Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8#include <linux/module.h>
9#include <linux/of_device.h>
10#include <linux/delay.h>
11#include <linux/mmc/mmc.h>
12#include <linux/pm_runtime.h>
13#include <linux/pm_opp.h>
14#include <linux/slab.h>
15#include <linux/iopoll.h>
16#include <linux/qcom_scm.h>
17#include <linux/regulator/consumer.h>
18#include <linux/interconnect.h>
19#include <linux/pinctrl/consumer.h>
20#include <linux/reset.h>
21
22#include "sdhci-cqhci.h"
23#include "sdhci-pltfm.h"
24#include "cqhci.h"
25
26#define CORE_MCI_VERSION 0x50
27#define CORE_VERSION_MAJOR_SHIFT 28
28#define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
29#define CORE_VERSION_MINOR_MASK 0xff
30
31#define CORE_MCI_GENERICS 0x70
32#define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
33
34#define HC_MODE_EN 0x1
35#define CORE_POWER 0x0
36#define CORE_SW_RST BIT(7)
37#define FF_CLK_SW_RST_DIS BIT(13)
38
39#define CORE_PWRCTL_BUS_OFF BIT(0)
40#define CORE_PWRCTL_BUS_ON BIT(1)
41#define CORE_PWRCTL_IO_LOW BIT(2)
42#define CORE_PWRCTL_IO_HIGH BIT(3)
43#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
44#define CORE_PWRCTL_BUS_FAIL BIT(1)
45#define CORE_PWRCTL_IO_SUCCESS BIT(2)
46#define CORE_PWRCTL_IO_FAIL BIT(3)
47#define REQ_BUS_OFF BIT(0)
48#define REQ_BUS_ON BIT(1)
49#define REQ_IO_LOW BIT(2)
50#define REQ_IO_HIGH BIT(3)
51#define INT_MASK 0xf
52#define MAX_PHASES 16
53#define CORE_DLL_LOCK BIT(7)
54#define CORE_DDR_DLL_LOCK BIT(11)
55#define CORE_DLL_EN BIT(16)
56#define CORE_CDR_EN BIT(17)
57#define CORE_CK_OUT_EN BIT(18)
58#define CORE_CDR_EXT_EN BIT(19)
59#define CORE_DLL_PDN BIT(29)
60#define CORE_DLL_RST BIT(30)
61#define CORE_CMD_DAT_TRACK_SEL BIT(0)
62
63#define CORE_DDR_CAL_EN BIT(0)
64#define CORE_FLL_CYCLE_CNT BIT(18)
65#define CORE_DLL_CLOCK_DISABLE BIT(21)
66
67#define DLL_USR_CTL_POR_VAL 0x10800
68#define ENABLE_DLL_LOCK_STATUS BIT(26)
69#define FINE_TUNE_MODE_EN BIT(27)
70#define BIAS_OK_SIGNAL BIT(29)
71
72#define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
73#define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
74
75#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
76#define CORE_CLK_PWRSAVE BIT(1)
77#define CORE_HC_MCLK_SEL_DFLT (2 << 8)
78#define CORE_HC_MCLK_SEL_HS400 (3 << 8)
79#define CORE_HC_MCLK_SEL_MASK (3 << 8)
80#define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
81#define CORE_IO_PAD_PWR_SWITCH BIT(16)
82#define CORE_HC_SELECT_IN_EN BIT(18)
83#define CORE_HC_SELECT_IN_HS400 (6 << 19)
84#define CORE_HC_SELECT_IN_MASK (7 << 19)
85
86#define CORE_3_0V_SUPPORT BIT(25)
87#define CORE_1_8V_SUPPORT BIT(26)
88#define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
89
90#define CORE_CSR_CDC_CTLR_CFG0 0x130
91#define CORE_SW_TRIG_FULL_CALIB BIT(16)
92#define CORE_HW_AUTOCAL_ENA BIT(17)
93
94#define CORE_CSR_CDC_CTLR_CFG1 0x134
95#define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
96#define CORE_TIMER_ENA BIT(16)
97
98#define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
99#define CORE_CSR_CDC_REFCOUNT_CFG 0x140
100#define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
101#define CORE_CDC_OFFSET_CFG 0x14C
102#define CORE_CSR_CDC_DELAY_CFG 0x150
103#define CORE_CDC_SLAVE_DDA_CFG 0x160
104#define CORE_CSR_CDC_STATUS0 0x164
105#define CORE_CALIBRATION_DONE BIT(0)
106
107#define CORE_CDC_ERROR_CODE_MASK 0x7000000
108
109#define CORE_CSR_CDC_GEN_CFG 0x178
110#define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
111#define CORE_CDC_SWITCH_RC_EN BIT(1)
112
113#define CORE_CDC_T4_DLY_SEL BIT(0)
114#define CORE_CMDIN_RCLK_EN BIT(1)
115#define CORE_START_CDC_TRAFFIC BIT(6)
116
117#define CORE_PWRSAVE_DLL BIT(3)
118
119#define DDR_CONFIG_POR_VAL 0x80040873
120
121
122#define INVALID_TUNING_PHASE -1
123#define SDHCI_MSM_MIN_CLOCK 400000
124#define CORE_FREQ_100MHZ (100 * 1000 * 1000)
125
126#define CDR_SELEXT_SHIFT 20
127#define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
128#define CMUX_SHIFT_PHASE_SHIFT 24
129#define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
130
131#define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
132
133/* Timeout value to avoid infinite waiting for pwr_irq */
134#define MSM_PWR_IRQ_TIMEOUT_MS 5000
135
136/* Max load for eMMC Vdd-io supply */
137#define MMC_VQMMC_MAX_LOAD_UA 325000
138
139#define msm_host_readl(msm_host, host, offset) \
140 msm_host->var_ops->msm_readl_relaxed(host, offset)
141
142#define msm_host_writel(msm_host, val, host, offset) \
143 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
144
145/* CQHCI vendor specific registers */
146#define CQHCI_VENDOR_CFG1 0xA00
147#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
148
149struct sdhci_msm_offset {
150 u32 core_hc_mode;
151 u32 core_mci_data_cnt;
152 u32 core_mci_status;
153 u32 core_mci_fifo_cnt;
154 u32 core_mci_version;
155 u32 core_generics;
156 u32 core_testbus_config;
157 u32 core_testbus_sel2_bit;
158 u32 core_testbus_ena;
159 u32 core_testbus_sel2;
160 u32 core_pwrctl_status;
161 u32 core_pwrctl_mask;
162 u32 core_pwrctl_clear;
163 u32 core_pwrctl_ctl;
164 u32 core_sdcc_debug_reg;
165 u32 core_dll_config;
166 u32 core_dll_status;
167 u32 core_vendor_spec;
168 u32 core_vendor_spec_adma_err_addr0;
169 u32 core_vendor_spec_adma_err_addr1;
170 u32 core_vendor_spec_func2;
171 u32 core_vendor_spec_capabilities0;
172 u32 core_ddr_200_cfg;
173 u32 core_vendor_spec3;
174 u32 core_dll_config_2;
175 u32 core_dll_config_3;
176 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
177 u32 core_ddr_config;
178 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
179};
180
181static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
182 .core_mci_data_cnt = 0x35c,
183 .core_mci_status = 0x324,
184 .core_mci_fifo_cnt = 0x308,
185 .core_mci_version = 0x318,
186 .core_generics = 0x320,
187 .core_testbus_config = 0x32c,
188 .core_testbus_sel2_bit = 3,
189 .core_testbus_ena = (1 << 31),
190 .core_testbus_sel2 = (1 << 3),
191 .core_pwrctl_status = 0x240,
192 .core_pwrctl_mask = 0x244,
193 .core_pwrctl_clear = 0x248,
194 .core_pwrctl_ctl = 0x24c,
195 .core_sdcc_debug_reg = 0x358,
196 .core_dll_config = 0x200,
197 .core_dll_status = 0x208,
198 .core_vendor_spec = 0x20c,
199 .core_vendor_spec_adma_err_addr0 = 0x214,
200 .core_vendor_spec_adma_err_addr1 = 0x218,
201 .core_vendor_spec_func2 = 0x210,
202 .core_vendor_spec_capabilities0 = 0x21c,
203 .core_ddr_200_cfg = 0x224,
204 .core_vendor_spec3 = 0x250,
205 .core_dll_config_2 = 0x254,
206 .core_dll_config_3 = 0x258,
207 .core_ddr_config = 0x25c,
208 .core_dll_usr_ctl = 0x388,
209};
210
211static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
212 .core_hc_mode = 0x78,
213 .core_mci_data_cnt = 0x30,
214 .core_mci_status = 0x34,
215 .core_mci_fifo_cnt = 0x44,
216 .core_mci_version = 0x050,
217 .core_generics = 0x70,
218 .core_testbus_config = 0x0cc,
219 .core_testbus_sel2_bit = 4,
220 .core_testbus_ena = (1 << 3),
221 .core_testbus_sel2 = (1 << 4),
222 .core_pwrctl_status = 0xdc,
223 .core_pwrctl_mask = 0xe0,
224 .core_pwrctl_clear = 0xe4,
225 .core_pwrctl_ctl = 0xe8,
226 .core_sdcc_debug_reg = 0x124,
227 .core_dll_config = 0x100,
228 .core_dll_status = 0x108,
229 .core_vendor_spec = 0x10c,
230 .core_vendor_spec_adma_err_addr0 = 0x114,
231 .core_vendor_spec_adma_err_addr1 = 0x118,
232 .core_vendor_spec_func2 = 0x110,
233 .core_vendor_spec_capabilities0 = 0x11c,
234 .core_ddr_200_cfg = 0x184,
235 .core_vendor_spec3 = 0x1b0,
236 .core_dll_config_2 = 0x1b4,
237 .core_ddr_config_old = 0x1b8,
238 .core_ddr_config = 0x1bc,
239};
240
241struct sdhci_msm_variant_ops {
242 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
243 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
244 u32 offset);
245};
246
247/*
248 * From V5, register spaces have changed. Wrap this info in a structure
249 * and choose the data_structure based on version info mentioned in DT.
250 */
251struct sdhci_msm_variant_info {
252 bool mci_removed;
253 bool restore_dll_config;
254 const struct sdhci_msm_variant_ops *var_ops;
255 const struct sdhci_msm_offset *offset;
256};
257
258struct sdhci_msm_host {
259 struct platform_device *pdev;
260 void __iomem *core_mem; /* MSM SDCC mapped address */
261 void __iomem *ice_mem; /* MSM ICE mapped address (if available) */
262 int pwr_irq; /* power irq */
263 struct clk *bus_clk; /* SDHC bus voter clock */
264 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
265 /* core, iface, cal, sleep, and ice clocks */
266 struct clk_bulk_data bulk_clks[5];
267 unsigned long clk_rate;
268 struct mmc_host *mmc;
269 bool use_14lpp_dll_reset;
270 bool tuning_done;
271 bool calibration_done;
272 u8 saved_tuning_phase;
273 bool use_cdclp533;
274 u32 curr_pwr_state;
275 u32 curr_io_level;
276 wait_queue_head_t pwr_irq_wait;
277 bool pwr_irq_flag;
278 u32 caps_0;
279 bool mci_removed;
280 bool restore_dll_config;
281 const struct sdhci_msm_variant_ops *var_ops;
282 const struct sdhci_msm_offset *offset;
283 bool use_cdr;
284 u32 transfer_mode;
285 bool updated_ddr_cfg;
286 bool uses_tassadar_dll;
287 u32 dll_config;
288 u32 ddr_config;
289 bool vqmmc_enabled;
290};
291
292static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
293{
294 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
295 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
296
297 return msm_host->offset;
298}
299
300/*
301 * APIs to read/write to vendor specific registers which were there in the
302 * core_mem region before MCI was removed.
303 */
304static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
305 u32 offset)
306{
307 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
308 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
309
310 return readl_relaxed(msm_host->core_mem + offset);
311}
312
313static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
314 u32 offset)
315{
316 return readl_relaxed(host->ioaddr + offset);
317}
318
319static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
320 struct sdhci_host *host, u32 offset)
321{
322 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
323 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
324
325 writel_relaxed(val, msm_host->core_mem + offset);
326}
327
328static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
329 struct sdhci_host *host, u32 offset)
330{
331 writel_relaxed(val, host->ioaddr + offset);
332}
333
334static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
335{
336 struct mmc_ios ios = host->mmc->ios;
337 /*
338 * The SDHC requires internal clock frequency to be double the
339 * actual clock that will be set for DDR mode. The controller
340 * uses the faster clock(100/400MHz) for some of its parts and
341 * send the actual required clock (50/200MHz) to the card.
342 */
343 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
344 ios.timing == MMC_TIMING_MMC_DDR52 ||
345 ios.timing == MMC_TIMING_MMC_HS400 ||
346 host->flags & SDHCI_HS400_TUNING)
347 return 2;
348 return 1;
349}
350
351static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
352 unsigned int clock)
353{
354 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
355 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
356 struct mmc_ios curr_ios = host->mmc->ios;
357 struct clk *core_clk = msm_host->bulk_clks[0].clk;
358 unsigned long achieved_rate;
359 unsigned int desired_rate;
360 unsigned int mult;
361 int rc;
362
363 mult = msm_get_clock_mult_for_bus_mode(host);
364 desired_rate = clock * mult;
365 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
366 if (rc) {
367 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
368 mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
369 return;
370 }
371
372 /*
373 * Qualcomm clock drivers by default round clock _up_ if they can't
374 * make the requested rate. This is not good for SD. Yell if we
375 * encounter it.
376 */
377 achieved_rate = clk_get_rate(core_clk);
378 if (achieved_rate > desired_rate)
379 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
380 mmc_hostname(host->mmc), desired_rate, achieved_rate);
381 host->mmc->actual_clock = achieved_rate / mult;
382
383 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
384 msm_host->clk_rate = desired_rate;
385
386 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
387 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
388}
389
390/* Platform specific tuning */
391static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
392{
393 u32 wait_cnt = 50;
394 u8 ck_out_en;
395 struct mmc_host *mmc = host->mmc;
396 const struct sdhci_msm_offset *msm_offset =
397 sdhci_priv_msm_offset(host);
398
399 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
400 ck_out_en = !!(readl_relaxed(host->ioaddr +
401 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
402
403 while (ck_out_en != poll) {
404 if (--wait_cnt == 0) {
405 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
406 mmc_hostname(mmc), poll);
407 return -ETIMEDOUT;
408 }
409 udelay(1);
410
411 ck_out_en = !!(readl_relaxed(host->ioaddr +
412 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
413 }
414
415 return 0;
416}
417
418static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
419{
420 int rc;
421 static const u8 grey_coded_phase_table[] = {
422 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
423 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
424 };
425 unsigned long flags;
426 u32 config;
427 struct mmc_host *mmc = host->mmc;
428 const struct sdhci_msm_offset *msm_offset =
429 sdhci_priv_msm_offset(host);
430
431 if (phase > 0xf)
432 return -EINVAL;
433
434 spin_lock_irqsave(&host->lock, flags);
435
436 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
437 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
438 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
439 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
440
441 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
442 rc = msm_dll_poll_ck_out_en(host, 0);
443 if (rc)
444 goto err_out;
445
446 /*
447 * Write the selected DLL clock output phase (0 ... 15)
448 * to CDR_SELEXT bit field of DLL_CONFIG register.
449 */
450 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
451 config &= ~CDR_SELEXT_MASK;
452 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
453 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
454
455 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
456 config |= CORE_CK_OUT_EN;
457 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
458
459 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
460 rc = msm_dll_poll_ck_out_en(host, 1);
461 if (rc)
462 goto err_out;
463
464 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
465 config |= CORE_CDR_EN;
466 config &= ~CORE_CDR_EXT_EN;
467 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
468 goto out;
469
470err_out:
471 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
472 mmc_hostname(mmc), phase);
473out:
474 spin_unlock_irqrestore(&host->lock, flags);
475 return rc;
476}
477
478/*
479 * Find out the greatest range of consecuitive selected
480 * DLL clock output phases that can be used as sampling
481 * setting for SD3.0 UHS-I card read operation (in SDR104
482 * timing mode) or for eMMC4.5 card read operation (in
483 * HS400/HS200 timing mode).
484 * Select the 3/4 of the range and configure the DLL with the
485 * selected DLL clock output phase.
486 */
487
488static int msm_find_most_appropriate_phase(struct sdhci_host *host,
489 u8 *phase_table, u8 total_phases)
490{
491 int ret;
492 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
493 u8 phases_per_row[MAX_PHASES] = { 0 };
494 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
495 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
496 bool phase_0_found = false, phase_15_found = false;
497 struct mmc_host *mmc = host->mmc;
498
499 if (!total_phases || (total_phases > MAX_PHASES)) {
500 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
501 mmc_hostname(mmc), total_phases);
502 return -EINVAL;
503 }
504
505 for (cnt = 0; cnt < total_phases; cnt++) {
506 ranges[row_index][col_index] = phase_table[cnt];
507 phases_per_row[row_index] += 1;
508 col_index++;
509
510 if ((cnt + 1) == total_phases) {
511 continue;
512 /* check if next phase in phase_table is consecutive or not */
513 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
514 row_index++;
515 col_index = 0;
516 }
517 }
518
519 if (row_index >= MAX_PHASES)
520 return -EINVAL;
521
522 /* Check if phase-0 is present in first valid window? */
523 if (!ranges[0][0]) {
524 phase_0_found = true;
525 phase_0_raw_index = 0;
526 /* Check if cycle exist between 2 valid windows */
527 for (cnt = 1; cnt <= row_index; cnt++) {
528 if (phases_per_row[cnt]) {
529 for (i = 0; i < phases_per_row[cnt]; i++) {
530 if (ranges[cnt][i] == 15) {
531 phase_15_found = true;
532 phase_15_raw_index = cnt;
533 break;
534 }
535 }
536 }
537 }
538 }
539
540 /* If 2 valid windows form cycle then merge them as single window */
541 if (phase_0_found && phase_15_found) {
542 /* number of phases in raw where phase 0 is present */
543 u8 phases_0 = phases_per_row[phase_0_raw_index];
544 /* number of phases in raw where phase 15 is present */
545 u8 phases_15 = phases_per_row[phase_15_raw_index];
546
547 if (phases_0 + phases_15 >= MAX_PHASES)
548 /*
549 * If there are more than 1 phase windows then total
550 * number of phases in both the windows should not be
551 * more than or equal to MAX_PHASES.
552 */
553 return -EINVAL;
554
555 /* Merge 2 cyclic windows */
556 i = phases_15;
557 for (cnt = 0; cnt < phases_0; cnt++) {
558 ranges[phase_15_raw_index][i] =
559 ranges[phase_0_raw_index][cnt];
560 if (++i >= MAX_PHASES)
561 break;
562 }
563
564 phases_per_row[phase_0_raw_index] = 0;
565 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
566 }
567
568 for (cnt = 0; cnt <= row_index; cnt++) {
569 if (phases_per_row[cnt] > curr_max) {
570 curr_max = phases_per_row[cnt];
571 selected_row_index = cnt;
572 }
573 }
574
575 i = (curr_max * 3) / 4;
576 if (i)
577 i--;
578
579 ret = ranges[selected_row_index][i];
580
581 if (ret >= MAX_PHASES) {
582 ret = -EINVAL;
583 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
584 mmc_hostname(mmc), ret);
585 }
586
587 return ret;
588}
589
590static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
591{
592 u32 mclk_freq = 0, config;
593 const struct sdhci_msm_offset *msm_offset =
594 sdhci_priv_msm_offset(host);
595
596 /* Program the MCLK value to MCLK_FREQ bit field */
597 if (host->clock <= 112000000)
598 mclk_freq = 0;
599 else if (host->clock <= 125000000)
600 mclk_freq = 1;
601 else if (host->clock <= 137000000)
602 mclk_freq = 2;
603 else if (host->clock <= 150000000)
604 mclk_freq = 3;
605 else if (host->clock <= 162000000)
606 mclk_freq = 4;
607 else if (host->clock <= 175000000)
608 mclk_freq = 5;
609 else if (host->clock <= 187000000)
610 mclk_freq = 6;
611 else if (host->clock <= 200000000)
612 mclk_freq = 7;
613
614 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
615 config &= ~CMUX_SHIFT_PHASE_MASK;
616 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
617 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
618}
619
620/* Initialize the DLL (Programmable Delay Line) */
621static int msm_init_cm_dll(struct sdhci_host *host)
622{
623 struct mmc_host *mmc = host->mmc;
624 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
625 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
626 int wait_cnt = 50;
627 unsigned long flags, xo_clk = 0;
628 u32 config;
629 const struct sdhci_msm_offset *msm_offset =
630 msm_host->offset;
631
632 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
633 xo_clk = clk_get_rate(msm_host->xo_clk);
634
635 spin_lock_irqsave(&host->lock, flags);
636
637 /*
638 * Make sure that clock is always enabled when DLL
639 * tuning is in progress. Keeping PWRSAVE ON may
640 * turn off the clock.
641 */
642 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
643 config &= ~CORE_CLK_PWRSAVE;
644 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
645
646 if (msm_host->dll_config)
647 writel_relaxed(msm_host->dll_config,
648 host->ioaddr + msm_offset->core_dll_config);
649
650 if (msm_host->use_14lpp_dll_reset) {
651 config = readl_relaxed(host->ioaddr +
652 msm_offset->core_dll_config);
653 config &= ~CORE_CK_OUT_EN;
654 writel_relaxed(config, host->ioaddr +
655 msm_offset->core_dll_config);
656
657 config = readl_relaxed(host->ioaddr +
658 msm_offset->core_dll_config_2);
659 config |= CORE_DLL_CLOCK_DISABLE;
660 writel_relaxed(config, host->ioaddr +
661 msm_offset->core_dll_config_2);
662 }
663
664 config = readl_relaxed(host->ioaddr +
665 msm_offset->core_dll_config);
666 config |= CORE_DLL_RST;
667 writel_relaxed(config, host->ioaddr +
668 msm_offset->core_dll_config);
669
670 config = readl_relaxed(host->ioaddr +
671 msm_offset->core_dll_config);
672 config |= CORE_DLL_PDN;
673 writel_relaxed(config, host->ioaddr +
674 msm_offset->core_dll_config);
675
676 if (!msm_host->dll_config)
677 msm_cm_dll_set_freq(host);
678
679 if (msm_host->use_14lpp_dll_reset &&
680 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
681 u32 mclk_freq = 0;
682
683 config = readl_relaxed(host->ioaddr +
684 msm_offset->core_dll_config_2);
685 config &= CORE_FLL_CYCLE_CNT;
686 if (config)
687 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
688 xo_clk);
689 else
690 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
691 xo_clk);
692
693 config = readl_relaxed(host->ioaddr +
694 msm_offset->core_dll_config_2);
695 config &= ~(0xFF << 10);
696 config |= mclk_freq << 10;
697
698 writel_relaxed(config, host->ioaddr +
699 msm_offset->core_dll_config_2);
700 /* wait for 5us before enabling DLL clock */
701 udelay(5);
702 }
703
704 config = readl_relaxed(host->ioaddr +
705 msm_offset->core_dll_config);
706 config &= ~CORE_DLL_RST;
707 writel_relaxed(config, host->ioaddr +
708 msm_offset->core_dll_config);
709
710 config = readl_relaxed(host->ioaddr +
711 msm_offset->core_dll_config);
712 config &= ~CORE_DLL_PDN;
713 writel_relaxed(config, host->ioaddr +
714 msm_offset->core_dll_config);
715
716 if (msm_host->use_14lpp_dll_reset) {
717 if (!msm_host->dll_config)
718 msm_cm_dll_set_freq(host);
719 config = readl_relaxed(host->ioaddr +
720 msm_offset->core_dll_config_2);
721 config &= ~CORE_DLL_CLOCK_DISABLE;
722 writel_relaxed(config, host->ioaddr +
723 msm_offset->core_dll_config_2);
724 }
725
726 /*
727 * Configure DLL user control register to enable DLL status.
