Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright 2013-2015 Analog Devices Inc.
  4 *  Author: Lars-Peter Clausen <lars@metafoo.de>
  5 */
  6
  7#include <linux/slab.h>
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10#include <linux/device.h>
 11#include <linux/workqueue.h>
 12#include <linux/mutex.h>
 13#include <linux/sched.h>
 14#include <linux/poll.h>
 15#include <linux/iio/buffer_impl.h>
 16#include <linux/iio/buffer-dma.h>
 17#include <linux/dma-mapping.h>
 18#include <linux/sizes.h>
 19
 20/*
 21 * For DMA buffers the storage is sub-divided into so called blocks. Each block
 22 * has its own memory buffer. The size of the block is the granularity at which
 23 * memory is exchanged between the hardware and the application. Increasing the
 24 * basic unit of data exchange from one sample to one block decreases the
 25 * management overhead that is associated with each sample. E.g. if we say the
 26 * management overhead for one exchange is x and the unit of exchange is one
 27 * sample the overhead will be x for each sample. Whereas when using a block
 28 * which contains n samples the overhead per sample is reduced to x/n. This
 29 * allows to achieve much higher samplerates than what can be sustained with
 30 * the one sample approach.
 31 *
 32 * Blocks are exchanged between the DMA controller and the application via the
 33 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
 34 * incoming queue are waiting for the DMA controller to pick them up and fill
 35 * them with data. Block on the outgoing queue have been filled with data and
 36 * are waiting for the application to dequeue them and read the data.
 37 *
 38 * A block can be in one of the following states:
 39 *  * Owned by the application. In this state the application can read data from
 40 *    the block.
 41 *  * On the incoming list: Blocks on the incoming list are queued up to be
 42 *    processed by the DMA controller.
 43 *  * Owned by the DMA controller: The DMA controller is processing the block
 44 *    and filling it with data.
 45 *  * On the outgoing list: Blocks on the outgoing list have been successfully
 46 *    processed by the DMA controller and contain data. They can be dequeued by
 47 *    the application.
 48 *  * Dead: A block that is dead has been marked as to be freed. It might still
 49 *    be owned by either the application or the DMA controller at the moment.
 50 *    But once they are done processing it instead of going to either the
 51 *    incoming or outgoing queue the block will be freed.
 52 *
 53 * In addition to this blocks are reference counted and the memory associated
 54 * with both the block structure as well as the storage memory for the block
 55 * will be freed when the last reference to the block is dropped. This means a
 56 * block must not be accessed without holding a reference.
 57 *
 58 * The iio_dma_buffer implementation provides a generic infrastructure for
 59 * managing the blocks.
 60 *
 61 * A driver for a specific piece of hardware that has DMA capabilities need to
 62 * implement the submit() callback from the iio_dma_buffer_ops structure. This
 63 * callback is supposed to initiate the DMA transfer copying data from the
 64 * converter to the memory region of the block. Once the DMA transfer has been
 65 * completed the driver must call iio_dma_buffer_block_done() for the completed
 66 * block.
 67 *
 68 * Prior to this it must set the bytes_used field of the block contains
 69 * the actual number of bytes in the buffer. Typically this will be equal to the
 70 * size of the block, but if the DMA hardware has certain alignment requirements
 71 * for the transfer length it might choose to use less than the full size. In
 72 * either case it is expected that bytes_used is a multiple of the bytes per
 73 * datum, i.e. the block must not contain partial samples.
 74 *
 75 * The driver must call iio_dma_buffer_block_done() for each block it has
 76 * received through its submit_block() callback, even if it does not actually
 77 * perform a DMA transfer for the block, e.g. because the buffer was disabled
 78 * before the block transfer was started. In this case it should set bytes_used
 79 * to 0.
 80 *
 81 * In addition it is recommended that a driver implements the abort() callback.
 82 * It will be called when the buffer is disabled and can be used to cancel
 83 * pending and stop active transfers.
 84 *
 85 * The specific driver implementation should use the default callback
 86 * implementations provided by this module for the iio_buffer_access_funcs
 87 * struct. It may overload some callbacks with custom variants if the hardware
 88 * has special requirements that are not handled by the generic functions. If a
 89 * driver chooses to overload a callback it has to ensure that the generic
 90 * callback is called from within the custom callback.
 91 */
 92
 93static void iio_buffer_block_release(struct kref *kref)
 94{
 95	struct iio_dma_buffer_block *block = container_of(kref,
 96		struct iio_dma_buffer_block, kref);
 97
 98	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
 99
100	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
101					block->vaddr, block->phys_addr);
102
103	iio_buffer_put(&block->queue->buffer);
104	kfree(block);
105}
106
107static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
108{
109	kref_get(&block->kref);
110}
111
112static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
113{
114	kref_put(&block->kref, iio_buffer_block_release);
115}
116
117/*
118 * dma_free_coherent can sleep, hence we need to take some special care to be
119 * able to drop a reference from an atomic context.
120 */
121static LIST_HEAD(iio_dma_buffer_dead_blocks);
122static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
123
124static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
125{
126	struct iio_dma_buffer_block *block, *_block;
127	LIST_HEAD(block_list);
128
129	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
130	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
131	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
132
133	list_for_each_entry_safe(block, _block, &block_list, head)
134		iio_buffer_block_release(&block->kref);
135}
136static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
137
138static void iio_buffer_block_release_atomic(struct kref *kref)
139{
140	struct iio_dma_buffer_block *block;
141	unsigned long flags;
142
143	block = container_of(kref, struct iio_dma_buffer_block, kref);
144
145	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
146	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
147	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
148
149	schedule_work(&iio_dma_buffer_cleanup_work);
150}
151
152/*
153 * Version of iio_buffer_block_put() that can be called from atomic context
154 */
155static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
156{
157	kref_put(&block->kref, iio_buffer_block_release_atomic);
158}
159
160static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
161{
162	return container_of(buf, struct iio_dma_buffer_queue, buffer);
163}
164
165static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
166	struct iio_dma_buffer_queue *queue, size_t size)
167{
168	struct iio_dma_buffer_block *block;
169
170	block = kzalloc(sizeof(*block), GFP_KERNEL);
171	if (!block)
172		return NULL;
173
174	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
175		&block->phys_addr, GFP_KERNEL);
176	if (!block->vaddr) {
177		kfree(block);
178		return NULL;
179	}
180
181	block->size = size;
182	block->state = IIO_BLOCK_STATE_DEQUEUED;
183	block->queue = queue;
184	INIT_LIST_HEAD(&block->head);
185	kref_init(&block->kref);
186
187	iio_buffer_get(&queue->buffer);
188
189	return block;
190}
191
192static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
193{
194	struct iio_dma_buffer_queue *queue = block->queue;
195
196	/*
197	 * The buffer has already been freed by the application, just drop the
198	 * reference.
