Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP OF helpers
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/cpu.h>
14#include <linux/errno.h>
15#include <linux/device.h>
16#include <linux/of_device.h>
17#include <linux/pm_domain.h>
18#include <linux/slab.h>
19#include <linux/export.h>
20#include <linux/energy_model.h>
21
22#include "opp.h"
23
24/*
25 * Returns opp descriptor node for a device node, caller must
26 * do of_node_put().
27 */
28static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
29 int index)
30{
31 /* "operating-points-v2" can be an array for power domain providers */
32 return of_parse_phandle(np, "operating-points-v2", index);
33}
34
35/* Returns opp descriptor node for a device, caller must do of_node_put() */
36struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
37{
38 return _opp_of_get_opp_desc_node(dev->of_node, 0);
39}
40EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
41
42struct opp_table *_managed_opp(struct device *dev, int index)
43{
44 struct opp_table *opp_table, *managed_table = NULL;
45 struct device_node *np;
46
47 np = _opp_of_get_opp_desc_node(dev->of_node, index);
48 if (!np)
49 return NULL;
50
51 list_for_each_entry(opp_table, &opp_tables, node) {
52 if (opp_table->np == np) {
53 /*
54 * Multiple devices can point to the same OPP table and
55 * so will have same node-pointer, np.
56 *
57 * But the OPPs will be considered as shared only if the
58 * OPP table contains a "opp-shared" property.
59 */
60 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
61 _get_opp_table_kref(opp_table);
62 managed_table = opp_table;
63 }
64
65 break;
66 }
67 }
68
69 of_node_put(np);
70
71 return managed_table;
72}
73
74/* The caller must call dev_pm_opp_put() after the OPP is used */
75static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
76 struct device_node *opp_np)
77{
78 struct dev_pm_opp *opp;
79
80 mutex_lock(&opp_table->lock);
81
82 list_for_each_entry(opp, &opp_table->opp_list, node) {
83 if (opp->np == opp_np) {
84 dev_pm_opp_get(opp);
85 mutex_unlock(&opp_table->lock);
86 return opp;
87 }
88 }
89
90 mutex_unlock(&opp_table->lock);
91
92 return NULL;
93}
94
95static struct device_node *of_parse_required_opp(struct device_node *np,
96 int index)
97{
98 return of_parse_phandle(np, "required-opps", index);
99}
100
101/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
102static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
103{
104 struct opp_table *opp_table;
105 struct device_node *opp_table_np;
106
107 opp_table_np = of_get_parent(opp_np);
108 if (!opp_table_np)
109 goto err;
110
111 /* It is safe to put the node now as all we need now is its address */
112 of_node_put(opp_table_np);
113
114 mutex_lock(&opp_table_lock);
115 list_for_each_entry(opp_table, &opp_tables, node) {
116 if (opp_table_np == opp_table->np) {
117 _get_opp_table_kref(opp_table);
118 mutex_unlock(&opp_table_lock);
119 return opp_table;
120 }
121 }
122 mutex_unlock(&opp_table_lock);
123
124err:
125 return ERR_PTR(-ENODEV);
126}
127
128/* Free resources previously acquired by _opp_table_alloc_required_tables() */
129static void _opp_table_free_required_tables(struct opp_table *opp_table)
130{
131 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
132 int i;
133
134 if (!required_opp_tables)
135 return;
136
137 for (i = 0; i < opp_table->required_opp_count; i++) {
138 if (IS_ERR_OR_NULL(required_opp_tables[i]))
139 continue;
140
141 dev_pm_opp_put_opp_table(required_opp_tables[i]);
142 }
143
144 kfree(required_opp_tables);
145
146 opp_table->required_opp_count = 0;
147 opp_table->required_opp_tables = NULL;
148 list_del(&opp_table->lazy);
149}
150
151/*
152 * Populate all devices and opp tables which are part of "required-opps" list.
153 * Checking only the first OPP node should be enough.
154 */
155static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
156 struct device *dev,
157 struct device_node *opp_np)
158{
159 struct opp_table **required_opp_tables;
160 struct device_node *required_np, *np;
161 bool lazy = false;
162 int count, i;
163
164 /* Traversing the first OPP node is all we need */
165 np = of_get_next_available_child(opp_np, NULL);
166 if (!np) {
167 dev_warn(dev, "Empty OPP table\n");
168
169 return;
170 }
171
172 count = of_count_phandle_with_args(np, "required-opps", NULL);
173 if (count <= 0)
174 goto put_np;
175
176 required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
177 GFP_KERNEL);
178 if (!required_opp_tables)
179 goto put_np;
180
181 opp_table->required_opp_tables = required_opp_tables;
182 opp_table->required_opp_count = count;
183
184 for (i = 0; i < count; i++) {
185 required_np = of_parse_required_opp(np, i);
186 if (!required_np)
187 goto free_required_tables;
188
189 required_opp_tables[i] = _find_table_of_opp_np(required_np);
190 of_node_put(required_np);
191
192 if (IS_ERR(required_opp_tables[i]))
193 lazy = true;
194 }
195
196 /* Let's do the linking later on */
197 if (lazy)
198 list_add(&opp_table->lazy, &lazy_opp_tables);
199
200 goto put_np;
201
202free_required_tables:
203 _opp_table_free_required_tables(opp_table);
204put_np:
205 of_node_put(np);
206}
207
208void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
209 int index)
210{
211 struct device_node *np, *opp_np;
212 u32 val;
213
214 /*
215 * Only required for backward compatibility with v1 bindings, but isn't
216 * harmful for other cases. And so we do it unconditionally.
217 */
218 np = of_node_get(dev->of_node);
219 if (!np)
220 return;
221
222 if (!of_property_read_u32(np, "clock-latency", &val))
223 opp_table->clock_latency_ns_max = val;
224 of_property_read_u32(np, "voltage-tolerance",
225 &opp_table->voltage_tolerance_v1);
226
227 if (of_find_property(np, "#power-domain-cells", NULL))
228 opp_table->is_genpd = true;
229
230 /* Get OPP table node */
231 opp_np = _opp_of_get_opp_desc_node(np, index);
232 of_node_put(np);
233
234 if (!opp_np)
235 return;
236
237 if (of_property_read_bool(opp_np, "opp-shared"))
238 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
239 else
240 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
241
242 opp_table->np = opp_np;
243
244 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
245}
246
247void _of_clear_opp_table(struct opp_table *opp_table)
248{
249 _opp_table_free_required_tables(opp_table);
250 of_node_put(opp_table->np);
251}
252
253/*
254 * Release all resources previously acquired with a call to
255 * _of_opp_alloc_required_opps().
256 */
257static void _of_opp_free_required_opps(struct opp_table *opp_table,
258 struct dev_pm_opp *opp)
259{
260 struct dev_pm_opp **required_opps = opp->required_opps;
261 int i;
262
263 if (!required_opps)
264 return;
265
266 for (i = 0; i < opp_table->required_opp_count; i++) {
267 if (!required_opps[i])
268 continue;
269
270 /* Put the reference back */
271 dev_pm_opp_put(required_opps[i]);
272 }
273
274 opp->required_opps = NULL;
275 kfree(required_opps);
276}
277
278void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
279{
280 _of_opp_free_required_opps(opp_table, opp);
281 of_node_put(opp->np);
282}
283
284/* Populate all required OPPs which are part of "required-opps" list */
285static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
286 struct dev_pm_opp *opp)
287{
288 struct dev_pm_opp **required_opps;
289 struct opp_table *required_table;
290 struct device_node *np;
291 int i, ret, count = opp_table->required_opp_count;
292
293 if (!count)
294 return 0;
295
296 required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
297 if (!required_opps)
298 return -ENOMEM;
299
300 opp->required_opps = required_opps;
301
302 for (i = 0; i < count; i++) {
303 required_table = opp_table->required_opp_tables[i];
304
305 /* Required table not added yet, we will link later */
306 if (IS_ERR_OR_NULL(required_table))
307 continue;
308
309 np = of_parse_required_opp(opp->np, i);
310 if (unlikely(!np)) {
311 ret = -ENODEV;
312 goto free_required_opps;
313 }
314
315 required_opps[i] = _find_opp_of_np(required_table, np);
316 of_node_put(np);
317
318 if (!required_opps[i]) {
319 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
320 __func__, opp->np, i);
321 ret = -ENODEV;
322 goto free_required_opps;
323 }
324 }
325
326 return 0;
327
328free_required_opps:
329 _of_opp_free_required_opps(opp_table, opp);
330
331 return ret;
332}
333
334/* Link required OPPs for an individual OPP */
335static int lazy_link_required_opps(struct opp_table *opp_table,
336 struct opp_table *new_table, int index)
337{
338 struct device_node *required_np;
339 struct dev_pm_opp *opp;
340
341 list_for_each_entry(opp, &opp_table->opp_list, node) {
342 required_np = of_parse_required_opp(opp->np, index);
343 if (unlikely(!required_np))
344 return -ENODEV;
345
346 opp->required_opps[index] = _find_opp_of_np(new_table, required_np);
347 of_node_put(required_np);
348
349 if (!opp->required_opps[index]) {
350 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
351 __func__, opp->np, index);
352 return -ENODEV;
353 }
354 }
355
356 return 0;
357}
358
359/* Link required OPPs for all OPPs of the newly added OPP table */
360static void lazy_link_required_opp_table(struct opp_table *new_table)
361{
362 struct opp_table *opp_table, *temp, **required_opp_tables;
363 struct device_node *required_np, *opp_np, *required_table_np;
364 struct dev_pm_opp *opp;
365 int i, ret;
366
367 mutex_lock(&opp_table_lock);
368
369 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
370 bool lazy = false;
371
372 /* opp_np can't be invalid here */
373 opp_np = of_get_next_available_child(opp_table->np, NULL);
374
375 for (i = 0; i < opp_table->required_opp_count; i++) {
376 required_opp_tables = opp_table->required_opp_tables;
377
378 /* Required opp-table is already parsed */
379 if (!IS_ERR(required_opp_tables[i]))
380 continue;
381
382 /* required_np can't be invalid here */
383 required_np = of_parse_required_opp(opp_np, i);
384 required_table_np = of_get_parent(required_np);
385
386 of_node_put(required_table_np);
387 of_node_put(required_np);
388
389 /*
390 * Newly added table isn't the required opp-table for
391 * opp_table.