728 * This setting is applicable to SDCC v5.1 onwards only.
729 */
730 if (msm_host->uses_tassadar_dll) {
731 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
732 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
733 writel_relaxed(config, host->ioaddr +
734 msm_offset->core_dll_usr_ctl);
735
736 config = readl_relaxed(host->ioaddr +
737 msm_offset->core_dll_config_3);
738 config &= ~0xFF;
739 if (msm_host->clk_rate < 150000000)
740 config |= DLL_CONFIG_3_LOW_FREQ_VAL;
741 else
742 config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
743 writel_relaxed(config, host->ioaddr +
744 msm_offset->core_dll_config_3);
745 }
746
747 config = readl_relaxed(host->ioaddr +
748 msm_offset->core_dll_config);
749 config |= CORE_DLL_EN;
750 writel_relaxed(config, host->ioaddr +
751 msm_offset->core_dll_config);
752
753 config = readl_relaxed(host->ioaddr +
754 msm_offset->core_dll_config);
755 config |= CORE_CK_OUT_EN;
756 writel_relaxed(config, host->ioaddr +
757 msm_offset->core_dll_config);
758
759 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
760 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
761 CORE_DLL_LOCK)) {
762 /* max. wait for 50us sec for LOCK bit to be set */
763 if (--wait_cnt == 0) {
764 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
765 mmc_hostname(mmc));
766 spin_unlock_irqrestore(&host->lock, flags);
767 return -ETIMEDOUT;
768 }
769 udelay(1);
770 }
771
772 spin_unlock_irqrestore(&host->lock, flags);
773 return 0;
774}
775
776static void msm_hc_select_default(struct sdhci_host *host)
777{
778 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
779 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
780 u32 config;
781 const struct sdhci_msm_offset *msm_offset =
782 msm_host->offset;
783
784 if (!msm_host->use_cdclp533) {
785 config = readl_relaxed(host->ioaddr +
786 msm_offset->core_vendor_spec3);
787 config &= ~CORE_PWRSAVE_DLL;
788 writel_relaxed(config, host->ioaddr +
789 msm_offset->core_vendor_spec3);
790 }
791
792 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
793 config &= ~CORE_HC_MCLK_SEL_MASK;
794 config |= CORE_HC_MCLK_SEL_DFLT;
795 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
796
797 /*
798 * Disable HC_SELECT_IN to be able to use the UHS mode select
799 * configuration from Host Control2 register for all other
800 * modes.
801 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
802 * in VENDOR_SPEC_FUNC
803 */
804 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
805 config &= ~CORE_HC_SELECT_IN_EN;
806 config &= ~CORE_HC_SELECT_IN_MASK;
807 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
808
809 /*
810 * Make sure above writes impacting free running MCLK are completed
811 * before changing the clk_rate at GCC.
812 */
813 wmb();
814}
815
816static void msm_hc_select_hs400(struct sdhci_host *host)
817{
818 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
819 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
820 struct mmc_ios ios = host->mmc->ios;
821 u32 config, dll_lock;
822 int rc;
823 const struct sdhci_msm_offset *msm_offset =
824 msm_host->offset;
825
826 /* Select the divided clock (free running MCLK/2) */
827 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
828 config &= ~CORE_HC_MCLK_SEL_MASK;
829 config |= CORE_HC_MCLK_SEL_HS400;
830
831 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
832 /*
833 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
834 * register
835 */
836 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
837 !msm_host->calibration_done) {
838 config = readl_relaxed(host->ioaddr +
839 msm_offset->core_vendor_spec);
840 config |= CORE_HC_SELECT_IN_HS400;
841 config |= CORE_HC_SELECT_IN_EN;
842 writel_relaxed(config, host->ioaddr +
843 msm_offset->core_vendor_spec);
844 }
845 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
846 /*
847 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
848 * core_dll_status to be set. This should get set
849 * within 15 us at 200 MHz.
850 */
851 rc = readl_relaxed_poll_timeout(host->ioaddr +
852 msm_offset->core_dll_status,
853 dll_lock,
854 (dll_lock &
855 (CORE_DLL_LOCK |
856 CORE_DDR_DLL_LOCK)), 10,
857 1000);
858 if (rc == -ETIMEDOUT)
859 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
860 mmc_hostname(host->mmc), dll_lock);
861 }
862 /*
863 * Make sure above writes impacting free running MCLK are completed
864 * before changing the clk_rate at GCC.
865 */
866 wmb();
867}
868
869/*
870 * sdhci_msm_hc_select_mode :- In general all timing modes are
871 * controlled via UHS mode select in Host Control2 register.
872 * eMMC specific HS200/HS400 doesn't have their respective modes
873 * defined here, hence we use these values.
874 *
875 * HS200 - SDR104 (Since they both are equivalent in functionality)
876 * HS400 - This involves multiple configurations
877 * Initially SDR104 - when tuning is required as HS200
878 * Then when switching to DDR @ 400MHz (HS400) we use
879 * the vendor specific HC_SELECT_IN to control the mode.
880 *
881 * In addition to controlling the modes we also need to select the
882 * correct input clock for DLL depending on the mode.
883 *
884 * HS400 - divided clock (free running MCLK/2)
885 * All other modes - default (free running MCLK)
886 */
887static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
888{
889 struct mmc_ios ios = host->mmc->ios;
890
891 if (ios.timing == MMC_TIMING_MMC_HS400 ||
892 host->flags & SDHCI_HS400_TUNING)
893 msm_hc_select_hs400(host);
894 else
895 msm_hc_select_default(host);
896}
897
898static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
899{
900 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
901 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
902 u32 config, calib_done;
903 int ret;
904 const struct sdhci_msm_offset *msm_offset =
905 msm_host->offset;
906
907 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
908
909 /*
910 * Retuning in HS400 (DDR mode) will fail, just reset the
911 * tuning block and restore the saved tuning phase.
912 */
913 ret = msm_init_cm_dll(host);
914 if (ret)
915 goto out;
916
917 /* Set the selected phase in delay line hw block */
918 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
919 if (ret)
920 goto out;
921
922 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
923 config |= CORE_CMD_DAT_TRACK_SEL;
924 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
925
926 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
927 config &= ~CORE_CDC_T4_DLY_SEL;
928 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
929
930 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
931 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
932 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
933
934 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
935 config |= CORE_CDC_SWITCH_RC_EN;
936 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
937
938 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
939 config &= ~CORE_START_CDC_TRAFFIC;
940 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
941
942 /* Perform CDC Register Initialization Sequence */
943
944 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
945 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
946 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
947 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
948 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
949 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
950 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
951 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
952 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
953
954 /* CDC HW Calibration */
955
956 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
957 config |= CORE_SW_TRIG_FULL_CALIB;
958 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
959
960 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
961 config &= ~CORE_SW_TRIG_FULL_CALIB;
962 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
963
964 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
965 config |= CORE_HW_AUTOCAL_ENA;
966 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
967
968 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
969 config |= CORE_TIMER_ENA;
970 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
971
972 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
973 calib_done,
974 (calib_done & CORE_CALIBRATION_DONE),
975 1, 50);
976
977 if (ret == -ETIMEDOUT) {
978 pr_err("%s: %s: CDC calibration was not completed\n",
979 mmc_hostname(host->mmc), __func__);
980 goto out;
981 }
982
983 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
984 & CORE_CDC_ERROR_CODE_MASK;
985 if (ret) {
986 pr_err("%s: %s: CDC error code %d\n",
987 mmc_hostname(host->mmc), __func__, ret);
988 ret = -EINVAL;
989 goto out;
990 }
991
992 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
993 config |= CORE_START_CDC_TRAFFIC;
994 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
995out:
996 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
997 __func__, ret);
998 return ret;
999}
1000
1001static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1002{
1003 struct mmc_host *mmc = host->mmc;
1004 u32 dll_status, config, ddr_cfg_offset;
1005 int ret;
1006 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1007 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1008 const struct sdhci_msm_offset *msm_offset =
1009 sdhci_priv_msm_offset(host);
1010
1011 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1012
1013 /*
1014 * Currently the core_ddr_config register defaults to desired
1015 * configuration on reset. Currently reprogramming the power on
1016 * reset (POR) value in case it might have been modified by
1017 * bootloaders. In the future, if this changes, then the desired
1018 * values will need to be programmed appropriately.
1019 */
1020 if (msm_host->updated_ddr_cfg)
1021 ddr_cfg_offset = msm_offset->core_ddr_config;
1022 else
1023 ddr_cfg_offset = msm_offset->core_ddr_config_old;
1024 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1025
1026 if (mmc->ios.enhanced_strobe) {
1027 config = readl_relaxed(host->ioaddr +
1028 msm_offset->core_ddr_200_cfg);
1029 config |= CORE_CMDIN_RCLK_EN;
1030 writel_relaxed(config, host->ioaddr +
1031 msm_offset->core_ddr_200_cfg);
1032 }
1033
1034 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1035 config |= CORE_DDR_CAL_EN;
1036 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1037
1038 ret = readl_relaxed_poll_timeout(host->ioaddr +
1039 msm_offset->core_dll_status,
1040 dll_status,
1041 (dll_status & CORE_DDR_DLL_LOCK),
1042 10, 1000);
1043
1044 if (ret == -ETIMEDOUT) {
1045 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1046 mmc_hostname(host->mmc), __func__);
1047 goto out;
1048 }
1049
1050 /*
1051 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1052 * When MCLK is gated OFF, it is not gated for less than 0.5us
1053 * and MCLK must be switched on for at-least 1us before DATA
1054 * starts coming. Controllers with 14lpp and later tech DLL cannot
1055 * guarantee above requirement. So PWRSAVE_DLL should not be
1056 * turned on for host controllers using this DLL.
1057 */
1058 if (!msm_host->use_14lpp_dll_reset) {
1059 config = readl_relaxed(host->ioaddr +
1060 msm_offset->core_vendor_spec3);
1061 config |= CORE_PWRSAVE_DLL;
1062 writel_relaxed(config, host->ioaddr +
1063 msm_offset->core_vendor_spec3);
1064 }
1065
1066 /*
1067 * Drain writebuffer to ensure above DLL calibration
1068 * and PWRSAVE DLL is enabled.
1069 */
1070 wmb();
1071out:
1072 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1073 __func__, ret);
1074 return ret;
1075}
1076
1077static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1078{
1079 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1080 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1081 struct mmc_host *mmc = host->mmc;
1082 int ret;
1083 u32 config;
1084 const struct sdhci_msm_offset *msm_offset =
1085 msm_host->offset;
1086
1087 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1088
1089 /*
1090 * Retuning in HS400 (DDR mode) will fail, just reset the
1091 * tuning block and restore the saved tuning phase.
1092 */
1093 ret = msm_init_cm_dll(host);
1094 if (ret)
1095 goto out;
1096
1097 if (!mmc->ios.enhanced_strobe) {
1098 /* Set the selected phase in delay line hw block */
1099 ret = msm_config_cm_dll_phase(host,
1100 msm_host->saved_tuning_phase);
1101 if (ret)
1102 goto out;
1103 config = readl_relaxed(host->ioaddr +
1104 msm_offset->core_dll_config);
1105 config |= CORE_CMD_DAT_TRACK_SEL;
1106 writel_relaxed(config, host->ioaddr +
1107 msm_offset->core_dll_config);
1108 }
1109
1110 if (msm_host->use_cdclp533)
1111 ret = sdhci_msm_cdclp533_calibration(host);
1112 else
1113 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1114out:
1115 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1116 __func__, ret);
1117 return ret;
1118}
1119
1120static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1121{
1122 struct mmc_ios *ios = &host->mmc->ios;
1123
1124 /*
1125 * Tuning is required for SDR104, HS200 and HS400 cards and
1126 * if clock frequency is greater than 100MHz in these modes.
1127 */
1128 if (host->clock <= CORE_FREQ_100MHZ ||
1129 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1130 ios->timing == MMC_TIMING_MMC_HS200 ||
1131 ios->timing == MMC_TIMING_UHS_SDR104) ||
1132 ios->enhanced_strobe)
1133 return false;
1134
1135 return true;
1136}
1137
1138static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1139{
1140 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1141 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1142 int ret;
1143
1144 /*
1145 * SDR DLL comes into picture only for timing modes which needs
1146 * tuning.
1147 */
1148 if (!sdhci_msm_is_tuning_needed(host))
1149 return 0;
1150
1151 /* Reset the tuning block */
1152 ret = msm_init_cm_dll(host);
1153 if (ret)
1154 return ret;
1155
1156 /* Restore the tuning block */
1157 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1158
1159 return ret;
1160}
1161
1162static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1163{
1164 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1165 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1166 msm_offset->core_dll_config);
1167
1168 config = oldconfig;
1169 if (enable) {
1170 config |= CORE_CDR_EN;
1171 config &= ~CORE_CDR_EXT_EN;
1172 } else {
1173 config &= ~CORE_CDR_EN;
1174 config |= CORE_CDR_EXT_EN;
1175 }
1176
1177 if (config != oldconfig) {
1178 writel_relaxed(config, host->ioaddr +
1179 msm_offset->core_dll_config);
1180 }
1181}
1182
1183static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1184{
1185 struct sdhci_host *host = mmc_priv(mmc);
1186 int tuning_seq_cnt = 10;
1187 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1188 int rc;
1189 struct mmc_ios ios = host->mmc->ios;
1190 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1191 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1192
1193 if (!sdhci_msm_is_tuning_needed(host)) {
1194 msm_host->use_cdr = false;
1195 sdhci_msm_set_cdr(host, false);
1196 return 0;
1197 }
1198
1199 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1200 msm_host->use_cdr = true;
1201
1202 /*
1203 * Clear tuning_done flag before tuning to ensure proper
1204 * HS400 settings.
1205 */
1206 msm_host->tuning_done = 0;
1207
1208 /*
1209 * For HS400 tuning in HS200 timing requires:
1210 * - select MCLK/2 in VENDOR_SPEC
1211 * - program MCLK to 400MHz (or nearest supported) in GCC
1212 */
1213 if (host->flags & SDHCI_HS400_TUNING) {
1214 sdhci_msm_hc_select_mode(host);
1215 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1216 host->flags &= ~SDHCI_HS400_TUNING;
1217 }
1218
1219retry:
1220 /* First of all reset the tuning block */
1221 rc = msm_init_cm_dll(host);
1222 if (rc)
1223 return rc;
1224
1225 phase = 0;
1226 do {
1227 /* Set the phase in delay line hw block */
1228 rc = msm_config_cm_dll_phase(host, phase);
1229 if (rc)
1230 return rc;
1231
1232 rc = mmc_send_tuning(mmc, opcode, NULL);
1233 if (!rc) {
1234 /* Tuning is successful at this tuning point */
1235 tuned_phases[tuned_phase_cnt++] = phase;
1236 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1237 mmc_hostname(mmc), phase);
1238 }
1239 } while (++phase < ARRAY_SIZE(tuned_phases));
1240
1241 if (tuned_phase_cnt) {
1242 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1243 /*
1244 * All phases valid is _almost_ as bad as no phases
1245 * valid. Probably all phases are not really reliable
1246 * but we didn't detect where the unreliable place is.
1247 * That means we'll essentially be guessing and hoping
1248 * we get a good phase. Better to try a few times.
1249 */
1250 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1251 mmc_hostname(mmc));
1252 if (--tuning_seq_cnt) {
1253 tuned_phase_cnt = 0;
1254 goto retry;
1255 }
1256 }
1257
1258 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1259 tuned_phase_cnt);
1260 if (rc < 0)
1261 return rc;
1262 else
1263 phase = rc;
1264
1265 /*
1266 * Finally set the selected phase in delay
1267 * line hw block.
1268 */
1269 rc = msm_config_cm_dll_phase(host, phase);
1270 if (rc)
1271 return rc;
1272 msm_host->saved_tuning_phase = phase;
1273 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1274 mmc_hostname(mmc), phase);
1275 } else {
1276 if (--tuning_seq_cnt)
1277 goto retry;
1278 /* Tuning failed */
1279 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1280 mmc_hostname(mmc));
1281 rc = -EIO;
1282 }
1283
1284 if (!rc)
1285 msm_host->tuning_done = true;
1286 return rc;
1287}
1288
1289/*
1290 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1291 * This needs to be done for both tuning and enhanced_strobe mode.
1292 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1293 * fixed feedback clock is used.
1294 */
1295static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1296{
1297 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1298 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1299 int ret;
1300
1301 if (host->clock > CORE_FREQ_100MHZ &&
1302 (msm_host->tuning_done || ios->enhanced_strobe) &&
1303 !msm_host->calibration_done) {
1304 ret = sdhci_msm_hs400_dll_calibration(host);
1305 if (!ret)
1306 msm_host->calibration_done = true;
1307 else
1308 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1309 mmc_hostname(host->mmc), ret);
1310 }
1311}
1312
1313static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1314 unsigned int uhs)
1315{
1316 struct mmc_host *mmc = host->mmc;
1317 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1318 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1319 u16 ctrl_2;
1320 u32 config;
1321 const struct sdhci_msm_offset *msm_offset =
1322 msm_host->offset;
1323
1324 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1325 /* Select Bus Speed Mode for host */
1326 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1327 switch (uhs) {
1328 case MMC_TIMING_UHS_SDR12:
1329 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1330 break;
1331 case MMC_TIMING_UHS_SDR25:
1332 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1333 break;
1334 case MMC_TIMING_UHS_SDR50:
1335 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1336 break;
1337 case MMC_TIMING_MMC_HS400:
1338 case MMC_TIMING_MMC_HS200:
1339 case MMC_TIMING_UHS_SDR104:
1340 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1341 break;
1342 case MMC_TIMING_UHS_DDR50:
1343 case MMC_TIMING_MMC_DDR52:
1344 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1345 break;
1346 }
1347
1348 /*
1349 * When clock frequency is less than 100MHz, the feedback clock must be
1350 * provided and DLL must not be used so that tuning can be skipped. To
1351 * provide feedback clock, the mode selection can be any value less
1352 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1353 */
1354 if (host->clock <= CORE_FREQ_100MHZ) {
1355 if (uhs == MMC_TIMING_MMC_HS400 ||
1356 uhs == MMC_TIMING_MMC_HS200 ||
1357 uhs == MMC_TIMING_UHS_SDR104)
1358 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1359 /*
1360 * DLL is not required for clock <= 100MHz
1361 * Thus, make sure DLL it is disabled when not required
1362 */
1363 config = readl_relaxed(host->ioaddr +
1364 msm_offset->core_dll_config);
1365 config |= CORE_DLL_RST;
1366 writel_relaxed(config, host->ioaddr +
1367 msm_offset->core_dll_config);
1368
1369 config = readl_relaxed(host->ioaddr +
1370 msm_offset->core_dll_config);
1371 config |= CORE_DLL_PDN;
1372 writel_relaxed(config, host->ioaddr +
1373 msm_offset->core_dll_config);
1374
1375 /*
1376 * The DLL needs to be restored and CDCLP533 recalibrated
1377 * when the clock frequency is set back to 400MHz.
1378 */
1379 msm_host->calibration_done = false;
1380 }
1381
1382 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1383 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1384 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1385
1386 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1387 sdhci_msm_hs400(host, &mmc->ios);
1388}
1389
1390static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1391{
1392 struct platform_device *pdev = msm_host->pdev;
1393 int ret;
1394
1395 if (level)
1396 ret = pinctrl_pm_select_default_state(&pdev->dev);
1397 else
1398 ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1399
1400 return ret;
1401}
1402
1403static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1404{
1405 if (IS_ERR(mmc->supply.vmmc))
1406 return 0;
1407
1408 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1409}
1410
1411static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1412 struct mmc_host *mmc, bool level)
1413{
1414 int ret;
1415 struct mmc_ios ios;
1416
1417 if (msm_host->vqmmc_enabled == level)
1418 return 0;
1419
1420 if (level) {
1421 /* Set the IO voltage regulator to default voltage level */
1422 if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1423 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1424 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1425 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1426
1427 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1428 ret = mmc_regulator_set_vqmmc(mmc, &ios);
1429 if (ret < 0) {
1430 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1431 mmc_hostname(mmc), ret);
1432 goto out;
1433 }
1434 }
1435 ret = regulator_enable(mmc->supply.vqmmc);
1436 } else {
1437 ret = regulator_disable(mmc->supply.vqmmc);
1438 }
1439
1440 if (ret)
1441 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1442 mmc_hostname(mmc), level ? "en":"dis", ret);
1443 else
1444 msm_host->vqmmc_enabled = level;
1445out:
1446 return ret;
1447}
1448
1449static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1450 struct mmc_host *mmc, bool hpm)
1451{
1452 int load, ret;
1453
1454 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1455 ret = regulator_set_load(mmc->supply.vqmmc, load);
1456 if (ret)
1457 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1458 mmc_hostname(mmc), ret);
1459 return ret;
1460}
1461
1462static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1463 struct mmc_host *mmc, bool level)
1464{
1465 int ret;
1466 bool always_on;
1467
1468 if (IS_ERR(mmc->supply.vqmmc) ||
1469 (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1470 return 0;
1471 /*
1472 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1473 * and HPM modes by setting the corresponding load.
1474 *
1475 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1476 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1477 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1478 * Vqmmc should remain ON, So just set the load instead of turning it
1479 * off/on.
