Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
  4 *
  5 * the driver does not rely on the native chipselects at all
  6 * but only uses the gpio type chipselects
  7 *
  8 * Based on: spi-bcm2835.c
  9 *
 10 * Copyright (C) 2015 Martin Sperl
 11 */
 12
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/debugfs.h>
 16#include <linux/delay.h>
 17#include <linux/err.h>
 18#include <linux/interrupt.h>
 19#include <linux/io.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/of.h>
 23#include <linux/of_address.h>
 24#include <linux/of_device.h>
 25#include <linux/of_irq.h>
 26#include <linux/regmap.h>
 27#include <linux/spi/spi.h>
 28#include <linux/spinlock.h>
 29
 30/* define polling limits */
 31static unsigned int polling_limit_us = 30;
 32module_param(polling_limit_us, uint, 0664);
 33MODULE_PARM_DESC(polling_limit_us,
 34		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
 35
 36/*
 37 * spi register defines
 38 *
 39 * note there is garbage in the "official" documentation,
 40 * so some data is taken from the file:
 41 *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
 42 * inside of:
 43 *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
 44 */
 45
 46/* SPI register offsets */
 47#define BCM2835_AUX_SPI_CNTL0	0x00
 48#define BCM2835_AUX_SPI_CNTL1	0x04
 49#define BCM2835_AUX_SPI_STAT	0x08
 50#define BCM2835_AUX_SPI_PEEK	0x0C
 51#define BCM2835_AUX_SPI_IO	0x20
 52#define BCM2835_AUX_SPI_TXHOLD	0x30
 53
 54/* Bitfields in CNTL0 */
 55#define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
 56#define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
 57#define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
 58#define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
 59#define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
 60#define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
 61#define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
 62#define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
 63#define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
 64#define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
 65#define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
 66#define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
 67#define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
 68#define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
 69#define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
 70
 71/* Bitfields in CNTL1 */
 72#define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
 73#define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
 74#define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
 75#define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
 76#define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
 77
 78/* Bitfields in STAT */
 79#define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
 80#define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
 81#define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
 82#define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
 83#define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
 84#define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
 85#define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
 86#define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
 87
 88struct bcm2835aux_spi {
 89	void __iomem *regs;
 90	struct clk *clk;
 91	int irq;
 92	u32 cntl[2];
 93	const u8 *tx_buf;
 94	u8 *rx_buf;
 95	int tx_len;
 96	int rx_len;
 97	int pending;
 98
 99	u64 count_transfer_polling;
100	u64 count_transfer_irq;
101	u64 count_transfer_irq_after_poll;
102
103	struct dentry *debugfs_dir;
104};
105
106#if defined(CONFIG_DEBUG_FS)
107static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
108				      const char *dname)
109{
110	char name[64];
111	struct dentry *dir;
112
113	/* get full name */
114	snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
115
116	/* the base directory */
117	dir = debugfs_create_dir(name, NULL);
118	bs->debugfs_dir = dir;
119
120	/* the counters */
121	debugfs_create_u64("count_transfer_polling", 0444, dir,
122			   &bs->count_transfer_polling);
123	debugfs_create_u64("count_transfer_irq", 0444, dir,
124			   &bs->count_transfer_irq);
125	debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
126			   &bs->count_transfer_irq_after_poll);
127}
128
129static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
130{
131	debugfs_remove_recursive(bs->debugfs_dir);
132	bs->debugfs_dir = NULL;
133}
134#else
135static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
136				      const char *dname)
137{
138}
139
140static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
141{
142}
143#endif /* CONFIG_DEBUG_FS */
144
145static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned int reg)
146{
147	return readl(bs->regs + reg);
148}
149
150static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned int reg,
151				 u32 val)
152{
153	writel(val, bs->regs + reg);
154}
155
156static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
157{
158	u32 data;
159	int count = min(bs->rx_len, 3);
160
161	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
162	if (bs->rx_buf) {
163		switch (count) {
164		case 3:
165			*bs->rx_buf++ = (data >> 16) & 0xff;
166			fallthrough;
167		case 2:
168			*bs->rx_buf++ = (data >> 8) & 0xff;
169			fallthrough;
170		case 1:
171			*bs->rx_buf++ = (data >> 0) & 0xff;
172			/* fallthrough - no default */
173		}
174	}
175	bs->rx_len -= count;
176	bs->pending -= count;
177}
178
179static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
180{
181	u32 data;
182	u8 byte;
183	int count;
184	int i;
185
186	/* gather up to 3 bytes to write to the FIFO */
187	count = min(bs->tx_len, 3);
188	data = 0;
189	for (i = 0; i < count; i++) {
190		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
191		data |= byte << (8 * (2 - i));
192	}
193
194	/* and set the variable bit-length */
195	data |= (count * 8) << 24;
196
197	/* and decrement length */
198	bs->tx_len -= count;
199	bs->pending += count;
200
201	/* write to the correct TX-register */
202	if (bs->tx_len)
203		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
