalid & disable CS_CPU_EXCLUSIVE if an error
3119 * happens.
3120 */
3121 if (err) {
3122 new_prs = -new_prs;
3123 update_partition_exclusive(cs, new_prs);
3124 }
3125
3126 spin_lock_irq(&callback_lock);
3127 cs->partition_root_state = new_prs;
3128 WRITE_ONCE(cs->prs_err, err);
3129 if (!is_partition_valid(cs))
3130 reset_partition_data(cs);
3131 else if (new_xcpus_state)
3132 partition_xcpus_newstate(old_prs, new_prs, cs->effective_xcpus);
3133 spin_unlock_irq(&callback_lock);
3134 update_unbound_workqueue_cpumask(new_xcpus_state);
3135
3136 /* Force update if switching back to member */
3137 update_cpumasks_hier(cs, &tmpmask, !new_prs ? HIER_CHECKALL : 0);
3138
3139 /* Update sched domains and load balance flag */
3140 update_partition_sd_lb(cs, old_prs);
3141
3142 notify_partition_change(cs, old_prs);
3143 free_cpumasks(NULL, &tmpmask);
3144 return 0;
3145}
3146
3147/*
3148 * Frequency meter - How fast is some event occurring?
3149 *
3150 * These routines manage a digitally filtered, constant time based,
3151 * event frequency meter. There are four routines:
3152 * fmeter_init() - initialize a frequency meter.
3153 * fmeter_markevent() - called each time the event happens.
3154 * fmeter_getrate() - returns the recent rate of such events.
3155 * fmeter_update() - internal routine used to update fmeter.
3156 *
3157 * A common data structure is passed to each of these routines,
3158 * which is used to keep track of the state required to manage the
3159 * frequency meter and its digital filter.
3160 *
3161 * The filter works on the number of events marked per unit time.
3162 * The filter is single-pole low-pass recursive (IIR). The time unit
3163 * is 1 second. Arithmetic is done using 32-bit integers scaled to
3164 * simulate 3 decimal digits of precision (multiplied by 1000).
3165 *
3166 * With an FM_COEF of 933, and a time base of 1 second, the filter
3167 * has a half-life of 10 seconds, meaning that if the events quit
3168 * happening, then the rate returned from the fmeter_getrate()
3169 * will be cut in half each 10 seconds, until it converges to zero.
3170 *
3171 * It is not worth doing a real infinitely recursive filter. If more
3172 * than FM_MAXTICKS ticks have elapsed since the last filter event,
3173 * just compute FM_MAXTICKS ticks worth, by which point the level
3174 * will be stable.
3175 *
3176 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
3177 * arithmetic overflow in the fmeter_update() routine.
3178 *
3179 * Given the simple 32 bit integer arithmetic used, this meter works
3180 * best for reporting rates between one per millisecond (msec) and
3181 * one per 32 (approx) seconds. At constant rates faster than one
3182 * per msec it maxes out at values just under 1,000,000. At constant
3183 * rates between one per msec, and one per second it will stabilize
3184 * to a value N*1000, where N is the rate of events per second.
3185 * At constant rates between one per second and one per 32 seconds,
3186 * it will be choppy, moving up on the seconds that have an event,
3187 * and then decaying until the next event. At rates slower than
3188 * about one in 32 seconds, it decays all the way back to zero between
3189 * each event.
3190 */
3191
3192#define FM_COEF 933 /* coefficient for half-life of 10 secs */
3193#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
3194#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
3195#define FM_SCALE 1000 /* faux fixed point scale */
3196
3197/* Initialize a frequency meter */
3198static void fmeter_init(struct fmeter *fmp)
3199{
3200 fmp->cnt = 0;
3201 fmp->val = 0;
3202 fmp->time = 0;
3203 spin_lock_init(&fmp->lock);
3204}
3205
3206/* Internal meter update - process cnt events and update value */
3207static void fmeter_update(struct fmeter *fmp)
3208{
3209 time64_t now;
3210 u32 ticks;
3211
3212 now = ktime_get_seconds();
3213 ticks = now - fmp->time;
3214
3215 if (ticks == 0)
3216 return;
3217
3218 ticks = min(FM_MAXTICKS, ticks);
3219 while (ticks-- > 0)
3220 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
3221 fmp->time = now;
3222
3223 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
3224 fmp->cnt = 0;
3225}
3226
3227/* Process any previous ticks, then bump cnt by one (times scale). */
3228static void fmeter_markevent(struct fmeter *fmp)
3229{
3230 spin_lock(&fmp->lock);
3231 fmeter_update(fmp);
3232 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
3233 spin_unlock(&fmp->lock);
3234}
3235
3236/* Process any previous ticks, then return current value. */
3237static int fmeter_getrate(struct fmeter *fmp)
3238{
3239 int val;
3240
3241 spin_lock(&fmp->lock);
3242 fmeter_update(fmp);
3243 val = fmp->val;
3244 spin_unlock(&fmp->lock);
3245 return val;
3246}
3247
3248static struct cpuset *cpuset_attach_old_cs;
3249
3250/*
3251 * Check to see if a cpuset can accept a new task
3252 * For v1, cpus_allowed and mems_allowed can't be empty.
3253 * For v2, effective_cpus can't be empty.
3254 * Note that in v1, effective_cpus = cpus_allowed.
3255 */
3256static int cpuset_can_attach_check(struct cpuset *cs)
3257{
3258 if (cpumask_empty(cs->effective_cpus) ||
3259 (!is_in_v2_mode() && nodes_empty(cs->mems_allowed)))
3260 return -ENOSPC;
3261 return 0;
3262}
3263
3264static void reset_migrate_dl_data(struct cpuset *cs)
3265{
3266 cs->nr_migrate_dl_tasks = 0;
3267 cs->sum_migrate_dl_bw = 0;
3268}
3269
3270/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
3271static int cpuset_can_attach(struct cgroup_taskset *tset)
3272{
3273 struct cgroup_subsys_state *css;
3274 struct cpuset *cs, *oldcs;
3275 struct task_struct *task;
3276 bool cpus_updated, mems_updated;
3277 int ret;
3278
3279 /* used later by cpuset_attach() */
3280 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
3281 oldcs = cpuset_attach_old_cs;
3282 cs = css_cs(css);
3283
3284 mutex_lock(&cpuset_mutex);
3285
3286 /* Check to see if task is allowed in the cpuset */
3287 ret = cpuset_can_attach_check(cs);
3288 if (ret)
3289 goto out_unlock;
3290
3291 cpus_updated = !cpumask_equal(cs->effective_cpus, oldcs->effective_cpus);
3292 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3293
3294 cgroup_taskset_for_each(task, css, tset) {
3295 ret = task_can_attach(task);
3296 if (ret)
3297 goto out_unlock;
3298
3299 /*
3300 * Skip rights over task check in v2 when nothing changes,
3301 * migration permission derives from hierarchy ownership in
3302 * cgroup_procs_write_permission()).
3303 */
3304 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
3305 (cpus_updated || mems_updated)) {
3306 ret = security_task_setscheduler(task);
3307 if (ret)
3308 goto out_unlock;
3309 }
3310
3311 if (dl_task(task)) {
3312 cs->nr_migrate_dl_tasks++;
3313 cs->sum_migrate_dl_bw += task->dl.dl_bw;
3314 }
3315 }
3316
3317 if (!cs->nr_migrate_dl_tasks)
3318 goto out_success;
3319
3320 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
3321 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
3322
3323 if (unlikely(cpu >= nr_cpu_ids)) {
3324 reset_migrate_dl_data(cs);
3325 ret = -EINVAL;
3326 goto out_unlock;
3327 }
3328
3329 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
3330 if (ret) {
3331 reset_migrate_dl_data(cs);
3332 goto out_unlock;
3333 }
3334 }
3335
3336out_success:
3337 /*
3338 * Mark attach is in progress. This makes validate_change() fail
3339 * changes which zero cpus/mems_allowed.
3340 */
3341 cs->attach_in_progress++;
3342out_unlock:
3343 mutex_unlock(&cpuset_mutex);
3344 return ret;
3345}
3346
3347static void cpuset_cancel_attach(struct cgroup_taskset *tset)
3348{
3349 struct cgroup_subsys_state *css;
3350 struct cpuset *cs;
3351
3352 cgroup_taskset_first(tset, &css);
3353 cs = css_cs(css);
3354
3355 mutex_lock(&cpuset_mutex);
3356 cs->attach_in_progress--;
3357 if (!cs->attach_in_progress)
3358 wake_up(&cpuset_attach_wq);
3359
3360 if (cs->nr_migrate_dl_tasks) {
3361 int cpu = cpumask_any(cs->effective_cpus);
3362
3363 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
3364 reset_migrate_dl_data(cs);
3365 }
3366
3367 mutex_unlock(&cpuset_mutex);
3368}
3369
3370/*
3371 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach_task()
3372 * but we can't allocate it dynamically there. Define it global and
3373 * allocate from cpuset_init().
