Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SGI NMI support routines
   4 *
   5 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
   6 * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
   7 * Copyright (c) Mike Travis
   8 */
   9
  10#include <linux/cpu.h>
  11#include <linux/delay.h>
  12#include <linux/kdb.h>
  13#include <linux/kexec.h>
  14#include <linux/kgdb.h>
  15#include <linux/moduleparam.h>
  16#include <linux/nmi.h>
  17#include <linux/sched.h>
  18#include <linux/sched/debug.h>
  19#include <linux/slab.h>
 
  20#include <linux/clocksource.h>
  21
  22#include <asm/apic.h>
  23#include <asm/current.h>
  24#include <asm/kdebug.h>
  25#include <asm/local64.h>
  26#include <asm/nmi.h>
  27#include <asm/reboot.h>
  28#include <asm/traps.h>
  29#include <asm/uv/uv.h>
  30#include <asm/uv/uv_hub.h>
  31#include <asm/uv/uv_mmrs.h>
  32
  33/*
  34 * UV handler for NMI
  35 *
  36 * Handle system-wide NMI events generated by the global 'power nmi' command.
  37 *
  38 * Basic operation is to field the NMI interrupt on each CPU and wait
  39 * until all CPU's have arrived into the nmi handler.  If some CPU's do not
  40 * make it into the handler, try and force them in with the IPI(NMI) signal.
  41 *
  42 * We also have to lessen UV Hub MMR accesses as much as possible as this
  43 * disrupts the UV Hub's primary mission of directing NumaLink traffic and
  44 * can cause system problems to occur.
  45 *
  46 * To do this we register our primary NMI notifier on the NMI_UNKNOWN
  47 * chain.  This reduces the number of false NMI calls when the perf
  48 * tools are running which generate an enormous number of NMIs per
  49 * second (~4M/s for 1024 CPU threads).  Our secondary NMI handler is
  50 * very short as it only checks that if it has been "pinged" with the
  51 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
  52 *
  53 */
  54
  55static struct uv_hub_nmi_s **uv_hub_nmi_list;
  56
  57DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
  58
  59/* Newer SMM NMI handler, not present in all systems */
  60static unsigned long uvh_nmi_mmrx;		/* UVH_EVENT_OCCURRED0/1 */
  61static unsigned long uvh_nmi_mmrx_clear;	/* UVH_EVENT_OCCURRED0/1_ALIAS */
  62static int uvh_nmi_mmrx_shift;			/* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
  63static char *uvh_nmi_mmrx_type;			/* "EXTIO_INT0" */
  64
  65/* Non-zero indicates newer SMM NMI handler present */
  66static unsigned long uvh_nmi_mmrx_supported;	/* UVH_EXTIO_INT0_BROADCAST */
  67
  68/* Indicates to BIOS that we want to use the newer SMM NMI handler */
  69static unsigned long uvh_nmi_mmrx_req;		/* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
  70static int uvh_nmi_mmrx_req_shift;		/* 62 */
  71
  72/* UV hubless values */
  73#define NMI_CONTROL_PORT	0x70
  74#define NMI_DUMMY_PORT		0x71
  75#define PAD_OWN_GPP_D_0		0x2c
  76#define GPI_NMI_STS_GPP_D_0	0x164
  77#define GPI_NMI_ENA_GPP_D_0	0x174
  78#define STS_GPP_D_0_MASK	0x1
  79#define PAD_CFG_DW0_GPP_D_0	0x4c0
  80#define GPIROUTNMI		(1ul << 17)
  81#define PCH_PCR_GPIO_1_BASE	0xfdae0000ul
  82#define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
  83
  84static u64 *pch_base;
  85static unsigned long nmi_mmr;
  86static unsigned long nmi_mmr_clear;
  87static unsigned long nmi_mmr_pending;
  88
  89static atomic_t	uv_in_nmi;
  90static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
  91static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
  92static atomic_t uv_nmi_slave_continue;
  93static cpumask_var_t uv_nmi_cpu_mask;
  94
  95static atomic_t uv_nmi_kexec_failed;
  96
  97/* Values for uv_nmi_slave_continue */
  98#define SLAVE_CLEAR	0
  99#define SLAVE_CONTINUE	1
 100#define SLAVE_EXIT	2
 101
 102/*
 103 * Default is all stack dumps go to the console and buffer.
 104 * Lower level to send to log buffer only.
 105 */
 106static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
 107module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
 108
 109/*
 110 * The following values show statistics on how perf events are affecting
 111 * this system.
 112 */
 113static int param_get_local64(char *buffer, const struct kernel_param *kp)
 114{
 115	return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
 116}
 117
 118static int param_set_local64(const char *val, const struct kernel_param *kp)
 119{
 120	/* Clear on any write */
 121	local64_set((local64_t *)kp->arg, 0);
 122	return 0;
 123}
 124
 125static const struct kernel_param_ops param_ops_local64 = {
 126	.get = param_get_local64,
 127	.set = param_set_local64,
 128};
 129#define param_check_local64(name, p) __param_check(name, p, local64_t)
 130
 131static local64_t uv_nmi_count;
 132module_param_named(nmi_count, uv_nmi_count, local64, 0644);
 133
 134static local64_t uv_nmi_misses;
 135module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
 136
 137static local64_t uv_nmi_ping_count;
 138module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
 139
 140static local64_t uv_nmi_ping_misses;
 141module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
 142
 143/*
 144 * Following values allow tuning for large systems under heavy loading
 145 */
 146static int uv_nmi_initial_delay = 100;
 147module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
 148
 149static int uv_nmi_slave_delay = 100;
 150module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
 151
 152static int uv_nmi_loop_delay = 100;
 153module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
 154
 155static int uv_nmi_trigger_delay = 10000;
 156module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
 157
 158static int uv_nmi_wait_count = 100;
 159module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
 160
 161static int uv_nmi_retry_count = 500;
 162module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
 163
 164static bool uv_pch_intr_enable = true;
 165static bool uv_pch_intr_now_enabled;
 166module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
 167
 168static bool uv_pch_init_enable = true;
 169module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
 170
 171static int uv_nmi_debug;
 172module_param_named(debug, uv_nmi_debug, int, 0644);
 173
 174#define nmi_debug(fmt, ...)				\
 175	do {						\
 176		if (uv_nmi_debug)			\
 177			pr_info(fmt, ##__VA_ARGS__);	\
 178	} while (0)
 179
 180/* Valid NMI Actions */
 181#define	ACTION_LEN	16
 182static struct nmi_action {
 183	char	*action;
 184	char	*desc;
 185} valid_acts[] = {
 186	{	"kdump",	"do kernel crash dump"			},
 187	{	"dump",		"dump process stack for each cpu"	},
 188	{	"ips",		"dump Inst Ptr info for each cpu"	},
 189	{	"kdb",		"enter KDB (needs kgdboc= assignment)"	},
 190	{	"kgdb",		"enter KGDB (needs gdb target remote)"	},
 191	{	"health",	"check if CPUs respond to NMI"		},
 192};
 193typedef char action_t[ACTION_LEN];
 194static action_t uv_nmi_action = { "dump" };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195
 196static int param_get_action(char *buffer, const struct kernel_param *kp)
 197{
 198	return sprintf(buffer, "%s\n", uv_nmi_action);
 199}
 200
 201static int param_set_action(const char *val, const struct kernel_param *kp)
 202{
 203	int i;
 204	int n = ARRAY_SIZE(valid_acts);
 205	char arg[ACTION_LEN], *p;
 206
 207	/* (remove possible '\n') */
 208	strncpy(arg, val, ACTION_LEN - 1);
 209	arg[ACTION_LEN - 1] = '\0';
 210	p = strchr(arg, '\n');
 211	if (p)
 212		*p = '\0';
 213
 214	for (i = 0; i < n; i++)
 215		if (!strcmp(arg, valid_acts[i].action))
 216			break;
 217
 218	if (i < n) {
 219		strcpy(uv_nmi_action, arg);
 220		pr_info("UV: New NMI action:%s\n", uv_nmi_action);
 221		return 0;
 222	}
 223
 224	pr_err("UV: Invalid NMI action:%s, valid actions are:\n", arg);
 225	for (i = 0; i < n; i++)
 226		pr_err("UV: %-8s - %s\n",
 227			valid_acts[i].action, valid_acts[i].desc);
 228	return -EINVAL;
 229}
 230
 231static const struct kernel_param_ops param_ops_action = {
 232	.get = param_get_action,
 233	.set = param_set_action,
 234};
 235#define param_check_action(name, p) __param_check(name, p, action_t)
 236
 237module_param_named(action, uv_nmi_action, action, 0644);
 238
 239static inline bool uv_nmi_action_is(const char *action)
 240{
 241	return (strncmp(uv_nmi_action, action, strlen(action)) == 0);
 242}
 243
 244/* Setup which NMI support is present in system */
 245static void uv_nmi_setup_mmrs(void)
 246{
 247	bool new_nmi_method_only = false;
 248
 249	/* First determine arch specific MMRs to handshake with BIOS */
 250	if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {	/* UV2,3,4 setup */
 251		uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
 252		uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
 253		uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
 254		uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
 255
 256		uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
 257		uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
 258		uvh_nmi_mmrx_req_shift = 62;
 259
 260	} else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */
 261		uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
 262		uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
 263		uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
 264		uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
 265
 266		new_nmi_method_only = true;		/* Newer nmi always valid on UV5+ */
 267		uvh_nmi_mmrx_req = 0;			/* no request bit to clear */
 268
 269	} else {
 270		pr_err("UV:%s:NMI support not available on this system\n", __func__);
 271		return;
 272	}
 273
 274	/* Then find out if new NMI is supported */
 275	if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) {
 276		if (uvh_nmi_mmrx_req)
 277			uv_write_local_mmr(uvh_nmi_mmrx_req,
 278						1UL << uvh_nmi_mmrx_req_shift);
 279		nmi_mmr = uvh_nmi_mmrx;
 280		nmi_mmr_clear = uvh_nmi_mmrx_clear;