204	else
205		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
206}
207
208static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
209{
210	/* disable spi clearing fifo and interrupts */
211	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
212	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
213		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
214}
215
216static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
217{
218	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
219
220	/* check if we have data to read */
221	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
222	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
223		bcm2835aux_rd_fifo(bs);
224
225	/* check if we have data to write */
226	while (bs->tx_len &&
227	       (bs->pending < 12) &&
228	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
229		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
230		bcm2835aux_wr_fifo(bs);
231	}
232}
233
234static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
235{
236	struct spi_master *master = dev_id;
237	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
238
239	/* IRQ may be shared, so return if our interrupts are disabled */
240	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
241	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
242		return IRQ_NONE;
243
244	/* do common fifo handling */
245	bcm2835aux_spi_transfer_helper(bs);
246
247	if (!bs->tx_len) {
248		/* disable tx fifo empty interrupt */
249		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
250			BCM2835_AUX_SPI_CNTL1_IDLE);
251	}
252
253	/* and if rx_len is 0 then disable interrupts and wake up completion */
254	if (!bs->rx_len) {
255		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
256		spi_finalize_current_transfer(master);
257	}
258
259	return IRQ_HANDLED;
260}
261
262static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
263					     struct spi_device *spi,
264					     struct spi_transfer *tfr)
265{
266	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
267
268	/* enable interrupts */
269	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
270		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
271		BCM2835_AUX_SPI_CNTL1_IDLE);
272
273	/* and wait for finish... */
274	return 1;
275}
276
277static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
278					   struct spi_device *spi,
279					   struct spi_transfer *tfr)
280{
281	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
282
283	/* update statistics */
284	bs->count_transfer_irq++;
285
286	/* fill in registers and fifos before enabling interrupts */
287	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
288	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
289
290	/* fill in tx fifo with data before enabling interrupts */
291	while ((bs->tx_len) &&
292	       (bs->pending < 12) &&
293	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
294		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
295		bcm2835aux_wr_fifo(bs);
296	}
297
298	/* now run the interrupt mode */
299	return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
300}
301
302static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
303					    struct spi_device *spi,
304					struct spi_transfer *tfr)
305{
306	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
307	unsigned long timeout;
308
309	/* update statistics */
310	bs->count_transfer_polling++;
311
312	/* configure spi */
313	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
314	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
315
316	/* set the timeout to at least 2 jiffies */
317	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
318
319	/* loop until finished the transfer */
320	while (bs->rx_len) {
321
322		/* do common fifo handling */
323		bcm2835aux_spi_transfer_helper(bs);
324
325		/* there is still data pending to read check the timeout */
326		if (bs->rx_len && time_after(jiffies, timeout)) {
327			dev_dbg_ratelimited(&spi->dev,
328					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
329					    jiffies - timeout,
330					    bs->tx_len, bs->rx_len);
331			/* forward to interrupt handler */
332			bs->count_transfer_irq_after_poll++;
333			return __bcm2835aux_spi_transfer_one_irq(master,
334							       spi, tfr);
335		}
336	}
337
338	/* and return without waiting for completion */
339	return 0;
340}
341
342static int bcm2835aux_spi_transfer_one(struct spi_master *master,
343				       struct spi_device *spi,
344				       struct spi_transfer *tfr)
345{
346	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
347	unsigned long spi_hz, clk_hz, speed;
348	unsigned long hz_per_byte, byte_limit;
349
350	/* calculate the registers to handle
351	 *
352	 * note that we use the variable data mode, which
353	 * is not optimal for longer transfers as we waste registers
354	 * resulting (potentially) in more interrupts when transferring
355	 * more than 12 bytes
356	 */
357
358	/* set clock */
359	spi_hz = tfr->speed_hz;
360	clk_hz = clk_get_rate(bs->clk);
361
362	if (spi_hz >= clk_hz / 2) {
363		speed = 0;
364	} else if (spi_hz) {
365		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
366		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
367			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
368	} else { /* the slowest we can go */
369		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
370	}
371	/* mask out old speed from previous spi_transfer */
372	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
373	/* set the new speed */
374	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
375
376	tfr->effective_speed_hz = clk_hz / (2 * (speed + 1));
377
378	/* set transmit buffers and length */
379	bs->tx_buf = tfr->tx_buf;
380	bs->rx_buf = tfr->rx_buf;
381	bs->tx_len = tfr->len;
382	bs->rx_len = tfr->len;
383	bs->pending = 0;
384
385	/* Calculate the estimated time in us the transfer runs.  Note that
386	 * there are 2 idle clocks cycles after each chunk getting
387	 * transferred - in our case the chunk size is 3 bytes, so we
388	 * approximate this by 9 cycles/byte.  This is used to find the number
389	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
390	 * 30 µs per 300,000 Hz of bus clock.