3374 */
3375static cpumask_var_t cpus_attach;
3376static nodemask_t cpuset_attach_nodemask_to;
3377
3378static void cpuset_attach_task(struct cpuset *cs, struct task_struct *task)
3379{
3380 lockdep_assert_held(&cpuset_mutex);
3381
3382 if (cs != &top_cpuset)
3383 guarantee_online_cpus(task, cpus_attach);
3384 else
3385 cpumask_andnot(cpus_attach, task_cpu_possible_mask(task),
3386 subpartitions_cpus);
3387 /*
3388 * can_attach beforehand should guarantee that this doesn't
3389 * fail. TODO: have a better way to handle failure here
3390 */
3391 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
3392
3393 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
3394 cpuset_update_task_spread_flags(cs, task);
3395}
3396
3397static void cpuset_attach(struct cgroup_taskset *tset)
3398{
3399 struct task_struct *task;
3400 struct task_struct *leader;
3401 struct cgroup_subsys_state *css;
3402 struct cpuset *cs;
3403 struct cpuset *oldcs = cpuset_attach_old_cs;
3404 bool cpus_updated, mems_updated;
3405
3406 cgroup_taskset_first(tset, &css);
3407 cs = css_cs(css);
3408
3409 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
3410 mutex_lock(&cpuset_mutex);
3411 cpus_updated = !cpumask_equal(cs->effective_cpus,
3412 oldcs->effective_cpus);
3413 mems_updated = !nodes_equal(cs->effective_mems, oldcs->effective_mems);
3414
3415 /*
3416 * In the default hierarchy, enabling cpuset in the child cgroups
3417 * will trigger a number of cpuset_attach() calls with no change
3418 * in effective cpus and mems. In that case, we can optimize out
3419 * by skipping the task iteration and update.
3420 */
3421 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3422 !cpus_updated && !mems_updated) {
3423 cpuset_attach_nodemask_to = cs->effective_mems;
3424 goto out;
3425 }
3426
3427 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
3428
3429 cgroup_taskset_for_each(task, css, tset)
3430 cpuset_attach_task(cs, task);
3431
3432 /*
3433 * Change mm for all threadgroup leaders. This is expensive and may
3434 * sleep and should be moved outside migration path proper. Skip it
3435 * if there is no change in effective_mems and CS_MEMORY_MIGRATE is
3436 * not set.
3437 */
3438 cpuset_attach_nodemask_to = cs->effective_mems;
3439 if (!is_memory_migrate(cs) && !mems_updated)
3440 goto out;
3441
3442 cgroup_taskset_for_each_leader(leader, css, tset) {
3443 struct mm_struct *mm = get_task_mm(leader);
3444
3445 if (mm) {
3446 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
3447
3448 /*
3449 * old_mems_allowed is the same with mems_allowed
3450 * here, except if this task is being moved
3451 * automatically due to hotplug. In that case
3452 * @mems_allowed has been updated and is empty, so
3453 * @old_mems_allowed is the right nodesets that we
3454 * migrate mm from.
3455 */
3456 if (is_memory_migrate(cs))
3457 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
3458 &cpuset_attach_nodemask_to);
3459 else
3460 mmput(mm);
3461 }
3462 }
3463
3464out:
3465 cs->old_mems_allowed = cpuset_attach_nodemask_to;
3466
3467 if (cs->nr_migrate_dl_tasks) {
3468 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
3469 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
3470 reset_migrate_dl_data(cs);
3471 }
3472
3473 cs->attach_in_progress--;
3474 if (!cs->attach_in_progress)
3475 wake_up(&cpuset_attach_wq);
3476
3477 mutex_unlock(&cpuset_mutex);
3478}
3479
3480/* The various types of files and directories in a cpuset file system */
3481
3482typedef enum {
3483 FILE_MEMORY_MIGRATE,
3484 FILE_CPULIST,
3485 FILE_MEMLIST,
3486 FILE_EFFECTIVE_CPULIST,
3487 FILE_EFFECTIVE_MEMLIST,
3488 FILE_SUBPARTS_CPULIST,
3489 FILE_EXCLUSIVE_CPULIST,
3490 FILE_EFFECTIVE_XCPULIST,
3491 FILE_ISOLATED_CPULIST,
3492 FILE_CPU_EXCLUSIVE,
3493 FILE_MEM_EXCLUSIVE,
3494 FILE_MEM_HARDWALL,
3495 FILE_SCHED_LOAD_BALANCE,
3496 FILE_PARTITION_ROOT,
3497 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3498 FILE_MEMORY_PRESSURE_ENABLED,
3499 FILE_MEMORY_PRESSURE,
3500 FILE_SPREAD_PAGE,
3501 FILE_SPREAD_SLAB,
3502} cpuset_filetype_t;
3503
3504static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
3505 u64 val)
3506{
3507 struct cpuset *cs = css_cs(css);
3508 cpuset_filetype_t type = cft->private;
3509 int retval = 0;
3510
3511 cpus_read_lock();
3512 mutex_lock(&cpuset_mutex);
3513 if (!is_cpuset_online(cs)) {
3514 retval = -ENODEV;
3515 goto out_unlock;
3516 }
3517
3518 switch (type) {
3519 case FILE_CPU_EXCLUSIVE:
3520 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
3521 break;
3522 case FILE_MEM_EXCLUSIVE:
3523 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
3524 break;
3525 case FILE_MEM_HARDWALL:
3526 retval = update_flag(CS_MEM_HARDWALL, cs, val);
3527 break;
3528 case FILE_SCHED_LOAD_BALANCE:
3529 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
3530 break;
3531 case FILE_MEMORY_MIGRATE:
3532 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
3533 break;
3534 case FILE_MEMORY_PRESSURE_ENABLED:
3535 cpuset_memory_pressure_enabled = !!val;
3536 break;
3537 case FILE_SPREAD_PAGE:
3538 retval = update_flag(CS_SPREAD_PAGE, cs, val);
3539 break;
3540 case FILE_SPREAD_SLAB:
3541 retval = update_flag(CS_SPREAD_SLAB, cs, val);
3542 break;
3543 default:
3544 retval = -EINVAL;
3545 break;
3546 }
3547out_unlock:
3548 mutex_unlock(&cpuset_mutex);
3549 cpus_read_unlock();
3550 return retval;
3551}
3552
3553static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
3554 s64 val)
3555{
3556 struct cpuset *cs = css_cs(css);
3557 cpuset_filetype_t type = cft->private;
3558 int retval = -ENODEV;
3559
3560 cpus_read_lock();
3561 mutex_lock(&cpuset_mutex);
3562 if (!is_cpuset_online(cs))
3563 goto out_unlock;
3564
3565 switch (type) {
3566 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3567 retval = update_relax_domain_level(cs, val);
3568 break;
3569 default:
3570 retval = -EINVAL;
3571 break;
3572 }
3573out_unlock:
3574 mutex_unlock(&cpuset_mutex);
3575 cpus_read_unlock();
3576 return retval;
3577}
3578
3579/*
3580 * Common handling for a write to a "cpus" or "mems" file.
3581 */
3582static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
3583 char *buf, size_t nbytes, loff_t off)
3584{
3585 struct cpuset *cs = css_cs(of_css(of));
3586 struct cpuset *trialcs;
3587 int retval = -ENODEV;
3588
3589 buf = strstrip(buf);
3590
3591 /*
3592 * CPU or memory hotunplug may leave @cs w/o any execution
3593 * resources, in which case the hotplug code asynchronously updates
3594 * configuration and transfers all tasks to the nearest ancestor
3595 * which can execute.
3596 *
3597 * As writes to "cpus" or "mems" may restore @cs's execution
3598 * resources, wait for the previously scheduled operations before
3599 * proceeding, so that we don't end up keep removing tasks added
3600 * after execution capability is restored.
3601 *
3602 * cpuset_hotplug_work calls back into cgroup core via
3603 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
3604 * operation like this one can lead to a deadlock through kernfs
3605 * active_ref protection. Let's break the protection. Losing the
3606 * protection is okay as we check whether @cs is online after
3607 * grabbing cpuset_mutex anyway. This only happens on the legacy
3608 * hierarchies.
