Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Renesas RIIC driver
4 *
5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
6 * Copyright (C) 2013 Renesas Solutions Corp.
7 */
8
9/*
10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
11 * some kind of state machine.
12 *
13 * 1) The main xfer routine kicks off a transmission by putting the start bit
14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
15 * since we need to send the slave address + RW bit in every case.
16 *
17 * 2) TIE sends slave address + RW bit and selects how to continue.
18 *
19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
20 * are done, we switch over to the transmission done interrupt (TEIE) and mark
21 * the message as completed (includes sending STOP) there.
22 *
23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
24 * needed to start clocking, then we keep receiving until we are done. Note
25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
27 * message to create the final NACK as sketched in the datasheet. This caused
28 * some subtle races (when byte n was processed and byte n+1 was already
29 * waiting), though, and I started with the safe approach.
30 *
31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
32 * via NAKIE.
33 *
34 * Also check the comments in the interrupt routines for some gory details.
35 */
36
37#include <linux/clk.h>
38#include <linux/completion.h>
39#include <linux/err.h>
40#include <linux/i2c.h>
41#include <linux/interrupt.h>
42#include <linux/io.h>
43#include <linux/module.h>
44#include <linux/of.h>
45#include <linux/of_device.h>
46#include <linux/platform_device.h>
47#include <linux/pm_runtime.h>
48#include <linux/reset.h>
49
50#define RIIC_ICCR1 0x00
51#define RIIC_ICCR2 0x04
52#define RIIC_ICMR1 0x08
53#define RIIC_ICMR3 0x10
54#define RIIC_ICSER 0x18
55#define RIIC_ICIER 0x1c
56#define RIIC_ICSR2 0x24
57#define RIIC_ICBRL 0x34
58#define RIIC_ICBRH 0x38
59#define RIIC_ICDRT 0x3c
60#define RIIC_ICDRR 0x40
61
62#define ICCR1_ICE 0x80
63#define ICCR1_IICRST 0x40
64#define ICCR1_SOWP 0x10
65
66#define ICCR2_BBSY 0x80
67#define ICCR2_SP 0x08
68#define ICCR2_RS 0x04
69#define ICCR2_ST 0x02
70
71#define ICMR1_CKS_MASK 0x70
72#define ICMR1_BCWP 0x08
73#define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
74
75#define ICMR3_RDRFS 0x20
76#define ICMR3_ACKWP 0x10
77#define ICMR3_ACKBT 0x08
78
79#define ICIER_TIE 0x80
80#define ICIER_TEIE 0x40
81#define ICIER_RIE 0x20
82#define ICIER_NAKIE 0x10
83#define ICIER_SPIE 0x08
84
85#define ICSR2_NACKF 0x10
86
87#define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
88
89#define RIIC_INIT_MSG -1
90
91struct riic_dev {
92 void __iomem *base;
93 u8 *buf;
94 struct i2c_msg *msg;
95 int bytes_left;
96 int err;
97 int is_last;
98 struct completion msg_done;
99 struct i2c_adapter adapter;
100 struct clk *clk;
101};
102
103struct riic_irq_desc {
104 int res_num;
105 irq_handler_t isr;
106 char *name;
107};
108
109static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
110{
111 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
112}
113
114static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
115{
116 struct riic_dev *riic = i2c_get_adapdata(adap);
117 unsigned long time_left;
118 int i;
119 u8 start_bit;
120
121 pm_runtime_get_sync(adap->dev.parent);
122
123 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
124 riic->err = -EBUSY;
125 goto out;
126 }
127
128 reinit_completion(&riic->msg_done);
129 riic->err = 0;
130
131 writeb(0, riic->base + RIIC_ICSR2);
132
133 for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
134 riic->bytes_left = RIIC_INIT_MSG;
135 riic->buf = msgs[i].buf;
136 riic->msg = &msgs[i];
137 riic->is_last = (i == num - 1);
138
139 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
140
141 writeb(start_bit, riic->base + RIIC_ICCR2);
142
143 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
144 if (time_left == 0)
145 riic->err = -ETIMEDOUT;
146
147 if (riic->err)
148 break;
149
150 start_bit = ICCR2_RS;
151 }
152
153 out:
154 pm_runtime_put(adap->dev.parent);
155
156 return riic->err ?: num;
157}
158
159static irqreturn_t riic_tdre_isr(int irq, void *data)
160{
161 struct riic_dev *riic = data;
162 u8 val;
163
164 if (!riic->bytes_left)
165 return IRQ_NONE;
166
167 if (riic->bytes_left == RIIC_INIT_MSG) {
168 if (riic->msg->flags & I2C_M_RD)
169 /* On read, switch over to receive interrupt */
170 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
171 else
172 /* On write, initialize length */
173 riic->bytes_left = riic->msg->len;
174
175 val = i2c_8bit_addr_from_msg(riic->msg);
176 } else {
177 val = *riic->buf;
178 riic->buf++;
179 riic->bytes_left--;
180 }
181
182 /*
183 * Switch to transmission ended interrupt when done. Do check here
184 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
185 * 0 length then)
186 */
187 if (riic->bytes_left == 0)
188 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
189
190 /*
191 * This acks the TIE interrupt. We get another TIE immediately if our
192 * value could be moved to the shadow shift register right away. So
193 * this must be after updates to ICIER (where we want to disable TIE)!
