Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
   4 *
   5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
   6 */
   7
   8#include <linux/module.h>
   9#include <linux/of_device.h>
  10#include <linux/delay.h>
  11#include <linux/mmc/mmc.h>
  12#include <linux/pm_runtime.h>
  13#include <linux/pm_opp.h>
  14#include <linux/slab.h>
  15#include <linux/iopoll.h>
  16#include <linux/qcom_scm.h>
  17#include <linux/regulator/consumer.h>
  18#include <linux/interconnect.h>
 
  19#include <linux/pinctrl/consumer.h>
  20#include <linux/reset.h>
  21
 
 
  22#include "sdhci-cqhci.h"
  23#include "sdhci-pltfm.h"
  24#include "cqhci.h"
  25
  26#define CORE_MCI_VERSION		0x50
  27#define CORE_VERSION_MAJOR_SHIFT	28
  28#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
  29#define CORE_VERSION_MINOR_MASK		0xff
  30
  31#define CORE_MCI_GENERICS		0x70
  32#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
  33
  34#define HC_MODE_EN		0x1
  35#define CORE_POWER		0x0
  36#define CORE_SW_RST		BIT(7)
  37#define FF_CLK_SW_RST_DIS	BIT(13)
  38
  39#define CORE_PWRCTL_BUS_OFF	BIT(0)
  40#define CORE_PWRCTL_BUS_ON	BIT(1)
  41#define CORE_PWRCTL_IO_LOW	BIT(2)
  42#define CORE_PWRCTL_IO_HIGH	BIT(3)
  43#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
  44#define CORE_PWRCTL_BUS_FAIL    BIT(1)
  45#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
  46#define CORE_PWRCTL_IO_FAIL     BIT(3)
  47#define REQ_BUS_OFF		BIT(0)
  48#define REQ_BUS_ON		BIT(1)
  49#define REQ_IO_LOW		BIT(2)
  50#define REQ_IO_HIGH		BIT(3)
  51#define INT_MASK		0xf
  52#define MAX_PHASES		16
  53#define CORE_DLL_LOCK		BIT(7)
  54#define CORE_DDR_DLL_LOCK	BIT(11)
  55#define CORE_DLL_EN		BIT(16)
  56#define CORE_CDR_EN		BIT(17)
  57#define CORE_CK_OUT_EN		BIT(18)
  58#define CORE_CDR_EXT_EN		BIT(19)
  59#define CORE_DLL_PDN		BIT(29)
  60#define CORE_DLL_RST		BIT(30)
  61#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
  62
  63#define CORE_DDR_CAL_EN		BIT(0)
  64#define CORE_FLL_CYCLE_CNT	BIT(18)
  65#define CORE_DLL_CLOCK_DISABLE	BIT(21)
  66
  67#define DLL_USR_CTL_POR_VAL	0x10800
  68#define ENABLE_DLL_LOCK_STATUS	BIT(26)
  69#define FINE_TUNE_MODE_EN	BIT(27)
  70#define BIAS_OK_SIGNAL		BIT(29)
  71
  72#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
  73#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
  74
  75#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
  76#define CORE_CLK_PWRSAVE	BIT(1)
  77#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
  78#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
  79#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
  80#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
  81#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
  82#define CORE_HC_SELECT_IN_EN	BIT(18)
  83#define CORE_HC_SELECT_IN_HS400	(6 << 19)
  84#define CORE_HC_SELECT_IN_MASK	(7 << 19)
  85
  86#define CORE_3_0V_SUPPORT	BIT(25)
  87#define CORE_1_8V_SUPPORT	BIT(26)
  88#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
  89
  90#define CORE_CSR_CDC_CTLR_CFG0		0x130
  91#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
  92#define CORE_HW_AUTOCAL_ENA		BIT(17)
  93
  94#define CORE_CSR_CDC_CTLR_CFG1		0x134
  95#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
  96#define CORE_TIMER_ENA			BIT(16)
  97
  98#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
  99#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
 100#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
 101#define CORE_CDC_OFFSET_CFG		0x14C
 102#define CORE_CSR_CDC_DELAY_CFG		0x150
 103#define CORE_CDC_SLAVE_DDA_CFG		0x160
 104#define CORE_CSR_CDC_STATUS0		0x164
 105#define CORE_CALIBRATION_DONE		BIT(0)
 106
 107#define CORE_CDC_ERROR_CODE_MASK	0x7000000
 108
 109#define CORE_CSR_CDC_GEN_CFG		0x178
 110#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
 111#define CORE_CDC_SWITCH_RC_EN		BIT(1)
 112
 113#define CORE_CDC_T4_DLY_SEL		BIT(0)
 114#define CORE_CMDIN_RCLK_EN		BIT(1)
 115#define CORE_START_CDC_TRAFFIC		BIT(6)
 116
 117#define CORE_PWRSAVE_DLL	BIT(3)
 118
 119#define DDR_CONFIG_POR_VAL	0x80040873
 120
 121
 122#define INVALID_TUNING_PHASE	-1
 123#define SDHCI_MSM_MIN_CLOCK	400000
 124#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
 125
 126#define CDR_SELEXT_SHIFT	20
 127#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
 128#define CMUX_SHIFT_PHASE_SHIFT	24
 129#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
 130
 131#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
 132
 133/* Timeout value to avoid infinite waiting for pwr_irq */
 134#define MSM_PWR_IRQ_TIMEOUT_MS 5000
 135
 136/* Max load for eMMC Vdd-io supply */
 137#define MMC_VQMMC_MAX_LOAD_UA	325000
 138
 139#define msm_host_readl(msm_host, host, offset) \
 140	msm_host->var_ops->msm_readl_relaxed(host, offset)
 141
 142#define msm_host_writel(msm_host, val, host, offset) \
 143	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
 144
 145/* CQHCI vendor specific registers */
 146#define CQHCI_VENDOR_CFG1	0xA00
 147#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
 148
 149struct sdhci_msm_offset {
 150	u32 core_hc_mode;
 151	u32 core_mci_data_cnt;
 152	u32 core_mci_status;
 153	u32 core_mci_fifo_cnt;
 154	u32 core_mci_version;
 155	u32 core_generics;
 156	u32 core_testbus_config;
 157	u32 core_testbus_sel2_bit;
 158	u32 core_testbus_ena;
 159	u32 core_testbus_sel2;
 160	u32 core_pwrctl_status;
 161	u32 core_pwrctl_mask;
 162	u32 core_pwrctl_clear;
 163	u32 core_pwrctl_ctl;
 164	u32 core_sdcc_debug_reg;
 165	u32 core_dll_config;
 166	u32 core_dll_status;
 167	u32 core_vendor_spec;
 168	u32 core_vendor_spec_adma_err_addr0;
 169	u32 core_vendor_spec_adma_err_addr1;
 170	u32 core_vendor_spec_func2;
 171	u32 core_vendor_spec_capabilities0;
 172	u32 core_ddr_200_cfg;
 173	u32 core_vendor_spec3;
 174	u32 core_dll_config_2;
 175	u32 core_dll_config_3;
 176	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
 177	u32 core_ddr_config;
 178	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
 179};
 180
 181static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
 182	.core_mci_data_cnt = 0x35c,
 183	.core_mci_status = 0x324,
 184	.core_mci_fifo_cnt = 0x308,
 185	.core_mci_version = 0x318,
 186	.core_generics = 0x320,
 187	.core_testbus_config = 0x32c,
 188	.core_testbus_sel2_bit = 3,
 189	.core_testbus_ena = (1 << 31),
 190	.core_testbus_sel2 = (1 << 3),
 191	.core_pwrctl_status = 0x240,
 192	.core_pwrctl_mask = 0x244,
 193	.core_pwrctl_clear = 0x248,
 194	.core_pwrctl_ctl = 0x24c,
 195	.core_sdcc_debug_reg = 0x358,
 196	.core_dll_config = 0x200,
 197	.core_dll_status = 0x208,
 198	.core_vendor_spec = 0x20c,
 199	.core_vendor_spec_adma_err_addr0 = 0x214,
 200	.core_vendor_spec_adma_err_addr1 = 0x218,
 201	.core_vendor_spec_func2 = 0x210,
 202	.core_vendor_spec_capabilities0 = 0x21c,
 203	.core_ddr_200_cfg = 0x224,
 204	.core_vendor_spec3 = 0x250,
 205	.core_dll_config_2 = 0x254,
 206	.core_dll_config_3 = 0x258,
 207	.core_ddr_config = 0x25c,
 208	.core_dll_usr_ctl = 0x388,
 209};
 210
 211static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
 212	.core_hc_mode = 0x78,
 213	.core_mci_data_cnt = 0x30,
 214	.core_mci_status = 0x34,
 215	.core_mci_fifo_cnt = 0x44,
 216	.core_mci_version = 0x050,
 217	.core_generics = 0x70,
 218	.core_testbus_config = 0x0cc,
 219	.core_testbus_sel2_bit = 4,
 220	.core_testbus_ena = (1 << 3),
 221	.core_testbus_sel2 = (1 << 4),
 222	.core_pwrctl_status = 0xdc,
 223	.core_pwrctl_mask = 0xe0,
 224	.core_pwrctl_clear = 0xe4,
 225	.core_pwrctl_ctl = 0xe8,
 226	.core_sdcc_debug_reg = 0x124,
 227	.core_dll_config = 0x100,
 228	.core_dll_status = 0x108,
 229	.core_vendor_spec = 0x10c,
 230	.core_vendor_spec_adma_err_addr0 = 0x114,
 231	.core_vendor_spec_adma_err_addr1 = 0x118,
 232	.core_vendor_spec_func2 = 0x110,
 233	.core_vendor_spec_capabilities0 = 0x11c,
 234	.core_ddr_200_cfg = 0x184,
 235	.core_vendor_spec3 = 0x1b0,
 236	.core_dll_config_2 = 0x1b4,
 237	.core_ddr_config_old = 0x1b8,
 238	.core_ddr_config = 0x1bc,
 239};
 240
 241struct sdhci_msm_variant_ops {
 242	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
 243	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
 244			u32 offset);
 245};
 246
 247/*
 248 * From V5, register spaces have changed. Wrap this info in a structure
 249 * and choose the data_structure based on version info mentioned in DT.
 250 */
 251struct sdhci_msm_variant_info {
 252	bool mci_removed;
 253	bool restore_dll_config;
 254	const struct sdhci_msm_variant_ops *var_ops;
 255	const struct sdhci_msm_offset *offset;
 256};
 257
 258struct sdhci_msm_host {
 259	struct platform_device *pdev;
 260	void __iomem *core_mem;	/* MSM SDCC mapped address */
 261	void __iomem *ice_mem;	/* MSM ICE mapped address (if available) */
 262	int pwr_irq;		/* power irq */
 263	struct clk *bus_clk;	/* SDHC bus voter clock */
 264	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
 265	/* core, iface, cal, sleep, and ice clocks */
 266	struct clk_bulk_data bulk_clks[5];
 
 
 