3609 */
3610 css_get(&cs->css);
3611 kernfs_break_active_protection(of->kn);
3612 flush_work(&cpuset_hotplug_work);
3613
3614 cpus_read_lock();
3615 mutex_lock(&cpuset_mutex);
3616 if (!is_cpuset_online(cs))
3617 goto out_unlock;
3618
3619 trialcs = alloc_trial_cpuset(cs);
3620 if (!trialcs) {
3621 retval = -ENOMEM;
3622 goto out_unlock;
3623 }
3624
3625 switch (of_cft(of)->private) {
3626 case FILE_CPULIST:
3627 retval = update_cpumask(cs, trialcs, buf);
3628 break;
3629 case FILE_EXCLUSIVE_CPULIST:
3630 retval = update_exclusive_cpumask(cs, trialcs, buf);
3631 break;
3632 case FILE_MEMLIST:
3633 retval = update_nodemask(cs, trialcs, buf);
3634 break;
3635 default:
3636 retval = -EINVAL;
3637 break;
3638 }
3639
3640 free_cpuset(trialcs);
3641out_unlock:
3642 mutex_unlock(&cpuset_mutex);
3643 cpus_read_unlock();
3644 kernfs_unbreak_active_protection(of->kn);
3645 css_put(&cs->css);
3646 flush_workqueue(cpuset_migrate_mm_wq);
3647 return retval ?: nbytes;
3648}
3649
3650/*
3651 * These ascii lists should be read in a single call, by using a user
3652 * buffer large enough to hold the entire map. If read in smaller
3653 * chunks, there is no guarantee of atomicity. Since the display format
3654 * used, list of ranges of sequential numbers, is variable length,
3655 * and since these maps can change value dynamically, one could read
3656 * gibberish by doing partial reads while a list was changing.
3657 */
3658static int cpuset_common_seq_show(struct seq_file *sf, void *v)
3659{
3660 struct cpuset *cs = css_cs(seq_css(sf));
3661 cpuset_filetype_t type = seq_cft(sf)->private;
3662 int ret = 0;
3663
3664 spin_lock_irq(&callback_lock);
3665
3666 switch (type) {
3667 case FILE_CPULIST:
3668 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
3669 break;
3670 case FILE_MEMLIST:
3671 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
3672 break;
3673 case FILE_EFFECTIVE_CPULIST:
3674 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
3675 break;
3676 case FILE_EFFECTIVE_MEMLIST:
3677 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
3678 break;
3679 case FILE_EXCLUSIVE_CPULIST:
3680 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->exclusive_cpus));
3681 break;
3682 case FILE_EFFECTIVE_XCPULIST:
3683 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_xcpus));
3684 break;
3685 case FILE_SUBPARTS_CPULIST:
3686 seq_printf(sf, "%*pbl\n", cpumask_pr_args(subpartitions_cpus));
3687 break;
3688 case FILE_ISOLATED_CPULIST:
3689 seq_printf(sf, "%*pbl\n", cpumask_pr_args(isolated_cpus));
3690 break;
3691 default:
3692 ret = -EINVAL;
3693 }
3694
3695 spin_unlock_irq(&callback_lock);
3696 return ret;
3697}
3698
3699static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
3700{
3701 struct cpuset *cs = css_cs(css);
3702 cpuset_filetype_t type = cft->private;
3703 switch (type) {
3704 case FILE_CPU_EXCLUSIVE:
3705 return is_cpu_exclusive(cs);
3706 case FILE_MEM_EXCLUSIVE:
3707 return is_mem_exclusive(cs);
3708 case FILE_MEM_HARDWALL:
3709 return is_mem_hardwall(cs);
3710 case FILE_SCHED_LOAD_BALANCE:
3711 return is_sched_load_balance(cs);
3712 case FILE_MEMORY_MIGRATE:
3713 return is_memory_migrate(cs);
3714 case FILE_MEMORY_PRESSURE_ENABLED:
3715 return cpuset_memory_pressure_enabled;
3716 case FILE_MEMORY_PRESSURE:
3717 return fmeter_getrate(&cs->fmeter);
3718 case FILE_SPREAD_PAGE:
3719 return is_spread_page(cs);
3720 case FILE_SPREAD_SLAB:
3721 return is_spread_slab(cs);
3722 default:
3723 BUG();
3724 }
3725
3726 /* Unreachable but makes gcc happy */
3727 return 0;
3728}
3729
3730static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
3731{
3732 struct cpuset *cs = css_cs(css);
3733 cpuset_filetype_t type = cft->private;
3734 switch (type) {
3735 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
3736 return cs->relax_domain_level;
3737 default:
3738 BUG();
3739 }
3740
3741 /* Unreachable but makes gcc happy */
3742 return 0;
3743}
3744
3745static int sched_partition_show(struct seq_file *seq, void *v)
3746{
3747 struct cpuset *cs = css_cs(seq_css(seq));
3748 const char *err, *type = NULL;
3749
3750 switch (cs->partition_root_state) {
3751 case PRS_ROOT:
3752 seq_puts(seq, "root\n");
3753 break;
3754 case PRS_ISOLATED:
3755 seq_puts(seq, "isolated\n");
3756 break;
3757 case PRS_MEMBER:
3758 seq_puts(seq, "member\n");
3759 break;
3760 case PRS_INVALID_ROOT:
3761 type = "root";
3762 fallthrough;
3763 case PRS_INVALID_ISOLATED:
3764 if (!type)
3765 type = "isolated";
3766 err = perr_strings[READ_ONCE(cs->prs_err)];
3767 if (err)
3768 seq_printf(seq, "%s invalid (%s)\n", type, err);
3769 else
3770 seq_printf(seq, "%s invalid\n", type);
3771 break;
3772 }
3773 return 0;
3774}
3775
3776static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
3777 size_t nbytes, loff_t off)
3778{
3779 struct cpuset *cs = css_cs(of_css(of));
3780 int val;
3781 int retval = -ENODEV;
3782
3783 buf = strstrip(buf);
3784
3785 /*
3786 * Convert "root" to ENABLED, and convert "member" to DISABLED.
3787 */
3788 if (!strcmp(buf, "root"))
3789 val = PRS_ROOT;
3790 else if (!strcmp(buf, "member"))
3791 val = PRS_MEMBER;
3792 else if (!strcmp(buf, "isolated"))
3793 val = PRS_ISOLATED;
3794 else
3795 return -EINVAL;
3796
3797 css_get(&cs->css);
3798 cpus_read_lock();
3799 mutex_lock(&cpuset_mutex);
3800 if (!is_cpuset_online(cs))
3801 goto out_unlock;
3802
3803 retval = update_prstate(cs, val);
3804out_unlock:
3805 mutex_unlock(&cpuset_mutex);
3806 cpus_read_unlock();
3807 css_put(&cs->css);
3808 return retval ?: nbytes;
3809}
3810
3811/*
3812 * for the common functions, 'private' gives the type of file
3813 */
3814
3815static struct cftype legacy_files[] = {
3816 {
3817 .name = "cpus",
3818 .seq_show = cpuset_common_seq_show,
3819 .write = cpuset_write_resmask,
3820 .max_write_len = (100U + 6 * NR_CPUS),
3821 .private = FILE_CPULIST,
3822 },
3823
3824 {
3825 .name = "mems",
3826 .seq_show = cpuset_common_seq_show,
3827 .write = cpuset_write_resmask,
3828 .max_write_len = (100U + 6 * MAX_NUMNODES),
3829 .private = FILE_MEMLIST,
3830 },
3831
3832 {
3833 .name = "effective_cpus",
3834 .seq_show = cpuset_common_seq_show,
3835 .private = FILE_EFFECTIVE_CPULIST,
3836 },
3837
3838 {
3839 .name = "effective_mems",
3840 .seq_show = cpuset_common_seq_show,
3841 .private = FILE_EFFECTIVE_MEMLIST,
3842 },
3843
3844 {
3845 .name = "cpu_exclusive",
3846 .read_u64 = cpuset_read_u64,
3847 .write_u64 = cpuset_write_u64,
3848 .private = FILE_CPU_EXCLUSIVE,
3849 },
3850
3851 {
3852 .name = "mem_exclusive",
3853 .read_u64 = cpuset_read_u64,
3854 .write_u64 = cpuset_write_u64,
3855 .private = FILE_MEM_EXCLUSIVE,
3856 },
3857
3858 {
3859 .name = "mem_hardwall",
3860 .read_u64 = cpuset_read_u64,
3861 .write_u64 = cpuset_write_u64,
3862 .private = FILE_MEM_HARDWALL,
3863 },
3864
3865 {
3866 .name = "sched_load_balance",
3867 .read_u64 = cpuset_read_u64,
3868 .write_u64 = cpuset_write_u64,
3869 .private = FILE_SCHED_LOAD_BALANCE,
3870 },
3871
3872 {
3873 .name = "sched_relax_domain_level",
3874 .read_s64 = cpuset_read_s64,
3875 .write_s64 = cpuset_write_s64,
3876 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
3877 },
3878
3879 {
3880 .name = "memory_migrate",
3881 .read_u64 = cpuset_read_u64,
3882 .write_u64 = cpuset_write_u64,
3883 .private = FILE_MEMORY_MIGRATE,
3884 },
3885
3886 {
3887 .name = "memory_pressure",
3888 .read_u64 = cpuset_read_u64,
3889 .private = FILE_MEMORY_PRESSURE,
3890 },
3891
3892 {
3893 .name = "memory_spread_page",
3894 .read_u64 = cpuset_read_u64,
3895 .write_u64 = cpuset_write_u64,
3896 .private = FILE_SPREAD_PAGE,
3897 },
3898
3899 {
3900 .name = "memory_spread_slab",
3901 .read_u64 = cpuset_read_u64,
3902 .write_u64 = cpuset_write_u64,
3903 .private = FILE_SPREAD_SLAB,
3904 },
3905
3906 {
3907 .name = "memory_pressure_enabled",
3908 .flags = CFTYPE_ONLY_ON_ROOT,
3909 .read_u64 = cpuset_read_u64,
3910 .write_u64 = cpuset_write_u64,
3911 .private = FILE_MEMORY_PRESSURE_ENABLED,
3912 },
3913
3914 { } /* terminate */
3915};
3916
3917/*
3918 * This is currently a minimal set for the default hierarchy. It can be
3919 * expanded later on by migrating more features and control files from v1.