194 */
195 writeb(val, riic->base + RIIC_ICDRT);
196
197 return IRQ_HANDLED;
198}
199
200static irqreturn_t riic_tend_isr(int irq, void *data)
201{
202 struct riic_dev *riic = data;
203
204 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
205 /* We got a NACKIE */
206 readb(riic->base + RIIC_ICDRR); /* dummy read */
207 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2);
208 riic->err = -ENXIO;
209 } else if (riic->bytes_left) {
210 return IRQ_NONE;
211 }
212
213 if (riic->is_last || riic->err) {
214 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
215 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
216 } else {
217 /* Transfer is complete, but do not send STOP */
218 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
219 complete(&riic->msg_done);
220 }
221
222 return IRQ_HANDLED;
223}
224
225static irqreturn_t riic_rdrf_isr(int irq, void *data)
226{
227 struct riic_dev *riic = data;
228
229 if (!riic->bytes_left)
230 return IRQ_NONE;
231
232 if (riic->bytes_left == RIIC_INIT_MSG) {
233 riic->bytes_left = riic->msg->len;
234 readb(riic->base + RIIC_ICDRR); /* dummy read */
235 return IRQ_HANDLED;
236 }
237
238 if (riic->bytes_left == 1) {
239 /* STOP must come before we set ACKBT! */
240 if (riic->is_last) {
241 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
242 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
243 }
244
245 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
246
247 } else {
248 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
249 }
250
251 /* Reading acks the RIE interrupt */
252 *riic->buf = readb(riic->base + RIIC_ICDRR);
253 riic->buf++;
254 riic->bytes_left--;
255
256 return IRQ_HANDLED;
257}
258
259static irqreturn_t riic_stop_isr(int irq, void *data)
260{
261 struct riic_dev *riic = data;
262
263 /* read back registers to confirm writes have fully propagated */
264 writeb(0, riic->base + RIIC_ICSR2);
265 readb(riic->base + RIIC_ICSR2);
266 writeb(0, riic->base + RIIC_ICIER);
267 readb(riic->base + RIIC_ICIER);
268
269 complete(&riic->msg_done);
270
271 return IRQ_HANDLED;
272}
273
274static u32 riic_func(struct i2c_adapter *adap)
275{
276 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
277}
278
279static const struct i2c_algorithm riic_algo = {
280 .master_xfer = riic_xfer,
281 .functionality = riic_func,
282};
283
284static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t)
285{
286 int ret = 0;
287 unsigned long rate;
288 int total_ticks, cks, brl, brh;
289
290 pm_runtime_get_sync(riic->adapter.dev.parent);
291
292 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) {
293 dev_err(&riic->adapter.dev,
294 "unsupported bus speed (%dHz). %d max\n",
295 t->bus_freq_hz, I2C_MAX_FAST_MODE_FREQ);
296 ret = -EINVAL;
297 goto out;
298 }
299
300 rate = clk_get_rate(riic->clk);
301
302 /*
303 * Assume the default register settings:
304 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles)
305 * FER.NFE = 1 (noise circuit enabled)
306 * MR3.NF = 0 (1 cycle of noise filtered out)
307 *
308 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1)
309 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1)
310 */
311
312 /*
313 * Determine reference clock rate. We must be able to get the desired
314 * frequency with only 62 clock ticks max (31 high, 31 low).