 267	unsigned long clk_rate;
 268	struct mmc_host *mmc;
 269	bool use_14lpp_dll_reset;
 270	bool tuning_done;
 271	bool calibration_done;
 272	u8 saved_tuning_phase;
 273	bool use_cdclp533;
 274	u32 curr_pwr_state;
 275	u32 curr_io_level;
 276	wait_queue_head_t pwr_irq_wait;
 277	bool pwr_irq_flag;
 278	u32 caps_0;
 279	bool mci_removed;
 280	bool restore_dll_config;
 281	const struct sdhci_msm_variant_ops *var_ops;
 282	const struct sdhci_msm_offset *offset;
 283	bool use_cdr;
 284	u32 transfer_mode;
 285	bool updated_ddr_cfg;
 286	bool uses_tassadar_dll;
 287	u32 dll_config;
 288	u32 ddr_config;
 289	bool vqmmc_enabled;
 290};
 291
 292static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
 293{
 294	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 295	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 296
 297	return msm_host->offset;
 298}
 299
 300/*
 301 * APIs to read/write to vendor specific registers which were there in the
 302 * core_mem region before MCI was removed.
 303 */
 304static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
 305		u32 offset)
 306{
 307	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 308	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 309
 310	return readl_relaxed(msm_host->core_mem + offset);
 311}
 312
 313static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
 314		u32 offset)
 315{
 316	return readl_relaxed(host->ioaddr + offset);
 317}
 318
 319static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
 320		struct sdhci_host *host, u32 offset)
 321{
 322	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 323	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 324
 325	writel_relaxed(val, msm_host->core_mem + offset);
 326}
 327
 328static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
 329		struct sdhci_host *host, u32 offset)
 330{
 331	writel_relaxed(val, host->ioaddr + offset);
 332}
 333
 334static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
 335{
 336	struct mmc_ios ios = host->mmc->ios;
 337	/*
 338	 * The SDHC requires internal clock frequency to be double the
 339	 * actual clock that will be set for DDR mode. The controller
 340	 * uses the faster clock(100/400MHz) for some of its parts and
 341	 * send the actual required clock (50/200MHz) to the card.
 342	 */
 343	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
 344	    ios.timing == MMC_TIMING_MMC_DDR52 ||
 345	    ios.timing == MMC_TIMING_MMC_HS400 ||
 346	    host->flags & SDHCI_HS400_TUNING)
 347		return 2;
 348	return 1;
 349}
 350
 351static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
 352					    unsigned int clock)
 353{
 354	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 355	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 356	struct mmc_ios curr_ios = host->mmc->ios;
 357	struct clk *core_clk = msm_host->bulk_clks[0].clk;
 358	unsigned long achieved_rate;
 359	unsigned int desired_rate;
 360	unsigned int mult;
 361	int rc;
 362
 363	mult = msm_get_clock_mult_for_bus_mode(host);
 364	desired_rate = clock * mult;
 365	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
 366	if (rc) {
 367		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
 368		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
 369		return;
 370	}
 371
 372	/*
 373	 * Qualcomm clock drivers by default round clock _up_ if they can't
 374	 * make the requested rate.  This is not good for SD.  Yell if we
 375	 * encounter it.
 376	 */
 377	achieved_rate = clk_get_rate(core_clk);
 378	if (achieved_rate > desired_rate)
 379		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
 380			mmc_hostname(host->mmc), desired_rate, achieved_rate);
 381	host->mmc->actual_clock = achieved_rate / mult;
 382
 383	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
 384	msm_host->clk_rate = desired_rate;
 385
 386	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
 387		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
 388}
 389
 390/* Platform specific tuning */
 391static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
 392{
 393	u32 wait_cnt = 50;
 394	u8 ck_out_en;
 395	struct mmc_host *mmc = host->mmc;
 396	const struct sdhci_msm_offset *msm_offset =
 397					sdhci_priv_msm_offset(host);
 398
 399	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
 400	ck_out_en = !!(readl_relaxed(host->ioaddr +
 401			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 402
 403	while (ck_out_en != poll) {
 404		if (--wait_cnt == 0) {
 405			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
 406			       mmc_hostname(mmc), poll);
 407			return -ETIMEDOUT;
 408		}
 409		udelay(1);
 410
 411		ck_out_en = !!(readl_relaxed(host->ioaddr +
 412			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 413	}
 414
 415	return 0;
 416}
 417
 418static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
 419{
 420	int rc;
 421	static const u8 grey_coded_phase_table[] = {
 422		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
 423		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
 424	};
 425	unsigned long flags;
 426	u32 config;
 427	struct mmc_host *mmc = host->mmc;
 428	const struct sdhci_msm_offset *msm_offset =
 429					sdhci_priv_msm_offset(host);
 430
 431	if (phase > 0xf)
 432		return -EINVAL;
 433
 434	spin_lock_irqsave(&host->lock, flags);
 435
 436	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 437	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
 438	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
 439	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 440
 441	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
 442	rc = msm_dll_poll_ck_out_en(host, 0);
 443	if (rc)
 444		goto err_out;
 445
 446	/*
 447	 * Write the selected DLL clock output phase (0 ... 15)
 448	 * to CDR_SELEXT bit field of DLL_CONFIG register.
 449	 */
 450	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 451	config &= ~CDR_SELEXT_MASK;
 452	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
 453	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 454
 455	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 456	config |= CORE_CK_OUT_EN;
 457	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 458
 459	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
 460	rc = msm_dll_poll_ck_out_en(host, 1);
 461	if (rc)
 462		goto err_out;
 463
 464	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 465	config |= CORE_CDR_EN;
 466	config &= ~CORE_CDR_EXT_EN;
 467	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 468	goto out;
 469
 470err_out:
 471	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
 472	       mmc_hostname(mmc), phase);
 473out:
 474	spin_unlock_irqrestore(&host->lock, flags);
 475	return rc;
 476}
 477
 478/*
 479 * Find out the greatest range of consecuitive selected
 480 * DLL clock output phases that can be used as sampling
 481 * setting for SD3.0 UHS-I card read operation (in SDR104
 482 * timing mode) or for eMMC4.5 card read operation (in
 483 * HS400/HS200 timing mode).
 484 * Select the 3/4 of the range and configure the DLL with the
 485 * selected DLL clock output phase.
 486 */
 487
 488static int msm_find_most_appropriate_phase(struct sdhci_host *host,
 489					   u8 *phase_table, u8 total_phases)
 490{
 491	int ret;
 492	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
 493	u8 phases_per_row[MAX_PHASES] = { 0 };
 494	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
 495	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
 496	bool phase_0_found = false, phase_15_found = false;
 497	struct mmc_host *mmc = host->mmc;
 498
 499	if (!total_phases || (total_phases > MAX_PHASES)) {
 500		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
 501		       mmc_hostname(mmc), total_phases);
 502		return -EINVAL;
 503	}
 504
 505	for (cnt = 0; cnt < total_phases; cnt++) {
 506		ranges[row_index][col_index] = phase_table[cnt];
 507		phases_per_row[row_index] += 1;
 508		col_index++;
 509
 510		if ((cnt + 1) == total_phases) {
 511			continue;
 512		/* check if next phase in phase_table is consecutive or not */
 513		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
 514			row_index++;
 515			col_index = 0;
 516		}
 517	}
 518
 519	if (row_index >= MAX_PHASES)
 520		return -EINVAL;
 521
 522	/* Check if phase-0 is present in first valid window? */
 523	if (!ranges[0][0]) {
 524		phase_0_found = true;
 525		phase_0_raw_index = 0;
 526		/* Check if cycle exist between 2 valid windows */
 527		for (cnt = 1; cnt <= row_index; cnt++) {
 528			if (phases_per_row[cnt]) {
 529				for (i = 0; i < phases_per_row[cnt]; i++) {
 530					if (ranges[cnt][i] == 15) {
 531						phase_15_found = true;
 532						phase_15_raw_index = cnt;
 533						break;
 534					}
 535				}
 536			}
 537		}
 538	}
 539
 540	/* If 2 valid windows form cycle then merge them as single window */
 541	if (phase_0_found && phase_15_found) {
 542		/* number of phases in raw where phase 0 is present */
 543		u8 phases_0 = phases_per_row[phase_0_raw_index];
 544		/* number of phases in raw where phase 15 is present */
 545		u8 phases_15 = phases_per_row[phase_15_raw_index];
 546
 547		if (phases_0 + phases_15 >= MAX_PHASES)
 548			/*
 549			 * If there are more than 1 phase windows then total
 550			 * number of phases in both the windows should not be
 551			 * more than or equal to MAX_PHASES.
 552			 */
 553			return -EINVAL;
 554
 555		/* Merge 2 cyclic windows */
 556		i = phases_15;
 557		for (cnt = 0; cnt < phases_0; cnt++) {
 558			ranges[phase_15_raw_index][i] =
 559			    ranges[phase_0_raw_index][cnt];
 560			if (++i >= MAX_PHASES)
 561				break;
 562		}
 563
 564		phases_per_row[phase_0_raw_index] = 0;
 565		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
 566	}
 567
 568	for (cnt = 0; cnt <= row_index; cnt++) {
 569		if (phases_per_row[cnt] > curr_max) {
 570			curr_max = phases_per_row[cnt];
 571			selected_row_index = cnt;
 572		}
 573	}
 574
 575	i = (curr_max * 3) / 4;
 576	if (i)
 577		i--;
 578
 579	ret = ranges[selected_row_index][i];
 580
 581	if (ret >= MAX_PHASES) {
 582		ret = -EINVAL;
 583		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
 584		       mmc_hostname(mmc), ret);
 585	}
 586
 587	return ret;
 588}
 589
 590static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
 591{
 592	u32 mclk_freq = 0, config;
 593	const struct sdhci_msm_offset *msm_offset =
 594					sdhci_priv_msm_offset(host);
 595
 596	/* Program the MCLK value to MCLK_FREQ bit field */
 597	if (host->clock <= 112000000)
 598		mclk_freq = 0;
 599	else if (host->clock <= 125000000)
 600		mclk_freq = 1;
 601	else if (host->clock <= 137000000)
 602		mclk_freq = 2;
 603	else if (host->clock <= 150000000)
 604		mclk_freq = 3;
 605	else if (host->clock <= 162000000)
 606		mclk_freq = 4;
 607	else if (host->clock <= 175000000)
 608		mclk_freq = 5;
 609	else if (host->clock <= 187000000)
 610		mclk_freq = 6;
 611	else if (host->clock <= 200000000)
 612		mclk_freq = 7;
 613
 614	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 615	config &= ~CMUX_SHIFT_PHASE_MASK;
 616	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
 617	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 618}
 619
 620/* Initialize the DLL (Programmable Delay Line) */
 621static int msm_init_cm_dll(struct sdhci_host *host)
 622{
 623	struct mmc_host *mmc = host->mmc;
 624	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 625	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 626	int wait_cnt = 50;
 627	unsigned long flags, xo_clk = 0;
 628	u32 config;
 629	const struct sdhci_msm_offset *msm_offset =
 630					msm_host->offset;
 631
 632	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
 633		xo_clk = clk_get_rate(msm_host->xo_clk);
 634
 635	spin_lock_irqsave(&host->lock, flags);
 636
 637	/*
 638	 * Make sure that clock is always enabled when DLL
 639	 * tuning is in progress. Keeping PWRSAVE ON may
 640	 * turn off the clock.
 641	 */
 642	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 643	config &= ~CORE_CLK_PWRSAVE;
 644	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 645
 646	if (msm_host->dll_config)
 647		writel_relaxed(msm_host->dll_config,
 648				host->ioaddr + msm_offset->core_dll_config);
 649
 650	if (msm_host->use_14lpp_dll_reset) {
 651		config = readl_relaxed(host->ioaddr +
 652				msm_offset->core_dll_config);
 653		config &= ~CORE_CK_OUT_EN;
 654		writel_relaxed(config, host->ioaddr +
 655				msm_offset->core_dll_config);
 656
 657		config = readl_relaxed(host->ioaddr +
 658				msm_offset->core_dll_config_2);
 659		config |= CORE_DLL_CLOCK_DISABLE;
 660		writel_relaxed(config, host->ioaddr +
 661				msm_offset->core_dll_config_2);
 662	}
 663
 664	config = readl_relaxed(host->ioaddr +
 665			msm_offset->core_dll_config);
 666	config |= CORE_DLL_RST;
 667	writel_relaxed(config, host->ioaddr +
 668			msm_offset->core_dll_config);
 669
 670	config = readl_relaxed(host->ioaddr +
 671			msm_offset->core_dll_config);
 672	config |= CORE_DLL_PDN;
 673	writel_relaxed(config, host->ioaddr +
 674			msm_offset->core_dll_config);
 675
 676	if (!msm_host->dll_config)
 677		msm_cm_dll_set_freq(host);
 678
 679	if (msm_host->use_14lpp_dll_reset &&
 680	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
 681		u32 mclk_freq = 0;
 682
 683		config = readl_relaxed(host->ioaddr +
 684				msm_offset->core_dll_config_2);
 685		config &= CORE_FLL_CYCLE_CNT;
 686		if (config)
 687			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
 688					xo_clk);
 689		else
 690			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
 691					xo_clk);
 692
 693		config = readl_relaxed(host->ioaddr +
 694				msm_offset->core_dll_config_2);
 695		config &= ~(0xFF << 10);
 696		config |= mclk_freq << 10;
 697
 698		writel_relaxed(config, host->ioaddr +
 699				msm_offset->core_dll_config_2);
 700		/* wait for 5us before enabling DLL clock */
 701		udelay(5);
 702	}
 703
 704	config = readl_relaxed(host->ioaddr +
 705			msm_offset->core_dll_config);
 706	config &= ~CORE_DLL_RST;
 707	writel_relaxed(config, host->ioaddr +
 708			msm_offset->core_dll_config);
 709
 710	config = readl_relaxed(host->ioaddr +
 711			msm_offset->core_dll_config);
 712	config &= ~CORE_DLL_PDN;
 713	writel_relaxed(config, host->ioaddr +
 714			msm_offset->core_dll_config);
 715
 716	if (msm_host->use_14lpp_dll_reset) {
 717		if (!msm_host->dll_config)
 718			msm_cm_dll_set_freq(host);
 719		config = readl_relaxed(host->ioaddr +
 720				msm_offset->core_dll_config_2);
 721		config &= ~CORE_DLL_CLOCK_DISABLE;
 722		writel_relaxed(config, host->ioaddr +
 723				msm_offset->core_dll_config_2);
 724	}
 725
 726	/*
 727	 * Configure DLL user control register to enable DLL status.
 728	 * This setting is applicable to SDCC v5.1 onwards only.
 729	 */
 730	if (msm_host->uses_tassadar_dll) {
 731		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
 732			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
 733		writel_relaxed(config, host->ioaddr +
 734				msm_offset->core_dll_usr_ctl);
 735
 736		config = readl_relaxed(host->ioaddr +
 737				msm_offset->core_dll_config_3);
 738		config &= ~0xFF;
 739		if (msm_host->clk_rate < 150000000)
 740			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
 741		else
 742			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
 743		writel_relaxed(config, host->ioaddr +
 744			msm_offset->core_dll_config_3);
 745	}
 746
 747	config = readl_relaxed(host->ioaddr +
 748			msm_offset->core_dll_config);
 749	config |= CORE_DLL_EN;
 750	writel_relaxed(config, host->ioaddr +
 751			msm_offset->core_dll_config);
 752
 753	config = readl_relaxed(host->ioaddr +
 754			msm_offset->core_dll_config);
 755	config |= CORE_CK_OUT_EN;
 756	writel_relaxed(config, host->ioaddr +
 757			msm_offset->core_dll_config);
 758
 759	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
 760	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
 761		 CORE_DLL_LOCK)) {
 762		/* max. wait for 50us sec for LOCK bit to be set */
 763		if (--wait_cnt == 0) {
 764			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
 765			       mmc_hostname(mmc));
 766			spin_unlock_irqrestore(&host->lock, flags);
 767			return -ETIMEDOUT;
 768		}
 769		udelay(1);
 770	}
 771
 772	spin_unlock_irqrestore(&host->lock, flags);
 773	return 0;
 774}
 775
 776static void msm_hc_select_default(struct sdhci_host *host)
 777{
 778	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 779	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 780	u32 config;
 781	const struct sdhci_msm_offset *msm_offset =
 782					msm_host->offset;
 783
 784	if (!msm_host->use_cdclp533) {
 785		config = readl_relaxed(host->ioaddr +
 786				msm_offset->core_vendor_spec3);
 787		config &= ~CORE_PWRSAVE_DLL;
 788		writel_relaxed(config, host->ioaddr +
 789				msm_offset->core_vendor_spec3);
 790	}
 791
 792	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 793	config &= ~CORE_HC_MCLK_SEL_MASK;
 794	config |= CORE_HC_MCLK_SEL_DFLT;
 795	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 796
 797	/*
 798	 * Disable HC_SELECT_IN to be able to use the UHS mode select
 799	 * configuration from Host Control2 register for all other
 800	 * modes.
 801	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
 802	 * in VENDOR_SPEC_FUNC
 803	 */
 804	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 805	config &= ~CORE_HC_SELECT_IN_EN;
 806	config &= ~CORE_HC_SELECT_IN_MASK;
 807	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 808
 809	/*
 810	 * Make sure above writes impacting free running MCLK are completed
 811	 * before changing the clk_rate at GCC.
 812	 */
 813	wmb();
 814}
 815
 816static void msm_hc_select_hs400(struct sdhci_host *host)
 817{
 818	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 819	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 820	struct mmc_ios ios = host->mmc->ios;
 821	u32 config, dll_lock;
 822	int rc;
 823	const struct sdhci_msm_offset *msm_offset =
 824					msm_host->offset;
 825
 826	/* Select the divided clock (free running MCLK/2) */
 827	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 828	config &= ~CORE_HC_MCLK_SEL_MASK;
 829	config |= CORE_HC_MCLK_SEL_HS400;
 830
 831	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 832	/*
 833	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
 834	 * register
 835	 */
 836	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
 837	    !msm_host->calibration_done) {
 838		config = readl_relaxed(host->ioaddr +
 839				msm_offset->core_vendor_spec);
 840		config |= CORE_HC_SELECT_IN_HS400;
 841		config |= CORE_HC_SELECT_IN_EN;
 842		writel_relaxed(config, host->ioaddr +
 843				msm_offset->core_vendor_spec);
 844	}
 845	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
 846		/*
 847		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
 848		 * core_dll_status to be set. This should get set
 849		 * within 15 us at 200 MHz.
 850		 */
 851		rc = readl_relaxed_poll_timeout(host->ioaddr +
 852						msm_offset->core_dll_status,
 853						dll_lock,
 854						(dll_lock &
 855						(CORE_DLL_LOCK |
 856						CORE_DDR_DLL_LOCK)), 10,
 857						1000);
 858		if (rc == -ETIMEDOUT)
 859			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
 860			       mmc_hostname(host->mmc), dll_lock);
 861	}
 862	/*
 863	 * Make sure above writes impacting free running MCLK are completed
 864	 * before changing the clk_rate at GCC.
 865	 */
 866	wmb();
 867}
 868
 869/*
 870 * sdhci_msm_hc_select_mode :- In general all timing modes are
 871 * controlled via UHS mode select in Host Control2 register.
 872 * eMMC specific HS200/HS400 doesn't have their respective modes
 873 * defined here, hence we use these values.
 874 *
 875 * HS200 - SDR104 (Since they both are equivalent in functionality)
 876 * HS400 - This involves multiple configurations
 877 *		Initially SDR104 - when tuning is required as HS200
 878 *		Then when switching to DDR @ 400MHz (HS400) we use
 879 *		the vendor specific HC_SELECT_IN to control the mode.
 880 *
 881 * In addition to controlling the modes we also need to select the
 882 * correct input clock for DLL depending on the mode.
 883 *
 884 * HS400 - divided clock (free running MCLK/2)
 885 * All other modes - default (free running MCLK)
 886 */
 887static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
 888{
 889	struct mmc_ios ios = host->mmc->ios;
 890
 891	if (ios.timing == MMC_TIMING_MMC_HS400 ||
 892	    host->flags & SDHCI_HS400_TUNING)
 893		msm_hc_select_hs400(host);
 894	else
 895		msm_hc_select_default(host);
 896}
 897
 898static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
 899{
 900	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 901	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 902	u32 config, calib_done;
 903	int ret;
 904	const struct sdhci_msm_offset *msm_offset =
 905					msm_host->offset;
 906
 907	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
 908
 909	/*
 910	 * Retuning in HS400 (DDR mode) will fail, just reset the
 911	 * tuning block and restore the saved tuning phase.
 912	 */
 913	ret = msm_init_cm_dll(host);
 914	if (ret)
 915		goto out;
 916
 917	/* Set the selected phase in delay line hw block */
 918	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
 919	if (ret)
 920		goto out;
 921
 922	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 923	config |= CORE_CMD_DAT_TRACK_SEL;
 924	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 925
 926	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 927	config &= ~CORE_CDC_T4_DLY_SEL;
 928	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 929
 930	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 931	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
 932	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 933
 934	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 935	config |= CORE_CDC_SWITCH_RC_EN;
 936	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 937
 938	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 939	config &= ~CORE_START_CDC_TRAFFIC;
 940	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 941
 942	/* Perform CDC Register Initialization Sequence */
 943
 944	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 945	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
 946	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 947	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
 948	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
 949	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
 950	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
 951	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
 952	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
 953
 954	/* CDC HW Calibration */
 955
 956	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 957	config |= CORE_SW_TRIG_FULL_CALIB;
 958	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 959
 960	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 961	config &= ~CORE_SW_TRIG_FULL_CALIB;
 962	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 963
 964	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 965	config |= CORE_HW_AUTOCAL_ENA;
 966	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 967
 968	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 969	config |= CORE_TIMER_ENA;
 970	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 971
 972	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
 973					 calib_done,
 974					 (calib_done & CORE_CALIBRATION_DONE),
 975					 1, 50);
 976
 977	if (ret == -ETIMEDOUT) {
 978		pr_err("%s: %s: CDC calibration was not completed\n",
 979		       mmc_hostname(host->mmc), __func__);
 980		goto out;
 981	}
 982
 983	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
 984			& CORE_CDC_ERROR_CODE_MASK;
 985	if (ret) {
 986		pr_err("%s: %s: CDC error code %d\n",
 987		       mmc_hostname(host->mmc), __func__, ret);
 988		ret = -EINVAL;
 989		goto out;
 990	}
 991
 992	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 993	config |= CORE_START_CDC_TRAFFIC;
 994	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 995out:
 996	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
 997		 __func__, ret);
 998	return ret;
 999}
1000
1001static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1002{
1003	struct mmc_host *mmc = host->mmc;
1004	u32 dll_status, config, ddr_cfg_offset;
1005	int ret;
1006	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1007	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1008	const struct sdhci_msm_offset *msm_offset =
1009					sdhci_priv_msm_offset(host);
1010
1011	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1012
1013	/*
1014	 * Currently the core_ddr_config register defaults to desired
1015	 * configuration on reset. Currently reprogramming the power on
1016	 * reset (POR) value in case it might have been modified by
1017	 * bootloaders. In the future, if this changes, then the desired
1018	 * values will need to be programmed appropriately.
1019	 */
1020	if (msm_host->updated_ddr_cfg)
1021		ddr_cfg_offset = msm_offset->core_ddr_config;
1022	else
1023		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1024	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1025
1026	if (mmc->ios.enhanced_strobe) {
1027		config = readl_relaxed(host->ioaddr +
1028				msm_offset->core_ddr_200_cfg);
1029		config |= CORE_CMDIN_RCLK_EN;
1030		writel_relaxed(config, host->ioaddr +
1031				msm_offset->core_ddr_200_cfg);
1032	}
1033
1034	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1035	config |= CORE_DDR_CAL_EN;
1036	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1037
1038	ret = readl_relaxed_poll_timeout(host->ioaddr +
1039					msm_offset->core_dll_status,
1040					dll_status,
1041					(dll_status & CORE_DDR_DLL_LOCK),
1042					10, 1000);
1043
1044	if (ret == -ETIMEDOUT) {
1045		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1046		       mmc_hostname(host->mmc), __func__);
1047		goto out;
1048	}
1049
1050	/*
1051	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1052	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1053	 * and MCLK must be switched on for at-least 1us before DATA
1054	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1055	 * guarantee above requirement. So PWRSAVE_DLL should not be
1056	 * turned on for host controllers using this DLL.
1057	 */
1058	if (!msm_host->use_14lpp_dll_reset) {
1059		config = readl_relaxed(host->ioaddr +
1060				msm_offset->core_vendor_spec3);
1061		config |= CORE_PWRSAVE_DLL;
1062		writel_relaxed(config, host->ioaddr +
1063				msm_offset->core_vendor_spec3);
1064	}
1065
1066	/*
1067	 * Drain writebuffer to ensure above DLL calibration
1068	 * and PWRSAVE DLL is enabled.
1069	 */
1070	wmb();
1071out:
1072	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1073		 __func__, ret);
1074	return ret;
1075}
1076
1077static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1078{
1079	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1080	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1081	struct mmc_host *mmc = host->mmc;
1082	int ret;
1083	u32 config;
1084	const struct sdhci_msm_offset *msm_offset =
1085					msm_host->offset;
1086
1087	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1088
1089	/*
1090	 * Retuning in HS400 (DDR mode) will fail, just reset the
1091	 * tuning block and restore the saved tuning phase.
1092	 */
1093	ret = msm_init_cm_dll(host);
1094	if (ret)
1095		goto out;
1096
1097	if (!mmc->ios.enhanced_strobe) {
1098		/* Set the selected phase in delay line hw block */
1099		ret = msm_config_cm_dll_phase(host,
1100					      msm_host->saved_tuning_phase);
1101		if (ret)
1102			goto out;
1103		config = readl_relaxed(host->ioaddr +
1104				msm_offset->core_dll_config);
1105		config |= CORE_CMD_DAT_TRACK_SEL;
1106		writel_relaxed(config, host->ioaddr +
1107				msm_offset->core_dll_config);
1108	}
1109
1110	if (msm_host->use_cdclp533)
1111		ret = sdhci_msm_cdclp533_calibration(host);
1112	else
1113		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1114out:
1115	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1116		 __func__, ret);
1117	return ret;
1118}
1119
1120static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1121{
1122	struct mmc_ios *ios = &host->mmc->ios;
1123
1124	/*
1125	 * Tuning is required for SDR104, HS200 and HS400 cards and
1126	 * if clock frequency is greater than 100MHz in these modes.
1127	 */
1128	if (host->clock <= CORE_FREQ_100MHZ ||
1129	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1130	    ios->timing == MMC_TIMING_MMC_HS200 ||
1131	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1132	    ios->enhanced_strobe)
1133		return false;
1134
1135	return true;
1136}
1137
1138static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1139{
1140	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1141	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1142	int ret;
1143
1144	/*
1145	 * SDR DLL comes into picture only for timing modes which needs
1146	 * tuning.
1147	 */
1148	if (!sdhci_msm_is_tuning_needed(host))
1149		return 0;
1150
1151	/* Reset the tuning block */
1152	ret = msm_init_cm_dll(host);
1153	if (ret)
1154		return ret;
1155
1156	/* Restore the tuning block */
1157	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1158
1159	return ret;
1160}
1161
1162static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1163{
1164	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1165	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1166					      msm_offset->core_dll_config);
1167
1168	config = oldconfig;
1169	if (enable) {
1170		config |= CORE_CDR_EN;
1171		config &= ~CORE_CDR_EXT_EN;
1172	} else {
1173		config &= ~CORE_CDR_EN;
1174		config |= CORE_CDR_EXT_EN;
1175	}
1176
1177	if (config != oldconfig) {
1178		writel_relaxed(config, host->ioaddr +
1179			       msm_offset->core_dll_config);
1180	}
1181}
1182
1183static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1184{
1185	struct sdhci_host *host = mmc_priv(mmc);
1186	int tuning_seq_cnt = 10;
1187	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1188	int rc;
1189	struct mmc_ios ios = host->mmc->ios;
1190	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1191	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1192
1193	if (!sdhci_msm_is_tuning_needed(host)) {
1194		msm_host->use_cdr = false;
1195		sdhci_msm_set_cdr(host, false);
1196		return 0;
1197	}
1198
1199	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1200	msm_host->use_cdr = true;
1201
1202	/*
1203	 * Clear tuning_done flag before tuning to ensure proper
1204	 * HS400 settings.
1205	 */
1206	msm_host->tuning_done = 0;
1207
1208	/*
1209	 * For HS400 tuning in HS200 timing requires:
1210	 * - select MCLK/2 in VENDOR_SPEC
1211	 * - program MCLK to 400MHz (or nearest supported) in GCC
1212	 */
1213	if (host->flags & SDHCI_HS400_TUNING) {
1214		sdhci_msm_hc_select_mode(host);
1215		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1216		host->flags &= ~SDHCI_HS400_TUNING;
1217	}
1218
1219retry:
1220	/* First of all reset the tuning block */
1221	rc = msm_init_cm_dll(host);
1222	if (rc)
1223		return rc;
1224
1225	phase = 0;
1226	do {
1227		/* Set the phase in delay line hw block */
1228		rc = msm_config_cm_dll_phase(host, phase);
1229		if (rc)
1230			return rc;
1231
1232		rc = mmc_send_tuning(mmc, opcode, NULL);
1233		if (!rc) {
1234			/* Tuning is successful at this tuning point */
1235			tuned_phases[tuned_phase_cnt++] = phase;
1236			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1237				 mmc_hostname(mmc), phase);
1238		}
1239	} while (++phase < ARRAY_SIZE(tuned_phases));
1240
1241	if (tuned_phase_cnt) {
1242		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1243			/*
1244			 * All phases valid is _almost_ as bad as no phases
1245			 * valid.  Probably all phases are not really reliable
1246			 * but we didn't detect where the unreliable place is.
1247			 * That means we'll essentially be guessing and hoping
1248			 * we get a good phase.  Better to try a few times.
1249			 */
1250			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1251				mmc_hostname(mmc));
1252			if (--tuning_seq_cnt) {
1253				tuned_phase_cnt = 0;
1254				goto retry;
1255			}
1256		}
1257
1258		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1259						     tuned_phase_cnt);
1260		if (rc < 0)
1261			return rc;
1262		else
1263			phase = rc;
1264
1265		/*
1266		 * Finally set the selected phase in delay
1267		 * line hw block.
1268		 */
1269		rc = msm_config_cm_dll_phase(host, phase);
1270		if (rc)
1271			return rc;
1272		msm_host->saved_tuning_phase = phase;
1273		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1274			 mmc_hostname(mmc), phase);
1275	} else {
1276		if (--tuning_seq_cnt)
1277			goto retry;
1278		/* Tuning failed */
1279		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1280		       mmc_hostname(mmc));
1281		rc = -EIO;
1282	}
1283
1284	if (!rc)
1285		msm_host->tuning_done = true;
1286	return rc;
1287}
1288
1289/*
1290 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1291 * This needs to be done for both tuning and enhanced_strobe mode.
1292 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1293 * fixed feedback clock is used.
1294 */
1295static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1296{
1297	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1298	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1299	int ret;
1300
1301	if (host->clock > CORE_FREQ_100MHZ &&
1302	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1303	    !msm_host->calibration_done) {
1304		ret = sdhci_msm_hs400_dll_calibration(host);
1305		if (!ret)
1306			msm_host->calibration_done = true;
1307		else
1308			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1309			       mmc_hostname(host->mmc), ret);
1310	}
1311}
1312
1313static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1314					unsigned int uhs)
1315{
1316	struct mmc_host *mmc = host->mmc;
1317	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1318	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1319	u16 ctrl_2;
1320	u32 config;
1321	const struct sdhci_msm_offset *msm_offset =
1322					msm_host->offset;
1323
1324	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1325	/* Select Bus Speed Mode for host */
1326	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1327	switch (uhs) {
1328	case MMC_TIMING_UHS_SDR12:
1329		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1330		break;
1331	case MMC_TIMING_UHS_SDR25:
1332		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1333		break;
1334	case MMC_TIMING_UHS_SDR50:
1335		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1336		break;
1337	case MMC_TIMING_MMC_HS400:
1338	case MMC_TIMING_MMC_HS200:
1339	case MMC_TIMING_UHS_SDR104:
1340		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1341		break;
1342	case MMC_TIMING_UHS_DDR50:
1343	case MMC_TIMING_MMC_DDR52:
1344		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1345		break;
1346	}
1347
1348	/*
1349	 * When clock frequency is less than 100MHz, the feedback clock must be
1350	 * provided and DLL must not be used so that tuning can be skipped. To
1351	 * provide feedback clock, the mode selection can be any value less
1352	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1353	 */
1354	if (host->clock <= CORE_FREQ_100MHZ) {
1355		if (uhs == MMC_TIMING_MMC_HS400 ||
1356		    uhs == MMC_TIMING_MMC_HS200 ||
1357		    uhs == MMC_TIMING_UHS_SDR104)
1358			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1359		/*
1360		 * DLL is not required for clock <= 100MHz
1361		 * Thus, make sure DLL it is disabled when not required
1362		 */
1363		config = readl_relaxed(host->ioaddr +
1364				msm_offset->core_dll_config);
1365		config |= CORE_DLL_RST;
1366		writel_relaxed(config, host->ioaddr +
1367				msm_offset->core_dll_config);
1368
1369		config = readl_relaxed(host->ioaddr +
1370				msm_offset->core_dll_config);
1371		config |= CORE_DLL_PDN;
1372		writel_relaxed(config, host->ioaddr +
1373				msm_offset->core_dll_config);
1374
1375		/*
1376		 * The DLL needs to be restored and CDCLP533 recalibrated
1377		 * when the clock frequency is set back to 400MHz.
1378		 */
1379		msm_host->calibration_done = false;
1380	}
1381
1382	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1383		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1384	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1385
1386	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1387		sdhci_msm_hs400(host, &mmc->ios);
1388}
1389
1390static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1391{
1392	struct platform_device *pdev = msm_host->pdev;
1393	int ret;
1394
1395	if (level)
1396		ret = pinctrl_pm_select_default_state(&pdev->dev);
1397	else
1398		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1399
1400	return ret;
1401}
1402
1403static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1404{
1405	if (IS_ERR(mmc->supply.vmmc))
1406		return 0;
1407
1408	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1409}
1410
1411static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1412			      struct mmc_host *mmc, bool level)
1413{
1414	int ret;
1415	struct mmc_ios ios;
1416
1417	if (msm_host->vqmmc_enabled == level)
1418		return 0;
1419
1420	if (level) {
1421		/* Set the IO voltage regulator to default voltage level */
1422		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1423			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1424		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1425			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1426
1427		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1428			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1429			if (ret < 0) {
1430				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1431					mmc_hostname(mmc), ret);
1432				goto out;
1433			}
1434		}
1435		ret = regulator_enable(mmc->supply.vqmmc);
1436	} else {
1437		ret = regulator_disable(mmc->supply.vqmmc);
1438	}
1439
1440	if (ret)
1441		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1442			mmc_hostname(mmc), level ? "en":"dis", ret);
1443	else
1444		msm_host->vqmmc_enabled = level;
1445out:
1446	return ret;
1447}
1448
1449static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1450			      struct mmc_host *mmc, bool hpm)
1451{
1452	int load, ret;
1453
1454	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1455	ret = regulator_set_load(mmc->supply.vqmmc, load);
1456	if (ret)
1457		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1458			mmc_hostname(mmc), ret);
1459	return ret;
1460}
1461
1462static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1463			      struct mmc_host *mmc, bool level)
1464{
1465	int ret;
1466	bool always_on;
1467
1468	if (IS_ERR(mmc->supply.vqmmc) ||
1469			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1470		return 0;
1471	/*
1472	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1473	 * and HPM modes by setting the corresponding load.
1474	 *
1475	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1476	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1477	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1478	 * Vqmmc should remain ON, So just set the load instead of turning it
1479	 * off/on.
1480	 */
1481	always_on = !mmc_card_is_removable(mmc) &&
1482			mmc->card && mmc_card_mmc(mmc->card);
1483
1484	if (always_on)
1485		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1486	else
1487		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1488
1489	return ret;
1490}
1491
1492static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1493{
1494	init_waitqueue_head(&msm_host->pwr_irq_wait);
1495}
1496
1497static inline void sdhci_msm_complete_pwr_irq_wait(
1498		struct sdhci_msm_host *msm_host)
1499{
1500	wake_up(&msm_host->pwr_irq_wait);
1501}
1502
1503/*
1504 * sdhci_msm_check_power_status API should be called when registers writes
1505 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1506 * To what state the register writes will change the IO lines should be passed
1507 * as the argument req_type. This API will check whether the IO line's state
1508 * is already the expected state and will wait for power irq only if
1509 * power irq is expected to be triggered based on the current IO line state
1510 * and expected IO line state.
1511 */
1512static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1513{
1514	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1515	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1516	bool done = false;
1517	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1518	const struct sdhci_msm_offset *msm_offset =
1519					msm_host->offset;
1520
1521	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1522			mmc_hostname(host->mmc), __func__, req_type,
1523			msm_host->curr_pwr_state, msm_host->curr_io_level);
1524
1525	/*
1526	 * The power interrupt will not be generated for signal voltage
1527	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1528	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1529	 * it as always set.
1530	 */
1531	if (!msm_host->mci_removed)
1532		val = msm_host_readl(msm_host, host,
1533				msm_offset->core_generics);
1534	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1535	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1536		return;
1537	}
1538
1539	/*
1540	 * The IRQ for request type IO High/LOW will be generated when -
1541	 * there is a state change in 1.8V enable bit (bit 3) of
1542	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1543	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1544	 * to set it to 3.3V before card detection happens, the
1545	 * IRQ doesn't get triggered as there is no state change in this bit.
1546	 * The driver already handles this case by changing the IO voltage
1547	 * level to high as part of controller power up sequence. Hence, check
1548	 * for host->pwr to handle a case where IO voltage high request is
1549	 * issued even before controller power up.
1550	 */
1551	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1552		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1553				mmc_hostname(host->mmc), req_type);
1554		return;
1555	}
1556	if ((req_type & msm_host->curr_pwr_state) ||
1557			(req_type & msm_host->curr_io_level))
1558		done = true;
1559	/*
1560	 * This is needed here to handle cases where register writes will
1561	 * not change the current bus state or io level of the controller.
1562	 * In this case, no power irq will be triggerred and we should
1563	 * not wait.
1564	 */
1565	if (!done) {
1566		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1567				msm_host->pwr_irq_flag,
1568				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1569			dev_warn(&msm_host->pdev->dev,
1570				 "%s: pwr_irq for req: (%d) timed out\n",
1571				 mmc_hostname(host->mmc), req_type);
1572	}
1573	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1574			__func__, req_type);
1575}
1576
1577static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1578{
1579	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1580	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1581	const struct sdhci_msm_offset *msm_offset =
1582					msm_host->offset;
1583
1584	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1585		mmc_hostname(host->mmc),
1586		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1587		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1588		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1589}
1590
1591static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1592{
1593	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1594	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1595	struct mmc_host *mmc = host->mmc;
1596	u32 irq_status, irq_ack = 0;
1597	int retry = 10, ret;
1598	u32 pwr_state = 0, io_level = 0;
1599	u32 config;
1600	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1601
1602	irq_status = msm_host_readl(msm_host, host,
1603			msm_offset->core_pwrctl_status);
1604	irq_status &= INT_MASK;
1605
1606	msm_host_writel(msm_host, irq_status, host,
1607			msm_offset->core_pwrctl_clear);
1608
1609	/*
1610	 * There is a rare HW scenario where the first clear pulse could be
1611	 * lost when actual reset and clear/read of status register is
1612	 * happening at a time. Hence, retry for at least 10 times to make
1613	 * sure status register is cleared. Otherwise, this will result in
1614	 * a spurious power IRQ resulting in system instability.
1615	 */
1616	while (irq_status & msm_host_readl(msm_host, host,
1617				msm_offset->core_pwrctl_status)) {
1618		if (retry == 0) {
1619			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1620					mmc_hostname(host->mmc), irq_status);
1621			sdhci_msm_dump_pwr_ctrl_regs(host);
1622			WARN_ON(1);
1623			break;
1624		}
1625		msm_host_writel(msm_host, irq_status, host,
1626			msm_offset->core_pwrctl_clear);
1627		retry--;
1628		udelay(10);
1629	}
1630
1631	/* Handle BUS ON/OFF*/
1632	if (irq_status & CORE_PWRCTL_BUS_ON) {
1633		pwr_state = REQ_BUS_ON;
1634		io_level = REQ_IO_HIGH;
1635	}
1636	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1637		pwr_state = REQ_BUS_OFF;
1638		io_level = REQ_IO_LOW;
1639	}
1640
1641	if (pwr_state) {
1642		ret = sdhci_msm_set_vmmc(mmc);
1643		if (!ret)
1644			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1645					pwr_state & REQ_BUS_ON);
1646		if (!ret)
1647			ret = sdhci_msm_set_pincfg(msm_host,
1648					pwr_state & REQ_BUS_ON);
1649		if (!ret)
1650			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1651		else
1652			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1653	}
1654
1655	/* Handle IO LOW/HIGH */
1656	if (irq_status & CORE_PWRCTL_IO_LOW)
1657		io_level = REQ_IO_LOW;
1658
1659	if (irq_status & CORE_PWRCTL_IO_HIGH)
1660		io_level = REQ_IO_HIGH;
1661
1662	if (io_level)
1663		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1664
1665	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1666		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1667		if (ret < 0) {
1668			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1669					mmc_hostname(mmc), ret,
1670					mmc->ios.signal_voltage, mmc->ios.vdd,
1671					irq_status);
1672			irq_ack |= CORE_PWRCTL_IO_FAIL;
1673		}
1674	}
1675
1676	/*
1677	 * The driver has to acknowledge the interrupt, switch voltages and
1678	 * report back if it succeded or not to this register. The voltage
1679	 * switches are handled by the sdhci core, so just report success.
1680	 */
1681	msm_host_writel(msm_host, irq_ack, host,
1682			msm_offset->core_pwrctl_ctl);
1683
1684	/*
1685	 * If we don't have info regarding the voltage levels supported by
1686	 * regulators, don't change the IO PAD PWR SWITCH.
1687	 */
1688	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1689		u32 new_config;
1690		/*
1691		 * We should unset IO PAD PWR switch only if the register write
1692		 * can set IO lines high and the regulator also switches to 3 V.
1693		 * Else, we should keep the IO PAD PWR switch set.
1694		 * This is applicable to certain targets where eMMC vccq supply
1695		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1696		 * IO PAD PWR switch must be kept set to reflect actual
1697		 * regulator voltage. This way, during initialization of
1698		 * controllers with only 1.8V, we will set the IO PAD bit
1699		 * without waiting for a REQ_IO_LOW.
1700		 */
1701		config = readl_relaxed(host->ioaddr +
1702				msm_offset->core_vendor_spec);
1703		new_config = config;
1704
1705		if ((io_level & REQ_IO_HIGH) &&
1706				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1707			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1708		else if ((io_level & REQ_IO_LOW) ||
1709				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1710			new_config |= CORE_IO_PAD_PWR_SWITCH;
1711
1712		if (config ^ new_config)
1713			writel_relaxed(new_config, host->ioaddr +
1714					msm_offset->core_vendor_spec);
1715	}
1716
1717	if (pwr_state)
1718		msm_host->curr_pwr_state = pwr_state;
1719	if (io_level)
1720		msm_host->curr_io_level = io_level;
1721
1722	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1723		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1724		irq_ack);
1725}
1726
1727static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1728{
1729	struct sdhci_host *host = (struct sdhci_host *)data;
1730	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1731	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1732
1733	sdhci_msm_handle_pwr_irq(host, irq);
1734	msm_host->pwr_irq_flag = 1;
1735	sdhci_msm_complete_pwr_irq_wait(msm_host);
1736
1737
1738	return IRQ_HANDLED;
1739}
1740
1741static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1742{
1743	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1744	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1745	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1746
1747	return clk_round_rate(core_clk, ULONG_MAX);
1748}
1749
1750static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1751{
1752	return SDHCI_MSM_MIN_CLOCK;
1753}
1754
1755/*
1756 * __sdhci_msm_set_clock - sdhci_msm clock control.
1757 *
1758 * Description:
1759 * MSM controller does not use internal divider and
1760 * instead directly control the GCC clock as per
1761 * HW recommendation.
1762 **/
1763static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1764{
1765	u16 clk;
1766
1767	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1768
1769	if (clock == 0)
1770		return;
1771
1772	/*
1773	 * MSM controller do not use clock divider.
1774	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1775	 * clock with no divider value programmed.
1776	 */
1777	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1778	sdhci_enable_clk(host, clk);
1779}
1780
1781/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1782static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1783{
1784	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1785	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1786
1787	if (!clock) {
1788		host->mmc->actual_clock = msm_host->clk_rate = 0;
1789		goto out;
1790	}
1791
1792	sdhci_msm_hc_select_mode(host);
1793
1794	msm_set_clock_rate_for_bus_mode(host, clock);
1795out:
1796	__sdhci_msm_set_clock(host, clock);
1797}
1798
1799/*****************************************************************************\
1800 *                                                                           *
1801 * Inline Crypto Engine (ICE) support                                        *
1802 *                                                                           *
1803\*****************************************************************************/
1804
1805#ifdef CONFIG_MMC_CRYPTO
1806
1807#define AES_256_XTS_KEY_SIZE			64
1808
1809/* QCOM ICE registers */
1810
1811#define QCOM_ICE_REG_VERSION			0x0008
1812
1813#define QCOM_ICE_REG_FUSE_SETTING		0x0010
1814#define QCOM_ICE_FUSE_SETTING_MASK		0x1
1815#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	0x2
1816#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	0x4
1817
1818#define QCOM_ICE_REG_BIST_STATUS		0x0070
1819#define QCOM_ICE_BIST_STATUS_MASK		0xF0000000
1820
1821#define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000
1822
1823#define sdhci_msm_ice_writel(host, val, reg)	\
1824	writel((val), (host)->ice_mem + (reg))
1825#define sdhci_msm_ice_readl(host, reg)	\
1826	readl((host)->ice_mem + (reg))
1827
1828static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1829{
1830	struct device *dev = mmc_dev(msm_host->mmc);
1831	u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1832	int major = regval >> 24;
1833	int minor = (regval >> 16) & 0xFF;
1834	int step = regval & 0xFFFF;
1835
1836	/* For now this driver only supports ICE version 3. */
1837	if (major != 3) {
1838		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1839			 major, minor, step);
1840		return false;
1841	}
1842
1843	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1844		 major, minor, step);
1845
1846	/* If fuses are blown, ICE might not work in the standard way. */
1847	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1848	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1849		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1850		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1851		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1852		return false;
1853	}
1854	return true;
1855}
1856
1857static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1858{
1859	return devm_clk_get(dev, "ice");
1860}
1861
1862static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1863			      struct cqhci_host *cq_host)
1864{
1865	struct mmc_host *mmc = msm_host->mmc;
1866	struct device *dev = mmc_dev(mmc);
1867	struct resource *res;
1868
1869	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1870		return 0;
1871
1872	res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1873					   "ice");
1874	if (!res) {
1875		dev_warn(dev, "ICE registers not found\n");
1876		goto disable;
1877	}
1878
1879	if (!qcom_scm_ice_available()) {
1880		dev_warn(dev, "ICE SCM interface not found\n");
1881		goto disable;
1882	}
1883
1884	msm_host->ice_mem = devm_ioremap_resource(dev, res);
1885	if (IS_ERR(msm_host->ice_mem))
1886		return PTR_ERR(msm_host->ice_mem);
1887
1888	if (!sdhci_msm_ice_supported(msm_host))
1889		goto disable;
1890
 