3920 */
3921static struct cftype dfl_files[] = {
3922 {
3923 .name = "cpus",
3924 .seq_show = cpuset_common_seq_show,
3925 .write = cpuset_write_resmask,
3926 .max_write_len = (100U + 6 * NR_CPUS),
3927 .private = FILE_CPULIST,
3928 .flags = CFTYPE_NOT_ON_ROOT,
3929 },
3930
3931 {
3932 .name = "mems",
3933 .seq_show = cpuset_common_seq_show,
3934 .write = cpuset_write_resmask,
3935 .max_write_len = (100U + 6 * MAX_NUMNODES),
3936 .private = FILE_MEMLIST,
3937 .flags = CFTYPE_NOT_ON_ROOT,
3938 },
3939
3940 {
3941 .name = "cpus.effective",
3942 .seq_show = cpuset_common_seq_show,
3943 .private = FILE_EFFECTIVE_CPULIST,
3944 },
3945
3946 {
3947 .name = "mems.effective",
3948 .seq_show = cpuset_common_seq_show,
3949 .private = FILE_EFFECTIVE_MEMLIST,
3950 },
3951
3952 {
3953 .name = "cpus.partition",
3954 .seq_show = sched_partition_show,
3955 .write = sched_partition_write,
3956 .private = FILE_PARTITION_ROOT,
3957 .flags = CFTYPE_NOT_ON_ROOT,
3958 .file_offset = offsetof(struct cpuset, partition_file),
3959 },
3960
3961 {
3962 .name = "cpus.exclusive",
3963 .seq_show = cpuset_common_seq_show,
3964 .write = cpuset_write_resmask,
3965 .max_write_len = (100U + 6 * NR_CPUS),
3966 .private = FILE_EXCLUSIVE_CPULIST,
3967 .flags = CFTYPE_NOT_ON_ROOT,
3968 },
3969
3970 {
3971 .name = "cpus.exclusive.effective",
3972 .seq_show = cpuset_common_seq_show,
3973 .private = FILE_EFFECTIVE_XCPULIST,
3974 .flags = CFTYPE_NOT_ON_ROOT,
3975 },
3976
3977 {
3978 .name = "cpus.subpartitions",
3979 .seq_show = cpuset_common_seq_show,
3980 .private = FILE_SUBPARTS_CPULIST,
3981 .flags = CFTYPE_ONLY_ON_ROOT | CFTYPE_DEBUG,
3982 },
3983
3984 {
3985 .name = "cpus.isolated",
3986 .seq_show = cpuset_common_seq_show,
3987 .private = FILE_ISOLATED_CPULIST,
3988 .flags = CFTYPE_ONLY_ON_ROOT,
3989 },
3990
3991 { } /* terminate */
3992};
3993
3994
3995/**
3996 * cpuset_css_alloc - Allocate a cpuset css
3997 * @parent_css: Parent css of the control group that the new cpuset will be
3998 * part of
3999 * Return: cpuset css on success, -ENOMEM on failure.
4000 *
4001 * Allocate and initialize a new cpuset css, for non-NULL @parent_css, return
4002 * top cpuset css otherwise.
4003 */
4004static struct cgroup_subsys_state *
4005cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
4006{
4007 struct cpuset *cs;
4008
4009 if (!parent_css)
4010 return &top_cpuset.css;
4011
4012 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
4013 if (!cs)
4014 return ERR_PTR(-ENOMEM);
4015
4016 if (alloc_cpumasks(cs, NULL)) {
4017 kfree(cs);
4018 return ERR_PTR(-ENOMEM);
4019 }
4020
4021 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4022 nodes_clear(cs->mems_allowed);
4023 nodes_clear(cs->effective_mems);
4024 fmeter_init(&cs->fmeter);
4025 cs->relax_domain_level = -1;
4026 INIT_LIST_HEAD(&cs->remote_sibling);
4027
4028 /* Set CS_MEMORY_MIGRATE for default hierarchy */
4029 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
4030 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
4031
4032 return &cs->css;
4033}
4034
4035static int cpuset_css_online(struct cgroup_subsys_state *css)
4036{
4037 struct cpuset *cs = css_cs(css);
4038 struct cpuset *parent = parent_cs(cs);
4039 struct cpuset *tmp_cs;
4040 struct cgroup_subsys_state *pos_css;
4041
4042 if (!parent)
4043 return 0;
4044
4045 cpus_read_lock();
4046 mutex_lock(&cpuset_mutex);
4047
4048 set_bit(CS_ONLINE, &cs->flags);
4049 if (is_spread_page(parent))
4050 set_bit(CS_SPREAD_PAGE, &cs->flags);
4051 if (is_spread_slab(parent))
4052 set_bit(CS_SPREAD_SLAB, &cs->flags);
4053
4054 cpuset_inc();
4055
4056 spin_lock_irq(&callback_lock);
4057 if (is_in_v2_mode()) {
4058 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
4059 cs->effective_mems = parent->effective_mems;
4060 cs->use_parent_ecpus = true;
4061 parent->child_ecpus_count++;
4062 /*
4063 * Clear CS_SCHED_LOAD_BALANCE if parent is isolated
4064 */
4065 if (!is_sched_load_balance(parent))
4066 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4067 }
4068
4069 /*
4070 * For v2, clear CS_SCHED_LOAD_BALANCE if parent is isolated
4071 */
4072 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4073 !is_sched_load_balance(parent))
4074 clear_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
4075
4076 spin_unlock_irq(&callback_lock);
4077
4078 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
4079 goto out_unlock;
4080
4081 /*
4082 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
4083 * set. This flag handling is implemented in cgroup core for
4084 * historical reasons - the flag may be specified during mount.
4085 *
4086 * Currently, if any sibling cpusets have exclusive cpus or mem, we
4087 * refuse to clone the configuration - thereby refusing the task to
4088 * be entered, and as a result refusing the sys_unshare() or
4089 * clone() which initiated it. If this becomes a problem for some
4090 * users who wish to allow that scenario, then this could be
4091 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
4092 * (and likewise for mems) to the new cgroup.
4093 */
4094 rcu_read_lock();
4095 cpuset_for_each_child(tmp_cs, pos_css, parent) {
4096 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
4097 rcu_read_unlock();
4098 goto out_unlock;
4099 }
4100 }
4101 rcu_read_unlock();
4102
4103 spin_lock_irq(&callback_lock);
4104 cs->mems_allowed = parent->mems_allowed;
4105 cs->effective_mems = parent->mems_allowed;
4106 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
4107 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
4108 spin_unlock_irq(&callback_lock);
4109out_unlock:
4110 mutex_unlock(&cpuset_mutex);
4111 cpus_read_unlock();
4112 return 0;
4113}
4114
4115/*
4116 * If the cpuset being removed has its flag 'sched_load_balance'
4117 * enabled, then simulate turning sched_load_balance off, which
4118 * will call rebuild_sched_domains_locked(). That is not needed
4119 * in the default hierarchy where only changes in partition
4120 * will cause repartitioning.