199	 */
200	if (block->state != IIO_BLOCK_STATE_DEAD) {
201		block->state = IIO_BLOCK_STATE_DONE;
202		list_add_tail(&block->head, &queue->outgoing);
203	}
204}
205
206/**
207 * iio_dma_buffer_block_done() - Indicate that a block has been completed
208 * @block: The completed block
209 *
210 * Should be called when the DMA controller has finished handling the block to
211 * pass back ownership of the block to the queue.
212 */
213void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
214{
215	struct iio_dma_buffer_queue *queue = block->queue;
216	unsigned long flags;
217
218	spin_lock_irqsave(&queue->list_lock, flags);
219	_iio_dma_buffer_block_done(block);
220	spin_unlock_irqrestore(&queue->list_lock, flags);
221
222	iio_buffer_block_put_atomic(block);
223	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
224}
225EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
226
227/**
228 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
229 *   aborted
230 * @queue: Queue for which to complete blocks.
231 * @list: List of aborted blocks. All blocks in this list must be from @queue.
232 *
233 * Typically called from the abort() callback after the DMA controller has been
234 * stopped. This will set bytes_used to 0 for each block in the list and then
235 * hand the blocks back to the queue.
236 */
237void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
238	struct list_head *list)
239{
240	struct iio_dma_buffer_block *block, *_block;
241	unsigned long flags;
242
243	spin_lock_irqsave(&queue->list_lock, flags);
244	list_for_each_entry_safe(block, _block, list, head) {
245		list_del(&block->head);
246		block->bytes_used = 0;
247		_iio_dma_buffer_block_done(block);
248		iio_buffer_block_put_atomic(block);
249	}
250	spin_unlock_irqrestore(&queue->list_lock, flags);
251
252	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
253}
254EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
255
256static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
257{
258	/*
259	 * If the core owns the block it can be re-used. This should be the
260	 * default case when enabling the buffer, unless the DMA controller does
261	 * not support abort and has not given back the block yet.
262	 */
263	switch (block->state) {
264	case IIO_BLOCK_STATE_DEQUEUED:
265	case IIO_BLOCK_STATE_QUEUED:
266	case IIO_BLOCK_STATE_DONE:
267		return true;
268	default:
269		return false;
270	}
271}
272
273/**
274 * iio_dma_buffer_request_update() - DMA buffer request_update callback
275 * @buffer: The buffer which to request an update
276 *
277 * Should be used as the iio_dma_buffer_request_update() callback for
278 * iio_buffer_access_ops struct for DMA buffers.
279 */
280int iio_dma_buffer_request_update(struct iio_buffer *buffer)
281{
282	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
283	struct iio_dma_buffer_block *block;
284	bool try_reuse = false;
285	size_t size;
286	int ret = 0;
287	int i;
288
289	/*
290	 * Split the buffer into two even parts. This is used as a double
291	 * buffering scheme with usually one block at a time being used by the
292	 * DMA and the other one by the application.
293	 */
294	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
295		queue->buffer.length, 2);
296
297	mutex_lock(&queue->lock);
298
299	/* Allocations are page aligned */
300	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
301		try_reuse = true;
302
303	queue->fileio.block_size = size;
304	queue->fileio.active_block = NULL;
305
306	spin_lock_irq(&queue->list_lock);
307	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
308		block = queue->fileio.blocks[i];
309
310		/* If we can't re-use it free it */
311		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
312			block->state = IIO_BLOCK_STATE_DEAD;
313	}
314
315	/*
316	 * At this point all blocks are either owned by the core or marked as
317	 * dead. This means we can reset the lists without having to fear
318	 * corrution.
319	 */
320	INIT_LIST_HEAD(&queue->outgoing);
321	spin_unlock_irq(&queue->list_lock);
322
323	INIT_LIST_HEAD(&queue->incoming);
324
325	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
326		if (queue->fileio.blocks[i]) {
327			block = queue->fileio.blocks[i];
328			if (block->state == IIO_BLOCK_STATE_DEAD) {
329				/* Could not reuse it */
330				iio_buffer_block_put(block);
331				block = NULL;
332			} else {
333				block->size = size;
334			}
335		} else {
336			block = NULL;
337		}
338
339		if (!block) {
340			block = iio_dma_buffer_alloc_block(queue, size);
341			if (!block) {
342				ret = -ENOMEM;
343				goto out_unlock;
344			}
345			queue->fileio.blocks[i] = block;
346		}
347
348		block->state = IIO_BLOCK_STATE_QUEUED;
349		list_add_tail(&block->head, &queue->incoming);
350	}
351
352out_unlock:
353	mutex_unlock(&queue->lock);
354
355	return ret;
356}
357EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
360	struct iio_dma_buffer_block *block)
361{
362	int ret;
363
364	/*
365	 * If the hardware has already been removed we put the block into
366	 * limbo. It will neither be on the incoming nor outgoing list, nor will
367	 * it ever complete. It will just wait to be freed eventually.
368	 */
369	if (!queue->ops)
370		return;
371
372	block->state = IIO_BLOCK_STATE_ACTIVE;
373	iio_buffer_block_get(block);
374	ret = queue->ops->submit(queue, block);
375	if (ret) {
376		/*
377		 * This is a bit of a problem and there is not much we can do
378		 * other then wait for the buffer to be disabled and re-enabled
379		 * and try again. But it should not really happen unless we run
380		 * out of memory or something similar.
381		 *
382		 * TODO: Implement support in the IIO core to allow buffers to
383		 * notify consumers that something went wrong and the buffer
384		 * should be disabled.
385		 */
386		iio_buffer_block_put(block);
387	}
388}
389
390/**
391 * iio_dma_buffer_enable() - Enable DMA buffer
392 * @buffer: IIO buffer to enable
393 * @indio_dev: IIO device the buffer is attached to
394 *
395 * Needs to be called when the device that the buffer is attached to starts
396 * sampling. Typically should be the iio_buffer_access_ops enable callback.
397 *
398 * This will allocate the DMA buffers and start the DMA transfers.
399 */
400int iio_dma_buffer_enable(struct iio_buffer *buffer,
401	struct iio_dev *indio_dev)
402{
403	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
404	struct iio_dma_buffer_block *block, *_block;
405
406	mutex_lock(&queue->lock);
407	queue->active = true;
408	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
409		list_del(&block->head);
410		iio_dma_buffer_submit_block(queue, block);
411	}
412	mutex_unlock(&queue->lock);
413
414	return 0;
415}
416EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
417
418/**
419 * iio_dma_buffer_disable() - Disable DMA buffer
420 * @buffer: IIO DMA buffer to disable
421 * @indio_dev: IIO device the buffer is attached to
422 *
423 * Needs to be called when the device that the buffer is attached to stops
424 * sampling. Typically should be the iio_buffer_access_ops disable callback.
425 */
426int iio_dma_buffer_disable(struct iio_buffer *buffer,
427	struct iio_dev *indio_dev)
428{
429	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
430
431	mutex_lock(&queue->lock);
432	queue->active = false;
433
434	if (queue->ops && queue->ops->abort)
435		queue->ops->abort(queue);
436	mutex_unlock(&queue->lock);
437
438	return 0;
439}
440EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
441
442static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
443	struct iio_dma_buffer_block *block)
444{
445	if (block->state == IIO_BLOCK_STATE_DEAD) {
446		iio_buffer_block_put(block);
447	} else if (queue->active) {
448		iio_dma_buffer_submit_block(queue, block);
449	} else {
450		block->state = IIO_BLOCK_STATE_QUEUED;
451		list_add_tail(&block->head, &queue->incoming);
452	}
453}
454
455static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
456	struct iio_dma_buffer_queue *queue)
457{
458	struct iio_dma_buffer_block *block;
 