1891	mmc->caps2 |= MMC_CAP2_CRYPTO;
1892	return 0;
1893
1894disable:
1895	dev_warn(dev, "Disabling inline encryption support\n");
1896	return 0;
1897}
1898
1899static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1900{
1901	u32 regval;
1902
1903	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1904	/*
1905	 * Enable low power mode sequence
1906	 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1907	 */
1908	regval |= 0x7000;
1909	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1910}
1911
1912static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1913{
1914	u32 regval;
1915
1916	/* ICE Optimizations Enable Sequence */
1917	regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1918	regval |= 0xD807100;
1919	/* ICE HPG requires delay before writing */
1920	udelay(5);
1921	sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1922	udelay(5);
1923}
1924
1925/*
1926 * Wait until the ICE BIST (built-in self-test) has completed.
1927 *
1928 * This may be necessary before ICE can be used.
1929 *
1930 * Note that we don't really care whether the BIST passed or failed; we really
1931 * just want to make sure that it isn't still running.  This is because (a) the
1932 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1933 * documented to reject crypto requests if the BIST fails, so we needn't do it
1934 * in software too, and (c) properly testing storage encryption requires testing
1935 * the full storage stack anyway, and not relying on hardware-level self-tests.
1936 */
1937static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1938{
1939	u32 regval;
1940	int err;
1941
1942	err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1943				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1944				 50, 5000);
1945	if (err)
1946		dev_err(mmc_dev(msm_host->mmc),
1947			"Timed out waiting for ICE self-test to complete\n");
1948	return err;
1949}
1950
1951static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1952{
1953	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1954		return;
1955	sdhci_msm_ice_low_power_mode_enable(msm_host);
1956	sdhci_msm_ice_optimization_enable(msm_host);
1957	sdhci_msm_ice_wait_bist_status(msm_host);
1958}
1959
1960static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1961{
1962	if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1963		return 0;
1964	return sdhci_msm_ice_wait_bist_status(msm_host);
1965}
1966
1967/*
1968 * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1969 * vendor-specific SCM calls for this; it doesn't support the standard way.
1970 */
1971static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1972				 const union cqhci_crypto_cfg_entry *cfg,
1973				 int slot)
1974{
1975	struct device *dev = mmc_dev(cq_host->mmc);
 
 
1976	union cqhci_crypto_cap_entry cap;
1977	union {
1978		u8 bytes[AES_256_XTS_KEY_SIZE];
1979		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1980	} key;
1981	int i;
1982	int err;
1983
1984	if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1985		return qcom_scm_ice_invalidate_key(slot);
1986
1987	/* Only AES-256-XTS has been tested so far. */
1988	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1989	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1990	    cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1991		dev_err_ratelimited(dev,
1992				    "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1993				    cap.algorithm_id, cap.key_size);
1994		return -EINVAL;
1995	}
1996
1997	memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1998
1999	/*
2000	 * The SCM call byte-swaps the 32-bit words of the key.  So we have to
2001	 * do the same, in order for the final key be correct.
2002	 */
2003	for (i = 0; i < ARRAY_SIZE(key.words); i++)
2004		__cpu_to_be32s(&key.words[i]);
2005
2006	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2007				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2008				   cfg->data_unit_size);
2009	memzero_explicit(&key, sizeof(key));
2010	return err;
2011}
 
2012#else /* CONFIG_MMC_CRYPTO */
2013static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2014{
2015	return NULL;
2016}
2017
2018static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2019				     struct cqhci_host *cq_host)
2020{
2021	return 0;
2022}
2023
2024static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2025{
2026}
2027
2028static inline int __maybe_unused
2029sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2030{
2031	return 0;
2032}
 
 
 
 
 