391	 */
392	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
393	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
394
395	/* run in polling mode for short transfers */
396	if (tfr->len < byte_limit)
397		return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
398
399	/* run in interrupt mode for all others */
400	return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
401}
402
403static int bcm2835aux_spi_prepare_message(struct spi_master *master,
404					  struct spi_message *msg)
405{
406	struct spi_device *spi = msg->spi;
407	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
408
409	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
410		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
411		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
412	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
413
414	/* handle all the modes */
415	if (spi->mode & SPI_CPOL) {
416		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
417		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
418	} else {
419		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
420	}
421	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
422	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
423
424	return 0;
425}
426
427static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
428					    struct spi_message *msg)
429{
430	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
431
432	bcm2835aux_spi_reset_hw(bs);
433
434	return 0;
435}
436
437static void bcm2835aux_spi_handle_err(struct spi_master *master,
438				      struct spi_message *msg)
439{
440	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
441
442	bcm2835aux_spi_reset_hw(bs);
443}
444
445static int bcm2835aux_spi_setup(struct spi_device *spi)
446{
447	/* sanity check for native cs */
448	if (spi->mode & SPI_NO_CS)
449		return 0;
450
451	if (spi->cs_gpiod)
452		return 0;
453
454	/* for dt-backwards compatibility: only support native on CS0
455	 * known things not supported with broken native CS:
456	 * * multiple chip-selects: cs0-cs2 are all
457	 *     simultaniously asserted whenever there is a transfer
458	 *     this even includes SPI_NO_CS
459	 * * SPI_CS_HIGH: cs are always asserted low
460	 * * cs_change: cs is deasserted after each spi_transfer
461	 * * cs_delay_usec: cs is always deasserted one SCK cycle
462	 *     after the last transfer
463	 * probably more...
464	 */
465	dev_warn(&spi->dev,
466		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
467
468	if (spi->chip_select == 0)
469		return 0;
470
471	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
472
473	return -EINVAL;
474}
475
476static int bcm2835aux_spi_probe(struct platform_device *pdev)
477{
478	struct spi_master *master;
479	struct bcm2835aux_spi *bs;
480	unsigned long clk_hz;
481	int err;
482
483	master = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
484	if (!master)
485		return -ENOMEM;
486
487	platform_set_drvdata(pdev, master);
488	master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
489	master->bits_per_word_mask = SPI_BPW_MASK(8);
490	/* even though the driver never officially supported native CS
491	 * allow a single native CS for legacy DT support purposes when
492	 * no cs-gpio is configured.