 281		nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
 282		pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
 283	} else {
 284		nmi_mmr = UVH_NMI_MMR;
 285		nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
 286		nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
 287		pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
 288	}
 289}
 290
 291/* Read NMI MMR and check if NMI flag was set by BMC. */
 292static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
 293{
 294	hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
 295	atomic_inc(&hub_nmi->read_mmr_count);
 296	return !!(hub_nmi->nmi_value & nmi_mmr_pending);
 297}
 298
 299static inline void uv_local_mmr_clear_nmi(void)
 300{
 301	uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
 302}
 303
 304/*
 305 * UV hubless NMI handler functions
 306 */
 307static inline void uv_reassert_nmi(void)
 308{
 309	/* (from arch/x86/include/asm/mach_traps.h) */
 310	outb(0x8f, NMI_CONTROL_PORT);
 311	inb(NMI_DUMMY_PORT);		/* dummy read */
 312	outb(0x0f, NMI_CONTROL_PORT);
 313	inb(NMI_DUMMY_PORT);		/* dummy read */
 314}
 315
 316static void uv_init_hubless_pch_io(int offset, int mask, int data)
 317{
 318	int *addr = PCH_PCR_GPIO_ADDRESS(offset);
 319	int readd = readl(addr);
 320
 321	if (mask) {			/* OR in new data */
 322		int writed = (readd & ~mask) | data;
 323
 324		nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
 325			addr, readd, ~mask, data, writed);
 326		writel(writed, addr);
 327	} else if (readd & data) {	/* clear status bit */
 328		nmi_debug("UV:PCH: %p = %x\n", addr, data);
 329		writel(data, addr);
 330	}
 331
 332	(void)readl(addr);		/* flush write data */
 333}
 334
 335static void uv_nmi_setup_hubless_intr(void)
 336{
 337	uv_pch_intr_now_enabled = uv_pch_intr_enable;
 338
 339	uv_init_hubless_pch_io(
 340		PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
 341		uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
 342
 343	nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
 344		uv_pch_intr_now_enabled ? "enabled" : "disabled");
 345}
 346
 347static struct init_nmi {
 348	unsigned int	offset;
 349	unsigned int	mask;
 350	unsigned int	data;
 351} init_nmi[] = {
 352	{	/* HOSTSW_OWN_GPP_D_0 */
 353	.offset = 0x84,
 354	.mask = 0x1,
 355	.data = 0x0,	/* ACPI Mode */
 356	},
 357
 358/* Clear status: */
 359	{	/* GPI_INT_STS_GPP_D_0 */
 360	.offset = 0x104,
 361	.mask = 0x0,
 362	.data = 0x1,	/* Clear Status */
 363	},
 364	{	/* GPI_GPE_STS_GPP_D_0 */
 365	.offset = 0x124,
 366	.mask = 0x0,
 367	.data = 0x1,	/* Clear Status */
 368	},
 369	{	/* GPI_SMI_STS_GPP_D_0 */
 370	.offset = 0x144,
 371	.mask = 0x0,
 372	.data = 0x1,	/* Clear Status */
 373	},
 374	{	/* GPI_NMI_STS_GPP_D_0 */
 375	.offset = 0x164,
 376	.mask = 0x0,
 377	.data = 0x1,	/* Clear Status */
 378	},
 379
 380/* Disable interrupts: */
 381	{	/* GPI_INT_EN_GPP_D_0 */
 382	.offset = 0x114,
 383	.mask = 0x1,
 384	.data = 0x0,	/* Disable interrupt generation */
 385	},
 386	{	/* GPI_GPE_EN_GPP_D_0 */
 387	.offset = 0x134,
 388	.mask = 0x1,
 389	.data = 0x0,	/* Disable interrupt generation */
 390	},
 391	{	/* GPI_SMI_EN_GPP_D_0 */
 392	.offset = 0x154,
 393	.mask = 0x1,
 394	.data = 0x0,	/* Disable interrupt generation */
 395	},
 396	{	/* GPI_NMI_EN_GPP_D_0 */
 397	.offset = 0x174,
 398	.mask = 0x1,
 399	.data = 0x0,	/* Disable interrupt generation */
 400	},
 401
 402/* Setup GPP_D_0 Pad Config: */
 403	{	/* PAD_CFG_DW0_GPP_D_0 */
 404	.offset = 0x4c0,
 405	.mask = 0xffffffff,
 406	.data = 0x82020100,
 407/*
 408 *  31:30 Pad Reset Config (PADRSTCFG): = 2h  # PLTRST# (default)
 409 *
 410 *  29    RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
 411 *                                                from RX buffer (default)
 412 *
 413 *  28    RX Raw Override to '1' (RXRAW1): = 0 # No Override
 414 *
 415 *  26:25 RX Level/Edge Configuration (RXEVCFG):
 416 *      = 0h # Level
 417 *      = 1h # Edge
 418 *
 419 *  23    RX Invert (RXINV): = 0 # No Inversion (signal active high)
 420 *
 421 *  20    GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
 422 * = 0 # Routing does not cause peripheral IRQ...
 423 *     # (we want an NMI not an IRQ)
 424 *
 425 *  19    GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
 426 *  18    GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
 427 *  17    GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
 428 *
 429 *  11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
 430 *   9    GPIO RX Disable (GPIORXDIS):
 431 * = 0 # Enable the input buffer (active low enable)
 432 *
 433 *   8    GPIO TX Disable (GPIOTXDIS):
 434 * = 1 # Disable the output buffer; i.e. Hi-Z
 435 *
 436 *   1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
 437 *   0 GPIO TX State (GPIOTXSTATE):
 438 * = 0 # (Leave at default)
 439 */
 440	},
 441
 442/* Pad Config DW1 */
 443	{	/* PAD_CFG_DW1_GPP_D_0 */
 444	.offset = 0x4c4,
 445	.mask = 0x3c00,
 446	.data = 0,	/* Termination = none (default) */
 447	},
 448};
 449
 450static void uv_init_hubless_pch_d0(void)
 451{
 452	int i, read;
 453
 454	read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
 455	if (read != 0) {
 456		pr_info("UV: Hubless NMI already configured\n");
 457		return;
 458	}
 459
 460	nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
 461	for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
 462		uv_init_hubless_pch_io(init_nmi[i].offset,
 463					init_nmi[i].mask,
 464					init_nmi[i].data);
 465	}
 466}
 467
 468static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
 469{
 470	int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
 471	int status = *pstat;
 472
 473	hub_nmi->nmi_value = status;
 474	atomic_inc(&hub_nmi->read_mmr_count);
 475
 476	if (!(status & STS_GPP_D_0_MASK))	/* Not a UV external NMI */
 477		return 0;
 478
 479	*pstat = STS_GPP_D_0_MASK;	/* Is a UV NMI: clear GPP_D_0 status */
 480	(void)*pstat;			/* Flush write */
 481
 482	return 1;
 483}
 484
 485static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
 486{
 487	if (hub_nmi->hub_present)
 488		return uv_nmi_test_mmr(hub_nmi);
 489
 490	if (hub_nmi->pch_owner)		/* Only PCH owner can check status */
 491		return uv_nmi_test_hubless(hub_nmi);
 492
 493	return -1;
 494}
 495
 496/*
 497 * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
 498 * return true.  If first CPU in on the system, set global "in_nmi" flag.
 499 */
 500static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
 501{
 502	int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
 503
 504	if (first) {
 505		atomic_set(&hub_nmi->cpu_owner, cpu);
 506		if (atomic_add_unless(&uv_in_nmi, 1, 1))
 507			atomic_set(&uv_nmi_cpu, cpu);
 508
 509		atomic_inc(&hub_nmi->nmi_count);
 510	}
 511	return first;
 512}
 513
 514/* Check if this is a system NMI event */
 515static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
 516{
 517	int cpu = smp_processor_id();
 518	int nmi = 0;
 519	int nmi_detected = 0;
 520
 521	local64_inc(&uv_nmi_count);
 522	this_cpu_inc(uv_cpu_nmi.queries);
 523
 524	do {
 525		nmi = atomic_read(&hub_nmi->in_nmi);
 526		if (nmi)
 527			break;
 528
 529		if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
 530			nmi_detected = uv_test_nmi(hub_nmi);
 531
 532			/* Check flag for UV external NMI */
 533			if (nmi_detected > 0) {
 534				uv_set_in_nmi(cpu, hub_nmi);
 535				nmi = 1;
 536				break;
 537			}
 538
 539			/* A non-PCH node in a hubless system waits for NMI */
 540			else if (nmi_detected < 0)
 541				goto slave_wait;
 542
 543			/* MMR/PCH NMI flag is clear */
 544			raw_spin_unlock(&hub_nmi->nmi_lock);
 545
 546		} else {
 547
 548			/* Wait a moment for the HUB NMI locker to set flag */
 549slave_wait:		cpu_relax();
 550			udelay(uv_nmi_slave_delay);
 551
 552			/* Re-check hub in_nmi flag */
 553			nmi = atomic_read(&hub_nmi->in_nmi);
 554			if (nmi)
 555				break;
 556		}
 557
 558		/*
 559		 * Check if this BMC missed setting the MMR NMI flag (or)
 560		 * UV hubless system where only PCH owner can check flag
 561		 */
 562		if (!nmi) {
 563			nmi = atomic_read(&uv_in_nmi);
 564			if (nmi)
 565				uv_set_in_nmi(cpu, hub_nmi);
 566		}
 567
 568		/* If we're holding the hub lock, release it now */
 569		if (nmi_detected < 0)
 570			raw_spin_unlock(&hub_nmi->nmi_lock);
 571
 572	} while (0);
 573
 574	if (!nmi)
 575		local64_inc(&uv_nmi_misses);
 576
 577	return nmi;
 578}
 579
 580/* Need to reset the NMI MMR register, but only once per hub. */
 581static inline void uv_clear_nmi(int cpu)
 582{
 583	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
 584
 585	if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
 586		atomic_set(&hub_nmi->cpu_owner, -1);
 587		atomic_set(&hub_nmi->in_nmi, 0);
 588		if (hub_nmi->hub_present)
 589			uv_local_mmr_clear_nmi();
 590		else
 591			uv_reassert_nmi();
 592		raw_spin_unlock(&hub_nmi->nmi_lock);
 593	}
 594}
 595
 596/* Ping non-responding CPU's attempting to force them into the NMI handler */
 597static void uv_nmi_nr_cpus_ping(void)
 598{
 599	int cpu;
 600
 601	for_each_cpu(cpu, uv_nmi_cpu_mask)
 602		uv_cpu_nmi_per(cpu).pinging = 1;
 603
 604	apic->send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
 605}
 606
 607/* Clean up flags for CPU's that ignored both NMI and ping */
 608static void uv_nmi_cleanup_mask(void)
 609{
 610	int cpu;
 611
 612	for_each_cpu(cpu, uv_nmi_cpu_mask) {
 613		uv_cpu_nmi_per(cpu).pinging =  0;
 614		uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
 615		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
 616	}
 617}
 618
 619/* Loop waiting as CPU's enter NMI handler */
 620static int uv_nmi_wait_cpus(int first)
 621{
 622	int i, j, k, n = num_online_cpus();
 623	int last_k = 0, waiting = 0;
 624	int cpu = smp_processor_id();
 625
 626	if (first) {
 627		cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
 628		k = 0;
