Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: MIT */
  2/******************************************************************************
  3 * xen_netif.h
  4 *
  5 * Unified network-device I/O interface for Xen guest OSes.
  6 *
  7 * Copyright (c) 2003-2004, Keir Fraser
  8 */
  9
 10#ifndef __XEN_PUBLIC_IO_XEN_NETIF_H__
 11#define __XEN_PUBLIC_IO_XEN_NETIF_H__
 12
 13#include "ring.h"
 14#include "../grant_table.h"
 15
 16/*
 17 * Older implementation of Xen network frontend / backend has an
 18 * implicit dependency on the MAX_SKB_FRAGS as the maximum number of
 19 * ring slots a skb can use. Netfront / netback may not work as
 20 * expected when frontend and backend have different MAX_SKB_FRAGS.
 21 *
 22 * A better approach is to add mechanism for netfront / netback to
 23 * negotiate this value. However we cannot fix all possible
 24 * frontends, so we need to define a value which states the minimum
 25 * slots backend must support.
 26 *
 27 * The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
 28 * (18), which is proved to work with most frontends. Any new backend
 29 * which doesn't negotiate with frontend should expect frontend to
 30 * send a valid packet using slots up to this value.
 31 */
 32#define XEN_NETIF_NR_SLOTS_MIN 18
 33
 34/*
 35 * Notifications after enqueuing any type of message should be conditional on
 36 * the appropriate req_event or rsp_event field in the shared ring.
 37 * If the client sends notification for rx requests then it should specify
 38 * feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
 39 * that it cannot safely queue packets (as it may not be kicked to send them).
 40 */
 41
 42/*
 43 * "feature-split-event-channels" is introduced to separate guest TX
 44 * and RX notification. Backend either doesn't support this feature or
 45 * advertises it via xenstore as 0 (disabled) or 1 (enabled).
 46 *
 47 * To make use of this feature, frontend should allocate two event
 48 * channels for TX and RX, advertise them to backend as
 49 * "event-channel-tx" and "event-channel-rx" respectively. If frontend
 50 * doesn't want to use this feature, it just writes "event-channel"
 51 * node as before.
 52 */
 53
 54/*
 55 * Multiple transmit and receive queues:
 56 * If supported, the backend will write the key "multi-queue-max-queues" to
 57 * the directory for that vif, and set its value to the maximum supported
 58 * number of queues.
 59 * Frontends that are aware of this feature and wish to use it can write the
 60 * key "multi-queue-num-queues", set to the number they wish to use, which
 61 * must be greater than zero, and no more than the value reported by the backend
 62 * in "multi-queue-max-queues".
 63 *
 64 * Queues replicate the shared rings and event channels.
 65 * "feature-split-event-channels" may optionally be used when using
 66 * multiple queues, but is not mandatory.
 67 *
 68 * Each queue consists of one shared ring pair, i.e. there must be the same
 69 * number of tx and rx rings.
 70 *
 71 * For frontends requesting just one queue, the usual event-channel and
 72 * ring-ref keys are written as before, simplifying the backend processing
 73 * to avoid distinguishing between a frontend that doesn't understand the
 74 * multi-queue feature, and one that does, but requested only one queue.
 75 *
 76 * Frontends requesting two or more queues must not write the toplevel
 77 * event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
 78 * instead writing those keys under sub-keys having the name "queue-N" where
 79 * N is the integer ID of the queue for which those keys belong. Queues
 80 * are indexed from zero. For example, a frontend with two queues and split
 81 * event channels must write the following set of queue-related keys:
 82 *
 83 * /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
 84 * /local/domain/1/device/vif/0/queue-0 = ""
 85 * /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
 86 * /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
 87 * /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
 88 * /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
 89 * /local/domain/1/device/vif/0/queue-1 = ""
 90 * /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
 91 * /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
 92 * /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
 93 * /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
 94 *
 95 * If there is any inconsistency in the XenStore data, the backend may
 96 * choose not to connect any queues, instead treating the request as an
 97 * error. This includes scenarios where more (or fewer) queues were
 98 * requested than the frontend provided details for.
 99 *
100 * Mapping of packets to queues is considered to be a function of the
101 * transmitting system (backend or frontend) and is not negotiated
102 * between the two. Guests are free to transmit packets on any queue
103 * they choose, provided it has been set up correctly. Guests must be
104 * prepared to receive packets on any queue they have requested be set up.
105 */
106
107/*
108 * "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
109 * offload off or on. If it is missing then the feature is assumed to be on.
110 * "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
111 * offload on or off. If it is missing then the feature is assumed to be off.
112 */
113
114/*
115 * "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
116 * handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
117 * frontends nor backends are assumed to be capable unless the flags are
118 * present.
119 */
120
121/*
122 * "feature-multicast-control" and "feature-dynamic-multicast-control"
123 * advertise the capability to filter ethernet multicast packets in the
124 * backend. If the frontend wishes to take advantage of this feature then
125 * it may set "request-multicast-control". If the backend only advertises
126 * "feature-multicast-control" then "request-multicast-control" must be set
127 * before the frontend moves into the connected state. The backend will
128 * sample the value on this state transition and any subsequent change in
129 * value will have no effect. However, if the backend also advertises
130 * "feature-dynamic-multicast-control" then "request-multicast-control"
131 * may be set by the frontend at any time. In this case, the backend will
132 * watch the value and re-sample on watch events.
133 *
134 * If the sampled value of "request-multicast-control" is set then the
135 * backend transmit side should no longer flood multicast packets to the
136 * frontend, it should instead drop any multicast packet that does not
137 * match in a filter list.
138 * The list is amended by the frontend by sending dummy transmit requests
139 * containing XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL} extra-info fragments as
140 * specified below.
141 * Note that the filter list may be amended even if the sampled value of
142 * "request-multicast-control" is not set, however the filter should only
143 * be applied if it is set.
144 */
145
146/*
147 * "xdp-headroom" is used to request that extra space is added
148 * for XDP processing.  The value is measured in bytes and passed by
149 * the frontend to be consistent between both ends.
150 * If the value is greater than zero that means that
151 * an RX response is going to be passed to an XDP program for processing.
152 * XEN_NETIF_MAX_XDP_HEADROOM defines the maximum headroom offset in bytes
153 *
154 * "feature-xdp-headroom" is set to "1" by the netback side like other features
155 * so a guest can check if an XDP program can be processed.
156 */
157#define XEN_NETIF_MAX_XDP_HEADROOM 0x7FFF
158
159/*
160 * Control ring
161 * ============
162 *
163 * Some features, such as hashing (detailed below), require a
164 * significant amount of out-of-band data to be passed from frontend to
165 * backend. Use of xenstore is not suitable for large quantities of data
166 * because of quota limitations and so a dedicated 'control ring' is used.
167 * The ability of the backend to use a control ring is advertised by
168 * setting:
169 *
170 * /local/domain/X/backend/<domid>/<vif>/feature-ctrl-ring = "1"
171 *
172 * The frontend provides a control ring to the backend by setting:
173 *
174 * /local/domain/<domid>/device/vif/<vif>/ctrl-ring-ref = <gref>
175 * /local/domain/<domid>/device/vif/<vif>/event-channel-ctrl = <port>
176 *
177 * where <gref> is the grant reference of the shared page used to
178 * implement the control ring and <port> is an event channel to be used
179 * as a mailbox interrupt. These keys must be set before the frontend
180 * moves into the connected state.
181 *
182 * The control ring uses a fixed request/response message size and is
183 * balanced (i.e. one request to one response), so operationally it is much
184 * the same as a transmit or receive ring.
185 * Note that there is no requirement that responses are issued in the same
186 * order as requests.
187 */
188
189/*
190 * Hash types
191 * ==========
192 *
193 * For the purposes of the definitions below, 'Packet[]' is an array of
194 * octets containing an IP packet without options, 'Array[X..Y]' means a
195 * sub-array of 'Array' containing bytes X thru Y inclusive, and '+' is
196 * used to indicate concatenation of arrays.