493	 * Known limitations for native cs are:
494	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
495	 *     whenever there is a transfer -  this even includes SPI_NO_CS
496	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
497	 * * cs_change: cs is deasserted after each spi_transfer
498	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
499	 *     a spi_transfer
500	 */
501	master->num_chipselect = 1;
502	master->setup = bcm2835aux_spi_setup;
503	master->transfer_one = bcm2835aux_spi_transfer_one;
504	master->handle_err = bcm2835aux_spi_handle_err;
505	master->prepare_message = bcm2835aux_spi_prepare_message;
506	master->unprepare_message = bcm2835aux_spi_unprepare_message;
507	master->dev.of_node = pdev->dev.of_node;
508	master->use_gpio_descriptors = true;
509
510	bs = spi_master_get_devdata(master);
511
512	/* the main area */
513	bs->regs = devm_platform_ioremap_resource(pdev, 0);
514	if (IS_ERR(bs->regs))
515		return PTR_ERR(bs->regs);
516
517	bs->clk = devm_clk_get(&pdev->dev, NULL);
518	if (IS_ERR(bs->clk)) {
519		err = PTR_ERR(bs->clk);
520		dev_err(&pdev->dev, "could not get clk: %d\n", err);
521		return err;
522	}
523
524	bs->irq = platform_get_irq(pdev, 0);
525	if (bs->irq <= 0)
526		return bs->irq ? bs->irq : -ENODEV;
527
528	/* this also enables the HW block */
529	err = clk_prepare_enable(bs->clk);
530	if (err) {
531		dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
532		return err;
533	}
534
535	/* just checking if the clock returns a sane value */
536	clk_hz = clk_get_rate(bs->clk);
537	if (!clk_hz) {
538		dev_err(&pdev->dev, "clock returns 0 Hz\n");
539		err = -ENODEV;
540		goto out_clk_disable;
541	}
542
543	/* reset SPI-HW block */
544	bcm2835aux_spi_reset_hw(bs);
545
546	err = devm_request_irq(&pdev->dev, bs->irq,
547			       bcm2835aux_spi_interrupt,
548			       IRQF_SHARED,
549			       dev_name(&pdev->dev), master);
550	if (err) {
551		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
552		goto out_clk_disable;
553	}
554
555	err = spi_register_master(master);
556	if (err) {
557		dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
558		goto out_clk_disable;
559	}
560
561	bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
562
563	return 0;
564
565out_clk_disable:
566	clk_disable_unprepare(bs->clk);
567	return err;
568}
569
570static int bcm2835aux_spi_remove(struct platform_device *pdev)
571{
572	struct spi_master *master = platform_get_drvdata(pdev);
573	struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
574
575	bcm2835aux_debugfs_remove(bs);
576
577	spi_unregister_master(master);
578
579	bcm2835aux_spi_reset_hw(bs);
580
581	/* disable the HW block by releasing the clock */
582	clk_disable_unprepare(bs->clk);
583
584	return 0;
585}
586
587static const struct of_device_id bcm2835aux_spi_match[] = {
588	{ .compatible = "brcm,bcm2835-aux-spi", },
589	{}
590};
591MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
592
593static struct platform_driver bcm2835aux_spi_driver = {
594	.driver		= {
595		.name		= "spi-bcm2835aux",
596		.of_match_table	= bcm2835aux_spi_match,
597	},
598	.probe		= bcm2835aux_spi_probe,
599	.remove		= bcm2835aux_spi_remove,
600};
601module_platform_driver(bcm2835aux_spi_driver);
602
603MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
604MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
605MODULE_LICENSE("GPL");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
  4 *
  5 * the driver does not rely on the native chipselects at all
  6 * but only uses the gpio type chipselects
  7 *
  8 * Based on: spi-bcm2835.c
  9 *
 10 * Copyright (C) 2015 Martin Sperl
 11 */
 12
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/debugfs.h>
 16#include <linux/delay.h>
 17#include <linux/err.h>
 18#include <linux/interrupt.h>
 19#include <linux/io.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/of.h>
 23#include <linux/platform_device.h>
 
 
 24#include <linux/regmap.h>
 25#include <linux/spi/spi.h>
 26#include <linux/spinlock.h>
 27
 28/* define polling limits */
 29static unsigned int polling_limit_us = 30;
 30module_param(polling_limit_us, uint, 0664);
 31MODULE_PARM_DESC(polling_limit_us,
 32		 "time in us to run a transfer in polling mode - if zero no polling is used\n");
 33
 34/*
 35 * spi register defines
 36 *
 37 * note there is garbage in the "official" documentation,
 38 * so some data is taken from the file:
 39 *   brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
 40 * inside of:
 41 *   http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
 42 */
 43
 44/* SPI register offsets */
 45#define BCM2835_AUX_SPI_CNTL0	0x00
 46#define BCM2835_AUX_SPI_CNTL1	0x04
 47#define BCM2835_AUX_SPI_STAT	0x08
 48#define BCM2835_AUX_SPI_PEEK	0x0C
 49#define BCM2835_AUX_SPI_IO	0x20
 50#define BCM2835_AUX_SPI_TXHOLD	0x30
 51
 52/* Bitfields in CNTL0 */
 53#define BCM2835_AUX_SPI_CNTL0_SPEED	0xFFF00000
 54#define BCM2835_AUX_SPI_CNTL0_SPEED_MAX	0xFFF
 55#define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT	20
 56#define BCM2835_AUX_SPI_CNTL0_CS	0x000E0000
 57#define BCM2835_AUX_SPI_CNTL0_POSTINPUT	0x00010000
 58#define BCM2835_AUX_SPI_CNTL0_VAR_CS	0x00008000
 59#define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH	0x00004000
 60#define BCM2835_AUX_SPI_CNTL0_DOUTHOLD	0x00003000
 61#define BCM2835_AUX_SPI_CNTL0_ENABLE	0x00000800
 62#define BCM2835_AUX_SPI_CNTL0_IN_RISING	0x00000400
 63#define BCM2835_AUX_SPI_CNTL0_CLEARFIFO	0x00000200
 64#define BCM2835_AUX_SPI_CNTL0_OUT_RISING	0x00000100
 65#define BCM2835_AUX_SPI_CNTL0_CPOL	0x00000080
 66#define BCM2835_AUX_SPI_CNTL0_MSBF_OUT	0x00000040
 67#define BCM2835_AUX_SPI_CNTL0_SHIFTLEN	0x0000003F
 68
 69/* Bitfields in CNTL1 */
 70#define BCM2835_AUX_SPI_CNTL1_CSHIGH	0x00000700
 71#define BCM2835_AUX_SPI_CNTL1_TXEMPTY	0x00000080
 72#define BCM2835_AUX_SPI_CNTL1_IDLE	0x00000040
 73#define BCM2835_AUX_SPI_CNTL1_MSBF_IN	0x00000002
 74#define BCM2835_AUX_SPI_CNTL1_KEEP_IN	0x00000001
 75
 76/* Bitfields in STAT */
 77#define BCM2835_AUX_SPI_STAT_TX_LVL	0xFF000000
 78#define BCM2835_AUX_SPI_STAT_RX_LVL	0x00FF0000
 79#define BCM2835_AUX_SPI_STAT_TX_FULL	0x00000400
 80#define BCM2835_AUX_SPI_STAT_TX_EMPTY	0x00000200
 81#define BCM2835_AUX_SPI_STAT_RX_FULL	0x00000100
 82#define BCM2835_AUX_SPI_STAT_RX_EMPTY	0x00000080
 83#define BCM2835_AUX_SPI_STAT_BUSY	0x00000040
 84#define BCM2835_AUX_SPI_STAT_BITCOUNT	0x0000003F
 85
 86struct bcm2835aux_spi {
 87	void __iomem *regs;
 88	struct clk *clk;
 89	int irq;
 90	u32 cntl[2];
 91	const u8 *tx_buf;
 92	u8 *rx_buf;
 93	int tx_len;
 94	int rx_len;
 95	int pending;
 96
 97	u64 count_transfer_polling;
 98	u64 count_transfer_irq;
 99	u64 count_transfer_irq_after_poll;
100
101	struct dentry *debugfs_dir;
102};
103
104#if defined(CONFIG_DEBUG_FS)
105static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
106				      const char *dname)
107{
108	char name[64];
109	struct dentry *dir;
110
111	/* get full name */
112	snprintf(name, sizeof(name), "spi-bcm2835aux-%s", dname);
113
114	/* the base directory */
115	dir = debugfs_create_dir(name, NULL);
116	bs->debugfs_dir = dir;
117
118	/* the counters */
119	debugfs_create_u64("count_transfer_polling", 0444, dir,
120			   &bs->count_transfer_polling);
121	debugfs_create_u64("count_transfer_irq", 0444, dir,
122			   &bs->count_transfer_irq);
123	debugfs_create_u64("count_transfer_irq_after_poll", 0444, dir,
124			   &bs->count_transfer_irq_after_poll);
125}
126
127static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
128{
129	debugfs_remove_recursive(bs->debugfs_dir);
130	bs->debugfs_dir = NULL;
131}
132#else
133static void bcm2835aux_debugfs_create(struct bcm2835aux_spi *bs,
134				      const char *dname)
135{
136}
137
138static void bcm2835aux_debugfs_remove(struct bcm2835aux_spi *bs)
139{
140}
141#endif /* CONFIG_DEBUG_FS */
142
143static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned int reg)
144{
145	return readl(bs->regs + reg);
146}
147
148static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned int reg,
149				 u32 val)
150{
151	writel(val, bs->regs + reg);
152}
153
154static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
155{
156	u32 data;
157	int count = min(bs->rx_len, 3);
158
159	data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
160	if (bs->rx_buf) {
161		switch (count) {
162		case 3:
163			*bs->rx_buf++ = (data >> 16) & 0xff;
164			fallthrough;
165		case 2:
166			*bs->rx_buf++ = (data >> 8) & 0xff;
167			fallthrough;
168		case 1:
169			*bs->rx_buf++ = (data >> 0) & 0xff;
170			/* fallthrough - no default */
171		}
172	}
173	bs->rx_len -= count;
174	bs->pending -= count;
175}
176
177static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
178{
179	u32 data;
180	u8 byte;
181	int count;
182	int i;
183
184	/* gather up to 3 bytes to write to the FIFO */
185	count = min(bs->tx_len, 3);
186	data = 0;
187	for (i = 0; i < count; i++) {
188		byte = bs->tx_buf ? *bs->tx_buf++ : 0;
189		data |= byte << (8 * (2 - i));
190	}
191
192	/* and set the variable bit-length */