 629	} else {
 630		k = n - cpumask_weight(uv_nmi_cpu_mask);
 631	}
 632
 633	/* PCH NMI causes only one CPU to respond */
 634	if (first && uv_pch_intr_now_enabled) {
 635		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
 636		return n - k - 1;
 637	}
 638
 639	udelay(uv_nmi_initial_delay);
 640	for (i = 0; i < uv_nmi_retry_count; i++) {
 641		int loop_delay = uv_nmi_loop_delay;
 642
 643		for_each_cpu(j, uv_nmi_cpu_mask) {
 644			if (uv_cpu_nmi_per(j).state) {
 645				cpumask_clear_cpu(j, uv_nmi_cpu_mask);
 646				if (++k >= n)
 647					break;
 648			}
 649		}
 650		if (k >= n) {		/* all in? */
 651			k = n;
 652			break;
 653		}
 654		if (last_k != k) {	/* abort if no new CPU's coming in */
 655			last_k = k;
 656			waiting = 0;
 657		} else if (++waiting > uv_nmi_wait_count)
 658			break;
 659
 660		/* Extend delay if waiting only for CPU 0: */
 661		if (waiting && (n - k) == 1 &&
 662		    cpumask_test_cpu(0, uv_nmi_cpu_mask))
 663			loop_delay *= 100;
 664
 665		udelay(loop_delay);
 666	}
 667	atomic_set(&uv_nmi_cpus_in_nmi, k);
 668	return n - k;
 669}
 670
 671/* Wait until all slave CPU's have entered UV NMI handler */
 672static void uv_nmi_wait(int master)
 673{
 674	/* Indicate this CPU is in: */
 675	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
 676
 677	/* If not the first CPU in (the master), then we are a slave CPU */
 678	if (!master)
 679		return;
 680
 681	do {
 682		/* Wait for all other CPU's to gather here */
 683		if (!uv_nmi_wait_cpus(1))
 684			break;
 685
 686		/* If not all made it in, send IPI NMI to them */
 687		pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
 688			 cpumask_weight(uv_nmi_cpu_mask),
 689			 cpumask_pr_args(uv_nmi_cpu_mask));
 690
 691		uv_nmi_nr_cpus_ping();
 692
 693		/* If all CPU's are in, then done */
 694		if (!uv_nmi_wait_cpus(0))
 695			break;
 696
 697		pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
 698			 cpumask_weight(uv_nmi_cpu_mask),
 699			 cpumask_pr_args(uv_nmi_cpu_mask));
 700	} while (0);
 701
 702	pr_alert("UV: %d of %d CPUs in NMI\n",
 703		atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
 704}
 705
 706/* Dump Instruction Pointer header */
 707static void uv_nmi_dump_cpu_ip_hdr(void)
 708{
 709	pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
 710		"CPU", "PID", "COMMAND", "IP");
 711}
 712
 713/* Dump Instruction Pointer info */
 714static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
 715{
 716	pr_info("UV: %4d %6d %-32.32s %pS",
 717		cpu, current->pid, current->comm, (void *)regs->ip);
 718}
 719
 720/*
 721 * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
 722 * failed, then we provide "dump" as an alternate action.  Action "dump" now
 723 * also includes the show "ips" (instruction pointers) action whereas the
 724 * action "ips" only displays instruction pointers for the non-idle CPU's.
 725 * This is an abbreviated form of the "ps" command.
 726 */
 727static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
 728{
 729	const char *dots = " ................................. ";
 730
 731	if (cpu == 0)
 732		uv_nmi_dump_cpu_ip_hdr();
 733
 734	if (current->pid != 0 || !uv_nmi_action_is("ips"))
 735		uv_nmi_dump_cpu_ip(cpu, regs);
 736
 737	if (uv_nmi_action_is("dump")) {
 738		pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
 739		show_regs(regs);
 740	}
 741
 742	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
 743}
 744
 745/* Trigger a slave CPU to dump it's state */
 746static void uv_nmi_trigger_dump(int cpu)
 747{
 748	int retry = uv_nmi_trigger_delay;
 749
 750	if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
 751		return;
 752
 753	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
 754	do {
 755		cpu_relax();
 756		udelay(10);
 757		if (uv_cpu_nmi_per(cpu).state
 758				!= UV_NMI_STATE_DUMP)
 759			return;
 760	} while (--retry > 0);
 761
 762	pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
 763	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
 764}
 765
 766/* Wait until all CPU's ready to exit */
 767static void uv_nmi_sync_exit(int master)
 768{
 769	atomic_dec(&uv_nmi_cpus_in_nmi);
 770	if (master) {
 771		while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
 772			cpu_relax();
 773		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
 774	} else {
 775		while (atomic_read(&uv_nmi_slave_continue))
 776			cpu_relax();
 777	}
 778}
 779
 780/* Current "health" check is to check which CPU's are responsive */
 781static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
 782{
 783	if (master) {
 784		int in = atomic_read(&uv_nmi_cpus_in_nmi);
 785		int out = num_online_cpus() - in;
 786
 787		pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
 788		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
 789	} else {
 790		while (!atomic_read(&uv_nmi_slave_continue))
 791			cpu_relax();
 792	}
 793	uv_nmi_sync_exit(master);
 794}
 795
 796/* Walk through CPU list and dump state of each */
 797static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
 798{
 799	if (master) {
 800		int tcpu;
 801		int ignored = 0;
 802		int saved_console_loglevel = console_loglevel;
 803
 804		pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
 805			uv_nmi_action_is("ips") ? "IPs" : "processes",
 806			atomic_read(&uv_nmi_cpus_in_nmi), cpu);
 807
 808		console_loglevel = uv_nmi_loglevel;
 809		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
 810		for_each_online_cpu(tcpu) {
 811			if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
 812				ignored++;
 813			else if (tcpu == cpu)
 814				uv_nmi_dump_state_cpu(tcpu, regs);
 815			else
 816				uv_nmi_trigger_dump(tcpu);
 817		}
 818		if (ignored)
 819			pr_alert("UV: %d CPUs ignored NMI\n", ignored);
 820
 821		console_loglevel = saved_console_loglevel;
 822		pr_alert("UV: process trace complete\n");
 823	} else {
 824		while (!atomic_read(&uv_nmi_slave_continue))
 825			cpu_relax();
 826		while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
 827			cpu_relax();
 828		uv_nmi_dump_state_cpu(cpu, regs);
 829	}
 830	uv_nmi_sync_exit(master);
 831}
 832
 833static void uv_nmi_touch_watchdogs(void)
 834{
 835	touch_softlockup_watchdog_sync();
 836	clocksource_touch_watchdog();
 837	rcu_cpu_stall_reset();
 838	touch_nmi_watchdog();
 839}
 840
 841static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs)
 842{
 843	/* Check if kdump kernel loaded for both main and secondary CPUs */
 844	if (!kexec_crash_image) {
 845		if (main)
 846			pr_err("UV: NMI error: kdump kernel not loaded\n");
 847		return;
 848	}
 849
 850	/* Call crash to dump system state */
 851	if (main) {
 852		pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
 853		crash_kexec(regs);
 854
 855		pr_emerg("UV: crash_kexec unexpectedly returned\n");
 856		atomic_set(&uv_nmi_kexec_failed, 1);
 857
 858	} else { /* secondary */
 859
 860		/* If kdump kernel fails, secondaries will exit this loop */
 861		while (atomic_read(&uv_nmi_kexec_failed) == 0) {
 862
 863			/* Once shootdown cpus starts, they do not return */
 864			run_crash_ipi_callback(regs);
 865
 866			mdelay(10);
 867		}
 868	}
 869}
 870
 871#ifdef CONFIG_KGDB
 872#ifdef CONFIG_KGDB_KDB
 873static inline int uv_nmi_kdb_reason(void)
 874{
 875	return KDB_REASON_SYSTEM_NMI;
 876}
 877#else /* !CONFIG_KGDB_KDB */
 878static inline int uv_nmi_kdb_reason(void)
 879{
 880	/* Ensure user is expecting to attach gdb remote */
 881	if (uv_nmi_action_is("kgdb"))
 882		return 0;
 883
 884	pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
 885	return -1;
 886}
 887#endif /* CONFIG_KGDB_KDB */
 888
 889/*
 890 * Call KGDB/KDB from NMI handler
 891 *
 892 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
 893 * 'kdb' has no affect on which is used.  See the KGDB documentation for further
 894 * information.
 895 */
 896static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
 897{
 898	if (master) {
 899		int reason = uv_nmi_kdb_reason();
 900		int ret;
 901
 902		if (reason < 0)
 903			return;
 904
 905		/* Call KGDB NMI handler as MASTER */
 906		ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
 907				&uv_nmi_slave_continue);
 908		if (ret) {
 909			pr_alert("KGDB returned error, is kgdboc set?\n");
 910			atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
 911		}
 912	} else {
 913		/* Wait for KGDB signal that it's ready for slaves to enter */
 914		int sig;
 915
 916		do {
 917			cpu_relax();
 918			sig = atomic_read(&uv_nmi_slave_continue);
 919		} while (!sig);
 920
 921		/* Call KGDB as slave */
 922		if (sig == SLAVE_CONTINUE)
 923			kgdb_nmicallback(cpu, regs);
 924	}
 925	uv_nmi_sync_exit(master);
 926}
 927
 928#else /* !CONFIG_KGDB */
 929static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
 930{
 931	pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
 932}
 933#endif /* !CONFIG_KGDB */
 934
 935/*
 936 * UV NMI handler
 937 */
 938static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
 939{
 940	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
 941	int cpu = smp_processor_id();
 942	int master = 0;
 943	unsigned long flags;
 944
 945	local_irq_save(flags);
 946
 947	/* If not a UV System NMI, ignore */
 948	if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
 949		local_irq_restore(flags);
 950		return NMI_DONE;
 951	}
 952
 953	/* Indicate we are the first CPU into the NMI handler */
 954	master = (atomic_read(&uv_nmi_cpu) == cpu);
 955
 956	/* If NMI action is "kdump", then attempt to do it */
 957	if (uv_nmi_action_is("kdump")) {
 958		uv_nmi_kdump(cpu, master, regs);
 959
 960		/* Unexpected return, revert action to "dump" */
 961		if (master)
 962			strncpy(uv_nmi_action, "dump", strlen(uv_nmi_action));
 963	}
 964
 965	/* Pause as all CPU's enter the NMI handler */
 966	uv_nmi_wait(master);
 967
 968	/* Process actions other than "kdump": */
 969	if (uv_nmi_action_is("health")) {
 