 
2033#endif /* !CONFIG_MMC_CRYPTO */
2034
2035/*****************************************************************************\
2036 *                                                                           *
2037 * MSM Command Queue Engine (CQE)                                            *
2038 *                                                                           *
2039\*****************************************************************************/
2040
2041static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2042{
2043	int cmd_error = 0;
2044	int data_error = 0;
2045
2046	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2047		return intmask;
2048
2049	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2050	return 0;
2051}
2052
2053static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2054{
2055	struct sdhci_host *host = mmc_priv(mmc);
2056	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2057	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2058
2059	sdhci_cqe_enable(mmc);
2060	sdhci_msm_ice_enable(msm_host);
2061}
2062
2063static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2064{
2065	struct sdhci_host *host = mmc_priv(mmc);
2066	unsigned long flags;
2067	u32 ctrl;
2068
2069	/*
2070	 * When CQE is halted, the legacy SDHCI path operates only
2071	 * on 16-byte descriptors in 64bit mode.
2072	 */
2073	if (host->flags & SDHCI_USE_64_BIT_DMA)
2074		host->desc_sz = 16;
2075
2076	spin_lock_irqsave(&host->lock, flags);
2077
2078	/*
2079	 * During CQE command transfers, command complete bit gets latched.
2080	 * So s/w should clear command complete interrupt status when CQE is
2081	 * either halted or disabled. Otherwise unexpected SDCHI legacy
2082	 * interrupt gets triggered when CQE is halted/disabled.
2083	 */
2084	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2085	ctrl |= SDHCI_INT_RESPONSE;
2086	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
2087	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2088
2089	spin_unlock_irqrestore(&host->lock, flags);
2090
2091	sdhci_cqe_disable(mmc, recovery);
2092}
2093
2094static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2095{
2096	u32 count, start = 15;
2097
2098	__sdhci_set_timeout(host, cmd);
2099	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2100	/*
2101	 * Update software timeout value if its value is less than hardware data
2102	 * timeout value. Qcom SoC hardware data timeout value was calculated
2103	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2104	 */
2105	if (cmd && cmd->data && host->clock > 400000 &&
2106	    host->clock <= 50000000 &&
2107	    ((1 << (count + start)) > (10 * host->clock)))
2108		host->data_timeout = 22LL * NSEC_PER_SEC;
2109}
2110
2111static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2112	.enable		= sdhci_msm_cqe_enable,
2113	.disable	= sdhci_msm_cqe_disable,
2114#ifdef CONFIG_MMC_CRYPTO
2115	.program_key	= sdhci_msm_program_key,
2116#endif
2117};
2118
2119static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2120				struct platform_device *pdev)
2121{
2122	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2123	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2124	struct cqhci_host *cq_host;
2125	bool dma64;
2126	u32 cqcfg;
2127	int ret;
2128
2129	/*
2130	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2131	 * So ensure ADMA table is allocated for 16byte descriptors.
2132	 */
2133	if (host->caps & SDHCI_CAN_64BIT)
2134		host->alloc_desc_sz = 16;
2135
2136	ret = sdhci_setup_host(host);
2137	if (ret)
2138		return ret;
2139
2140	cq_host = cqhci_pltfm_init(pdev);
2141	if (IS_ERR(cq_host)) {
2142		ret = PTR_ERR(cq_host);
2143		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2144		goto cleanup;
2145	}
2146
2147	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2148	cq_host->ops = &sdhci_msm_cqhci_ops;
2149
2150	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2151
2152	ret = sdhci_msm_ice_init(msm_host, cq_host);
2153	if (ret)
2154		goto cleanup;
2155
2156	ret = cqhci_init(cq_host, host->mmc, dma64);
2157	if (ret) {
2158		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2159				mmc_hostname(host->mmc), ret);
2160		goto cleanup;
2161	}
2162
2163	/* Disable cqe reset due to cqe enable signal */
2164	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2165	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2166	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2167
2168	/*
2169	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2170	 * So limit desc_sz to 12 so that the data commands that are sent
2171	 * during card initialization (before CQE gets enabled) would
2172	 * get executed without any issues.
2173	 */
2174	if (host->flags & SDHCI_USE_64_BIT_DMA)
2175		host->desc_sz = 12;
2176
2177	ret = __sdhci_add_host(host);
2178	if (ret)
2179		goto cleanup;
2180
2181	dev_info(&pdev->dev, "%s: CQE init: success\n",
2182			mmc_hostname(host->mmc));
2183	return ret;
2184
2185cleanup:
2186	sdhci_cleanup_host(host);
2187	return ret;
2188}
2189
2190/*
2191 * Platform specific register write functions. This is so that, if any
2192 * register write needs to be followed up by platform specific actions,
2193 * they can be added here. These functions can go to sleep when writes
2194 * to certain registers are done.
2195 * These functions are relying on sdhci_set_ios not using spinlock.
2196 */
2197static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2198{
2199	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2200	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2201	u32 req_type = 0;
2202
2203	switch (reg) {
2204	case SDHCI_HOST_CONTROL2:
2205		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2206			REQ_IO_HIGH;
2207		break;
2208	case SDHCI_SOFTWARE_RESET:
2209		if (host->pwr && (val & SDHCI_RESET_ALL))
2210			req_type = REQ_BUS_OFF;
2211		break;
2212	case SDHCI_POWER_CONTROL:
2213		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2214		break;
2215	case SDHCI_TRANSFER_MODE:
2216		msm_host->transfer_mode = val;
2217		break;
2218	case SDHCI_COMMAND:
2219		if (!msm_host->use_cdr)
2220			break;
2221		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2222		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
2223			sdhci_msm_set_cdr(host, true);
2224		else
2225			sdhci_msm_set_cdr(host, false);
2226		break;
2227	}
2228
2229	if (req_type) {
2230		msm_host->pwr_irq_flag = 0;
2231		/*
2232		 * Since this register write may trigger a power irq, ensure
2233		 * all previous register writes are complete by this point.
2234		 */
2235		mb();
2236	}
2237	return req_type;
2238}
2239
2240/* This function may sleep*/
2241static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242{
2243	u32 req_type = 0;
2244
2245	req_type = __sdhci_msm_check_write(host, val, reg);
2246	writew_relaxed(val, host->ioaddr + reg);
2247
2248	if (req_type)
2249		sdhci_msm_check_power_status(host, req_type);
2250}
2251
2252/* This function may sleep*/
2253static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254{
2255	u32 req_type = 0;
2256
2257	req_type = __sdhci_msm_check_write(host, val, reg);
2258
2259	writeb_relaxed(val, host->ioaddr + reg);
2260
2261	if (req_type)
2262		sdhci_msm_check_power_status(host, req_type);
2263}
2264
2265static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266{
2267	struct mmc_host *mmc = msm_host->mmc;
2268	struct regulator *supply = mmc->supply.vqmmc;
2269	u32 caps = 0, config;
2270	struct sdhci_host *host = mmc_priv(mmc);
2271	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272
2273	if (!IS_ERR(mmc->supply.vqmmc)) {
2274		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275			caps |= CORE_1_8V_SUPPORT;
2276		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277			caps |= CORE_3_0V_SUPPORT;
2278
2279		if (!caps)
2280			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281					mmc_hostname(mmc));
2282	}
2283
2284	if (caps) {
2285		/*
2286		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287		 * bit can be used as required later on.
2288		 */
2289		u32 io_level = msm_host->curr_io_level;
2290
2291		config = readl_relaxed(host->ioaddr +
2292				msm_offset->core_vendor_spec);
2293		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294
2295		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2296			config &= ~CORE_IO_PAD_PWR_SWITCH;
2297		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298			config |= CORE_IO_PAD_PWR_SWITCH;
2299
2300		writel_relaxed(config,
2301				host->ioaddr + msm_offset->core_vendor_spec);
2302	}
2303	msm_host->caps_0 |= caps;
2304	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305}
2306
2307static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2308{
2309	int ret;
2310
2311	ret = mmc_regulator_get_supply(msm_host->mmc);
2312	if (ret)
2313		return ret;
2314
2315	sdhci_msm_set_regulator_caps(msm_host);
2316
2317	return 0;
2318}
2319
2320static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2321				      struct mmc_ios *ios)
2322{
2323	struct sdhci_host *host = mmc_priv(mmc);
2324	u16 ctrl, status;
2325
2326	/*
2327	 * Signal Voltage Switching is only applicable for Host Controllers
2328	 * v3.00 and above.
2329	 */
2330	if (host->version < SDHCI_SPEC_300)
2331		return 0;
2332
2333	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2334
2335	switch (ios->signal_voltage) {
2336	case MMC_SIGNAL_VOLTAGE_330:
2337		if (!(host->flags & SDHCI_SIGNALING_330))
2338			return -EINVAL;
2339
2340		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2341		ctrl &= ~SDHCI_CTRL_VDD_180;
2342		break;
2343	case MMC_SIGNAL_VOLTAGE_180:
2344		if (!(host->flags & SDHCI_SIGNALING_180))
2345			return -EINVAL;
2346
2347		/* Enable 1.8V Signal Enable in the Host Control2 register */
2348		ctrl |= SDHCI_CTRL_VDD_180;
2349		break;
2350
2351	default:
2352		return -EINVAL;
2353	}
2354
2355	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2356
2357	/* Wait for 5ms */
2358	usleep_range(5000, 5500);
2359
2360	/* regulator output should be stable within 5 ms */
2361	status = ctrl & SDHCI_CTRL_VDD_180;
2362	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2363	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2364		return 0;
2365
2366	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2367		mmc_hostname(mmc));
2368
2369	return -EAGAIN;
2370}
2371
2372#define DRIVER_NAME "sdhci_msm"
2373#define SDHCI_MSM_DUMP(f, x...) \
2374	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2375
2376static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2377{
2378	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2379	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2380	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2381
2382	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2383
2384	SDHCI_MSM_DUMP(
2385			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2386		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2387		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2388		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2389	SDHCI_MSM_DUMP(
2390			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2391		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2392		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2393		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2394	SDHCI_MSM_DUMP(
2395			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2396		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2397		readl_relaxed(host->ioaddr +
2398			msm_offset->core_vendor_spec_func2),
2399		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2400}
2401
2402static const struct sdhci_msm_variant_ops mci_var_ops = {
2403	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2404	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2405};
2406
2407static const struct sdhci_msm_variant_ops v5_var_ops = {
2408	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2409	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2410};
2411
2412static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2413	.var_ops = &mci_var_ops,
2414	.offset = &sdhci_msm_mci_offset,
2415};
2416
2417static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2418	.mci_removed = true,
2419	.var_ops = &v5_var_ops,
2420	.offset = &sdhci_msm_v5_offset,
2421};
2422
2423static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2424	.mci_removed = true,
2425	.restore_dll_config = true,
2426	.var_ops = &v5_var_ops,
2427	.offset = &sdhci_msm_v5_offset,
2428};
2429
2430static const struct of_device_id sdhci_msm_dt_match[] = {
2431	/*
2432	 * Do not add new variants to the driver which are compatible with
2433	 * generic ones, unless they need customization.
2434	 */
2435	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2436	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2437	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2438	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2439	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2440	{},
2441};
2442
2443MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2444
2445static const struct sdhci_ops sdhci_msm_ops = {
2446	.reset = sdhci_and_cqhci_reset,
2447	.set_clock = sdhci_msm_set_clock,
2448	.get_min_clock = sdhci_msm_get_min_clock,
2449	.get_max_clock = sdhci_msm_get_max_clock,
2450	.set_bus_width = sdhci_set_bus_width,
2451	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2452	.write_w = sdhci_msm_writew,
2453	.write_b = sdhci_msm_writeb,
2454	.irq	= sdhci_msm_cqe_irq,
2455	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2456	.set_power = sdhci_set_power_noreg,
2457	.set_timeout = sdhci_msm_set_timeout,
2458};
2459
2460static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2461	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2462		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2463		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2464		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2465
2466	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2467	.ops = &sdhci_msm_ops,
2468};
2469
2470static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2471		struct sdhci_host *host)
2472{
2473	struct device_node *node = pdev->dev.of_node;
2474	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2475	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2476
2477	if (of_property_read_u32(node, "qcom,ddr-config",
2478				&msm_host->ddr_config))
2479		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2480
2481	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
 
 
 
2482}
2483
2484static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2485{
2486	struct reset_control *reset;
2487	int ret = 0;
2488
2489	reset = reset_control_get_optional_exclusive(dev, NULL);
2490	if (IS_ERR(reset))
2491		return dev_err_probe(dev, PTR_ERR(reset),
2492				"unable to acquire core_reset\n");
2493
2494	if (!reset)
2495		return ret;
2496
2497	ret = reset_control_assert(reset);
2498	if (ret) {
2499		reset_control_put(reset);
2500		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2501	}
2502
2503	/*
2504	 * The hardware requirement for delay between assert/deassert
2505	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2506	 * ~125us (4/32768). To be on the safe side add 200us delay.
2507	 */
2508	usleep_range(200, 210);
2509
2510	ret = reset_control_deassert(reset);
2511	if (ret) {
2512		reset_control_put(reset);
2513		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2514	}
2515
2516	usleep_range(200, 210);
2517	reset_control_put(reset);
2518
2519	return ret;
2520}
2521
2522static int sdhci_msm_probe(struct platform_device *pdev)
2523{
2524	struct sdhci_host *host;
2525	struct sdhci_pltfm_host *pltfm_host;
2526	struct sdhci_msm_host *msm_host;
2527	struct clk *clk;
2528	int ret;
2529	u16 host_version, core_minor;
2530	u32 core_version, config;
2531	u8 core_major;
2532	const struct sdhci_msm_offset *msm_offset;
2533	const struct sdhci_msm_variant_info *var_info;
2534	struct device_node *node = pdev->dev.of_node;
2535
2536	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2537	if (IS_ERR(host))
2538		return PTR_ERR(host);
2539
2540	host->sdma_boundary = 0;
2541	pltfm_host = sdhci_priv(host);
2542	msm_host = sdhci_pltfm_priv(pltfm_host);
2543	msm_host->mmc = host->mmc;
2544	msm_host->pdev = pdev;
2545
2546	ret = mmc_of_parse(host->mmc);
2547	if (ret)
2548		goto pltfm_free;
2549
2550	/*
2551	 * Based on the compatible string, load the required msm host info from
2552	 * the data associated with the version info.
2553	 */
2554	var_info = of_device_get_match_data(&pdev->dev);
2555
2556	msm_host->mci_removed = var_info->mci_removed;
2557	msm_host->restore_dll_config = var_info->restore_dll_config;
2558	msm_host->var_ops = var_info->var_ops;
2559	msm_host->offset = var_info->offset;
2560
2561	msm_offset = msm_host->offset;
2562
2563	sdhci_get_of_property(pdev);
2564	sdhci_msm_get_of_property(pdev, host);
2565
2566	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2567
2568	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2569	if (ret)
2570		goto pltfm_free;
2571
2572	/* Setup SDCC bus voter clock. */
2573	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2574	if (!IS_ERR(msm_host->bus_clk)) {
2575		/* Vote for max. clk rate for max. performance */
2576		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2577		if (ret)
2578			goto pltfm_free;
2579		ret = clk_prepare_enable(msm_host->bus_clk);
2580		if (ret)
2581			goto pltfm_free;
2582	}
2583
2584	/* Setup main peripheral bus clock */
2585	clk = devm_clk_get(&pdev->dev, "iface");
2586	if (IS_ERR(clk)) {
2587		ret = PTR_ERR(clk);
2588		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2589		goto bus_clk_disable;
2590	}
2591	msm_host->bulk_clks[1].clk = clk;
2592
2593	/* Setup SDC MMC clock */
2594	clk = devm_clk_get(&pdev->dev, "core");
2595	if (IS_ERR(clk)) {
2596		ret = PTR_ERR(clk);
2597		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2598		goto bus_clk_disable;
2599	}
2600	msm_host->bulk_clks[0].clk = clk;
2601
2602	 /* Check for optional interconnect paths */
2603	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2604	if (ret)
2605		goto bus_clk_disable;
2606
2607	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2608	if (ret)
2609		goto bus_clk_disable;
2610
2611	/* OPP table is optional */
2612	ret = devm_pm_opp_of_add_table(&pdev->dev);
2613	if (ret && ret != -ENODEV) {
2614		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2615		goto bus_clk_disable;
2616	}
2617
2618	/* Vote for maximum clock rate for maximum performance */
2619	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2620	if (ret)
2621		dev_warn(&pdev->dev, "core clock boost failed\n");
2622
2623	clk = devm_clk_get(&pdev->dev, "cal");
2624	if (IS_ERR(clk))
2625		clk = NULL;
2626	msm_host->bulk_clks[2].clk = clk;
2627
2628	clk = devm_clk_get(&pdev->dev, "sleep");
2629	if (IS_ERR(clk))
2630		clk = NULL;
2631	msm_host->bulk_clks[3].clk = clk;
2632
2633	clk = sdhci_msm_ice_get_clk(&pdev->dev);
2634	if (IS_ERR(clk))
2635		clk = NULL;
2636	msm_host->bulk_clks[4].clk = clk;
2637
2638	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2639				      msm_host->bulk_clks);
2640	if (ret)
2641		goto bus_clk_disable;
2642
2643	/*
2644	 * xo clock is needed for FLL feature of cm_dll.
2645	 * In case if xo clock is not mentioned in DT, warn and proceed.
2646	 */
2647	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2648	if (IS_ERR(msm_host->xo_clk)) {
2649		ret = PTR_ERR(msm_host->xo_clk);
2650		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2651	}
2652
2653	if (!msm_host->mci_removed) {
2654		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2655		if (IS_ERR(msm_host->core_mem)) {
2656			ret = PTR_ERR(msm_host->core_mem);
2657			goto clk_disable;
2658		}
2659	}
2660
2661	/* Reset the vendor spec register to power on reset state */
2662	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2663			host->ioaddr + msm_offset->core_vendor_spec);
2664
2665	if (!msm_host->mci_removed) {
2666		/* Set HC_MODE_EN bit in HC_MODE register */
2667		msm_host_writel(msm_host, HC_MODE_EN, host,
2668				msm_offset->core_hc_mode);
2669		config = msm_host_readl(msm_host, host,
2670				msm_offset->core_hc_mode);
2671		config |= FF_CLK_SW_RST_DIS;
2672		msm_host_writel(msm_host, config, host,
2673				msm_offset->core_hc_mode);
2674	}
2675
2676	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2677	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2678		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2679			       SDHCI_VENDOR_VER_SHIFT));
2680
2681	core_version = msm_host_readl(msm_host, host,
2682			msm_offset->core_mci_version);
2683	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2684		      CORE_VERSION_MAJOR_SHIFT;
2685	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2686	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2687		core_version, core_major, core_minor);
2688
2689	if (core_major == 1 && core_minor >= 0x42)
2690		msm_host->use_14lpp_dll_reset = true;
2691
2692	/*
2693	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2694	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2695	 */
2696	if (core_major == 1 && core_minor < 0x34)
2697		msm_host->use_cdclp533 = true;
2698
2699	/*
2700	 * Support for some capabilities is not advertised by newer
2701	 * controller versions and must be explicitly enabled.
2702	 */
2703	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2704		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2705		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2706		writel_relaxed(config, host->ioaddr +
2707				msm_offset->core_vendor_spec_capabilities0);
2708	}
2709
2710	if (core_major == 1 && core_minor >= 0x49)
2711		msm_host->updated_ddr_cfg = true;
2712
2713	if (core_major == 1 && core_minor >= 0x71)
2714		msm_host->uses_tassadar_dll = true;
2715
2716	ret = sdhci_msm_register_vreg(msm_host);
2717	if (ret)
2718		goto clk_disable;
2719
2720	/*
2721	 * Power on reset state may trigger power irq if previous status of
2722	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2723	 * interrupt in GIC, any pending power irq interrupt should be
2724	 * acknowledged. Otherwise power irq interrupt handler would be
2725	 * fired prematurely.
2726	 */
2727	sdhci_msm_handle_pwr_irq(host, 0);
2728
2729	/*
2730	 * Ensure that above writes are propogated before interrupt enablement
2731	 * in GIC.
2732	 */
2733	mb();
2734
2735	/* Setup IRQ for handling power/voltage tasks with PMIC */
2736	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2737	if (msm_host->pwr_irq < 0) {
2738		ret = msm_host->pwr_irq;
2739		goto clk_disable;
2740	}
2741
2742	sdhci_msm_init_pwr_irq_wait(msm_host);
2743	/* Enable pwr irq interrupts */
2744	msm_host_writel(msm_host, INT_MASK, host,
2745		msm_offset->core_pwrctl_mask);
2746
2747	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2748					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2749					dev_name(&pdev->dev), host);
2750	if (ret) {
2751		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2752		goto clk_disable;
2753	}
2754
2755	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2756
2757	/* Set the timeout value to max possible */
2758	host->max_timeout_count = 0xF;
2759
2760	pm_runtime_get_noresume(&pdev->dev);
2761	pm_runtime_set_active(&pdev->dev);
2762	pm_runtime_enable(&pdev->dev);
2763	pm_runtime_set_autosuspend_delay(&pdev->dev,
2764					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2765	pm_runtime_use_autosuspend(&pdev->dev);
2766
2767	host->mmc_host_ops.start_signal_voltage_switch =
2768		sdhci_msm_start_signal_voltage_switch;
2769	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2770	if (of_property_read_bool(node, "supports-cqe"))
2771		ret = sdhci_msm_cqe_add_host(host, pdev);
2772	else
2773		ret = sdhci_add_host(host);
2774	if (ret)
2775		goto pm_runtime_disable;
2776
2777	pm_runtime_mark_last_busy(&pdev->dev);
2778	pm_runtime_put_autosuspend(&pdev->dev);
2779
2780	return 0;
2781
2782pm_runtime_disable:
2783	pm_runtime_disable(&pdev->dev);
2784	pm_runtime_set_suspended(&pdev->dev);
2785	pm_runtime_put_noidle(&pdev->dev);
2786clk_disable:
2787	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2788				   msm_host->bulk_clks);
2789bus_clk_disable:
2790	if (!IS_ERR(msm_host->bus_clk))
2791		clk_disable_unprepare(msm_host->bus_clk);
2792pltfm_free:
2793	sdhci_pltfm_free(pdev);
2794	return ret;
2795}
2796
2797static int sdhci_msm_remove(struct platform_device *pdev)
2798{
2799	struct sdhci_host *host = platform_get_drvdata(pdev);
2800	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2801	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2802	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2803		    0xffffffff);
2804
2805	sdhci_remove_host(host, dead);
2806
2807	pm_runtime_get_sync(&pdev->dev);
2808	pm_runtime_disable(&pdev->dev);
2809	pm_runtime_put_noidle(&pdev->dev);
2810
2811	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2812				   msm_host->bulk_clks);
2813	if (!IS_ERR(msm_host->bus_clk))
2814		clk_disable_unprepare(msm_host->bus_clk);
2815	sdhci_pltfm_free(pdev);
2816	return 0;
2817}
2818
2819static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2820{
2821	struct sdhci_host *host = dev_get_drvdata(dev);
2822	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2823	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2824
2825	/* Drop the performance vote */
2826	dev_pm_opp_set_rate(dev, 0);
2827	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2828				   msm_host->bulk_clks);
2829
2830	return 0;
2831}
2832
2833static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2834{
2835	struct sdhci_host *host = dev_get_drvdata(dev);
2836	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2837	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2838	int ret;
2839
2840	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2841				       msm_host->bulk_clks);
2842	if (ret)
2843		return ret;
2844	/*
2845	 * Whenever core-clock is gated dynamically, it's needed to
2846	 * restore the SDR DLL settings when the clock is ungated.
2847	 */
2848	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2849		ret = sdhci_msm_restore_sdr_dll_config(host);
2850		if (ret)
2851			return ret;
2852	}
2853
2854	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2855
2856	return sdhci_msm_ice_resume(msm_host);
2857}
2858
2859static const struct dev_pm_ops sdhci_msm_pm_ops = {
2860	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2861				pm_runtime_force_resume)
2862	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2863			   sdhci_msm_runtime_resume,
2864			   NULL)
2865};
2866
2867static struct platform_driver sdhci_msm_driver = {
2868	.probe = sdhci_msm_probe,
2869	.remove = sdhci_msm_remove,
2870	.driver = {
2871		   .name = "sdhci_msm",
2872		   .of_match_table = sdhci_msm_dt_match,
2873		   .pm = &sdhci_msm_pm_ops,
2874		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2875	},
2876};
2877
2878module_platform_driver(sdhci_msm_driver);
2879
2880MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2881MODULE_LICENSE("GPL v2");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
   4 *
   5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
   6 */
   7
   8#include <linux/module.h>
 