193	data |= (count * 8) << 24;
194
195	/* and decrement length */
196	bs->tx_len -= count;
197	bs->pending += count;
198
199	/* write to the correct TX-register */
200	if (bs->tx_len)
201		bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
202	else
203		bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
204}
205
206static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
207{
208	/* disable spi clearing fifo and interrupts */
209	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
210	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
211		      BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
212}
213
214static void bcm2835aux_spi_transfer_helper(struct bcm2835aux_spi *bs)
215{
216	u32 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
217
218	/* check if we have data to read */
219	for (; bs->rx_len && (stat & BCM2835_AUX_SPI_STAT_RX_LVL);
220	     stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT))
221		bcm2835aux_rd_fifo(bs);
222
223	/* check if we have data to write */
224	while (bs->tx_len &&
225	       (bs->pending < 12) &&
226	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
227		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
228		bcm2835aux_wr_fifo(bs);
229	}
230}
231
232static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
233{
234	struct spi_controller *host = dev_id;
235	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
236
237	/* IRQ may be shared, so return if our interrupts are disabled */
238	if (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_CNTL1) &
239	      (BCM2835_AUX_SPI_CNTL1_TXEMPTY | BCM2835_AUX_SPI_CNTL1_IDLE)))
240		return IRQ_NONE;
241
242	/* do common fifo handling */
243	bcm2835aux_spi_transfer_helper(bs);
244
245	if (!bs->tx_len) {
246		/* disable tx fifo empty interrupt */
247		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
248			BCM2835_AUX_SPI_CNTL1_IDLE);
249	}
250
251	/* and if rx_len is 0 then disable interrupts and wake up completion */
252	if (!bs->rx_len) {
253		bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
254		spi_finalize_current_transfer(host);
255	}
256
257	return IRQ_HANDLED;
258}
259
260static int __bcm2835aux_spi_transfer_one_irq(struct spi_controller *host,
261					     struct spi_device *spi,
262					     struct spi_transfer *tfr)
263{
264	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
265
266	/* enable interrupts */
267	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
268		BCM2835_AUX_SPI_CNTL1_TXEMPTY |
269		BCM2835_AUX_SPI_CNTL1_IDLE);
270
271	/* and wait for finish... */
272	return 1;
273}
274
275static int bcm2835aux_spi_transfer_one_irq(struct spi_controller *host,
276					   struct spi_device *spi,
277					   struct spi_transfer *tfr)
278{
279	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
280
281	/* update statistics */
282	bs->count_transfer_irq++;
283
284	/* fill in registers and fifos before enabling interrupts */
285	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
286	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
287
288	/* fill in tx fifo with data before enabling interrupts */
289	while ((bs->tx_len) &&
290	       (bs->pending < 12) &&
291	       (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
292		  BCM2835_AUX_SPI_STAT_TX_FULL))) {
293		bcm2835aux_wr_fifo(bs);
294	}
295
296	/* now run the interrupt mode */
297	return __bcm2835aux_spi_transfer_one_irq(host, spi, tfr);
298}
299
300static int bcm2835aux_spi_transfer_one_poll(struct spi_controller *host,
301					    struct spi_device *spi,
302					struct spi_transfer *tfr)
303{
304	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
305	unsigned long timeout;
306
307	/* update statistics */
308	bs->count_transfer_polling++;
309
310	/* configure spi */
311	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
312	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
313
314	/* set the timeout to at least 2 jiffies */
315	timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
316
317	/* loop until finished the transfer */
318	while (bs->rx_len) {
319
320		/* do common fifo handling */
321		bcm2835aux_spi_transfer_helper(bs);
322
323		/* there is still data pending to read check the timeout */
324		if (bs->rx_len && time_after(jiffies, timeout)) {
325			dev_dbg_ratelimited(&spi->dev,
326					    "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
327					    jiffies - timeout,
328					    bs->tx_len, bs->rx_len);
329			/* forward to interrupt handler */
330			bs->count_transfer_irq_after_poll++;