 970		uv_nmi_action_health(cpu, regs, master);
 971	} else if (uv_nmi_action_is("ips") || uv_nmi_action_is("dump")) {
 
 
 972		uv_nmi_dump_state(cpu, regs, master);
 973	} else if (uv_nmi_action_is("kdb") || uv_nmi_action_is("kgdb")) {
 
 
 974		uv_call_kgdb_kdb(cpu, regs, master);
 975	} else {
 
 976		if (master)
 977			pr_alert("UV: unknown NMI action: %s\n", uv_nmi_action);
 978		uv_nmi_sync_exit(master);
 
 979	}
 980
 981	/* Clear per_cpu "in_nmi" flag */
 982	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
 983
 984	/* Clear MMR NMI flag on each hub */
 985	uv_clear_nmi(cpu);
 986
 987	/* Clear global flags */
 988	if (master) {
 989		if (!cpumask_empty(uv_nmi_cpu_mask))
 990			uv_nmi_cleanup_mask();
 991		atomic_set(&uv_nmi_cpus_in_nmi, -1);
 992		atomic_set(&uv_nmi_cpu, -1);
 993		atomic_set(&uv_in_nmi, 0);
 994		atomic_set(&uv_nmi_kexec_failed, 0);
 995		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
 996	}
 997
 998	uv_nmi_touch_watchdogs();
 999	local_irq_restore(flags);
1000
1001	return NMI_HANDLED;
1002}
1003
1004/*
1005 * NMI handler for pulling in CPU's when perf events are grabbing our NMI
1006 */
1007static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1008{
1009	int ret;
1010
1011	this_cpu_inc(uv_cpu_nmi.queries);
1012	if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1013		local64_inc(&uv_nmi_ping_misses);
1014		return NMI_DONE;
1015	}
1016
1017	this_cpu_inc(uv_cpu_nmi.pings);
1018	local64_inc(&uv_nmi_ping_count);
1019	ret = uv_handle_nmi(reason, regs);
1020	this_cpu_write(uv_cpu_nmi.pinging, 0);
1021	return ret;
1022}
1023
1024static void uv_register_nmi_notifier(void)
1025{
1026	if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1027		pr_warn("UV: NMI handler failed to register\n");
1028
1029	if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1030		pr_warn("UV: PING NMI handler failed to register\n");
1031}
1032
1033void uv_nmi_init(void)
1034{
1035	unsigned int value;
1036
1037	/*
1038	 * Unmask NMI on all CPU's
1039	 */
1040	value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1041	value &= ~APIC_LVT_MASKED;
1042	apic_write(APIC_LVT1, value);
1043}
1044
1045/* Setup HUB NMI info */
1046static void __init uv_nmi_setup_common(bool hubbed)
1047{
1048	int size = sizeof(void *) * (1 << NODES_SHIFT);
1049	int cpu;
1050
1051	uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1052	nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1053	BUG_ON(!uv_hub_nmi_list);
1054	size = sizeof(struct uv_hub_nmi_s);
1055	for_each_present_cpu(cpu) {
1056		int nid = cpu_to_node(cpu);
1057		if (uv_hub_nmi_list[nid] == NULL) {
1058			uv_hub_nmi_list[nid] = kzalloc_node(size,
1059							    GFP_KERNEL, nid);
1060			BUG_ON(!uv_hub_nmi_list[nid]);
1061			raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1062			atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1063			uv_hub_nmi_list[nid]->hub_present = hubbed;
1064			uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1065		}
1066		uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1067	}
1068	BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1069}
1070
1071/* Setup for UV Hub systems */
1072void __init uv_nmi_setup(void)
1073{
1074	uv_nmi_setup_mmrs();
1075	uv_nmi_setup_common(true);
1076	uv_register_nmi_notifier();
1077	pr_info("UV: Hub NMI enabled\n");
1078}
1079
1080/* Setup for UV Hubless systems */
1081void __init uv_nmi_setup_hubless(void)
1082{
1083	uv_nmi_setup_common(false);
1084	pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1085	nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1086		pch_base, PCH_PCR_GPIO_1_BASE);
1087	if (uv_pch_init_enable)
1088		uv_init_hubless_pch_d0();
1089	uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1090				STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1091	uv_nmi_setup_hubless_intr();
1092	/* Ensure NMI enabled in Processor Interface Reg: */
1093	uv_reassert_nmi();
1094	uv_register_nmi_notifier();
1095	pr_info("UV: PCH NMI enabled\n");
1096}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * SGI NMI support routines
   4 *
   5 * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
   6 * Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
   7 * Copyright (c) Mike Travis
   8 */
   9
  10#include <linux/cpu.h>
  11#include <linux/delay.h>
  12#include <linux/kdb.h>
  13#include <linux/kexec.h>
  14#include <linux/kgdb.h>
  15#include <linux/moduleparam.h>
  16#include <linux/nmi.h>
  17#include <linux/sched.h>
  18#include <linux/sched/debug.h>
  19#include <linux/slab.h>
  20#include <linux/string.h>
  21#include <linux/clocksource.h>
  22
  23#include <asm/apic.h>
  24#include <asm/current.h>
  25#include <asm/kdebug.h>
  26#include <asm/local64.h>
  27#include <asm/nmi.h>
  28#include <asm/reboot.h>
  29#include <asm/traps.h>
  30#include <asm/uv/uv.h>
  31#include <asm/uv/uv_hub.h>
  32#include <asm/uv/uv_mmrs.h>
  33
  34/*
  35 * UV handler for NMI
  36 *
  37 * Handle system-wide NMI events generated by the global 'power nmi' command.
  38 *
  39 * Basic operation is to field the NMI interrupt on each CPU and wait
  40 * until all CPU's have arrived into the nmi handler.  If some CPU's do not
  41 * make it into the handler, try and force them in with the IPI(NMI) signal.
  42 *
  43 * We also have to lessen UV Hub MMR accesses as much as possible as this
  44 * disrupts the UV Hub's primary mission of directing NumaLink traffic and
  45 * can cause system problems to occur.
  46 *
  47 * To do this we register our primary NMI notifier on the NMI_UNKNOWN
  48 * chain.  This reduces the number of false NMI calls when the perf
  49 * tools are running which generate an enormous number of NMIs per
  50 * second (~4M/s for 1024 CPU threads).  Our secondary NMI handler is
  51 * very short as it only checks that if it has been "pinged" with the
  52 * IPI(NMI) signal as mentioned above, and does not read the UV Hub's MMR.
  53 *
  54 */
  55
  56static struct uv_hub_nmi_s **uv_hub_nmi_list;
  57
  58DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
  59
  60/* Newer SMM NMI handler, not present in all systems */
  61static unsigned long uvh_nmi_mmrx;		/* UVH_EVENT_OCCURRED0/1 */
  62static unsigned long uvh_nmi_mmrx_clear;	/* UVH_EVENT_OCCURRED0/1_ALIAS */
  63static int uvh_nmi_mmrx_shift;			/* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
  64static char *uvh_nmi_mmrx_type;			/* "EXTIO_INT0" */
  65
  66/* Non-zero indicates newer SMM NMI handler present */
  67static unsigned long uvh_nmi_mmrx_supported;	/* UVH_EXTIO_INT0_BROADCAST */
  68
  69/* Indicates to BIOS that we want to use the newer SMM NMI handler */
  70static unsigned long uvh_nmi_mmrx_req;		/* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
  71static int uvh_nmi_mmrx_req_shift;		/* 62 */
  72
  73/* UV hubless values */
  74#define NMI_CONTROL_PORT	0x70
  75#define NMI_DUMMY_PORT		0x71
  76#define PAD_OWN_GPP_D_0		0x2c
  77#define GPI_NMI_STS_GPP_D_0	0x164
  78#define GPI_NMI_ENA_GPP_D_0	0x174
  79#define STS_GPP_D_0_MASK	0x1
  80#define PAD_CFG_DW0_GPP_D_0	0x4c0
  81#define GPIROUTNMI		(1ul << 17)
  82#define PCH_PCR_GPIO_1_BASE	0xfdae0000ul
  83#define PCH_PCR_GPIO_ADDRESS(offset) (int *)((u64)(pch_base) | (u64)(offset))
  84
  85static u64 *pch_base;
  86static unsigned long nmi_mmr;
  87static unsigned long nmi_mmr_clear;
  88static unsigned long nmi_mmr_pending;
  89
  90static atomic_t	uv_in_nmi;
  91static atomic_t uv_nmi_cpu = ATOMIC_INIT(-1);
  92static atomic_t uv_nmi_cpus_in_nmi = ATOMIC_INIT(-1);
  93static atomic_t uv_nmi_slave_continue;
  94static cpumask_var_t uv_nmi_cpu_mask;
  95
  96static atomic_t uv_nmi_kexec_failed;
  97
  98/* Values for uv_nmi_slave_continue */
  99#define SLAVE_CLEAR	0
 100#define SLAVE_CONTINUE	1
 101#define SLAVE_EXIT	2
 102
 103/*
 104 * Default is all stack dumps go to the console and buffer.
 105 * Lower level to send to log buffer only.
 106 */
 107static int uv_nmi_loglevel = CONSOLE_LOGLEVEL_DEFAULT;
 108module_param_named(dump_loglevel, uv_nmi_loglevel, int, 0644);
 109
 110/*
 111 * The following values show statistics on how perf events are affecting
 112 * this system.
 113 */
 114static int param_get_local64(char *buffer, const struct kernel_param *kp)
 115{
 116	return sprintf(buffer, "%lu\n", local64_read((local64_t *)kp->arg));
 117}
 118
 119static int param_set_local64(const char *val, const struct kernel_param *kp)
 120{
 121	/* Clear on any write */
 122	local64_set((local64_t *)kp->arg, 0);
 123	return 0;
 124}
 125
 126static const struct kernel_param_ops param_ops_local64 = {
 127	.get = param_get_local64,
 128	.set = param_set_local64,
 129};
 130#define param_check_local64(name, p) __param_check(name, p, local64_t)
 131
 132static local64_t uv_nmi_count;
 133module_param_named(nmi_count, uv_nmi_count, local64, 0644);
 134
 135static local64_t uv_nmi_misses;
 136module_param_named(nmi_misses, uv_nmi_misses, local64, 0644);
 137
 138static local64_t uv_nmi_ping_count;
 139module_param_named(ping_count, uv_nmi_ping_count, local64, 0644);
 140
 141static local64_t uv_nmi_ping_misses;
 142module_param_named(ping_misses, uv_nmi_ping_misses, local64, 0644);
 143
 144/*
 145 * Following values allow tuning for large systems under heavy loading
 146 */
 147static int uv_nmi_initial_delay = 100;
 148module_param_named(initial_delay, uv_nmi_initial_delay, int, 0644);
 149
 150static int uv_nmi_slave_delay = 100;
 151module_param_named(slave_delay, uv_nmi_slave_delay, int, 0644);
 152
 153static int uv_nmi_loop_delay = 100;
 154module_param_named(loop_delay, uv_nmi_loop_delay, int, 0644);
 155
 156static int uv_nmi_trigger_delay = 10000;
 157module_param_named(trigger_delay, uv_nmi_trigger_delay, int, 0644);
 158
 159static int uv_nmi_wait_count = 100;
 160module_param_named(wait_count, uv_nmi_wait_count, int, 0644);
 161
 162static int uv_nmi_retry_count = 500;
 163module_param_named(retry_count, uv_nmi_retry_count, int, 0644);
 164
 165static bool uv_pch_intr_enable = true;
 166static bool uv_pch_intr_now_enabled;
 167module_param_named(pch_intr_enable, uv_pch_intr_enable, bool, 0644);
 168
 169static bool uv_pch_init_enable = true;
 170module_param_named(pch_init_enable, uv_pch_init_enable, bool, 0644);
 171
 172static int uv_nmi_debug;
 173module_param_named(debug, uv_nmi_debug, int, 0644);
 174
 175#define nmi_debug(fmt, ...)				\
 176	do {						\
 177		if (uv_nmi_debug)			\
 178			pr_info(fmt, ##__VA_ARGS__);	\
 179	} while (0)
 180
 181/* Valid NMI Actions */
 182enum action_t {
 183	nmi_act_kdump,
 184	nmi_act_dump,
 185	nmi_act_ips,
 186	nmi_act_kdb,
 187	nmi_act_kgdb,
 188	nmi_act_health,
 189	nmi_act_max
 
 
 