459
460	spin_lock_irq(&queue->list_lock);
461	block = list_first_entry_or_null(&queue->outgoing, struct
462		iio_dma_buffer_block, head);
463	if (block != NULL) {
464		list_del(&block->head);
465		block->state = IIO_BLOCK_STATE_DEQUEUED;
 
 
 
 
466	}
 
467	spin_unlock_irq(&queue->list_lock);
468
469	return block;
470}
471
472/**
473 * iio_dma_buffer_read() - DMA buffer read callback
474 * @buffer: Buffer to read form
475 * @n: Number of bytes to read
476 * @user_buffer: Userspace buffer to copy the data to
477 *
478 * Should be used as the read callback for iio_buffer_access_ops
479 * struct for DMA buffers.
480 */
481int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
482	char __user *user_buffer)
483{
484	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
485	struct iio_dma_buffer_block *block;
486	int ret;
487
488	if (n < buffer->bytes_per_datum)
489		return -EINVAL;
490
491	mutex_lock(&queue->lock);
492
493	if (!queue->fileio.active_block) {
494		block = iio_dma_buffer_dequeue(queue);
495		if (block == NULL) {
496			ret = 0;
497			goto out_unlock;
498		}
499		queue->fileio.pos = 0;
500		queue->fileio.active_block = block;
501	} else {
502		block = queue->fileio.active_block;
503	}
504
505	n = rounddown(n, buffer->bytes_per_datum);
506	if (n > block->bytes_used - queue->fileio.pos)
507		n = block->bytes_used - queue->fileio.pos;
508
509	if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
510		ret = -EFAULT;
511		goto out_unlock;
512	}
513
514	queue->fileio.pos += n;
515
516	if (queue->fileio.pos == block->bytes_used) {
517		queue->fileio.active_block = NULL;
518		iio_dma_buffer_enqueue(queue, block);
519	}
520
521	ret = n;
522
523out_unlock:
524	mutex_unlock(&queue->lock);
525
526	return ret;
527}
528EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
529
530/**
531 * iio_dma_buffer_data_available() - DMA buffer data_available callback
532 * @buf: Buffer to check for data availability
533 *
534 * Should be used as the data_available callback for iio_buffer_access_ops
535 * struct for DMA buffers.
536 */
537size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
538{
539	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
540	struct iio_dma_buffer_block *block;
541	size_t data_available = 0;
 
542
543	/*
544	 * For counting the available bytes we'll use the size of the block not
545	 * the number of actual bytes available in the block. Otherwise it is
546	 * possible that we end up with a value that is lower than the watermark
547	 * but won't increase since all blocks are in use.
548	 */
549
550	mutex_lock(&queue->lock);
551	if (queue->fileio.active_block)
552		data_available += queue->fileio.active_block->size;
553
554	spin_lock_irq(&queue->list_lock);
555	list_for_each_entry(block, &queue->outgoing, head)
556		data_available += block->size;
 
 
 
 
 
 
 