4121 *
4122 * If the cpuset has the 'sched.partition' flag enabled, simulate
4123 * turning 'sched.partition" off.
4124 */
4125
4126static void cpuset_css_offline(struct cgroup_subsys_state *css)
4127{
4128 struct cpuset *cs = css_cs(css);
4129
4130 cpus_read_lock();
4131 mutex_lock(&cpuset_mutex);
4132
4133 if (is_partition_valid(cs))
4134 update_prstate(cs, 0);
4135
4136 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
4137 is_sched_load_balance(cs))
4138 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
4139
4140 if (cs->use_parent_ecpus) {
4141 struct cpuset *parent = parent_cs(cs);
4142
4143 cs->use_parent_ecpus = false;
4144 parent->child_ecpus_count--;
4145 }
4146
4147 cpuset_dec();
4148 clear_bit(CS_ONLINE, &cs->flags);
4149
4150 mutex_unlock(&cpuset_mutex);
4151 cpus_read_unlock();
4152}
4153
4154static void cpuset_css_free(struct cgroup_subsys_state *css)
4155{
4156 struct cpuset *cs = css_cs(css);
4157
4158 free_cpuset(cs);
4159}
4160
4161static void cpuset_bind(struct cgroup_subsys_state *root_css)
4162{
4163 mutex_lock(&cpuset_mutex);
4164 spin_lock_irq(&callback_lock);
4165
4166 if (is_in_v2_mode()) {
4167 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
4168 cpumask_copy(top_cpuset.effective_xcpus, cpu_possible_mask);
4169 top_cpuset.mems_allowed = node_possible_map;
4170 } else {
4171 cpumask_copy(top_cpuset.cpus_allowed,
4172 top_cpuset.effective_cpus);
4173 top_cpuset.mems_allowed = top_cpuset.effective_mems;
4174 }
4175
4176 spin_unlock_irq(&callback_lock);
4177 mutex_unlock(&cpuset_mutex);
4178}
4179
4180/*
4181 * In case the child is cloned into a cpuset different from its parent,
4182 * additional checks are done to see if the move is allowed.
4183 */
4184static int cpuset_can_fork(struct task_struct *task, struct css_set *cset)
4185{
4186 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4187 bool same_cs;
4188 int ret;
4189
4190 rcu_read_lock();
4191 same_cs = (cs == task_cs(current));
4192 rcu_read_unlock();
4193
4194 if (same_cs)
4195 return 0;
4196
4197 lockdep_assert_held(&cgroup_mutex);
4198 mutex_lock(&cpuset_mutex);
4199
4200 /* Check to see if task is allowed in the cpuset */
4201 ret = cpuset_can_attach_check(cs);
4202 if (ret)
4203 goto out_unlock;
4204
4205 ret = task_can_attach(task);
4206 if (ret)
4207 goto out_unlock;
4208
4209 ret = security_task_setscheduler(task);
4210 if (ret)
4211 goto out_unlock;
4212
4213 /*
4214 * Mark attach is in progress. This makes validate_change() fail
4215 * changes which zero cpus/mems_allowed.
4216 */
4217 cs->attach_in_progress++;
4218out_unlock:
4219 mutex_unlock(&cpuset_mutex);
4220 return ret;
4221}
4222
4223static void cpuset_cancel_fork(struct task_struct *task, struct css_set *cset)
4224{
4225 struct cpuset *cs = css_cs(cset->subsys[cpuset_cgrp_id]);
4226 bool same_cs;
4227
4228 rcu_read_lock();
4229 same_cs = (cs == task_cs(current));
4230 rcu_read_unlock();
4231
4232 if (same_cs)
4233 return;
4234
4235 mutex_lock(&cpuset_mutex);
4236 cs->attach_in_progress--;
4237 if (!cs->attach_in_progress)
4238 wake_up(&cpuset_attach_wq);
4239 mutex_unlock(&cpuset_mutex);
4240}
4241
4242/*
4243 * Make sure the new task conform to the current state of its parent,
4244 * which could have been changed by cpuset just after it inherits the
4245 * state from the parent and before it sits on the cgroup's task list.
4246 */
4247static void cpuset_fork(struct task_struct *task)
4248{
4249 struct cpuset *cs;
4250 bool same_cs;
4251
4252 rcu_read_lock();
4253 cs = task_cs(task);
4254 same_cs = (cs == task_cs(current));
4255 rcu_read_unlock();
4256
4257 if (same_cs) {
4258 if (cs == &top_cpuset)
4259 return;
4260
4261 set_cpus_allowed_ptr(task, current->cpus_ptr);
4262 task->mems_allowed = current->mems_allowed;
4263 return;
4264 }
4265
4266 /* CLONE_INTO_CGROUP */
4267 mutex_lock(&cpuset_mutex);
4268 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
4269 cpuset_attach_task(cs, task);
4270
4271 cs->attach_in_progress--;
4272 if (!cs->attach_in_progress)
4273 wake_up(&cpuset_attach_wq);
4274
4275 mutex_unlock(&cpuset_mutex);
4276}
4277
4278struct cgroup_subsys cpuset_cgrp_subsys = {
4279 .css_alloc = cpuset_css_alloc,
4280 .css_online = cpuset_css_online,
4281 .css_offline = cpuset_css_offline,
4282 .css_free = cpuset_css_free,
4283 .can_attach = cpuset_can_attach,
4284 .cancel_attach = cpuset_cancel_attach,
4285 .attach = cpuset_attach,
4286 .post_attach = cpuset_post_attach,
4287 .bind = cpuset_bind,
4288 .can_fork = cpuset_can_fork,
4289 .cancel_fork = cpuset_cancel_fork,
4290 .fork = cpuset_fork,
4291 .legacy_cftypes = legacy_files,
4292 .dfl_cftypes = dfl_files,
4293 .early_init = true,
4294 .threaded = true,
4295};
4296
4297/**
4298 * cpuset_init - initialize cpusets at system boot
4299 *
4300 * Description: Initialize top_cpuset
4301 **/
4302
4303int __init cpuset_init(void)
4304{
4305 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
4306 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
4307 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_xcpus, GFP_KERNEL));
4308 BUG_ON(!alloc_cpumask_var(&top_cpuset.exclusive_cpus, GFP_KERNEL));
4309 BUG_ON(!zalloc_cpumask_var(&subpartitions_cpus, GFP_KERNEL));
4310 BUG_ON(!zalloc_cpumask_var(&isolated_cpus, GFP_KERNEL));
4311
4312 cpumask_setall(top_cpuset.cpus_allowed);
4313 nodes_setall(top_cpuset.mems_allowed);
4314 cpumask_setall(top_cpuset.effective_cpus);
4315 cpumask_setall(top_cpuset.effective_xcpus);
4316 cpumask_setall(top_cpuset.exclusive_cpus);
4317 nodes_setall(top_cpuset.effective_mems);
4318
4319 fmeter_init(&top_cpuset.fmeter);
4320 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
4321 top_cpuset.relax_domain_level = -1;
4322 INIT_LIST_HEAD(&remote_children);
4323
4324 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
4325
4326 return 0;
4327}
4328
4329/*
4330 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
4331 * or memory nodes, we need to walk over the cpuset hierarchy,
4332 * removing that CPU or node from all cpusets. If this removes the
4333 * last CPU or node from a cpuset, then move the tasks in the empty
4334 * cpuset to its next-highest non-empty parent.
4335 */
4336static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
4337{
4338 struct cpuset *parent;
4339
4340 /*
4341 * Find its next-highest non-empty parent, (top cpuset
4342 * has online cpus, so can't be empty).
4343 */
4344 parent = parent_cs(cs);
4345 while (cpumask_empty(parent->cpus_allowed) ||
4346 nodes_empty(parent->mems_allowed))
4347 parent = parent_cs(parent);
4348
4349 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
4350 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
4351 pr_cont_cgroup_name(cs->css.cgroup);
4352 pr_cont("\n");
4353 }
4354}
4355
4356static void
4357hotplug_update_tasks_legacy(struct cpuset *cs,
4358 struct cpumask *new_cpus, nodemask_t *new_mems,
4359 bool cpus_updated, bool mems_updated)
4360{
4361 bool is_empty;
4362
4363 spin_lock_irq(&callback_lock);
4364 cpumask_copy(cs->cpus_allowed, new_cpus);
4365 cpumask_copy(cs->effective_cpus, new_cpus);
4366 cs->mems_allowed = *new_mems;
4367 cs->effective_mems = *new_mems;
4368 spin_unlock_irq(&callback_lock);
4369
4370 /*
4371 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
4372 * as the tasks will be migrated to an ancestor.