315 * Aim for a duty of 60% LOW, 40% HIGH.
316 */
317 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz);
318
319 for (cks = 0; cks < 7; cks++) {
320 /*
321 * 60% low time must be less than BRL + 2 + 1
322 * BRL max register value is 0x1F.
323 */
324 brl = ((total_ticks * 6) / 10);
325 if (brl <= (0x1F + 3))
326 break;
327
328 total_ticks /= 2;
329 rate /= 2;
330 }
331
332 if (brl > (0x1F + 3)) {
333 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n",
334 (unsigned long)t->bus_freq_hz);
335 ret = -EINVAL;
336 goto out;
337 }
338
339 brh = total_ticks - brl;
340
341 /* Remove automatic clock ticks for sync circuit and NF */
342 if (cks == 0) {
343 brl -= 4;
344 brh -= 4;
345 } else {
346 brl -= 3;
347 brh -= 3;
348 }
349
350 /*
351 * Remove clock ticks for rise and fall times. Convert ns to clock
352 * ticks.
353 */
354 brl -= t->scl_fall_ns / (1000000000 / rate);
355 brh -= t->scl_rise_ns / (1000000000 / rate);
356
357 /* Adjust for min register values for when SCLE=1 and NFE=1 */
358 if (brl < 1)
359 brl = 1;
360 if (brh < 1)
361 brh = 1;
362
363 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n",
364 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6),
365 t->scl_fall_ns / (1000000000 / rate),
366 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh);
367
368 /* Changing the order of accessing IICRST and ICE may break things! */
369 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
370 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
371
372 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1);
373 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH);
374 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL);
375
376 writeb(0, riic->base + RIIC_ICSER);
377 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
378
379 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
380
381out:
382 pm_runtime_put(riic->adapter.dev.parent);
383 return ret;
384}
385
386static struct riic_irq_desc riic_irqs[] = {
387 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
388 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
389 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
390 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
391 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
392};
393
394static void riic_reset_control_assert(void *data)
395{
396 reset_control_assert(data);
397}
398
399static int riic_i2c_probe(struct platform_device *pdev)
400{
401 struct riic_dev *riic;
402 struct i2c_adapter *adap;
403 struct i2c_timings i2c_t;
404 struct reset_control *rstc;
405 int i, ret;
406
407 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
408 if (!riic)
409 return -ENOMEM;
410
411 riic->base = devm_platform_ioremap_resource(pdev, 0);
412 if (IS_ERR(riic->base))
413 return PTR_ERR(riic->base);
414
415 riic->clk = devm_clk_get(&pdev->dev, NULL);
416 if (IS_ERR(riic->clk)) {
417 dev_err(&pdev->dev, "missing controller clock");
418 return PTR_ERR(riic->clk);
419 }
420
421 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
422 if (IS_ERR(rstc))
423 return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
424 "Error: missing reset ctrl\n");
425
426 ret = reset_control_deassert(rstc);
427 if (ret)
428 return ret;
429
430 ret = devm_add_action_or_reset(&pdev->dev, riic_reset_control_assert, rstc);
431 if (ret)
432 return ret;
433
434 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
435 ret = platform_get_irq(pdev, riic_irqs[i].res_num);