   9#include <linux/delay.h>
  10#include <linux/mmc/mmc.h>
  11#include <linux/pm_runtime.h>
  12#include <linux/pm_opp.h>
  13#include <linux/slab.h>
  14#include <linux/iopoll.h>
 
  15#include <linux/regulator/consumer.h>
  16#include <linux/interconnect.h>
  17#include <linux/of.h>
  18#include <linux/pinctrl/consumer.h>
  19#include <linux/reset.h>
  20
  21#include <soc/qcom/ice.h>
  22
  23#include "sdhci-cqhci.h"
  24#include "sdhci-pltfm.h"
  25#include "cqhci.h"
  26
  27#define CORE_MCI_VERSION		0x50
  28#define CORE_VERSION_MAJOR_SHIFT	28
  29#define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
  30#define CORE_VERSION_MINOR_MASK		0xff
  31
  32#define CORE_MCI_GENERICS		0x70
  33#define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
  34
  35#define HC_MODE_EN		0x1
  36#define CORE_POWER		0x0
  37#define CORE_SW_RST		BIT(7)
  38#define FF_CLK_SW_RST_DIS	BIT(13)
  39
  40#define CORE_PWRCTL_BUS_OFF	BIT(0)
  41#define CORE_PWRCTL_BUS_ON	BIT(1)
  42#define CORE_PWRCTL_IO_LOW	BIT(2)
  43#define CORE_PWRCTL_IO_HIGH	BIT(3)
  44#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
  45#define CORE_PWRCTL_BUS_FAIL    BIT(1)
  46#define CORE_PWRCTL_IO_SUCCESS	BIT(2)
  47#define CORE_PWRCTL_IO_FAIL     BIT(3)
  48#define REQ_BUS_OFF		BIT(0)
  49#define REQ_BUS_ON		BIT(1)
  50#define REQ_IO_LOW		BIT(2)
  51#define REQ_IO_HIGH		BIT(3)
  52#define INT_MASK		0xf
  53#define MAX_PHASES		16
  54#define CORE_DLL_LOCK		BIT(7)
  55#define CORE_DDR_DLL_LOCK	BIT(11)
  56#define CORE_DLL_EN		BIT(16)
  57#define CORE_CDR_EN		BIT(17)
  58#define CORE_CK_OUT_EN		BIT(18)
  59#define CORE_CDR_EXT_EN		BIT(19)
  60#define CORE_DLL_PDN		BIT(29)
  61#define CORE_DLL_RST		BIT(30)
  62#define CORE_CMD_DAT_TRACK_SEL	BIT(0)
  63
  64#define CORE_DDR_CAL_EN		BIT(0)
  65#define CORE_FLL_CYCLE_CNT	BIT(18)
  66#define CORE_DLL_CLOCK_DISABLE	BIT(21)
  67
  68#define DLL_USR_CTL_POR_VAL	0x10800
  69#define ENABLE_DLL_LOCK_STATUS	BIT(26)
  70#define FINE_TUNE_MODE_EN	BIT(27)
  71#define BIAS_OK_SIGNAL		BIT(29)
  72
  73#define DLL_CONFIG_3_LOW_FREQ_VAL	0x08
  74#define DLL_CONFIG_3_HIGH_FREQ_VAL	0x10
  75
  76#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
  77#define CORE_CLK_PWRSAVE	BIT(1)
  78#define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
  79#define CORE_HC_MCLK_SEL_HS400	(3 << 8)
  80#define CORE_HC_MCLK_SEL_MASK	(3 << 8)
  81#define CORE_IO_PAD_PWR_SWITCH_EN	BIT(15)
  82#define CORE_IO_PAD_PWR_SWITCH	BIT(16)
  83#define CORE_HC_SELECT_IN_EN	BIT(18)
  84#define CORE_HC_SELECT_IN_HS400	(6 << 19)
  85#define CORE_HC_SELECT_IN_MASK	(7 << 19)
  86
  87#define CORE_3_0V_SUPPORT	BIT(25)
  88#define CORE_1_8V_SUPPORT	BIT(26)
  89#define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
  90
  91#define CORE_CSR_CDC_CTLR_CFG0		0x130
  92#define CORE_SW_TRIG_FULL_CALIB		BIT(16)
  93#define CORE_HW_AUTOCAL_ENA		BIT(17)
  94
  95#define CORE_CSR_CDC_CTLR_CFG1		0x134
  96#define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
  97#define CORE_TIMER_ENA			BIT(16)
  98
  99#define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
 100#define CORE_CSR_CDC_REFCOUNT_CFG	0x140
 101#define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
 102#define CORE_CDC_OFFSET_CFG		0x14C
 103#define CORE_CSR_CDC_DELAY_CFG		0x150
 104#define CORE_CDC_SLAVE_DDA_CFG		0x160
 105#define CORE_CSR_CDC_STATUS0		0x164
 106#define CORE_CALIBRATION_DONE		BIT(0)
 107
 108#define CORE_CDC_ERROR_CODE_MASK	0x7000000
 109
 110#define CORE_CSR_CDC_GEN_CFG		0x178
 111#define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
 112#define CORE_CDC_SWITCH_RC_EN		BIT(1)
 113
 114#define CORE_CDC_T4_DLY_SEL		BIT(0)
 115#define CORE_CMDIN_RCLK_EN		BIT(1)
 116#define CORE_START_CDC_TRAFFIC		BIT(6)
 117
 118#define CORE_PWRSAVE_DLL	BIT(3)
 119
 120#define DDR_CONFIG_POR_VAL	0x80040873
 121
 122
 123#define INVALID_TUNING_PHASE	-1
 124#define SDHCI_MSM_MIN_CLOCK	400000
 125#define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
 126
 127#define CDR_SELEXT_SHIFT	20
 128#define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
 129#define CMUX_SHIFT_PHASE_SHIFT	24
 130#define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
 131
 132#define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
 133
 134/* Timeout value to avoid infinite waiting for pwr_irq */
 135#define MSM_PWR_IRQ_TIMEOUT_MS 5000
 136
 137/* Max load for eMMC Vdd-io supply */
 138#define MMC_VQMMC_MAX_LOAD_UA	325000
 139
 140#define msm_host_readl(msm_host, host, offset) \
 141	msm_host->var_ops->msm_readl_relaxed(host, offset)
 142
 143#define msm_host_writel(msm_host, val, host, offset) \
 144	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
 145
 146/* CQHCI vendor specific registers */
 147#define CQHCI_VENDOR_CFG1	0xA00
 148#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN	(0x3 << 13)
 149
 150struct sdhci_msm_offset {
 151	u32 core_hc_mode;
 152	u32 core_mci_data_cnt;
 153	u32 core_mci_status;
 154	u32 core_mci_fifo_cnt;
 155	u32 core_mci_version;
 156	u32 core_generics;
 157	u32 core_testbus_config;
 158	u32 core_testbus_sel2_bit;
 159	u32 core_testbus_ena;
 160	u32 core_testbus_sel2;
 161	u32 core_pwrctl_status;
 162	u32 core_pwrctl_mask;
 163	u32 core_pwrctl_clear;
 164	u32 core_pwrctl_ctl;
 165	u32 core_sdcc_debug_reg;
 166	u32 core_dll_config;
 167	u32 core_dll_status;
 168	u32 core_vendor_spec;
 169	u32 core_vendor_spec_adma_err_addr0;
 170	u32 core_vendor_spec_adma_err_addr1;
 171	u32 core_vendor_spec_func2;
 172	u32 core_vendor_spec_capabilities0;
 173	u32 core_ddr_200_cfg;
 174	u32 core_vendor_spec3;
 175	u32 core_dll_config_2;
 176	u32 core_dll_config_3;
 177	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
 178	u32 core_ddr_config;
 179	u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
 180};
 181
 182static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
 183	.core_mci_data_cnt = 0x35c,
 184	.core_mci_status = 0x324,
 185	.core_mci_fifo_cnt = 0x308,
 186	.core_mci_version = 0x318,
 187	.core_generics = 0x320,
 188	.core_testbus_config = 0x32c,
 189	.core_testbus_sel2_bit = 3,
 190	.core_testbus_ena = (1 << 31),
 191	.core_testbus_sel2 = (1 << 3),
 192	.core_pwrctl_status = 0x240,
 193	.core_pwrctl_mask = 0x244,
 194	.core_pwrctl_clear = 0x248,
 195	.core_pwrctl_ctl = 0x24c,
 196	.core_sdcc_debug_reg = 0x358,
 197	.core_dll_config = 0x200,
 198	.core_dll_status = 0x208,
 199	.core_vendor_spec = 0x20c,
 200	.core_vendor_spec_adma_err_addr0 = 0x214,
 201	.core_vendor_spec_adma_err_addr1 = 0x218,
 202	.core_vendor_spec_func2 = 0x210,
 203	.core_vendor_spec_capabilities0 = 0x21c,
 204	.core_ddr_200_cfg = 0x224,
 205	.core_vendor_spec3 = 0x250,
 206	.core_dll_config_2 = 0x254,
 207	.core_dll_config_3 = 0x258,
 208	.core_ddr_config = 0x25c,
 209	.core_dll_usr_ctl = 0x388,
 210};
 211
 212static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
 213	.core_hc_mode = 0x78,
 214	.core_mci_data_cnt = 0x30,
 215	.core_mci_status = 0x34,
 216	.core_mci_fifo_cnt = 0x44,
 217	.core_mci_version = 0x050,
 218	.core_generics = 0x70,
 219	.core_testbus_config = 0x0cc,
 220	.core_testbus_sel2_bit = 4,
 221	.core_testbus_ena = (1 << 3),
 222	.core_testbus_sel2 = (1 << 4),
 223	.core_pwrctl_status = 0xdc,
 224	.core_pwrctl_mask = 0xe0,
 225	.core_pwrctl_clear = 0xe4,
 226	.core_pwrctl_ctl = 0xe8,
 227	.core_sdcc_debug_reg = 0x124,
 228	.core_dll_config = 0x100,
 229	.core_dll_status = 0x108,
 230	.core_vendor_spec = 0x10c,
 231	.core_vendor_spec_adma_err_addr0 = 0x114,
 232	.core_vendor_spec_adma_err_addr1 = 0x118,
 233	.core_vendor_spec_func2 = 0x110,
 234	.core_vendor_spec_capabilities0 = 0x11c,
 235	.core_ddr_200_cfg = 0x184,
 236	.core_vendor_spec3 = 0x1b0,
 237	.core_dll_config_2 = 0x1b4,
 238	.core_ddr_config_old = 0x1b8,
 239	.core_ddr_config = 0x1bc,
 240};
 241
 242struct sdhci_msm_variant_ops {
 243	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
 244	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
 245			u32 offset);
 246};
 247
 248/*
 249 * From V5, register spaces have changed. Wrap this info in a structure
 250 * and choose the data_structure based on version info mentioned in DT.
 251 */
 252struct sdhci_msm_variant_info {
 253	bool mci_removed;
 254	bool restore_dll_config;
 255	const struct sdhci_msm_variant_ops *var_ops;
 256	const struct sdhci_msm_offset *offset;
 257};
 258
 259struct sdhci_msm_host {
 260	struct platform_device *pdev;
 261	void __iomem *core_mem;	/* MSM SDCC mapped address */
 