392 */
393 if (required_table_np != new_table->np) {
394 lazy = true;
395 continue;
396 }
397
398 required_opp_tables[i] = new_table;
399 _get_opp_table_kref(new_table);
400
401 /* Link OPPs now */
402 ret = lazy_link_required_opps(opp_table, new_table, i);
403 if (ret) {
404 /* The OPPs will be marked unusable */
405 lazy = false;
406 break;
407 }
408 }
409
410 of_node_put(opp_np);
411
412 /* All required opp-tables found, remove from lazy list */
413 if (!lazy) {
414 list_del_init(&opp_table->lazy);
415
416 list_for_each_entry(opp, &opp_table->opp_list, node)
417 _required_opps_available(opp, opp_table->required_opp_count);
418 }
419 }
420
421 mutex_unlock(&opp_table_lock);
422}
423
424static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
425{
426 struct device_node *np, *opp_np;
427 struct property *prop;
428
429 if (!opp_table) {
430 np = of_node_get(dev->of_node);
431 if (!np)
432 return -ENODEV;
433
434 opp_np = _opp_of_get_opp_desc_node(np, 0);
435 of_node_put(np);
436 } else {
437 opp_np = of_node_get(opp_table->np);
438 }
439
440 /* Lets not fail in case we are parsing opp-v1 bindings */
441 if (!opp_np)
442 return 0;
443
444 /* Checking only first OPP is sufficient */
445 np = of_get_next_available_child(opp_np, NULL);
446 of_node_put(opp_np);
447 if (!np) {
448 dev_err(dev, "OPP table empty\n");
449 return -EINVAL;
450 }
451
452 prop = of_find_property(np, "opp-peak-kBps", NULL);
453 of_node_put(np);
454
455 if (!prop || !prop->length)
456 return 0;
457
458 return 1;
459}
460
461int dev_pm_opp_of_find_icc_paths(struct device *dev,
462 struct opp_table *opp_table)
463{
464 struct device_node *np;
465 int ret, i, count, num_paths;
466 struct icc_path **paths;
467
468 ret = _bandwidth_supported(dev, opp_table);
469 if (ret == -EINVAL)
470 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
471 else if (ret <= 0)
472 return ret;
473
474 ret = 0;
475
476 np = of_node_get(dev->of_node);
477 if (!np)
478 return 0;
479
480 count = of_count_phandle_with_args(np, "interconnects",
481 "#interconnect-cells");
482 of_node_put(np);
483 if (count < 0)
484 return 0;
485
486 /* two phandles when #interconnect-cells = <1> */
487 if (count % 2) {
488 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
489 return -EINVAL;
490 }
491
492 num_paths = count / 2;
493 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
494 if (!paths)
495 return -ENOMEM;
496
497 for (i = 0; i < num_paths; i++) {
498 paths[i] = of_icc_get_by_index(dev, i);
499 if (IS_ERR(paths[i])) {
500 ret = PTR_ERR(paths[i]);
501 if (ret != -EPROBE_DEFER) {
502 dev_err(dev, "%s: Unable to get path%d: %d\n",
503 __func__, i, ret);
504 }
505 goto err;
506 }
507 }
508
509 if (opp_table) {
510 opp_table->paths = paths;
511 opp_table->path_count = num_paths;
512 return 0;
513 }
514
515err:
516 while (i--)
517 icc_put(paths[i]);
518
519 kfree(paths);
520
521 return ret;
522}
523EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
524
525static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
526 struct device_node *np)
527{
528 unsigned int levels = opp_table->supported_hw_count;
529 int count, versions, ret, i, j;
530 u32 val;
531
532 if (!opp_table->supported_hw) {
533 /*
534 * In the case that no supported_hw has been set by the
535 * platform but there is an opp-supported-hw value set for
536 * an OPP then the OPP should not be enabled as there is
537 * no way to see if the hardware supports it.
538 */
539 if (of_find_property(np, "opp-supported-hw", NULL))
540 return false;
541 else
542 return true;
543 }
544
545 count = of_property_count_u32_elems(np, "opp-supported-hw");
546 if (count <= 0 || count % levels) {
547 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
548 __func__, count);
549 return false;
550 }
551
552 versions = count / levels;
553
554 /* All levels in at least one of the versions should match */
555 for (i = 0; i < versions; i++) {
556 bool supported = true;
557
558 for (j = 0; j < levels; j++) {
559 ret = of_property_read_u32_index(np, "opp-supported-hw",
560 i * levels + j, &val);
561 if (ret) {
562 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
563 __func__, i * levels + j, ret);
564 return false;
565 }
566
567 /* Check if the level is supported */
568 if (!(val & opp_table->supported_hw[j])) {
569 supported = false;
570 break;
571 }
572 }
573
574 if (supported)
575 return true;
576 }
577
578 return false;
579}
580
581static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
582 struct opp_table *opp_table,
583 const char *prop_type, bool *triplet)
584{
585 struct property *prop = NULL;
586 char name[NAME_MAX];
587 int count, ret;
588 u32 *out;
589
590 /* Search for "opp-<prop_type>-<name>" */
591 if (opp_table->prop_name) {
592 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
593 opp_table->prop_name);
594 prop = of_find_property(opp->np, name, NULL);
595 }
596
597 if (!prop) {
598 /* Search for "opp-<prop_type>" */
599 snprintf(name, sizeof(name), "opp-%s", prop_type);
600 prop = of_find_property(opp->np, name, NULL);
601 if (!prop)
602 return NULL;
603 }
604
605 count = of_property_count_u32_elems(opp->np, name);
606 if (count < 0) {
607 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
608 count);
609 return ERR_PTR(count);
610 }
611
612 /*
613 * Initialize regulator_count, if regulator information isn't provided
614 * by the platform. Now that one of the properties is available, fix the
615 * regulator_count to 1.
616 */
617 if (unlikely(opp_table->regulator_count == -1))
618 opp_table->regulator_count = 1;
619
620 if (count != opp_table->regulator_count &&
621 (!triplet || count != opp_table->regulator_count * 3)) {
622 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
623 __func__, prop_type, count, opp_table->regulator_count);
624 return ERR_PTR(-EINVAL);
625 }
626
627 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
628 if (!out)
629 return ERR_PTR(-EINVAL);
630
631 ret = of_property_read_u32_array(opp->np, name, out, count);
632 if (ret) {
633 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
634 kfree(out);
635 return ERR_PTR(-EINVAL);
636 }
637
638 if (triplet)
639 *triplet = count != opp_table->regulator_count;
640
641 return out;
642}
643
644static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
645 struct opp_table *opp_table, bool *triplet)
646{
647 u32 *microvolt;
648
649 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
650 if (IS_ERR(microvolt))
651 return microvolt;
652
653 if (!microvolt) {
654 /*
655 * Missing property isn't a problem, but an invalid
656 * entry is. This property isn't optional if regulator
657 * information is provided. Check only for the first OPP, as
658 * regulator_count may get initialized after that to a valid
659 * value.
660 */
661 if (list_empty(&opp_table->opp_list) &&
662 opp_table->regulator_count > 0) {
663 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
664 __func__);
665 return ERR_PTR(-EINVAL);
666 }
667 }
668
669 return microvolt;
670}
671
672static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
673 struct opp_table *opp_table)
674{
675 u32 *microvolt, *microamp, *microwatt;
676 int ret = 0, i, j;
677 bool triplet;
678
679 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
680 if (IS_ERR(microvolt))
681 return PTR_ERR(microvolt);
682
683 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
684 if (IS_ERR(microamp)) {
685 ret = PTR_ERR(microamp);
686 goto free_microvolt;
687 }
688
689 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
690 if (IS_ERR(microwatt)) {
691 ret = PTR_ERR(microwatt);
692 goto free_microamp;
693 }
694
695 /*
696 * Initialize regulator_count if it is uninitialized and no properties
697 * are found.
698 */
699 if (unlikely(opp_table->regulator_count == -1)) {
700 opp_table->regulator_count = 0;
701 return 0;
702 }
703
704 for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
705 if (microvolt) {
706 opp->supplies[i].u_volt = microvolt[j++];
707
708 if (triplet) {
709 opp->supplies[i].u_volt_min = microvolt[j++];
710 opp->supplies[i].u_volt_max = microvolt[j++];
711 } else {
712 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
713 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
714 }
715 }
716
717 if (microamp)
718 opp->supplies[i].u_amp = microamp[i];
719
720 if (microwatt)
721 opp->supplies[i].u_watt = microwatt[i];
722 }
723
724 kfree(microwatt);
725free_microamp:
726 kfree(microamp);
727free_microvolt:
728 kfree(microvolt);
729
730 return ret;
731}
732
733/**
734 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
735 * entries
736 * @dev: device pointer used to lookup OPP table.
737 *
738 * Free OPPs created using static entries present in DT.
739 */
740void dev_pm_opp_of_remove_table(struct device *dev)
741{
742 dev_pm_opp_remove_table(dev);
743}
744EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
745
746static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
747 struct device_node *np)
748{
749 struct property *prop;
750 int i, count, ret;
751 u64 *rates;
752
753 prop = of_find_property(np, "opp-hz", NULL);
754 if (!prop)
755 return -ENODEV;
756
757 count = prop->length / sizeof(u64);
758 if (opp_table->clk_count != count) {
759 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
760 __func__, count, opp_table->clk_count);
761 return -EINVAL;
762 }
763
764 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
765 if (!rates)
766 return -ENOMEM;
767
768 ret = of_property_read_u64_array(np, "opp-hz", rates, count);
769 if (ret) {
770 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
771 } else {
772 /*
773 * Rate is defined as an unsigned long in clk API, and so
774 * casting explicitly to its type. Must be fixed once rate is 64
775 * bit guaranteed in clk API.
776 */
777 for (i = 0; i < count; i++) {
778 new_opp->rates[i] = (unsigned long)rates[i];
779
780 /* This will happen for frequencies > 4.29 GHz */
781 WARN_ON(new_opp->rates[i] != rates[i]);
782 }
783 }
784
785 kfree(rates);
786
787 return ret;
788}
789
790static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
791 struct device_node *np, bool peak)
792{
793 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
794 struct property *prop;
795 int i, count, ret;
796 u32 *bw;
797
798 prop = of_find_property(np, name, NULL);
799 if (!prop)
800 return -ENODEV;
801
802 count = prop->length / sizeof(u32);
803 if (opp_table->path_count != count) {
804 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
805 __func__, name, count, opp_table->path_count);
806 return -EINVAL;
807 }
808
809 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
810 if (!bw)
811 return -ENOMEM;
812
813 ret = of_property_read_u32_array(np, name, bw, count);
814 if (ret) {
815 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
816 goto out;
817 }
818
819 for (i = 0; i < count; i++) {
820 if (peak)
821 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
822 else
823 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
824 }
825
826out:
827 kfree(bw);
828 return ret;
829}
830
831static int _read_opp_key(struct dev_pm_opp *new_opp,
832 struct opp_table *opp_table, struct device_node *np)
833{
834 bool found = false;
835 int ret;
836
837 ret = _read_rate(new_opp, opp_table, np);
838 if (!ret)
839 found = true;
840 else if (ret != -ENODEV)
841 return ret;
842
843 /*
844 * Bandwidth consists of peak and average (optional) values:
845 * opp-peak-kBps = <path1_value path2_value>;
846 * opp-avg-kBps = <path1_value path2_value>;
847 */
848 ret = _read_bw(new_opp, opp_table, np, true);
849 if (!ret) {
850 found = true;
851 ret = _read_bw(new_opp, opp_table, np, false);
852 }
853
854 /* The properties were found but we failed to parse them */
855 if (ret && ret != -ENODEV)
856 return ret;
857
858 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
859 found = true;
860
861 if (found)
862 return 0;
863
864 return ret;
865}
866
867/**
868 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
869 * @opp_table: OPP table
870 * @dev: device for which we do this operation
871 * @np: device node
872 *
873 * This function adds an opp definition to the opp table and returns status. The
874 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
875 * removed by dev_pm_opp_remove.
876 *
877 * Return:
878 * Valid OPP pointer:
879 * On success
880 * NULL:
881 * Duplicate OPPs (both freq and volt are same) and opp->available
882 * OR if the OPP is not supported by hardware.