1480 */
1481 always_on = !mmc_card_is_removable(mmc) &&
1482 mmc->card && mmc_card_mmc(mmc->card);
1483
1484 if (always_on)
1485 ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1486 else
1487 ret = msm_toggle_vqmmc(msm_host, mmc, level);
1488
1489 return ret;
1490}
1491
1492static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1493{
1494 init_waitqueue_head(&msm_host->pwr_irq_wait);
1495}
1496
1497static inline void sdhci_msm_complete_pwr_irq_wait(
1498 struct sdhci_msm_host *msm_host)
1499{
1500 wake_up(&msm_host->pwr_irq_wait);
1501}
1502
1503/*
1504 * sdhci_msm_check_power_status API should be called when registers writes
1505 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1506 * To what state the register writes will change the IO lines should be passed
1507 * as the argument req_type. This API will check whether the IO line's state
1508 * is already the expected state and will wait for power irq only if
1509 * power irq is expected to be triggered based on the current IO line state
1510 * and expected IO line state.
1511 */
1512static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1513{
1514 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1515 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1516 bool done = false;
1517 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1518 const struct sdhci_msm_offset *msm_offset =
1519 msm_host->offset;
1520
1521 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1522 mmc_hostname(host->mmc), __func__, req_type,
1523 msm_host->curr_pwr_state, msm_host->curr_io_level);
1524
1525 /*
1526 * The power interrupt will not be generated for signal voltage
1527 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1528 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1529 * it as always set.
1530 */
1531 if (!msm_host->mci_removed)
1532 val = msm_host_readl(msm_host, host,
1533 msm_offset->core_generics);
1534 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1535 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1536 return;
1537 }
1538
1539 /*
1540 * The IRQ for request type IO High/LOW will be generated when -
1541 * there is a state change in 1.8V enable bit (bit 3) of
1542 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1543 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1544 * to set it to 3.3V before card detection happens, the
1545 * IRQ doesn't get triggered as there is no state change in this bit.
1546 * The driver already handles this case by changing the IO voltage
1547 * level to high as part of controller power up sequence. Hence, check
1548 * for host->pwr to handle a case where IO voltage high request is
1549 * issued even before controller power up.
1550 */
1551 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1552 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1553 mmc_hostname(host->mmc), req_type);
1554 return;
1555 }
1556 if ((req_type & msm_host->curr_pwr_state) ||
1557 (req_type & msm_host->curr_io_level))
1558 done = true;
1559 /*
1560 * This is needed here to handle cases where register writes will
1561 * not change the current bus state or io level of the controller.
1562 * In this case, no power irq will be triggerred and we should
1563 * not wait.
1564 */
1565 if (!done) {
1566 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1567 msm_host->pwr_irq_flag,
1568 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1569 dev_warn(&msm_host->pdev->dev,
1570 "%s: pwr_irq for req: (%d) timed out\n",
1571 mmc_hostname(host->mmc), req_type);
1572 }
1573 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1574 __func__, req_type);
1575}
1576
1577static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1578{
1579 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1580 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1581 const struct sdhci_msm_offset *msm_offset =
1582 msm_host->offset;
1583
1584 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1585 mmc_hostname(host->mmc),
1586 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1587 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1588 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1589}
1590
1591static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1592{
1593 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1594 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1595 struct mmc_host *mmc = host->mmc;
1596 u32 irq_status, irq_ack = 0;
1597 int retry = 10, ret;
1598 u32 pwr_state = 0, io_level = 0;
1599 u32 config;
1600 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1601
1602 irq_status = msm_host_readl(msm_host, host,
1603 msm_offset->core_pwrctl_status);
1604 irq_status &= INT_MASK;
1605
1606 msm_host_writel(msm_host, irq_status, host,
1607 msm_offset->core_pwrctl_clear);
1608
1609 /*
1610 * There is a rare HW scenario where the first clear pulse could be
1611 * lost when actual reset and clear/read of status register is
1612 * happening at a time. Hence, retry for at least 10 times to make
1613 * sure status register is cleared. Otherwise, this will result in
1614 * a spurious power IRQ resulting in system instability.
1615 */
1616 while (irq_status & msm_host_readl(msm_host, host,
1617 msm_offset->core_pwrctl_status)) {
1618 if (retry == 0) {
1619 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1620 mmc_hostname(host->mmc), irq_status);
1621 sdhci_msm_dump_pwr_ctrl_regs(host);
1622 WARN_ON(1);
1623 break;
1624 }
1625 msm_host_writel(msm_host, irq_status, host,
1626 msm_offset->core_pwrctl_clear);
1627 retry--;
1628 udelay(10);
1629 }
1630
1631 /* Handle BUS ON/OFF*/
1632 if (irq_status & CORE_PWRCTL_BUS_ON) {
1633 pwr_state = REQ_BUS_ON;
1634 io_level = REQ_IO_HIGH;
1635 }
1636 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1637 pwr_state = REQ_BUS_OFF;
1638 io_level = REQ_IO_LOW;
1639 }
1640
1641 if (pwr_state) {
1642 ret = sdhci_msm_set_vmmc(mmc);
1643 if (!ret)
1644 ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1645 pwr_state & REQ_BUS_ON);
1646 if (!ret)
1647 ret = sdhci_msm_set_pincfg(msm_host,
1648 pwr_state & REQ_BUS_ON);
1649 if (!ret)
1650 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1651 else
1652 irq_ack |= CORE_PWRCTL_BUS_FAIL;
1653 }
1654
1655 /* Handle IO LOW/HIGH */
1656 if (irq_status & CORE_PWRCTL_IO_LOW)
1657 io_level = REQ_IO_LOW;
1658
1659 if (irq_status & CORE_PWRCTL_IO_HIGH)
1660 io_level = REQ_IO_HIGH;
1661
1662 if (io_level)
1663 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1664
1665 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1666 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1667 if (ret < 0) {
1668 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1669 mmc_hostname(mmc), ret,
1670 mmc->ios.signal_voltage, mmc->ios.vdd,
1671 irq_status);
1672 irq_ack |= CORE_PWRCTL_IO_FAIL;
1673 }
1674 }
1675
1676 /*
1677 * The driver has to acknowledge the interrupt, switch voltages and
1678 * report back if it succeded or not to this register. The voltage
1679 * switches are handled by the sdhci core, so just report success.
1680 */
1681 msm_host_writel(msm_host, irq_ack, host,
1682 msm_offset->core_pwrctl_ctl);
1683
1684 /*
1685 * If we don't have info regarding the voltage levels supported by
1686 * regulators, don't change the IO PAD PWR SWITCH.
1687 */
1688 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1689 u32 new_config;
1690 /*
1691 * We should unset IO PAD PWR switch only if the register write
1692 * can set IO lines high and the regulator also switches to 3 V.
1693 * Else, we should keep the IO PAD PWR switch set.
1694 * This is applicable to certain targets where eMMC vccq supply
1695 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1696 * IO PAD PWR switch must be kept set to reflect actual
1697 * regulator voltage. This way, during initialization of
1698 * controllers with only 1.8V, we will set the IO PAD bit
1699 * without waiting for a REQ_IO_LOW.
1700 */
1701 config = readl_relaxed(host->ioaddr +
1702 msm_offset->core_vendor_spec);
1703 new_config = config;
1704
1705 if ((io_level & REQ_IO_HIGH) &&
1706 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1707 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1708 else if ((io_level & REQ_IO_LOW) ||
1709 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1710 new_config |= CORE_IO_PAD_PWR_SWITCH;
1711
1712 if (config ^ new_config)
1713 writel_relaxed(new_config, host->ioaddr +
1714 msm_offset->core_vendor_spec);
1715 }
1716
1717 if (pwr_state)
1718 msm_host->curr_pwr_state = pwr_state;
1719 if (io_level)
1720 msm_host->curr_io_level = io_level;
1721
1722 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1723 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1724 irq_ack);
1725}
1726
1727static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1728{
1729 struct sdhci_host *host = (struct sdhci_host *)data;
1730 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1731 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1732
1733 sdhci_msm_handle_pwr_irq(host, irq);
1734 msm_host->pwr_irq_flag = 1;
1735 sdhci_msm_complete_pwr_irq_wait(msm_host);
1736
1737
1738 return IRQ_HANDLED;
1739}
1740
1741static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1742{
1743 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1744 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1745 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1746
1747 return clk_round_rate(core_clk, ULONG_MAX);
1748}
1749
1750static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1751{
1752 return SDHCI_MSM_MIN_CLOCK;
1753}
1754
1755/*
1756 * __sdhci_msm_set_clock - sdhci_msm clock control.
1757 *
1758 * Description:
1759 * MSM controller does not use internal divider and
1760 * instead directly control the GCC clock as per
1761 * HW recommendation.
1762 **/
1763static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1764{
1765 u16 clk;
1766
1767 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1768
1769 if (clock == 0)
1770 return;
1771
1772 /*
1773 * MSM controller do not use clock divider.
1774 * Thus read SDHCI_CLOCK_CONTROL and only enable
1775 * clock with no divider value programmed.
1776 */
1777 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1778 sdhci_enable_clk(host, clk);
1779}
1780
1781/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1782static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1783{
1784 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1785 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1786
1787 if (!clock) {
1788 host->mmc->actual_clock = msm_host->clk_rate = 0;
1789 goto out;
1790 }
1791
1792 sdhci_msm_hc_select_mode(host);
1793
1794 msm_set_clock_rate_for_bus_mode(host, clock);
1795out:
1796 __sdhci_msm_set_clock(host, clock);
1797}
1798
1799/*****************************************************************************\
1800 * *
1801 * Inline Crypto Engine (ICE) support *
1802 * *
1803\*****************************************************************************/
1804
1805#ifdef CONFIG_MMC_CRYPTO
1806
1807#define AES_256_XTS_KEY_SIZE 64
1808
1809/* QCOM ICE registers */
1810
1811#define QCOM_ICE_REG_VERSION 0x0008
1812
1813#define QCOM_ICE_REG_FUSE_SETTING 0x0010
1814#define QCOM_ICE_FUSE_SETTING_MASK 0x1
1815#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
1816#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
1817
1818#define QCOM_ICE_REG_BIST_STATUS 0x0070
1819#define QCOM_ICE_BIST_STATUS_MASK 0xF0000000
1820
1821#define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
1822
1823#define sdhci_msm_ice_writel(host, val, reg) \
1824 writel((val), (host)->ice_mem + (reg))
1825#define sdhci_msm_ice_readl(host, reg) \
1826 readl((host)->ice_mem + (reg))
1827
1828static bool sdhci_msm_ice_supported(struct sdhci_msm_host *msm_host)
1829{
1830 struct device *dev = mmc_dev(msm_host->mmc);
1831 u32 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_VERSION);
1832 int major = regval >> 24;
1833 int minor = (regval >> 16) & 0xFF;
1834 int step = regval & 0xFFFF;
1835
1836 /* For now this driver only supports ICE version 3. */
1837 if (major != 3) {
1838 dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
1839 major, minor, step);
1840 return false;
1841 }
1842
1843 dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
1844 major, minor, step);
1845
1846 /* If fuses are blown, ICE might not work in the standard way. */
1847 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_FUSE_SETTING);
1848 if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
1849 QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
1850 QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
1851 dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
1852 return false;
1853 }
1854 return true;
1855}
1856
1857static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
1858{
1859 return devm_clk_get(dev, "ice");
1860}
1861
1862static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1863 struct cqhci_host *cq_host)
1864{
1865 struct mmc_host *mmc = msm_host->mmc;
1866 struct device *dev = mmc_dev(mmc);
1867 struct resource *res;
1868
1869 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1870 return 0;
1871
1872 res = platform_get_resource_byname(msm_host->pdev, IORESOURCE_MEM,
1873 "ice");
1874 if (!res) {
1875 dev_warn(dev, "ICE registers not found\n");
1876 goto disable;
1877 }
1878
1879 if (!qcom_scm_ice_available()) {
1880 dev_warn(dev, "ICE SCM interface not found\n");
1881 goto disable;
1882 }
1883
1884 msm_host->ice_mem = devm_ioremap_resource(dev, res);
1885 if (IS_ERR(msm_host->ice_mem))
1886 return PTR_ERR(msm_host->ice_mem);
1887
1888 if (!sdhci_msm_ice_supported(msm_host))
1889 goto disable;
1890
1891 mmc->caps2 |= MMC_CAP2_CRYPTO;
1892 return 0;
1893
1894disable:
1895 dev_warn(dev, "Disabling inline encryption support\n");
1896 return 0;
1897}
1898
1899static void sdhci_msm_ice_low_power_mode_enable(struct sdhci_msm_host *msm_host)
1900{
1901 u32 regval;
1902
1903 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1904 /*
1905 * Enable low power mode sequence
1906 * [0]-0, [1]-0, [2]-0, [3]-E, [4]-0, [5]-0, [6]-0, [7]-0
1907 */
1908 regval |= 0x7000;
1909 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1910}
1911
1912static void sdhci_msm_ice_optimization_enable(struct sdhci_msm_host *msm_host)
1913{
1914 u32 regval;
1915
1916 /* ICE Optimizations Enable Sequence */
1917 regval = sdhci_msm_ice_readl(msm_host, QCOM_ICE_REG_ADVANCED_CONTROL);
1918 regval |= 0xD807100;
1919 /* ICE HPG requires delay before writing */
1920 udelay(5);
1921 sdhci_msm_ice_writel(msm_host, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
1922 udelay(5);
1923}
1924
1925/*
1926 * Wait until the ICE BIST (built-in self-test) has completed.
1927 *
1928 * This may be necessary before ICE can be used.
1929 *
1930 * Note that we don't really care whether the BIST passed or failed; we really
1931 * just want to make sure that it isn't still running. This is because (a) the
1932 * BIST is a FIPS compliance thing that never fails in practice, (b) ICE is
1933 * documented to reject crypto requests if the BIST fails, so we needn't do it
1934 * in software too, and (c) properly testing storage encryption requires testing
1935 * the full storage stack anyway, and not relying on hardware-level self-tests.
1936 */
1937static int sdhci_msm_ice_wait_bist_status(struct sdhci_msm_host *msm_host)
1938{
1939 u32 regval;
1940 int err;
1941
1942 err = readl_poll_timeout(msm_host->ice_mem + QCOM_ICE_REG_BIST_STATUS,
1943 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
1944 50, 5000);
1945 if (err)
1946 dev_err(mmc_dev(msm_host->mmc),
1947 "Timed out waiting for ICE self-test to complete\n");
1948 return err;
1949}
1950
1951static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1952{
1953 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1954 return;
1955 sdhci_msm_ice_low_power_mode_enable(msm_host);
1956 sdhci_msm_ice_optimization_enable(msm_host);
1957 sdhci_msm_ice_wait_bist_status(msm_host);
1958}
1959
1960static int __maybe_unused sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1961{
1962 if (!(msm_host->mmc->caps2 & MMC_CAP2_CRYPTO))
1963 return 0;
1964 return sdhci_msm_ice_wait_bist_status(msm_host);
1965}
1966
1967/*
1968 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
1969 * vendor-specific SCM calls for this; it doesn't support the standard way.
1970 */
1971static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1972 const union cqhci_crypto_cfg_entry *cfg,
1973 int slot)
1974{
1975 struct device *dev = mmc_dev(cq_host->mmc);
1976 union cqhci_crypto_cap_entry cap;
1977 union {
1978 u8 bytes[AES_256_XTS_KEY_SIZE];
1979 u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
1980 } key;
1981 int i;
1982 int err;
1983
1984 if (!(cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE))
1985 return qcom_scm_ice_invalidate_key(slot);
1986
1987 /* Only AES-256-XTS has been tested so far. */
1988 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1989 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1990 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256) {
1991 dev_err_ratelimited(dev,
1992 "Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
1993 cap.algorithm_id, cap.key_size);
1994 return -EINVAL;
1995 }
1996
1997 memcpy(key.bytes, cfg->crypto_key, AES_256_XTS_KEY_SIZE);
1998
1999 /*
2000 * The SCM call byte-swaps the 32-bit words of the key. So we have to
2001 * do the same, in order for the final key be correct.
2002 */
2003 for (i = 0; i < ARRAY_SIZE(key.words); i++)
2004 __cpu_to_be32s(&key.words[i]);
2005
2006 err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
2007 QCOM_SCM_ICE_CIPHER_AES_256_XTS,
2008 cfg->data_unit_size);
2009 memzero_explicit(&key, sizeof(key));
2010 return err;
2011}
2012#else /* CONFIG_MMC_CRYPTO */
2013static inline struct clk *sdhci_msm_ice_get_clk(struct device *dev)
2014{
2015 return NULL;
2016}
2017
2018static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
2019 struct cqhci_host *cq_host)
2020{
2021 return 0;
2022}
2023
2024static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
2025{
2026}
2027
2028static inline int __maybe_unused
2029sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
2030{
2031 return 0;
2032}
2033#endif /* !CONFIG_MMC_CRYPTO */
2034
2035/*****************************************************************************\
2036 * *
2037 * MSM Command Queue Engine (CQE) *
2038 * *
2039\*****************************************************************************/
2040
2041static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
2042{
2043 int cmd_error = 0;
2044 int data_error = 0;
2045
2046 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
2047 return intmask;
2048
2049 cqhci_irq(host->mmc, intmask, cmd_error, data_error);
2050 return 0;
2051}
2052
2053static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
2054{
2055 struct sdhci_host *host = mmc_priv(mmc);
2056 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2057 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2058
2059 sdhci_cqe_enable(mmc);
2060 sdhci_msm_ice_enable(msm_host);
2061}
2062
2063static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
2064{
2065 struct sdhci_host *host = mmc_priv(mmc);
2066 unsigned long flags;
2067 u32 ctrl;
2068
2069 /*
2070 * When CQE is halted, the legacy SDHCI path operates only
2071 * on 16-byte descriptors in 64bit mode.
2072 */
2073 if (host->flags & SDHCI_USE_64_BIT_DMA)
2074 host->desc_sz = 16;
2075
2076 spin_lock_irqsave(&host->lock, flags);
2077
2078 /*
2079 * During CQE command transfers, command complete bit gets latched.
2080 * So s/w should clear command complete interrupt status when CQE is
2081 * either halted or disabled. Otherwise unexpected SDCHI legacy
2082 * interrupt gets triggered when CQE is halted/disabled.
2083 */
2084 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
2085 ctrl |= SDHCI_INT_RESPONSE;
2086 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
2087 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
2088
2089 spin_unlock_irqrestore(&host->lock, flags);
2090
2091 sdhci_cqe_disable(mmc, recovery);
2092}
2093
2094static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
2095{
2096 u32 count, start = 15;
2097
2098 __sdhci_set_timeout(host, cmd);
2099 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
2100 /*
2101 * Update software timeout value if its value is less than hardware data
2102 * timeout value. Qcom SoC hardware data timeout value was calculated
2103 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
2104 */
2105 if (cmd && cmd->data && host->clock > 400000 &&
2106 host->clock <= 50000000 &&
2107 ((1 << (count + start)) > (10 * host->clock)))
2108 host->data_timeout = 22LL * NSEC_PER_SEC;
2109}
2110
2111static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
2112 .enable = sdhci_msm_cqe_enable,
2113 .disable = sdhci_msm_cqe_disable,
2114#ifdef CONFIG_MMC_CRYPTO
2115 .program_key = sdhci_msm_program_key,
2116#endif
2117};
2118
2119static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
2120 struct platform_device *pdev)
2121{
2122 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2123 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2124 struct cqhci_host *cq_host;
2125 bool dma64;
2126 u32 cqcfg;
2127 int ret;
2128
2129 /*
2130 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2131 * So ensure ADMA table is allocated for 16byte descriptors.
2132 */
2133 if (host->caps & SDHCI_CAN_64BIT)
2134 host->alloc_desc_sz = 16;
2135
2136 ret = sdhci_setup_host(host);
2137 if (ret)
2138 return ret;
2139
2140 cq_host = cqhci_pltfm_init(pdev);
2141 if (IS_ERR(cq_host)) {
2142 ret = PTR_ERR(cq_host);
2143 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2144 goto cleanup;
2145 }
2146
2147 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2148 cq_host->ops = &sdhci_msm_cqhci_ops;
2149
2150 dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2151
2152 ret = sdhci_msm_ice_init(msm_host, cq_host);
2153 if (ret)
2154 goto cleanup;
2155
2156 ret = cqhci_init(cq_host, host->mmc, dma64);
2157 if (ret) {
2158 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2159 mmc_hostname(host->mmc), ret);
2160 goto cleanup;
2161 }
2162
2163 /* Disable cqe reset due to cqe enable signal */
2164 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2165 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2166 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2167
2168 /*
2169 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2170 * So limit desc_sz to 12 so that the data commands that are sent
2171 * during card initialization (before CQE gets enabled) would
2172 * get executed without any issues.
2173 */
2174 if (host->flags & SDHCI_USE_64_BIT_DMA)
2175 host->desc_sz = 12;
2176
2177 ret = __sdhci_add_host(host);
2178 if (ret)
2179 goto cleanup;
2180
2181 dev_info(&pdev->dev, "%s: CQE init: success\n",
2182 mmc_hostname(host->mmc));
2183 return ret;
2184
2185cleanup:
2186 sdhci_cleanup_host(host);
2187 return ret;
2188}
2189
2190/*
2191 * Platform specific register write functions. This is so that, if any
2192 * register write needs to be followed up by platform specific actions,
2193 * they can be added here. These functions can go to sleep when writes
2194 * to certain registers are done.
2195 * These functions are relying on sdhci_set_ios not using spinlock.
2196 */
2197static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2198{
2199 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2200 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2201 u32 req_type = 0;
2202
2203 switch (reg) {
2204 case SDHCI_HOST_CONTROL2:
2205 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2206 REQ_IO_HIGH;
2207 break;
2208 case SDHCI_SOFTWARE_RESET:
2209 if (host->pwr && (val & SDHCI_RESET_ALL))
2210 req_type = REQ_BUS_OFF;
2211 break;
2212 case SDHCI_POWER_CONTROL:
2213 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2214 break;
2215 case SDHCI_TRANSFER_MODE:
2216 msm_host->transfer_mode = val;
2217 break;
2218 case SDHCI_COMMAND:
2219 if (!msm_host->use_cdr)
2220 break;
2221 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2222 !mmc_op_tuning(SDHCI_GET_CMD(val)))
2223 sdhci_msm_set_cdr(host, true);
2224 else
2225 sdhci_msm_set_cdr(host, false);
2226 break;
2227 }
2228
2229 if (req_type) {
2230 msm_host->pwr_irq_flag = 0;
2231 /*
2232 * Since this register write may trigger a power irq, ensure
2233 * all previous register writes are complete by this point.