 262	int pwr_irq;		/* power irq */
 263	struct clk *bus_clk;	/* SDHC bus voter clock */
 264	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
 265	/* core, iface, cal and sleep clocks */
 266	struct clk_bulk_data bulk_clks[4];
 267#ifdef CONFIG_MMC_CRYPTO
 268	struct qcom_ice *ice;
 269#endif
 270	unsigned long clk_rate;
 271	struct mmc_host *mmc;
 272	bool use_14lpp_dll_reset;
 273	bool tuning_done;
 274	bool calibration_done;
 275	u8 saved_tuning_phase;
 276	bool use_cdclp533;
 277	u32 curr_pwr_state;
 278	u32 curr_io_level;
 279	wait_queue_head_t pwr_irq_wait;
 280	bool pwr_irq_flag;
 281	u32 caps_0;
 282	bool mci_removed;
 283	bool restore_dll_config;
 284	const struct sdhci_msm_variant_ops *var_ops;
 285	const struct sdhci_msm_offset *offset;
 286	bool use_cdr;
 287	u32 transfer_mode;
 288	bool updated_ddr_cfg;
 289	bool uses_tassadar_dll;
 290	u32 dll_config;
 291	u32 ddr_config;
 292	bool vqmmc_enabled;
 293};
 294
 295static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
 296{
 297	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 298	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 299
 300	return msm_host->offset;
 301}
 302
 303/*
 304 * APIs to read/write to vendor specific registers which were there in the
 305 * core_mem region before MCI was removed.
 306 */
 307static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
 308		u32 offset)
 309{
 310	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 311	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 312
 313	return readl_relaxed(msm_host->core_mem + offset);
 314}
 315
 316static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
 317		u32 offset)
 318{
 319	return readl_relaxed(host->ioaddr + offset);
 320}
 321
 322static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
 323		struct sdhci_host *host, u32 offset)
 324{
 325	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 326	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 327
 328	writel_relaxed(val, msm_host->core_mem + offset);
 329}
 330
 331static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
 332		struct sdhci_host *host, u32 offset)
 333{
 334	writel_relaxed(val, host->ioaddr + offset);
 335}
 336
 337static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
 338{
 339	struct mmc_ios ios = host->mmc->ios;
 340	/*
 341	 * The SDHC requires internal clock frequency to be double the
 342	 * actual clock that will be set for DDR mode. The controller
 343	 * uses the faster clock(100/400MHz) for some of its parts and
 344	 * send the actual required clock (50/200MHz) to the card.
 345	 */
 346	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
 347	    ios.timing == MMC_TIMING_MMC_DDR52 ||
 348	    ios.timing == MMC_TIMING_MMC_HS400 ||
 349	    host->flags & SDHCI_HS400_TUNING)
 350		return 2;
 351	return 1;
 352}
 353
 354static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
 355					    unsigned int clock)
 356{
 357	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 358	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 359	struct mmc_ios curr_ios = host->mmc->ios;
 360	struct clk *core_clk = msm_host->bulk_clks[0].clk;
 361	unsigned long achieved_rate;
 362	unsigned int desired_rate;
 363	unsigned int mult;
 364	int rc;
 365
 366	mult = msm_get_clock_mult_for_bus_mode(host);
 367	desired_rate = clock * mult;
 368	rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
 369	if (rc) {
 370		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
 371		       mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
 372		return;
 373	}
 374
 375	/*
 376	 * Qualcomm clock drivers by default round clock _up_ if they can't
 377	 * make the requested rate.  This is not good for SD.  Yell if we
 378	 * encounter it.
 379	 */
 380	achieved_rate = clk_get_rate(core_clk);
 381	if (achieved_rate > desired_rate)
 382		pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
 383			mmc_hostname(host->mmc), desired_rate, achieved_rate);
 384	host->mmc->actual_clock = achieved_rate / mult;
 385
 386	/* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
 387	msm_host->clk_rate = desired_rate;
 388
 389	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
 390		 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
 391}
 392
 393/* Platform specific tuning */
 394static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
 395{
 396	u32 wait_cnt = 50;
 397	u8 ck_out_en;
 398	struct mmc_host *mmc = host->mmc;
 399	const struct sdhci_msm_offset *msm_offset =
 400					sdhci_priv_msm_offset(host);
 401
 402	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
 403	ck_out_en = !!(readl_relaxed(host->ioaddr +
 404			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 405
 406	while (ck_out_en != poll) {
 407		if (--wait_cnt == 0) {
 408			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
 409			       mmc_hostname(mmc), poll);
 410			return -ETIMEDOUT;
 411		}
 412		udelay(1);
 413
 414		ck_out_en = !!(readl_relaxed(host->ioaddr +
 415			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
 416	}
 417
 418	return 0;
 419}
 420
 421static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
 422{
 423	int rc;
 424	static const u8 grey_coded_phase_table[] = {
 425		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
 426		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
 427	};
 428	unsigned long flags;
 429	u32 config;
 430	struct mmc_host *mmc = host->mmc;
 431	const struct sdhci_msm_offset *msm_offset =
 432					sdhci_priv_msm_offset(host);
 433
 434	if (phase > 0xf)
 435		return -EINVAL;
 436
 437	spin_lock_irqsave(&host->lock, flags);
 438
 439	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 440	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
 441	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
 442	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 443
 444	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
 445	rc = msm_dll_poll_ck_out_en(host, 0);
 446	if (rc)
 447		goto err_out;
 448
 449	/*
 450	 * Write the selected DLL clock output phase (0 ... 15)
 451	 * to CDR_SELEXT bit field of DLL_CONFIG register.
 452	 */
 453	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 454	config &= ~CDR_SELEXT_MASK;
 455	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
 456	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 457
 458	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 459	config |= CORE_CK_OUT_EN;
 460	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 461
 462	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
 463	rc = msm_dll_poll_ck_out_en(host, 1);
 464	if (rc)
 465		goto err_out;
 466
 467	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 468	config |= CORE_CDR_EN;
 469	config &= ~CORE_CDR_EXT_EN;
 470	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 471	goto out;
 472
 473err_out:
 474	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
 475	       mmc_hostname(mmc), phase);
 476out:
 477	spin_unlock_irqrestore(&host->lock, flags);
 478	return rc;
 479}
 480
 481/*
 482 * Find out the greatest range of consecuitive selected
 483 * DLL clock output phases that can be used as sampling
 484 * setting for SD3.0 UHS-I card read operation (in SDR104
 485 * timing mode) or for eMMC4.5 card read operation (in
 486 * HS400/HS200 timing mode).
 487 * Select the 3/4 of the range and configure the DLL with the
 488 * selected DLL clock output phase.
 489 */
 490
 491static int msm_find_most_appropriate_phase(struct sdhci_host *host,
 492					   u8 *phase_table, u8 total_phases)
 493{
 494	int ret;
 495	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
 496	u8 phases_per_row[MAX_PHASES] = { 0 };
 497	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
 498	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
 499	bool phase_0_found = false, phase_15_found = false;
 500	struct mmc_host *mmc = host->mmc;
 501
 502	if (!total_phases || (total_phases > MAX_PHASES)) {
 503		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
 504		       mmc_hostname(mmc), total_phases);
 505		return -EINVAL;
 506	}
 507
 508	for (cnt = 0; cnt < total_phases; cnt++) {
 509		ranges[row_index][col_index] = phase_table[cnt];
 510		phases_per_row[row_index] += 1;
 511		col_index++;
 512
 513		if ((cnt + 1) == total_phases) {
 514			continue;
 515		/* check if next phase in phase_table is consecutive or not */
 516		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
 517			row_index++;
 518			col_index = 0;
 519		}
 520	}
 521
 522	if (row_index >= MAX_PHASES)
 523		return -EINVAL;
 524
 525	/* Check if phase-0 is present in first valid window? */
 526	if (!ranges[0][0]) {
 527		phase_0_found = true;
 528		phase_0_raw_index = 0;
 529		/* Check if cycle exist between 2 valid windows */
 530		for (cnt = 1; cnt <= row_index; cnt++) {
 531			if (phases_per_row[cnt]) {
 532				for (i = 0; i < phases_per_row[cnt]; i++) {
 533					if (ranges[cnt][i] == 15) {
 534						phase_15_found = true;
 535						phase_15_raw_index = cnt;
 536						break;
 537					}
 538				}
 539			}
 540		}
 541	}
 542
 543	/* If 2 valid windows form cycle then merge them as single window */
 544	if (phase_0_found && phase_15_found) {
 545		/* number of phases in raw where phase 0 is present */
 546		u8 phases_0 = phases_per_row[phase_0_raw_index];
 547		/* number of phases in raw where phase 15 is present */
 548		u8 phases_15 = phases_per_row[phase_15_raw_index];
 549
 550		if (phases_0 + phases_15 >= MAX_PHASES)
 551			/*
 552			 * If there are more than 1 phase windows then total
 553			 * number of phases in both the windows should not be
 554			 * more than or equal to MAX_PHASES.
 555			 */
 556			return -EINVAL;
 557
 558		/* Merge 2 cyclic windows */
 559		i = phases_15;
 560		for (cnt = 0; cnt < phases_0; cnt++) {
 561			ranges[phase_15_raw_index][i] =
 562			    ranges[phase_0_raw_index][cnt];
 563			if (++i >= MAX_PHASES)
 564				break;
 565		}
 566
 567		phases_per_row[phase_0_raw_index] = 0;
 568		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
 569	}
 570
 571	for (cnt = 0; cnt <= row_index; cnt++) {
 572		if (phases_per_row[cnt] > curr_max) {
 573			curr_max = phases_per_row[cnt];
 574			selected_row_index = cnt;
 575		}
 576	}
 577
 578	i = (curr_max * 3) / 4;
 579	if (i)
 580		i--;
 581
 582	ret = ranges[selected_row_index][i];
 583
 584	if (ret >= MAX_PHASES) {
 585		ret = -EINVAL;
 586		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
 587		       mmc_hostname(mmc), ret);
 588	}
 589
 590	return ret;
 591}
 592
 593static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
 594{
 595	u32 mclk_freq = 0, config;
 596	const struct sdhci_msm_offset *msm_offset =
 597					sdhci_priv_msm_offset(host);
 598
 599	/* Program the MCLK value to MCLK_FREQ bit field */
 600	if (host->clock <= 112000000)
 601		mclk_freq = 0;
 602	else if (host->clock <= 125000000)
 603		mclk_freq = 1;
 604	else if (host->clock <= 137000000)
 605		mclk_freq = 2;
 606	else if (host->clock <= 150000000)
 607		mclk_freq = 3;
 608	else if (host->clock <= 162000000)
 609		mclk_freq = 4;
 610	else if (host->clock <= 175000000)
 611		mclk_freq = 5;
 612	else if (host->clock <= 187000000)
 613		mclk_freq = 6;
 614	else if (host->clock <= 200000000)
 615		mclk_freq = 7;
 616
 617	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 618	config &= ~CMUX_SHIFT_PHASE_MASK;
 619	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
 620	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 621}
 622
 623/* Initialize the DLL (Programmable Delay Line) */
 624static int msm_init_cm_dll(struct sdhci_host *host)
 625{
 626	struct mmc_host *mmc = host->mmc;
 627	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 628	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 629	int wait_cnt = 50;
 630	unsigned long flags, xo_clk = 0;
 631	u32 config;
 632	const struct sdhci_msm_offset *msm_offset =
 633					msm_host->offset;
 634
 635	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
 636		xo_clk = clk_get_rate(msm_host->xo_clk);
 637
 638	spin_lock_irqsave(&host->lock, flags);
 639
 640	/*
 641	 * Make sure that clock is always enabled when DLL
 642	 * tuning is in progress. Keeping PWRSAVE ON may
 643	 * turn off the clock.
 644	 */
 645	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 646	config &= ~CORE_CLK_PWRSAVE;
 647	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 648
 649	if (msm_host->dll_config)
 650		writel_relaxed(msm_host->dll_config,
 651				host->ioaddr + msm_offset->core_dll_config);
 652
 653	if (msm_host->use_14lpp_dll_reset) {
 654		config = readl_relaxed(host->ioaddr +
 655				msm_offset->core_dll_config);
 656		config &= ~CORE_CK_OUT_EN;
 657		writel_relaxed(config, host->ioaddr +
 658				msm_offset->core_dll_config);
 659
 660		config = readl_relaxed(host->ioaddr +
 661				msm_offset->core_dll_config_2);
 662		config |= CORE_DLL_CLOCK_DISABLE;
 663		writel_relaxed(config, host->ioaddr +
 664				msm_offset->core_dll_config_2);
 665	}
 666
 667	config = readl_relaxed(host->ioaddr +
 668			msm_offset->core_dll_config);
 669	config |= CORE_DLL_RST;
 670	writel_relaxed(config, host->ioaddr +
 671			msm_offset->core_dll_config);
 672
 673	config = readl_relaxed(host->ioaddr +
 674			msm_offset->core_dll_config);
 675	config |= CORE_DLL_PDN;
 676	writel_relaxed(config, host->ioaddr +
 677			msm_offset->core_dll_config);
 678
 679	if (!msm_host->dll_config)
 680		msm_cm_dll_set_freq(host);
 681
 682	if (msm_host->use_14lpp_dll_reset &&
 683	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
 684		u32 mclk_freq = 0;
 685
 686		config = readl_relaxed(host->ioaddr +
 687				msm_offset->core_dll_config_2);
 688		config &= CORE_FLL_CYCLE_CNT;
 689		if (config)
 690			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
 691					xo_clk);
 692		else
 693			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
 694					xo_clk);
 695
 696		config = readl_relaxed(host->ioaddr +
 697				msm_offset->core_dll_config_2);
 698		config &= ~(0xFF << 10);
 699		config |= mclk_freq << 10;
 700
 701		writel_relaxed(config, host->ioaddr +
 702				msm_offset->core_dll_config_2);
 703		/* wait for 5us before enabling DLL clock */
 704		udelay(5);
 705	}
 706
 707	config = readl_relaxed(host->ioaddr +
 708			msm_offset->core_dll_config);
 709	config &= ~CORE_DLL_RST;
 710	writel_relaxed(config, host->ioaddr +
 711			msm_offset->core_dll_config);
 712
 713	config = readl_relaxed(host->ioaddr +
 714			msm_offset->core_dll_config);
 715	config &= ~CORE_DLL_PDN;
 716	writel_relaxed(config, host->ioaddr +
 717			msm_offset->core_dll_config);
 718
 719	if (msm_host->use_14lpp_dll_reset) {
 720		if (!msm_host->dll_config)
 721			msm_cm_dll_set_freq(host);
 722		config = readl_relaxed(host->ioaddr +
 723				msm_offset->core_dll_config_2);
 724		config &= ~CORE_DLL_CLOCK_DISABLE;
 725		writel_relaxed(config, host->ioaddr +
 726				msm_offset->core_dll_config_2);
 727	}
 728
 729	/*
 730	 * Configure DLL user control register to enable DLL status.
 731	 * This setting is applicable to SDCC v5.1 onwards only.
 732	 */
 733	if (msm_host->uses_tassadar_dll) {
 734		config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
 735			ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
 736		writel_relaxed(config, host->ioaddr +
 737				msm_offset->core_dll_usr_ctl);
 738
 739		config = readl_relaxed(host->ioaddr +
 740				msm_offset->core_dll_config_3);
 741		config &= ~0xFF;
 742		if (msm_host->clk_rate < 150000000)
 743			config |= DLL_CONFIG_3_LOW_FREQ_VAL;
 744		else
 745			config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
 746		writel_relaxed(config, host->ioaddr +
 747			msm_offset->core_dll_config_3);
 748	}
 749
 750	config = readl_relaxed(host->ioaddr +
 751			msm_offset->core_dll_config);
 752	config |= CORE_DLL_EN;
 753	writel_relaxed(config, host->ioaddr +
 754			msm_offset->core_dll_config);
 755
 756	config = readl_relaxed(host->ioaddr +
 757			msm_offset->core_dll_config);
 758	config |= CORE_CK_OUT_EN;
 759	writel_relaxed(config, host->ioaddr +
 760			msm_offset->core_dll_config);
 761
 762	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
 763	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
 764		 CORE_DLL_LOCK)) {
 765		/* max. wait for 50us sec for LOCK bit to be set */
 766		if (--wait_cnt == 0) {
 767			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
 768			       mmc_hostname(mmc));
 769			spin_unlock_irqrestore(&host->lock, flags);
 770			return -ETIMEDOUT;
 771		}
 772		udelay(1);
 773	}
 774
 775	spin_unlock_irqrestore(&host->lock, flags);
 776	return 0;
 777}
 778
 779static void msm_hc_select_default(struct sdhci_host *host)
 780{
 781	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 782	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 783	u32 config;
 784	const struct sdhci_msm_offset *msm_offset =
 785					msm_host->offset;
 786
 787	if (!msm_host->use_cdclp533) {
 788		config = readl_relaxed(host->ioaddr +
 789				msm_offset->core_vendor_spec3);
 790		config &= ~CORE_PWRSAVE_DLL;
 791		writel_relaxed(config, host->ioaddr +
 792				msm_offset->core_vendor_spec3);
 793	}
 794
 795	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 796	config &= ~CORE_HC_MCLK_SEL_MASK;
 797	config |= CORE_HC_MCLK_SEL_DFLT;
 798	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 799
 800	/*
 801	 * Disable HC_SELECT_IN to be able to use the UHS mode select
 802	 * configuration from Host Control2 register for all other
 803	 * modes.
 804	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
 805	 * in VENDOR_SPEC_FUNC
 806	 */
 807	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 808	config &= ~CORE_HC_SELECT_IN_EN;
 809	config &= ~CORE_HC_SELECT_IN_MASK;
 810	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 811
 812	/*
 813	 * Make sure above writes impacting free running MCLK are completed
 814	 * before changing the clk_rate at GCC.
 815	 */
 816	wmb();
 817}
 818
 819static void msm_hc_select_hs400(struct sdhci_host *host)
 820{
 821	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 822	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 823	struct mmc_ios ios = host->mmc->ios;
 824	u32 config, dll_lock;
 825	int rc;
 826	const struct sdhci_msm_offset *msm_offset =
 827					msm_host->offset;
 828
 829	/* Select the divided clock (free running MCLK/2) */
 830	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
 831	config &= ~CORE_HC_MCLK_SEL_MASK;
 832	config |= CORE_HC_MCLK_SEL_HS400;
 833
 834	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
 835	/*
 836	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
 837	 * register
 838	 */
 839	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
 840	    !msm_host->calibration_done) {
 841		config = readl_relaxed(host->ioaddr +
 842				msm_offset->core_vendor_spec);
 843		config |= CORE_HC_SELECT_IN_HS400;
 844		config |= CORE_HC_SELECT_IN_EN;
 845		writel_relaxed(config, host->ioaddr +
 846				msm_offset->core_vendor_spec);
 847	}
 848	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
 849		/*
 850		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
 851		 * core_dll_status to be set. This should get set
 852		 * within 15 us at 200 MHz.
 853		 */
 854		rc = readl_relaxed_poll_timeout(host->ioaddr +
 855						msm_offset->core_dll_status,
 856						dll_lock,
 857						(dll_lock &
 858						(CORE_DLL_LOCK |
 859						CORE_DDR_DLL_LOCK)), 10,
 860						1000);
 861		if (rc == -ETIMEDOUT)
 862			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
 863			       mmc_hostname(host->mmc), dll_lock);
 864	}
 865	/*
 866	 * Make sure above writes impacting free running MCLK are completed
 867	 * before changing the clk_rate at GCC.
 868	 */
 869	wmb();
 870}
 871
 872/*
 873 * sdhci_msm_hc_select_mode :- In general all timing modes are
 874 * controlled via UHS mode select in Host Control2 register.
 875 * eMMC specific HS200/HS400 doesn't have their respective modes
 876 * defined here, hence we use these values.
 877 *
 878 * HS200 - SDR104 (Since they both are equivalent in functionality)
 879 * HS400 - This involves multiple configurations
 880 *		Initially SDR104 - when tuning is required as HS200
 881 *		Then when switching to DDR @ 400MHz (HS400) we use
 882 *		the vendor specific HC_SELECT_IN to control the mode.
 883 *
 884 * In addition to controlling the modes we also need to select the
 885 * correct input clock for DLL depending on the mode.
 886 *
 887 * HS400 - divided clock (free running MCLK/2)
 888 * All other modes - default (free running MCLK)
 889 */
 890static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
 891{
 892	struct mmc_ios ios = host->mmc->ios;
 893
 894	if (ios.timing == MMC_TIMING_MMC_HS400 ||
 895	    host->flags & SDHCI_HS400_TUNING)
 896		msm_hc_select_hs400(host);
 897	else
 898		msm_hc_select_default(host);
 899}
 900
 901static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
 902{
 903	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
 904	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
 905	u32 config, calib_done;
 906	int ret;
 907	const struct sdhci_msm_offset *msm_offset =
 908					msm_host->offset;
 909
 910	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
 911
 912	/*
 913	 * Retuning in HS400 (DDR mode) will fail, just reset the
 914	 * tuning block and restore the saved tuning phase.
 915	 */
 916	ret = msm_init_cm_dll(host);
 917	if (ret)
 918		goto out;
 919
 920	/* Set the selected phase in delay line hw block */
 921	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
 922	if (ret)
 923		goto out;
 924
 925	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
 926	config |= CORE_CMD_DAT_TRACK_SEL;
 927	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
 928
 929	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 930	config &= ~CORE_CDC_T4_DLY_SEL;
 931	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 932
 933	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 934	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
 935	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 936
 937	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 938	config |= CORE_CDC_SWITCH_RC_EN;
 939	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
 940
 941	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 942	config &= ~CORE_START_CDC_TRAFFIC;
 943	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 944
 945	/* Perform CDC Register Initialization Sequence */
 946
 947	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 948	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
 949	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 950	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
 951	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
 952	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
 953	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
 954	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
 955	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
 956
 957	/* CDC HW Calibration */
 958
 959	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 960	config |= CORE_SW_TRIG_FULL_CALIB;
 961	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 962
 963	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 964	config &= ~CORE_SW_TRIG_FULL_CALIB;
 965	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 966
 967	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 968	config |= CORE_HW_AUTOCAL_ENA;
 969	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
 970
 971	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 972	config |= CORE_TIMER_ENA;
 973	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
 974
 975	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
 976					 calib_done,
 977					 (calib_done & CORE_CALIBRATION_DONE),
 978					 1, 50);
 979
 980	if (ret == -ETIMEDOUT) {
 981		pr_err("%s: %s: CDC calibration was not completed\n",
 982		       mmc_hostname(host->mmc), __func__);
 983		goto out;
 984	}
 985
 986	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
 987			& CORE_CDC_ERROR_CODE_MASK;
 988	if (ret) {
 989		pr_err("%s: %s: CDC error code %d\n",
 990		       mmc_hostname(host->mmc), __func__, ret);
 991		ret = -EINVAL;
 992		goto out;
 993	}
 994
 995	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
 996	config |= CORE_START_CDC_TRAFFIC;
 997	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
 998out:
 999	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1000		 __func__, ret);
1001	return ret;
1002}
1003
1004static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1005{
1006	struct mmc_host *mmc = host->mmc;
1007	u32 dll_status, config, ddr_cfg_offset;
1008	int ret;
1009	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1010	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1011	const struct sdhci_msm_offset *msm_offset =
1012					sdhci_priv_msm_offset(host);
1013
1014	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1015
1016	/*
1017	 * Currently the core_ddr_config register defaults to desired
1018	 * configuration on reset. Currently reprogramming the power on
1019	 * reset (POR) value in case it might have been modified by
1020	 * bootloaders. In the future, if this changes, then the desired
1021	 * values will need to be programmed appropriately.
1022	 */
1023	if (msm_host->updated_ddr_cfg)
1024		ddr_cfg_offset = msm_offset->core_ddr_config;
1025	else
1026		ddr_cfg_offset = msm_offset->core_ddr_config_old;
1027	writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1028
1029	if (mmc->ios.enhanced_strobe) {
1030		config = readl_relaxed(host->ioaddr +
1031				msm_offset->core_ddr_200_cfg);
1032		config |= CORE_CMDIN_RCLK_EN;
1033		writel_relaxed(config, host->ioaddr +
1034				msm_offset->core_ddr_200_cfg);
1035	}
1036
1037	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1038	config |= CORE_DDR_CAL_EN;
1039	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1040
1041	ret = readl_relaxed_poll_timeout(host->ioaddr +
1042					msm_offset->core_dll_status,
1043					dll_status,
1044					(dll_status & CORE_DDR_DLL_LOCK),
1045					10, 1000);
1046
1047	if (ret == -ETIMEDOUT) {
1048		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1049		       mmc_hostname(host->mmc), __func__);
1050		goto out;
1051	}
1052
1053	/*
1054	 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1055	 * When MCLK is gated OFF, it is not gated for less than 0.5us
1056	 * and MCLK must be switched on for at-least 1us before DATA
1057	 * starts coming. Controllers with 14lpp and later tech DLL cannot
1058	 * guarantee above requirement. So PWRSAVE_DLL should not be
1059	 * turned on for host controllers using this DLL.
1060	 */
1061	if (!msm_host->use_14lpp_dll_reset) {
1062		config = readl_relaxed(host->ioaddr +
1063				msm_offset->core_vendor_spec3);
1064		config |= CORE_PWRSAVE_DLL;
1065		writel_relaxed(config, host->ioaddr +
1066				msm_offset->core_vendor_spec3);
1067	}
1068
1069	/*
1070	 * Drain writebuffer to ensure above DLL calibration
1071	 * and PWRSAVE DLL is enabled.
1072	 */
1073	wmb();
1074out:
1075	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1076		 __func__, ret);
1077	return ret;
1078}
1079
1080static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1081{
1082	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1083	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1084	struct mmc_host *mmc = host->mmc;
1085	int ret;
1086	u32 config;
1087	const struct sdhci_msm_offset *msm_offset =
1088					msm_host->offset;
1089
1090	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1091
1092	/*
1093	 * Retuning in HS400 (DDR mode) will fail, just reset the
1094	 * tuning block and restore the saved tuning phase.
1095	 */
1096	ret = msm_init_cm_dll(host);
1097	if (ret)
1098		goto out;
1099
1100	if (!mmc->ios.enhanced_strobe) {
1101		/* Set the selected phase in delay line hw block */
1102		ret = msm_config_cm_dll_phase(host,
1103					      msm_host->saved_tuning_phase);
1104		if (ret)
1105			goto out;
1106		config = readl_relaxed(host->ioaddr +
1107				msm_offset->core_dll_config);
1108		config |= CORE_CMD_DAT_TRACK_SEL;
1109		writel_relaxed(config, host->ioaddr +
1110				msm_offset->core_dll_config);
1111	}
1112
1113	if (msm_host->use_cdclp533)
1114		ret = sdhci_msm_cdclp533_calibration(host);
1115	else
1116		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1117out:
1118	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1119		 __func__, ret);
1120	return ret;
1121}
1122
1123static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1124{
1125	struct mmc_ios *ios = &host->mmc->ios;
1126
1127	/*
1128	 * Tuning is required for SDR104, HS200 and HS400 cards and
1129	 * if clock frequency is greater than 100MHz in these modes.
1130	 */
1131	if (host->clock <= CORE_FREQ_100MHZ ||
1132	    !(ios->timing == MMC_TIMING_MMC_HS400 ||
1133	    ios->timing == MMC_TIMING_MMC_HS200 ||
1134	    ios->timing == MMC_TIMING_UHS_SDR104) ||
1135	    ios->enhanced_strobe)
1136		return false;
1137
1138	return true;
1139}
1140
1141static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1142{
1143	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1144	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1145	int ret;
1146
1147	/*
1148	 * SDR DLL comes into picture only for timing modes which needs
1149	 * tuning.
1150	 */
1151	if (!sdhci_msm_is_tuning_needed(host))
1152		return 0;
1153
1154	/* Reset the tuning block */
1155	ret = msm_init_cm_dll(host);
1156	if (ret)
1157		return ret;
1158
1159	/* Restore the tuning block */
1160	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1161
1162	return ret;
1163}
1164
1165static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1166{
1167	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1168	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1169					      msm_offset->core_dll_config);
1170
1171	config = oldconfig;
1172	if (enable) {
1173		config |= CORE_CDR_EN;
1174		config &= ~CORE_CDR_EXT_EN;
1175	} else {
1176		config &= ~CORE_CDR_EN;
1177		config |= CORE_CDR_EXT_EN;
1178	}
1179
1180	if (config != oldconfig) {
1181		writel_relaxed(config, host->ioaddr +
1182			       msm_offset->core_dll_config);
1183	}
1184}
1185
1186static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1187{
1188	struct sdhci_host *host = mmc_priv(mmc);
1189	int tuning_seq_cnt = 10;
1190	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1191	int rc;
1192	struct mmc_ios ios = host->mmc->ios;
1193	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1194	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1195
1196	if (!sdhci_msm_is_tuning_needed(host)) {
1197		msm_host->use_cdr = false;
1198		sdhci_msm_set_cdr(host, false);
1199		return 0;
1200	}
1201
1202	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1203	msm_host->use_cdr = true;
1204
1205	/*
1206	 * Clear tuning_done flag before tuning to ensure proper
1207	 * HS400 settings.
1208	 */
1209	msm_host->tuning_done = 0;
1210
1211	/*
1212	 * For HS400 tuning in HS200 timing requires:
1213	 * - select MCLK/2 in VENDOR_SPEC
1214	 * - program MCLK to 400MHz (or nearest supported) in GCC
1215	 */
1216	if (host->flags & SDHCI_HS400_TUNING) {
1217		sdhci_msm_hc_select_mode(host);
1218		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1219		host->flags &= ~SDHCI_HS400_TUNING;
1220	}
1221
1222retry:
1223	/* First of all reset the tuning block */
1224	rc = msm_init_cm_dll(host);
1225	if (rc)
1226		return rc;
1227
1228	phase = 0;
1229	do {
1230		/* Set the phase in delay line hw block */
1231		rc = msm_config_cm_dll_phase(host, phase);
1232		if (rc)
1233			return rc;
1234
1235		rc = mmc_send_tuning(mmc, opcode, NULL);
1236		if (!rc) {
1237			/* Tuning is successful at this tuning point */
1238			tuned_phases[tuned_phase_cnt++] = phase;
1239			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1240				 mmc_hostname(mmc), phase);
1241		}
1242	} while (++phase < ARRAY_SIZE(tuned_phases));
1243
1244	if (tuned_phase_cnt) {
1245		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1246			/*
1247			 * All phases valid is _almost_ as bad as no phases
1248			 * valid.  Probably all phases are not really reliable
1249			 * but we didn't detect where the unreliable place is.
1250			 * That means we'll essentially be guessing and hoping
1251			 * we get a good phase.  Better to try a few times.
1252			 */
1253			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1254				mmc_hostname(mmc));
1255			if (--tuning_seq_cnt) {
1256				tuned_phase_cnt = 0;
1257				goto retry;
1258			}
1259		}
1260
1261		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1262						     tuned_phase_cnt);
1263		if (rc < 0)
1264			return rc;
1265		else
1266			phase = rc;
1267
1268		/*
1269		 * Finally set the selected phase in delay
1270		 * line hw block.
1271		 */
1272		rc = msm_config_cm_dll_phase(host, phase);
1273		if (rc)
1274			return rc;
1275		msm_host->saved_tuning_phase = phase;
1276		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1277			 mmc_hostname(mmc), phase);
1278	} else {
1279		if (--tuning_seq_cnt)
1280			goto retry;
1281		/* Tuning failed */
1282		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1283		       mmc_hostname(mmc));
1284		rc = -EIO;
1285	}
1286
1287	if (!rc)
1288		msm_host->tuning_done = true;
1289	return rc;
1290}
1291
1292/*
1293 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1294 * This needs to be done for both tuning and enhanced_strobe mode.
1295 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1296 * fixed feedback clock is used.
1297 */
1298static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1299{
1300	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1301	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1302	int ret;
1303
1304	if (host->clock > CORE_FREQ_100MHZ &&
1305	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1306	    !msm_host->calibration_done) {
1307		ret = sdhci_msm_hs400_dll_calibration(host);
1308		if (!ret)
1309			msm_host->calibration_done = true;
1310		else
1311			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1312			       mmc_hostname(host->mmc), ret);
1313	}
1314}
1315
1316static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1317					unsigned int uhs)
1318{
1319	struct mmc_host *mmc = host->mmc;
1320	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1321	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1322	u16 ctrl_2;
1323	u32 config;
1324	const struct sdhci_msm_offset *msm_offset =
1325					msm_host->offset;
1326
1327	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1328	/* Select Bus Speed Mode for host */
1329	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1330	switch (uhs) {
1331	case MMC_TIMING_UHS_SDR12:
1332		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1333		break;
1334	case MMC_TIMING_UHS_SDR25:
1335		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1336		break;
1337	case MMC_TIMING_UHS_SDR50:
1338		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1339		break;
1340	case MMC_TIMING_MMC_HS400:
1341	case MMC_TIMING_MMC_HS200:
1342	case MMC_TIMING_UHS_SDR104:
1343		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1344		break;
1345	case MMC_TIMING_UHS_DDR50:
1346	case MMC_TIMING_MMC_DDR52:
1347		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1348		break;
1349	}
1350
1351	/*
1352	 * When clock frequency is less than 100MHz, the feedback clock must be
1353	 * provided and DLL must not be used so that tuning can be skipped. To
1354	 * provide feedback clock, the mode selection can be any value less
1355	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1356	 */
1357	if (host->clock <= CORE_FREQ_100MHZ) {
1358		if (uhs == MMC_TIMING_MMC_HS400 ||
1359		    uhs == MMC_TIMING_MMC_HS200 ||
1360		    uhs == MMC_TIMING_UHS_SDR104)
1361			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1362		/*
1363		 * DLL is not required for clock <= 100MHz
1364		 * Thus, make sure DLL it is disabled when not required
1365		 */
1366		config = readl_relaxed(host->ioaddr +
1367				msm_offset->core_dll_config);
1368		config |= CORE_DLL_RST;
1369		writel_relaxed(config, host->ioaddr +
1370				msm_offset->core_dll_config);
1371
1372		config = readl_relaxed(host->ioaddr +
1373				msm_offset->core_dll_config);
1374		config |= CORE_DLL_PDN;
1375		writel_relaxed(config, host->ioaddr +
1376				msm_offset->core_dll_config);
1377
1378		/*
1379		 * The DLL needs to be restored and CDCLP533 recalibrated
1380		 * when the clock frequency is set back to 400MHz.
1381		 */
1382		msm_host->calibration_done = false;
1383	}
1384
1385	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1386		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1387	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1388
1389	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1390		sdhci_msm_hs400(host, &mmc->ios);
1391}
1392
1393static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1394{
1395	struct platform_device *pdev = msm_host->pdev;
1396	int ret;
1397
1398	if (level)
1399		ret = pinctrl_pm_select_default_state(&pdev->dev);
1400	else
1401		ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1402
1403	return ret;
1404}
1405
1406static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1407{
1408	if (IS_ERR(mmc->supply.vmmc))
1409		return 0;
1410
1411	return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1412}
1413
1414static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1415			      struct mmc_host *mmc, bool level)
1416{
1417	int ret;
1418	struct mmc_ios ios;
1419
1420	if (msm_host->vqmmc_enabled == level)
1421		return 0;
1422
1423	if (level) {
1424		/* Set the IO voltage regulator to default voltage level */
1425		if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1426			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1427		else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1428			ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1429
1430		if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1431			ret = mmc_regulator_set_vqmmc(mmc, &ios);
1432			if (ret < 0) {
1433				dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1434					mmc_hostname(mmc), ret);
1435				goto out;
1436			}
1437		}
1438		ret = regulator_enable(mmc->supply.vqmmc);
1439	} else {
1440		ret = regulator_disable(mmc->supply.vqmmc);
1441	}
1442
1443	if (ret)
1444		dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1445			mmc_hostname(mmc), level ? "en":"dis", ret);
1446	else
1447		msm_host->vqmmc_enabled = level;
1448out:
1449	return ret;
1450}
1451
1452static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1453			      struct mmc_host *mmc, bool hpm)
1454{
1455	int load, ret;
1456
1457	load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1458	ret = regulator_set_load(mmc->supply.vqmmc, load);
1459	if (ret)
1460		dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1461			mmc_hostname(mmc), ret);
1462	return ret;
1463}
1464
1465static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1466			      struct mmc_host *mmc, bool level)
1467{
1468	int ret;
1469	bool always_on;
1470
1471	if (IS_ERR(mmc->supply.vqmmc) ||
1472			(mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1473		return 0;
1474	/*
1475	 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1476	 * and HPM modes by setting the corresponding load.
1477	 *
1478	 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1479	 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1480	 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1481	 * Vqmmc should remain ON, So just set the load instead of turning it
1482	 * off/on.
1483	 */
1484	always_on = !mmc_card_is_removable(mmc) &&
1485			mmc->card && mmc_card_mmc(mmc->card);
1486
1487	if (always_on)
1488		ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1489	else
1490		ret = msm_toggle_vqmmc(msm_host, mmc, level);
1491
1492	return ret;
1493}
1494
1495static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1496{
1497	init_waitqueue_head(&msm_host->pwr_irq_wait);
1498}
1499
1500static inline void sdhci_msm_complete_pwr_irq_wait(
1501		struct sdhci_msm_host *msm_host)
1502{
1503	wake_up(&msm_host->pwr_irq_wait);
1504}
1505
1506/*
1507 * sdhci_msm_check_power_status API should be called when registers writes
1508 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1509 * To what state the register writes will change the IO lines should be passed
1510 * as the argument req_type. This API will check whether the IO line's state
1511 * is already the expected state and will wait for power irq only if
1512 * power irq is expected to be triggered based on the current IO line state
1513 * and expected IO line state.
1514 */
1515static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1516{
1517	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1518	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1519	bool done = false;
1520	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1521	const struct sdhci_msm_offset *msm_offset =
1522					msm_host->offset;
1523
1524	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1525			mmc_hostname(host->mmc), __func__, req_type,
1526			msm_host->curr_pwr_state, msm_host->curr_io_level);
1527
1528	/*
1529	 * The power interrupt will not be generated for signal voltage
1530	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1531	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1532	 * it as always set.
1533	 */
1534	if (!msm_host->mci_removed)
1535		val = msm_host_readl(msm_host, host,
1536				msm_offset->core_generics);
1537	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1538	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1539		return;
1540	}
1541
1542	/*
1543	 * The IRQ for request type IO High/LOW will be generated when -
1544	 * there is a state change in 1.8V enable bit (bit 3) of
1545	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1546	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1547	 * to set it to 3.3V before card detection happens, the
1548	 * IRQ doesn't get triggered as there is no state change in this bit.
1549	 * The driver already handles this case by changing the IO voltage
1550	 * level to high as part of controller power up sequence. Hence, check
1551	 * for host->pwr to handle a case where IO voltage high request is
1552	 * issued even before controller power up.
1553	 */
1554	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1555		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1556				mmc_hostname(host->mmc), req_type);
1557		return;
1558	}
1559	if ((req_type & msm_host->curr_pwr_state) ||
1560			(req_type & msm_host->curr_io_level))
1561		done = true;
1562	/*
1563	 * This is needed here to handle cases where register writes will
1564	 * not change the current bus state or io level of the controller.
1565	 * In this case, no power irq will be triggerred and we should
1566	 * not wait.
1567	 */
1568	if (!done) {
1569		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1570				msm_host->pwr_irq_flag,
1571				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1572			dev_warn(&msm_host->pdev->dev,
1573				 "%s: pwr_irq for req: (%d) timed out\n",
1574				 mmc_hostname(host->mmc), req_type);
1575	}
1576	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1577			__func__, req_type);
1578}
1579
1580static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1581{
1582	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1583	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1584	const struct sdhci_msm_offset *msm_offset =
1585					msm_host->offset;
1586
1587	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1588		mmc_hostname(host->mmc),
1589		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1590		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1591		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1592}
1593
1594static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1595{
1596	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1597	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1598	struct mmc_host *mmc = host->mmc;
1599	u32 irq_status, irq_ack = 0;
1600	int retry = 10, ret;
1601	u32 pwr_state = 0, io_level = 0;
1602	u32 config;
1603	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1604
1605	irq_status = msm_host_readl(msm_host, host,
1606			msm_offset->core_pwrctl_status);
1607	irq_status &= INT_MASK;
1608
1609	msm_host_writel(msm_host, irq_status, host,
1610			msm_offset->core_pwrctl_clear);
1611
1612	/*
1613	 * There is a rare HW scenario where the first clear pulse could be
1614	 * lost when actual reset and clear/read of status register is
1615	 * happening at a time. Hence, retry for at least 10 times to make
1616	 * sure status register is cleared. Otherwise, this will result in
1617	 * a spurious power IRQ resulting in system instability.
1618	 */
1619	while (irq_status & msm_host_readl(msm_host, host,
1620				msm_offset->core_pwrctl_status)) {
1621		if (retry == 0) {
1622			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1623					mmc_hostname(host->mmc), irq_status);
1624			sdhci_msm_dump_pwr_ctrl_regs(host);
1625			WARN_ON(1);
1626			break;
1627		}
1628		msm_host_writel(msm_host, irq_status, host,
1629			msm_offset->core_pwrctl_clear);
1630		retry--;
1631		udelay(10);
1632	}
1633
1634	/* Handle BUS ON/OFF*/
1635	if (irq_status & CORE_PWRCTL_BUS_ON) {
1636		pwr_state = REQ_BUS_ON;
1637		io_level = REQ_IO_HIGH;
1638	}
1639	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1640		pwr_state = REQ_BUS_OFF;
1641		io_level = REQ_IO_LOW;
1642	}
1643
1644	if (pwr_state) {
1645		ret = sdhci_msm_set_vmmc(mmc);
1646		if (!ret)
1647			ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1648					pwr_state & REQ_BUS_ON);
1649		if (!ret)
1650			ret = sdhci_msm_set_pincfg(msm_host,
1651					pwr_state & REQ_BUS_ON);
1652		if (!ret)
1653			irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1654		else
1655			irq_ack |= CORE_PWRCTL_BUS_FAIL;
1656	}
1657
1658	/* Handle IO LOW/HIGH */
1659	if (irq_status & CORE_PWRCTL_IO_LOW)
1660		io_level = REQ_IO_LOW;
1661
1662	if (irq_status & CORE_PWRCTL_IO_HIGH)
1663		io_level = REQ_IO_HIGH;
1664
1665	if (io_level)
1666		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1667
1668	if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1669		ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1670		if (ret < 0) {
1671			dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1672					mmc_hostname(mmc), ret,
1673					mmc->ios.signal_voltage, mmc->ios.vdd,
1674					irq_status);
1675			irq_ack |= CORE_PWRCTL_IO_FAIL;
1676		}
1677	}
1678
1679	/*
1680	 * The driver has to acknowledge the interrupt, switch voltages and
1681	 * report back if it succeded or not to this register. The voltage
1682	 * switches are handled by the sdhci core, so just report success.
1683	 */
1684	msm_host_writel(msm_host, irq_ack, host,
1685			msm_offset->core_pwrctl_ctl);
1686
1687	/*
1688	 * If we don't have info regarding the voltage levels supported by
1689	 * regulators, don't change the IO PAD PWR SWITCH.
1690	 */
1691	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1692		u32 new_config;
1693		/*
1694		 * We should unset IO PAD PWR switch only if the register write
1695		 * can set IO lines high and the regulator also switches to 3 V.
1696		 * Else, we should keep the IO PAD PWR switch set.
1697		 * This is applicable to certain targets where eMMC vccq supply
1698		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1699		 * IO PAD PWR switch must be kept set to reflect actual
1700		 * regulator voltage. This way, during initialization of
1701		 * controllers with only 1.8V, we will set the IO PAD bit
1702		 * without waiting for a REQ_IO_LOW.
1703		 */
1704		config = readl_relaxed(host->ioaddr +
1705				msm_offset->core_vendor_spec);
1706		new_config = config;
1707
1708		if ((io_level & REQ_IO_HIGH) &&
1709				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1710			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1711		else if ((io_level & REQ_IO_LOW) ||
1712				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1713			new_config |= CORE_IO_PAD_PWR_SWITCH;
1714
1715		if (config ^ new_config)
1716			writel_relaxed(new_config, host->ioaddr +
1717					msm_offset->core_vendor_spec);
1718	}
1719
1720	if (pwr_state)
1721		msm_host->curr_pwr_state = pwr_state;
1722	if (io_level)
1723		msm_host->curr_io_level = io_level;
1724
1725	dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1726		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1727		irq_ack);
1728}
1729
1730static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1731{
1732	struct sdhci_host *host = (struct sdhci_host *)data;
1733	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1734	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1735
1736	sdhci_msm_handle_pwr_irq(host, irq);
1737	msm_host->pwr_irq_flag = 1;
1738	sdhci_msm_complete_pwr_irq_wait(msm_host);
1739
1740
1741	return IRQ_HANDLED;
1742}
1743
1744static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1745{
1746	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1747	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1748	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1749
1750	return clk_round_rate(core_clk, ULONG_MAX);
1751}
1752
1753static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1754{
1755	return SDHCI_MSM_MIN_CLOCK;
1756}
1757
1758/*
1759 * __sdhci_msm_set_clock - sdhci_msm clock control.
1760 *
1761 * Description:
1762 * MSM controller does not use internal divider and
1763 * instead directly control the GCC clock as per
1764 * HW recommendation.
1765 **/
1766static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1767{
1768	u16 clk;
1769
1770	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1771
1772	if (clock == 0)
1773		return;
1774
1775	/*
1776	 * MSM controller do not use clock divider.
1777	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1778	 * clock with no divider value programmed.
1779	 */
1780	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1781	sdhci_enable_clk(host, clk);
1782}
1783
1784/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1785static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1786{
1787	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1788	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1789
1790	if (!clock) {
1791		host->mmc->actual_clock = msm_host->clk_rate = 0;
1792		goto out;
1793	}
1794
1795	sdhci_msm_hc_select_mode(host);
1796
1797	msm_set_clock_rate_for_bus_mode(host, clock);
1798out:
1799	__sdhci_msm_set_clock(host, clock);
1800}
1801
1802/*****************************************************************************\
1803 *                                                                           *
1804 * Inline Crypto Engine (ICE) support                                        *
1805 *                                                                           *
1806\*****************************************************************************/
1807
1808#ifdef CONFIG_MMC_CRYPTO
1809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1811			      struct cqhci_host *cq_host)
1812{
1813	struct mmc_host *mmc = msm_host->mmc;
1814	struct device *dev = mmc_dev(mmc);
1815	struct qcom_ice *ice;
1816
1817	if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1818		return 0;
1819
1820	ice = of_qcom_ice_get(dev);
1821	if (ice == ERR_PTR(-EOPNOTSUPP)) {
1822		dev_warn(dev, "Disabling inline encryption support\n");
1823		ice = NULL;
 