883 * ERR_PTR(-EEXIST):
884 * Freq are same and volt are different OR
885 * Duplicate OPPs (both freq and volt are same) and !opp->available
886 * ERR_PTR(-ENOMEM):
887 * Memory allocation failure
888 * ERR_PTR(-EINVAL):
889 * Failed parsing the OPP node
890 */
891static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
892 struct device *dev, struct device_node *np)
893{
894 struct dev_pm_opp *new_opp;
895 u32 val;
896 int ret;
897
898 new_opp = _opp_allocate(opp_table);
899 if (!new_opp)
900 return ERR_PTR(-ENOMEM);
901
902 ret = _read_opp_key(new_opp, opp_table, np);
903 if (ret < 0) {
904 dev_err(dev, "%s: opp key field not found\n", __func__);
905 goto free_opp;
906 }
907
908 /* Check if the OPP supports hardware's hierarchy of versions or not */
909 if (!_opp_is_supported(dev, opp_table, np)) {
910 dev_dbg(dev, "OPP not supported by hardware: %s\n",
911 of_node_full_name(np));
912 goto free_opp;
913 }
914
915 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
916
917 new_opp->np = of_node_get(np);
918 new_opp->dynamic = false;
919 new_opp->available = true;
920
921 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
922 if (ret)
923 goto free_opp;
924
925 if (!of_property_read_u32(np, "clock-latency-ns", &val))
926 new_opp->clock_latency_ns = val;
927
928 ret = opp_parse_supplies(new_opp, dev, opp_table);
929 if (ret)
930 goto free_required_opps;
931
932 if (opp_table->is_genpd)
933 new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
934
935 ret = _opp_add(dev, new_opp, opp_table);
936 if (ret) {
937 /* Don't return error for duplicate OPPs */
938 if (ret == -EBUSY)
939 ret = 0;
940 goto free_required_opps;
941 }
942
943 /* OPP to select on device suspend */
944 if (of_property_read_bool(np, "opp-suspend")) {
945 if (opp_table->suspend_opp) {
946 /* Pick the OPP with higher rate/bw/level as suspend OPP */
947 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
948 opp_table->suspend_opp->suspend = false;
949 new_opp->suspend = true;
950 opp_table->suspend_opp = new_opp;
951 }
952 } else {
953 new_opp->suspend = true;
954 opp_table->suspend_opp = new_opp;
955 }
956 }
957
958 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
959 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
960
961 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
962 __func__, new_opp->turbo, new_opp->rates[0],
963 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
964 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
965 new_opp->level);
966
967 /*
968 * Notify the changes in the availability of the operable
969 * frequency/voltage list.
970 */
971 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
972 return new_opp;
973
974free_required_opps:
975 _of_opp_free_required_opps(opp_table, new_opp);
976free_opp:
977 _opp_free(new_opp);
978
979 return ret ? ERR_PTR(ret) : NULL;
980}
981
982/* Initializes OPP tables based on new bindings */
983static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
984{
985 struct device_node *np;
986 int ret, count = 0;
987 struct dev_pm_opp *opp;
988
989 /* OPP table is already initialized for the device */
990 mutex_lock(&opp_table->lock);
991 if (opp_table->parsed_static_opps) {
992 opp_table->parsed_static_opps++;
993 mutex_unlock(&opp_table->lock);
994 return 0;
995 }
996
997 opp_table->parsed_static_opps = 1;
998 mutex_unlock(&opp_table->lock);
999
1000 /* We have opp-table node now, iterate over it and add OPPs */
1001 for_each_available_child_of_node(opp_table->np, np) {
1002 opp = _opp_add_static_v2(opp_table, dev, np);
1003 if (IS_ERR(opp)) {
1004 ret = PTR_ERR(opp);
1005 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1006 ret);
1007 of_node_put(np);
1008 goto remove_static_opp;
1009 } else if (opp) {
1010 count++;
1011 }
1012 }
1013
1014 /* There should be one or more OPPs defined */
1015 if (!count) {
1016 dev_err(dev, "%s: no supported OPPs", __func__);
1017 ret = -ENOENT;
1018 goto remove_static_opp;
1019 }
1020
1021 list_for_each_entry(opp, &opp_table->opp_list, node) {
1022 /* Any non-zero performance state would enable the feature */
1023 if (opp->pstate) {
1024 opp_table->genpd_performance_state = true;
1025 break;
1026 }
1027 }
1028
1029 lazy_link_required_opp_table(opp_table);
1030
1031 return 0;
1032
1033remove_static_opp:
1034 _opp_remove_all_static(opp_table);
1035
1036 return ret;
1037}
1038
1039/* Initializes OPP tables based on old-deprecated bindings */
1040static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1041{
1042 const struct property *prop;
1043 const __be32 *val;
1044 int nr, ret = 0;
1045
1046 mutex_lock(&opp_table->lock);
1047 if (opp_table->parsed_static_opps) {
1048 opp_table->parsed_static_opps++;
1049 mutex_unlock(&opp_table->lock);
1050 return 0;
1051 }
1052
1053 opp_table->parsed_static_opps = 1;
1054 mutex_unlock(&opp_table->lock);
1055
1056 prop = of_find_property(dev->of_node, "operating-points", NULL);
1057 if (!prop) {
1058 ret = -ENODEV;
1059 goto remove_static_opp;
1060 }
1061 if (!prop->value) {
1062 ret = -ENODATA;
1063 goto remove_static_opp;
1064 }
1065
1066 /*
1067 * Each OPP is a set of tuples consisting of frequency and
1068 * voltage like <freq-kHz vol-uV>.
1069 */
1070 nr = prop->length / sizeof(u32);
1071 if (nr % 2) {
1072 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1073 ret = -EINVAL;
1074 goto remove_static_opp;
1075 }
1076
1077 val = prop->value;
1078 while (nr) {
1079 unsigned long freq = be32_to_cpup(val++) * 1000;
1080 unsigned long volt = be32_to_cpup(val++);
1081
1082 ret = _opp_add_v1(opp_table, dev, freq, volt, false);
1083 if (ret) {
1084 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1085 __func__, freq, ret);
1086 goto remove_static_opp;
1087 }
1088 nr -= 2;
1089 }
1090
1091 return 0;
1092
1093remove_static_opp:
1094 _opp_remove_all_static(opp_table);
1095
1096 return ret;
1097}
1098
1099static int _of_add_table_indexed(struct device *dev, int index)
1100{
1101 struct opp_table *opp_table;
1102 int ret, count;
1103
1104 if (index) {
1105 /*
1106 * If only one phandle is present, then the same OPP table
1107 * applies for all index requests.
1108 */
1109 count = of_count_phandle_with_args(dev->of_node,
1110 "operating-points-v2", NULL);
1111 if (count == 1)
1112 index = 0;
1113 }
1114
1115 opp_table = _add_opp_table_indexed(dev, index, true);
1116 if (IS_ERR(opp_table))
1117 return PTR_ERR(opp_table);
1118
1119 /*
1120 * OPPs have two version of bindings now. Also try the old (v1)
1121 * bindings for backward compatibility with older dtbs.
1122 */
1123 if (opp_table->np)
1124 ret = _of_add_opp_table_v2(dev, opp_table);
1125 else
1126 ret = _of_add_opp_table_v1(dev, opp_table);
1127
1128 if (ret)
1129 dev_pm_opp_put_opp_table(opp_table);
1130
1131 return ret;
1132}
1133
1134static void devm_pm_opp_of_table_release(void *data)
1135{
1136 dev_pm_opp_of_remove_table(data);
1137}
1138
1139static int _devm_of_add_table_indexed(struct device *dev, int index)
1140{
1141 int ret;
1142
1143 ret = _of_add_table_indexed(dev, index);
1144 if (ret)
1145 return ret;
1146
1147 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1148}
1149
1150/**
1151 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1152 * @dev: device pointer used to lookup OPP table.
1153 *
1154 * Register the initial OPP table with the OPP library for given device.
1155 *
1156 * The opp_table structure will be freed after the device is destroyed.
1157 *
1158 * Return:
1159 * 0 On success OR
1160 * Duplicate OPPs (both freq and volt are same) and opp->available
1161 * -EEXIST Freq are same and volt are different OR
1162 * Duplicate OPPs (both freq and volt are same) and !opp->available
1163 * -ENOMEM Memory allocation failure
1164 * -ENODEV when 'operating-points' property is not found or is invalid data
1165 * in device node.
1166 * -ENODATA when empty 'operating-points' property is found
1167 * -EINVAL when invalid entries are found in opp-v2 table
1168 */
1169int devm_pm_opp_of_add_table(struct device *dev)
1170{
1171 return _devm_of_add_table_indexed(dev, 0);
1172}
1173EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1174
1175/**
1176 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1177 * @dev: device pointer used to lookup OPP table.
1178 *
1179 * Register the initial OPP table with the OPP library for given device.
1180 *
1181 * Return:
1182 * 0 On success OR
1183 * Duplicate OPPs (both freq and volt are same) and opp->available
1184 * -EEXIST Freq are same and volt are different OR
1185 * Duplicate OPPs (both freq and volt are same) and !opp->available
1186 * -ENOMEM Memory allocation failure
1187 * -ENODEV when 'operating-points' property is not found or is invalid data
1188 * in device node.
1189 * -ENODATA when empty 'operating-points' property is found
1190 * -EINVAL when invalid entries are found in opp-v2 table
1191 */
1192int dev_pm_opp_of_add_table(struct device *dev)
1193{
1194 return _of_add_table_indexed(dev, 0);
1195}
1196EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1197
1198/**
1199 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1200 * @dev: device pointer used to lookup OPP table.
1201 * @index: Index number.
1202 *
1203 * Register the initial OPP table with the OPP library for given device only
1204 * using the "operating-points-v2" property.
1205 *
1206 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1207 */
1208int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1209{
1210 return _of_add_table_indexed(dev, index);
1211}
1212EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1213
1214/**
1215 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1216 * @dev: device pointer used to lookup OPP table.
1217 * @index: Index number.
1218 *
1219 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1220 */
1221int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1222{
1223 return _devm_of_add_table_indexed(dev, index);
1224}
1225EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1226
1227/* CPU device specific helpers */
1228
1229/**
1230 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1231 * @cpumask: cpumask for which OPP table needs to be removed
1232 *
1233 * This removes the OPP tables for CPUs present in the @cpumask.
1234 * This should be used only to remove static entries created from DT.
1235 */
1236void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1237{
1238 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1239}
1240EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1241
1242/**
1243 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1244 * @cpumask: cpumask for which OPP table needs to be added.
1245 *
1246 * This adds the OPP tables for CPUs present in the @cpumask.
1247 */
1248int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1249{
1250 struct device *cpu_dev;
1251 int cpu, ret;
1252
1253 if (WARN_ON(cpumask_empty(cpumask)))
1254 return -ENODEV;
1255
1256 for_each_cpu(cpu, cpumask) {
1257 cpu_dev = get_cpu_device(cpu);
1258 if (!cpu_dev) {
1259 pr_err("%s: failed to get cpu%d device\n", __func__,
1260 cpu);
1261 ret = -ENODEV;
1262 goto remove_table;
1263 }
1264
1265 ret = dev_pm_opp_of_add_table(cpu_dev);
1266 if (ret) {
1267 /*
1268 * OPP may get registered dynamically, don't print error
1269 * message here.
1270 */
1271 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1272 __func__, cpu, ret);
1273
1274 goto remove_table;
1275 }
1276 }
1277
1278 return 0;
1279
1280remove_table:
1281 /* Free all other OPPs */
1282 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1283
1284 return ret;
1285}
1286EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1287
1288/*
1289 * Works only for OPP v2 bindings.
1290 *
1291 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1292 */
1293/**
1294 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1295 * @cpu_dev using operating-points-v2
1296 * bindings.