2234 */
2235 mb();
2236 }
2237 return req_type;
2238}
2239
2240/* This function may sleep*/
2241static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2242{
2243 u32 req_type = 0;
2244
2245 req_type = __sdhci_msm_check_write(host, val, reg);
2246 writew_relaxed(val, host->ioaddr + reg);
2247
2248 if (req_type)
2249 sdhci_msm_check_power_status(host, req_type);
2250}
2251
2252/* This function may sleep*/
2253static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2254{
2255 u32 req_type = 0;
2256
2257 req_type = __sdhci_msm_check_write(host, val, reg);
2258
2259 writeb_relaxed(val, host->ioaddr + reg);
2260
2261 if (req_type)
2262 sdhci_msm_check_power_status(host, req_type);
2263}
2264
2265static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2266{
2267 struct mmc_host *mmc = msm_host->mmc;
2268 struct regulator *supply = mmc->supply.vqmmc;
2269 u32 caps = 0, config;
2270 struct sdhci_host *host = mmc_priv(mmc);
2271 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2272
2273 if (!IS_ERR(mmc->supply.vqmmc)) {
2274 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2275 caps |= CORE_1_8V_SUPPORT;
2276 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2277 caps |= CORE_3_0V_SUPPORT;
2278
2279 if (!caps)
2280 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2281 mmc_hostname(mmc));
2282 }
2283
2284 if (caps) {
2285 /*
2286 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2287 * bit can be used as required later on.
2288 */
2289 u32 io_level = msm_host->curr_io_level;
2290
2291 config = readl_relaxed(host->ioaddr +
2292 msm_offset->core_vendor_spec);
2293 config |= CORE_IO_PAD_PWR_SWITCH_EN;
2294
2295 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2296 config &= ~CORE_IO_PAD_PWR_SWITCH;
2297 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2298 config |= CORE_IO_PAD_PWR_SWITCH;
2299
2300 writel_relaxed(config,
2301 host->ioaddr + msm_offset->core_vendor_spec);
2302 }
2303 msm_host->caps_0 |= caps;
2304 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2305}
2306
2307static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2308{
2309 int ret;
2310
2311 ret = mmc_regulator_get_supply(msm_host->mmc);
2312 if (ret)
2313 return ret;
2314
2315 sdhci_msm_set_regulator_caps(msm_host);
2316
2317 return 0;
2318}
2319
2320static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2321 struct mmc_ios *ios)
2322{
2323 struct sdhci_host *host = mmc_priv(mmc);
2324 u16 ctrl, status;
2325
2326 /*
2327 * Signal Voltage Switching is only applicable for Host Controllers
2328 * v3.00 and above.
2329 */
2330 if (host->version < SDHCI_SPEC_300)
2331 return 0;
2332
2333 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2334
2335 switch (ios->signal_voltage) {
2336 case MMC_SIGNAL_VOLTAGE_330:
2337 if (!(host->flags & SDHCI_SIGNALING_330))
2338 return -EINVAL;
2339
2340 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2341 ctrl &= ~SDHCI_CTRL_VDD_180;
2342 break;
2343 case MMC_SIGNAL_VOLTAGE_180:
2344 if (!(host->flags & SDHCI_SIGNALING_180))
2345 return -EINVAL;
2346
2347 /* Enable 1.8V Signal Enable in the Host Control2 register */
2348 ctrl |= SDHCI_CTRL_VDD_180;
2349 break;
2350
2351 default:
2352 return -EINVAL;
2353 }
2354
2355 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2356
2357 /* Wait for 5ms */
2358 usleep_range(5000, 5500);
2359
2360 /* regulator output should be stable within 5 ms */
2361 status = ctrl & SDHCI_CTRL_VDD_180;
2362 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2363 if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2364 return 0;
2365
2366 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2367 mmc_hostname(mmc));
2368
2369 return -EAGAIN;
2370}
2371
2372#define DRIVER_NAME "sdhci_msm"
2373#define SDHCI_MSM_DUMP(f, x...) \
2374 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2375
2376static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2377{
2378 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2379 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2380 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2381
2382 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2383
2384 SDHCI_MSM_DUMP(
2385 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
2386 readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2387 readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2388 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2389 SDHCI_MSM_DUMP(
2390 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
2391 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2392 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2393 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2394 SDHCI_MSM_DUMP(
2395 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2396 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2397 readl_relaxed(host->ioaddr +
2398 msm_offset->core_vendor_spec_func2),
2399 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2400}
2401
2402static const struct sdhci_msm_variant_ops mci_var_ops = {
2403 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2404 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2405};
2406
2407static const struct sdhci_msm_variant_ops v5_var_ops = {
2408 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2409 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2410};
2411
2412static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2413 .var_ops = &mci_var_ops,
2414 .offset = &sdhci_msm_mci_offset,
2415};
2416
2417static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2418 .mci_removed = true,
2419 .var_ops = &v5_var_ops,
2420 .offset = &sdhci_msm_v5_offset,
2421};
2422
2423static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2424 .mci_removed = true,
2425 .restore_dll_config = true,
2426 .var_ops = &v5_var_ops,
2427 .offset = &sdhci_msm_v5_offset,
2428};
2429
2430static const struct of_device_id sdhci_msm_dt_match[] = {
2431 /*
2432 * Do not add new variants to the driver which are compatible with
2433 * generic ones, unless they need customization.
2434 */
2435 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2436 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2437 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2438 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2439 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2440 {},
2441};
2442
2443MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2444
2445static const struct sdhci_ops sdhci_msm_ops = {
2446 .reset = sdhci_and_cqhci_reset,
2447 .set_clock = sdhci_msm_set_clock,
2448 .get_min_clock = sdhci_msm_get_min_clock,
2449 .get_max_clock = sdhci_msm_get_max_clock,
2450 .set_bus_width = sdhci_set_bus_width,
2451 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2452 .write_w = sdhci_msm_writew,
2453 .write_b = sdhci_msm_writeb,
2454 .irq = sdhci_msm_cqe_irq,
2455 .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2456 .set_power = sdhci_set_power_noreg,
2457 .set_timeout = sdhci_msm_set_timeout,
2458};
2459
2460static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2461 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2462 SDHCI_QUIRK_SINGLE_POWER_WRITE |
2463 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2464 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2465
2466 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2467 .ops = &sdhci_msm_ops,
2468};
2469
2470static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2471 struct sdhci_host *host)
2472{
2473 struct device_node *node = pdev->dev.of_node;
2474 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2475 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2476
2477 if (of_property_read_u32(node, "qcom,ddr-config",
2478 &msm_host->ddr_config))
2479 msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2480
2481 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2482}
2483
2484static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2485{
2486 struct reset_control *reset;
2487 int ret = 0;
2488
2489 reset = reset_control_get_optional_exclusive(dev, NULL);
2490 if (IS_ERR(reset))
2491 return dev_err_probe(dev, PTR_ERR(reset),
2492 "unable to acquire core_reset\n");
2493
2494 if (!reset)
2495 return ret;
2496
2497 ret = reset_control_assert(reset);
2498 if (ret) {
2499 reset_control_put(reset);
2500 return dev_err_probe(dev, ret, "core_reset assert failed\n");
2501 }
2502
2503 /*
2504 * The hardware requirement for delay between assert/deassert
2505 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2506 * ~125us (4/32768). To be on the safe side add 200us delay.
2507 */
2508 usleep_range(200, 210);
2509
2510 ret = reset_control_deassert(reset);
2511 if (ret) {
2512 reset_control_put(reset);
2513 return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2514 }
2515
2516 usleep_range(200, 210);
2517 reset_control_put(reset);
2518
2519 return ret;
2520}
2521
2522static int sdhci_msm_probe(struct platform_device *pdev)
2523{
2524 struct sdhci_host *host;
2525 struct sdhci_pltfm_host *pltfm_host;
2526 struct sdhci_msm_host *msm_host;
2527 struct clk *clk;
2528 int ret;
2529 u16 host_version, core_minor;
2530 u32 core_version, config;
2531 u8 core_major;
2532 const struct sdhci_msm_offset *msm_offset;
2533 const struct sdhci_msm_variant_info *var_info;
2534 struct device_node *node = pdev->dev.of_node;
2535
2536 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2537 if (IS_ERR(host))
2538 return PTR_ERR(host);
2539
2540 host->sdma_boundary = 0;
2541 pltfm_host = sdhci_priv(host);
2542 msm_host = sdhci_pltfm_priv(pltfm_host);
2543 msm_host->mmc = host->mmc;
2544 msm_host->pdev = pdev;
2545
2546 ret = mmc_of_parse(host->mmc);
2547 if (ret)
2548 goto pltfm_free;
2549
2550 /*
2551 * Based on the compatible string, load the required msm host info from
2552 * the data associated with the version info.
2553 */
2554 var_info = of_device_get_match_data(&pdev->dev);
2555
2556 msm_host->mci_removed = var_info->mci_removed;
2557 msm_host->restore_dll_config = var_info->restore_dll_config;
2558 msm_host->var_ops = var_info->var_ops;
2559 msm_host->offset = var_info->offset;
2560
2561 msm_offset = msm_host->offset;
2562
2563 sdhci_get_of_property(pdev);
2564 sdhci_msm_get_of_property(pdev, host);
2565
2566 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2567
2568 ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2569 if (ret)
2570 goto pltfm_free;
2571
2572 /* Setup SDCC bus voter clock. */
2573 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2574 if (!IS_ERR(msm_host->bus_clk)) {
2575 /* Vote for max. clk rate for max. performance */
2576 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2577 if (ret)
2578 goto pltfm_free;
2579 ret = clk_prepare_enable(msm_host->bus_clk);
2580 if (ret)
2581 goto pltfm_free;
2582 }
2583
2584 /* Setup main peripheral bus clock */
2585 clk = devm_clk_get(&pdev->dev, "iface");
2586 if (IS_ERR(clk)) {
2587 ret = PTR_ERR(clk);
2588 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2589 goto bus_clk_disable;
2590 }
2591 msm_host->bulk_clks[1].clk = clk;
2592
2593 /* Setup SDC MMC clock */
2594 clk = devm_clk_get(&pdev->dev, "core");
2595 if (IS_ERR(clk)) {
2596 ret = PTR_ERR(clk);
2597 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2598 goto bus_clk_disable;
2599 }
2600 msm_host->bulk_clks[0].clk = clk;
2601
2602 /* Check for optional interconnect paths */
2603 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2604 if (ret)
2605 goto bus_clk_disable;
2606
2607 ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2608 if (ret)
2609 goto bus_clk_disable;
2610
2611 /* OPP table is optional */
2612 ret = devm_pm_opp_of_add_table(&pdev->dev);
2613 if (ret && ret != -ENODEV) {
2614 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2615 goto bus_clk_disable;
2616 }
2617
2618 /* Vote for maximum clock rate for maximum performance */
2619 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2620 if (ret)
2621 dev_warn(&pdev->dev, "core clock boost failed\n");
2622
2623 clk = devm_clk_get(&pdev->dev, "cal");
2624 if (IS_ERR(clk))
2625 clk = NULL;
2626 msm_host->bulk_clks[2].clk = clk;
2627
2628 clk = devm_clk_get(&pdev->dev, "sleep");
2629 if (IS_ERR(clk))
2630 clk = NULL;
2631 msm_host->bulk_clks[3].clk = clk;
2632
2633 clk = sdhci_msm_ice_get_clk(&pdev->dev);
2634 if (IS_ERR(clk))
2635 clk = NULL;
2636 msm_host->bulk_clks[4].clk = clk;
2637
2638 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2639 msm_host->bulk_clks);
2640 if (ret)
2641 goto bus_clk_disable;
2642
2643 /*
2644 * xo clock is needed for FLL feature of cm_dll.
2645 * In case if xo clock is not mentioned in DT, warn and proceed.
2646 */
2647 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2648 if (IS_ERR(msm_host->xo_clk)) {
2649 ret = PTR_ERR(msm_host->xo_clk);
2650 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2651 }
2652
2653 if (!msm_host->mci_removed) {
2654 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2655 if (IS_ERR(msm_host->core_mem)) {
2656 ret = PTR_ERR(msm_host->core_mem);
2657 goto clk_disable;
2658 }
2659 }
2660
2661 /* Reset the vendor spec register to power on reset state */
2662 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2663 host->ioaddr + msm_offset->core_vendor_spec);
2664
2665 if (!msm_host->mci_removed) {
2666 /* Set HC_MODE_EN bit in HC_MODE register */
2667 msm_host_writel(msm_host, HC_MODE_EN, host,
2668 msm_offset->core_hc_mode);
2669 config = msm_host_readl(msm_host, host,
2670 msm_offset->core_hc_mode);
2671 config |= FF_CLK_SW_RST_DIS;
2672 msm_host_writel(msm_host, config, host,
2673 msm_offset->core_hc_mode);
2674 }
2675
2676 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2677 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2678 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2679 SDHCI_VENDOR_VER_SHIFT));
2680
2681 core_version = msm_host_readl(msm_host, host,
2682 msm_offset->core_mci_version);
2683 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2684 CORE_VERSION_MAJOR_SHIFT;
2685 core_minor = core_version & CORE_VERSION_MINOR_MASK;
2686 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2687 core_version, core_major, core_minor);
2688
2689 if (core_major == 1 && core_minor >= 0x42)
2690 msm_host->use_14lpp_dll_reset = true;
2691
2692 /*
2693 * SDCC 5 controller with major version 1, minor version 0x34 and later
2694 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2695 */
2696 if (core_major == 1 && core_minor < 0x34)
2697 msm_host->use_cdclp533 = true;
2698
2699 /*
2700 * Support for some capabilities is not advertised by newer
2701 * controller versions and must be explicitly enabled.
2702 */
2703 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2704 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2705 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2706 writel_relaxed(config, host->ioaddr +
2707 msm_offset->core_vendor_spec_capabilities0);
2708 }
2709
2710 if (core_major == 1 && core_minor >= 0x49)
2711 msm_host->updated_ddr_cfg = true;
2712
2713 if (core_major == 1 && core_minor >= 0x71)
2714 msm_host->uses_tassadar_dll = true;
2715
2716 ret = sdhci_msm_register_vreg(msm_host);
2717 if (ret)
2718 goto clk_disable;
2719
2720 /*
2721 * Power on reset state may trigger power irq if previous status of
2722 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2723 * interrupt in GIC, any pending power irq interrupt should be
2724 * acknowledged. Otherwise power irq interrupt handler would be
2725 * fired prematurely.
2726 */
2727 sdhci_msm_handle_pwr_irq(host, 0);
2728
2729 /*
2730 * Ensure that above writes are propogated before interrupt enablement
2731 * in GIC.
2732 */
2733 mb();
2734
2735 /* Setup IRQ for handling power/voltage tasks with PMIC */
2736 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2737 if (msm_host->pwr_irq < 0) {
2738 ret = msm_host->pwr_irq;
2739 goto clk_disable;
2740 }
2741
2742 sdhci_msm_init_pwr_irq_wait(msm_host);
2743 /* Enable pwr irq interrupts */
2744 msm_host_writel(msm_host, INT_MASK, host,
2745 msm_offset->core_pwrctl_mask);
2746
2747 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2748 sdhci_msm_pwr_irq, IRQF_ONESHOT,
2749 dev_name(&pdev->dev), host);
2750 if (ret) {
2751 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2752 goto clk_disable;
2753 }
2754
2755 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2756
2757 /* Set the timeout value to max possible */
2758 host->max_timeout_count = 0xF;
2759
2760 pm_runtime_get_noresume(&pdev->dev);
2761 pm_runtime_set_active(&pdev->dev);
2762 pm_runtime_enable(&pdev->dev);
2763 pm_runtime_set_autosuspend_delay(&pdev->dev,
2764 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2765 pm_runtime_use_autosuspend(&pdev->dev);
2766
2767 host->mmc_host_ops.start_signal_voltage_switch =
2768 sdhci_msm_start_signal_voltage_switch;
2769 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2770 if (of_property_read_bool(node, "supports-cqe"))
2771 ret = sdhci_msm_cqe_add_host(host, pdev);
2772 else
2773 ret = sdhci_add_host(host);
2774 if (ret)
2775 goto pm_runtime_disable;
2776
2777 pm_runtime_mark_last_busy(&pdev->dev);
2778 pm_runtime_put_autosuspend(&pdev->dev);
2779
2780 return 0;
2781
2782pm_runtime_disable:
2783 pm_runtime_disable(&pdev->dev);
2784 pm_runtime_set_suspended(&pdev->dev);
2785 pm_runtime_put_noidle(&pdev->dev);
2786clk_disable:
2787 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2788 msm_host->bulk_clks);
2789bus_clk_disable:
2790 if (!IS_ERR(msm_host->bus_clk))
2791 clk_disable_unprepare(msm_host->bus_clk);
2792pltfm_free:
2793 sdhci_pltfm_free(pdev);
2794 return ret;
2795}
2796
2797static int sdhci_msm_remove(struct platform_device *pdev)
2798{
2799 struct sdhci_host *host = platform_get_drvdata(pdev);
2800 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2801 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2802 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2803 0xffffffff);
2804
2805 sdhci_remove_host(host, dead);
2806
2807 pm_runtime_get_sync(&pdev->dev);
2808 pm_runtime_disable(&pdev->dev);
2809 pm_runtime_put_noidle(&pdev->dev);
2810
2811 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2812 msm_host->bulk_clks);
2813 if (!IS_ERR(msm_host->bus_clk))
2814 clk_disable_unprepare(msm_host->bus_clk);
2815 sdhci_pltfm_free(pdev);
2816 return 0;
2817}
2818
2819static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2820{
2821 struct sdhci_host *host = dev_get_drvdata(dev);
2822 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2823 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2824
2825 /* Drop the performance vote */
2826 dev_pm_opp_set_rate(dev, 0);
2827 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2828 msm_host->bulk_clks);
2829
2830 return 0;
2831}
2832
2833static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2834{
2835 struct sdhci_host *host = dev_get_drvdata(dev);
2836 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2837 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2838 int ret;
2839
2840 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2841 msm_host->bulk_clks);
2842 if (ret)
2843 return ret;
2844 /*
2845 * Whenever core-clock is gated dynamically, it's needed to
2846 * restore the SDR DLL settings when the clock is ungated.