4373 */
4374 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
4375 update_tasks_cpumask(cs, new_cpus);
4376 if (mems_updated && !nodes_empty(cs->mems_allowed))
4377 update_tasks_nodemask(cs);
4378
4379 is_empty = cpumask_empty(cs->cpus_allowed) ||
4380 nodes_empty(cs->mems_allowed);
4381
4382 /*
4383 * Move tasks to the nearest ancestor with execution resources,
4384 * This is full cgroup operation which will also call back into
4385 * cpuset. Should be done outside any lock.
4386 */
4387 if (is_empty) {
4388 mutex_unlock(&cpuset_mutex);
4389 remove_tasks_in_empty_cpuset(cs);
4390 mutex_lock(&cpuset_mutex);
4391 }
4392}
4393
4394static void
4395hotplug_update_tasks(struct cpuset *cs,
4396 struct cpumask *new_cpus, nodemask_t *new_mems,
4397 bool cpus_updated, bool mems_updated)
4398{
4399 /* A partition root is allowed to have empty effective cpus */
4400 if (cpumask_empty(new_cpus) && !is_partition_valid(cs))
4401 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
4402 if (nodes_empty(*new_mems))
4403 *new_mems = parent_cs(cs)->effective_mems;
4404
4405 spin_lock_irq(&callback_lock);
4406 cpumask_copy(cs->effective_cpus, new_cpus);
4407 cs->effective_mems = *new_mems;
4408 spin_unlock_irq(&callback_lock);
4409
4410 if (cpus_updated)
4411 update_tasks_cpumask(cs, new_cpus);
4412 if (mems_updated)
4413 update_tasks_nodemask(cs);
4414}
4415
4416static bool force_rebuild;
4417
4418void cpuset_force_rebuild(void)
4419{
4420 force_rebuild = true;
4421}
4422
4423/*
4424 * Attempt to acquire a cpus_read_lock while a hotplug operation may be in
4425 * progress.
4426 * Return: true if successful, false otherwise
4427 *
4428 * To avoid circular lock dependency between cpuset_mutex and cpus_read_lock,
4429 * cpus_read_trylock() is used here to acquire the lock.
4430 */
4431static bool cpuset_hotplug_cpus_read_trylock(void)
4432{
4433 int retries = 0;
4434
4435 while (!cpus_read_trylock()) {
4436 /*
4437 * CPU hotplug still in progress. Retry 5 times
4438 * with a 10ms wait before bailing out.
4439 */
4440 if (++retries > 5)
4441 return false;
4442 msleep(10);
4443 }
4444 return true;
4445}
4446
4447/**
4448 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
4449 * @cs: cpuset in interest
4450 * @tmp: the tmpmasks structure pointer
4451 *
4452 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
4453 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
4454 * all its tasks are moved to the nearest ancestor with both resources.
4455 */
4456static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
4457{
4458 static cpumask_t new_cpus;
4459 static nodemask_t new_mems;
4460 bool cpus_updated;
4461 bool mems_updated;
4462 bool remote;
4463 int partcmd = -1;
4464 struct cpuset *parent;
4465retry:
4466 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
4467
4468 mutex_lock(&cpuset_mutex);
4469
4470 /*
4471 * We have raced with task attaching. We wait until attaching
4472 * is finished, so we won't attach a task to an empty cpuset.
4473 */
4474 if (cs->attach_in_progress) {
4475 mutex_unlock(&cpuset_mutex);
4476 goto retry;
4477 }
4478
4479 parent = parent_cs(cs);
4480 compute_effective_cpumask(&new_cpus, cs, parent);
4481 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
4482
4483 if (!tmp || !cs->partition_root_state)
4484 goto update_tasks;
4485
4486 /*
4487 * Compute effective_cpus for valid partition root, may invalidate
4488 * child partition roots if necessary.
4489 */
4490 remote = is_remote_partition(cs);
4491 if (remote || (is_partition_valid(cs) && is_partition_valid(parent)))
4492 compute_partition_effective_cpumask(cs, &new_cpus);
4493
4494 if (remote && cpumask_empty(&new_cpus) &&
4495 partition_is_populated(cs, NULL) &&
4496 cpuset_hotplug_cpus_read_trylock()) {
4497 remote_partition_disable(cs, tmp);
4498 compute_effective_cpumask(&new_cpus, cs, parent);
4499 remote = false;
4500 cpuset_force_rebuild();
4501 cpus_read_unlock();
4502 }
4503
4504 /*
4505 * Force the partition to become invalid if either one of
4506 * the following conditions hold:
4507 * 1) empty effective cpus but not valid empty partition.
4508 * 2) parent is invalid or doesn't grant any cpus to child
4509 * partitions.
4510 */
4511 if (is_local_partition(cs) && (!is_partition_valid(parent) ||
4512 tasks_nocpu_error(parent, cs, &new_cpus)))
4513 partcmd = partcmd_invalidate;
4514 /*
4515 * On the other hand, an invalid partition root may be transitioned
4516 * back to a regular one.
4517 */
4518 else if (is_partition_valid(parent) && is_partition_invalid(cs))
4519 partcmd = partcmd_update;
4520
4521 /*
4522 * cpus_read_lock needs to be held before calling
4523 * update_parent_effective_cpumask(). To avoid circular lock
4524 * dependency between cpuset_mutex and cpus_read_lock,
4525 * cpus_read_trylock() is used here to acquire the lock.
4526 */
4527 if (partcmd >= 0) {
4528 if (!cpuset_hotplug_cpus_read_trylock())
4529 goto update_tasks;
4530
4531 update_parent_effective_cpumask(cs, partcmd, NULL, tmp);
4532 cpus_read_unlock();
4533 if ((partcmd == partcmd_invalidate) || is_partition_valid(cs)) {
4534 compute_partition_effective_cpumask(cs, &new_cpus);
4535 cpuset_force_rebuild();
4536 }
4537 }
4538
4539update_tasks:
4540 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
4541 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
4542 if (!cpus_updated && !mems_updated)
4543 goto unlock; /* Hotplug doesn't affect this cpuset */
4544
4545 if (mems_updated)
4546 check_insane_mems_config(&new_mems);
4547
4548 if (is_in_v2_mode())
4549 hotplug_update_tasks(cs, &new_cpus, &new_mems,
4550 cpus_updated, mems_updated);
4551 else
4552 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
4553 cpus_updated, mems_updated);
4554
4555unlock:
4556 mutex_unlock(&cpuset_mutex);
4557}
4558
4559/**
4560 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
4561 * @work: unused
4562 *
4563 * This function is called after either CPU or memory configuration has
4564 * changed and updates cpuset accordingly. The top_cpuset is always
4565 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
4566 * order to make cpusets transparent (of no affect) on systems that are
4567 * actively using CPU hotplug but making no active use of cpusets.
4568 *
4569 * Non-root cpusets are only affected by offlining. If any CPUs or memory
4570 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
4571 * all descendants.
4572 *
4573 * Note that CPU offlining during suspend is ignored. We don't modify
4574 * cpusets across suspend/resume cycles at all.
4575 */
4576static void cpuset_hotplug_workfn(struct work_struct *work)
4577{
4578 static cpumask_t new_cpus;
4579 static nodemask_t new_mems;
4580 bool cpus_updated, mems_updated;
4581 bool on_dfl = is_in_v2_mode();
4582 struct tmpmasks tmp, *ptmp = NULL;
4583
4584 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
4585 ptmp = &tmp;
4586
4587 mutex_lock(&cpuset_mutex);
4588
4589 /* fetch the available cpus/mems and find out which changed how */
4590 cpumask_copy(&new_cpus, cpu_active_mask);
4591 new_mems = node_states[N_MEMORY];
4592
4593 /*
4594 * If subpartitions_cpus is populated, it is likely that the check
4595 * below will produce a false positive on cpus_updated when the cpu
4596 * list isn't changed. It is extra work, but it is better to be safe.
4597 */
4598 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus) ||
4599 !cpumask_empty(subpartitions_cpus);
4600 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
4601
4602 /*
4603 * In the rare case that hotplug removes all the cpus in
4604 * subpartitions_cpus, we assumed that cpus are updated.