436 if (ret < 0)
437 return ret;
438
439 ret = devm_request_irq(&pdev->dev, ret, riic_irqs[i].isr,
440 0, riic_irqs[i].name, riic);
441 if (ret) {
442 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
443 return ret;
444 }
445 }
446
447 adap = &riic->adapter;
448 i2c_set_adapdata(adap, riic);
449 strscpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
450 adap->owner = THIS_MODULE;
451 adap->algo = &riic_algo;
452 adap->dev.parent = &pdev->dev;
453 adap->dev.of_node = pdev->dev.of_node;
454
455 init_completion(&riic->msg_done);
456
457 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true);
458
459 pm_runtime_enable(&pdev->dev);
460
461 ret = riic_init_hw(riic, &i2c_t);
462 if (ret)
463 goto out;
464
465 ret = i2c_add_adapter(adap);
466 if (ret)
467 goto out;
468
469 platform_set_drvdata(pdev, riic);
470
471 dev_info(&pdev->dev, "registered with %dHz bus speed\n",
472 i2c_t.bus_freq_hz);
473 return 0;
474
475out:
476 pm_runtime_disable(&pdev->dev);
477 return ret;
478}
479
480static int riic_i2c_remove(struct platform_device *pdev)
481{
482 struct riic_dev *riic = platform_get_drvdata(pdev);
483
484 pm_runtime_get_sync(&pdev->dev);
485 writeb(0, riic->base + RIIC_ICIER);
486 pm_runtime_put(&pdev->dev);
487 i2c_del_adapter(&riic->adapter);
488 pm_runtime_disable(&pdev->dev);
489
490 return 0;
491}
492
493static const struct of_device_id riic_i2c_dt_ids[] = {
494 { .compatible = "renesas,riic-rz", },
495 { /* Sentinel */ },
496};
497
498static struct platform_driver riic_i2c_driver = {
499 .probe = riic_i2c_probe,
500 .remove = riic_i2c_remove,
501 .driver = {
502 .name = "i2c-riic",
503 .of_match_table = riic_i2c_dt_ids,
504 },
505};
506
507module_platform_driver(riic_i2c_driver);
508
509MODULE_DESCRIPTION("Renesas RIIC adapter");
510MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
511MODULE_LICENSE("GPL v2");
512MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Renesas RIIC driver
4 *
5 * Copyright (C) 2013 Wolfram Sang <wsa@sang-engineering.com>
6 * Copyright (C) 2013 Renesas Solutions Corp.
7 */
8
9/*
10 * This i2c core has a lot of interrupts, namely 8. We use their chaining as
11 * some kind of state machine.
12 *
13 * 1) The main xfer routine kicks off a transmission by putting the start bit
14 * (or repeated start) on the bus and enabling the transmit interrupt (TIE)
15 * since we need to send the slave address + RW bit in every case.
16 *
17 * 2) TIE sends slave address + RW bit and selects how to continue.
18 *
19 * 3a) Write case: We keep utilizing TIE as long as we have data to send. If we
20 * are done, we switch over to the transmission done interrupt (TEIE) and mark
21 * the message as completed (includes sending STOP) there.
22 *
23 * 3b) Read case: We switch over to receive interrupt (RIE). One dummy read is
24 * needed to start clocking, then we keep receiving until we are done. Note
25 * that we use the RDRFS mode all the time, i.e. we ACK/NACK every byte by
26 * writing to the ACKBT bit. I tried using the RDRFS mode only at the end of a
27 * message to create the final NACK as sketched in the datasheet. This caused
28 * some subtle races (when byte n was processed and byte n+1 was already
29 * waiting), though, and I started with the safe approach.
30 *
31 * 4) If we got a NACK somewhere, we flag the error and stop the transmission
32 * via NAKIE.
33 *
34 * Also check the comments in the interrupt routines for some gory details.