1297 *
1298 * @cpu_dev: CPU device for which we do this operation
1299 * @cpumask: cpumask to update with information of sharing CPUs
1300 *
1301 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1302 *
1303 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1304 */
1305int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1306 struct cpumask *cpumask)
1307{
1308 struct device_node *np, *tmp_np, *cpu_np;
1309 int cpu, ret = 0;
1310
1311 /* Get OPP descriptor node */
1312 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1313 if (!np) {
1314 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1315 return -ENOENT;
1316 }
1317
1318 cpumask_set_cpu(cpu_dev->id, cpumask);
1319
1320 /* OPPs are shared ? */
1321 if (!of_property_read_bool(np, "opp-shared"))
1322 goto put_cpu_node;
1323
1324 for_each_possible_cpu(cpu) {
1325 if (cpu == cpu_dev->id)
1326 continue;
1327
1328 cpu_np = of_cpu_device_node_get(cpu);
1329 if (!cpu_np) {
1330 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1331 __func__, cpu);
1332 ret = -ENOENT;
1333 goto put_cpu_node;
1334 }
1335
1336 /* Get OPP descriptor node */
1337 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1338 of_node_put(cpu_np);
1339 if (!tmp_np) {
1340 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1341 ret = -ENOENT;
1342 goto put_cpu_node;
1343 }
1344
1345 /* CPUs are sharing opp node */
1346 if (np == tmp_np)
1347 cpumask_set_cpu(cpu, cpumask);
1348
1349 of_node_put(tmp_np);
1350 }
1351
1352put_cpu_node:
1353 of_node_put(np);
1354 return ret;
1355}
1356EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1357
1358/**
1359 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1360 * @np: Node that contains the "required-opps" property.
1361 * @index: Index of the phandle to parse.
1362 *
1363 * Returns the performance state of the OPP pointed out by the "required-opps"
1364 * property at @index in @np.
1365 *
1366 * Return: Zero or positive performance state on success, otherwise negative
1367 * value on errors.
1368 */
1369int of_get_required_opp_performance_state(struct device_node *np, int index)
1370{
1371 struct dev_pm_opp *opp;
1372 struct device_node *required_np;
1373 struct opp_table *opp_table;
1374 int pstate = -EINVAL;
1375
1376 required_np = of_parse_required_opp(np, index);
1377 if (!required_np)
1378 return -ENODEV;
1379
1380 opp_table = _find_table_of_opp_np(required_np);
1381 if (IS_ERR(opp_table)) {
1382 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1383 __func__, np, PTR_ERR(opp_table));
1384 goto put_required_np;
1385 }
1386
1387 opp = _find_opp_of_np(opp_table, required_np);
1388 if (opp) {
1389 pstate = opp->pstate;
1390 dev_pm_opp_put(opp);
1391 }
1392
1393 dev_pm_opp_put_opp_table(opp_table);
1394
1395put_required_np:
1396 of_node_put(required_np);
1397
1398 return pstate;
1399}
1400EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1401
1402/**
1403 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1404 * @opp: opp for which DT node has to be returned for
1405 *
1406 * Return: DT node corresponding to the opp, else 0 on success.
1407 *
1408 * The caller needs to put the node with of_node_put() after using it.
1409 */
1410struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1411{
1412 if (IS_ERR_OR_NULL(opp)) {
1413 pr_err("%s: Invalid parameters\n", __func__);
1414 return NULL;
1415 }
1416
1417 return of_node_get(opp->np);
1418}
1419EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1420
1421/*
1422 * Callback function provided to the Energy Model framework upon registration.
1423 * It provides the power used by @dev at @kHz if it is the frequency of an
1424 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1425 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1426 * frequency and @uW to the associated power.
1427 *
1428 * Returns 0 on success or a proper -EINVAL value in case of error.
1429 */
1430static int __maybe_unused
1431_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1432{
1433 struct dev_pm_opp *opp;
1434 unsigned long opp_freq, opp_power;
1435
1436 /* Find the right frequency and related OPP */
1437 opp_freq = *kHz * 1000;
1438 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1439 if (IS_ERR(opp))
1440 return -EINVAL;
1441
1442 opp_power = dev_pm_opp_get_power(opp);
1443 dev_pm_opp_put(opp);
1444 if (!opp_power)
1445 return -EINVAL;
1446
1447 *kHz = opp_freq / 1000;
1448 *uW = opp_power;
1449
1450 return 0;
1451}
1452
1453/*
1454 * Callback function provided to the Energy Model framework upon registration.
1455 * This computes the power estimated by @dev at @kHz if it is the frequency
1456 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1457 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1458 * frequency and @uW to the associated power. The power is estimated as
1459 * P = C * V^2 * f with C being the device's capacitance and V and f
1460 * respectively the voltage and frequency of the OPP.
1461 *
1462 * Returns -EINVAL if the power calculation failed because of missing
1463 * parameters, 0 otherwise.
1464 */
1465static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1466 unsigned long *kHz)
1467{
1468 struct dev_pm_opp *opp;
1469 struct device_node *np;
1470 unsigned long mV, Hz;
1471 u32 cap;
1472 u64 tmp;
1473 int ret;
1474
1475 np = of_node_get(dev->of_node);
1476 if (!np)
1477 return -EINVAL;
1478
1479 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1480 of_node_put(np);
1481 if (ret)
1482 return -EINVAL;
1483
1484 Hz = *kHz * 1000;
1485 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1486 if (IS_ERR(opp))
1487 return -EINVAL;
1488
1489 mV = dev_pm_opp_get_voltage(opp) / 1000;
1490 dev_pm_opp_put(opp);
1491 if (!mV)
1492 return -EINVAL;
1493
1494 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1495 /* Provide power in micro-Watts */
1496 do_div(tmp, 1000000);
1497
1498 *uW = (unsigned long)tmp;
1499 *kHz = Hz / 1000;
1500
1501 return 0;
1502}
1503
1504static bool _of_has_opp_microwatt_property(struct device *dev)
1505{
1506 unsigned long power, freq = 0;
1507 struct dev_pm_opp *opp;
1508
1509 /* Check if at least one OPP has needed property */
1510 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1511 if (IS_ERR(opp))
1512 return false;
1513
1514 power = dev_pm_opp_get_power(opp);
1515 dev_pm_opp_put(opp);
1516 if (!power)
1517 return false;
1518
1519 return true;
1520}
1521
1522/**
1523 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1524 * @dev : Device for which an Energy Model has to be registered
1525 * @cpus : CPUs for which an Energy Model has to be registered. For
1526 * other type of devices it should be set to NULL.
1527 *
1528 * This checks whether the "dynamic-power-coefficient" devicetree property has
1529 * been specified, and tries to register an Energy Model with it if it has.
1530 * Having this property means the voltages are known for OPPs and the EM
1531 * might be calculated.
1532 */
1533int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1534{
1535 struct em_data_callback em_cb;
1536 struct device_node *np;
1537 int ret, nr_opp;
1538 u32 cap;
1539
1540 if (IS_ERR_OR_NULL(dev)) {
1541 ret = -EINVAL;
1542 goto failed;
1543 }
1544
1545 nr_opp = dev_pm_opp_get_opp_count(dev);
1546 if (nr_opp <= 0) {
1547 ret = -EINVAL;
1548 goto failed;
1549 }
1550
1551 /* First, try to find more precised Energy Model in DT */
1552 if (_of_has_opp_microwatt_property(dev)) {
1553 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1554 goto register_em;
1555 }
1556
1557 np = of_node_get(dev->of_node);
1558 if (!np) {
1559 ret = -EINVAL;
1560 goto failed;
1561 }
1562
1563 /*
1564 * Register an EM only if the 'dynamic-power-coefficient' property is
1565 * set in devicetree. It is assumed the voltage values are known if that
1566 * property is set since it is useless otherwise. If voltages are not
1567 * known, just let the EM registration fail with an error to alert the
1568 * user about the inconsistent configuration.
1569 */
1570 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1571 of_node_put(np);
1572 if (ret || !cap) {
1573 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1574 ret = -EINVAL;
1575 goto failed;
1576 }
1577
1578 EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1579
1580register_em:
1581 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1582 if (ret)
1583 goto failed;
1584
1585 return 0;
1586
1587failed:
1588 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1589 return ret;
1590}
1591EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP OF helpers
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/cpu.h>
14#include <linux/errno.h>
15#include <linux/device.h>
16#include <linux/of.h>
17#include <linux/pm_domain.h>
18#include <linux/slab.h>
19#include <linux/export.h>
20#include <linux/energy_model.h>
21
22#include "opp.h"
23
24/* OPP tables with uninitialized required OPPs, protected by opp_table_lock */
25static LIST_HEAD(lazy_opp_tables);
26
27/*
28 * Returns opp descriptor node for a device node, caller must
29 * do of_node_put().
30 */
31static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
32 int index)
33{
34 /* "operating-points-v2" can be an array for power domain providers */
35 return of_parse_phandle(np, "operating-points-v2", index);
36}
37
38/* Returns opp descriptor node for a device, caller must do of_node_put() */
39struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
40{
41 return _opp_of_get_opp_desc_node(dev->of_node, 0);
42}
43EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
44
45struct opp_table *_managed_opp(struct device *dev, int index)
46{
47 struct opp_table *opp_table, *managed_table = NULL;
48 struct device_node *np;
49
50 np = _opp_of_get_opp_desc_node(dev->of_node, index);
51 if (!np)
52 return NULL;
53
54 list_for_each_entry(opp_table, &opp_tables, node) {
55 if (opp_table->np == np) {
56 /*
57 * Multiple devices can point to the same OPP table and
58 * so will have same node-pointer, np.
59 *
60 * But the OPPs will be considered as shared only if the
61 * OPP table contains a "opp-shared" property.
62 */
63 if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
64 _get_opp_table_kref(opp_table);
65 managed_table = opp_table;
66 }
67
68 break;
69 }
70 }
71
72 of_node_put(np);
73
74 return managed_table;
75}
76
77/* The caller must call dev_pm_opp_put() after the OPP is used */
78static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
79 struct device_node *opp_np)
80{
81 struct dev_pm_opp *opp;
82
83 mutex_lock(&opp_table->lock);
84
85 list_for_each_entry(opp, &opp_table->opp_list, node) {
86 if (opp->np == opp_np) {
87 dev_pm_opp_get(opp);
88 mutex_unlock(&opp_table->lock);
89 return opp;
90 }
91 }
92
93 mutex_unlock(&opp_table->lock);
94
95 return NULL;
96}
97
98static struct device_node *of_parse_required_opp(struct device_node *np,
99 int index)
100{
101 return of_parse_phandle(np, "required-opps", index);
102}
103
104/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
105static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
106{
107 struct opp_table *opp_table;
108 struct device_node *opp_table_np;
109
110 opp_table_np = of_get_parent(opp_np);
111 if (!opp_table_np)
112 goto err;
113
114 /* It is safe to put the node now as all we need now is its address */
115 of_node_put(opp_table_np);
116
117 mutex_lock(&opp_table_lock);
118 list_for_each_entry(opp_table, &opp_tables, node) {
119 if (opp_table_np == opp_table->np) {
120 _get_opp_table_kref(opp_table);
121 mutex_unlock(&opp_table_lock);
122 return opp_table;
123 }
124 }
125 mutex_unlock(&opp_table_lock);
126
127err:
128 return ERR_PTR(-ENODEV);
129}
130
131/* Free resources previously acquired by _opp_table_alloc_required_tables() */
132static void _opp_table_free_required_tables(struct opp_table *opp_table)
133{
134 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
135 int i;
136
137 if (!required_opp_tables)
138 return;
139
140 for (i = 0; i < opp_table->required_opp_count; i++) {
141 if (IS_ERR_OR_NULL(required_opp_tables[i]))
142 continue;
143
144 dev_pm_opp_put_opp_table(required_opp_tables[i]);
145 }
146
147 kfree(required_opp_tables);
148
149 opp_table->required_opp_count = 0;
150 opp_table->required_opp_tables = NULL;
151
152 mutex_lock(&opp_table_lock);
153 list_del(&opp_table->lazy);
154 mutex_unlock(&opp_table_lock);
155}
156
157/*
158 * Populate all devices and opp tables which are part of "required-opps" list.