197 */
198
199/*
200 * A hash calculated over an IP version 4 header as follows:
201 *
202 * Buffer[0..8] = Packet[12..15] (source address) +
203 *                Packet[16..19] (destination address)
204 *
205 * Result = Hash(Buffer, 8)
206 */
207#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4 0
208#define XEN_NETIF_CTRL_HASH_TYPE_IPV4 \
209	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4)
210
211/*
212 * A hash calculated over an IP version 4 header and TCP header as
213 * follows:
214 *
215 * Buffer[0..12] = Packet[12..15] (source address) +
216 *                 Packet[16..19] (destination address) +
217 *                 Packet[20..21] (source port) +
218 *                 Packet[22..23] (destination port)
219 *
220 * Result = Hash(Buffer, 12)
221 */
222#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP 1
223#define XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP \
224	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP)
225
226/*
227 * A hash calculated over an IP version 6 header as follows:
228 *
229 * Buffer[0..32] = Packet[8..23]  (source address ) +
230 *                 Packet[24..39] (destination address)
231 *
232 * Result = Hash(Buffer, 32)
233 */
234#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6 2
235#define XEN_NETIF_CTRL_HASH_TYPE_IPV6 \
236	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6)
237
238/*
239 * A hash calculated over an IP version 6 header and TCP header as
240 * follows:
241 *
242 * Buffer[0..36] = Packet[8..23]  (source address) +
243 *                 Packet[24..39] (destination address) +
244 *                 Packet[40..41] (source port) +
245 *                 Packet[42..43] (destination port)
246 *
247 * Result = Hash(Buffer, 36)
248 */
249#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP 3
250#define XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP \
251	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP)
252
253/*
254 * Hash algorithms
255 * ===============
256 */
257
258#define XEN_NETIF_CTRL_HASH_ALGORITHM_NONE 0
259
260/*
261 * Toeplitz hash:
262 */
263
264#define XEN_NETIF_CTRL_HASH_ALGORITHM_TOEPLITZ 1
265
266/*
267 * This algorithm uses a 'key' as well as the data buffer itself.
268 * (Buffer[] and Key[] are treated as shift-registers where the MSB of
269 * Buffer/Key[0] is considered 'left-most' and the LSB of Buffer/Key[N-1]
270 * is the 'right-most').
271 *
272 * Value = 0
273 * For number of bits in Buffer[]
274 *    If (left-most bit of Buffer[] is 1)
275 *        Value ^= left-most 32 bits of Key[]
276 *    Key[] << 1
277 *    Buffer[] << 1
278 *
279 * The code below is provided for convenience where an operating system
280 * does not already provide an implementation.
281 */
282#ifdef XEN_NETIF_DEFINE_TOEPLITZ
283static uint32_t xen_netif_toeplitz_hash(const uint8_t *key,
284					unsigned int keylen,
285					const uint8_t *buf, unsigned int buflen)
286{
287	unsigned int keyi, bufi;
288	uint64_t prefix = 0;
289	uint64_t hash = 0;
290
291	/* Pre-load prefix with the first 8 bytes of the key */
292	for (keyi = 0; keyi < 8; keyi++) {
293		prefix <<= 8;
294		prefix |= (keyi < keylen) ? key[keyi] : 0;
295	}
296
297	for (bufi = 0; bufi < buflen; bufi++) {
298		uint8_t byte = buf[bufi];
299		unsigned int bit;
300
301		for (bit = 0; bit < 8; bit++) {
302			if (byte & 0x80)
303				hash ^= prefix;
304			prefix <<= 1;
305			byte <<= 1;
306		}
307
308		/*
309		 * 'prefix' has now been left-shifted by 8, so
310		 * OR in the next byte.
311		 */
312		prefix |= (keyi < keylen) ? key[keyi] : 0;
313		keyi++;
314	}
315
316	/* The valid part of the hash is in the upper 32 bits. */
317	return hash >> 32;
318}
319#endif				/* XEN_NETIF_DEFINE_TOEPLITZ */
320
321/*
322 * Control requests (struct xen_netif_ctrl_request)
323 * ================================================
324 *
325 * All requests have the following format:
326 *
327 *    0     1     2     3     4     5     6     7  octet
328 * +-----+-----+-----+-----+-----+-----+-----+-----+
329 * |    id     |   type    |         data[0]       |
330 * +-----+-----+-----+-----+-----+-----+-----+-----+
331 * |         data[1]       |         data[2]       |
332 * +-----+-----+-----+-----+-----------------------+
333 *
334 * id: the request identifier, echoed in response.
335 * type: the type of request (see below)
336 * data[]: any data associated with the request (determined by type)
337 */
338
339struct xen_netif_ctrl_request {
340	uint16_t id;
341	uint16_t type;
342
343#define XEN_NETIF_CTRL_TYPE_INVALID               0
344#define XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS        1
345#define XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS        2
346#define XEN_NETIF_CTRL_TYPE_SET_HASH_KEY          3
347#define XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE 4
348#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE 5
349#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING      6
350#define XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM    7
351
352	uint32_t data[3];
353};
354
355/*
356 * Control responses (struct xen_netif_ctrl_response)
357 * ==================================================
358 *
359 * All responses have the following format:
360 *
361 *    0     1     2     3     4     5     6     7  octet
362 * +-----+-----+-----+-----+-----+-----+-----+-----+
363 * |    id     |   type    |         status        |
364 * +-----+-----+-----+-----+-----+-----+-----+-----+
365 * |         data          |
366 * +-----+-----+-----+-----+
367 *
368 * id: the corresponding request identifier
369 * type: the type of the corresponding request
370 * status: the status of request processing
371 * data: any data associated with the response (determined by type and
372 *       status)
373 */
374
375struct xen_netif_ctrl_response {
376	uint16_t id;
377	uint16_t type;
378	uint32_t status;
379
380#define XEN_NETIF_CTRL_STATUS_SUCCESS           0
381#define XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     1
382#define XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER 2
383#define XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   3
384
385	uint32_t data;
386};
387
388/*
389 * Control messages
390 * ================
391 *
392 * XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
393 * --------------------------------------
394 *
395 * This is sent by the frontend to set the desired hash algorithm.
396 *
397 * Request:
398 *
399 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
400 *  data[0] = a XEN_NETIF_CTRL_HASH_ALGORITHM_* value
401 *  data[1] = 0
402 *  data[2] = 0
403 *
404 * Response:
405 *
406 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
407 *                                                     supported
408 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - The algorithm is not
409 *                                                     supported
410 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
411 *
412 * NOTE: Setting data[0] to XEN_NETIF_CTRL_HASH_ALGORITHM_NONE disables
413 *       hashing and the backend is free to choose how it steers packets
414 *       to queues (which is the default behaviour).
415 *
416 * XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
417 * ----------------------------------
418 *
419 * This is sent by the frontend to query the types of hash supported by
420 * the backend.
421 *
422 * Request:
423 *
424 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
425 *  data[0] = 0
426 *  data[1] = 0
427 *  data[2] = 0
428 *
429 * Response:
430 *
431 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
432 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
433 *  data   = supported hash types (if operation was successful)
434 *
435 * NOTE: A valid hash algorithm must be selected before this operation can
436 *       succeed.
437 *
438 * XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
439 * ----------------------------------
440 *
441 * This is sent by the frontend to set the types of hash that the backend
442 * should calculate. (See above for hash type definitions).
443 * Note that the 'maximal' type of hash should always be chosen. For
444 * example, if the frontend sets both IPV4 and IPV4_TCP hash types then
445 * the latter hash type should be calculated for any TCP packet and the
446 * former only calculated for non-TCP packets.
447 *
448 * Request:
449 *
450 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
451 *  data[0] = bitwise OR of XEN_NETIF_CTRL_HASH_TYPE_* values
452 *  data[1] = 0
453 *  data[2] = 0
454 *
455 * Response:
456 *
457 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
458 *                                                     supported
459 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - One or more flag
460 *                                                     value is invalid or
461 *                                                     unsupported
462 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
463 *  data   = 0
464 *
465 * NOTE: A valid hash algorithm must be selected before this operation can
466 *       succeed.
467 *       Also, setting data[0] to zero disables hashing and the backend
468 *       is free to choose how it steers packets to queues.
469 *
470 * XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
471 * --------------------------------
472 *
473 * This is sent by the frontend to set the key of the hash if the algorithm
474 * requires it. (See hash algorithms above).
475 *
476 * Request:
477 *
478 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
479 *  data[0] = grant reference of page containing the key (assumed to
480 *            start at beginning of grant)
481 *  data[1] = size of key in octets
482 *  data[2] = 0
483 *
484 * Response:
485 *
486 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
487 *                                                     supported
488 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Key size is invalid
489 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Key size is larger
490 *                                                     than the backend
491 *                                                     supports
492 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
493 *  data   = 0
494 *
495 * NOTE: Any key octets not specified are assumed to be zero (the key
496 *       is assumed to be empty by default) and specifying a new key
497 *       invalidates any previous key, hence specifying a key size of
498 *       zero will clear the key (which ensures that the calculated hash
499 *       will always be zero).
500 *       The maximum size of key is algorithm and backend specific, but
501 *       is also limited by the single grant reference.
502 *       The grant reference may be read-only and must remain valid until
503 *       the response has been processed.