331			return __bcm2835aux_spi_transfer_one_irq(host,
332							       spi, tfr);
333		}
334	}
335
336	/* and return without waiting for completion */
337	return 0;
338}
339
340static int bcm2835aux_spi_transfer_one(struct spi_controller *host,
341				       struct spi_device *spi,
342				       struct spi_transfer *tfr)
343{
344	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
345	unsigned long spi_hz, clk_hz, speed;
346	unsigned long hz_per_byte, byte_limit;
347
348	/* calculate the registers to handle
349	 *
350	 * note that we use the variable data mode, which
351	 * is not optimal for longer transfers as we waste registers
352	 * resulting (potentially) in more interrupts when transferring
353	 * more than 12 bytes
354	 */
355
356	/* set clock */
357	spi_hz = tfr->speed_hz;
358	clk_hz = clk_get_rate(bs->clk);
359
360	if (spi_hz >= clk_hz / 2) {
361		speed = 0;
362	} else if (spi_hz) {
363		speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
364		if (speed >  BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
365			speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
366	} else { /* the slowest we can go */
367		speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
368	}
369	/* mask out old speed from previous spi_transfer */
370	bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
371	/* set the new speed */
372	bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
373
374	tfr->effective_speed_hz = clk_hz / (2 * (speed + 1));
375
376	/* set transmit buffers and length */
377	bs->tx_buf = tfr->tx_buf;
378	bs->rx_buf = tfr->rx_buf;
379	bs->tx_len = tfr->len;
380	bs->rx_len = tfr->len;
381	bs->pending = 0;
382
383	/* Calculate the estimated time in us the transfer runs.  Note that
384	 * there are 2 idle clocks cycles after each chunk getting
385	 * transferred - in our case the chunk size is 3 bytes, so we
386	 * approximate this by 9 cycles/byte.  This is used to find the number
387	 * of Hz per byte per polling limit.  E.g., we can transfer 1 byte in
388	 * 30 µs per 300,000 Hz of bus clock.
389	 */
390	hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
391	byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
392
393	/* run in polling mode for short transfers */
394	if (tfr->len < byte_limit)
395		return bcm2835aux_spi_transfer_one_poll(host, spi, tfr);
396
397	/* run in interrupt mode for all others */
398	return bcm2835aux_spi_transfer_one_irq(host, spi, tfr);
399}
400
401static int bcm2835aux_spi_prepare_message(struct spi_controller *host,
402					  struct spi_message *msg)
403{
404	struct spi_device *spi = msg->spi;
405	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
406
407	bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
408		      BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
409		      BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
410	bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
411
412	/* handle all the modes */
413	if (spi->mode & SPI_CPOL) {
414		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
415		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
416	} else {
417		bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
418	}
419	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
420	bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
421
422	return 0;
423}
424
425static int bcm2835aux_spi_unprepare_message(struct spi_controller *host,
426					    struct spi_message *msg)
427{
428	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
429
430	bcm2835aux_spi_reset_hw(bs);
431
432	return 0;
433}
434
435static void bcm2835aux_spi_handle_err(struct spi_controller *host,
436				      struct spi_message *msg)
437{
438	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
439
440	bcm2835aux_spi_reset_hw(bs);
441}
442
443static int bcm2835aux_spi_setup(struct spi_device *spi)
444{
445	/* sanity check for native cs */
446	if (spi->mode & SPI_NO_CS)
447		return 0;
448
449	if (spi_get_csgpiod(spi, 0))
450		return 0;
451
452	/* for dt-backwards compatibility: only support native on CS0
453	 * known things not supported with broken native CS:
454	 * * multiple chip-selects: cs0-cs2 are all
455	 *     simultaniously asserted whenever there is a transfer
456	 *     this even includes SPI_NO_CS
457	 * * SPI_CS_HIGH: cs are always asserted low
458	 * * cs_change: cs is deasserted after each spi_transfer
459	 * * cs_delay_usec: cs is always deasserted one SCK cycle
460	 *     after the last transfer
461	 * probably more...