35 */
36
37#include <linux/clk.h>
38#include <linux/completion.h>
39#include <linux/err.h>
40#include <linux/i2c.h>
41#include <linux/interrupt.h>
42#include <linux/io.h>
43#include <linux/module.h>
44#include <linux/of.h>
45#include <linux/platform_device.h>
46#include <linux/pm_runtime.h>
47#include <linux/reset.h>
48
49#define RIIC_ICCR1 0x00
50#define RIIC_ICCR2 0x04
51#define RIIC_ICMR1 0x08
52#define RIIC_ICMR3 0x10
53#define RIIC_ICSER 0x18
54#define RIIC_ICIER 0x1c
55#define RIIC_ICSR2 0x24
56#define RIIC_ICBRL 0x34
57#define RIIC_ICBRH 0x38
58#define RIIC_ICDRT 0x3c
59#define RIIC_ICDRR 0x40
60
61#define ICCR1_ICE 0x80
62#define ICCR1_IICRST 0x40
63#define ICCR1_SOWP 0x10
64
65#define ICCR2_BBSY 0x80
66#define ICCR2_SP 0x08
67#define ICCR2_RS 0x04
68#define ICCR2_ST 0x02
69
70#define ICMR1_CKS_MASK 0x70
71#define ICMR1_BCWP 0x08
72#define ICMR1_CKS(_x) ((((_x) << 4) & ICMR1_CKS_MASK) | ICMR1_BCWP)
73
74#define ICMR3_RDRFS 0x20
75#define ICMR3_ACKWP 0x10
76#define ICMR3_ACKBT 0x08
77
78#define ICIER_TIE 0x80
79#define ICIER_TEIE 0x40
80#define ICIER_RIE 0x20
81#define ICIER_NAKIE 0x10
82#define ICIER_SPIE 0x08
83
84#define ICSR2_NACKF 0x10
85
86#define ICBR_RESERVED 0xe0 /* Should be 1 on writes */
87
88#define RIIC_INIT_MSG -1
89
90struct riic_dev {
91 void __iomem *base;
92 u8 *buf;
93 struct i2c_msg *msg;
94 int bytes_left;
95 int err;
96 int is_last;
97 struct completion msg_done;
98 struct i2c_adapter adapter;
99 struct clk *clk;
100};
101
102struct riic_irq_desc {
103 int res_num;
104 irq_handler_t isr;
105 char *name;
106};
107
108static inline void riic_clear_set_bit(struct riic_dev *riic, u8 clear, u8 set, u8 reg)
109{
110 writeb((readb(riic->base + reg) & ~clear) | set, riic->base + reg);
111}
112
113static int riic_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[], int num)
114{
115 struct riic_dev *riic = i2c_get_adapdata(adap);
116 unsigned long time_left;
117 int i;
118 u8 start_bit;
119
120 pm_runtime_get_sync(adap->dev.parent);
121
122 if (readb(riic->base + RIIC_ICCR2) & ICCR2_BBSY) {
123 riic->err = -EBUSY;
124 goto out;
125 }
126
127 reinit_completion(&riic->msg_done);
128 riic->err = 0;
129
130 writeb(0, riic->base + RIIC_ICSR2);
131
132 for (i = 0, start_bit = ICCR2_ST; i < num; i++) {
133 riic->bytes_left = RIIC_INIT_MSG;
134 riic->buf = msgs[i].buf;
135 riic->msg = &msgs[i];
136 riic->is_last = (i == num - 1);
137
138 writeb(ICIER_NAKIE | ICIER_TIE, riic->base + RIIC_ICIER);
139
140 writeb(start_bit, riic->base + RIIC_ICCR2);
141
142 time_left = wait_for_completion_timeout(&riic->msg_done, riic->adapter.timeout);
143 if (time_left == 0)
144 riic->err = -ETIMEDOUT;
145
146 if (riic->err)
147 break;
148
149 start_bit = ICCR2_RS;
150 }
151
152 out:
153 pm_runtime_put(adap->dev.parent);
154
155 return riic->err ?: num;
156}
157
158static irqreturn_t riic_tdre_isr(int irq, void *data)
159{
160 struct riic_dev *riic = data;
161 u8 val;
162
163 if (!riic->bytes_left)
164 return IRQ_NONE;
165
166 if (riic->bytes_left == RIIC_INIT_MSG) {
167 if (riic->msg->flags & I2C_M_RD)
168 /* On read, switch over to receive interrupt */
169 riic_clear_set_bit(riic, ICIER_TIE, ICIER_RIE, RIIC_ICIER);
170 else
171 /* On write, initialize length */
172 riic->bytes_left = riic->msg->len;
173
174 val = i2c_8bit_addr_from_msg(riic->msg);
175 } else {
176 val = *riic->buf;
177 riic->buf++;
178 riic->bytes_left--;
179 }
180
181 /*
182 * Switch to transmission ended interrupt when done. Do check here
183 * after bytes_left was initialized to support SMBUS_QUICK (new msg has
184 * 0 length then)
185 */
186 if (riic->bytes_left == 0)
187 riic_clear_set_bit(riic, ICIER_TIE, ICIER_TEIE, RIIC_ICIER);
188
189 /*
190 * This acks the TIE interrupt. We get another TIE immediately if our
191 * value could be moved to the shadow shift register right away. So
192 * this must be after updates to ICIER (where we want to disable TIE)!