159 * Checking only the first OPP node should be enough.
160 */
161static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
162 struct device *dev,
163 struct device_node *opp_np)
164{
165 struct opp_table **required_opp_tables;
166 struct device_node *required_np, *np;
167 bool lazy = false;
168 int count, i, size;
169
170 /* Traversing the first OPP node is all we need */
171 np = of_get_next_available_child(opp_np, NULL);
172 if (!np) {
173 dev_warn(dev, "Empty OPP table\n");
174
175 return;
176 }
177
178 count = of_count_phandle_with_args(np, "required-opps", NULL);
179 if (count <= 0)
180 goto put_np;
181
182 size = sizeof(*required_opp_tables) + sizeof(*opp_table->required_devs);
183 required_opp_tables = kcalloc(count, size, GFP_KERNEL);
184 if (!required_opp_tables)
185 goto put_np;
186
187 opp_table->required_opp_tables = required_opp_tables;
188 opp_table->required_devs = (void *)(required_opp_tables + count);
189 opp_table->required_opp_count = count;
190
191 for (i = 0; i < count; i++) {
192 required_np = of_parse_required_opp(np, i);
193 if (!required_np)
194 goto free_required_tables;
195
196 required_opp_tables[i] = _find_table_of_opp_np(required_np);
197 of_node_put(required_np);
198
199 if (IS_ERR(required_opp_tables[i]))
200 lazy = true;
201 }
202
203 /* Let's do the linking later on */
204 if (lazy) {
205 /*
206 * The OPP table is not held while allocating the table, take it
207 * now to avoid corruption to the lazy_opp_tables list.
208 */
209 mutex_lock(&opp_table_lock);
210 list_add(&opp_table->lazy, &lazy_opp_tables);
211 mutex_unlock(&opp_table_lock);
212 }
213
214 goto put_np;
215
216free_required_tables:
217 _opp_table_free_required_tables(opp_table);
218put_np:
219 of_node_put(np);
220}
221
222void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
223 int index)
224{
225 struct device_node *np, *opp_np;
226 u32 val;
227
228 /*
229 * Only required for backward compatibility with v1 bindings, but isn't
230 * harmful for other cases. And so we do it unconditionally.
231 */
232 np = of_node_get(dev->of_node);
233 if (!np)
234 return;
235
236 if (!of_property_read_u32(np, "clock-latency", &val))
237 opp_table->clock_latency_ns_max = val;
238 of_property_read_u32(np, "voltage-tolerance",
239 &opp_table->voltage_tolerance_v1);
240
241 if (of_property_present(np, "#power-domain-cells"))
242 opp_table->is_genpd = true;
243
244 /* Get OPP table node */
245 opp_np = _opp_of_get_opp_desc_node(np, index);
246 of_node_put(np);
247
248 if (!opp_np)
249 return;
250
251 if (of_property_read_bool(opp_np, "opp-shared"))
252 opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
253 else
254 opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
255
256 opp_table->np = opp_np;
257
258 _opp_table_alloc_required_tables(opp_table, dev, opp_np);
259}
260
261void _of_clear_opp_table(struct opp_table *opp_table)
262{
263 _opp_table_free_required_tables(opp_table);
264 of_node_put(opp_table->np);
265}
266
267/*
268 * Release all resources previously acquired with a call to
269 * _of_opp_alloc_required_opps().
270 */
271static void _of_opp_free_required_opps(struct opp_table *opp_table,
272 struct dev_pm_opp *opp)
273{
274 struct dev_pm_opp **required_opps = opp->required_opps;
275 int i;
276
277 if (!required_opps)
278 return;
279
280 for (i = 0; i < opp_table->required_opp_count; i++) {
281 if (!required_opps[i])
282 continue;
283
284 /* Put the reference back */
285 dev_pm_opp_put(required_opps[i]);
286 }
287
288 opp->required_opps = NULL;
289 kfree(required_opps);
290}
291
292void _of_clear_opp(struct opp_table *opp_table, struct dev_pm_opp *opp)
293{
294 _of_opp_free_required_opps(opp_table, opp);
295 of_node_put(opp->np);
296}
297
298static int _link_required_opps(struct dev_pm_opp *opp, struct opp_table *opp_table,
299 struct opp_table *required_table, int index)
300{
301 struct device_node *np;
302
303 np = of_parse_required_opp(opp->np, index);
304 if (unlikely(!np))
305 return -ENODEV;
306
307 opp->required_opps[index] = _find_opp_of_np(required_table, np);
308 of_node_put(np);
309
310 if (!opp->required_opps[index]) {
311 pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
312 __func__, opp->np, index);
313 return -ENODEV;
314 }
315
316 /*
317 * There are two genpd (as required-opp) cases that we need to handle,
318 * devices with a single genpd and ones with multiple genpds.
319 *
320 * The single genpd case requires special handling as we need to use the
321 * same `dev` structure (instead of a virtual one provided by genpd
322 * core) for setting the performance state.
323 *
324 * It doesn't make sense for a device's DT entry to have both
325 * "opp-level" and single "required-opps" entry pointing to a genpd's
326 * OPP, as that would make the OPP core call
327 * dev_pm_domain_set_performance_state() for two different values for
328 * the same device structure. Lets treat single genpd configuration as a
329 * case where the OPP's level is directly available without required-opp
330 * link in the DT.
331 *
332 * Just update the `level` with the right value, which
333 * dev_pm_opp_set_opp() will take care of in the normal path itself.
334 *
335 * There is another case though, where a genpd's OPP table has
336 * required-opps set to a parent genpd. The OPP core expects the user to
337 * set the respective required `struct device` pointer via
338 * dev_pm_opp_set_config().
339 */
340 if (required_table->is_genpd && opp_table->required_opp_count == 1 &&
341 !opp_table->required_devs[0]) {
342 /* Genpd core takes care of propagation to parent genpd */
343 if (!opp_table->is_genpd) {
344 if (!WARN_ON(opp->level != OPP_LEVEL_UNSET))
345 opp->level = opp->required_opps[0]->level;
346 }
347 }
348
349 return 0;
350}
351
352/* Populate all required OPPs which are part of "required-opps" list */
353static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
354 struct dev_pm_opp *opp)
355{
356 struct opp_table *required_table;
357 int i, ret, count = opp_table->required_opp_count;
358
359 if (!count)
360 return 0;
361
362 opp->required_opps = kcalloc(count, sizeof(*opp->required_opps), GFP_KERNEL);
363 if (!opp->required_opps)
364 return -ENOMEM;
365
366 for (i = 0; i < count; i++) {
367 required_table = opp_table->required_opp_tables[i];
368
369 /* Required table not added yet, we will link later */
370 if (IS_ERR_OR_NULL(required_table))
371 continue;
372
373 ret = _link_required_opps(opp, opp_table, required_table, i);
374 if (ret)
375 goto free_required_opps;
376 }
377
378 return 0;
379
380free_required_opps:
381 _of_opp_free_required_opps(opp_table, opp);
382
383 return ret;
384}
385
386/* Link required OPPs for an individual OPP */
387static int lazy_link_required_opps(struct opp_table *opp_table,
388 struct opp_table *new_table, int index)
389{
390 struct dev_pm_opp *opp;
391 int ret;
392
393 list_for_each_entry(opp, &opp_table->opp_list, node) {
394 ret = _link_required_opps(opp, opp_table, new_table, index);
395 if (ret)
396 return ret;
397 }
398
399 return 0;
400}
401
402/* Link required OPPs for all OPPs of the newly added OPP table */
403static void lazy_link_required_opp_table(struct opp_table *new_table)
404{
405 struct opp_table *opp_table, *temp, **required_opp_tables;
406 struct device_node *required_np, *opp_np, *required_table_np;
407 struct dev_pm_opp *opp;
408 int i, ret;
409
410 mutex_lock(&opp_table_lock);
411
412 list_for_each_entry_safe(opp_table, temp, &lazy_opp_tables, lazy) {
413 bool lazy = false;
414
415 /* opp_np can't be invalid here */
416 opp_np = of_get_next_available_child(opp_table->np, NULL);
417
418 for (i = 0; i < opp_table->required_opp_count; i++) {
419 required_opp_tables = opp_table->required_opp_tables;
420
421 /* Required opp-table is already parsed */
422 if (!IS_ERR(required_opp_tables[i]))
423 continue;
424
425 /* required_np can't be invalid here */
426 required_np = of_parse_required_opp(opp_np, i);
427 required_table_np = of_get_parent(required_np);
428
429 of_node_put(required_table_np);
430 of_node_put(required_np);
431
432 /*
433 * Newly added table isn't the required opp-table for
434 * opp_table.
435 */
436 if (required_table_np != new_table->np) {
437 lazy = true;
438 continue;
439 }
440
441 required_opp_tables[i] = new_table;
442 _get_opp_table_kref(new_table);
443
444 /* Link OPPs now */
445 ret = lazy_link_required_opps(opp_table, new_table, i);
446 if (ret) {
447 /* The OPPs will be marked unusable */
448 lazy = false;
449 break;
450 }
451 }
452
453 of_node_put(opp_np);
454
455 /* All required opp-tables found, remove from lazy list */
456 if (!lazy) {
457 list_del_init(&opp_table->lazy);
458
459 list_for_each_entry(opp, &opp_table->opp_list, node)
460 _required_opps_available(opp, opp_table->required_opp_count);
461 }
462 }
463
464 mutex_unlock(&opp_table_lock);
465}
466
467static int _bandwidth_supported(struct device *dev, struct opp_table *opp_table)
468{
469 struct device_node *np, *opp_np;
470 struct property *prop;
471
472 if (!opp_table) {
473 np = of_node_get(dev->of_node);
474 if (!np)
475 return -ENODEV;
476
477 opp_np = _opp_of_get_opp_desc_node(np, 0);
478 of_node_put(np);
479 } else {
480 opp_np = of_node_get(opp_table->np);
481 }
482
483 /* Lets not fail in case we are parsing opp-v1 bindings */
484 if (!opp_np)
485 return 0;
486
487 /* Checking only first OPP is sufficient */
488 np = of_get_next_available_child(opp_np, NULL);
489 of_node_put(opp_np);
490 if (!np) {
491 dev_err(dev, "OPP table empty\n");
492 return -EINVAL;
493 }
494
495 prop = of_find_property(np, "opp-peak-kBps", NULL);
496 of_node_put(np);
497
498 if (!prop || !prop->length)
499 return 0;
500
501 return 1;
502}
503
504int dev_pm_opp_of_find_icc_paths(struct device *dev,
505 struct opp_table *opp_table)
506{
507 struct device_node *np;
508 int ret, i, count, num_paths;
509 struct icc_path **paths;
510
511 ret = _bandwidth_supported(dev, opp_table);
512 if (ret == -EINVAL)
513 return 0; /* Empty OPP table is a valid corner-case, let's not fail */
514 else if (ret <= 0)
515 return ret;
516
517 ret = 0;
518
519 np = of_node_get(dev->of_node);
520 if (!np)
521 return 0;
522
523 count = of_count_phandle_with_args(np, "interconnects",
524 "#interconnect-cells");
525 of_node_put(np);
526 if (count < 0)
527 return 0;
528
529 /* two phandles when #interconnect-cells = <1> */
530 if (count % 2) {
531 dev_err(dev, "%s: Invalid interconnects values\n", __func__);
532 return -EINVAL;
533 }
534
535 num_paths = count / 2;
536 paths = kcalloc(num_paths, sizeof(*paths), GFP_KERNEL);
537 if (!paths)
538 return -ENOMEM;
539
540 for (i = 0; i < num_paths; i++) {
541 paths[i] = of_icc_get_by_index(dev, i);
542 if (IS_ERR(paths[i])) {
543 ret = dev_err_probe(dev, PTR_ERR(paths[i]), "%s: Unable to get path%d\n", __func__, i);
544 goto err;
545 }
546 }
547
548 if (opp_table) {
549 opp_table->paths = paths;
550 opp_table->path_count = num_paths;
551 return 0;
552 }
553
554err:
555 while (i--)
556 icc_put(paths[i]);
557
558 kfree(paths);
559
560 return ret;
561}
562EXPORT_SYMBOL_GPL(dev_pm_opp_of_find_icc_paths);
563
564static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
565 struct device_node *np)
566{
567 unsigned int levels = opp_table->supported_hw_count;
568 int count, versions, ret, i, j;
569 u32 val;
570
571 if (!opp_table->supported_hw) {
572 /*
573 * In the case that no supported_hw has been set by the
574 * platform but there is an opp-supported-hw value set for
575 * an OPP then the OPP should not be enabled as there is
576 * no way to see if the hardware supports it.