557	spin_unlock_irq(&queue->list_lock);
558	mutex_unlock(&queue->lock);
559
560	return data_available;
561}
562EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
563
564/**
565 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
566 * @buffer: Buffer to set the bytes-per-datum for
567 * @bpd: The new bytes-per-datum value
568 *
569 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
570 * struct for DMA buffers.
571 */
572int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
573{
574	buffer->bytes_per_datum = bpd;
575
576	return 0;
577}
578EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
579
580/**
581 * iio_dma_buffer_set_length - DMA buffer set_length callback
582 * @buffer: Buffer to set the length for
583 * @length: The new buffer length
584 *
585 * Should be used as the set_length callback for iio_buffer_access_ops
586 * struct for DMA buffers.
587 */
588int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
589{
590	/* Avoid an invalid state */
591	if (length < 2)
592		length = 2;
593	buffer->length = length;
594	buffer->watermark = length / 2;
595
596	return 0;
597}
598EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
599
600/**
601 * iio_dma_buffer_init() - Initialize DMA buffer queue
602 * @queue: Buffer to initialize
603 * @dev: DMA device
604 * @ops: DMA buffer queue callback operations
605 *
606 * The DMA device will be used by the queue to do DMA memory allocations. So it
607 * should refer to the device that will perform the DMA to ensure that
608 * allocations are done from a memory region that can be accessed by the device.
609 */
610int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
611	struct device *dev, const struct iio_dma_buffer_ops *ops)
612{
613	iio_buffer_init(&queue->buffer);
614	queue->buffer.length = PAGE_SIZE;
615	queue->buffer.watermark = queue->buffer.length / 2;
616	queue->dev = dev;
617	queue->ops = ops;
618
619	INIT_LIST_HEAD(&queue->incoming);
620	INIT_LIST_HEAD(&queue->outgoing);
621
622	mutex_init(&queue->lock);
623	spin_lock_init(&queue->list_lock);
624
625	return 0;
626}
627EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
628
629/**
630 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
631 * @queue: Buffer to cleanup
632 *
633 * After this function has completed it is safe to free any resources that are
634 * associated with the buffer and are accessed inside the callback operations.
635 */
636void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
637{
638	unsigned int i;
639
640	mutex_lock(&queue->lock);
641
642	spin_lock_irq(&queue->list_lock);
643	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
644		if (!queue->fileio.blocks[i])
645			continue;
646		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
647	}
648	INIT_LIST_HEAD(&queue->outgoing);
649	spin_unlock_irq(&queue->list_lock);
650
651	INIT_LIST_HEAD(&queue->incoming);
652
653	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
654		if (!queue->fileio.blocks[i])
655			continue;
656		iio_buffer_block_put(queue->fileio.blocks[i]);
657		queue->fileio.blocks[i] = NULL;
658	}
659	queue->fileio.active_block = NULL;
660	queue->ops = NULL;
661
662	mutex_unlock(&queue->lock);
663}
664EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
665
666/**
667 * iio_dma_buffer_release() - Release final buffer resources
668 * @queue: Buffer to release
669 *
670 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
671 * called in the buffers release callback implementation right before freeing
672 * the memory associated with the buffer.
673 */
674void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
675{
676	mutex_destroy(&queue->lock);
677}
678EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
679
680MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
681MODULE_DESCRIPTION("DMA buffer for the IIO framework");
682MODULE_LICENSE("GPL v2");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright 2013-2015 Analog Devices Inc.
  4 *  Author: Lars-Peter Clausen <lars@metafoo.de>
  5 */
  6
  7#include <linux/slab.h>
  8#include <linux/kernel.h>
  9#include <linux/module.h>
 10#include <linux/device.h>
 11#include <linux/workqueue.h>
 12#include <linux/mutex.h>
 13#include <linux/sched.h>
 14#include <linux/poll.h>
 15#include <linux/iio/buffer_impl.h>
 16#include <linux/iio/buffer-dma.h>
 17#include <linux/dma-mapping.h>
 18#include <linux/sizes.h>
 19
 20/*
 21 * For DMA buffers the storage is sub-divided into so called blocks. Each block
 22 * has its own memory buffer. The size of the block is the granularity at which
 23 * memory is exchanged between the hardware and the application. Increasing the
 24 * basic unit of data exchange from one sample to one block decreases the
 25 * management overhead that is associated with each sample. E.g. if we say the
 26 * management overhead for one exchange is x and the unit of exchange is one
 27 * sample the overhead will be x for each sample. Whereas when using a block
 28 * which contains n samples the overhead per sample is reduced to x/n. This
 29 * allows to achieve much higher samplerates than what can be sustained with
 30 * the one sample approach.
 31 *
 32 * Blocks are exchanged between the DMA controller and the application via the
 33 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
 34 * incoming queue are waiting for the DMA controller to pick them up and fill
 35 * them with data. Block on the outgoing queue have been filled with data and
 36 * are waiting for the application to dequeue them and read the data.
 37 *
 38 * A block can be in one of the following states:
 39 *  * Owned by the application. In this state the application can read data from
 40 *    the block.
 41 *  * On the incoming list: Blocks on the incoming list are queued up to be
 42 *    processed by the DMA controller.
 43 *  * Owned by the DMA controller: The DMA controller is processing the block