193 */
194 writeb(val, riic->base + RIIC_ICDRT);
195
196 return IRQ_HANDLED;
197}
198
199static irqreturn_t riic_tend_isr(int irq, void *data)
200{
201 struct riic_dev *riic = data;
202
203 if (readb(riic->base + RIIC_ICSR2) & ICSR2_NACKF) {
204 /* We got a NACKIE */
205 readb(riic->base + RIIC_ICDRR); /* dummy read */
206 riic_clear_set_bit(riic, ICSR2_NACKF, 0, RIIC_ICSR2);
207 riic->err = -ENXIO;
208 } else if (riic->bytes_left) {
209 return IRQ_NONE;
210 }
211
212 if (riic->is_last || riic->err) {
213 riic_clear_set_bit(riic, ICIER_TEIE, ICIER_SPIE, RIIC_ICIER);
214 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
215 } else {
216 /* Transfer is complete, but do not send STOP */
217 riic_clear_set_bit(riic, ICIER_TEIE, 0, RIIC_ICIER);
218 complete(&riic->msg_done);
219 }
220
221 return IRQ_HANDLED;
222}
223
224static irqreturn_t riic_rdrf_isr(int irq, void *data)
225{
226 struct riic_dev *riic = data;
227
228 if (!riic->bytes_left)
229 return IRQ_NONE;
230
231 if (riic->bytes_left == RIIC_INIT_MSG) {
232 riic->bytes_left = riic->msg->len;
233 readb(riic->base + RIIC_ICDRR); /* dummy read */
234 return IRQ_HANDLED;
235 }
236
237 if (riic->bytes_left == 1) {
238 /* STOP must come before we set ACKBT! */
239 if (riic->is_last) {
240 riic_clear_set_bit(riic, 0, ICIER_SPIE, RIIC_ICIER);
241 writeb(ICCR2_SP, riic->base + RIIC_ICCR2);
242 }
243
244 riic_clear_set_bit(riic, 0, ICMR3_ACKBT, RIIC_ICMR3);
245
246 } else {
247 riic_clear_set_bit(riic, ICMR3_ACKBT, 0, RIIC_ICMR3);
248 }
249
250 /* Reading acks the RIE interrupt */
251 *riic->buf = readb(riic->base + RIIC_ICDRR);
252 riic->buf++;
253 riic->bytes_left--;
254
255 return IRQ_HANDLED;
256}
257
258static irqreturn_t riic_stop_isr(int irq, void *data)
259{
260 struct riic_dev *riic = data;
261
262 /* read back registers to confirm writes have fully propagated */
263 writeb(0, riic->base + RIIC_ICSR2);
264 readb(riic->base + RIIC_ICSR2);
265 writeb(0, riic->base + RIIC_ICIER);
266 readb(riic->base + RIIC_ICIER);
267
268 complete(&riic->msg_done);
269
270 return IRQ_HANDLED;
271}
272
273static u32 riic_func(struct i2c_adapter *adap)
274{
275 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
276}
277
278static const struct i2c_algorithm riic_algo = {
279 .master_xfer = riic_xfer,
280 .functionality = riic_func,
281};
282
283static int riic_init_hw(struct riic_dev *riic, struct i2c_timings *t)
284{
285 int ret = 0;
286 unsigned long rate;
287 int total_ticks, cks, brl, brh;
288
289 pm_runtime_get_sync(riic->adapter.dev.parent);
290
291 if (t->bus_freq_hz > I2C_MAX_FAST_MODE_FREQ) {
292 dev_err(&riic->adapter.dev,
293 "unsupported bus speed (%dHz). %d max\n",
294 t->bus_freq_hz, I2C_MAX_FAST_MODE_FREQ);
295 ret = -EINVAL;
296 goto out;
297 }
298
299 rate = clk_get_rate(riic->clk);
300
301 /*
302 * Assume the default register settings:
303 * FER.SCLE = 1 (SCL sync circuit enabled, adds 2 or 3 cycles)
304 * FER.NFE = 1 (noise circuit enabled)
305 * MR3.NF = 0 (1 cycle of noise filtered out)
306 *
307 * Freq (CKS=000) = (I2CCLK + tr + tf)/ (BRH + 3 + 1) + (BRL + 3 + 1)
308 * Freq (CKS!=000) = (I2CCLK + tr + tf)/ (BRH + 2 + 1) + (BRL + 2 + 1)
309 */
310
311 /*
312 * Determine reference clock rate. We must be able to get the desired
313 * frequency with only 62 clock ticks max (31 high, 31 low).