 190};
 191
 192static const char * const actions[nmi_act_max] = {
 193	[nmi_act_kdump] = "kdump",
 194	[nmi_act_dump] = "dump",
 195	[nmi_act_ips] = "ips",
 196	[nmi_act_kdb] = "kdb",
 197	[nmi_act_kgdb] = "kgdb",
 198	[nmi_act_health] = "health",
 199};
 200
 201static const char * const actions_desc[nmi_act_max] = {
 202	[nmi_act_kdump] = "do kernel crash dump",
 203	[nmi_act_dump] = "dump process stack for each cpu",
 204	[nmi_act_ips] = "dump Inst Ptr info for each cpu",
 205	[nmi_act_kdb] = "enter KDB (needs kgdboc= assignment)",
 206	[nmi_act_kgdb] = "enter KGDB (needs gdb target remote)",
 207	[nmi_act_health] = "check if CPUs respond to NMI",
 208};
 209
 210static enum action_t uv_nmi_action = nmi_act_dump;
 211
 212static int param_get_action(char *buffer, const struct kernel_param *kp)
 213{
 214	return sprintf(buffer, "%s\n", actions[uv_nmi_action]);
 215}
 216
 217static int param_set_action(const char *val, const struct kernel_param *kp)
 218{
 219	int i, n = ARRAY_SIZE(actions);
 
 
 
 
 
 
 
 
 
 220
 221	i = sysfs_match_string(actions, val);
 222	if (i >= 0) {
 223		uv_nmi_action = i;
 224		pr_info("UV: New NMI action:%s\n", actions[i]);
 
 
 
 225		return 0;
 226	}
 227
 228	pr_err("UV: Invalid NMI action. Valid actions are:\n");
 229	for (i = 0; i < n; i++)
 230		pr_err("UV: %-8s - %s\n", actions[i], actions_desc[i]);
 231
 232	return -EINVAL;
 233}
 234
 235static const struct kernel_param_ops param_ops_action = {
 236	.get = param_get_action,
 237	.set = param_set_action,
 238};
 239#define param_check_action(name, p) __param_check(name, p, enum action_t)
 240
 241module_param_named(action, uv_nmi_action, action, 0644);
 242
 
 
 
 
 