 44 *    and filling it with data.
 45 *  * On the outgoing list: Blocks on the outgoing list have been successfully
 46 *    processed by the DMA controller and contain data. They can be dequeued by
 47 *    the application.
 48 *  * Dead: A block that is dead has been marked as to be freed. It might still
 49 *    be owned by either the application or the DMA controller at the moment.
 50 *    But once they are done processing it instead of going to either the
 51 *    incoming or outgoing queue the block will be freed.
 52 *
 53 * In addition to this blocks are reference counted and the memory associated
 54 * with both the block structure as well as the storage memory for the block
 55 * will be freed when the last reference to the block is dropped. This means a
 56 * block must not be accessed without holding a reference.
 57 *
 58 * The iio_dma_buffer implementation provides a generic infrastructure for
 59 * managing the blocks.
 60 *
 61 * A driver for a specific piece of hardware that has DMA capabilities need to
 62 * implement the submit() callback from the iio_dma_buffer_ops structure. This
 63 * callback is supposed to initiate the DMA transfer copying data from the
 64 * converter to the memory region of the block. Once the DMA transfer has been
 65 * completed the driver must call iio_dma_buffer_block_done() for the completed
 66 * block.
 67 *
 68 * Prior to this it must set the bytes_used field of the block contains
 69 * the actual number of bytes in the buffer. Typically this will be equal to the
 70 * size of the block, but if the DMA hardware has certain alignment requirements
 71 * for the transfer length it might choose to use less than the full size. In
 72 * either case it is expected that bytes_used is a multiple of the bytes per
 73 * datum, i.e. the block must not contain partial samples.
 74 *
 75 * The driver must call iio_dma_buffer_block_done() for each block it has
 76 * received through its submit_block() callback, even if it does not actually
 77 * perform a DMA transfer for the block, e.g. because the buffer was disabled
 78 * before the block transfer was started. In this case it should set bytes_used
 79 * to 0.
 80 *
 81 * In addition it is recommended that a driver implements the abort() callback.
 82 * It will be called when the buffer is disabled and can be used to cancel
 83 * pending and stop active transfers.
 84 *
 85 * The specific driver implementation should use the default callback
 86 * implementations provided by this module for the iio_buffer_access_funcs
 87 * struct. It may overload some callbacks with custom variants if the hardware
 88 * has special requirements that are not handled by the generic functions. If a
 89 * driver chooses to overload a callback it has to ensure that the generic
 90 * callback is called from within the custom callback.
 91 */
 92
 93static void iio_buffer_block_release(struct kref *kref)
 94{
 95	struct iio_dma_buffer_block *block = container_of(kref,
 96		struct iio_dma_buffer_block, kref);
 97
 98	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
 99
100	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
101					block->vaddr, block->phys_addr);
102
103	iio_buffer_put(&block->queue->buffer);
104	kfree(block);
105}
106
107static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
108{
109	kref_get(&block->kref);
110}
111
112static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
113{
114	kref_put(&block->kref, iio_buffer_block_release);
115}
116
117/*
118 * dma_free_coherent can sleep, hence we need to take some special care to be
119 * able to drop a reference from an atomic context.
120 */
121static LIST_HEAD(iio_dma_buffer_dead_blocks);
122static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
123
124static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
125{
126	struct iio_dma_buffer_block *block, *_block;
127	LIST_HEAD(block_list);
128
129	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
130	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
131	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
132
133	list_for_each_entry_safe(block, _block, &block_list, head)
134		iio_buffer_block_release(&block->kref);
135}
136static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
137
138static void iio_buffer_block_release_atomic(struct kref *kref)
139{
140	struct iio_dma_buffer_block *block;
141	unsigned long flags;
142
143	block = container_of(kref, struct iio_dma_buffer_block, kref);
144
145	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
146	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
147	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
148
149	schedule_work(&iio_dma_buffer_cleanup_work);
150}
151
152/*
153 * Version of iio_buffer_block_put() that can be called from atomic context
154 */
155static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
156{
157	kref_put(&block->kref, iio_buffer_block_release_atomic);
158}
159
160static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
161{
162	return container_of(buf, struct iio_dma_buffer_queue, buffer);
163}
164
165static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
166	struct iio_dma_buffer_queue *queue, size_t size)
167{
168	struct iio_dma_buffer_block *block;
169
170	block = kzalloc(sizeof(*block), GFP_KERNEL);
171	if (!block)
172		return NULL;
173
174	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
175		&block->phys_addr, GFP_KERNEL);
176	if (!block->vaddr) {
177		kfree(block);
178		return NULL;
179	}
180
181	block->size = size;
182	block->state = IIO_BLOCK_STATE_DONE;
183	block->queue = queue;
184	INIT_LIST_HEAD(&block->head);
185	kref_init(&block->kref);
186
187	iio_buffer_get(&queue->buffer);
188
189	return block;
190}
191
192static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
193{
194	if (block->state != IIO_BLOCK_STATE_DEAD)
 