314 * Aim for a duty of 60% LOW, 40% HIGH.
315 */
316 total_ticks = DIV_ROUND_UP(rate, t->bus_freq_hz ?: 1);
317
318 for (cks = 0; cks < 7; cks++) {
319 /*
320 * 60% low time must be less than BRL + 2 + 1
321 * BRL max register value is 0x1F.
322 */
323 brl = ((total_ticks * 6) / 10);
324 if (brl <= (0x1F + 3))
325 break;
326
327 total_ticks /= 2;
328 rate /= 2;
329 }
330
331 if (brl > (0x1F + 3)) {
332 dev_err(&riic->adapter.dev, "invalid speed (%lu). Too slow.\n",
333 (unsigned long)t->bus_freq_hz);
334 ret = -EINVAL;
335 goto out;
336 }
337
338 brh = total_ticks - brl;
339
340 /* Remove automatic clock ticks for sync circuit and NF */
341 if (cks == 0) {
342 brl -= 4;
343 brh -= 4;
344 } else {
345 brl -= 3;
346 brh -= 3;
347 }
348
349 /*
350 * Remove clock ticks for rise and fall times. Convert ns to clock
351 * ticks.
352 */
353 brl -= t->scl_fall_ns / (1000000000 / rate);
354 brh -= t->scl_rise_ns / (1000000000 / rate);
355
356 /* Adjust for min register values for when SCLE=1 and NFE=1 */
357 if (brl < 1)
358 brl = 1;
359 if (brh < 1)
360 brh = 1;
361
362 pr_debug("i2c-riic: freq=%lu, duty=%d, fall=%lu, rise=%lu, cks=%d, brl=%d, brh=%d\n",
363 rate / total_ticks, ((brl + 3) * 100) / (brl + brh + 6),
364 t->scl_fall_ns / (1000000000 / rate),
365 t->scl_rise_ns / (1000000000 / rate), cks, brl, brh);
366
367 /* Changing the order of accessing IICRST and ICE may break things! */
368 writeb(ICCR1_IICRST | ICCR1_SOWP, riic->base + RIIC_ICCR1);
369 riic_clear_set_bit(riic, 0, ICCR1_ICE, RIIC_ICCR1);
370
371 writeb(ICMR1_CKS(cks), riic->base + RIIC_ICMR1);
372 writeb(brh | ICBR_RESERVED, riic->base + RIIC_ICBRH);
373 writeb(brl | ICBR_RESERVED, riic->base + RIIC_ICBRL);
374
375 writeb(0, riic->base + RIIC_ICSER);
376 writeb(ICMR3_ACKWP | ICMR3_RDRFS, riic->base + RIIC_ICMR3);
377
378 riic_clear_set_bit(riic, ICCR1_IICRST, 0, RIIC_ICCR1);
379
380out:
381 pm_runtime_put(riic->adapter.dev.parent);
382 return ret;
383}
384
385static struct riic_irq_desc riic_irqs[] = {
386 { .res_num = 0, .isr = riic_tend_isr, .name = "riic-tend" },
387 { .res_num = 1, .isr = riic_rdrf_isr, .name = "riic-rdrf" },
388 { .res_num = 2, .isr = riic_tdre_isr, .name = "riic-tdre" },
389 { .res_num = 3, .isr = riic_stop_isr, .name = "riic-stop" },
390 { .res_num = 5, .isr = riic_tend_isr, .name = "riic-nack" },
391};
392
393static void riic_reset_control_assert(void *data)
394{
395 reset_control_assert(data);
396}
397
398static int riic_i2c_probe(struct platform_device *pdev)
399{
400 struct riic_dev *riic;
401 struct i2c_adapter *adap;
402 struct i2c_timings i2c_t;
403 struct reset_control *rstc;
404 int i, ret;
405
406 riic = devm_kzalloc(&pdev->dev, sizeof(*riic), GFP_KERNEL);