504 *
505 * XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
506 * -----------------------------------------
507 *
508 * This is sent by the frontend to query the maximum size of mapping
509 * table supported by the backend. The size is specified in terms of
510 * table entries.
511 *
512 * Request:
513 *
514 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
515 *  data[0] = 0
516 *  data[1] = 0
517 *  data[2] = 0
518 *
519 * Response:
520 *
521 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
522 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
523 *  data   = maximum number of entries allowed in the mapping table
524 *           (if operation was successful) or zero if a mapping table is
525 *           not supported (i.e. hash mapping is done only by modular
526 *           arithmetic).
527 *
528 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
529 * -------------------------------------
530 *
531 * This is sent by the frontend to set the actual size of the mapping
532 * table to be used by the backend. The size is specified in terms of
533 * table entries.
534 * Any previous table is invalidated by this message and any new table
535 * is assumed to be zero filled.
536 *
537 * Request:
538 *
539 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
540 *  data[0] = number of entries in mapping table
541 *  data[1] = 0
542 *  data[2] = 0
543 *
544 * Response:
545 *
546 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
547 *                                                     supported
548 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size is invalid
549 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
550 *  data   = 0
551 *
552 * NOTE: Setting data[0] to 0 means that hash mapping should be done
553 *       using modular arithmetic.
554 *
555 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
556 * ------------------------------------
557 *
558 * This is sent by the frontend to set the content of the table mapping
559 * hash value to queue number. The backend should calculate the hash from
560 * the packet header, use it as an index into the table (modulo the size
561 * of the table) and then steer the packet to the queue number found at
562 * that index.
563 *
564 * Request:
565 *
566 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
567 *  data[0] = grant reference of page containing the mapping (sub-)table
568 *            (assumed to start at beginning of grant)
569 *  data[1] = size of (sub-)table in entries
570 *  data[2] = offset, in entries, of sub-table within overall table
571 *
572 * Response:
573 *
574 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
575 *                                                     supported
576 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size or content
577 *                                                     is invalid
578 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Table size is larger
579 *                                                     than the backend
580 *                                                     supports
581 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
582 *  data   = 0
583 *
584 * NOTE: The overall table has the following format:
585 *
586 *          0     1     2     3     4     5     6     7  octet
587 *       +-----+-----+-----+-----+-----+-----+-----+-----+
588 *       |       mapping[0]      |       mapping[1]      |
589 *       +-----+-----+-----+-----+-----+-----+-----+-----+
590 *       |                       .                       |
591 *       |                       .                       |
592 *       |                       .                       |
593 *       +-----+-----+-----+-----+-----+-----+-----+-----+
594 *       |      mapping[N-2]     |      mapping[N-1]     |
595 *       +-----+-----+-----+-----+-----+-----+-----+-----+
596 *
597 *       where N is specified by a XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
598 *       message and each  mapping must specifies a queue between 0 and
599 *       "multi-queue-num-queues" (see above).
600 *       The backend may support a mapping table larger than can be
601 *       mapped by a single grant reference. Thus sub-tables within a
602 *       larger table can be individually set by sending multiple messages
603 *       with differing offset values. Specifying a new sub-table does not
604 *       invalidate any table data outside that range.
605 *       The grant reference may be read-only and must remain valid until
606 *       the response has been processed.
607 */
608
609DEFINE_RING_TYPES(xen_netif_ctrl,
610		  struct xen_netif_ctrl_request,
611		  struct xen_netif_ctrl_response);
612
613/*
614 * Guest transmit
615 * ==============
616 *
617 * This is the 'wire' format for transmit (frontend -> backend) packets:
618 *
619 *  Fragment 1: xen_netif_tx_request_t  - flags = XEN_NETTXF_*
620 *                                    size = total packet size
621 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
622 *                                     XEN_NETTXF_extra_info)
623 *  ...
624 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
625 *                                     XEN_NETIF_EXTRA_MORE)
626 *  ...
627 *  Fragment N: xen_netif_tx_request_t  - (only if fragment N-1 flags include
628 *                                     XEN_NETTXF_more_data - flags on preceding
629 *                                     extras are not relevant here)
630 *                                    flags = 0
631 *                                    size = fragment size
632 *
633 * NOTE:
634 *
635 * This format slightly is different from that used for receive
636 * (backend -> frontend) packets. Specifically, in a multi-fragment
637 * packet the actual size of fragment 1 can only be determined by
638 * subtracting the sizes of fragments 2..N from the total packet size.
639 *
640 * Ring slot size is 12 octets, however not all request/response
641 * structs use the full size.
642 *
643 * tx request data (xen_netif_tx_request_t)
644 * ------------------------------------
645 *
646 *    0     1     2     3     4     5     6     7  octet
647 * +-----+-----+-----+-----+-----+-----+-----+-----+
648 * | grant ref             | offset    | flags     |
649 * +-----+-----+-----+-----+-----+-----+-----+-----+
650 * | id        | size      |
651 * +-----+-----+-----+-----+
652 *
653 * grant ref: Reference to buffer page.
654 * offset: Offset within buffer page.
655 * flags: XEN_NETTXF_*.
656 * id: request identifier, echoed in response.
657 * size: packet size in bytes.
658 *
659 * tx response (xen_netif_tx_response_t)
660 * ---------------------------------
661 *
662 *    0     1     2     3     4     5     6     7  octet
663 * +-----+-----+-----+-----+-----+-----+-----+-----+
664 * | id        | status    | unused                |
665 * +-----+-----+-----+-----+-----+-----+-----+-----+
666 * | unused                |
667 * +-----+-----+-----+-----+
668 *
669 * id: reflects id in transmit request
670 * status: XEN_NETIF_RSP_*
671 *
672 * Guest receive
673 * =============
674 *
675 * This is the 'wire' format for receive (backend -> frontend) packets:
676 *
677 *  Fragment 1: xen_netif_rx_request_t  - flags = XEN_NETRXF_*
678 *                                    size = fragment size
679 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
680 *                                     XEN_NETRXF_extra_info)
681 *  ...
682 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
683 *                                     XEN_NETIF_EXTRA_MORE)
684 *  ...
685 *  Fragment N: xen_netif_rx_request_t  - (only if fragment N-1 flags include
686 *                                     XEN_NETRXF_more_data - flags on preceding
687 *                                     extras are not relevant here)
688 *                                    flags = 0
689 *                                    size = fragment size
690 *
691 * NOTE:
692 *
693 * This format slightly is different from that used for transmit
694 * (frontend -> backend) packets. Specifically, in a multi-fragment
695 * packet the size of the packet can only be determined by summing the
696 * sizes of fragments 1..N.
697 *
698 * Ring slot size is 8 octets.
699 *
700 * rx request (xen_netif_rx_request_t)
701 * -------------------------------
702 *
703 *    0     1     2     3     4     5     6     7  octet
704 * +-----+-----+-----+-----+-----+-----+-----+-----+
705 * | id        | pad       | gref                  |
706 * +-----+-----+-----+-----+-----+-----+-----+-----+
707 *
708 * id: request identifier, echoed in response.
709 * gref: reference to incoming granted frame.
710 *
711 * rx response (xen_netif_rx_response_t)
712 * ---------------------------------
713 *
714 *    0     1     2     3     4     5     6     7  octet
715 * +-----+-----+-----+-----+-----+-----+-----+-----+
716 * | id        | offset    | flags     | status    |
717 * +-----+-----+-----+-----+-----+-----+-----+-----+
718 *
719 * id: reflects id in receive request
720 * offset: offset in page of start of received packet
721 * flags: XEN_NETRXF_*
722 * status: -ve: XEN_NETIF_RSP_*; +ve: Rx'ed pkt size.
723 *
724 * NOTE: Historically, to support GSO on the frontend receive side, Linux
725 *       netfront does not make use of the rx response id (because, as
726 *       described below, extra info structures overlay the id field).
727 *       Instead it assumes that responses always appear in the same ring
728 *       slot as their corresponding request. Thus, to maintain
729 *       compatibility, backends must make sure this is the case.
730 *
731 * Extra Info
732 * ==========
733 *
734 * Can be present if initial request or response has NET{T,R}XF_extra_info,
735 * or previous extra request has XEN_NETIF_EXTRA_MORE.
736 *
737 * The struct therefore needs to fit into either a tx or rx slot and
738 * is therefore limited to 8 octets.
739 *
740 * NOTE: Because extra info data overlays the usual request/response
741 *       structures, there is no id information in the opposite direction.
742 *       So, if an extra info overlays an rx response the frontend can
743 *       assume that it is in the same ring slot as the request that was
744 *       consumed to make the slot available, and the backend must ensure
745 *       this assumption is true.