 
 
 
 
 
1824	}
1825
1826	if (IS_ERR_OR_NULL(ice))
1827		return PTR_ERR_OR_ZERO(ice);
 
 
 
 
1828
1829	msm_host->ice = ice;
1830	mmc->caps2 |= MMC_CAP2_CRYPTO;
 
1831
 
 
1832	return 0;
1833}
1834
1835static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1836{
1837	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1838		qcom_ice_enable(msm_host->ice);
 
 
 
 
 
 
 
1839}
1840
1841static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1842{
1843	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1844		return qcom_ice_resume(msm_host->ice);
 
 
 
 
 
 
 
 
1845
1846	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1847}
1848
1849static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1850{
1851	if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1852		return qcom_ice_suspend(msm_host->ice);
 
 
 
 
1853
1854	return 0;
 
 
 
 
1855}
1856
1857/*
1858 * Program a key into a QC ICE keyslot, or evict a keyslot.  QC ICE requires
1859 * vendor-specific SCM calls for this; it doesn't support the standard way.
1860 */
1861static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1862				 const union cqhci_crypto_cfg_entry *cfg,
1863				 int slot)
1864{
1865	struct sdhci_host *host = mmc_priv(cq_host->mmc);
1866	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1867	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1868	union cqhci_crypto_cap_entry cap;
 
 
 
 
 
 
 
 
 
1869
1870	/* Only AES-256-XTS has been tested so far. */
1871	cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1872	if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1873		cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256)
 
 
 
1874		return -EINVAL;
 
 
 
1875
1876	if (cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE)
1877		return qcom_ice_program_key(msm_host->ice,
1878					    QCOM_ICE_CRYPTO_ALG_AES_XTS,
1879					    QCOM_ICE_CRYPTO_KEY_SIZE_256,
1880					    cfg->crypto_key,
1881					    cfg->data_unit_size, slot);
1882	else
1883		return qcom_ice_evict_key(msm_host->ice, slot);
 
 
 
 
1884}
1885
1886#else /* CONFIG_MMC_CRYPTO */
 
 
 