 
 
 
 
 
195		block->state = IIO_BLOCK_STATE_DONE;
 
 
196}
197
198/**
199 * iio_dma_buffer_block_done() - Indicate that a block has been completed
200 * @block: The completed block
201 *
202 * Should be called when the DMA controller has finished handling the block to
203 * pass back ownership of the block to the queue.
204 */
205void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
206{
207	struct iio_dma_buffer_queue *queue = block->queue;
208	unsigned long flags;
209
210	spin_lock_irqsave(&queue->list_lock, flags);
211	_iio_dma_buffer_block_done(block);
212	spin_unlock_irqrestore(&queue->list_lock, flags);
213
214	iio_buffer_block_put_atomic(block);
215	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
216}
217EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
218
219/**
220 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
221 *   aborted
222 * @queue: Queue for which to complete blocks.
223 * @list: List of aborted blocks. All blocks in this list must be from @queue.
224 *
225 * Typically called from the abort() callback after the DMA controller has been
226 * stopped. This will set bytes_used to 0 for each block in the list and then
227 * hand the blocks back to the queue.
228 */
229void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
230	struct list_head *list)
231{
232	struct iio_dma_buffer_block *block, *_block;
233	unsigned long flags;
234
235	spin_lock_irqsave(&queue->list_lock, flags);
236	list_for_each_entry_safe(block, _block, list, head) {
237		list_del(&block->head);
238		block->bytes_used = 0;
239		_iio_dma_buffer_block_done(block);
240		iio_buffer_block_put_atomic(block);
241	}
242	spin_unlock_irqrestore(&queue->list_lock, flags);
243
244	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
245}
246EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
247
248static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
249{
250	/*
251	 * If the core owns the block it can be re-used. This should be the
252	 * default case when enabling the buffer, unless the DMA controller does
253	 * not support abort and has not given back the block yet.
254	 */
255	switch (block->state) {
 
256	case IIO_BLOCK_STATE_QUEUED:
257	case IIO_BLOCK_STATE_DONE:
258		return true;
259	default:
260		return false;
261	}
262}
263
264/**
265 * iio_dma_buffer_request_update() - DMA buffer request_update callback
266 * @buffer: The buffer which to request an update
267 *
268 * Should be used as the iio_dma_buffer_request_update() callback for
269 * iio_buffer_access_ops struct for DMA buffers.
270 */
271int iio_dma_buffer_request_update(struct iio_buffer *buffer)
272{
273	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
274	struct iio_dma_buffer_block *block;
275	bool try_reuse = false;
276	size_t size;
277	int ret = 0;
278	int i;
279
280	/*
281	 * Split the buffer into two even parts. This is used as a double
282	 * buffering scheme with usually one block at a time being used by the
283	 * DMA and the other one by the application.
284	 */
285	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
286		queue->buffer.length, 2);
287
288	mutex_lock(&queue->lock);
289
290	/* Allocations are page aligned */
291	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
292		try_reuse = true;
293
294	queue->fileio.block_size = size;
295	queue->fileio.active_block = NULL;
296
297	spin_lock_irq(&queue->list_lock);
298	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
299		block = queue->fileio.blocks[i];
300
301		/* If we can't re-use it free it */
302		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
303			block->state = IIO_BLOCK_STATE_DEAD;
304	}
305
306	/*
307	 * At this point all blocks are either owned by the core or marked as
308	 * dead. This means we can reset the lists without having to fear
309	 * corrution.
310	 */
 