746 *
747 * extra info (xen_netif_extra_info_t)
748 * -------------------------------
749 *
750 * General format:
751 *
752 *    0     1     2     3     4     5     6     7  octet
753 * +-----+-----+-----+-----+-----+-----+-----+-----+
754 * |type |flags| type specific data                |
755 * +-----+-----+-----+-----+-----+-----+-----+-----+
756 * | padding for tx        |
757 * +-----+-----+-----+-----+
758 *
759 * type: XEN_NETIF_EXTRA_TYPE_*
760 * flags: XEN_NETIF_EXTRA_FLAG_*
761 * padding for tx: present only in the tx case due to 8 octet limit
762 *                 from rx case. Not shown in type specific entries
763 *                 below.
764 *
765 * XEN_NETIF_EXTRA_TYPE_GSO:
766 *
767 *    0     1     2     3     4     5     6     7  octet
768 * +-----+-----+-----+-----+-----+-----+-----+-----+
769 * |type |flags| size      |type | pad | features  |
770 * +-----+-----+-----+-----+-----+-----+-----+-----+
771 *
772 * type: Must be XEN_NETIF_EXTRA_TYPE_GSO
773 * flags: XEN_NETIF_EXTRA_FLAG_*
774 * size: Maximum payload size of each segment. For example,
775 *       for TCP this is just the path MSS.
776 * type: XEN_NETIF_GSO_TYPE_*: This determines the protocol of
777 *       the packet and any extra features required to segment the
778 *       packet properly.
779 * features: EN_XEN_NETIF_GSO_FEAT_*: This specifies any extra GSO
780 *           features required to process this packet, such as ECN
781 *           support for TCPv4.
782 *
783 * XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}:
784 *
785 *    0     1     2     3     4     5     6     7  octet
786 * +-----+-----+-----+-----+-----+-----+-----+-----+
787 * |type |flags| addr                              |
788 * +-----+-----+-----+-----+-----+-----+-----+-----+
789 *
790 * type: Must be XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}
791 * flags: XEN_NETIF_EXTRA_FLAG_*
792 * addr: address to add/remove
793 *
794 * XEN_NETIF_EXTRA_TYPE_HASH:
795 *
796 * A backend that supports teoplitz hashing is assumed to accept
797 * this type of extra info in transmit packets.
798 * A frontend that enables hashing is assumed to accept
799 * this type of extra info in receive packets.
800 *
801 *    0     1     2     3     4     5     6     7  octet
802 * +-----+-----+-----+-----+-----+-----+-----+-----+
803 * |type |flags|htype| alg |LSB ---- value ---- MSB|
804 * +-----+-----+-----+-----+-----+-----+-----+-----+
805 *
806 * type: Must be XEN_NETIF_EXTRA_TYPE_HASH
807 * flags: XEN_NETIF_EXTRA_FLAG_*
808 * htype: Hash type (one of _XEN_NETIF_CTRL_HASH_TYPE_* - see above)
809 * alg: The algorithm used to calculate the hash (one of
810 *      XEN_NETIF_CTRL_HASH_TYPE_ALGORITHM_* - see above)
811 * value: Hash value
812 */
813
814/* Protocol checksum field is blank in the packet (hardware offload)? */
815#define _XEN_NETTXF_csum_blank     (0)
816#define  XEN_NETTXF_csum_blank     (1U<<_XEN_NETTXF_csum_blank)
817
818/* Packet data has been validated against protocol checksum. */
819#define _XEN_NETTXF_data_validated (1)
820#define  XEN_NETTXF_data_validated (1U<<_XEN_NETTXF_data_validated)
821
822/* Packet continues in the next request descriptor. */
823#define _XEN_NETTXF_more_data      (2)
824#define  XEN_NETTXF_more_data      (1U<<_XEN_NETTXF_more_data)
825
826/* Packet to be followed by extra descriptor(s). */
827#define _XEN_NETTXF_extra_info     (3)
828#define  XEN_NETTXF_extra_info     (1U<<_XEN_NETTXF_extra_info)
829
830#define XEN_NETIF_MAX_TX_SIZE 0xFFFF
831struct xen_netif_tx_request {
832	grant_ref_t gref;
833	uint16_t offset;
834	uint16_t flags;
835	uint16_t id;
836	uint16_t size;
837};
838
839/* Types of xen_netif_extra_info descriptors. */
840#define XEN_NETIF_EXTRA_TYPE_NONE      (0)	/* Never used - invalid */
841#define XEN_NETIF_EXTRA_TYPE_GSO       (1)	/* u.gso */
842#define XEN_NETIF_EXTRA_TYPE_MCAST_ADD (2)	/* u.mcast */
843#define XEN_NETIF_EXTRA_TYPE_MCAST_DEL (3)	/* u.mcast */
844#define XEN_NETIF_EXTRA_TYPE_HASH      (4)	/* u.hash */
845#define XEN_NETIF_EXTRA_TYPE_XDP       (5)	/* u.xdp */
846#define XEN_NETIF_EXTRA_TYPE_MAX       (6)
847
848/* xen_netif_extra_info_t flags. */
849#define _XEN_NETIF_EXTRA_FLAG_MORE (0)
850#define XEN_NETIF_EXTRA_FLAG_MORE  (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
851
852/* GSO types */
853#define XEN_NETIF_GSO_TYPE_NONE         (0)
854#define XEN_NETIF_GSO_TYPE_TCPV4        (1)
855#define XEN_NETIF_GSO_TYPE_TCPV6        (2)
856
857/*
858 * This structure needs to fit within both xen_netif_tx_request_t and
859 * xen_netif_rx_response_t for compatibility.
860 */
861struct xen_netif_extra_info {
862	uint8_t type;
863	uint8_t flags;
864	union {
865		struct {
866			uint16_t size;
867			uint8_t type;
868			uint8_t pad;
869			uint16_t features;
870		} gso;
871		struct {
872			uint8_t addr[6];
873		} mcast;
874		struct {
875			uint8_t type;
876			uint8_t algorithm;
877			uint8_t value[4];
878		} hash;
879		struct {
880			uint16_t headroom;
881			uint16_t pad[2];
882		} xdp;
883		uint16_t pad[3];
884	} u;
885};
886
887struct xen_netif_tx_response {
888	uint16_t id;
889	int16_t status;
890};
891
892struct xen_netif_rx_request {
893	uint16_t id;		/* Echoed in response message.        */
894	uint16_t pad;
895	grant_ref_t gref;
896};
897
898/* Packet data has been validated against protocol checksum. */
899#define _XEN_NETRXF_data_validated (0)
900#define  XEN_NETRXF_data_validated (1U<<_XEN_NETRXF_data_validated)
901
902/* Protocol checksum field is blank in the packet (hardware offload)? */
903#define _XEN_NETRXF_csum_blank     (1)
904#define  XEN_NETRXF_csum_blank     (1U<<_XEN_NETRXF_csum_blank)
905
906/* Packet continues in the next request descriptor. */
907#define _XEN_NETRXF_more_data      (2)
908#define  XEN_NETRXF_more_data      (1U<<_XEN_NETRXF_more_data)
909
910/* Packet to be followed by extra descriptor(s). */
911#define _XEN_NETRXF_extra_info     (3)
912#define  XEN_NETRXF_extra_info     (1U<<_XEN_NETRXF_extra_info)
913
914/* Packet has GSO prefix. Deprecated but included for compatibility */
915#define _XEN_NETRXF_gso_prefix     (4)
916#define  XEN_NETRXF_gso_prefix     (1U<<_XEN_NETRXF_gso_prefix)
917
918struct xen_netif_rx_response {
919	uint16_t id;
920	uint16_t offset;
921	uint16_t flags;
922	int16_t status;
923};
924
925/*
926 * Generate xen_netif ring structures and types.
927 */
928
929DEFINE_RING_TYPES(xen_netif_tx, struct xen_netif_tx_request,
930		  struct xen_netif_tx_response);
931DEFINE_RING_TYPES(xen_netif_rx, struct xen_netif_rx_request,
932		  struct xen_netif_rx_response);
933
934#define XEN_NETIF_RSP_DROPPED         -2
935#define XEN_NETIF_RSP_ERROR           -1
936#define XEN_NETIF_RSP_OKAY             0
937/* No response: used for auxiliary requests (e.g., xen_netif_extra_info_t). */
938#define XEN_NETIF_RSP_NULL             1
939
940#endif
v6.8
  1/* SPDX-License-Identifier: MIT */
  2/******************************************************************************
  3 * xen_netif.h
  4 *
  5 * Unified network-device I/O interface for Xen guest OSes.