4605 */
4606 if (!cpus_updated && top_cpuset.nr_subparts)
4607 cpus_updated = true;
4608
4609 /* For v1, synchronize cpus_allowed to cpu_active_mask */
4610 if (cpus_updated) {
4611 spin_lock_irq(&callback_lock);
4612 if (!on_dfl)
4613 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
4614 /*
4615 * Make sure that CPUs allocated to child partitions
4616 * do not show up in effective_cpus. If no CPU is left,
4617 * we clear the subpartitions_cpus & let the child partitions
4618 * fight for the CPUs again.
4619 */
4620 if (!cpumask_empty(subpartitions_cpus)) {
4621 if (cpumask_subset(&new_cpus, subpartitions_cpus)) {
4622 top_cpuset.nr_subparts = 0;
4623 cpumask_clear(subpartitions_cpus);
4624 } else {
4625 cpumask_andnot(&new_cpus, &new_cpus,
4626 subpartitions_cpus);
4627 }
4628 }
4629 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
4630 spin_unlock_irq(&callback_lock);
4631 /* we don't mess with cpumasks of tasks in top_cpuset */
4632 }
4633
4634 /* synchronize mems_allowed to N_MEMORY */
4635 if (mems_updated) {
4636 spin_lock_irq(&callback_lock);
4637 if (!on_dfl)
4638 top_cpuset.mems_allowed = new_mems;
4639 top_cpuset.effective_mems = new_mems;
4640 spin_unlock_irq(&callback_lock);
4641 update_tasks_nodemask(&top_cpuset);
4642 }
4643
4644 mutex_unlock(&cpuset_mutex);
4645
4646 /* if cpus or mems changed, we need to propagate to descendants */
4647 if (cpus_updated || mems_updated) {
4648 struct cpuset *cs;
4649 struct cgroup_subsys_state *pos_css;
4650
4651 rcu_read_lock();
4652 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
4653 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
4654 continue;
4655 rcu_read_unlock();
4656
4657 cpuset_hotplug_update_tasks(cs, ptmp);
4658
4659 rcu_read_lock();
4660 css_put(&cs->css);
4661 }
4662 rcu_read_unlock();
4663 }
4664
4665 /* rebuild sched domains if cpus_allowed has changed */
4666 if (cpus_updated || force_rebuild) {
4667 force_rebuild = false;
4668 rebuild_sched_domains();
4669 }
4670
4671 free_cpumasks(NULL, ptmp);
4672}
4673
4674void cpuset_update_active_cpus(void)
4675{
4676 /*
4677 * We're inside cpu hotplug critical region which usually nests
4678 * inside cgroup synchronization. Bounce actual hotplug processing
4679 * to a work item to avoid reverse locking order.
4680 */
4681 schedule_work(&cpuset_hotplug_work);
4682}
4683
4684void cpuset_wait_for_hotplug(void)
4685{
4686 flush_work(&cpuset_hotplug_work);
4687}
4688
4689/*
4690 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
4691 * Call this routine anytime after node_states[N_MEMORY] changes.
4692 * See cpuset_update_active_cpus() for CPU hotplug handling.
4693 */
4694static int cpuset_track_online_nodes(struct notifier_block *self,
4695 unsigned long action, void *arg)
4696{
4697 schedule_work(&cpuset_hotplug_work);
4698 return NOTIFY_OK;
4699}
4700
4701/**
4702 * cpuset_init_smp - initialize cpus_allowed
4703 *
4704 * Description: Finish top cpuset after cpu, node maps are initialized
4705 */
4706void __init cpuset_init_smp(void)
4707{
4708 /*
4709 * cpus_allowd/mems_allowed set to v2 values in the initial
4710 * cpuset_bind() call will be reset to v1 values in another
4711 * cpuset_bind() call when v1 cpuset is mounted.
4712 */
4713 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
4714
4715 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
4716 top_cpuset.effective_mems = node_states[N_MEMORY];
4717
4718 hotplug_memory_notifier(cpuset_track_online_nodes, CPUSET_CALLBACK_PRI);
4719
4720 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
4721 BUG_ON(!cpuset_migrate_mm_wq);
4722}
4723
4724/**
4725 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
4726 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
4727 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
4728 *
4729 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
4730 * attached to the specified @tsk. Guaranteed to return some non-empty
4731 * subset of cpu_online_mask, even if this means going outside the
4732 * tasks cpuset, except when the task is in the top cpuset.
4733 **/
4734
4735void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
4736{
4737 unsigned long flags;
4738 struct cpuset *cs;
4739
4740 spin_lock_irqsave(&callback_lock, flags);
4741 rcu_read_lock();
4742
4743 cs = task_cs(tsk);
4744 if (cs != &top_cpuset)
4745 guarantee_online_cpus(tsk, pmask);
4746 /*
4747 * Tasks in the top cpuset won't get update to their cpumasks
4748 * when a hotplug online/offline event happens. So we include all
4749 * offline cpus in the allowed cpu list.
4750 */
4751 if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
4752 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4753
4754 /*
4755 * We first exclude cpus allocated to partitions. If there is no
4756 * allowable online cpu left, we fall back to all possible cpus.
4757 */
4758 cpumask_andnot(pmask, possible_mask, subpartitions_cpus);
4759 if (!cpumask_intersects(pmask, cpu_online_mask))
4760 cpumask_copy(pmask, possible_mask);
4761 }
4762
4763 rcu_read_unlock();
4764 spin_unlock_irqrestore(&callback_lock, flags);
4765}
4766
4767/**
4768 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
4769 * @tsk: pointer to task_struct with which the scheduler is struggling
4770 *
4771 * Description: In the case that the scheduler cannot find an allowed cpu in
4772 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
4773 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
4774 * which will not contain a sane cpumask during cases such as cpu hotplugging.
4775 * This is the absolute last resort for the scheduler and it is only used if
4776 * _every_ other avenue has been traveled.
4777 *
4778 * Returns true if the affinity of @tsk was changed, false otherwise.
4779 **/
4780
4781bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
4782{
4783 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
4784 const struct cpumask *cs_mask;
4785 bool changed = false;
4786
4787 rcu_read_lock();
4788 cs_mask = task_cs(tsk)->cpus_allowed;
4789 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
4790 do_set_cpus_allowed(tsk, cs_mask);
4791 changed = true;
4792 }
4793 rcu_read_unlock();
4794
4795 /*
4796 * We own tsk->cpus_allowed, nobody can change it under us.
4797 *
4798 * But we used cs && cs->cpus_allowed lockless and thus can
4799 * race with cgroup_attach_task() or update_cpumask() and get
4800 * the wrong tsk->cpus_allowed. However, both cases imply the
4801 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
4802 * which takes task_rq_lock().
4803 *
4804 * If we are called after it dropped the lock we must see all
4805 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
4806 * set any mask even if it is not right from task_cs() pov,
4807 * the pending set_cpus_allowed_ptr() will fix things.
4808 *
4809 * select_fallback_rq() will fix things ups and set cpu_possible_mask
4810 * if required.
4811 */
4812 return changed;
4813}
4814
4815void __init cpuset_init_current_mems_allowed(void)
4816{
4817 nodes_setall(current->mems_allowed);
4818}
4819
4820/**
4821 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
4822 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
4823 *
4824 * Description: Returns the nodemask_t mems_allowed of the cpuset
4825 * attached to the specified @tsk. Guaranteed to return some non-empty
4826 * subset of node_states[N_MEMORY], even if this means going outside the
4827 * tasks cpuset.
4828 **/
4829
4830nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
4831{
4832 nodemask_t mask;
4833 unsigned long flags;
4834
4835 spin_lock_irqsave(&callback_lock, flags);
4836 rcu_read_lock();
4837 guarantee_online_mems(task_cs(tsk), &mask);
4838 rcu_read_unlock();
4839 spin_unlock_irqrestore(&callback_lock, flags);
4840
4841 return mask;
4842}
4843
4844/**
4845 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
4846 * @nodemask: the nodemask to be checked
4847 *
4848 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
4849 */
4850int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
4851{
4852 return nodes_intersects(*nodemask, current->mems_allowed);
4853}
4854
4855/*
4856 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
4857 * mem_hardwall ancestor to the specified cpuset. Call holding
4858 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
4859 * (an unusual configuration), then returns the root cpuset.
4860 */
4861static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
4862{
4863 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
4864 cs = parent_cs(cs);
4865 return cs;
4866}
4867
4868/*
4869 * cpuset_node_allowed - Can we allocate on a memory node?