311	spin_unlock_irq(&queue->list_lock);
312
313	INIT_LIST_HEAD(&queue->incoming);
314
315	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
316		if (queue->fileio.blocks[i]) {
317			block = queue->fileio.blocks[i];
318			if (block->state == IIO_BLOCK_STATE_DEAD) {
319				/* Could not reuse it */
320				iio_buffer_block_put(block);
321				block = NULL;
322			} else {
323				block->size = size;
324			}
325		} else {
326			block = NULL;
327		}
328
329		if (!block) {
330			block = iio_dma_buffer_alloc_block(queue, size);
331			if (!block) {
332				ret = -ENOMEM;
333				goto out_unlock;
334			}
335			queue->fileio.blocks[i] = block;
336		}
337
338		block->state = IIO_BLOCK_STATE_QUEUED;
339		list_add_tail(&block->head, &queue->incoming);
340	}
341
342out_unlock:
343	mutex_unlock(&queue->lock);
344
345	return ret;
346}
347EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
348
349static void iio_dma_buffer_fileio_free(struct iio_dma_buffer_queue *queue)
350{
351	unsigned int i;
352
353	spin_lock_irq(&queue->list_lock);
354	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
355		if (!queue->fileio.blocks[i])
356			continue;
357		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
358	}
359	spin_unlock_irq(&queue->list_lock);
360
361	INIT_LIST_HEAD(&queue->incoming);
362
363	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
364		if (!queue->fileio.blocks[i])
365			continue;
366		iio_buffer_block_put(queue->fileio.blocks[i]);
367		queue->fileio.blocks[i] = NULL;
368	}
369	queue->fileio.active_block = NULL;
370}
371
372static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
373	struct iio_dma_buffer_block *block)
374{
375	int ret;
376
377	/*
378	 * If the hardware has already been removed we put the block into
379	 * limbo. It will neither be on the incoming nor outgoing list, nor will
380	 * it ever complete. It will just wait to be freed eventually.
381	 */
382	if (!queue->ops)
383		return;
384
385	block->state = IIO_BLOCK_STATE_ACTIVE;
386	iio_buffer_block_get(block);
387	ret = queue->ops->submit(queue, block);
388	if (ret) {
389		/*
390		 * This is a bit of a problem and there is not much we can do
391		 * other then wait for the buffer to be disabled and re-enabled
392		 * and try again. But it should not really happen unless we run
393		 * out of memory or something similar.
394		 *
395		 * TODO: Implement support in the IIO core to allow buffers to
396		 * notify consumers that something went wrong and the buffer
397		 * should be disabled.
398		 */
399		iio_buffer_block_put(block);
400	}
401}
402
403/**
404 * iio_dma_buffer_enable() - Enable DMA buffer
405 * @buffer: IIO buffer to enable
406 * @indio_dev: IIO device the buffer is attached to
407 *
408 * Needs to be called when the device that the buffer is attached to starts
409 * sampling. Typically should be the iio_buffer_access_ops enable callback.
410 *
411 * This will allocate the DMA buffers and start the DMA transfers.
412 */
413int iio_dma_buffer_enable(struct iio_buffer *buffer,
414	struct iio_dev *indio_dev)
415{
416	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
417	struct iio_dma_buffer_block *block, *_block;
418
419	mutex_lock(&queue->lock);
420	queue->active = true;
421	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
422		list_del(&block->head);
423		iio_dma_buffer_submit_block(queue, block);
424	}
425	mutex_unlock(&queue->lock);
426
427	return 0;
428}
429EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
430
431/**
432 * iio_dma_buffer_disable() - Disable DMA buffer
433 * @buffer: IIO DMA buffer to disable
434 * @indio_dev: IIO device the buffer is attached to
435 *
436 * Needs to be called when the device that the buffer is attached to stops
437 * sampling. Typically should be the iio_buffer_access_ops disable callback.
438 */
439int iio_dma_buffer_disable(struct iio_buffer *buffer,
440	struct iio_dev *indio_dev)
441{
442	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
443
444	mutex_lock(&queue->lock);
445	queue->active = false;
446
447	if (queue->ops && queue->ops->abort)
448		queue->ops->abort(queue);
449	mutex_unlock(&queue->lock);
450
451	return 0;
452}
453EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
454
455static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
456	struct iio_dma_buffer_block *block)
457{
458	if (block->state == IIO_BLOCK_STATE_DEAD) {
459		iio_buffer_block_put(block);
460	} else if (queue->active) {
461		iio_dma_buffer_submit_block(queue, block);
462	} else {
463		block->state = IIO_BLOCK_STATE_QUEUED;
464		list_add_tail(&block->head, &queue->incoming);
465	}
466}
467
468static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
469	struct iio_dma_buffer_queue *queue)
470{
471	struct iio_dma_buffer_block *block;
472	unsigned int idx;
473
474	spin_lock_irq(&queue->list_lock);
475
476	idx = queue->fileio.next_dequeue;
477	block = queue->fileio.blocks[idx];
478
479	if (block->state == IIO_BLOCK_STATE_DONE) {
480		idx = (idx + 1) % ARRAY_SIZE(queue->fileio.blocks);
481		queue->fileio.next_dequeue = idx;
482	} else {
483		block = NULL;
484	}
485
486	spin_unlock_irq(&queue->list_lock);
487
488	return block;
489}
490
491/**
492 * iio_dma_buffer_read() - DMA buffer read callback
493 * @buffer: Buffer to read form
494 * @n: Number of bytes to read
495 * @user_buffer: Userspace buffer to copy the data to
496 *
497 * Should be used as the read callback for iio_buffer_access_ops
498 * struct for DMA buffers.
499 */
500int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
501	char __user *user_buffer)
502{