  6 *
  7 * Copyright (c) 2003-2004, Keir Fraser
  8 */
  9
 10#ifndef __XEN_PUBLIC_IO_XEN_NETIF_H__
 11#define __XEN_PUBLIC_IO_XEN_NETIF_H__
 12
 13#include "ring.h"
 14#include "../grant_table.h"
 15
 16/*
 17 * Older implementation of Xen network frontend / backend has an
 18 * implicit dependency on the MAX_SKB_FRAGS as the maximum number of
 19 * ring slots a skb can use. Netfront / netback may not work as
 20 * expected when frontend and backend have different MAX_SKB_FRAGS.
 21 *
 22 * A better approach is to add mechanism for netfront / netback to
 23 * negotiate this value. However we cannot fix all possible
 24 * frontends, so we need to define a value which states the minimum
 25 * slots backend must support.
 26 *
 27 * The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
 28 * (18), which is proved to work with most frontends. Any new backend
 29 * which doesn't negotiate with frontend should expect frontend to
 30 * send a valid packet using slots up to this value.
 31 */
 32#define XEN_NETIF_NR_SLOTS_MIN 18
 33
 34/*
 35 * Notifications after enqueuing any type of message should be conditional on
 36 * the appropriate req_event or rsp_event field in the shared ring.
 37 * If the client sends notification for rx requests then it should specify
 38 * feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
 39 * that it cannot safely queue packets (as it may not be kicked to send them).
 40 */
 41
 42/*
 43 * "feature-split-event-channels" is introduced to separate guest TX
 44 * and RX notification. Backend either doesn't support this feature or
 45 * advertises it via xenstore as 0 (disabled) or 1 (enabled).
 46 *
 47 * To make use of this feature, frontend should allocate two event
 48 * channels for TX and RX, advertise them to backend as
 49 * "event-channel-tx" and "event-channel-rx" respectively. If frontend
 50 * doesn't want to use this feature, it just writes "event-channel"
 51 * node as before.
 52 */
 53
 54/*
 55 * Multiple transmit and receive queues:
 56 * If supported, the backend will write the key "multi-queue-max-queues" to
 57 * the directory for that vif, and set its value to the maximum supported
 58 * number of queues.
 59 * Frontends that are aware of this feature and wish to use it can write the
 60 * key "multi-queue-num-queues", set to the number they wish to use, which
 61 * must be greater than zero, and no more than the value reported by the backend
 62 * in "multi-queue-max-queues".
 63 *
 64 * Queues replicate the shared rings and event channels.
 65 * "feature-split-event-channels" may optionally be used when using
 66 * multiple queues, but is not mandatory.
 67 *
 68 * Each queue consists of one shared ring pair, i.e. there must be the same
 69 * number of tx and rx rings.
 70 *
 71 * For frontends requesting just one queue, the usual event-channel and
 72 * ring-ref keys are written as before, simplifying the backend processing
 73 * to avoid distinguishing between a frontend that doesn't understand the
 74 * multi-queue feature, and one that does, but requested only one queue.
 75 *
 76 * Frontends requesting two or more queues must not write the toplevel
 77 * event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
 78 * instead writing those keys under sub-keys having the name "queue-N" where
 79 * N is the integer ID of the queue for which those keys belong. Queues
 80 * are indexed from zero. For example, a frontend with two queues and split
 81 * event channels must write the following set of queue-related keys:
 82 *
 83 * /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
 84 * /local/domain/1/device/vif/0/queue-0 = ""
 85 * /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
 86 * /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
 87 * /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
 88 * /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
 89 * /local/domain/1/device/vif/0/queue-1 = ""
 90 * /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
 91 * /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
 92 * /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
 93 * /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
 94 *
 95 * If there is any inconsistency in the XenStore data, the backend may
 96 * choose not to connect any queues, instead treating the request as an
 97 * error. This includes scenarios where more (or fewer) queues were
 98 * requested than the frontend provided details for.
 99 *
100 * Mapping of packets to queues is considered to be a function of the
101 * transmitting system (backend or frontend) and is not negotiated
102 * between the two. Guests are free to transmit packets on any queue
103 * they choose, provided it has been set up correctly. Guests must be
104 * prepared to receive packets on any queue they have requested be set up.
105 */
106
107/*
108 * "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
109 * offload off or on. If it is missing then the feature is assumed to be on.
110 * "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
111 * offload on or off. If it is missing then the feature is assumed to be off.
112 */
113
114/*
115 * "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
116 * handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
117 * frontends nor backends are assumed to be capable unless the flags are
118 * present.
119 */
120
121/*
122 * "feature-multicast-control" and "feature-dynamic-multicast-control"
123 * advertise the capability to filter ethernet multicast packets in the
124 * backend. If the frontend wishes to take advantage of this feature then
125 * it may set "request-multicast-control". If the backend only advertises
126 * "feature-multicast-control" then "request-multicast-control" must be set
127 * before the frontend moves into the connected state. The backend will
128 * sample the value on this state transition and any subsequent change in
129 * value will have no effect. However, if the backend also advertises
130 * "feature-dynamic-multicast-control" then "request-multicast-control"
131 * may be set by the frontend at any time. In this case, the backend will
132 * watch the value and re-sample on watch events.
133 *
134 * If the sampled value of "request-multicast-control" is set then the
135 * backend transmit side should no longer flood multicast packets to the
136 * frontend, it should instead drop any multicast packet that does not
137 * match in a filter list.
138 * The list is amended by the frontend by sending dummy transmit requests
139 * containing XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL} extra-info fragments as
140 * specified below.
141 * Note that the filter list may be amended even if the sampled value of
142 * "request-multicast-control" is not set, however the filter should only
143 * be applied if it is set.
144 */
145
146/*
147 * "xdp-headroom" is used to request that extra space is added
148 * for XDP processing.  The value is measured in bytes and passed by
149 * the frontend to be consistent between both ends.
150 * If the value is greater than zero that means that
151 * an RX response is going to be passed to an XDP program for processing.
152 * XEN_NETIF_MAX_XDP_HEADROOM defines the maximum headroom offset in bytes
153 *
154 * "feature-xdp-headroom" is set to "1" by the netback side like other features
155 * so a guest can check if an XDP program can be processed.
156 */
157#define XEN_NETIF_MAX_XDP_HEADROOM 0x7FFF
158
159/*
160 * Control ring
161 * ============
162 *
163 * Some features, such as hashing (detailed below), require a
164 * significant amount of out-of-band data to be passed from frontend to
165 * backend. Use of xenstore is not suitable for large quantities of data
166 * because of quota limitations and so a dedicated 'control ring' is used.
167 * The ability of the backend to use a control ring is advertised by
168 * setting:
169 *
170 * /local/domain/X/backend/<domid>/<vif>/feature-ctrl-ring = "1"
171 *
172 * The frontend provides a control ring to the backend by setting:
173 *
174 * /local/domain/<domid>/device/vif/<vif>/ctrl-ring-ref = <gref>
175 * /local/domain/<domid>/device/vif/<vif>/event-channel-ctrl = <port>
176 *
177 * where <gref> is the grant reference of the shared page used to
178 * implement the control ring and <port> is an event channel to be used
179 * as a mailbox interrupt. These keys must be set before the frontend
180 * moves into the connected state.
181 *
182 * The control ring uses a fixed request/response message size and is
183 * balanced (i.e. one request to one response), so operationally it is much
184 * the same as a transmit or receive ring.
185 * Note that there is no requirement that responses are issued in the same
186 * order as requests.
187 */
188
189/*
190 * Hash types
191 * ==========
192 *
193 * For the purposes of the definitions below, 'Packet[]' is an array of
194 * octets containing an IP packet without options, 'Array[X..Y]' means a
195 * sub-array of 'Array' containing bytes X thru Y inclusive, and '+' is
196 * used to indicate concatenation of arrays.