 
1887
1888static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1889				     struct cqhci_host *cq_host)
1890{
1891	return 0;
1892}
1893
1894static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1895{
1896}
1897
1898static inline __maybe_unused int
1899sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1900{
1901	return 0;
1902}
1903
1904static inline __maybe_unused int
1905sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1906{
1907	return 0;
1908}
1909#endif /* !CONFIG_MMC_CRYPTO */
1910
1911/*****************************************************************************\
1912 *                                                                           *
1913 * MSM Command Queue Engine (CQE)                                            *
1914 *                                                                           *
1915\*****************************************************************************/
1916
1917static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1918{
1919	int cmd_error = 0;
1920	int data_error = 0;
1921
1922	if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1923		return intmask;
1924
1925	cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1926	return 0;
1927}
1928
1929static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
1930{
1931	struct sdhci_host *host = mmc_priv(mmc);
1932	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1933	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1934
1935	sdhci_cqe_enable(mmc);
1936	sdhci_msm_ice_enable(msm_host);
1937}
1938
1939static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1940{
1941	struct sdhci_host *host = mmc_priv(mmc);
1942	unsigned long flags;
1943	u32 ctrl;
1944
1945	/*
1946	 * When CQE is halted, the legacy SDHCI path operates only
1947	 * on 16-byte descriptors in 64bit mode.
1948	 */
1949	if (host->flags & SDHCI_USE_64_BIT_DMA)
1950		host->desc_sz = 16;
1951
1952	spin_lock_irqsave(&host->lock, flags);
1953
1954	/*
1955	 * During CQE command transfers, command complete bit gets latched.
1956	 * So s/w should clear command complete interrupt status when CQE is
1957	 * either halted or disabled. Otherwise unexpected SDCHI legacy
1958	 * interrupt gets triggered when CQE is halted/disabled.
1959	 */
1960	ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1961	ctrl |= SDHCI_INT_RESPONSE;
1962	sdhci_writel(host,  ctrl, SDHCI_INT_ENABLE);
1963	sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1964
1965	spin_unlock_irqrestore(&host->lock, flags);
1966
1967	sdhci_cqe_disable(mmc, recovery);
1968}
1969
1970static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
1971{
1972	u32 count, start = 15;
1973
1974	__sdhci_set_timeout(host, cmd);
1975	count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
1976	/*
1977	 * Update software timeout value if its value is less than hardware data
1978	 * timeout value. Qcom SoC hardware data timeout value was calculated
1979	 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
1980	 */
1981	if (cmd && cmd->data && host->clock > 400000 &&
1982	    host->clock <= 50000000 &&
1983	    ((1 << (count + start)) > (10 * host->clock)))
1984		host->data_timeout = 22LL * NSEC_PER_SEC;
1985}
1986
1987static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1988	.enable		= sdhci_msm_cqe_enable,
1989	.disable	= sdhci_msm_cqe_disable,
1990#ifdef CONFIG_MMC_CRYPTO
1991	.program_key	= sdhci_msm_program_key,
1992#endif
1993};
1994
1995static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1996				struct platform_device *pdev)
1997{
1998	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1999	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2000	struct cqhci_host *cq_host;
2001	bool dma64;
2002	u32 cqcfg;
2003	int ret;
2004
2005	/*
2006	 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2007	 * So ensure ADMA table is allocated for 16byte descriptors.
2008	 */
2009	if (host->caps & SDHCI_CAN_64BIT)
2010		host->alloc_desc_sz = 16;
2011
2012	ret = sdhci_setup_host(host);
2013	if (ret)
2014		return ret;
2015
2016	cq_host = cqhci_pltfm_init(pdev);
2017	if (IS_ERR(cq_host)) {
2018		ret = PTR_ERR(cq_host);
2019		dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2020		goto cleanup;
2021	}
2022
2023	msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2024	cq_host->ops = &sdhci_msm_cqhci_ops;
2025
2026	dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2027
2028	ret = sdhci_msm_ice_init(msm_host, cq_host);
2029	if (ret)
2030		goto cleanup;
2031
2032	ret = cqhci_init(cq_host, host->mmc, dma64);
2033	if (ret) {
2034		dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2035				mmc_hostname(host->mmc), ret);
2036		goto cleanup;
2037	}
2038
2039	/* Disable cqe reset due to cqe enable signal */
2040	cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2041	cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2042	cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2043
2044	/*
2045	 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2046	 * So limit desc_sz to 12 so that the data commands that are sent
2047	 * during card initialization (before CQE gets enabled) would
2048	 * get executed without any issues.
2049	 */
2050	if (host->flags & SDHCI_USE_64_BIT_DMA)
2051		host->desc_sz = 12;
2052
2053	ret = __sdhci_add_host(host);
2054	if (ret)
2055		goto cleanup;
2056
2057	dev_info(&pdev->dev, "%s: CQE init: success\n",
2058			mmc_hostname(host->mmc));
2059	return ret;
2060
2061cleanup:
2062	sdhci_cleanup_host(host);
2063	return ret;
2064}
2065
2066/*
2067 * Platform specific register write functions. This is so that, if any
2068 * register write needs to be followed up by platform specific actions,
2069 * they can be added here. These functions can go to sleep when writes
2070 * to certain registers are done.
2071 * These functions are relying on sdhci_set_ios not using spinlock.
2072 */
2073static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2074{
2075	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2076	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2077	u32 req_type = 0;
2078
2079	switch (reg) {
2080	case SDHCI_HOST_CONTROL2:
2081		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2082			REQ_IO_HIGH;
2083		break;
2084	case SDHCI_SOFTWARE_RESET:
2085		if (host->pwr && (val & SDHCI_RESET_ALL))
2086			req_type = REQ_BUS_OFF;
2087		break;
2088	case SDHCI_POWER_CONTROL:
2089		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2090		break;
2091	case SDHCI_TRANSFER_MODE:
2092		msm_host->transfer_mode = val;
2093		break;
2094	case SDHCI_COMMAND:
2095		if (!msm_host->use_cdr)
2096			break;
2097		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2098		    !mmc_op_tuning(SDHCI_GET_CMD(val)))
2099			sdhci_msm_set_cdr(host, true);
2100		else
2101			sdhci_msm_set_cdr(host, false);
2102		break;
2103	}
2104
2105	if (req_type) {
2106		msm_host->pwr_irq_flag = 0;
2107		/*
2108		 * Since this register write may trigger a power irq, ensure
2109		 * all previous register writes are complete by this point.
2110		 */
2111		mb();
2112	}
2113	return req_type;
2114}
2115
2116/* This function may sleep*/
2117static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2118{
2119	u32 req_type = 0;
2120
2121	req_type = __sdhci_msm_check_write(host, val, reg);
2122	writew_relaxed(val, host->ioaddr + reg);
2123
2124	if (req_type)
2125		sdhci_msm_check_power_status(host, req_type);
2126}
2127
2128/* This function may sleep*/
2129static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2130{
2131	u32 req_type = 0;
2132
2133	req_type = __sdhci_msm_check_write(host, val, reg);
2134
2135	writeb_relaxed(val, host->ioaddr + reg);
2136
2137	if (req_type)
2138		sdhci_msm_check_power_status(host, req_type);
2139}
2140
2141static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2142{
2143	struct mmc_host *mmc = msm_host->mmc;
2144	struct regulator *supply = mmc->supply.vqmmc;
2145	u32 caps = 0, config;
2146	struct sdhci_host *host = mmc_priv(mmc);
2147	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2148
2149	if (!IS_ERR(mmc->supply.vqmmc)) {
2150		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2151			caps |= CORE_1_8V_SUPPORT;
2152		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2153			caps |= CORE_3_0V_SUPPORT;
2154
2155		if (!caps)
2156			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2157					mmc_hostname(mmc));
2158	}
2159
2160	if (caps) {
2161		/*
2162		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2163		 * bit can be used as required later on.
2164		 */
2165		u32 io_level = msm_host->curr_io_level;
2166
2167		config = readl_relaxed(host->ioaddr +
2168				msm_offset->core_vendor_spec);
2169		config |= CORE_IO_PAD_PWR_SWITCH_EN;
2170
2171		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
2172			config &= ~CORE_IO_PAD_PWR_SWITCH;
2173		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2174			config |= CORE_IO_PAD_PWR_SWITCH;
2175
2176		writel_relaxed(config,
2177				host->ioaddr + msm_offset->core_vendor_spec);
2178	}
2179	msm_host->caps_0 |= caps;
2180	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2181}
2182
2183static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2184{
2185	int ret;
2186
2187	ret = mmc_regulator_get_supply(msm_host->mmc);
2188	if (ret)
2189		return ret;
2190
2191	sdhci_msm_set_regulator_caps(msm_host);
2192
2193	return 0;
2194}
2195
2196static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2197				      struct mmc_ios *ios)
2198{
2199	struct sdhci_host *host = mmc_priv(mmc);
2200	u16 ctrl, status;
2201
2202	/*
2203	 * Signal Voltage Switching is only applicable for Host Controllers
2204	 * v3.00 and above.
2205	 */
2206	if (host->version < SDHCI_SPEC_300)
2207		return 0;
2208
2209	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2210
2211	switch (ios->signal_voltage) {
2212	case MMC_SIGNAL_VOLTAGE_330:
2213		if (!(host->flags & SDHCI_SIGNALING_330))
2214			return -EINVAL;
2215
2216		/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2217		ctrl &= ~SDHCI_CTRL_VDD_180;
2218		break;
2219	case MMC_SIGNAL_VOLTAGE_180:
2220		if (!(host->flags & SDHCI_SIGNALING_180))
2221			return -EINVAL;
2222
2223		/* Enable 1.8V Signal Enable in the Host Control2 register */
2224		ctrl |= SDHCI_CTRL_VDD_180;
2225		break;
2226
2227	default:
2228		return -EINVAL;
2229	}
2230
2231	sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2232
2233	/* Wait for 5ms */
2234	usleep_range(5000, 5500);
2235
2236	/* regulator output should be stable within 5 ms */
2237	status = ctrl & SDHCI_CTRL_VDD_180;
2238	ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2239	if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2240		return 0;
2241
2242	dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2243		mmc_hostname(mmc));
2244
2245	return -EAGAIN;
2246}
2247
2248#define DRIVER_NAME "sdhci_msm"
2249#define SDHCI_MSM_DUMP(f, x...) \
2250	pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2251
2252static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2253{
2254	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2255	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2256	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2257
2258	SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2259
2260	SDHCI_MSM_DUMP(
2261			"DLL sts: 0x%08x | DLL cfg:  0x%08x | DLL cfg2: 0x%08x\n",
2262		readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2263		readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2264		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2265	SDHCI_MSM_DUMP(
2266			"DLL cfg3: 0x%08x | DLL usr ctl:  0x%08x | DDR cfg: 0x%08x\n",
2267		readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2268		readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2269		readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2270	SDHCI_MSM_DUMP(
2271			"Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2272		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2273		readl_relaxed(host->ioaddr +
2274			msm_offset->core_vendor_spec_func2),
2275		readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2276}
2277
2278static const struct sdhci_msm_variant_ops mci_var_ops = {
2279	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2280	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2281};
2282
2283static const struct sdhci_msm_variant_ops v5_var_ops = {
2284	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2285	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2286};
2287
2288static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2289	.var_ops = &mci_var_ops,
2290	.offset = &sdhci_msm_mci_offset,
2291};
2292
2293static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2294	.mci_removed = true,
2295	.var_ops = &v5_var_ops,
2296	.offset = &sdhci_msm_v5_offset,
2297};
2298
2299static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2300	.mci_removed = true,
2301	.restore_dll_config = true,
2302	.var_ops = &v5_var_ops,
2303	.offset = &sdhci_msm_v5_offset,
2304};
2305
2306static const struct of_device_id sdhci_msm_dt_match[] = {
2307	/*
2308	 * Do not add new variants to the driver which are compatible with
2309	 * generic ones, unless they need customization.
2310	 */
2311	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2312	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2313	{.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2314	{.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2315	{.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2316	{},
2317};
2318
2319MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2320
2321static const struct sdhci_ops sdhci_msm_ops = {
2322	.reset = sdhci_and_cqhci_reset,
2323	.set_clock = sdhci_msm_set_clock,
2324	.get_min_clock = sdhci_msm_get_min_clock,
2325	.get_max_clock = sdhci_msm_get_max_clock,
2326	.set_bus_width = sdhci_set_bus_width,
2327	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2328	.write_w = sdhci_msm_writew,
2329	.write_b = sdhci_msm_writeb,
2330	.irq	= sdhci_msm_cqe_irq,
2331	.dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2332	.set_power = sdhci_set_power_noreg,
2333	.set_timeout = sdhci_msm_set_timeout,
2334};
2335
2336static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2337	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2338		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
2339		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2340		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2341
2342	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2343	.ops = &sdhci_msm_ops,
2344};
2345
2346static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2347		struct sdhci_host *host)
2348{
2349	struct device_node *node = pdev->dev.of_node;
2350	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2351	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2352
2353	if (of_property_read_u32(node, "qcom,ddr-config",
2354				&msm_host->ddr_config))
2355		msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2356
2357	of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2358
2359	if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2360		host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2361}
2362
2363static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2364{
2365	struct reset_control *reset;
2366	int ret = 0;
2367
2368	reset = reset_control_get_optional_exclusive(dev, NULL);
2369	if (IS_ERR(reset))
2370		return dev_err_probe(dev, PTR_ERR(reset),
2371				"unable to acquire core_reset\n");
2372
2373	if (!reset)
2374		return ret;
2375
2376	ret = reset_control_assert(reset);
2377	if (ret) {
2378		reset_control_put(reset);
2379		return dev_err_probe(dev, ret, "core_reset assert failed\n");
2380	}
2381
2382	/*
2383	 * The hardware requirement for delay between assert/deassert
2384	 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2385	 * ~125us (4/32768). To be on the safe side add 200us delay.
2386	 */
2387	usleep_range(200, 210);
2388
2389	ret = reset_control_deassert(reset);
2390	if (ret) {
2391		reset_control_put(reset);
2392		return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2393	}
2394
2395	usleep_range(200, 210);
2396	reset_control_put(reset);
2397
2398	return ret;
2399}
2400
2401static int sdhci_msm_probe(struct platform_device *pdev)
2402{
2403	struct sdhci_host *host;
2404	struct sdhci_pltfm_host *pltfm_host;
2405	struct sdhci_msm_host *msm_host;
2406	struct clk *clk;
2407	int ret;
2408	u16 host_version, core_minor;
2409	u32 core_version, config;
2410	u8 core_major;
2411	const struct sdhci_msm_offset *msm_offset;
2412	const struct sdhci_msm_variant_info *var_info;
2413	struct device_node *node = pdev->dev.of_node;
2414
2415	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2416	if (IS_ERR(host))
2417		return PTR_ERR(host);
2418
2419	host->sdma_boundary = 0;
2420	pltfm_host = sdhci_priv(host);
2421	msm_host = sdhci_pltfm_priv(pltfm_host);
2422	msm_host->mmc = host->mmc;
2423	msm_host->pdev = pdev;
2424
2425	ret = mmc_of_parse(host->mmc);
2426	if (ret)
2427		goto pltfm_free;
2428
2429	/*
2430	 * Based on the compatible string, load the required msm host info from
2431	 * the data associated with the version info.
2432	 */
2433	var_info = of_device_get_match_data(&pdev->dev);
2434
2435	msm_host->mci_removed = var_info->mci_removed;
2436	msm_host->restore_dll_config = var_info->restore_dll_config;
2437	msm_host->var_ops = var_info->var_ops;
2438	msm_host->offset = var_info->offset;
2439
2440	msm_offset = msm_host->offset;
2441
2442	sdhci_get_of_property(pdev);
2443	sdhci_msm_get_of_property(pdev, host);
2444
2445	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2446
2447	ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2448	if (ret)
2449		goto pltfm_free;
2450
2451	/* Setup SDCC bus voter clock. */
2452	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2453	if (!IS_ERR(msm_host->bus_clk)) {
2454		/* Vote for max. clk rate for max. performance */
2455		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2456		if (ret)
2457			goto pltfm_free;
2458		ret = clk_prepare_enable(msm_host->bus_clk);
2459		if (ret)
2460			goto pltfm_free;
2461	}
2462
2463	/* Setup main peripheral bus clock */
2464	clk = devm_clk_get(&pdev->dev, "iface");
2465	if (IS_ERR(clk)) {
2466		ret = PTR_ERR(clk);
2467		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2468		goto bus_clk_disable;
2469	}
2470	msm_host->bulk_clks[1].clk = clk;
2471
2472	/* Setup SDC MMC clock */
2473	clk = devm_clk_get(&pdev->dev, "core");
2474	if (IS_ERR(clk)) {
2475		ret = PTR_ERR(clk);
2476		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2477		goto bus_clk_disable;
2478	}
2479	msm_host->bulk_clks[0].clk = clk;
2480
2481	 /* Check for optional interconnect paths */
2482	ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2483	if (ret)
2484		goto bus_clk_disable;
2485
2486	ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2487	if (ret)
2488		goto bus_clk_disable;
2489
2490	/* OPP table is optional */
2491	ret = devm_pm_opp_of_add_table(&pdev->dev);
2492	if (ret && ret != -ENODEV) {
2493		dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2494		goto bus_clk_disable;
2495	}
2496
2497	/* Vote for maximum clock rate for maximum performance */
2498	ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2499	if (ret)
2500		dev_warn(&pdev->dev, "core clock boost failed\n");
2501
2502	clk = devm_clk_get(&pdev->dev, "cal");
2503	if (IS_ERR(clk))
2504		clk = NULL;
2505	msm_host->bulk_clks[2].clk = clk;
2506
2507	clk = devm_clk_get(&pdev->dev, "sleep");
2508	if (IS_ERR(clk))
2509		clk = NULL;
2510	msm_host->bulk_clks[3].clk = clk;
2511
 
 
 
 
 
2512	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2513				      msm_host->bulk_clks);
2514	if (ret)
2515		goto bus_clk_disable;
2516
2517	/*
2518	 * xo clock is needed for FLL feature of cm_dll.
2519	 * In case if xo clock is not mentioned in DT, warn and proceed.
2520	 */
2521	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2522	if (IS_ERR(msm_host->xo_clk)) {
2523		ret = PTR_ERR(msm_host->xo_clk);
2524		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2525	}
2526
2527	if (!msm_host->mci_removed) {
2528		msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2529		if (IS_ERR(msm_host->core_mem)) {
2530			ret = PTR_ERR(msm_host->core_mem);
2531			goto clk_disable;
2532		}
2533	}
2534
2535	/* Reset the vendor spec register to power on reset state */
2536	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2537			host->ioaddr + msm_offset->core_vendor_spec);
2538
2539	if (!msm_host->mci_removed) {
2540		/* Set HC_MODE_EN bit in HC_MODE register */
2541		msm_host_writel(msm_host, HC_MODE_EN, host,
2542				msm_offset->core_hc_mode);
2543		config = msm_host_readl(msm_host, host,
2544				msm_offset->core_hc_mode);
2545		config |= FF_CLK_SW_RST_DIS;
2546		msm_host_writel(msm_host, config, host,
2547				msm_offset->core_hc_mode);
2548	}
2549
2550	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2551	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2552		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2553			       SDHCI_VENDOR_VER_SHIFT));
2554
2555	core_version = msm_host_readl(msm_host, host,
2556			msm_offset->core_mci_version);
2557	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2558		      CORE_VERSION_MAJOR_SHIFT;
2559	core_minor = core_version & CORE_VERSION_MINOR_MASK;
2560	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2561		core_version, core_major, core_minor);
2562
2563	if (core_major == 1 && core_minor >= 0x42)
2564		msm_host->use_14lpp_dll_reset = true;
2565
2566	/*
2567	 * SDCC 5 controller with major version 1, minor version 0x34 and later
2568	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2569	 */
2570	if (core_major == 1 && core_minor < 0x34)
2571		msm_host->use_cdclp533 = true;
2572
2573	/*
2574	 * Support for some capabilities is not advertised by newer
2575	 * controller versions and must be explicitly enabled.
2576	 */
2577	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2578		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2579		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2580		writel_relaxed(config, host->ioaddr +
2581				msm_offset->core_vendor_spec_capabilities0);
2582	}
2583
2584	if (core_major == 1 && core_minor >= 0x49)
2585		msm_host->updated_ddr_cfg = true;
2586
2587	if (core_major == 1 && core_minor >= 0x71)
2588		msm_host->uses_tassadar_dll = true;
2589
2590	ret = sdhci_msm_register_vreg(msm_host);
2591	if (ret)
2592		goto clk_disable;
2593
2594	/*
2595	 * Power on reset state may trigger power irq if previous status of
2596	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2597	 * interrupt in GIC, any pending power irq interrupt should be
2598	 * acknowledged. Otherwise power irq interrupt handler would be
2599	 * fired prematurely.
2600	 */
2601	sdhci_msm_handle_pwr_irq(host, 0);
2602
2603	/*
2604	 * Ensure that above writes are propogated before interrupt enablement
2605	 * in GIC.
2606	 */
2607	mb();
2608
2609	/* Setup IRQ for handling power/voltage tasks with PMIC */
2610	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2611	if (msm_host->pwr_irq < 0) {
2612		ret = msm_host->pwr_irq;
2613		goto clk_disable;
2614	}
2615
2616	sdhci_msm_init_pwr_irq_wait(msm_host);
2617	/* Enable pwr irq interrupts */
2618	msm_host_writel(msm_host, INT_MASK, host,
2619		msm_offset->core_pwrctl_mask);
2620
2621	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2622					sdhci_msm_pwr_irq, IRQF_ONESHOT,
2623					dev_name(&pdev->dev), host);
2624	if (ret) {
2625		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2626		goto clk_disable;
2627	}
2628
2629	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2630
2631	/* Set the timeout value to max possible */
2632	host->max_timeout_count = 0xF;
2633
2634	pm_runtime_get_noresume(&pdev->dev);
2635	pm_runtime_set_active(&pdev->dev);
2636	pm_runtime_enable(&pdev->dev);
2637	pm_runtime_set_autosuspend_delay(&pdev->dev,
2638					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2639	pm_runtime_use_autosuspend(&pdev->dev);
2640
2641	host->mmc_host_ops.start_signal_voltage_switch =
2642		sdhci_msm_start_signal_voltage_switch;
2643	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2644	if (of_property_read_bool(node, "supports-cqe"))
2645		ret = sdhci_msm_cqe_add_host(host, pdev);
2646	else
2647		ret = sdhci_add_host(host);
2648	if (ret)
2649		goto pm_runtime_disable;
2650
2651	pm_runtime_mark_last_busy(&pdev->dev);
2652	pm_runtime_put_autosuspend(&pdev->dev);
2653
2654	return 0;
2655
2656pm_runtime_disable:
2657	pm_runtime_disable(&pdev->dev);
2658	pm_runtime_set_suspended(&pdev->dev);
2659	pm_runtime_put_noidle(&pdev->dev);
2660clk_disable:
2661	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2662				   msm_host->bulk_clks);
2663bus_clk_disable:
2664	if (!IS_ERR(msm_host->bus_clk))
2665		clk_disable_unprepare(msm_host->bus_clk);
2666pltfm_free:
2667	sdhci_pltfm_free(pdev);
2668	return ret;
2669}
2670
2671static void sdhci_msm_remove(struct platform_device *pdev)
2672{
2673	struct sdhci_host *host = platform_get_drvdata(pdev);
2674	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2675	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2676	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2677		    0xffffffff);
2678
2679	sdhci_remove_host(host, dead);
2680
2681	pm_runtime_get_sync(&pdev->dev);
2682	pm_runtime_disable(&pdev->dev);
2683	pm_runtime_put_noidle(&pdev->dev);
2684
2685	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2686				   msm_host->bulk_clks);
2687	if (!IS_ERR(msm_host->bus_clk))
2688		clk_disable_unprepare(msm_host->bus_clk);
2689	sdhci_pltfm_free(pdev);
 
2690}
2691
2692static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2693{
2694	struct sdhci_host *host = dev_get_drvdata(dev);
2695	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2696	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2697
2698	/* Drop the performance vote */
2699	dev_pm_opp_set_rate(dev, 0);
2700	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2701				   msm_host->bulk_clks);
2702
2703	return sdhci_msm_ice_suspend(msm_host);
2704}
2705
2706static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2707{
2708	struct sdhci_host *host = dev_get_drvdata(dev);
2709	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2710	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2711	int ret;
2712
2713	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2714				       msm_host->bulk_clks);
2715	if (ret)
2716		return ret;
2717	/*
2718	 * Whenever core-clock is gated dynamically, it's needed to
2719	 * restore the SDR DLL settings when the clock is ungated.
2720	 */
2721	if (msm_host->restore_dll_config && msm_host->clk_rate) {
2722		ret = sdhci_msm_restore_sdr_dll_config(host);
2723		if (ret)
2724			return ret;
2725	}
2726
2727	dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2728
2729	return sdhci_msm_ice_resume(msm_host);
2730}
2731
2732static const struct dev_pm_ops sdhci_msm_pm_ops = {
2733	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2734				pm_runtime_force_resume)
2735	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2736			   sdhci_msm_runtime_resume,
2737			   NULL)
2738};
2739
2740static struct platform_driver sdhci_msm_driver = {
2741	.probe = sdhci_msm_probe,
2742	.remove_new = sdhci_msm_remove,
2743	.driver = {
2744		   .name = "sdhci_msm",
2745		   .of_match_table = sdhci_msm_dt_match,
2746		   .pm = &sdhci_msm_pm_ops,
2747		   .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2748	},
2749};
2750
2751module_platform_driver(sdhci_msm_driver);
2752
2753MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2754MODULE_LICENSE("GPL v2");