2847 */
2848 if (msm_host->restore_dll_config && msm_host->clk_rate) {
2849 ret = sdhci_msm_restore_sdr_dll_config(host);
2850 if (ret)
2851 return ret;
2852 }
2853
2854 dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2855
2856 return sdhci_msm_ice_resume(msm_host);
2857}
2858
2859static const struct dev_pm_ops sdhci_msm_pm_ops = {
2860 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2861 pm_runtime_force_resume)
2862 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2863 sdhci_msm_runtime_resume,
2864 NULL)
2865};
2866
2867static struct platform_driver sdhci_msm_driver = {
2868 .probe = sdhci_msm_probe,
2869 .remove = sdhci_msm_remove,
2870 .driver = {
2871 .name = "sdhci_msm",
2872 .of_match_table = sdhci_msm_dt_match,
2873 .pm = &sdhci_msm_pm_ops,
2874 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2875 },
2876};
2877
2878module_platform_driver(sdhci_msm_driver);
2879
2880MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2881MODULE_LICENSE("GPL v2");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
4 *
5 * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
6 */
7
8#include <linux/module.h>
9#include <linux/delay.h>
10#include <linux/mmc/mmc.h>
11#include <linux/pm_runtime.h>
12#include <linux/pm_opp.h>
13#include <linux/slab.h>
14#include <linux/iopoll.h>
15#include <linux/regulator/consumer.h>
16#include <linux/interconnect.h>
17#include <linux/of.h>
18#include <linux/pinctrl/consumer.h>
19#include <linux/reset.h>
20
21#include <soc/qcom/ice.h>
22
23#include "sdhci-cqhci.h"
24#include "sdhci-pltfm.h"
25#include "cqhci.h"
26
27#define CORE_MCI_VERSION 0x50
28#define CORE_VERSION_MAJOR_SHIFT 28
29#define CORE_VERSION_MAJOR_MASK (0xf << CORE_VERSION_MAJOR_SHIFT)
30#define CORE_VERSION_MINOR_MASK 0xff
31
32#define CORE_MCI_GENERICS 0x70
33#define SWITCHABLE_SIGNALING_VOLTAGE BIT(29)
34
35#define HC_MODE_EN 0x1
36#define CORE_POWER 0x0
37#define CORE_SW_RST BIT(7)
38#define FF_CLK_SW_RST_DIS BIT(13)
39
40#define CORE_PWRCTL_BUS_OFF BIT(0)
41#define CORE_PWRCTL_BUS_ON BIT(1)
42#define CORE_PWRCTL_IO_LOW BIT(2)
43#define CORE_PWRCTL_IO_HIGH BIT(3)
44#define CORE_PWRCTL_BUS_SUCCESS BIT(0)
45#define CORE_PWRCTL_BUS_FAIL BIT(1)
46#define CORE_PWRCTL_IO_SUCCESS BIT(2)
47#define CORE_PWRCTL_IO_FAIL BIT(3)
48#define REQ_BUS_OFF BIT(0)
49#define REQ_BUS_ON BIT(1)
50#define REQ_IO_LOW BIT(2)
51#define REQ_IO_HIGH BIT(3)
52#define INT_MASK 0xf
53#define MAX_PHASES 16
54#define CORE_DLL_LOCK BIT(7)
55#define CORE_DDR_DLL_LOCK BIT(11)
56#define CORE_DLL_EN BIT(16)
57#define CORE_CDR_EN BIT(17)
58#define CORE_CK_OUT_EN BIT(18)
59#define CORE_CDR_EXT_EN BIT(19)
60#define CORE_DLL_PDN BIT(29)
61#define CORE_DLL_RST BIT(30)
62#define CORE_CMD_DAT_TRACK_SEL BIT(0)
63
64#define CORE_DDR_CAL_EN BIT(0)
65#define CORE_FLL_CYCLE_CNT BIT(18)
66#define CORE_DLL_CLOCK_DISABLE BIT(21)
67
68#define DLL_USR_CTL_POR_VAL 0x10800
69#define ENABLE_DLL_LOCK_STATUS BIT(26)
70#define FINE_TUNE_MODE_EN BIT(27)
71#define BIAS_OK_SIGNAL BIT(29)
72
73#define DLL_CONFIG_3_LOW_FREQ_VAL 0x08
74#define DLL_CONFIG_3_HIGH_FREQ_VAL 0x10
75
76#define CORE_VENDOR_SPEC_POR_VAL 0xa9c
77#define CORE_CLK_PWRSAVE BIT(1)
78#define CORE_HC_MCLK_SEL_DFLT (2 << 8)
79#define CORE_HC_MCLK_SEL_HS400 (3 << 8)
80#define CORE_HC_MCLK_SEL_MASK (3 << 8)
81#define CORE_IO_PAD_PWR_SWITCH_EN BIT(15)
82#define CORE_IO_PAD_PWR_SWITCH BIT(16)
83#define CORE_HC_SELECT_IN_EN BIT(18)
84#define CORE_HC_SELECT_IN_HS400 (6 << 19)
85#define CORE_HC_SELECT_IN_MASK (7 << 19)
86
87#define CORE_3_0V_SUPPORT BIT(25)
88#define CORE_1_8V_SUPPORT BIT(26)
89#define CORE_VOLT_SUPPORT (CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
90
91#define CORE_CSR_CDC_CTLR_CFG0 0x130
92#define CORE_SW_TRIG_FULL_CALIB BIT(16)
93#define CORE_HW_AUTOCAL_ENA BIT(17)
94
95#define CORE_CSR_CDC_CTLR_CFG1 0x134
96#define CORE_CSR_CDC_CAL_TIMER_CFG0 0x138
97#define CORE_TIMER_ENA BIT(16)
98
99#define CORE_CSR_CDC_CAL_TIMER_CFG1 0x13C
100#define CORE_CSR_CDC_REFCOUNT_CFG 0x140
101#define CORE_CSR_CDC_COARSE_CAL_CFG 0x144
102#define CORE_CDC_OFFSET_CFG 0x14C
103#define CORE_CSR_CDC_DELAY_CFG 0x150
104#define CORE_CDC_SLAVE_DDA_CFG 0x160
105#define CORE_CSR_CDC_STATUS0 0x164
106#define CORE_CALIBRATION_DONE BIT(0)
107
108#define CORE_CDC_ERROR_CODE_MASK 0x7000000
109
110#define CORE_CSR_CDC_GEN_CFG 0x178
111#define CORE_CDC_SWITCH_BYPASS_OFF BIT(0)
112#define CORE_CDC_SWITCH_RC_EN BIT(1)
113
114#define CORE_CDC_T4_DLY_SEL BIT(0)
115#define CORE_CMDIN_RCLK_EN BIT(1)
116#define CORE_START_CDC_TRAFFIC BIT(6)
117
118#define CORE_PWRSAVE_DLL BIT(3)
119
120#define DDR_CONFIG_POR_VAL 0x80040873
121
122
123#define INVALID_TUNING_PHASE -1
124#define SDHCI_MSM_MIN_CLOCK 400000
125#define CORE_FREQ_100MHZ (100 * 1000 * 1000)
126
127#define CDR_SELEXT_SHIFT 20
128#define CDR_SELEXT_MASK (0xf << CDR_SELEXT_SHIFT)
129#define CMUX_SHIFT_PHASE_SHIFT 24
130#define CMUX_SHIFT_PHASE_MASK (7 << CMUX_SHIFT_PHASE_SHIFT)
131
132#define MSM_MMC_AUTOSUSPEND_DELAY_MS 50
133
134/* Timeout value to avoid infinite waiting for pwr_irq */
135#define MSM_PWR_IRQ_TIMEOUT_MS 5000
136
137/* Max load for eMMC Vdd-io supply */
138#define MMC_VQMMC_MAX_LOAD_UA 325000
139
140#define msm_host_readl(msm_host, host, offset) \
141 msm_host->var_ops->msm_readl_relaxed(host, offset)
142
143#define msm_host_writel(msm_host, val, host, offset) \
144 msm_host->var_ops->msm_writel_relaxed(val, host, offset)
145
146/* CQHCI vendor specific registers */
147#define CQHCI_VENDOR_CFG1 0xA00
148#define CQHCI_VENDOR_DIS_RST_ON_CQ_EN (0x3 << 13)
149
150struct sdhci_msm_offset {
151 u32 core_hc_mode;
152 u32 core_mci_data_cnt;
153 u32 core_mci_status;
154 u32 core_mci_fifo_cnt;
155 u32 core_mci_version;
156 u32 core_generics;
157 u32 core_testbus_config;
158 u32 core_testbus_sel2_bit;
159 u32 core_testbus_ena;
160 u32 core_testbus_sel2;
161 u32 core_pwrctl_status;
162 u32 core_pwrctl_mask;
163 u32 core_pwrctl_clear;
164 u32 core_pwrctl_ctl;
165 u32 core_sdcc_debug_reg;
166 u32 core_dll_config;
167 u32 core_dll_status;
168 u32 core_vendor_spec;
169 u32 core_vendor_spec_adma_err_addr0;
170 u32 core_vendor_spec_adma_err_addr1;
171 u32 core_vendor_spec_func2;
172 u32 core_vendor_spec_capabilities0;
173 u32 core_ddr_200_cfg;
174 u32 core_vendor_spec3;
175 u32 core_dll_config_2;
176 u32 core_dll_config_3;
177 u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
178 u32 core_ddr_config;
179 u32 core_dll_usr_ctl; /* Present on SDCC5.1 onwards */
180};
181
182static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
183 .core_mci_data_cnt = 0x35c,
184 .core_mci_status = 0x324,
185 .core_mci_fifo_cnt = 0x308,
186 .core_mci_version = 0x318,
187 .core_generics = 0x320,
188 .core_testbus_config = 0x32c,
189 .core_testbus_sel2_bit = 3,
190 .core_testbus_ena = (1 << 31),
191 .core_testbus_sel2 = (1 << 3),
192 .core_pwrctl_status = 0x240,
193 .core_pwrctl_mask = 0x244,
194 .core_pwrctl_clear = 0x248,
195 .core_pwrctl_ctl = 0x24c,
196 .core_sdcc_debug_reg = 0x358,
197 .core_dll_config = 0x200,
198 .core_dll_status = 0x208,
199 .core_vendor_spec = 0x20c,
200 .core_vendor_spec_adma_err_addr0 = 0x214,
201 .core_vendor_spec_adma_err_addr1 = 0x218,
202 .core_vendor_spec_func2 = 0x210,
203 .core_vendor_spec_capabilities0 = 0x21c,
204 .core_ddr_200_cfg = 0x224,
205 .core_vendor_spec3 = 0x250,
206 .core_dll_config_2 = 0x254,
207 .core_dll_config_3 = 0x258,
208 .core_ddr_config = 0x25c,
209 .core_dll_usr_ctl = 0x388,
210};
211
212static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
213 .core_hc_mode = 0x78,
214 .core_mci_data_cnt = 0x30,
215 .core_mci_status = 0x34,
216 .core_mci_fifo_cnt = 0x44,
217 .core_mci_version = 0x050,
218 .core_generics = 0x70,
219 .core_testbus_config = 0x0cc,
220 .core_testbus_sel2_bit = 4,
221 .core_testbus_ena = (1 << 3),
222 .core_testbus_sel2 = (1 << 4),
223 .core_pwrctl_status = 0xdc,
224 .core_pwrctl_mask = 0xe0,
225 .core_pwrctl_clear = 0xe4,
226 .core_pwrctl_ctl = 0xe8,
227 .core_sdcc_debug_reg = 0x124,
228 .core_dll_config = 0x100,
229 .core_dll_status = 0x108,
230 .core_vendor_spec = 0x10c,
231 .core_vendor_spec_adma_err_addr0 = 0x114,
232 .core_vendor_spec_adma_err_addr1 = 0x118,
233 .core_vendor_spec_func2 = 0x110,
234 .core_vendor_spec_capabilities0 = 0x11c,
235 .core_ddr_200_cfg = 0x184,
236 .core_vendor_spec3 = 0x1b0,
237 .core_dll_config_2 = 0x1b4,
238 .core_ddr_config_old = 0x1b8,
239 .core_ddr_config = 0x1bc,
240};
241
242struct sdhci_msm_variant_ops {
243 u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
244 void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
245 u32 offset);
246};
247
248/*
249 * From V5, register spaces have changed. Wrap this info in a structure
250 * and choose the data_structure based on version info mentioned in DT.
251 */
252struct sdhci_msm_variant_info {
253 bool mci_removed;
254 bool restore_dll_config;
255 const struct sdhci_msm_variant_ops *var_ops;
256 const struct sdhci_msm_offset *offset;
257};
258
259struct sdhci_msm_host {
260 struct platform_device *pdev;
261 void __iomem *core_mem; /* MSM SDCC mapped address */
262 int pwr_irq; /* power irq */
263 struct clk *bus_clk; /* SDHC bus voter clock */
264 struct clk *xo_clk; /* TCXO clk needed for FLL feature of cm_dll*/
265 /* core, iface, cal and sleep clocks */
266 struct clk_bulk_data bulk_clks[4];
267#ifdef CONFIG_MMC_CRYPTO
268 struct qcom_ice *ice;
269#endif
270 unsigned long clk_rate;
271 struct mmc_host *mmc;
272 bool use_14lpp_dll_reset;
273 bool tuning_done;
274 bool calibration_done;
275 u8 saved_tuning_phase;
276 bool use_cdclp533;
277 u32 curr_pwr_state;
278 u32 curr_io_level;
279 wait_queue_head_t pwr_irq_wait;
280 bool pwr_irq_flag;
281 u32 caps_0;
282 bool mci_removed;
283 bool restore_dll_config;
284 const struct sdhci_msm_variant_ops *var_ops;
285 const struct sdhci_msm_offset *offset;
286 bool use_cdr;
287 u32 transfer_mode;
288 bool updated_ddr_cfg;
289 bool uses_tassadar_dll;
290 u32 dll_config;
291 u32 ddr_config;
292 bool vqmmc_enabled;
293};
294
295static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
296{
297 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
298 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
299
300 return msm_host->offset;
301}
302
303/*
304 * APIs to read/write to vendor specific registers which were there in the
305 * core_mem region before MCI was removed.
306 */
307static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
308 u32 offset)
309{
310 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
311 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
312
313 return readl_relaxed(msm_host->core_mem + offset);
314}
315
316static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
317 u32 offset)
318{
319 return readl_relaxed(host->ioaddr + offset);
320}
321
322static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
323 struct sdhci_host *host, u32 offset)
324{
325 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
326 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
327
328 writel_relaxed(val, msm_host->core_mem + offset);
329}
330
331static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
332 struct sdhci_host *host, u32 offset)
333{
334 writel_relaxed(val, host->ioaddr + offset);
335}
336
337static unsigned int msm_get_clock_mult_for_bus_mode(struct sdhci_host *host)
338{
339 struct mmc_ios ios = host->mmc->ios;
340 /*
341 * The SDHC requires internal clock frequency to be double the
342 * actual clock that will be set for DDR mode. The controller
343 * uses the faster clock(100/400MHz) for some of its parts and
344 * send the actual required clock (50/200MHz) to the card.
345 */
346 if (ios.timing == MMC_TIMING_UHS_DDR50 ||
347 ios.timing == MMC_TIMING_MMC_DDR52 ||
348 ios.timing == MMC_TIMING_MMC_HS400 ||
349 host->flags & SDHCI_HS400_TUNING)
350 return 2;
351 return 1;
352}
353
354static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
355 unsigned int clock)
356{
357 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
358 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
359 struct mmc_ios curr_ios = host->mmc->ios;
360 struct clk *core_clk = msm_host->bulk_clks[0].clk;
361 unsigned long achieved_rate;
362 unsigned int desired_rate;
363 unsigned int mult;
364 int rc;
365
366 mult = msm_get_clock_mult_for_bus_mode(host);
367 desired_rate = clock * mult;
368 rc = dev_pm_opp_set_rate(mmc_dev(host->mmc), desired_rate);
369 if (rc) {
370 pr_err("%s: Failed to set clock at rate %u at timing %d\n",
371 mmc_hostname(host->mmc), desired_rate, curr_ios.timing);
372 return;
373 }
374
375 /*
376 * Qualcomm clock drivers by default round clock _up_ if they can't
377 * make the requested rate. This is not good for SD. Yell if we
378 * encounter it.
379 */
380 achieved_rate = clk_get_rate(core_clk);
381 if (achieved_rate > desired_rate)
382 pr_warn("%s: Card appears overclocked; req %u Hz, actual %lu Hz\n",
383 mmc_hostname(host->mmc), desired_rate, achieved_rate);
384 host->mmc->actual_clock = achieved_rate / mult;
385
386 /* Stash the rate we requested to use in sdhci_msm_runtime_resume() */
387 msm_host->clk_rate = desired_rate;
388
389 pr_debug("%s: Setting clock at rate %lu at timing %d\n",
390 mmc_hostname(host->mmc), achieved_rate, curr_ios.timing);
391}
392
393/* Platform specific tuning */
394static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
395{
396 u32 wait_cnt = 50;
397 u8 ck_out_en;
398 struct mmc_host *mmc = host->mmc;
399 const struct sdhci_msm_offset *msm_offset =
400 sdhci_priv_msm_offset(host);
401
402 /* Poll for CK_OUT_EN bit. max. poll time = 50us */
403 ck_out_en = !!(readl_relaxed(host->ioaddr +
404 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
405
406 while (ck_out_en != poll) {
407 if (--wait_cnt == 0) {
408 dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
409 mmc_hostname(mmc), poll);
410 return -ETIMEDOUT;
411 }
412 udelay(1);
413
414 ck_out_en = !!(readl_relaxed(host->ioaddr +
415 msm_offset->core_dll_config) & CORE_CK_OUT_EN);
416 }
417
418 return 0;
419}
420
421static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
422{
423 int rc;
424 static const u8 grey_coded_phase_table[] = {
425 0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
426 0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
427 };
428 unsigned long flags;
429 u32 config;
430 struct mmc_host *mmc = host->mmc;
431 const struct sdhci_msm_offset *msm_offset =
432 sdhci_priv_msm_offset(host);
433
434 if (phase > 0xf)
435 return -EINVAL;
436
437 spin_lock_irqsave(&host->lock, flags);
438
439 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
440 config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
441 config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
442 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
443
444 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
445 rc = msm_dll_poll_ck_out_en(host, 0);
446 if (rc)
447 goto err_out;
448
449 /*
450 * Write the selected DLL clock output phase (0 ... 15)
451 * to CDR_SELEXT bit field of DLL_CONFIG register.
452 */
453 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
454 config &= ~CDR_SELEXT_MASK;
455 config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
456 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
457
458 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
459 config |= CORE_CK_OUT_EN;
460 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
461
462 /* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
463 rc = msm_dll_poll_ck_out_en(host, 1);
464 if (rc)
465 goto err_out;
466
467 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
468 config |= CORE_CDR_EN;
469 config &= ~CORE_CDR_EXT_EN;
470 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
471 goto out;
472
473err_out:
474 dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
475 mmc_hostname(mmc), phase);
476out:
477 spin_unlock_irqrestore(&host->lock, flags);
478 return rc;
479}
480
481/*
482 * Find out the greatest range of consecuitive selected
483 * DLL clock output phases that can be used as sampling
484 * setting for SD3.0 UHS-I card read operation (in SDR104
485 * timing mode) or for eMMC4.5 card read operation (in
486 * HS400/HS200 timing mode).
487 * Select the 3/4 of the range and configure the DLL with the
488 * selected DLL clock output phase.
489 */
490
491static int msm_find_most_appropriate_phase(struct sdhci_host *host,
492 u8 *phase_table, u8 total_phases)
493{
494 int ret;
495 u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
496 u8 phases_per_row[MAX_PHASES] = { 0 };
497 int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
498 int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
499 bool phase_0_found = false, phase_15_found = false;
500 struct mmc_host *mmc = host->mmc;
501
502 if (!total_phases || (total_phases > MAX_PHASES)) {
503 dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
504 mmc_hostname(mmc), total_phases);
505 return -EINVAL;
506 }
507
508 for (cnt = 0; cnt < total_phases; cnt++) {
509 ranges[row_index][col_index] = phase_table[cnt];
510 phases_per_row[row_index] += 1;
511 col_index++;
512
513 if ((cnt + 1) == total_phases) {
514 continue;
515 /* check if next phase in phase_table is consecutive or not */
516 } else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
517 row_index++;
518 col_index = 0;
519 }
520 }
521
522 if (row_index >= MAX_PHASES)
523 return -EINVAL;
524
525 /* Check if phase-0 is present in first valid window? */
526 if (!ranges[0][0]) {
527 phase_0_found = true;
528 phase_0_raw_index = 0;
529 /* Check if cycle exist between 2 valid windows */
530 for (cnt = 1; cnt <= row_index; cnt++) {
531 if (phases_per_row[cnt]) {
532 for (i = 0; i < phases_per_row[cnt]; i++) {
533 if (ranges[cnt][i] == 15) {
534 phase_15_found = true;
535 phase_15_raw_index = cnt;
536 break;
537 }
538 }
539 }
540 }
541 }
542
543 /* If 2 valid windows form cycle then merge them as single window */
544 if (phase_0_found && phase_15_found) {
545 /* number of phases in raw where phase 0 is present */
546 u8 phases_0 = phases_per_row[phase_0_raw_index];
547 /* number of phases in raw where phase 15 is present */
548 u8 phases_15 = phases_per_row[phase_15_raw_index];
549
550 if (phases_0 + phases_15 >= MAX_PHASES)
551 /*
552 * If there are more than 1 phase windows then total
553 * number of phases in both the windows should not be
554 * more than or equal to MAX_PHASES.
555 */
556 return -EINVAL;
557
558 /* Merge 2 cyclic windows */
559 i = phases_15;
560 for (cnt = 0; cnt < phases_0; cnt++) {
561 ranges[phase_15_raw_index][i] =
562 ranges[phase_0_raw_index][cnt];
563 if (++i >= MAX_PHASES)
564 break;
565 }
566
567 phases_per_row[phase_0_raw_index] = 0;
568 phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
569 }
570
571 for (cnt = 0; cnt <= row_index; cnt++) {
572 if (phases_per_row[cnt] > curr_max) {
573 curr_max = phases_per_row[cnt];
574 selected_row_index = cnt;
575 }
576 }
577
578 i = (curr_max * 3) / 4;
579 if (i)
580 i--;
581
582 ret = ranges[selected_row_index][i];
583
584 if (ret >= MAX_PHASES) {
585 ret = -EINVAL;
586 dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
587 mmc_hostname(mmc), ret);
588 }
589
590 return ret;
591}
592
593static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
594{
595 u32 mclk_freq = 0, config;
596 const struct sdhci_msm_offset *msm_offset =
597 sdhci_priv_msm_offset(host);
598
599 /* Program the MCLK value to MCLK_FREQ bit field */
600 if (host->clock <= 112000000)
601 mclk_freq = 0;
602 else if (host->clock <= 125000000)
603 mclk_freq = 1;
604 else if (host->clock <= 137000000)
605 mclk_freq = 2;
606 else if (host->clock <= 150000000)
607 mclk_freq = 3;
608 else if (host->clock <= 162000000)
609 mclk_freq = 4;
610 else if (host->clock <= 175000000)
611 mclk_freq = 5;
612 else if (host->clock <= 187000000)
613 mclk_freq = 6;
614 else if (host->clock <= 200000000)
615 mclk_freq = 7;
616
617 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
618 config &= ~CMUX_SHIFT_PHASE_MASK;
619 config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
620 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
621}
622
623/* Initialize the DLL (Programmable Delay Line) */
624static int msm_init_cm_dll(struct sdhci_host *host)
625{
626 struct mmc_host *mmc = host->mmc;
627 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
628 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
629 int wait_cnt = 50;
630 unsigned long flags, xo_clk = 0;
631 u32 config;
632 const struct sdhci_msm_offset *msm_offset =
633 msm_host->offset;
634
635 if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
636 xo_clk = clk_get_rate(msm_host->xo_clk);
637
638 spin_lock_irqsave(&host->lock, flags);
639
640 /*
641 * Make sure that clock is always enabled when DLL
642 * tuning is in progress. Keeping PWRSAVE ON may
643 * turn off the clock.
644 */
645 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
646 config &= ~CORE_CLK_PWRSAVE;
647 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
648
649 if (msm_host->dll_config)
650 writel_relaxed(msm_host->dll_config,
651 host->ioaddr + msm_offset->core_dll_config);
652
653 if (msm_host->use_14lpp_dll_reset) {
654 config = readl_relaxed(host->ioaddr +
655 msm_offset->core_dll_config);
656 config &= ~CORE_CK_OUT_EN;
657 writel_relaxed(config, host->ioaddr +
658 msm_offset->core_dll_config);
659
660 config = readl_relaxed(host->ioaddr +
661 msm_offset->core_dll_config_2);
662 config |= CORE_DLL_CLOCK_DISABLE;
663 writel_relaxed(config, host->ioaddr +
664 msm_offset->core_dll_config_2);
665 }
666
667 config = readl_relaxed(host->ioaddr +
668 msm_offset->core_dll_config);
669 config |= CORE_DLL_RST;
670 writel_relaxed(config, host->ioaddr +
671 msm_offset->core_dll_config);
672
673 config = readl_relaxed(host->ioaddr +
674 msm_offset->core_dll_config);
675 config |= CORE_DLL_PDN;
676 writel_relaxed(config, host->ioaddr +
677 msm_offset->core_dll_config);
678
679 if (!msm_host->dll_config)
680 msm_cm_dll_set_freq(host);
681
682 if (msm_host->use_14lpp_dll_reset &&
683 !IS_ERR_OR_NULL(msm_host->xo_clk)) {
684 u32 mclk_freq = 0;
685
686 config = readl_relaxed(host->ioaddr +
687 msm_offset->core_dll_config_2);
688 config &= CORE_FLL_CYCLE_CNT;
689 if (config)
690 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
691 xo_clk);
692 else
693 mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
694 xo_clk);
695
696 config = readl_relaxed(host->ioaddr +
697 msm_offset->core_dll_config_2);
698 config &= ~(0xFF << 10);
699 config |= mclk_freq << 10;
700
701 writel_relaxed(config, host->ioaddr +
702 msm_offset->core_dll_config_2);
703 /* wait for 5us before enabling DLL clock */
704 udelay(5);
705 }
706
707 config = readl_relaxed(host->ioaddr +
708 msm_offset->core_dll_config);
709 config &= ~CORE_DLL_RST;
710 writel_relaxed(config, host->ioaddr +
711 msm_offset->core_dll_config);
712
713 config = readl_relaxed(host->ioaddr +
714 msm_offset->core_dll_config);
715 config &= ~CORE_DLL_PDN;
716 writel_relaxed(config, host->ioaddr +
717 msm_offset->core_dll_config);
718
719 if (msm_host->use_14lpp_dll_reset) {
720 if (!msm_host->dll_config)
721 msm_cm_dll_set_freq(host);
722 config = readl_relaxed(host->ioaddr +
723 msm_offset->core_dll_config_2);
724 config &= ~CORE_DLL_CLOCK_DISABLE;
725 writel_relaxed(config, host->ioaddr +
726 msm_offset->core_dll_config_2);
727 }
728
729 /*
730 * Configure DLL user control register to enable DLL status.