197 */
198
199/*
200 * A hash calculated over an IP version 4 header as follows:
201 *
202 * Buffer[0..8] = Packet[12..15] (source address) +
203 *                Packet[16..19] (destination address)
204 *
205 * Result = Hash(Buffer, 8)
206 */
207#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4 0
208#define XEN_NETIF_CTRL_HASH_TYPE_IPV4 \
209	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4)
210
211/*
212 * A hash calculated over an IP version 4 header and TCP header as
213 * follows:
214 *
215 * Buffer[0..12] = Packet[12..15] (source address) +
216 *                 Packet[16..19] (destination address) +
217 *                 Packet[20..21] (source port) +
218 *                 Packet[22..23] (destination port)
219 *
220 * Result = Hash(Buffer, 12)
221 */
222#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP 1
223#define XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP \
224	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP)
225
226/*
227 * A hash calculated over an IP version 6 header as follows:
228 *
229 * Buffer[0..32] = Packet[8..23]  (source address ) +
230 *                 Packet[24..39] (destination address)
231 *
232 * Result = Hash(Buffer, 32)
233 */
234#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6 2
235#define XEN_NETIF_CTRL_HASH_TYPE_IPV6 \
236	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6)
237
238/*
239 * A hash calculated over an IP version 6 header and TCP header as
240 * follows:
241 *
242 * Buffer[0..36] = Packet[8..23]  (source address) +
243 *                 Packet[24..39] (destination address) +
244 *                 Packet[40..41] (source port) +
245 *                 Packet[42..43] (destination port)
246 *
247 * Result = Hash(Buffer, 36)
248 */
249#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP 3
250#define XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP \
251	(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP)
252
253/*
254 * Hash algorithms
255 * ===============
256 */
257
258#define XEN_NETIF_CTRL_HASH_ALGORITHM_NONE 0
259
260/*
261 * Toeplitz hash:
262 */
263
264#define XEN_NETIF_CTRL_HASH_ALGORITHM_TOEPLITZ 1
265
266/*
267 * This algorithm uses a 'key' as well as the data buffer itself.
268 * (Buffer[] and Key[] are treated as shift-registers where the MSB of
269 * Buffer/Key[0] is considered 'left-most' and the LSB of Buffer/Key[N-1]
270 * is the 'right-most').
271 *
272 * Value = 0
273 * For number of bits in Buffer[]
274 *    If (left-most bit of Buffer[] is 1)
275 *        Value ^= left-most 32 bits of Key[]
276 *    Key[] << 1
277 *    Buffer[] << 1
278 *
279 * The code below is provided for convenience where an operating system
280 * does not already provide an implementation.
281 */
282#ifdef XEN_NETIF_DEFINE_TOEPLITZ
283static uint32_t xen_netif_toeplitz_hash(const uint8_t *key,
284					unsigned int keylen,
285					const uint8_t *buf, unsigned int buflen)
286{
287	unsigned int keyi, bufi;
288	uint64_t prefix = 0;
289	uint64_t hash = 0;
290
291	/* Pre-load prefix with the first 8 bytes of the key */
292	for (keyi = 0; keyi < 8; keyi++) {
293		prefix <<= 8;
294		prefix |= (keyi < keylen) ? key[keyi] : 0;
295	}
296
297	for (bufi = 0; bufi < buflen; bufi++) {
298		uint8_t byte = buf[bufi];
299		unsigned int bit;
300
301		for (bit = 0; bit < 8; bit++) {
302			if (byte & 0x80)
303				hash ^= prefix;
304			prefix <<= 1;
305			byte <<= 1;
306		}
307
308		/*
309		 * 'prefix' has now been left-shifted by 8, so
310		 * OR in the next byte.
311		 */
312		prefix |= (keyi < keylen) ? key[keyi] : 0;
313		keyi++;
314	}
315
316	/* The valid part of the hash is in the upper 32 bits. */
317	return hash >> 32;
318}
319#endif				/* XEN_NETIF_DEFINE_TOEPLITZ */
320
321/*
322 * Control requests (struct xen_netif_ctrl_request)
323 * ================================================
324 *
325 * All requests have the following format:
326 *
327 *    0     1     2     3     4     5     6     7  octet
328 * +-----+-----+-----+-----+-----+-----+-----+-----+
329 * |    id     |   type    |         data[0]       |
330 * +-----+-----+-----+-----+-----+-----+-----+-----+
331 * |         data[1]       |         data[2]       |
332 * +-----+-----+-----+-----+-----------------------+
333 *
334 * id: the request identifier, echoed in response.
335 * type: the type of request (see below)
336 * data[]: any data associated with the request (determined by type)
337 */
338
339struct xen_netif_ctrl_request {
340	uint16_t id;
341	uint16_t type;
342
343#define XEN_NETIF_CTRL_TYPE_INVALID               0
344#define XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS        1
345#define XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS        2
346#define XEN_NETIF_CTRL_TYPE_SET_HASH_KEY          3
347#define XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE 4
348#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE 5
349#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING      6
350#define XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM    7
351
352	uint32_t data[3];
353};
354
355/*
356 * Control responses (struct xen_netif_ctrl_response)
357 * ==================================================
358 *
359 * All responses have the following format:
360 *
361 *    0     1     2     3     4     5     6     7  octet
362 * +-----+-----+-----+-----+-----+-----+-----+-----+
363 * |    id     |   type    |         status        |
364 * +-----+-----+-----+-----+-----+-----+-----+-----+
365 * |         data          |
366 * +-----+-----+-----+-----+
367 *
368 * id: the corresponding request identifier
369 * type: the type of the corresponding request
370 * status: the status of request processing
371 * data: any data associated with the response (determined by type and
372 *       status)
373 */
374
375struct xen_netif_ctrl_response {
376	uint16_t id;
377	uint16_t type;
378	uint32_t status;
379
380#define XEN_NETIF_CTRL_STATUS_SUCCESS           0
381#define XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     1
382#define XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER 2
383#define XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   3
384
385	uint32_t data;
386};
387
388/*
389 * Control messages
390 * ================
391 *
392 * XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
393 * --------------------------------------
394 *
395 * This is sent by the frontend to set the desired hash algorithm.
396 *
397 * Request:
398 *
399 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
400 *  data[0] = a XEN_NETIF_CTRL_HASH_ALGORITHM_* value
401 *  data[1] = 0
402 *  data[2] = 0
403 *
404 * Response:
405 *
406 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
407 *                                                     supported
408 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - The algorithm is not
409 *                                                     supported
410 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
411 *
412 * NOTE: Setting data[0] to XEN_NETIF_CTRL_HASH_ALGORITHM_NONE disables
413 *       hashing and the backend is free to choose how it steers packets
414 *       to queues (which is the default behaviour).
415 *
416 * XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
417 * ----------------------------------
418 *
419 * This is sent by the frontend to query the types of hash supported by
420 * the backend.
421 *
422 * Request:
423 *
424 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
425 *  data[0] = 0
426 *  data[1] = 0
427 *  data[2] = 0
428 *
429 * Response:
430 *
431 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
432 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
433 *  data   = supported hash types (if operation was successful)
434 *
435 * NOTE: A valid hash algorithm must be selected before this operation can
436 *       succeed.
437 *
438 * XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
439 * ----------------------------------
440 *
441 * This is sent by the frontend to set the types of hash that the backend
442 * should calculate. (See above for hash type definitions).
443 * Note that the 'maximal' type of hash should always be chosen. For
444 * example, if the frontend sets both IPV4 and IPV4_TCP hash types then
445 * the latter hash type should be calculated for any TCP packet and the
446 * former only calculated for non-TCP packets.
447 *
448 * Request:
449 *
450 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
451 *  data[0] = bitwise OR of XEN_NETIF_CTRL_HASH_TYPE_* values
452 *  data[1] = 0
453 *  data[2] = 0
454 *
455 * Response:
456 *
457 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
458 *                                                     supported
459 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - One or more flag
460 *                                                     value is invalid or
461 *                                                     unsupported
462 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
463 *  data   = 0
464 *
465 * NOTE: A valid hash algorithm must be selected before this operation can
466 *       succeed.
467 *       Also, setting data[0] to zero disables hashing and the backend
468 *       is free to choose how it steers packets to queues.
469 *
470 * XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
471 * --------------------------------
472 *
473 * This is sent by the frontend to set the key of the hash if the algorithm
474 * requires it. (See hash algorithms above).
475 *
476 * Request:
477 *
478 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
479 *  data[0] = grant reference of page containing the key (assumed to
480 *            start at beginning of grant)
481 *  data[1] = size of key in octets
482 *  data[2] = 0
483 *
484 * Response:
485 *
486 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
487 *                                                     supported
488 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Key size is invalid
489 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Key size is larger
490 *                                                     than the backend
491 *                                                     supports
492 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
493 *  data   = 0
494 *
495 * NOTE: Any key octets not specified are assumed to be zero (the key
496 *       is assumed to be empty by default) and specifying a new key
497 *       invalidates any previous key, hence specifying a key size of
498 *       zero will clear the key (which ensures that the calculated hash
499 *       will always be zero).
500 *       The maximum size of key is algorithm and backend specific, but
501 *       is also limited by the single grant reference.
502 *       The grant reference may be read-only and must remain valid until
503 *       the response has been processed.
504 *
505 * XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
506 * -----------------------------------------
507 *
508 * This is sent by the frontend to query the maximum size of mapping
509 * table supported by the backend. The size is specified in terms of
510 * table entries.