577 */
578 if (of_property_present(np, "opp-supported-hw"))
579 return false;
580 else
581 return true;
582 }
583
584 count = of_property_count_u32_elems(np, "opp-supported-hw");
585 if (count <= 0 || count % levels) {
586 dev_err(dev, "%s: Invalid opp-supported-hw property (%d)\n",
587 __func__, count);
588 return false;
589 }
590
591 versions = count / levels;
592
593 /* All levels in at least one of the versions should match */
594 for (i = 0; i < versions; i++) {
595 bool supported = true;
596
597 for (j = 0; j < levels; j++) {
598 ret = of_property_read_u32_index(np, "opp-supported-hw",
599 i * levels + j, &val);
600 if (ret) {
601 dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
602 __func__, i * levels + j, ret);
603 return false;
604 }
605
606 /* Check if the level is supported */
607 if (!(val & opp_table->supported_hw[j])) {
608 supported = false;
609 break;
610 }
611 }
612
613 if (supported)
614 return true;
615 }
616
617 return false;
618}
619
620static u32 *_parse_named_prop(struct dev_pm_opp *opp, struct device *dev,
621 struct opp_table *opp_table,
622 const char *prop_type, bool *triplet)
623{
624 struct property *prop = NULL;
625 char name[NAME_MAX];
626 int count, ret;
627 u32 *out;
628
629 /* Search for "opp-<prop_type>-<name>" */
630 if (opp_table->prop_name) {
631 snprintf(name, sizeof(name), "opp-%s-%s", prop_type,
632 opp_table->prop_name);
633 prop = of_find_property(opp->np, name, NULL);
634 }
635
636 if (!prop) {
637 /* Search for "opp-<prop_type>" */
638 snprintf(name, sizeof(name), "opp-%s", prop_type);
639 prop = of_find_property(opp->np, name, NULL);
640 if (!prop)
641 return NULL;
642 }
643
644 count = of_property_count_u32_elems(opp->np, name);
645 if (count < 0) {
646 dev_err(dev, "%s: Invalid %s property (%d)\n", __func__, name,
647 count);
648 return ERR_PTR(count);
649 }
650
651 /*
652 * Initialize regulator_count, if regulator information isn't provided
653 * by the platform. Now that one of the properties is available, fix the
654 * regulator_count to 1.
655 */
656 if (unlikely(opp_table->regulator_count == -1))
657 opp_table->regulator_count = 1;
658
659 if (count != opp_table->regulator_count &&
660 (!triplet || count != opp_table->regulator_count * 3)) {
661 dev_err(dev, "%s: Invalid number of elements in %s property (%u) with supplies (%d)\n",
662 __func__, prop_type, count, opp_table->regulator_count);
663 return ERR_PTR(-EINVAL);
664 }
665
666 out = kmalloc_array(count, sizeof(*out), GFP_KERNEL);
667 if (!out)
668 return ERR_PTR(-EINVAL);
669
670 ret = of_property_read_u32_array(opp->np, name, out, count);
671 if (ret) {
672 dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
673 kfree(out);
674 return ERR_PTR(-EINVAL);
675 }
676
677 if (triplet)
678 *triplet = count != opp_table->regulator_count;
679
680 return out;
681}
682
683static u32 *opp_parse_microvolt(struct dev_pm_opp *opp, struct device *dev,
684 struct opp_table *opp_table, bool *triplet)
685{
686 u32 *microvolt;
687
688 microvolt = _parse_named_prop(opp, dev, opp_table, "microvolt", triplet);
689 if (IS_ERR(microvolt))
690 return microvolt;
691
692 if (!microvolt) {
693 /*
694 * Missing property isn't a problem, but an invalid
695 * entry is. This property isn't optional if regulator
696 * information is provided. Check only for the first OPP, as
697 * regulator_count may get initialized after that to a valid
698 * value.
699 */
700 if (list_empty(&opp_table->opp_list) &&
701 opp_table->regulator_count > 0) {
702 dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
703 __func__);
704 return ERR_PTR(-EINVAL);
705 }
706 }
707
708 return microvolt;
709}
710
711static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
712 struct opp_table *opp_table)
713{
714 u32 *microvolt, *microamp, *microwatt;
715 int ret = 0, i, j;
716 bool triplet;
717
718 microvolt = opp_parse_microvolt(opp, dev, opp_table, &triplet);
719 if (IS_ERR(microvolt))
720 return PTR_ERR(microvolt);
721
722 microamp = _parse_named_prop(opp, dev, opp_table, "microamp", NULL);
723 if (IS_ERR(microamp)) {
724 ret = PTR_ERR(microamp);
725 goto free_microvolt;
726 }
727
728 microwatt = _parse_named_prop(opp, dev, opp_table, "microwatt", NULL);
729 if (IS_ERR(microwatt)) {
730 ret = PTR_ERR(microwatt);
731 goto free_microamp;
732 }
733
734 /*
735 * Initialize regulator_count if it is uninitialized and no properties
736 * are found.
737 */
738 if (unlikely(opp_table->regulator_count == -1)) {
739 opp_table->regulator_count = 0;
740 return 0;
741 }
742
743 for (i = 0, j = 0; i < opp_table->regulator_count; i++) {
744 if (microvolt) {
745 opp->supplies[i].u_volt = microvolt[j++];
746
747 if (triplet) {
748 opp->supplies[i].u_volt_min = microvolt[j++];
749 opp->supplies[i].u_volt_max = microvolt[j++];
750 } else {
751 opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
752 opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
753 }
754 }
755
756 if (microamp)
757 opp->supplies[i].u_amp = microamp[i];
758
759 if (microwatt)
760 opp->supplies[i].u_watt = microwatt[i];
761 }
762
763 kfree(microwatt);
764free_microamp:
765 kfree(microamp);
766free_microvolt:
767 kfree(microvolt);
768
769 return ret;
770}
771
772/**
773 * dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
774 * entries
775 * @dev: device pointer used to lookup OPP table.
776 *
777 * Free OPPs created using static entries present in DT.
778 */
779void dev_pm_opp_of_remove_table(struct device *dev)
780{
781 dev_pm_opp_remove_table(dev);
782}
783EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
784
785static int _read_rate(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
786 struct device_node *np)
787{
788 struct property *prop;
789 int i, count, ret;
790 u64 *rates;
791
792 prop = of_find_property(np, "opp-hz", NULL);
793 if (!prop)
794 return -ENODEV;
795
796 count = prop->length / sizeof(u64);
797 if (opp_table->clk_count != count) {
798 pr_err("%s: Count mismatch between opp-hz and clk_count (%d %d)\n",
799 __func__, count, opp_table->clk_count);
800 return -EINVAL;
801 }
802
803 rates = kmalloc_array(count, sizeof(*rates), GFP_KERNEL);
804 if (!rates)
805 return -ENOMEM;
806
807 ret = of_property_read_u64_array(np, "opp-hz", rates, count);
808 if (ret) {
809 pr_err("%s: Error parsing opp-hz: %d\n", __func__, ret);
810 } else {
811 /*
812 * Rate is defined as an unsigned long in clk API, and so
813 * casting explicitly to its type. Must be fixed once rate is 64
814 * bit guaranteed in clk API.
815 */
816 for (i = 0; i < count; i++) {
817 new_opp->rates[i] = (unsigned long)rates[i];
818
819 /* This will happen for frequencies > 4.29 GHz */
820 WARN_ON(new_opp->rates[i] != rates[i]);
821 }
822 }
823
824 kfree(rates);
825
826 return ret;
827}
828
829static int _read_bw(struct dev_pm_opp *new_opp, struct opp_table *opp_table,
830 struct device_node *np, bool peak)
831{
832 const char *name = peak ? "opp-peak-kBps" : "opp-avg-kBps";
833 struct property *prop;
834 int i, count, ret;
835 u32 *bw;
836
837 prop = of_find_property(np, name, NULL);
838 if (!prop)
839 return -ENODEV;
840
841 count = prop->length / sizeof(u32);
842 if (opp_table->path_count != count) {
843 pr_err("%s: Mismatch between %s and paths (%d %d)\n",
844 __func__, name, count, opp_table->path_count);
845 return -EINVAL;
846 }
847
848 bw = kmalloc_array(count, sizeof(*bw), GFP_KERNEL);
849 if (!bw)
850 return -ENOMEM;
851
852 ret = of_property_read_u32_array(np, name, bw, count);
853 if (ret) {
854 pr_err("%s: Error parsing %s: %d\n", __func__, name, ret);
855 goto out;
856 }
857
858 for (i = 0; i < count; i++) {
859 if (peak)
860 new_opp->bandwidth[i].peak = kBps_to_icc(bw[i]);
861 else
862 new_opp->bandwidth[i].avg = kBps_to_icc(bw[i]);
863 }
864
865out:
866 kfree(bw);
867 return ret;
868}
869
870static int _read_opp_key(struct dev_pm_opp *new_opp,
871 struct opp_table *opp_table, struct device_node *np)
872{
873 bool found = false;
874 int ret;
875
876 ret = _read_rate(new_opp, opp_table, np);
877 if (!ret)
878 found = true;
879 else if (ret != -ENODEV)
880 return ret;
881
882 /*
883 * Bandwidth consists of peak and average (optional) values:
884 * opp-peak-kBps = <path1_value path2_value>;
885 * opp-avg-kBps = <path1_value path2_value>;
886 */
887 ret = _read_bw(new_opp, opp_table, np, true);
888 if (!ret) {
889 found = true;
890 ret = _read_bw(new_opp, opp_table, np, false);
891 }
892
893 /* The properties were found but we failed to parse them */
894 if (ret && ret != -ENODEV)
895 return ret;
896
897 if (!of_property_read_u32(np, "opp-level", &new_opp->level))
898 found = true;
899
900 if (found)
901 return 0;
902
903 return ret;
904}
905
906/**
907 * _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
908 * @opp_table: OPP table
909 * @dev: device for which we do this operation
910 * @np: device node
911 *
912 * This function adds an opp definition to the opp table and returns status. The
913 * opp can be controlled using dev_pm_opp_enable/disable functions and may be
914 * removed by dev_pm_opp_remove.