 243/* Setup which NMI support is present in system */
 244static void uv_nmi_setup_mmrs(void)
 245{
 246	bool new_nmi_method_only = false;
 247
 248	/* First determine arch specific MMRs to handshake with BIOS */
 249	if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {	/* UV2,3,4 setup */
 250		uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
 251		uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
 252		uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
 253		uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
 254
 255		uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
 256		uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
 257		uvh_nmi_mmrx_req_shift = 62;
 258
 259	} else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) { /* UV5+ setup */
 260		uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
 261		uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
 262		uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
 263		uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
 264
 265		new_nmi_method_only = true;		/* Newer nmi always valid on UV5+ */
 266		uvh_nmi_mmrx_req = 0;			/* no request bit to clear */
 267
 268	} else {
 269		pr_err("UV:%s:NMI support not available on this system\n", __func__);
 270		return;
 271	}
 272
 273	/* Then find out if new NMI is supported */
 274	if (new_nmi_method_only || uv_read_local_mmr(uvh_nmi_mmrx_supported)) {
 275		if (uvh_nmi_mmrx_req)
 276			uv_write_local_mmr(uvh_nmi_mmrx_req,
 277						1UL << uvh_nmi_mmrx_req_shift);
 278		nmi_mmr = uvh_nmi_mmrx;
 279		nmi_mmr_clear = uvh_nmi_mmrx_clear;
 280		nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
 281		pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
 282	} else {
 283		nmi_mmr = UVH_NMI_MMR;
 284		nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
 285		nmi_mmr_pending = 1UL << UVH_NMI_MMR_SHIFT;
 286		pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMR_TYPE);
 287	}
 288}
 289
 290/* Read NMI MMR and check if NMI flag was set by BMC. */
 291static inline int uv_nmi_test_mmr(struct uv_hub_nmi_s *hub_nmi)
 292{
 293	hub_nmi->nmi_value = uv_read_local_mmr(nmi_mmr);
 294	atomic_inc(&hub_nmi->read_mmr_count);
 295	return !!(hub_nmi->nmi_value & nmi_mmr_pending);
 296}
 297
 298static inline void uv_local_mmr_clear_nmi(void)
 299{
 300	uv_write_local_mmr(nmi_mmr_clear, nmi_mmr_pending);
 301}
 302
 303/*
 304 * UV hubless NMI handler functions
 305 */
 306static inline void uv_reassert_nmi(void)
 307{
 308	/* (from arch/x86/include/asm/mach_traps.h) */
 309	outb(0x8f, NMI_CONTROL_PORT);
 310	inb(NMI_DUMMY_PORT);		/* dummy read */
 311	outb(0x0f, NMI_CONTROL_PORT);
 312	inb(NMI_DUMMY_PORT);		/* dummy read */
 313}
 314
 315static void uv_init_hubless_pch_io(int offset, int mask, int data)
 316{
 317	int *addr = PCH_PCR_GPIO_ADDRESS(offset);
 318	int readd = readl(addr);
 319
 320	if (mask) {			/* OR in new data */
 321		int writed = (readd & ~mask) | data;
 322
 323		nmi_debug("UV:PCH: %p = %x & %x | %x (%x)\n",
 324			addr, readd, ~mask, data, writed);
 325		writel(writed, addr);
 326	} else if (readd & data) {	/* clear status bit */
 327		nmi_debug("UV:PCH: %p = %x\n", addr, data);
 328		writel(data, addr);
 329	}
 330
 331	(void)readl(addr);		/* flush write data */
 332}
 333
 334static void uv_nmi_setup_hubless_intr(void)
 335{
 336	uv_pch_intr_now_enabled = uv_pch_intr_enable;
 337
 338	uv_init_hubless_pch_io(
 339		PAD_CFG_DW0_GPP_D_0, GPIROUTNMI,
 340		uv_pch_intr_now_enabled ? GPIROUTNMI : 0);
 341
 342	nmi_debug("UV:NMI: GPP_D_0 interrupt %s\n",
 343		uv_pch_intr_now_enabled ? "enabled" : "disabled");
 344}
 345
 346static struct init_nmi {
 347	unsigned int	offset;
 348	unsigned int	mask;
 349	unsigned int	data;
 350} init_nmi[] = {
 351	{	/* HOSTSW_OWN_GPP_D_0 */
 352	.offset = 0x84,
 353	.mask = 0x1,
 354	.data = 0x0,	/* ACPI Mode */
 355	},
 356
 357/* Clear status: */
 358	{	/* GPI_INT_STS_GPP_D_0 */
 359	.offset = 0x104,
 360	.mask = 0x0,
 361	.data = 0x1,	/* Clear Status */
 362	},
 363	{	/* GPI_GPE_STS_GPP_D_0 */
 364	.offset = 0x124,
 365	.mask = 0x0,
 366	.data = 0x1,	/* Clear Status */
 367	},
 368	{	/* GPI_SMI_STS_GPP_D_0 */
 369	.offset = 0x144,
 370	.mask = 0x0,
 371	.data = 0x1,	/* Clear Status */
 372	},
 373	{	/* GPI_NMI_STS_GPP_D_0 */
 374	.offset = 0x164,
 375	.mask = 0x0,
 376	.data = 0x1,	/* Clear Status */
 377	},
 378
 379/* Disable interrupts: */
 380	{	/* GPI_INT_EN_GPP_D_0 */
 381	.offset = 0x114,
 382	.mask = 0x1,
 383	.data = 0x0,	/* Disable interrupt generation */
 384	},
 385	{	/* GPI_GPE_EN_GPP_D_0 */
 386	.offset = 0x134,
 387	.mask = 0x1,
 388	.data = 0x0,	/* Disable interrupt generation */
 389	},
 390	{	/* GPI_SMI_EN_GPP_D_0 */
 391	.offset = 0x154,
 392	.mask = 0x1,
 393	.data = 0x0,	/* Disable interrupt generation */
 394	},
 395	{	/* GPI_NMI_EN_GPP_D_0 */
 396	.offset = 0x174,
 397	.mask = 0x1,
 398	.data = 0x0,	/* Disable interrupt generation */
 399	},
 400
 401/* Setup GPP_D_0 Pad Config: */
 402	{	/* PAD_CFG_DW0_GPP_D_0 */
 403	.offset = 0x4c0,
 404	.mask = 0xffffffff,
 405	.data = 0x82020100,
 406/*
 407 *  31:30 Pad Reset Config (PADRSTCFG): = 2h  # PLTRST# (default)
 408 *
 409 *  29    RX Pad State Select (RXPADSTSEL): = 0 # Raw RX pad state directly
 410 *                                                from RX buffer (default)
 411 *
 412 *  28    RX Raw Override to '1' (RXRAW1): = 0 # No Override
 413 *
 414 *  26:25 RX Level/Edge Configuration (RXEVCFG):
 415 *      = 0h # Level
 416 *      = 1h # Edge
 417 *
 418 *  23    RX Invert (RXINV): = 0 # No Inversion (signal active high)
 419 *
 420 *  20    GPIO Input Route IOxAPIC (GPIROUTIOXAPIC):
 421 * = 0 # Routing does not cause peripheral IRQ...
 422 *     # (we want an NMI not an IRQ)
 423 *
 424 *  19    GPIO Input Route SCI (GPIROUTSCI): = 0 # Routing does not cause SCI.
 425 *  18    GPIO Input Route SMI (GPIROUTSMI): = 0 # Routing does not cause SMI.
 426 *  17    GPIO Input Route NMI (GPIROUTNMI): = 1 # Routing can cause NMI.
 427 *
 428 *  11:10 Pad Mode (PMODE1/0): = 0h = GPIO control the Pad.
 429 *   9    GPIO RX Disable (GPIORXDIS):
 430 * = 0 # Enable the input buffer (active low enable)
 431 *
 432 *   8    GPIO TX Disable (GPIOTXDIS):
 433 * = 1 # Disable the output buffer; i.e. Hi-Z
 434 *
 435 *   1 GPIO RX State (GPIORXSTATE): This is the current internal RX pad state..