511 *
512 * Request:
513 *
514 *  type    = XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
515 *  data[0] = 0
516 *  data[1] = 0
517 *  data[2] = 0
518 *
519 * Response:
520 *
521 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
522 *           XEN_NETIF_CTRL_STATUS_SUCCESS       - Operation successful
523 *  data   = maximum number of entries allowed in the mapping table
524 *           (if operation was successful) or zero if a mapping table is
525 *           not supported (i.e. hash mapping is done only by modular
526 *           arithmetic).
527 *
528 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
529 * -------------------------------------
530 *
531 * This is sent by the frontend to set the actual size of the mapping
532 * table to be used by the backend. The size is specified in terms of
533 * table entries.
534 * Any previous table is invalidated by this message and any new table
535 * is assumed to be zero filled.
536 *
537 * Request:
538 *
539 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
540 *  data[0] = number of entries in mapping table
541 *  data[1] = 0
542 *  data[2] = 0
543 *
544 * Response:
545 *
546 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
547 *                                                     supported
548 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size is invalid
549 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
550 *  data   = 0
551 *
552 * NOTE: Setting data[0] to 0 means that hash mapping should be done
553 *       using modular arithmetic.
554 *
555 * XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
556 * ------------------------------------
557 *
558 * This is sent by the frontend to set the content of the table mapping
559 * hash value to queue number. The backend should calculate the hash from
560 * the packet header, use it as an index into the table (modulo the size
561 * of the table) and then steer the packet to the queue number found at
562 * that index.
563 *
564 * Request:
565 *
566 *  type    = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
567 *  data[0] = grant reference of page containing the mapping (sub-)table
568 *            (assumed to start at beginning of grant)
569 *  data[1] = size of (sub-)table in entries
570 *  data[2] = offset, in entries, of sub-table within overall table
571 *
572 * Response:
573 *
574 *  status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED     - Operation not
575 *                                                     supported
576 *           XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size or content
577 *                                                     is invalid
578 *           XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW   - Table size is larger
579 *                                                     than the backend
580 *                                                     supports
581 *           XEN_NETIF_CTRL_STATUS_SUCCESS           - Operation successful
582 *  data   = 0
583 *
584 * NOTE: The overall table has the following format:
585 *
586 *          0     1     2     3     4     5     6     7  octet
587 *       +-----+-----+-----+-----+-----+-----+-----+-----+
588 *       |       mapping[0]      |       mapping[1]      |
589 *       +-----+-----+-----+-----+-----+-----+-----+-----+
590 *       |                       .                       |
591 *       |                       .                       |
592 *       |                       .                       |
593 *       +-----+-----+-----+-----+-----+-----+-----+-----+
594 *       |      mapping[N-2]     |      mapping[N-1]     |
595 *       +-----+-----+-----+-----+-----+-----+-----+-----+
596 *
597 *       where N is specified by a XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
598 *       message and each  mapping must specifies a queue between 0 and
599 *       "multi-queue-num-queues" (see above).
600 *       The backend may support a mapping table larger than can be
601 *       mapped by a single grant reference. Thus sub-tables within a
602 *       larger table can be individually set by sending multiple messages
603 *       with differing offset values. Specifying a new sub-table does not
604 *       invalidate any table data outside that range.
605 *       The grant reference may be read-only and must remain valid until
606 *       the response has been processed.
607 */
608
609DEFINE_RING_TYPES(xen_netif_ctrl,
610		  struct xen_netif_ctrl_request,
611		  struct xen_netif_ctrl_response);
612
613/*
614 * Guest transmit
615 * ==============
616 *
617 * This is the 'wire' format for transmit (frontend -> backend) packets:
618 *
619 *  Fragment 1: xen_netif_tx_request_t  - flags = XEN_NETTXF_*
620 *                                    size = total packet size
621 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
622 *                                     XEN_NETTXF_extra_info)
623 *  ...
624 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
625 *                                     XEN_NETIF_EXTRA_MORE)
626 *  ...
627 *  Fragment N: xen_netif_tx_request_t  - (only if fragment N-1 flags include
628 *                                     XEN_NETTXF_more_data - flags on preceding
629 *                                     extras are not relevant here)
630 *                                    flags = 0
631 *                                    size = fragment size
632 *
633 * NOTE:
634 *
635 * This format slightly is different from that used for receive
636 * (backend -> frontend) packets. Specifically, in a multi-fragment
637 * packet the actual size of fragment 1 can only be determined by
638 * subtracting the sizes of fragments 2..N from the total packet size.
639 *
640 * Ring slot size is 12 octets, however not all request/response
641 * structs use the full size.
642 *
643 * tx request data (xen_netif_tx_request_t)
644 * ------------------------------------
645 *
646 *    0     1     2     3     4     5     6     7  octet
647 * +-----+-----+-----+-----+-----+-----+-----+-----+
648 * | grant ref             | offset    | flags     |
649 * +-----+-----+-----+-----+-----+-----+-----+-----+
650 * | id        | size      |
651 * +-----+-----+-----+-----+
652 *
653 * grant ref: Reference to buffer page.
654 * offset: Offset within buffer page.
655 * flags: XEN_NETTXF_*.
656 * id: request identifier, echoed in response.
657 * size: packet size in bytes.
658 *
659 * tx response (xen_netif_tx_response_t)
660 * ---------------------------------
661 *
662 *    0     1     2     3     4     5     6     7  octet
663 * +-----+-----+-----+-----+-----+-----+-----+-----+
664 * | id        | status    | unused                |
665 * +-----+-----+-----+-----+-----+-----+-----+-----+
666 * | unused                |
667 * +-----+-----+-----+-----+
668 *
669 * id: reflects id in transmit request
670 * status: XEN_NETIF_RSP_*
671 *
672 * Guest receive
673 * =============
674 *
675 * This is the 'wire' format for receive (backend -> frontend) packets:
676 *
677 *  Fragment 1: xen_netif_rx_request_t  - flags = XEN_NETRXF_*
678 *                                    size = fragment size
679 * [Extra 1: xen_netif_extra_info_t]    - (only if fragment 1 flags include
680 *                                     XEN_NETRXF_extra_info)
681 *  ...
682 * [Extra N: xen_netif_extra_info_t]    - (only if extra N-1 flags include
683 *                                     XEN_NETIF_EXTRA_MORE)
684 *  ...
685 *  Fragment N: xen_netif_rx_request_t  - (only if fragment N-1 flags include
686 *                                     XEN_NETRXF_more_data - flags on preceding
687 *                                     extras are not relevant here)
688 *                                    flags = 0
689 *                                    size = fragment size
690 *
691 * NOTE:
692 *
693 * This format slightly is different from that used for transmit
694 * (frontend -> backend) packets. Specifically, in a multi-fragment
695 * packet the size of the packet can only be determined by summing the
696 * sizes of fragments 1..N.
697 *
698 * Ring slot size is 8 octets.
699 *
700 * rx request (xen_netif_rx_request_t)
701 * -------------------------------
702 *
703 *    0     1     2     3     4     5     6     7  octet
704 * +-----+-----+-----+-----+-----+-----+-----+-----+
705 * | id        | pad       | gref                  |
706 * +-----+-----+-----+-----+-----+-----+-----+-----+
707 *
708 * id: request identifier, echoed in response.
709 * gref: reference to incoming granted frame.
710 *
711 * rx response (xen_netif_rx_response_t)
712 * ---------------------------------
713 *
714 *    0     1     2     3     4     5     6     7  octet
715 * +-----+-----+-----+-----+-----+-----+-----+-----+
716 * | id        | offset    | flags     | status    |
717 * +-----+-----+-----+-----+-----+-----+-----+-----+
718 *
719 * id: reflects id in receive request
720 * offset: offset in page of start of received packet
721 * flags: XEN_NETRXF_*
722 * status: -ve: XEN_NETIF_RSP_*; +ve: Rx'ed pkt size.
723 *
724 * NOTE: Historically, to support GSO on the frontend receive side, Linux
725 *       netfront does not make use of the rx response id (because, as
726 *       described below, extra info structures overlay the id field).
727 *       Instead it assumes that responses always appear in the same ring
728 *       slot as their corresponding request. Thus, to maintain
729 *       compatibility, backends must make sure this is the case.
730 *
731 * Extra Info
732 * ==========
733 *
734 * Can be present if initial request or response has NET{T,R}XF_extra_info,
735 * or previous extra request has XEN_NETIF_EXTRA_MORE.
736 *
737 * The struct therefore needs to fit into either a tx or rx slot and
738 * is therefore limited to 8 octets.
739 *
740 * NOTE: Because extra info data overlays the usual request/response
741 *       structures, there is no id information in the opposite direction.