915 *
916 * Return:
917 * Valid OPP pointer:
918 * On success
919 * NULL:
920 * Duplicate OPPs (both freq and volt are same) and opp->available
921 * OR if the OPP is not supported by hardware.
922 * ERR_PTR(-EEXIST):
923 * Freq are same and volt are different OR
924 * Duplicate OPPs (both freq and volt are same) and !opp->available
925 * ERR_PTR(-ENOMEM):
926 * Memory allocation failure
927 * ERR_PTR(-EINVAL):
928 * Failed parsing the OPP node
929 */
930static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
931 struct device *dev, struct device_node *np)
932{
933 struct dev_pm_opp *new_opp;
934 u32 val;
935 int ret;
936
937 new_opp = _opp_allocate(opp_table);
938 if (!new_opp)
939 return ERR_PTR(-ENOMEM);
940
941 ret = _read_opp_key(new_opp, opp_table, np);
942 if (ret < 0) {
943 dev_err(dev, "%s: opp key field not found\n", __func__);
944 goto free_opp;
945 }
946
947 /* Check if the OPP supports hardware's hierarchy of versions or not */
948 if (!_opp_is_supported(dev, opp_table, np)) {
949 dev_dbg(dev, "OPP not supported by hardware: %s\n",
950 of_node_full_name(np));
951 goto free_opp;
952 }
953
954 new_opp->turbo = of_property_read_bool(np, "turbo-mode");
955
956 new_opp->np = of_node_get(np);
957 new_opp->dynamic = false;
958 new_opp->available = true;
959
960 ret = _of_opp_alloc_required_opps(opp_table, new_opp);
961 if (ret)
962 goto free_opp;
963
964 if (!of_property_read_u32(np, "clock-latency-ns", &val))
965 new_opp->clock_latency_ns = val;
966
967 ret = opp_parse_supplies(new_opp, dev, opp_table);
968 if (ret)
969 goto free_required_opps;
970
971 ret = _opp_add(dev, new_opp, opp_table);
972 if (ret) {
973 /* Don't return error for duplicate OPPs */
974 if (ret == -EBUSY)
975 ret = 0;
976 goto free_required_opps;
977 }
978
979 /* OPP to select on device suspend */
980 if (of_property_read_bool(np, "opp-suspend")) {
981 if (opp_table->suspend_opp) {
982 /* Pick the OPP with higher rate/bw/level as suspend OPP */
983 if (_opp_compare_key(opp_table, new_opp, opp_table->suspend_opp) == 1) {
984 opp_table->suspend_opp->suspend = false;
985 new_opp->suspend = true;
986 opp_table->suspend_opp = new_opp;
987 }
988 } else {
989 new_opp->suspend = true;
990 opp_table->suspend_opp = new_opp;
991 }
992 }
993
994 if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
995 opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
996
997 pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu level:%u\n",
998 __func__, new_opp->turbo, new_opp->rates[0],
999 new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
1000 new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns,
1001 new_opp->level);
1002
1003 /*
1004 * Notify the changes in the availability of the operable
1005 * frequency/voltage list.
1006 */
1007 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1008 return new_opp;
1009
1010free_required_opps:
1011 _of_opp_free_required_opps(opp_table, new_opp);
1012free_opp:
1013 _opp_free(new_opp);
1014
1015 return ret ? ERR_PTR(ret) : NULL;
1016}
1017
1018/* Initializes OPP tables based on new bindings */
1019static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
1020{
1021 struct device_node *np;
1022 int ret, count = 0;
1023 struct dev_pm_opp *opp;
1024
1025 /* OPP table is already initialized for the device */
1026 mutex_lock(&opp_table->lock);
1027 if (opp_table->parsed_static_opps) {
1028 opp_table->parsed_static_opps++;
1029 mutex_unlock(&opp_table->lock);
1030 return 0;
1031 }
1032
1033 opp_table->parsed_static_opps = 1;
1034 mutex_unlock(&opp_table->lock);
1035
1036 /* We have opp-table node now, iterate over it and add OPPs */
1037 for_each_available_child_of_node(opp_table->np, np) {
1038 opp = _opp_add_static_v2(opp_table, dev, np);
1039 if (IS_ERR(opp)) {
1040 ret = PTR_ERR(opp);
1041 dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
1042 ret);
1043 of_node_put(np);
1044 goto remove_static_opp;
1045 } else if (opp) {
1046 count++;
1047 }
1048 }
1049
1050 /* There should be one or more OPPs defined */
1051 if (!count) {
1052 dev_err(dev, "%s: no supported OPPs", __func__);
1053 ret = -ENOENT;
1054 goto remove_static_opp;
1055 }
1056
1057 lazy_link_required_opp_table(opp_table);
1058
1059 return 0;
1060
1061remove_static_opp:
1062 _opp_remove_all_static(opp_table);
1063
1064 return ret;
1065}
1066
1067/* Initializes OPP tables based on old-deprecated bindings */
1068static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
1069{
1070 const struct property *prop;
1071 const __be32 *val;
1072 int nr, ret = 0;
1073
1074 mutex_lock(&opp_table->lock);
1075 if (opp_table->parsed_static_opps) {
1076 opp_table->parsed_static_opps++;
1077 mutex_unlock(&opp_table->lock);
1078 return 0;
1079 }
1080
1081 opp_table->parsed_static_opps = 1;
1082 mutex_unlock(&opp_table->lock);
1083
1084 prop = of_find_property(dev->of_node, "operating-points", NULL);
1085 if (!prop) {
1086 ret = -ENODEV;
1087 goto remove_static_opp;
1088 }
1089 if (!prop->value) {
1090 ret = -ENODATA;
1091 goto remove_static_opp;
1092 }
1093
1094 /*
1095 * Each OPP is a set of tuples consisting of frequency and
1096 * voltage like <freq-kHz vol-uV>.
1097 */
1098 nr = prop->length / sizeof(u32);
1099 if (nr % 2) {
1100 dev_err(dev, "%s: Invalid OPP table\n", __func__);
1101 ret = -EINVAL;
1102 goto remove_static_opp;
1103 }
1104
1105 val = prop->value;
1106 while (nr) {
1107 unsigned long freq = be32_to_cpup(val++) * 1000;
1108 unsigned long volt = be32_to_cpup(val++);
1109 struct dev_pm_opp_data data = {
1110 .freq = freq,
1111 .u_volt = volt,
1112 };
1113
1114 ret = _opp_add_v1(opp_table, dev, &data, false);
1115 if (ret) {
1116 dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
1117 __func__, data.freq, ret);
1118 goto remove_static_opp;
1119 }
1120 nr -= 2;
1121 }
1122
1123 return 0;
1124
1125remove_static_opp:
1126 _opp_remove_all_static(opp_table);
1127
1128 return ret;
1129}
1130
1131static int _of_add_table_indexed(struct device *dev, int index)
1132{
1133 struct opp_table *opp_table;
1134 int ret, count;
1135
1136 if (index) {
1137 /*
1138 * If only one phandle is present, then the same OPP table
1139 * applies for all index requests.
1140 */
1141 count = of_count_phandle_with_args(dev->of_node,
1142 "operating-points-v2", NULL);
1143 if (count == 1)
1144 index = 0;
1145 }
1146
1147 opp_table = _add_opp_table_indexed(dev, index, true);
1148 if (IS_ERR(opp_table))
1149 return PTR_ERR(opp_table);
1150
1151 /*
1152 * OPPs have two version of bindings now. Also try the old (v1)
1153 * bindings for backward compatibility with older dtbs.
1154 */
1155 if (opp_table->np)
1156 ret = _of_add_opp_table_v2(dev, opp_table);
1157 else
1158 ret = _of_add_opp_table_v1(dev, opp_table);
1159
1160 if (ret)
1161 dev_pm_opp_put_opp_table(opp_table);
1162
1163 return ret;
1164}
1165
1166static void devm_pm_opp_of_table_release(void *data)
1167{
1168 dev_pm_opp_of_remove_table(data);
1169}
1170
1171static int _devm_of_add_table_indexed(struct device *dev, int index)
1172{
1173 int ret;
1174
1175 ret = _of_add_table_indexed(dev, index);
1176 if (ret)
1177 return ret;
1178
1179 return devm_add_action_or_reset(dev, devm_pm_opp_of_table_release, dev);
1180}
1181
1182/**
1183 * devm_pm_opp_of_add_table() - Initialize opp table from device tree
1184 * @dev: device pointer used to lookup OPP table.
1185 *
1186 * Register the initial OPP table with the OPP library for given device.
1187 *
1188 * The opp_table structure will be freed after the device is destroyed.
1189 *
1190 * Return:
1191 * 0 On success OR
1192 * Duplicate OPPs (both freq and volt are same) and opp->available
1193 * -EEXIST Freq are same and volt are different OR
1194 * Duplicate OPPs (both freq and volt are same) and !opp->available
1195 * -ENOMEM Memory allocation failure
1196 * -ENODEV when 'operating-points' property is not found or is invalid data
1197 * in device node.
1198 * -ENODATA when empty 'operating-points' property is found
1199 * -EINVAL when invalid entries are found in opp-v2 table
1200 */
1201int devm_pm_opp_of_add_table(struct device *dev)
1202{
1203 return _devm_of_add_table_indexed(dev, 0);
1204}
1205EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table);
1206
1207/**
1208 * dev_pm_opp_of_add_table() - Initialize opp table from device tree
1209 * @dev: device pointer used to lookup OPP table.
1210 *
1211 * Register the initial OPP table with the OPP library for given device.
1212 *
1213 * Return:
1214 * 0 On success OR
1215 * Duplicate OPPs (both freq and volt are same) and opp->available
1216 * -EEXIST Freq are same and volt are different OR
1217 * Duplicate OPPs (both freq and volt are same) and !opp->available
1218 * -ENOMEM Memory allocation failure
1219 * -ENODEV when 'operating-points' property is not found or is invalid data
1220 * in device node.
1221 * -ENODATA when empty 'operating-points' property is found
1222 * -EINVAL when invalid entries are found in opp-v2 table
1223 */
1224int dev_pm_opp_of_add_table(struct device *dev)
1225{
1226 return _of_add_table_indexed(dev, 0);
1227}
1228EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
1229
1230/**
1231 * dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1232 * @dev: device pointer used to lookup OPP table.
1233 * @index: Index number.
1234 *
1235 * Register the initial OPP table with the OPP library for given device only
1236 * using the "operating-points-v2" property.
1237 *
1238 * Return: Refer to dev_pm_opp_of_add_table() for return values.
1239 */
1240int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
1241{
1242 return _of_add_table_indexed(dev, index);
1243}
1244EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
1245
1246/**
1247 * devm_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
1248 * @dev: device pointer used to lookup OPP table.
1249 * @index: Index number.
1250 *
1251 * This is a resource-managed variant of dev_pm_opp_of_add_table_indexed().
1252 */
1253int devm_pm_opp_of_add_table_indexed(struct device *dev, int index)
1254{
1255 return _devm_of_add_table_indexed(dev, index);
1256}
1257EXPORT_SYMBOL_GPL(devm_pm_opp_of_add_table_indexed);
1258
1259/* CPU device specific helpers */
1260
1261/**
1262 * dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
1263 * @cpumask: cpumask for which OPP table needs to be removed
1264 *
1265 * This removes the OPP tables for CPUs present in the @cpumask.