731 * This setting is applicable to SDCC v5.1 onwards only.
732 */
733 if (msm_host->uses_tassadar_dll) {
734 config = DLL_USR_CTL_POR_VAL | FINE_TUNE_MODE_EN |
735 ENABLE_DLL_LOCK_STATUS | BIAS_OK_SIGNAL;
736 writel_relaxed(config, host->ioaddr +
737 msm_offset->core_dll_usr_ctl);
738
739 config = readl_relaxed(host->ioaddr +
740 msm_offset->core_dll_config_3);
741 config &= ~0xFF;
742 if (msm_host->clk_rate < 150000000)
743 config |= DLL_CONFIG_3_LOW_FREQ_VAL;
744 else
745 config |= DLL_CONFIG_3_HIGH_FREQ_VAL;
746 writel_relaxed(config, host->ioaddr +
747 msm_offset->core_dll_config_3);
748 }
749
750 config = readl_relaxed(host->ioaddr +
751 msm_offset->core_dll_config);
752 config |= CORE_DLL_EN;
753 writel_relaxed(config, host->ioaddr +
754 msm_offset->core_dll_config);
755
756 config = readl_relaxed(host->ioaddr +
757 msm_offset->core_dll_config);
758 config |= CORE_CK_OUT_EN;
759 writel_relaxed(config, host->ioaddr +
760 msm_offset->core_dll_config);
761
762 /* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
763 while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
764 CORE_DLL_LOCK)) {
765 /* max. wait for 50us sec for LOCK bit to be set */
766 if (--wait_cnt == 0) {
767 dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
768 mmc_hostname(mmc));
769 spin_unlock_irqrestore(&host->lock, flags);
770 return -ETIMEDOUT;
771 }
772 udelay(1);
773 }
774
775 spin_unlock_irqrestore(&host->lock, flags);
776 return 0;
777}
778
779static void msm_hc_select_default(struct sdhci_host *host)
780{
781 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
782 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
783 u32 config;
784 const struct sdhci_msm_offset *msm_offset =
785 msm_host->offset;
786
787 if (!msm_host->use_cdclp533) {
788 config = readl_relaxed(host->ioaddr +
789 msm_offset->core_vendor_spec3);
790 config &= ~CORE_PWRSAVE_DLL;
791 writel_relaxed(config, host->ioaddr +
792 msm_offset->core_vendor_spec3);
793 }
794
795 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
796 config &= ~CORE_HC_MCLK_SEL_MASK;
797 config |= CORE_HC_MCLK_SEL_DFLT;
798 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
799
800 /*
801 * Disable HC_SELECT_IN to be able to use the UHS mode select
802 * configuration from Host Control2 register for all other
803 * modes.
804 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
805 * in VENDOR_SPEC_FUNC
806 */
807 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
808 config &= ~CORE_HC_SELECT_IN_EN;
809 config &= ~CORE_HC_SELECT_IN_MASK;
810 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
811
812 /*
813 * Make sure above writes impacting free running MCLK are completed
814 * before changing the clk_rate at GCC.
815 */
816 wmb();
817}
818
819static void msm_hc_select_hs400(struct sdhci_host *host)
820{
821 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
822 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
823 struct mmc_ios ios = host->mmc->ios;
824 u32 config, dll_lock;
825 int rc;
826 const struct sdhci_msm_offset *msm_offset =
827 msm_host->offset;
828
829 /* Select the divided clock (free running MCLK/2) */
830 config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
831 config &= ~CORE_HC_MCLK_SEL_MASK;
832 config |= CORE_HC_MCLK_SEL_HS400;
833
834 writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
835 /*
836 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
837 * register
838 */
839 if ((msm_host->tuning_done || ios.enhanced_strobe) &&
840 !msm_host->calibration_done) {
841 config = readl_relaxed(host->ioaddr +
842 msm_offset->core_vendor_spec);
843 config |= CORE_HC_SELECT_IN_HS400;
844 config |= CORE_HC_SELECT_IN_EN;
845 writel_relaxed(config, host->ioaddr +
846 msm_offset->core_vendor_spec);
847 }
848 if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
849 /*
850 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
851 * core_dll_status to be set. This should get set
852 * within 15 us at 200 MHz.
853 */
854 rc = readl_relaxed_poll_timeout(host->ioaddr +
855 msm_offset->core_dll_status,
856 dll_lock,
857 (dll_lock &
858 (CORE_DLL_LOCK |
859 CORE_DDR_DLL_LOCK)), 10,
860 1000);
861 if (rc == -ETIMEDOUT)
862 pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
863 mmc_hostname(host->mmc), dll_lock);
864 }
865 /*
866 * Make sure above writes impacting free running MCLK are completed
867 * before changing the clk_rate at GCC.
868 */
869 wmb();
870}
871
872/*
873 * sdhci_msm_hc_select_mode :- In general all timing modes are
874 * controlled via UHS mode select in Host Control2 register.
875 * eMMC specific HS200/HS400 doesn't have their respective modes
876 * defined here, hence we use these values.
877 *
878 * HS200 - SDR104 (Since they both are equivalent in functionality)
879 * HS400 - This involves multiple configurations
880 * Initially SDR104 - when tuning is required as HS200
881 * Then when switching to DDR @ 400MHz (HS400) we use
882 * the vendor specific HC_SELECT_IN to control the mode.
883 *
884 * In addition to controlling the modes we also need to select the
885 * correct input clock for DLL depending on the mode.
886 *
887 * HS400 - divided clock (free running MCLK/2)
888 * All other modes - default (free running MCLK)
889 */
890static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
891{
892 struct mmc_ios ios = host->mmc->ios;
893
894 if (ios.timing == MMC_TIMING_MMC_HS400 ||
895 host->flags & SDHCI_HS400_TUNING)
896 msm_hc_select_hs400(host);
897 else
898 msm_hc_select_default(host);
899}
900
901static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
902{
903 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
904 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
905 u32 config, calib_done;
906 int ret;
907 const struct sdhci_msm_offset *msm_offset =
908 msm_host->offset;
909
910 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
911
912 /*
913 * Retuning in HS400 (DDR mode) will fail, just reset the
914 * tuning block and restore the saved tuning phase.
915 */
916 ret = msm_init_cm_dll(host);
917 if (ret)
918 goto out;
919
920 /* Set the selected phase in delay line hw block */
921 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
922 if (ret)
923 goto out;
924
925 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
926 config |= CORE_CMD_DAT_TRACK_SEL;
927 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
928
929 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
930 config &= ~CORE_CDC_T4_DLY_SEL;
931 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
932
933 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
934 config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
935 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
936
937 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
938 config |= CORE_CDC_SWITCH_RC_EN;
939 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
940
941 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
942 config &= ~CORE_START_CDC_TRAFFIC;
943 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
944
945 /* Perform CDC Register Initialization Sequence */
946
947 writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
948 writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
949 writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
950 writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
951 writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
952 writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
953 writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
954 writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
955 writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
956
957 /* CDC HW Calibration */
958
959 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
960 config |= CORE_SW_TRIG_FULL_CALIB;
961 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
962
963 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
964 config &= ~CORE_SW_TRIG_FULL_CALIB;
965 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
966
967 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
968 config |= CORE_HW_AUTOCAL_ENA;
969 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
970
971 config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
972 config |= CORE_TIMER_ENA;
973 writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
974
975 ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
976 calib_done,
977 (calib_done & CORE_CALIBRATION_DONE),
978 1, 50);
979
980 if (ret == -ETIMEDOUT) {
981 pr_err("%s: %s: CDC calibration was not completed\n",
982 mmc_hostname(host->mmc), __func__);
983 goto out;
984 }
985
986 ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
987 & CORE_CDC_ERROR_CODE_MASK;
988 if (ret) {
989 pr_err("%s: %s: CDC error code %d\n",
990 mmc_hostname(host->mmc), __func__, ret);
991 ret = -EINVAL;
992 goto out;
993 }
994
995 config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
996 config |= CORE_START_CDC_TRAFFIC;
997 writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
998out:
999 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1000 __func__, ret);
1001 return ret;
1002}
1003
1004static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
1005{
1006 struct mmc_host *mmc = host->mmc;
1007 u32 dll_status, config, ddr_cfg_offset;
1008 int ret;
1009 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1010 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1011 const struct sdhci_msm_offset *msm_offset =
1012 sdhci_priv_msm_offset(host);
1013
1014 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1015
1016 /*
1017 * Currently the core_ddr_config register defaults to desired
1018 * configuration on reset. Currently reprogramming the power on
1019 * reset (POR) value in case it might have been modified by
1020 * bootloaders. In the future, if this changes, then the desired
1021 * values will need to be programmed appropriately.
1022 */
1023 if (msm_host->updated_ddr_cfg)
1024 ddr_cfg_offset = msm_offset->core_ddr_config;
1025 else
1026 ddr_cfg_offset = msm_offset->core_ddr_config_old;
1027 writel_relaxed(msm_host->ddr_config, host->ioaddr + ddr_cfg_offset);
1028
1029 if (mmc->ios.enhanced_strobe) {
1030 config = readl_relaxed(host->ioaddr +
1031 msm_offset->core_ddr_200_cfg);
1032 config |= CORE_CMDIN_RCLK_EN;
1033 writel_relaxed(config, host->ioaddr +
1034 msm_offset->core_ddr_200_cfg);
1035 }
1036
1037 config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
1038 config |= CORE_DDR_CAL_EN;
1039 writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
1040
1041 ret = readl_relaxed_poll_timeout(host->ioaddr +
1042 msm_offset->core_dll_status,
1043 dll_status,
1044 (dll_status & CORE_DDR_DLL_LOCK),
1045 10, 1000);
1046
1047 if (ret == -ETIMEDOUT) {
1048 pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
1049 mmc_hostname(host->mmc), __func__);
1050 goto out;
1051 }
1052
1053 /*
1054 * Set CORE_PWRSAVE_DLL bit in CORE_VENDOR_SPEC3.
1055 * When MCLK is gated OFF, it is not gated for less than 0.5us
1056 * and MCLK must be switched on for at-least 1us before DATA
1057 * starts coming. Controllers with 14lpp and later tech DLL cannot
1058 * guarantee above requirement. So PWRSAVE_DLL should not be
1059 * turned on for host controllers using this DLL.
1060 */
1061 if (!msm_host->use_14lpp_dll_reset) {
1062 config = readl_relaxed(host->ioaddr +
1063 msm_offset->core_vendor_spec3);
1064 config |= CORE_PWRSAVE_DLL;
1065 writel_relaxed(config, host->ioaddr +
1066 msm_offset->core_vendor_spec3);
1067 }
1068
1069 /*
1070 * Drain writebuffer to ensure above DLL calibration
1071 * and PWRSAVE DLL is enabled.
1072 */
1073 wmb();
1074out:
1075 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1076 __func__, ret);
1077 return ret;
1078}
1079
1080static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
1081{
1082 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1083 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1084 struct mmc_host *mmc = host->mmc;
1085 int ret;
1086 u32 config;
1087 const struct sdhci_msm_offset *msm_offset =
1088 msm_host->offset;
1089
1090 pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1091
1092 /*
1093 * Retuning in HS400 (DDR mode) will fail, just reset the
1094 * tuning block and restore the saved tuning phase.
1095 */
1096 ret = msm_init_cm_dll(host);
1097 if (ret)
1098 goto out;
1099
1100 if (!mmc->ios.enhanced_strobe) {
1101 /* Set the selected phase in delay line hw block */
1102 ret = msm_config_cm_dll_phase(host,
1103 msm_host->saved_tuning_phase);
1104 if (ret)
1105 goto out;
1106 config = readl_relaxed(host->ioaddr +
1107 msm_offset->core_dll_config);
1108 config |= CORE_CMD_DAT_TRACK_SEL;
1109 writel_relaxed(config, host->ioaddr +
1110 msm_offset->core_dll_config);
1111 }
1112
1113 if (msm_host->use_cdclp533)
1114 ret = sdhci_msm_cdclp533_calibration(host);
1115 else
1116 ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1117out:
1118 pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1119 __func__, ret);
1120 return ret;
1121}
1122
1123static bool sdhci_msm_is_tuning_needed(struct sdhci_host *host)
1124{
1125 struct mmc_ios *ios = &host->mmc->ios;
1126
1127 /*
1128 * Tuning is required for SDR104, HS200 and HS400 cards and
1129 * if clock frequency is greater than 100MHz in these modes.
1130 */
1131 if (host->clock <= CORE_FREQ_100MHZ ||
1132 !(ios->timing == MMC_TIMING_MMC_HS400 ||
1133 ios->timing == MMC_TIMING_MMC_HS200 ||
1134 ios->timing == MMC_TIMING_UHS_SDR104) ||
1135 ios->enhanced_strobe)
1136 return false;
1137
1138 return true;
1139}
1140
1141static int sdhci_msm_restore_sdr_dll_config(struct sdhci_host *host)
1142{
1143 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1144 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1145 int ret;
1146
1147 /*
1148 * SDR DLL comes into picture only for timing modes which needs
1149 * tuning.
1150 */
1151 if (!sdhci_msm_is_tuning_needed(host))
1152 return 0;
1153
1154 /* Reset the tuning block */
1155 ret = msm_init_cm_dll(host);
1156 if (ret)
1157 return ret;
1158
1159 /* Restore the tuning block */
1160 ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
1161
1162 return ret;
1163}
1164
1165static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1166{
1167 const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1168 u32 config, oldconfig = readl_relaxed(host->ioaddr +
1169 msm_offset->core_dll_config);
1170
1171 config = oldconfig;
1172 if (enable) {
1173 config |= CORE_CDR_EN;
1174 config &= ~CORE_CDR_EXT_EN;
1175 } else {
1176 config &= ~CORE_CDR_EN;
1177 config |= CORE_CDR_EXT_EN;
1178 }
1179
1180 if (config != oldconfig) {
1181 writel_relaxed(config, host->ioaddr +
1182 msm_offset->core_dll_config);
1183 }
1184}
1185
1186static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1187{
1188 struct sdhci_host *host = mmc_priv(mmc);
1189 int tuning_seq_cnt = 10;
1190 u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1191 int rc;
1192 struct mmc_ios ios = host->mmc->ios;
1193 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1194 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1195
1196 if (!sdhci_msm_is_tuning_needed(host)) {
1197 msm_host->use_cdr = false;
1198 sdhci_msm_set_cdr(host, false);
1199 return 0;
1200 }
1201
1202 /* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1203 msm_host->use_cdr = true;
1204
1205 /*
1206 * Clear tuning_done flag before tuning to ensure proper
1207 * HS400 settings.
1208 */
1209 msm_host->tuning_done = 0;
1210
1211 /*
1212 * For HS400 tuning in HS200 timing requires:
1213 * - select MCLK/2 in VENDOR_SPEC
1214 * - program MCLK to 400MHz (or nearest supported) in GCC
1215 */
1216 if (host->flags & SDHCI_HS400_TUNING) {
1217 sdhci_msm_hc_select_mode(host);
1218 msm_set_clock_rate_for_bus_mode(host, ios.clock);
1219 host->flags &= ~SDHCI_HS400_TUNING;
1220 }
1221
1222retry:
1223 /* First of all reset the tuning block */
1224 rc = msm_init_cm_dll(host);
1225 if (rc)
1226 return rc;
1227
1228 phase = 0;
1229 do {
1230 /* Set the phase in delay line hw block */
1231 rc = msm_config_cm_dll_phase(host, phase);
1232 if (rc)
1233 return rc;
1234
1235 rc = mmc_send_tuning(mmc, opcode, NULL);
1236 if (!rc) {
1237 /* Tuning is successful at this tuning point */
1238 tuned_phases[tuned_phase_cnt++] = phase;
1239 dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1240 mmc_hostname(mmc), phase);
1241 }
1242 } while (++phase < ARRAY_SIZE(tuned_phases));
1243
1244 if (tuned_phase_cnt) {
1245 if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1246 /*
1247 * All phases valid is _almost_ as bad as no phases
1248 * valid. Probably all phases are not really reliable
1249 * but we didn't detect where the unreliable place is.
1250 * That means we'll essentially be guessing and hoping
1251 * we get a good phase. Better to try a few times.
1252 */
1253 dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1254 mmc_hostname(mmc));
1255 if (--tuning_seq_cnt) {
1256 tuned_phase_cnt = 0;
1257 goto retry;
1258 }
1259 }
1260
1261 rc = msm_find_most_appropriate_phase(host, tuned_phases,
1262 tuned_phase_cnt);
1263 if (rc < 0)
1264 return rc;
1265 else
1266 phase = rc;
1267
1268 /*
1269 * Finally set the selected phase in delay
1270 * line hw block.
1271 */
1272 rc = msm_config_cm_dll_phase(host, phase);
1273 if (rc)
1274 return rc;
1275 msm_host->saved_tuning_phase = phase;
1276 dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1277 mmc_hostname(mmc), phase);
1278 } else {
1279 if (--tuning_seq_cnt)
1280 goto retry;
1281 /* Tuning failed */
1282 dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1283 mmc_hostname(mmc));
1284 rc = -EIO;
1285 }
1286
1287 if (!rc)
1288 msm_host->tuning_done = true;
1289 return rc;
1290}
1291
1292/*
1293 * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1294 * This needs to be done for both tuning and enhanced_strobe mode.
1295 * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1296 * fixed feedback clock is used.
1297 */
1298static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1299{
1300 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1301 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1302 int ret;
1303
1304 if (host->clock > CORE_FREQ_100MHZ &&
1305 (msm_host->tuning_done || ios->enhanced_strobe) &&
1306 !msm_host->calibration_done) {
1307 ret = sdhci_msm_hs400_dll_calibration(host);
1308 if (!ret)
1309 msm_host->calibration_done = true;
1310 else
1311 pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1312 mmc_hostname(host->mmc), ret);
1313 }
1314}
1315
1316static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1317 unsigned int uhs)
1318{
1319 struct mmc_host *mmc = host->mmc;
1320 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1321 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1322 u16 ctrl_2;
1323 u32 config;
1324 const struct sdhci_msm_offset *msm_offset =
1325 msm_host->offset;
1326
1327 ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1328 /* Select Bus Speed Mode for host */
1329 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1330 switch (uhs) {
1331 case MMC_TIMING_UHS_SDR12:
1332 ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1333 break;
1334 case MMC_TIMING_UHS_SDR25:
1335 ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1336 break;
1337 case MMC_TIMING_UHS_SDR50:
1338 ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1339 break;
1340 case MMC_TIMING_MMC_HS400:
1341 case MMC_TIMING_MMC_HS200:
1342 case MMC_TIMING_UHS_SDR104:
1343 ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1344 break;
1345 case MMC_TIMING_UHS_DDR50:
1346 case MMC_TIMING_MMC_DDR52:
1347 ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1348 break;
1349 }
1350
1351 /*
1352 * When clock frequency is less than 100MHz, the feedback clock must be
1353 * provided and DLL must not be used so that tuning can be skipped. To
1354 * provide feedback clock, the mode selection can be any value less
1355 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1356 */
1357 if (host->clock <= CORE_FREQ_100MHZ) {
1358 if (uhs == MMC_TIMING_MMC_HS400 ||
1359 uhs == MMC_TIMING_MMC_HS200 ||
1360 uhs == MMC_TIMING_UHS_SDR104)
1361 ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1362 /*
1363 * DLL is not required for clock <= 100MHz
1364 * Thus, make sure DLL it is disabled when not required
1365 */
1366 config = readl_relaxed(host->ioaddr +
1367 msm_offset->core_dll_config);
1368 config |= CORE_DLL_RST;
1369 writel_relaxed(config, host->ioaddr +
1370 msm_offset->core_dll_config);
1371
1372 config = readl_relaxed(host->ioaddr +
1373 msm_offset->core_dll_config);
1374 config |= CORE_DLL_PDN;
1375 writel_relaxed(config, host->ioaddr +
1376 msm_offset->core_dll_config);
1377
1378 /*
1379 * The DLL needs to be restored and CDCLP533 recalibrated
1380 * when the clock frequency is set back to 400MHz.
1381 */
1382 msm_host->calibration_done = false;
1383 }
1384
1385 dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1386 mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1387 sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1388
1389 if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1390 sdhci_msm_hs400(host, &mmc->ios);
1391}
1392
1393static int sdhci_msm_set_pincfg(struct sdhci_msm_host *msm_host, bool level)
1394{
1395 struct platform_device *pdev = msm_host->pdev;
1396 int ret;
1397
1398 if (level)
1399 ret = pinctrl_pm_select_default_state(&pdev->dev);
1400 else
1401 ret = pinctrl_pm_select_sleep_state(&pdev->dev);
1402
1403 return ret;
1404}
1405
1406static int sdhci_msm_set_vmmc(struct mmc_host *mmc)
1407{
1408 if (IS_ERR(mmc->supply.vmmc))
1409 return 0;
1410
1411 return mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, mmc->ios.vdd);
1412}
1413
1414static int msm_toggle_vqmmc(struct sdhci_msm_host *msm_host,
1415 struct mmc_host *mmc, bool level)
1416{
1417 int ret;
1418 struct mmc_ios ios;
1419
1420 if (msm_host->vqmmc_enabled == level)
1421 return 0;
1422
1423 if (level) {
1424 /* Set the IO voltage regulator to default voltage level */
1425 if (msm_host->caps_0 & CORE_3_0V_SUPPORT)
1426 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_330;
1427 else if (msm_host->caps_0 & CORE_1_8V_SUPPORT)
1428 ios.signal_voltage = MMC_SIGNAL_VOLTAGE_180;
1429
1430 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1431 ret = mmc_regulator_set_vqmmc(mmc, &ios);
1432 if (ret < 0) {
1433 dev_err(mmc_dev(mmc), "%s: vqmmc set volgate failed: %d\n",
1434 mmc_hostname(mmc), ret);
1435 goto out;
1436 }
1437 }
1438 ret = regulator_enable(mmc->supply.vqmmc);
1439 } else {
1440 ret = regulator_disable(mmc->supply.vqmmc);
1441 }
1442
1443 if (ret)
1444 dev_err(mmc_dev(mmc), "%s: vqmm %sable failed: %d\n",
1445 mmc_hostname(mmc), level ? "en":"dis", ret);
1446 else
1447 msm_host->vqmmc_enabled = level;
1448out:
1449 return ret;
1450}
1451
1452static int msm_config_vqmmc_mode(struct sdhci_msm_host *msm_host,
1453 struct mmc_host *mmc, bool hpm)
1454{
1455 int load, ret;
1456
1457 load = hpm ? MMC_VQMMC_MAX_LOAD_UA : 0;
1458 ret = regulator_set_load(mmc->supply.vqmmc, load);
1459 if (ret)
1460 dev_err(mmc_dev(mmc), "%s: vqmmc set load failed: %d\n",
1461 mmc_hostname(mmc), ret);
1462 return ret;
1463}
1464
1465static int sdhci_msm_set_vqmmc(struct sdhci_msm_host *msm_host,
1466 struct mmc_host *mmc, bool level)
1467{
1468 int ret;
1469 bool always_on;
1470
1471 if (IS_ERR(mmc->supply.vqmmc) ||
1472 (mmc->ios.power_mode == MMC_POWER_UNDEFINED))
1473 return 0;
1474 /*
1475 * For eMMC don't turn off Vqmmc, Instead just configure it in LPM
1476 * and HPM modes by setting the corresponding load.