4870 * @node: is this an allowed node?
4871 * @gfp_mask: memory allocation flags
4872 *
4873 * If we're in interrupt, yes, we can always allocate. If @node is set in
4874 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
4875 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
4876 * yes. If current has access to memory reserves as an oom victim, yes.
4877 * Otherwise, no.
4878 *
4879 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
4880 * and do not allow allocations outside the current tasks cpuset
4881 * unless the task has been OOM killed.
4882 * GFP_KERNEL allocations are not so marked, so can escape to the
4883 * nearest enclosing hardwalled ancestor cpuset.
4884 *
4885 * Scanning up parent cpusets requires callback_lock. The
4886 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
4887 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
4888 * current tasks mems_allowed came up empty on the first pass over
4889 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
4890 * cpuset are short of memory, might require taking the callback_lock.
4891 *
4892 * The first call here from mm/page_alloc:get_page_from_freelist()
4893 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
4894 * so no allocation on a node outside the cpuset is allowed (unless
4895 * in interrupt, of course).
4896 *
4897 * The second pass through get_page_from_freelist() doesn't even call
4898 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
4899 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
4900 * in alloc_flags. That logic and the checks below have the combined
4901 * affect that:
4902 * in_interrupt - any node ok (current task context irrelevant)
4903 * GFP_ATOMIC - any node ok
4904 * tsk_is_oom_victim - any node ok
4905 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
4906 * GFP_USER - only nodes in current tasks mems allowed ok.
4907 */
4908bool cpuset_node_allowed(int node, gfp_t gfp_mask)
4909{
4910 struct cpuset *cs; /* current cpuset ancestors */
4911 bool allowed; /* is allocation in zone z allowed? */
4912 unsigned long flags;
4913
4914 if (in_interrupt())
4915 return true;
4916 if (node_isset(node, current->mems_allowed))
4917 return true;
4918 /*
4919 * Allow tasks that have access to memory reserves because they have
4920 * been OOM killed to get memory anywhere.
4921 */
4922 if (unlikely(tsk_is_oom_victim(current)))
4923 return true;
4924 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
4925 return false;
4926
4927 if (current->flags & PF_EXITING) /* Let dying task have memory */
4928 return true;
4929
4930 /* Not hardwall and node outside mems_allowed: scan up cpusets */
4931 spin_lock_irqsave(&callback_lock, flags);
4932
4933 rcu_read_lock();
4934 cs = nearest_hardwall_ancestor(task_cs(current));
4935 allowed = node_isset(node, cs->mems_allowed);
4936 rcu_read_unlock();
4937
4938 spin_unlock_irqrestore(&callback_lock, flags);
4939 return allowed;
4940}
4941
4942/**
4943 * cpuset_spread_node() - On which node to begin search for a page
4944 * @rotor: round robin rotor
4945 *
4946 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
4947 * tasks in a cpuset with is_spread_page or is_spread_slab set),
4948 * and if the memory allocation used cpuset_mem_spread_node()
4949 * to determine on which node to start looking, as it will for
4950 * certain page cache or slab cache pages such as used for file
4951 * system buffers and inode caches, then instead of starting on the
4952 * local node to look for a free page, rather spread the starting
4953 * node around the tasks mems_allowed nodes.
4954 *
4955 * We don't have to worry about the returned node being offline
4956 * because "it can't happen", and even if it did, it would be ok.
4957 *
4958 * The routines calling guarantee_online_mems() are careful to
4959 * only set nodes in task->mems_allowed that are online. So it
4960 * should not be possible for the following code to return an
4961 * offline node. But if it did, that would be ok, as this routine
4962 * is not returning the node where the allocation must be, only
4963 * the node where the search should start. The zonelist passed to
4964 * __alloc_pages() will include all nodes. If the slab allocator
4965 * is passed an offline node, it will fall back to the local node.
4966 * See kmem_cache_alloc_node().
4967 */
4968static int cpuset_spread_node(int *rotor)
4969{
4970 return *rotor = next_node_in(*rotor, current->mems_allowed);
4971}
4972
4973/**
4974 * cpuset_mem_spread_node() - On which node to begin search for a file page
4975 */
4976int cpuset_mem_spread_node(void)
4977{
4978 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
4979 current->cpuset_mem_spread_rotor =
4980 node_random(¤t->mems_allowed);
4981
4982 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
4983}
4984
4985/**
4986 * cpuset_slab_spread_node() - On which node to begin search for a slab page
4987 */
4988int cpuset_slab_spread_node(void)
4989{
4990 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
4991 current->cpuset_slab_spread_rotor =
4992 node_random(¤t->mems_allowed);
4993
4994 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
4995}
4996EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
4997
4998/**
4999 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
5000 * @tsk1: pointer to task_struct of some task.
5001 * @tsk2: pointer to task_struct of some other task.
5002 *
5003 * Description: Return true if @tsk1's mems_allowed intersects the
5004 * mems_allowed of @tsk2. Used by the OOM killer to determine if
5005 * one of the task's memory usage might impact the memory available
5006 * to the other.
5007 **/
5008
5009int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
5010 const struct task_struct *tsk2)
5011{
5012 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
5013}
5014
5015/**
5016 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
5017 *
5018 * Description: Prints current's name, cpuset name, and cached copy of its
5019 * mems_allowed to the kernel log.
5020 */
5021void cpuset_print_current_mems_allowed(void)
5022{
5023 struct cgroup *cgrp;
5024
5025 rcu_read_lock();
5026
5027 cgrp = task_cs(current)->css.cgroup;
5028 pr_cont(",cpuset=");
5029 pr_cont_cgroup_name(cgrp);
5030 pr_cont(",mems_allowed=%*pbl",
5031 nodemask_pr_args(¤t->mems_allowed));
5032
5033 rcu_read_unlock();
5034}
5035
5036/*
5037 * Collection of memory_pressure is suppressed unless
5038 * this flag is enabled by writing "1" to the special
5039 * cpuset file 'memory_pressure_enabled' in the root cpuset.
5040 */
5041
5042int cpuset_memory_pressure_enabled __read_mostly;
5043
5044/*
5045 * __cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
5046 *
5047 * Keep a running average of the rate of synchronous (direct)
5048 * page reclaim efforts initiated by tasks in each cpuset.
5049 *
5050 * This represents the rate at which some task in the cpuset
5051 * ran low on memory on all nodes it was allowed to use, and
5052 * had to enter the kernels page reclaim code in an effort to
5053 * create more free memory by tossing clean pages or swapping
5054 * or writing dirty pages.
5055 *
5056 * Display to user space in the per-cpuset read-only file
5057 * "memory_pressure". Value displayed is an integer
5058 * representing the recent rate of entry into the synchronous
5059 * (direct) page reclaim by any task attached to the cpuset.
5060 */
5061
5062void __cpuset_memory_pressure_bump(void)
5063{
5064 rcu_read_lock();
5065 fmeter_markevent(&task_cs(current)->fmeter);
5066 rcu_read_unlock();
5067}
5068
5069#ifdef CONFIG_PROC_PID_CPUSET
5070/*
5071 * proc_cpuset_show()
5072 * - Print tasks cpuset path into seq_file.
5073 * - Used for /proc/<pid>/cpuset.
5074 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
5075 * doesn't really matter if tsk->cpuset changes after we read it,
5076 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
5077 * anyway.
5078 */
5079int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
5080 struct pid *pid, struct task_struct *tsk)
5081{
5082 char *buf;
5083 struct cgroup_subsys_state *css;
5084 int retval;
5085
5086 retval = -ENOMEM;
5087 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5088 if (!buf)
5089 goto out;
5090
5091 css = task_get_css(tsk, cpuset_cgrp_id);
5092 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
5093 current->nsproxy->cgroup_ns);
5094 css_put(css);
5095 if (retval == -E2BIG)
5096 retval = -ENAMETOOLONG;
5097 if (retval < 0)
5098 goto out_free;
5099 seq_puts(m, buf);
5100 seq_putc(m, '\n');
5101 retval = 0;
5102out_free:
5103 kfree(buf);
5104out:
5105 return retval;
5106}
5107#endif /* CONFIG_PROC_PID_CPUSET */
5108
5109/* Display task mems_allowed in /proc/<pid>/status file. */
5110void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
5111{
5112 seq_printf(m, "Mems_allowed:\t%*pb\n",
5113 nodemask_pr_args(&task->mems_allowed));
5114 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
5115 nodemask_pr_args(&task->mems_allowed));
5116}