742 *       So, if an extra info overlays an rx response the frontend can
743 *       assume that it is in the same ring slot as the request that was
744 *       consumed to make the slot available, and the backend must ensure
745 *       this assumption is true.
746 *
747 * extra info (xen_netif_extra_info_t)
748 * -------------------------------
749 *
750 * General format:
751 *
752 *    0     1     2     3     4     5     6     7  octet
753 * +-----+-----+-----+-----+-----+-----+-----+-----+
754 * |type |flags| type specific data                |
755 * +-----+-----+-----+-----+-----+-----+-----+-----+
756 * | padding for tx        |
757 * +-----+-----+-----+-----+
758 *
759 * type: XEN_NETIF_EXTRA_TYPE_*
760 * flags: XEN_NETIF_EXTRA_FLAG_*
761 * padding for tx: present only in the tx case due to 8 octet limit
762 *                 from rx case. Not shown in type specific entries
763 *                 below.
764 *
765 * XEN_NETIF_EXTRA_TYPE_GSO:
766 *
767 *    0     1     2     3     4     5     6     7  octet
768 * +-----+-----+-----+-----+-----+-----+-----+-----+
769 * |type |flags| size      |type | pad | features  |
770 * +-----+-----+-----+-----+-----+-----+-----+-----+
771 *
772 * type: Must be XEN_NETIF_EXTRA_TYPE_GSO
773 * flags: XEN_NETIF_EXTRA_FLAG_*
774 * size: Maximum payload size of each segment. For example,
775 *       for TCP this is just the path MSS.
776 * type: XEN_NETIF_GSO_TYPE_*: This determines the protocol of
777 *       the packet and any extra features required to segment the
778 *       packet properly.
779 * features: EN_XEN_NETIF_GSO_FEAT_*: This specifies any extra GSO
780 *           features required to process this packet, such as ECN
781 *           support for TCPv4.
782 *
783 * XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}:
784 *
785 *    0     1     2     3     4     5     6     7  octet
786 * +-----+-----+-----+-----+-----+-----+-----+-----+
787 * |type |flags| addr                              |
788 * +-----+-----+-----+-----+-----+-----+-----+-----+
789 *
790 * type: Must be XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}
791 * flags: XEN_NETIF_EXTRA_FLAG_*
792 * addr: address to add/remove
793 *
794 * XEN_NETIF_EXTRA_TYPE_HASH:
795 *
796 * A backend that supports teoplitz hashing is assumed to accept
797 * this type of extra info in transmit packets.
798 * A frontend that enables hashing is assumed to accept
799 * this type of extra info in receive packets.
800 *
801 *    0     1     2     3     4     5     6     7  octet
802 * +-----+-----+-----+-----+-----+-----+-----+-----+
803 * |type |flags|htype| alg |LSB ---- value ---- MSB|
804 * +-----+-----+-----+-----+-----+-----+-----+-----+
805 *
806 * type: Must be XEN_NETIF_EXTRA_TYPE_HASH
807 * flags: XEN_NETIF_EXTRA_FLAG_*
808 * htype: Hash type (one of _XEN_NETIF_CTRL_HASH_TYPE_* - see above)
809 * alg: The algorithm used to calculate the hash (one of
810 *      XEN_NETIF_CTRL_HASH_TYPE_ALGORITHM_* - see above)
811 * value: Hash value
812 */
813
814/* Protocol checksum field is blank in the packet (hardware offload)? */
815#define _XEN_NETTXF_csum_blank     (0)
816#define  XEN_NETTXF_csum_blank     (1U<<_XEN_NETTXF_csum_blank)
817
818/* Packet data has been validated against protocol checksum. */
819#define _XEN_NETTXF_data_validated (1)
820#define  XEN_NETTXF_data_validated (1U<<_XEN_NETTXF_data_validated)
821
822/* Packet continues in the next request descriptor. */
823#define _XEN_NETTXF_more_data      (2)
824#define  XEN_NETTXF_more_data      (1U<<_XEN_NETTXF_more_data)
825
826/* Packet to be followed by extra descriptor(s). */
827#define _XEN_NETTXF_extra_info     (3)
828#define  XEN_NETTXF_extra_info     (1U<<_XEN_NETTXF_extra_info)
829
830#define XEN_NETIF_MAX_TX_SIZE 0xFFFF
831struct xen_netif_tx_request {
832	grant_ref_t gref;
833	uint16_t offset;
834	uint16_t flags;
835	uint16_t id;
836	uint16_t size;
837};
838
839/* Types of xen_netif_extra_info descriptors. */
840#define XEN_NETIF_EXTRA_TYPE_NONE      (0)	/* Never used - invalid */
841#define XEN_NETIF_EXTRA_TYPE_GSO       (1)	/* u.gso */
842#define XEN_NETIF_EXTRA_TYPE_MCAST_ADD (2)	/* u.mcast */
843#define XEN_NETIF_EXTRA_TYPE_MCAST_DEL (3)	/* u.mcast */
844#define XEN_NETIF_EXTRA_TYPE_HASH      (4)	/* u.hash */
845#define XEN_NETIF_EXTRA_TYPE_XDP       (5)	/* u.xdp */
846#define XEN_NETIF_EXTRA_TYPE_MAX       (6)
847
848/* xen_netif_extra_info_t flags. */
849#define _XEN_NETIF_EXTRA_FLAG_MORE (0)
850#define XEN_NETIF_EXTRA_FLAG_MORE  (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
851
852/* GSO types */
853#define XEN_NETIF_GSO_TYPE_NONE         (0)
854#define XEN_NETIF_GSO_TYPE_TCPV4        (1)
855#define XEN_NETIF_GSO_TYPE_TCPV6        (2)
856
857/*
858 * This structure needs to fit within both xen_netif_tx_request_t and
859 * xen_netif_rx_response_t for compatibility.
860 */
861struct xen_netif_extra_info {
862	uint8_t type;
863	uint8_t flags;
864	union {
865		struct {
866			uint16_t size;
867			uint8_t type;
868			uint8_t pad;
869			uint16_t features;
870		} gso;
871		struct {
872			uint8_t addr[6];
873		} mcast;
874		struct {
875			uint8_t type;
876			uint8_t algorithm;
877			uint8_t value[4];
878		} hash;
879		struct {
880			uint16_t headroom;
881			uint16_t pad[2];
882		} xdp;
883		uint16_t pad[3];
884	} u;
885};
886
887struct xen_netif_tx_response {
888	uint16_t id;
889	int16_t status;
890};
891
892struct xen_netif_rx_request {
893	uint16_t id;		/* Echoed in response message.        */
894	uint16_t pad;
895	grant_ref_t gref;
896};
897
898/* Packet data has been validated against protocol checksum. */
899#define _XEN_NETRXF_data_validated (0)
900#define  XEN_NETRXF_data_validated (1U<<_XEN_NETRXF_data_validated)
901
902/* Protocol checksum field is blank in the packet (hardware offload)? */
903#define _XEN_NETRXF_csum_blank     (1)
904#define  XEN_NETRXF_csum_blank     (1U<<_XEN_NETRXF_csum_blank)
905
906/* Packet continues in the next request descriptor. */
907#define _XEN_NETRXF_more_data      (2)
908#define  XEN_NETRXF_more_data      (1U<<_XEN_NETRXF_more_data)
909
910/* Packet to be followed by extra descriptor(s). */
911#define _XEN_NETRXF_extra_info     (3)
912#define  XEN_NETRXF_extra_info     (1U<<_XEN_NETRXF_extra_info)
913
914/* Packet has GSO prefix. Deprecated but included for compatibility */
915#define _XEN_NETRXF_gso_prefix     (4)
916#define  XEN_NETRXF_gso_prefix     (1U<<_XEN_NETRXF_gso_prefix)
917
918struct xen_netif_rx_response {
919	uint16_t id;
920	uint16_t offset;
921	uint16_t flags;
922	int16_t status;
923};
924
925/*
926 * Generate xen_netif ring structures and types.
927 */
928
929DEFINE_RING_TYPES(xen_netif_tx, struct xen_netif_tx_request,
930		  struct xen_netif_tx_response);
931DEFINE_RING_TYPES(xen_netif_rx, struct xen_netif_rx_request,
932		  struct xen_netif_rx_response);
933
934#define XEN_NETIF_RSP_DROPPED         -2
935#define XEN_NETIF_RSP_ERROR           -1
936#define XEN_NETIF_RSP_OKAY             0
937/* No response: used for auxiliary requests (e.g., xen_netif_extra_info_t). */
938#define XEN_NETIF_RSP_NULL             1
939
940#endif