1477 *
1478 * Till eMMC is initialized (i.e. always_on == 0), just turn on/off
1479 * Vqmmc. Vqmmc gets turned off only if init fails and mmc_power_off
1480 * gets invoked. Once eMMC is initialized (i.e. always_on == 1),
1481 * Vqmmc should remain ON, So just set the load instead of turning it
1482 * off/on.
1483 */
1484 always_on = !mmc_card_is_removable(mmc) &&
1485 mmc->card && mmc_card_mmc(mmc->card);
1486
1487 if (always_on)
1488 ret = msm_config_vqmmc_mode(msm_host, mmc, level);
1489 else
1490 ret = msm_toggle_vqmmc(msm_host, mmc, level);
1491
1492 return ret;
1493}
1494
1495static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1496{
1497 init_waitqueue_head(&msm_host->pwr_irq_wait);
1498}
1499
1500static inline void sdhci_msm_complete_pwr_irq_wait(
1501 struct sdhci_msm_host *msm_host)
1502{
1503 wake_up(&msm_host->pwr_irq_wait);
1504}
1505
1506/*
1507 * sdhci_msm_check_power_status API should be called when registers writes
1508 * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1509 * To what state the register writes will change the IO lines should be passed
1510 * as the argument req_type. This API will check whether the IO line's state
1511 * is already the expected state and will wait for power irq only if
1512 * power irq is expected to be triggered based on the current IO line state
1513 * and expected IO line state.
1514 */
1515static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1516{
1517 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1518 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1519 bool done = false;
1520 u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1521 const struct sdhci_msm_offset *msm_offset =
1522 msm_host->offset;
1523
1524 pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1525 mmc_hostname(host->mmc), __func__, req_type,
1526 msm_host->curr_pwr_state, msm_host->curr_io_level);
1527
1528 /*
1529 * The power interrupt will not be generated for signal voltage
1530 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1531 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1532 * it as always set.
1533 */
1534 if (!msm_host->mci_removed)
1535 val = msm_host_readl(msm_host, host,
1536 msm_offset->core_generics);
1537 if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1538 !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1539 return;
1540 }
1541
1542 /*
1543 * The IRQ for request type IO High/LOW will be generated when -
1544 * there is a state change in 1.8V enable bit (bit 3) of
1545 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1546 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1547 * to set it to 3.3V before card detection happens, the
1548 * IRQ doesn't get triggered as there is no state change in this bit.
1549 * The driver already handles this case by changing the IO voltage
1550 * level to high as part of controller power up sequence. Hence, check
1551 * for host->pwr to handle a case where IO voltage high request is
1552 * issued even before controller power up.
1553 */
1554 if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1555 pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1556 mmc_hostname(host->mmc), req_type);
1557 return;
1558 }
1559 if ((req_type & msm_host->curr_pwr_state) ||
1560 (req_type & msm_host->curr_io_level))
1561 done = true;
1562 /*
1563 * This is needed here to handle cases where register writes will
1564 * not change the current bus state or io level of the controller.
1565 * In this case, no power irq will be triggerred and we should
1566 * not wait.
1567 */
1568 if (!done) {
1569 if (!wait_event_timeout(msm_host->pwr_irq_wait,
1570 msm_host->pwr_irq_flag,
1571 msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1572 dev_warn(&msm_host->pdev->dev,
1573 "%s: pwr_irq for req: (%d) timed out\n",
1574 mmc_hostname(host->mmc), req_type);
1575 }
1576 pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1577 __func__, req_type);
1578}
1579
1580static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1581{
1582 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1583 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1584 const struct sdhci_msm_offset *msm_offset =
1585 msm_host->offset;
1586
1587 pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1588 mmc_hostname(host->mmc),
1589 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1590 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1591 msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1592}
1593
1594static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1595{
1596 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1597 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1598 struct mmc_host *mmc = host->mmc;
1599 u32 irq_status, irq_ack = 0;
1600 int retry = 10, ret;
1601 u32 pwr_state = 0, io_level = 0;
1602 u32 config;
1603 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1604
1605 irq_status = msm_host_readl(msm_host, host,
1606 msm_offset->core_pwrctl_status);
1607 irq_status &= INT_MASK;
1608
1609 msm_host_writel(msm_host, irq_status, host,
1610 msm_offset->core_pwrctl_clear);
1611
1612 /*
1613 * There is a rare HW scenario where the first clear pulse could be
1614 * lost when actual reset and clear/read of status register is
1615 * happening at a time. Hence, retry for at least 10 times to make
1616 * sure status register is cleared. Otherwise, this will result in
1617 * a spurious power IRQ resulting in system instability.
1618 */
1619 while (irq_status & msm_host_readl(msm_host, host,
1620 msm_offset->core_pwrctl_status)) {
1621 if (retry == 0) {
1622 pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1623 mmc_hostname(host->mmc), irq_status);
1624 sdhci_msm_dump_pwr_ctrl_regs(host);
1625 WARN_ON(1);
1626 break;
1627 }
1628 msm_host_writel(msm_host, irq_status, host,
1629 msm_offset->core_pwrctl_clear);
1630 retry--;
1631 udelay(10);
1632 }
1633
1634 /* Handle BUS ON/OFF*/
1635 if (irq_status & CORE_PWRCTL_BUS_ON) {
1636 pwr_state = REQ_BUS_ON;
1637 io_level = REQ_IO_HIGH;
1638 }
1639 if (irq_status & CORE_PWRCTL_BUS_OFF) {
1640 pwr_state = REQ_BUS_OFF;
1641 io_level = REQ_IO_LOW;
1642 }
1643
1644 if (pwr_state) {
1645 ret = sdhci_msm_set_vmmc(mmc);
1646 if (!ret)
1647 ret = sdhci_msm_set_vqmmc(msm_host, mmc,
1648 pwr_state & REQ_BUS_ON);
1649 if (!ret)
1650 ret = sdhci_msm_set_pincfg(msm_host,
1651 pwr_state & REQ_BUS_ON);
1652 if (!ret)
1653 irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1654 else
1655 irq_ack |= CORE_PWRCTL_BUS_FAIL;
1656 }
1657
1658 /* Handle IO LOW/HIGH */
1659 if (irq_status & CORE_PWRCTL_IO_LOW)
1660 io_level = REQ_IO_LOW;
1661
1662 if (irq_status & CORE_PWRCTL_IO_HIGH)
1663 io_level = REQ_IO_HIGH;
1664
1665 if (io_level)
1666 irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1667
1668 if (io_level && !IS_ERR(mmc->supply.vqmmc) && !pwr_state) {
1669 ret = mmc_regulator_set_vqmmc(mmc, &mmc->ios);
1670 if (ret < 0) {
1671 dev_err(mmc_dev(mmc), "%s: IO_level setting failed(%d). signal_voltage: %d, vdd: %d irq_status: 0x%08x\n",
1672 mmc_hostname(mmc), ret,
1673 mmc->ios.signal_voltage, mmc->ios.vdd,
1674 irq_status);
1675 irq_ack |= CORE_PWRCTL_IO_FAIL;
1676 }
1677 }
1678
1679 /*
1680 * The driver has to acknowledge the interrupt, switch voltages and
1681 * report back if it succeded or not to this register. The voltage
1682 * switches are handled by the sdhci core, so just report success.
1683 */
1684 msm_host_writel(msm_host, irq_ack, host,
1685 msm_offset->core_pwrctl_ctl);
1686
1687 /*
1688 * If we don't have info regarding the voltage levels supported by
1689 * regulators, don't change the IO PAD PWR SWITCH.
1690 */
1691 if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1692 u32 new_config;
1693 /*
1694 * We should unset IO PAD PWR switch only if the register write
1695 * can set IO lines high and the regulator also switches to 3 V.
1696 * Else, we should keep the IO PAD PWR switch set.
1697 * This is applicable to certain targets where eMMC vccq supply
1698 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1699 * IO PAD PWR switch must be kept set to reflect actual
1700 * regulator voltage. This way, during initialization of
1701 * controllers with only 1.8V, we will set the IO PAD bit
1702 * without waiting for a REQ_IO_LOW.
1703 */
1704 config = readl_relaxed(host->ioaddr +
1705 msm_offset->core_vendor_spec);
1706 new_config = config;
1707
1708 if ((io_level & REQ_IO_HIGH) &&
1709 (msm_host->caps_0 & CORE_3_0V_SUPPORT))
1710 new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1711 else if ((io_level & REQ_IO_LOW) ||
1712 (msm_host->caps_0 & CORE_1_8V_SUPPORT))
1713 new_config |= CORE_IO_PAD_PWR_SWITCH;
1714
1715 if (config ^ new_config)
1716 writel_relaxed(new_config, host->ioaddr +
1717 msm_offset->core_vendor_spec);
1718 }
1719
1720 if (pwr_state)
1721 msm_host->curr_pwr_state = pwr_state;
1722 if (io_level)
1723 msm_host->curr_io_level = io_level;
1724
1725 dev_dbg(mmc_dev(mmc), "%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1726 mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1727 irq_ack);
1728}
1729
1730static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1731{
1732 struct sdhci_host *host = (struct sdhci_host *)data;
1733 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1734 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1735
1736 sdhci_msm_handle_pwr_irq(host, irq);
1737 msm_host->pwr_irq_flag = 1;
1738 sdhci_msm_complete_pwr_irq_wait(msm_host);
1739
1740
1741 return IRQ_HANDLED;
1742}
1743
1744static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1745{
1746 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1747 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1748 struct clk *core_clk = msm_host->bulk_clks[0].clk;
1749
1750 return clk_round_rate(core_clk, ULONG_MAX);
1751}
1752
1753static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1754{
1755 return SDHCI_MSM_MIN_CLOCK;
1756}
1757
1758/*
1759 * __sdhci_msm_set_clock - sdhci_msm clock control.
1760 *
1761 * Description:
1762 * MSM controller does not use internal divider and
1763 * instead directly control the GCC clock as per
1764 * HW recommendation.
1765 **/
1766static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1767{
1768 u16 clk;
1769
1770 sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1771
1772 if (clock == 0)
1773 return;
1774
1775 /*
1776 * MSM controller do not use clock divider.
1777 * Thus read SDHCI_CLOCK_CONTROL and only enable
1778 * clock with no divider value programmed.
1779 */
1780 clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1781 sdhci_enable_clk(host, clk);
1782}
1783
1784/* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
1785static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1786{
1787 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1788 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1789
1790 if (!clock) {
1791 host->mmc->actual_clock = msm_host->clk_rate = 0;
1792 goto out;
1793 }
1794
1795 sdhci_msm_hc_select_mode(host);
1796
1797 msm_set_clock_rate_for_bus_mode(host, clock);
1798out:
1799 __sdhci_msm_set_clock(host, clock);
1800}
1801
1802/*****************************************************************************\
1803 * *
1804 * Inline Crypto Engine (ICE) support *
1805 * *
1806\*****************************************************************************/
1807
1808#ifdef CONFIG_MMC_CRYPTO
1809
1810static int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1811 struct cqhci_host *cq_host)
1812{
1813 struct mmc_host *mmc = msm_host->mmc;
1814 struct device *dev = mmc_dev(mmc);
1815 struct qcom_ice *ice;
1816
1817 if (!(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS))
1818 return 0;
1819
1820 ice = of_qcom_ice_get(dev);
1821 if (ice == ERR_PTR(-EOPNOTSUPP)) {
1822 dev_warn(dev, "Disabling inline encryption support\n");
1823 ice = NULL;
1824 }
1825
1826 if (IS_ERR_OR_NULL(ice))
1827 return PTR_ERR_OR_ZERO(ice);
1828
1829 msm_host->ice = ice;
1830 mmc->caps2 |= MMC_CAP2_CRYPTO;
1831
1832 return 0;
1833}
1834
1835static void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1836{
1837 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1838 qcom_ice_enable(msm_host->ice);
1839}
1840
1841static __maybe_unused int sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1842{
1843 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1844 return qcom_ice_resume(msm_host->ice);
1845
1846 return 0;
1847}
1848
1849static __maybe_unused int sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1850{
1851 if (msm_host->mmc->caps2 & MMC_CAP2_CRYPTO)
1852 return qcom_ice_suspend(msm_host->ice);
1853
1854 return 0;
1855}
1856
1857/*
1858 * Program a key into a QC ICE keyslot, or evict a keyslot. QC ICE requires
1859 * vendor-specific SCM calls for this; it doesn't support the standard way.
1860 */
1861static int sdhci_msm_program_key(struct cqhci_host *cq_host,
1862 const union cqhci_crypto_cfg_entry *cfg,
1863 int slot)
1864{
1865 struct sdhci_host *host = mmc_priv(cq_host->mmc);
1866 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1867 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1868 union cqhci_crypto_cap_entry cap;
1869
1870 /* Only AES-256-XTS has been tested so far. */
1871 cap = cq_host->crypto_cap_array[cfg->crypto_cap_idx];
1872 if (cap.algorithm_id != CQHCI_CRYPTO_ALG_AES_XTS ||
1873 cap.key_size != CQHCI_CRYPTO_KEY_SIZE_256)
1874 return -EINVAL;
1875
1876 if (cfg->config_enable & CQHCI_CRYPTO_CONFIGURATION_ENABLE)
1877 return qcom_ice_program_key(msm_host->ice,
1878 QCOM_ICE_CRYPTO_ALG_AES_XTS,
1879 QCOM_ICE_CRYPTO_KEY_SIZE_256,
1880 cfg->crypto_key,
1881 cfg->data_unit_size, slot);
1882 else
1883 return qcom_ice_evict_key(msm_host->ice, slot);
1884}
1885
1886#else /* CONFIG_MMC_CRYPTO */
1887
1888static inline int sdhci_msm_ice_init(struct sdhci_msm_host *msm_host,
1889 struct cqhci_host *cq_host)
1890{
1891 return 0;
1892}
1893
1894static inline void sdhci_msm_ice_enable(struct sdhci_msm_host *msm_host)
1895{
1896}
1897
1898static inline __maybe_unused int
1899sdhci_msm_ice_resume(struct sdhci_msm_host *msm_host)
1900{
1901 return 0;
1902}
1903
1904static inline __maybe_unused int
1905sdhci_msm_ice_suspend(struct sdhci_msm_host *msm_host)
1906{
1907 return 0;
1908}
1909#endif /* !CONFIG_MMC_CRYPTO */
1910
1911/*****************************************************************************\
1912 * *
1913 * MSM Command Queue Engine (CQE) *
1914 * *
1915\*****************************************************************************/
1916
1917static u32 sdhci_msm_cqe_irq(struct sdhci_host *host, u32 intmask)
1918{
1919 int cmd_error = 0;
1920 int data_error = 0;
1921
1922 if (!sdhci_cqe_irq(host, intmask, &cmd_error, &data_error))
1923 return intmask;
1924
1925 cqhci_irq(host->mmc, intmask, cmd_error, data_error);
1926 return 0;
1927}
1928
1929static void sdhci_msm_cqe_enable(struct mmc_host *mmc)
1930{
1931 struct sdhci_host *host = mmc_priv(mmc);
1932 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1933 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1934
1935 sdhci_cqe_enable(mmc);
1936 sdhci_msm_ice_enable(msm_host);
1937}
1938
1939static void sdhci_msm_cqe_disable(struct mmc_host *mmc, bool recovery)
1940{
1941 struct sdhci_host *host = mmc_priv(mmc);
1942 unsigned long flags;
1943 u32 ctrl;
1944
1945 /*
1946 * When CQE is halted, the legacy SDHCI path operates only
1947 * on 16-byte descriptors in 64bit mode.
1948 */
1949 if (host->flags & SDHCI_USE_64_BIT_DMA)
1950 host->desc_sz = 16;
1951
1952 spin_lock_irqsave(&host->lock, flags);
1953
1954 /*
1955 * During CQE command transfers, command complete bit gets latched.
1956 * So s/w should clear command complete interrupt status when CQE is
1957 * either halted or disabled. Otherwise unexpected SDCHI legacy
1958 * interrupt gets triggered when CQE is halted/disabled.
1959 */
1960 ctrl = sdhci_readl(host, SDHCI_INT_ENABLE);
1961 ctrl |= SDHCI_INT_RESPONSE;
1962 sdhci_writel(host, ctrl, SDHCI_INT_ENABLE);
1963 sdhci_writel(host, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
1964
1965 spin_unlock_irqrestore(&host->lock, flags);
1966
1967 sdhci_cqe_disable(mmc, recovery);
1968}
1969
1970static void sdhci_msm_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
1971{
1972 u32 count, start = 15;
1973
1974 __sdhci_set_timeout(host, cmd);
1975 count = sdhci_readb(host, SDHCI_TIMEOUT_CONTROL);
1976 /*
1977 * Update software timeout value if its value is less than hardware data
1978 * timeout value. Qcom SoC hardware data timeout value was calculated
1979 * using 4 * MCLK * 2^(count + 13). where MCLK = 1 / host->clock.
1980 */
1981 if (cmd && cmd->data && host->clock > 400000 &&
1982 host->clock <= 50000000 &&
1983 ((1 << (count + start)) > (10 * host->clock)))
1984 host->data_timeout = 22LL * NSEC_PER_SEC;
1985}
1986
1987static const struct cqhci_host_ops sdhci_msm_cqhci_ops = {
1988 .enable = sdhci_msm_cqe_enable,
1989 .disable = sdhci_msm_cqe_disable,
1990#ifdef CONFIG_MMC_CRYPTO
1991 .program_key = sdhci_msm_program_key,
1992#endif
1993};
1994
1995static int sdhci_msm_cqe_add_host(struct sdhci_host *host,
1996 struct platform_device *pdev)
1997{
1998 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1999 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2000 struct cqhci_host *cq_host;
2001 bool dma64;
2002 u32 cqcfg;
2003 int ret;
2004
2005 /*
2006 * When CQE is halted, SDHC operates only on 16byte ADMA descriptors.
2007 * So ensure ADMA table is allocated for 16byte descriptors.
2008 */
2009 if (host->caps & SDHCI_CAN_64BIT)
2010 host->alloc_desc_sz = 16;
2011
2012 ret = sdhci_setup_host(host);
2013 if (ret)
2014 return ret;
2015
2016 cq_host = cqhci_pltfm_init(pdev);
2017 if (IS_ERR(cq_host)) {
2018 ret = PTR_ERR(cq_host);
2019 dev_err(&pdev->dev, "cqhci-pltfm init: failed: %d\n", ret);
2020 goto cleanup;
2021 }
2022
2023 msm_host->mmc->caps2 |= MMC_CAP2_CQE | MMC_CAP2_CQE_DCMD;
2024 cq_host->ops = &sdhci_msm_cqhci_ops;
2025
2026 dma64 = host->flags & SDHCI_USE_64_BIT_DMA;
2027
2028 ret = sdhci_msm_ice_init(msm_host, cq_host);
2029 if (ret)
2030 goto cleanup;
2031
2032 ret = cqhci_init(cq_host, host->mmc, dma64);
2033 if (ret) {
2034 dev_err(&pdev->dev, "%s: CQE init: failed (%d)\n",
2035 mmc_hostname(host->mmc), ret);
2036 goto cleanup;
2037 }
2038
2039 /* Disable cqe reset due to cqe enable signal */
2040 cqcfg = cqhci_readl(cq_host, CQHCI_VENDOR_CFG1);
2041 cqcfg |= CQHCI_VENDOR_DIS_RST_ON_CQ_EN;
2042 cqhci_writel(cq_host, cqcfg, CQHCI_VENDOR_CFG1);
2043
2044 /*
2045 * SDHC expects 12byte ADMA descriptors till CQE is enabled.
2046 * So limit desc_sz to 12 so that the data commands that are sent
2047 * during card initialization (before CQE gets enabled) would
2048 * get executed without any issues.
2049 */
2050 if (host->flags & SDHCI_USE_64_BIT_DMA)
2051 host->desc_sz = 12;
2052
2053 ret = __sdhci_add_host(host);
2054 if (ret)
2055 goto cleanup;
2056
2057 dev_info(&pdev->dev, "%s: CQE init: success\n",
2058 mmc_hostname(host->mmc));
2059 return ret;
2060
2061cleanup:
2062 sdhci_cleanup_host(host);
2063 return ret;
2064}
2065
2066/*
2067 * Platform specific register write functions. This is so that, if any
2068 * register write needs to be followed up by platform specific actions,
2069 * they can be added here. These functions can go to sleep when writes
2070 * to certain registers are done.
2071 * These functions are relying on sdhci_set_ios not using spinlock.
2072 */
2073static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
2074{
2075 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2076 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2077 u32 req_type = 0;
2078
2079 switch (reg) {
2080 case SDHCI_HOST_CONTROL2:
2081 req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
2082 REQ_IO_HIGH;
2083 break;
2084 case SDHCI_SOFTWARE_RESET:
2085 if (host->pwr && (val & SDHCI_RESET_ALL))
2086 req_type = REQ_BUS_OFF;
2087 break;
2088 case SDHCI_POWER_CONTROL:
2089 req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
2090 break;
2091 case SDHCI_TRANSFER_MODE:
2092 msm_host->transfer_mode = val;
2093 break;
2094 case SDHCI_COMMAND:
2095 if (!msm_host->use_cdr)
2096 break;
2097 if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
2098 !mmc_op_tuning(SDHCI_GET_CMD(val)))
2099 sdhci_msm_set_cdr(host, true);
2100 else
2101 sdhci_msm_set_cdr(host, false);
2102 break;
2103 }
2104
2105 if (req_type) {
2106 msm_host->pwr_irq_flag = 0;
2107 /*
2108 * Since this register write may trigger a power irq, ensure
2109 * all previous register writes are complete by this point.