 436 *   0 GPIO TX State (GPIOTXSTATE):
 437 * = 0 # (Leave at default)
 438 */
 439	},
 440
 441/* Pad Config DW1 */
 442	{	/* PAD_CFG_DW1_GPP_D_0 */
 443	.offset = 0x4c4,
 444	.mask = 0x3c00,
 445	.data = 0,	/* Termination = none (default) */
 446	},
 447};
 448
 449static void uv_init_hubless_pch_d0(void)
 450{
 451	int i, read;
 452
 453	read = *PCH_PCR_GPIO_ADDRESS(PAD_OWN_GPP_D_0);
 454	if (read != 0) {
 455		pr_info("UV: Hubless NMI already configured\n");
 456		return;
 457	}
 458
 459	nmi_debug("UV: Initializing UV Hubless NMI on PCH\n");
 460	for (i = 0; i < ARRAY_SIZE(init_nmi); i++) {
 461		uv_init_hubless_pch_io(init_nmi[i].offset,
 462					init_nmi[i].mask,
 463					init_nmi[i].data);
 464	}
 465}
 466
 467static int uv_nmi_test_hubless(struct uv_hub_nmi_s *hub_nmi)
 468{
 469	int *pstat = PCH_PCR_GPIO_ADDRESS(GPI_NMI_STS_GPP_D_0);
 470	int status = *pstat;
 471
 472	hub_nmi->nmi_value = status;
 473	atomic_inc(&hub_nmi->read_mmr_count);
 474
 475	if (!(status & STS_GPP_D_0_MASK))	/* Not a UV external NMI */
 476		return 0;
 477
 478	*pstat = STS_GPP_D_0_MASK;	/* Is a UV NMI: clear GPP_D_0 status */
 479	(void)*pstat;			/* Flush write */
 480
 481	return 1;
 482}
 483
 484static int uv_test_nmi(struct uv_hub_nmi_s *hub_nmi)
 485{
 486	if (hub_nmi->hub_present)
 487		return uv_nmi_test_mmr(hub_nmi);
 488
 489	if (hub_nmi->pch_owner)		/* Only PCH owner can check status */
 490		return uv_nmi_test_hubless(hub_nmi);
 491
 492	return -1;
 493}
 494
 495/*
 496 * If first CPU in on this hub, set hub_nmi "in_nmi" and "owner" values and
 497 * return true.  If first CPU in on the system, set global "in_nmi" flag.
 498 */
 499static int uv_set_in_nmi(int cpu, struct uv_hub_nmi_s *hub_nmi)
 500{
 501	int first = atomic_add_unless(&hub_nmi->in_nmi, 1, 1);
 502
 503	if (first) {
 504		atomic_set(&hub_nmi->cpu_owner, cpu);
 505		if (atomic_add_unless(&uv_in_nmi, 1, 1))
 506			atomic_set(&uv_nmi_cpu, cpu);
 507
 508		atomic_inc(&hub_nmi->nmi_count);
 509	}
 510	return first;
 511}
 512
 513/* Check if this is a system NMI event */
 514static int uv_check_nmi(struct uv_hub_nmi_s *hub_nmi)
 515{
 516	int cpu = smp_processor_id();
 517	int nmi = 0;
 518	int nmi_detected = 0;
 519
 520	local64_inc(&uv_nmi_count);
 521	this_cpu_inc(uv_cpu_nmi.queries);
 522
 523	do {
 524		nmi = atomic_read(&hub_nmi->in_nmi);
 525		if (nmi)
 526			break;
 527
 528		if (raw_spin_trylock(&hub_nmi->nmi_lock)) {
 529			nmi_detected = uv_test_nmi(hub_nmi);
 530
 531			/* Check flag for UV external NMI */
 532			if (nmi_detected > 0) {
 533				uv_set_in_nmi(cpu, hub_nmi);
 534				nmi = 1;
 535				break;
 536			}
 537
 538			/* A non-PCH node in a hubless system waits for NMI */
 539			else if (nmi_detected < 0)
 540				goto slave_wait;
 541
 542			/* MMR/PCH NMI flag is clear */
 543			raw_spin_unlock(&hub_nmi->nmi_lock);
 544
 545		} else {
 546
 547			/* Wait a moment for the HUB NMI locker to set flag */
 548slave_wait:		cpu_relax();
 549			udelay(uv_nmi_slave_delay);
 550
 551			/* Re-check hub in_nmi flag */
 552			nmi = atomic_read(&hub_nmi->in_nmi);
 553			if (nmi)
 554				break;
 555		}
 556
 557		/*
 558		 * Check if this BMC missed setting the MMR NMI flag (or)
 559		 * UV hubless system where only PCH owner can check flag
 560		 */
 561		if (!nmi) {
 562			nmi = atomic_read(&uv_in_nmi);
 563			if (nmi)
 564				uv_set_in_nmi(cpu, hub_nmi);
 565		}
 566
 567		/* If we're holding the hub lock, release it now */
 568		if (nmi_detected < 0)
 569			raw_spin_unlock(&hub_nmi->nmi_lock);
 570
 571	} while (0);
 572
 573	if (!nmi)
 574		local64_inc(&uv_nmi_misses);
 575
 576	return nmi;
 577}
 578
 579/* Need to reset the NMI MMR register, but only once per hub. */
 580static inline void uv_clear_nmi(int cpu)
 581{
 582	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
 583
 584	if (cpu == atomic_read(&hub_nmi->cpu_owner)) {
 585		atomic_set(&hub_nmi->cpu_owner, -1);
 586		atomic_set(&hub_nmi->in_nmi, 0);
 587		if (hub_nmi->hub_present)
 588			uv_local_mmr_clear_nmi();
 589		else
 590			uv_reassert_nmi();
 591		raw_spin_unlock(&hub_nmi->nmi_lock);
 592	}
 593}
 594
 595/* Ping non-responding CPU's attempting to force them into the NMI handler */
 596static void uv_nmi_nr_cpus_ping(void)
 597{
 598	int cpu;
 599
 600	for_each_cpu(cpu, uv_nmi_cpu_mask)
 601		uv_cpu_nmi_per(cpu).pinging = 1;
 602
 603	__apic_send_IPI_mask(uv_nmi_cpu_mask, APIC_DM_NMI);
 604}
 605
 606/* Clean up flags for CPU's that ignored both NMI and ping */
 607static void uv_nmi_cleanup_mask(void)
 608{
 609	int cpu;
 610
 611	for_each_cpu(cpu, uv_nmi_cpu_mask) {
 612		uv_cpu_nmi_per(cpu).pinging =  0;
 613		uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_OUT;
 614		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
 615	}
 616}
 617
 618/* Loop waiting as CPU's enter NMI handler */
 619static int uv_nmi_wait_cpus(int first)
 620{
 621	int i, j, k, n = num_online_cpus();
 622	int last_k = 0, waiting = 0;
 623	int cpu = smp_processor_id();
 624
 625	if (first) {
 626		cpumask_copy(uv_nmi_cpu_mask, cpu_online_mask);
 627		k = 0;
 628	} else {
 629		k = n - cpumask_weight(uv_nmi_cpu_mask);
 630	}
 631
 632	/* PCH NMI causes only one CPU to respond */
 633	if (first && uv_pch_intr_now_enabled) {
 634		cpumask_clear_cpu(cpu, uv_nmi_cpu_mask);
 635		return n - k - 1;
 636	}
 637
 638	udelay(uv_nmi_initial_delay);
 639	for (i = 0; i < uv_nmi_retry_count; i++) {
 640		int loop_delay = uv_nmi_loop_delay;
 641
 642		for_each_cpu(j, uv_nmi_cpu_mask) {
 643			if (uv_cpu_nmi_per(j).state) {
 644				cpumask_clear_cpu(j, uv_nmi_cpu_mask);
 645				if (++k >= n)
 646					break;
 647			}
 648		}
 649		if (k >= n) {		/* all in? */
 650			k = n;
 651			break;
 652		}
 653		if (last_k != k) {	/* abort if no new CPU's coming in */
 654			last_k = k;
 655			waiting = 0;
 656		} else if (++waiting > uv_nmi_wait_count)
 657			break;
 658
 659		/* Extend delay if waiting only for CPU 0: */
 660		if (waiting && (n - k) == 1 &&
 661		    cpumask_test_cpu(0, uv_nmi_cpu_mask))
 662			loop_delay *= 100;
 663
 664		udelay(loop_delay);
 665	}
 666	atomic_set(&uv_nmi_cpus_in_nmi, k);
 667	return n - k;
 668}
 669
 670/* Wait until all slave CPU's have entered UV NMI handler */
 671static void uv_nmi_wait(int master)
 672{
 673	/* Indicate this CPU is in: */