1266 * This should be used only to remove static entries created from DT.
1267 */
1268void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
1269{
1270 _dev_pm_opp_cpumask_remove_table(cpumask, -1);
1271}
1272EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
1273
1274/**
1275 * dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
1276 * @cpumask: cpumask for which OPP table needs to be added.
1277 *
1278 * This adds the OPP tables for CPUs present in the @cpumask.
1279 */
1280int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
1281{
1282 struct device *cpu_dev;
1283 int cpu, ret;
1284
1285 if (WARN_ON(cpumask_empty(cpumask)))
1286 return -ENODEV;
1287
1288 for_each_cpu(cpu, cpumask) {
1289 cpu_dev = get_cpu_device(cpu);
1290 if (!cpu_dev) {
1291 pr_err("%s: failed to get cpu%d device\n", __func__,
1292 cpu);
1293 ret = -ENODEV;
1294 goto remove_table;
1295 }
1296
1297 ret = dev_pm_opp_of_add_table(cpu_dev);
1298 if (ret) {
1299 /*
1300 * OPP may get registered dynamically, don't print error
1301 * message here.
1302 */
1303 pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
1304 __func__, cpu, ret);
1305
1306 goto remove_table;
1307 }
1308 }
1309
1310 return 0;
1311
1312remove_table:
1313 /* Free all other OPPs */
1314 _dev_pm_opp_cpumask_remove_table(cpumask, cpu);
1315
1316 return ret;
1317}
1318EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
1319
1320/*
1321 * Works only for OPP v2 bindings.
1322 *
1323 * Returns -ENOENT if operating-points-v2 bindings aren't supported.
1324 */
1325/**
1326 * dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
1327 * @cpu_dev using operating-points-v2
1328 * bindings.
1329 *
1330 * @cpu_dev: CPU device for which we do this operation
1331 * @cpumask: cpumask to update with information of sharing CPUs
1332 *
1333 * This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
1334 *
1335 * Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
1336 */
1337int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
1338 struct cpumask *cpumask)
1339{
1340 struct device_node *np, *tmp_np, *cpu_np;
1341 int cpu, ret = 0;
1342
1343 /* Get OPP descriptor node */
1344 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
1345 if (!np) {
1346 dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
1347 return -ENOENT;
1348 }
1349
1350 cpumask_set_cpu(cpu_dev->id, cpumask);
1351
1352 /* OPPs are shared ? */
1353 if (!of_property_read_bool(np, "opp-shared"))
1354 goto put_cpu_node;
1355
1356 for_each_possible_cpu(cpu) {
1357 if (cpu == cpu_dev->id)
1358 continue;
1359
1360 cpu_np = of_cpu_device_node_get(cpu);
1361 if (!cpu_np) {
1362 dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
1363 __func__, cpu);
1364 ret = -ENOENT;
1365 goto put_cpu_node;
1366 }
1367
1368 /* Get OPP descriptor node */
1369 tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
1370 of_node_put(cpu_np);
1371 if (!tmp_np) {
1372 pr_err("%pOF: Couldn't find opp node\n", cpu_np);
1373 ret = -ENOENT;
1374 goto put_cpu_node;
1375 }
1376
1377 /* CPUs are sharing opp node */
1378 if (np == tmp_np)
1379 cpumask_set_cpu(cpu, cpumask);
1380
1381 of_node_put(tmp_np);
1382 }
1383
1384put_cpu_node:
1385 of_node_put(np);
1386 return ret;
1387}
1388EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
1389
1390/**
1391 * of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
1392 * @np: Node that contains the "required-opps" property.
1393 * @index: Index of the phandle to parse.
1394 *
1395 * Returns the performance state of the OPP pointed out by the "required-opps"
1396 * property at @index in @np.
1397 *
1398 * Return: Zero or positive performance state on success, otherwise negative
1399 * value on errors.
1400 */
1401int of_get_required_opp_performance_state(struct device_node *np, int index)
1402{
1403 struct dev_pm_opp *opp;
1404 struct device_node *required_np;
1405 struct opp_table *opp_table;
1406 int pstate = -EINVAL;
1407
1408 required_np = of_parse_required_opp(np, index);
1409 if (!required_np)
1410 return -ENODEV;
1411
1412 opp_table = _find_table_of_opp_np(required_np);
1413 if (IS_ERR(opp_table)) {
1414 pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
1415 __func__, np, PTR_ERR(opp_table));
1416 goto put_required_np;
1417 }
1418
1419 /* The OPP tables must belong to a genpd */
1420 if (unlikely(!opp_table->is_genpd)) {
1421 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
1422 goto put_required_np;
1423 }
1424
1425 opp = _find_opp_of_np(opp_table, required_np);
1426 if (opp) {
1427 if (opp->level == OPP_LEVEL_UNSET) {
1428 pr_err("%s: OPP levels aren't available for %pOF\n",
1429 __func__, np);
1430 } else {
1431 pstate = opp->level;
1432 }
1433 dev_pm_opp_put(opp);
1434
1435 }
1436
1437 dev_pm_opp_put_opp_table(opp_table);
1438
1439put_required_np:
1440 of_node_put(required_np);
1441
1442 return pstate;
1443}
1444EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
1445
1446/**
1447 * dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
1448 * @opp: opp for which DT node has to be returned for
1449 *
1450 * Return: DT node corresponding to the opp, else 0 on success.
1451 *
1452 * The caller needs to put the node with of_node_put() after using it.
1453 */
1454struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
1455{
1456 if (IS_ERR_OR_NULL(opp)) {
1457 pr_err("%s: Invalid parameters\n", __func__);
1458 return NULL;
1459 }
1460
1461 return of_node_get(opp->np);
1462}
1463EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
1464
1465/*
1466 * Callback function provided to the Energy Model framework upon registration.
1467 * It provides the power used by @dev at @kHz if it is the frequency of an
1468 * existing OPP, or at the frequency of the first OPP above @kHz otherwise
1469 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1470 * frequency and @uW to the associated power.
1471 *
1472 * Returns 0 on success or a proper -EINVAL value in case of error.
1473 */
1474static int __maybe_unused
1475_get_dt_power(struct device *dev, unsigned long *uW, unsigned long *kHz)
1476{
1477 struct dev_pm_opp *opp;
1478 unsigned long opp_freq, opp_power;
1479
1480 /* Find the right frequency and related OPP */
1481 opp_freq = *kHz * 1000;
1482 opp = dev_pm_opp_find_freq_ceil(dev, &opp_freq);
1483 if (IS_ERR(opp))
1484 return -EINVAL;
1485
1486 opp_power = dev_pm_opp_get_power(opp);
1487 dev_pm_opp_put(opp);
1488 if (!opp_power)
1489 return -EINVAL;
1490
1491 *kHz = opp_freq / 1000;
1492 *uW = opp_power;
1493
1494 return 0;
1495}
1496
1497/*
1498 * Callback function provided to the Energy Model framework upon registration.
1499 * This computes the power estimated by @dev at @kHz if it is the frequency
1500 * of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
1501 * (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
1502 * frequency and @uW to the associated power. The power is estimated as
1503 * P = C * V^2 * f with C being the device's capacitance and V and f
1504 * respectively the voltage and frequency of the OPP.
1505 *
1506 * Returns -EINVAL if the power calculation failed because of missing
1507 * parameters, 0 otherwise.
1508 */
1509static int __maybe_unused _get_power(struct device *dev, unsigned long *uW,
1510 unsigned long *kHz)
1511{
1512 struct dev_pm_opp *opp;
1513 struct device_node *np;
1514 unsigned long mV, Hz;
1515 u32 cap;
1516 u64 tmp;
1517 int ret;
1518
1519 np = of_node_get(dev->of_node);
1520 if (!np)
1521 return -EINVAL;
1522
1523 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1524 of_node_put(np);
1525 if (ret)
1526 return -EINVAL;
1527
1528 Hz = *kHz * 1000;
1529 opp = dev_pm_opp_find_freq_ceil(dev, &Hz);
1530 if (IS_ERR(opp))
1531 return -EINVAL;
1532
1533 mV = dev_pm_opp_get_voltage(opp) / 1000;
1534 dev_pm_opp_put(opp);
1535 if (!mV)
1536 return -EINVAL;
1537
1538 tmp = (u64)cap * mV * mV * (Hz / 1000000);
1539 /* Provide power in micro-Watts */
1540 do_div(tmp, 1000000);
1541
1542 *uW = (unsigned long)tmp;
1543 *kHz = Hz / 1000;
1544
1545 return 0;
1546}
1547
1548static bool _of_has_opp_microwatt_property(struct device *dev)
1549{
1550 unsigned long power, freq = 0;
1551 struct dev_pm_opp *opp;
1552
1553 /* Check if at least one OPP has needed property */
1554 opp = dev_pm_opp_find_freq_ceil(dev, &freq);
1555 if (IS_ERR(opp))
1556 return false;
1557
1558 power = dev_pm_opp_get_power(opp);
1559 dev_pm_opp_put(opp);
1560 if (!power)
1561 return false;
1562
1563 return true;
1564}
1565
1566/**
1567 * dev_pm_opp_of_register_em() - Attempt to register an Energy Model
1568 * @dev : Device for which an Energy Model has to be registered
1569 * @cpus : CPUs for which an Energy Model has to be registered. For
1570 * other type of devices it should be set to NULL.
1571 *
1572 * This checks whether the "dynamic-power-coefficient" devicetree property has
1573 * been specified, and tries to register an Energy Model with it if it has.
1574 * Having this property means the voltages are known for OPPs and the EM
1575 * might be calculated.
1576 */
1577int dev_pm_opp_of_register_em(struct device *dev, struct cpumask *cpus)
1578{
1579 struct em_data_callback em_cb;
1580 struct device_node *np;
1581 int ret, nr_opp;
1582 u32 cap;
1583
1584 if (IS_ERR_OR_NULL(dev)) {
1585 ret = -EINVAL;
1586 goto failed;
1587 }
1588
1589 nr_opp = dev_pm_opp_get_opp_count(dev);
1590 if (nr_opp <= 0) {
1591 ret = -EINVAL;
1592 goto failed;
1593 }
1594
1595 /* First, try to find more precised Energy Model in DT */
1596 if (_of_has_opp_microwatt_property(dev)) {
1597 EM_SET_ACTIVE_POWER_CB(em_cb, _get_dt_power);
1598 goto register_em;
1599 }
1600
1601 np = of_node_get(dev->of_node);
1602 if (!np) {
1603 ret = -EINVAL;
1604 goto failed;
1605 }
1606
1607 /*
1608 * Register an EM only if the 'dynamic-power-coefficient' property is
1609 * set in devicetree. It is assumed the voltage values are known if that
1610 * property is set since it is useless otherwise. If voltages are not
1611 * known, just let the EM registration fail with an error to alert the
1612 * user about the inconsistent configuration.
1613 */
1614 ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
1615 of_node_put(np);
1616 if (ret || !cap) {
1617 dev_dbg(dev, "Couldn't find proper 'dynamic-power-coefficient' in DT\n");
1618 ret = -EINVAL;
1619 goto failed;
1620 }
1621
1622 EM_SET_ACTIVE_POWER_CB(em_cb, _get_power);
1623
1624register_em:
1625 ret = em_dev_register_perf_domain(dev, nr_opp, &em_cb, cpus, true);
1626 if (ret)
1627 goto failed;
1628
1629 return 0;
1630
1631failed:
1632 dev_dbg(dev, "Couldn't register Energy Model %d\n", ret);
1633 return ret;
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);