503	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
504	struct iio_dma_buffer_block *block;
505	int ret;
506
507	if (n < buffer->bytes_per_datum)
508		return -EINVAL;
509
510	mutex_lock(&queue->lock);
511
512	if (!queue->fileio.active_block) {
513		block = iio_dma_buffer_dequeue(queue);
514		if (block == NULL) {
515			ret = 0;
516			goto out_unlock;
517		}
518		queue->fileio.pos = 0;
519		queue->fileio.active_block = block;
520	} else {
521		block = queue->fileio.active_block;
522	}
523
524	n = rounddown(n, buffer->bytes_per_datum);
525	if (n > block->bytes_used - queue->fileio.pos)
526		n = block->bytes_used - queue->fileio.pos;
527
528	if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
529		ret = -EFAULT;
530		goto out_unlock;
531	}
532
533	queue->fileio.pos += n;
534
535	if (queue->fileio.pos == block->bytes_used) {
536		queue->fileio.active_block = NULL;
537		iio_dma_buffer_enqueue(queue, block);
538	}
539
540	ret = n;
541
542out_unlock:
543	mutex_unlock(&queue->lock);
544
545	return ret;
546}
547EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
548
549/**
550 * iio_dma_buffer_data_available() - DMA buffer data_available callback
551 * @buf: Buffer to check for data availability
552 *
553 * Should be used as the data_available callback for iio_buffer_access_ops
554 * struct for DMA buffers.
555 */
556size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
557{
558	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
559	struct iio_dma_buffer_block *block;
560	size_t data_available = 0;
561	unsigned int i;
562
563	/*
564	 * For counting the available bytes we'll use the size of the block not
565	 * the number of actual bytes available in the block. Otherwise it is
566	 * possible that we end up with a value that is lower than the watermark
567	 * but won't increase since all blocks are in use.
568	 */
569
570	mutex_lock(&queue->lock);
571	if (queue->fileio.active_block)
572		data_available += queue->fileio.active_block->size;
573
574	spin_lock_irq(&queue->list_lock);
575
576	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
577		block = queue->fileio.blocks[i];
578
579		if (block != queue->fileio.active_block
580		    && block->state == IIO_BLOCK_STATE_DONE)
581			data_available += block->size;
582	}
583
584	spin_unlock_irq(&queue->list_lock);
585	mutex_unlock(&queue->lock);
586
587	return data_available;
588}
589EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
590
591/**
592 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
593 * @buffer: Buffer to set the bytes-per-datum for
594 * @bpd: The new bytes-per-datum value
595 *
596 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
597 * struct for DMA buffers.
598 */
599int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
600{
601	buffer->bytes_per_datum = bpd;
602
603	return 0;
604}
605EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
606
607/**
608 * iio_dma_buffer_set_length - DMA buffer set_length callback
609 * @buffer: Buffer to set the length for
610 * @length: The new buffer length
611 *
612 * Should be used as the set_length callback for iio_buffer_access_ops
613 * struct for DMA buffers.
614 */
615int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
616{
617	/* Avoid an invalid state */
618	if (length < 2)
619		length = 2;
620	buffer->length = length;
621	buffer->watermark = length / 2;
622
623	return 0;
624}
625EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
626
627/**
628 * iio_dma_buffer_init() - Initialize DMA buffer queue
629 * @queue: Buffer to initialize
630 * @dev: DMA device
631 * @ops: DMA buffer queue callback operations
632 *
633 * The DMA device will be used by the queue to do DMA memory allocations. So it
634 * should refer to the device that will perform the DMA to ensure that
635 * allocations are done from a memory region that can be accessed by the device.
636 */
637int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
638	struct device *dev, const struct iio_dma_buffer_ops *ops)
639{
640	iio_buffer_init(&queue->buffer);
641	queue->buffer.length = PAGE_SIZE;
642	queue->buffer.watermark = queue->buffer.length / 2;
643	queue->dev = dev;
644	queue->ops = ops;
645
646	INIT_LIST_HEAD(&queue->incoming);
 
647
648	mutex_init(&queue->lock);
649	spin_lock_init(&queue->list_lock);
650
651	return 0;
652}
653EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
654
655/**
656 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
657 * @queue: Buffer to cleanup
658 *
659 * After this function has completed it is safe to free any resources that are
660 * associated with the buffer and are accessed inside the callback operations.
661 */
662void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
663{
 
 
664	mutex_lock(&queue->lock);
665
666	iio_dma_buffer_fileio_free(queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
667	queue->ops = NULL;
668
669	mutex_unlock(&queue->lock);
670}
671EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
672
673/**
674 * iio_dma_buffer_release() - Release final buffer resources
675 * @queue: Buffer to release
676 *
677 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
678 * called in the buffers release callback implementation right before freeing
679 * the memory associated with the buffer.
680 */
681void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
682{
683	mutex_destroy(&queue->lock);
684}
685EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
686
687MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
688MODULE_DESCRIPTION("DMA buffer for the IIO framework");
689MODULE_LICENSE("GPL v2");