462	 */
463	dev_warn(&spi->dev,
464		 "Native CS is not supported - please configure cs-gpio in device-tree\n");
465
466	if (spi_get_chipselect(spi, 0) == 0)
467		return 0;
468
469	dev_warn(&spi->dev, "Native CS is not working for cs > 0\n");
470
471	return -EINVAL;
472}
473
474static int bcm2835aux_spi_probe(struct platform_device *pdev)
475{
476	struct spi_controller *host;
477	struct bcm2835aux_spi *bs;
478	unsigned long clk_hz;
479	int err;
480
481	host = devm_spi_alloc_host(&pdev->dev, sizeof(*bs));
482	if (!host)
483		return -ENOMEM;
484
485	platform_set_drvdata(pdev, host);
486	host->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
487	host->bits_per_word_mask = SPI_BPW_MASK(8);
488	/* even though the driver never officially supported native CS
489	 * allow a single native CS for legacy DT support purposes when
490	 * no cs-gpio is configured.
491	 * Known limitations for native cs are:
492	 * * multiple chip-selects: cs0-cs2 are all simultaniously asserted
493	 *     whenever there is a transfer -  this even includes SPI_NO_CS
494	 * * SPI_CS_HIGH: is ignores - cs are always asserted low
495	 * * cs_change: cs is deasserted after each spi_transfer
496	 * * cs_delay_usec: cs is always deasserted one SCK cycle after
497	 *     a spi_transfer
498	 */
499	host->num_chipselect = 1;
500	host->setup = bcm2835aux_spi_setup;
501	host->transfer_one = bcm2835aux_spi_transfer_one;
502	host->handle_err = bcm2835aux_spi_handle_err;
503	host->prepare_message = bcm2835aux_spi_prepare_message;
504	host->unprepare_message = bcm2835aux_spi_unprepare_message;
505	host->dev.of_node = pdev->dev.of_node;
506	host->use_gpio_descriptors = true;
507
508	bs = spi_controller_get_devdata(host);
509
510	/* the main area */
511	bs->regs = devm_platform_ioremap_resource(pdev, 0);
512	if (IS_ERR(bs->regs))
513		return PTR_ERR(bs->regs);
514
515	bs->clk = devm_clk_get_enabled(&pdev->dev, NULL);
516	if (IS_ERR(bs->clk)) {
517		err = PTR_ERR(bs->clk);
518		dev_err(&pdev->dev, "could not get clk: %d\n", err);
519		return err;
520	}
521
522	bs->irq = platform_get_irq(pdev, 0);
523	if (bs->irq < 0)
524		return bs->irq;
 
 
 
 
 
 
 
525
526	/* just checking if the clock returns a sane value */
527	clk_hz = clk_get_rate(bs->clk);
528	if (!clk_hz) {
529		dev_err(&pdev->dev, "clock returns 0 Hz\n");
530		return -ENODEV;
 
531	}
532
533	/* reset SPI-HW block */
534	bcm2835aux_spi_reset_hw(bs);
535
536	err = devm_request_irq(&pdev->dev, bs->irq,
537			       bcm2835aux_spi_interrupt,
538			       IRQF_SHARED,
539			       dev_name(&pdev->dev), host);
540	if (err) {
541		dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
542		return err;
543	}
544
545	err = spi_register_controller(host);
546	if (err) {
547		dev_err(&pdev->dev, "could not register SPI host: %d\n", err);
548		return err;
549	}
550
551	bcm2835aux_debugfs_create(bs, dev_name(&pdev->dev));
552
553	return 0;
 
 
 
 
554}
555
556static void bcm2835aux_spi_remove(struct platform_device *pdev)
557{
558	struct spi_controller *host = platform_get_drvdata(pdev);
559	struct bcm2835aux_spi *bs = spi_controller_get_devdata(host);
560
561	bcm2835aux_debugfs_remove(bs);
562
563	spi_unregister_controller(host);
564
565	bcm2835aux_spi_reset_hw(bs);
 
 
 
 
 
566}
567
568static const struct of_device_id bcm2835aux_spi_match[] = {
569	{ .compatible = "brcm,bcm2835-aux-spi", },
570	{}
571};
572MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
573
574static struct platform_driver bcm2835aux_spi_driver = {
575	.driver		= {
576		.name		= "spi-bcm2835aux",
577		.of_match_table	= bcm2835aux_spi_match,
578	},
579	.probe		= bcm2835aux_spi_probe,
580	.remove_new	= bcm2835aux_spi_remove,
581};
582module_platform_driver(bcm2835aux_spi_driver);
583
584MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
585MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
586MODULE_LICENSE("GPL");