2110 */
2111 mb();
2112 }
2113 return req_type;
2114}
2115
2116/* This function may sleep*/
2117static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
2118{
2119 u32 req_type = 0;
2120
2121 req_type = __sdhci_msm_check_write(host, val, reg);
2122 writew_relaxed(val, host->ioaddr + reg);
2123
2124 if (req_type)
2125 sdhci_msm_check_power_status(host, req_type);
2126}
2127
2128/* This function may sleep*/
2129static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
2130{
2131 u32 req_type = 0;
2132
2133 req_type = __sdhci_msm_check_write(host, val, reg);
2134
2135 writeb_relaxed(val, host->ioaddr + reg);
2136
2137 if (req_type)
2138 sdhci_msm_check_power_status(host, req_type);
2139}
2140
2141static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
2142{
2143 struct mmc_host *mmc = msm_host->mmc;
2144 struct regulator *supply = mmc->supply.vqmmc;
2145 u32 caps = 0, config;
2146 struct sdhci_host *host = mmc_priv(mmc);
2147 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2148
2149 if (!IS_ERR(mmc->supply.vqmmc)) {
2150 if (regulator_is_supported_voltage(supply, 1700000, 1950000))
2151 caps |= CORE_1_8V_SUPPORT;
2152 if (regulator_is_supported_voltage(supply, 2700000, 3600000))
2153 caps |= CORE_3_0V_SUPPORT;
2154
2155 if (!caps)
2156 pr_warn("%s: 1.8/3V not supported for vqmmc\n",
2157 mmc_hostname(mmc));
2158 }
2159
2160 if (caps) {
2161 /*
2162 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
2163 * bit can be used as required later on.
2164 */
2165 u32 io_level = msm_host->curr_io_level;
2166
2167 config = readl_relaxed(host->ioaddr +
2168 msm_offset->core_vendor_spec);
2169 config |= CORE_IO_PAD_PWR_SWITCH_EN;
2170
2171 if ((io_level & REQ_IO_HIGH) && (caps & CORE_3_0V_SUPPORT))
2172 config &= ~CORE_IO_PAD_PWR_SWITCH;
2173 else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
2174 config |= CORE_IO_PAD_PWR_SWITCH;
2175
2176 writel_relaxed(config,
2177 host->ioaddr + msm_offset->core_vendor_spec);
2178 }
2179 msm_host->caps_0 |= caps;
2180 pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
2181}
2182
2183static int sdhci_msm_register_vreg(struct sdhci_msm_host *msm_host)
2184{
2185 int ret;
2186
2187 ret = mmc_regulator_get_supply(msm_host->mmc);
2188 if (ret)
2189 return ret;
2190
2191 sdhci_msm_set_regulator_caps(msm_host);
2192
2193 return 0;
2194}
2195
2196static int sdhci_msm_start_signal_voltage_switch(struct mmc_host *mmc,
2197 struct mmc_ios *ios)
2198{
2199 struct sdhci_host *host = mmc_priv(mmc);
2200 u16 ctrl, status;
2201
2202 /*
2203 * Signal Voltage Switching is only applicable for Host Controllers
2204 * v3.00 and above.
2205 */
2206 if (host->version < SDHCI_SPEC_300)
2207 return 0;
2208
2209 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2210
2211 switch (ios->signal_voltage) {
2212 case MMC_SIGNAL_VOLTAGE_330:
2213 if (!(host->flags & SDHCI_SIGNALING_330))
2214 return -EINVAL;
2215
2216 /* Set 1.8V Signal Enable in the Host Control2 register to 0 */
2217 ctrl &= ~SDHCI_CTRL_VDD_180;
2218 break;
2219 case MMC_SIGNAL_VOLTAGE_180:
2220 if (!(host->flags & SDHCI_SIGNALING_180))
2221 return -EINVAL;
2222
2223 /* Enable 1.8V Signal Enable in the Host Control2 register */
2224 ctrl |= SDHCI_CTRL_VDD_180;
2225 break;
2226
2227 default:
2228 return -EINVAL;
2229 }
2230
2231 sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
2232
2233 /* Wait for 5ms */
2234 usleep_range(5000, 5500);
2235
2236 /* regulator output should be stable within 5 ms */
2237 status = ctrl & SDHCI_CTRL_VDD_180;
2238 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
2239 if ((ctrl & SDHCI_CTRL_VDD_180) == status)
2240 return 0;
2241
2242 dev_warn(mmc_dev(mmc), "%s: Regulator output did not became stable\n",
2243 mmc_hostname(mmc));
2244
2245 return -EAGAIN;
2246}
2247
2248#define DRIVER_NAME "sdhci_msm"
2249#define SDHCI_MSM_DUMP(f, x...) \
2250 pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
2251
2252static void sdhci_msm_dump_vendor_regs(struct sdhci_host *host)
2253{
2254 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2255 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2256 const struct sdhci_msm_offset *msm_offset = msm_host->offset;
2257
2258 SDHCI_MSM_DUMP("----------- VENDOR REGISTER DUMP -----------\n");
2259
2260 SDHCI_MSM_DUMP(
2261 "DLL sts: 0x%08x | DLL cfg: 0x%08x | DLL cfg2: 0x%08x\n",
2262 readl_relaxed(host->ioaddr + msm_offset->core_dll_status),
2263 readl_relaxed(host->ioaddr + msm_offset->core_dll_config),
2264 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2));
2265 SDHCI_MSM_DUMP(
2266 "DLL cfg3: 0x%08x | DLL usr ctl: 0x%08x | DDR cfg: 0x%08x\n",
2267 readl_relaxed(host->ioaddr + msm_offset->core_dll_config_3),
2268 readl_relaxed(host->ioaddr + msm_offset->core_dll_usr_ctl),
2269 readl_relaxed(host->ioaddr + msm_offset->core_ddr_config));
2270 SDHCI_MSM_DUMP(
2271 "Vndr func: 0x%08x | Vndr func2 : 0x%08x Vndr func3: 0x%08x\n",
2272 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec),
2273 readl_relaxed(host->ioaddr +
2274 msm_offset->core_vendor_spec_func2),
2275 readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3));
2276}
2277
2278static const struct sdhci_msm_variant_ops mci_var_ops = {
2279 .msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
2280 .msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
2281};
2282
2283static const struct sdhci_msm_variant_ops v5_var_ops = {
2284 .msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
2285 .msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
2286};
2287
2288static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
2289 .var_ops = &mci_var_ops,
2290 .offset = &sdhci_msm_mci_offset,
2291};
2292
2293static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
2294 .mci_removed = true,
2295 .var_ops = &v5_var_ops,
2296 .offset = &sdhci_msm_v5_offset,
2297};
2298
2299static const struct sdhci_msm_variant_info sdm845_sdhci_var = {
2300 .mci_removed = true,
2301 .restore_dll_config = true,
2302 .var_ops = &v5_var_ops,
2303 .offset = &sdhci_msm_v5_offset,
2304};
2305
2306static const struct of_device_id sdhci_msm_dt_match[] = {
2307 /*
2308 * Do not add new variants to the driver which are compatible with
2309 * generic ones, unless they need customization.
2310 */
2311 {.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
2312 {.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
2313 {.compatible = "qcom,sdm670-sdhci", .data = &sdm845_sdhci_var},
2314 {.compatible = "qcom,sdm845-sdhci", .data = &sdm845_sdhci_var},
2315 {.compatible = "qcom,sc7180-sdhci", .data = &sdm845_sdhci_var},
2316 {},
2317};
2318
2319MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
2320
2321static const struct sdhci_ops sdhci_msm_ops = {
2322 .reset = sdhci_and_cqhci_reset,
2323 .set_clock = sdhci_msm_set_clock,
2324 .get_min_clock = sdhci_msm_get_min_clock,
2325 .get_max_clock = sdhci_msm_get_max_clock,
2326 .set_bus_width = sdhci_set_bus_width,
2327 .set_uhs_signaling = sdhci_msm_set_uhs_signaling,
2328 .write_w = sdhci_msm_writew,
2329 .write_b = sdhci_msm_writeb,
2330 .irq = sdhci_msm_cqe_irq,
2331 .dump_vendor_regs = sdhci_msm_dump_vendor_regs,
2332 .set_power = sdhci_set_power_noreg,
2333 .set_timeout = sdhci_msm_set_timeout,
2334};
2335
2336static const struct sdhci_pltfm_data sdhci_msm_pdata = {
2337 .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
2338 SDHCI_QUIRK_SINGLE_POWER_WRITE |
2339 SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
2340 SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
2341
2342 .quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
2343 .ops = &sdhci_msm_ops,
2344};
2345
2346static inline void sdhci_msm_get_of_property(struct platform_device *pdev,
2347 struct sdhci_host *host)
2348{
2349 struct device_node *node = pdev->dev.of_node;
2350 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2351 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2352
2353 if (of_property_read_u32(node, "qcom,ddr-config",
2354 &msm_host->ddr_config))
2355 msm_host->ddr_config = DDR_CONFIG_POR_VAL;
2356
2357 of_property_read_u32(node, "qcom,dll-config", &msm_host->dll_config);
2358
2359 if (of_device_is_compatible(node, "qcom,msm8916-sdhci"))
2360 host->quirks2 |= SDHCI_QUIRK2_BROKEN_64_BIT_DMA;
2361}
2362
2363static int sdhci_msm_gcc_reset(struct device *dev, struct sdhci_host *host)
2364{
2365 struct reset_control *reset;
2366 int ret = 0;
2367
2368 reset = reset_control_get_optional_exclusive(dev, NULL);
2369 if (IS_ERR(reset))
2370 return dev_err_probe(dev, PTR_ERR(reset),
2371 "unable to acquire core_reset\n");
2372
2373 if (!reset)
2374 return ret;
2375
2376 ret = reset_control_assert(reset);
2377 if (ret) {
2378 reset_control_put(reset);
2379 return dev_err_probe(dev, ret, "core_reset assert failed\n");
2380 }
2381
2382 /*
2383 * The hardware requirement for delay between assert/deassert
2384 * is at least 3-4 sleep clock (32.7KHz) cycles, which comes to
2385 * ~125us (4/32768). To be on the safe side add 200us delay.
2386 */
2387 usleep_range(200, 210);
2388
2389 ret = reset_control_deassert(reset);
2390 if (ret) {
2391 reset_control_put(reset);
2392 return dev_err_probe(dev, ret, "core_reset deassert failed\n");
2393 }
2394
2395 usleep_range(200, 210);
2396 reset_control_put(reset);
2397
2398 return ret;
2399}
2400
2401static int sdhci_msm_probe(struct platform_device *pdev)
2402{
2403 struct sdhci_host *host;
2404 struct sdhci_pltfm_host *pltfm_host;
2405 struct sdhci_msm_host *msm_host;
2406 struct clk *clk;
2407 int ret;
2408 u16 host_version, core_minor;
2409 u32 core_version, config;
2410 u8 core_major;
2411 const struct sdhci_msm_offset *msm_offset;
2412 const struct sdhci_msm_variant_info *var_info;
2413 struct device_node *node = pdev->dev.of_node;
2414
2415 host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
2416 if (IS_ERR(host))
2417 return PTR_ERR(host);
2418
2419 host->sdma_boundary = 0;
2420 pltfm_host = sdhci_priv(host);
2421 msm_host = sdhci_pltfm_priv(pltfm_host);
2422 msm_host->mmc = host->mmc;
2423 msm_host->pdev = pdev;
2424
2425 ret = mmc_of_parse(host->mmc);
2426 if (ret)
2427 goto pltfm_free;
2428
2429 /*
2430 * Based on the compatible string, load the required msm host info from
2431 * the data associated with the version info.
2432 */
2433 var_info = of_device_get_match_data(&pdev->dev);
2434
2435 msm_host->mci_removed = var_info->mci_removed;
2436 msm_host->restore_dll_config = var_info->restore_dll_config;
2437 msm_host->var_ops = var_info->var_ops;
2438 msm_host->offset = var_info->offset;
2439
2440 msm_offset = msm_host->offset;
2441
2442 sdhci_get_of_property(pdev);
2443 sdhci_msm_get_of_property(pdev, host);
2444
2445 msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
2446
2447 ret = sdhci_msm_gcc_reset(&pdev->dev, host);
2448 if (ret)
2449 goto pltfm_free;
2450
2451 /* Setup SDCC bus voter clock. */
2452 msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
2453 if (!IS_ERR(msm_host->bus_clk)) {
2454 /* Vote for max. clk rate for max. performance */
2455 ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
2456 if (ret)
2457 goto pltfm_free;
2458 ret = clk_prepare_enable(msm_host->bus_clk);
2459 if (ret)
2460 goto pltfm_free;
2461 }
2462
2463 /* Setup main peripheral bus clock */
2464 clk = devm_clk_get(&pdev->dev, "iface");
2465 if (IS_ERR(clk)) {
2466 ret = PTR_ERR(clk);
2467 dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
2468 goto bus_clk_disable;
2469 }
2470 msm_host->bulk_clks[1].clk = clk;
2471
2472 /* Setup SDC MMC clock */
2473 clk = devm_clk_get(&pdev->dev, "core");
2474 if (IS_ERR(clk)) {
2475 ret = PTR_ERR(clk);
2476 dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
2477 goto bus_clk_disable;
2478 }
2479 msm_host->bulk_clks[0].clk = clk;
2480
2481 /* Check for optional interconnect paths */
2482 ret = dev_pm_opp_of_find_icc_paths(&pdev->dev, NULL);
2483 if (ret)
2484 goto bus_clk_disable;
2485
2486 ret = devm_pm_opp_set_clkname(&pdev->dev, "core");
2487 if (ret)
2488 goto bus_clk_disable;
2489
2490 /* OPP table is optional */
2491 ret = devm_pm_opp_of_add_table(&pdev->dev);
2492 if (ret && ret != -ENODEV) {
2493 dev_err(&pdev->dev, "Invalid OPP table in Device tree\n");
2494 goto bus_clk_disable;
2495 }
2496
2497 /* Vote for maximum clock rate for maximum performance */
2498 ret = dev_pm_opp_set_rate(&pdev->dev, INT_MAX);
2499 if (ret)
2500 dev_warn(&pdev->dev, "core clock boost failed\n");
2501
2502 clk = devm_clk_get(&pdev->dev, "cal");
2503 if (IS_ERR(clk))
2504 clk = NULL;
2505 msm_host->bulk_clks[2].clk = clk;
2506
2507 clk = devm_clk_get(&pdev->dev, "sleep");
2508 if (IS_ERR(clk))
2509 clk = NULL;
2510 msm_host->bulk_clks[3].clk = clk;
2511
2512 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2513 msm_host->bulk_clks);
2514 if (ret)
2515 goto bus_clk_disable;
2516
2517 /*
2518 * xo clock is needed for FLL feature of cm_dll.
2519 * In case if xo clock is not mentioned in DT, warn and proceed.
2520 */
2521 msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
2522 if (IS_ERR(msm_host->xo_clk)) {
2523 ret = PTR_ERR(msm_host->xo_clk);
2524 dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
2525 }
2526
2527 if (!msm_host->mci_removed) {
2528 msm_host->core_mem = devm_platform_ioremap_resource(pdev, 1);
2529 if (IS_ERR(msm_host->core_mem)) {
2530 ret = PTR_ERR(msm_host->core_mem);
2531 goto clk_disable;
2532 }
2533 }
2534
2535 /* Reset the vendor spec register to power on reset state */
2536 writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
2537 host->ioaddr + msm_offset->core_vendor_spec);
2538
2539 if (!msm_host->mci_removed) {
2540 /* Set HC_MODE_EN bit in HC_MODE register */
2541 msm_host_writel(msm_host, HC_MODE_EN, host,
2542 msm_offset->core_hc_mode);
2543 config = msm_host_readl(msm_host, host,
2544 msm_offset->core_hc_mode);
2545 config |= FF_CLK_SW_RST_DIS;
2546 msm_host_writel(msm_host, config, host,
2547 msm_offset->core_hc_mode);
2548 }
2549
2550 host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
2551 dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
2552 host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
2553 SDHCI_VENDOR_VER_SHIFT));
2554
2555 core_version = msm_host_readl(msm_host, host,
2556 msm_offset->core_mci_version);
2557 core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
2558 CORE_VERSION_MAJOR_SHIFT;
2559 core_minor = core_version & CORE_VERSION_MINOR_MASK;
2560 dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
2561 core_version, core_major, core_minor);
2562
2563 if (core_major == 1 && core_minor >= 0x42)
2564 msm_host->use_14lpp_dll_reset = true;
2565
2566 /*
2567 * SDCC 5 controller with major version 1, minor version 0x34 and later
2568 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
2569 */
2570 if (core_major == 1 && core_minor < 0x34)
2571 msm_host->use_cdclp533 = true;
2572
2573 /*
2574 * Support for some capabilities is not advertised by newer
2575 * controller versions and must be explicitly enabled.
2576 */
2577 if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
2578 config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
2579 config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
2580 writel_relaxed(config, host->ioaddr +
2581 msm_offset->core_vendor_spec_capabilities0);
2582 }
2583
2584 if (core_major == 1 && core_minor >= 0x49)
2585 msm_host->updated_ddr_cfg = true;
2586
2587 if (core_major == 1 && core_minor >= 0x71)
2588 msm_host->uses_tassadar_dll = true;
2589
2590 ret = sdhci_msm_register_vreg(msm_host);
2591 if (ret)
2592 goto clk_disable;
2593
2594 /*
2595 * Power on reset state may trigger power irq if previous status of
2596 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
2597 * interrupt in GIC, any pending power irq interrupt should be
2598 * acknowledged. Otherwise power irq interrupt handler would be
2599 * fired prematurely.
2600 */
2601 sdhci_msm_handle_pwr_irq(host, 0);
2602
2603 /*
2604 * Ensure that above writes are propogated before interrupt enablement
2605 * in GIC.
2606 */
2607 mb();
2608
2609 /* Setup IRQ for handling power/voltage tasks with PMIC */
2610 msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
2611 if (msm_host->pwr_irq < 0) {
2612 ret = msm_host->pwr_irq;
2613 goto clk_disable;
2614 }
2615
2616 sdhci_msm_init_pwr_irq_wait(msm_host);
2617 /* Enable pwr irq interrupts */
2618 msm_host_writel(msm_host, INT_MASK, host,
2619 msm_offset->core_pwrctl_mask);
2620
2621 ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
2622 sdhci_msm_pwr_irq, IRQF_ONESHOT,
2623 dev_name(&pdev->dev), host);
2624 if (ret) {
2625 dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
2626 goto clk_disable;
2627 }
2628
2629 msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
2630
2631 /* Set the timeout value to max possible */
2632 host->max_timeout_count = 0xF;
2633
2634 pm_runtime_get_noresume(&pdev->dev);
2635 pm_runtime_set_active(&pdev->dev);
2636 pm_runtime_enable(&pdev->dev);
2637 pm_runtime_set_autosuspend_delay(&pdev->dev,
2638 MSM_MMC_AUTOSUSPEND_DELAY_MS);
2639 pm_runtime_use_autosuspend(&pdev->dev);
2640
2641 host->mmc_host_ops.start_signal_voltage_switch =
2642 sdhci_msm_start_signal_voltage_switch;
2643 host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
2644 if (of_property_read_bool(node, "supports-cqe"))
2645 ret = sdhci_msm_cqe_add_host(host, pdev);
2646 else
2647 ret = sdhci_add_host(host);
2648 if (ret)
2649 goto pm_runtime_disable;
2650
2651 pm_runtime_mark_last_busy(&pdev->dev);
2652 pm_runtime_put_autosuspend(&pdev->dev);
2653
2654 return 0;
2655
2656pm_runtime_disable:
2657 pm_runtime_disable(&pdev->dev);
2658 pm_runtime_set_suspended(&pdev->dev);
2659 pm_runtime_put_noidle(&pdev->dev);
2660clk_disable:
2661 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2662 msm_host->bulk_clks);
2663bus_clk_disable:
2664 if (!IS_ERR(msm_host->bus_clk))
2665 clk_disable_unprepare(msm_host->bus_clk);
2666pltfm_free:
2667 sdhci_pltfm_free(pdev);
2668 return ret;
2669}
2670
2671static void sdhci_msm_remove(struct platform_device *pdev)
2672{
2673 struct sdhci_host *host = platform_get_drvdata(pdev);
2674 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2675 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2676 int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
2677 0xffffffff);
2678
2679 sdhci_remove_host(host, dead);
2680
2681 pm_runtime_get_sync(&pdev->dev);
2682 pm_runtime_disable(&pdev->dev);
2683 pm_runtime_put_noidle(&pdev->dev);
2684
2685 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2686 msm_host->bulk_clks);
2687 if (!IS_ERR(msm_host->bus_clk))
2688 clk_disable_unprepare(msm_host->bus_clk);
2689 sdhci_pltfm_free(pdev);
2690}
2691
2692static __maybe_unused int sdhci_msm_runtime_suspend(struct device *dev)
2693{
2694 struct sdhci_host *host = dev_get_drvdata(dev);
2695 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2696 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2697
2698 /* Drop the performance vote */
2699 dev_pm_opp_set_rate(dev, 0);
2700 clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2701 msm_host->bulk_clks);
2702
2703 return sdhci_msm_ice_suspend(msm_host);
2704}
2705
2706static __maybe_unused int sdhci_msm_runtime_resume(struct device *dev)
2707{
2708 struct sdhci_host *host = dev_get_drvdata(dev);
2709 struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2710 struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2711 int ret;
2712
2713 ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2714 msm_host->bulk_clks);
2715 if (ret)
2716 return ret;
2717 /*
2718 * Whenever core-clock is gated dynamically, it's needed to
2719 * restore the SDR DLL settings when the clock is ungated.
2720 */
2721 if (msm_host->restore_dll_config && msm_host->clk_rate) {
2722 ret = sdhci_msm_restore_sdr_dll_config(host);
2723 if (ret)
2724 return ret;
2725 }
2726
2727 dev_pm_opp_set_rate(dev, msm_host->clk_rate);
2728
2729 return sdhci_msm_ice_resume(msm_host);
2730}
2731
2732static const struct dev_pm_ops sdhci_msm_pm_ops = {
2733 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2734 pm_runtime_force_resume)
2735 SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2736 sdhci_msm_runtime_resume,
2737 NULL)
2738};
2739
2740static struct platform_driver sdhci_msm_driver = {
2741 .probe = sdhci_msm_probe,
2742 .remove_new = sdhci_msm_remove,
2743 .driver = {
2744 .name = "sdhci_msm",
2745 .of_match_table = sdhci_msm_dt_match,
2746 .pm = &sdhci_msm_pm_ops,
2747 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
2748 },
2749};
2750
2751module_platform_driver(sdhci_msm_driver);
2752
2753MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2754MODULE_LICENSE("GPL v2");