407 if (!riic)
408 return -ENOMEM;
409
410 riic->base = devm_platform_ioremap_resource(pdev, 0);
411 if (IS_ERR(riic->base))
412 return PTR_ERR(riic->base);
413
414 riic->clk = devm_clk_get(&pdev->dev, NULL);
415 if (IS_ERR(riic->clk)) {
416 dev_err(&pdev->dev, "missing controller clock");
417 return PTR_ERR(riic->clk);
418 }
419
420 rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
421 if (IS_ERR(rstc))
422 return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
423 "Error: missing reset ctrl\n");
424
425 ret = reset_control_deassert(rstc);
426 if (ret)
427 return ret;
428
429 ret = devm_add_action_or_reset(&pdev->dev, riic_reset_control_assert, rstc);
430 if (ret)
431 return ret;
432
433 for (i = 0; i < ARRAY_SIZE(riic_irqs); i++) {
434 ret = platform_get_irq(pdev, riic_irqs[i].res_num);
435 if (ret < 0)
436 return ret;
437
438 ret = devm_request_irq(&pdev->dev, ret, riic_irqs[i].isr,
439 0, riic_irqs[i].name, riic);
440 if (ret) {
441 dev_err(&pdev->dev, "failed to request irq %s\n", riic_irqs[i].name);
442 return ret;
443 }
444 }
445
446 adap = &riic->adapter;
447 i2c_set_adapdata(adap, riic);
448 strscpy(adap->name, "Renesas RIIC adapter", sizeof(adap->name));
449 adap->owner = THIS_MODULE;
450 adap->algo = &riic_algo;
451 adap->dev.parent = &pdev->dev;
452 adap->dev.of_node = pdev->dev.of_node;
453
454 init_completion(&riic->msg_done);
455
456 i2c_parse_fw_timings(&pdev->dev, &i2c_t, true);
457
458 pm_runtime_enable(&pdev->dev);
459
460 ret = riic_init_hw(riic, &i2c_t);
461 if (ret)
462 goto out;
463
464 ret = i2c_add_adapter(adap);
465 if (ret)
466 goto out;
467
468 platform_set_drvdata(pdev, riic);
469
470 dev_info(&pdev->dev, "registered with %dHz bus speed\n",
471 i2c_t.bus_freq_hz);
472 return 0;
473
474out:
475 pm_runtime_disable(&pdev->dev);
476 return ret;
477}
478
479static void riic_i2c_remove(struct platform_device *pdev)
480{
481 struct riic_dev *riic = platform_get_drvdata(pdev);
482
483 pm_runtime_get_sync(&pdev->dev);
484 writeb(0, riic->base + RIIC_ICIER);
485 pm_runtime_put(&pdev->dev);
486 i2c_del_adapter(&riic->adapter);
487 pm_runtime_disable(&pdev->dev);
488}
489
490static const struct of_device_id riic_i2c_dt_ids[] = {
491 { .compatible = "renesas,riic-rz", },
492 { /* Sentinel */ },
493};
494
495static struct platform_driver riic_i2c_driver = {
496 .probe = riic_i2c_probe,
497 .remove_new = riic_i2c_remove,
498 .driver = {
499 .name = "i2c-riic",
500 .of_match_table = riic_i2c_dt_ids,
501 },
502};
503
504module_platform_driver(riic_i2c_driver);
505
506MODULE_DESCRIPTION("Renesas RIIC adapter");
507MODULE_AUTHOR("Wolfram Sang <wsa@sang-engineering.com>");
508MODULE_LICENSE("GPL v2");
509MODULE_DEVICE_TABLE(of, riic_i2c_dt_ids);