 674	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_IN);
 675
 676	/* If not the first CPU in (the master), then we are a slave CPU */
 677	if (!master)
 678		return;
 679
 680	do {
 681		/* Wait for all other CPU's to gather here */
 682		if (!uv_nmi_wait_cpus(1))
 683			break;
 684
 685		/* If not all made it in, send IPI NMI to them */
 686		pr_alert("UV: Sending NMI IPI to %d CPUs: %*pbl\n",
 687			 cpumask_weight(uv_nmi_cpu_mask),
 688			 cpumask_pr_args(uv_nmi_cpu_mask));
 689
 690		uv_nmi_nr_cpus_ping();
 691
 692		/* If all CPU's are in, then done */
 693		if (!uv_nmi_wait_cpus(0))
 694			break;
 695
 696		pr_alert("UV: %d CPUs not in NMI loop: %*pbl\n",
 697			 cpumask_weight(uv_nmi_cpu_mask),
 698			 cpumask_pr_args(uv_nmi_cpu_mask));
 699	} while (0);
 700
 701	pr_alert("UV: %d of %d CPUs in NMI\n",
 702		atomic_read(&uv_nmi_cpus_in_nmi), num_online_cpus());
 703}
 704
 705/* Dump Instruction Pointer header */
 706static void uv_nmi_dump_cpu_ip_hdr(void)
 707{
 708	pr_info("\nUV: %4s %6s %-32s %s   (Note: PID 0 not listed)\n",
 709		"CPU", "PID", "COMMAND", "IP");
 710}
 711
 712/* Dump Instruction Pointer info */
 713static void uv_nmi_dump_cpu_ip(int cpu, struct pt_regs *regs)
 714{
 715	pr_info("UV: %4d %6d %-32.32s %pS",
 716		cpu, current->pid, current->comm, (void *)regs->ip);
 717}
 718
 719/*
 720 * Dump this CPU's state.  If action was set to "kdump" and the crash_kexec
 721 * failed, then we provide "dump" as an alternate action.  Action "dump" now
 722 * also includes the show "ips" (instruction pointers) action whereas the
 723 * action "ips" only displays instruction pointers for the non-idle CPU's.
 724 * This is an abbreviated form of the "ps" command.
 725 */
 726static void uv_nmi_dump_state_cpu(int cpu, struct pt_regs *regs)
 727{
 728	const char *dots = " ................................. ";
 729
 730	if (cpu == 0)
 731		uv_nmi_dump_cpu_ip_hdr();
 732
 733	if (current->pid != 0 || uv_nmi_action != nmi_act_ips)
 734		uv_nmi_dump_cpu_ip(cpu, regs);
 735
 736	if (uv_nmi_action == nmi_act_dump) {
 737		pr_info("UV:%sNMI process trace for CPU %d\n", dots, cpu);
 738		show_regs(regs);
 739	}
 740
 741	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_DUMP_DONE);
 742}
 743
 744/* Trigger a slave CPU to dump its state */
 745static void uv_nmi_trigger_dump(int cpu)
 746{
 747	int retry = uv_nmi_trigger_delay;
 748
 749	if (uv_cpu_nmi_per(cpu).state != UV_NMI_STATE_IN)
 750		return;
 751
 752	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP;
 753	do {
 754		cpu_relax();
 755		udelay(10);
 756		if (uv_cpu_nmi_per(cpu).state
 757				!= UV_NMI_STATE_DUMP)
 758			return;
 759	} while (--retry > 0);
 760
 761	pr_crit("UV: CPU %d stuck in process dump function\n", cpu);
 762	uv_cpu_nmi_per(cpu).state = UV_NMI_STATE_DUMP_DONE;
 763}
 764
 765/* Wait until all CPU's ready to exit */
 766static void uv_nmi_sync_exit(int master)
 767{
 768	atomic_dec(&uv_nmi_cpus_in_nmi);
 769	if (master) {
 770		while (atomic_read(&uv_nmi_cpus_in_nmi) > 0)
 771			cpu_relax();
 772		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
 773	} else {
 774		while (atomic_read(&uv_nmi_slave_continue))
 775			cpu_relax();
 776	}
 777}
 778
 779/* Current "health" check is to check which CPU's are responsive */
 780static void uv_nmi_action_health(int cpu, struct pt_regs *regs, int master)
 781{
 782	if (master) {
 783		int in = atomic_read(&uv_nmi_cpus_in_nmi);
 784		int out = num_online_cpus() - in;
 785
 786		pr_alert("UV: NMI CPU health check (non-responding:%d)\n", out);
 787		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
 788	} else {
 789		while (!atomic_read(&uv_nmi_slave_continue))
 790			cpu_relax();
 791	}
 792	uv_nmi_sync_exit(master);
 793}
 794
 795/* Walk through CPU list and dump state of each */
 796static void uv_nmi_dump_state(int cpu, struct pt_regs *regs, int master)
 797{
 798	if (master) {
 799		int tcpu;
 800		int ignored = 0;
 801		int saved_console_loglevel = console_loglevel;
 802
 803		pr_alert("UV: tracing %s for %d CPUs from CPU %d\n",
 804			uv_nmi_action == nmi_act_ips ? "IPs" : "processes",
 805			atomic_read(&uv_nmi_cpus_in_nmi), cpu);
 806
 807		console_loglevel = uv_nmi_loglevel;
 808		atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
 809		for_each_online_cpu(tcpu) {
 810			if (cpumask_test_cpu(tcpu, uv_nmi_cpu_mask))
 811				ignored++;
 812			else if (tcpu == cpu)
 813				uv_nmi_dump_state_cpu(tcpu, regs);
 814			else
 815				uv_nmi_trigger_dump(tcpu);
 816		}
 817		if (ignored)
 818			pr_alert("UV: %d CPUs ignored NMI\n", ignored);
 819
 820		console_loglevel = saved_console_loglevel;
 821		pr_alert("UV: process trace complete\n");
 822	} else {
 823		while (!atomic_read(&uv_nmi_slave_continue))
 824			cpu_relax();
 825		while (this_cpu_read(uv_cpu_nmi.state) != UV_NMI_STATE_DUMP)
 826			cpu_relax();
 827		uv_nmi_dump_state_cpu(cpu, regs);
 828	}
 829	uv_nmi_sync_exit(master);
 830}
 831
 832static void uv_nmi_touch_watchdogs(void)
 833{
 834	touch_softlockup_watchdog_sync();
 835	clocksource_touch_watchdog();
 836	rcu_cpu_stall_reset();
 837	touch_nmi_watchdog();
 838}
 839
 840static void uv_nmi_kdump(int cpu, int main, struct pt_regs *regs)
 841{
 842	/* Check if kdump kernel loaded for both main and secondary CPUs */
 843	if (!kexec_crash_image) {
 844		if (main)
 845			pr_err("UV: NMI error: kdump kernel not loaded\n");
 846		return;
 847	}
 848
 849	/* Call crash to dump system state */
 850	if (main) {
 851		pr_emerg("UV: NMI executing crash_kexec on CPU%d\n", cpu);
 852		crash_kexec(regs);
 853
 854		pr_emerg("UV: crash_kexec unexpectedly returned\n");
 855		atomic_set(&uv_nmi_kexec_failed, 1);
 856
 857	} else { /* secondary */
 858
 859		/* If kdump kernel fails, secondaries will exit this loop */
 860		while (atomic_read(&uv_nmi_kexec_failed) == 0) {
 861
 862			/* Once shootdown cpus starts, they do not return */
 863			run_crash_ipi_callback(regs);
 864
 865			mdelay(10);
 866		}
 867	}
 868}
 869
 870#ifdef CONFIG_KGDB
 871#ifdef CONFIG_KGDB_KDB
 872static inline int uv_nmi_kdb_reason(void)
 873{
 874	return KDB_REASON_SYSTEM_NMI;
 875}
 876#else /* !CONFIG_KGDB_KDB */
 877static inline int uv_nmi_kdb_reason(void)
 878{
 879	/* Ensure user is expecting to attach gdb remote */
 880	if (uv_nmi_action == nmi_act_kgdb)
 881		return 0;
 882
 883	pr_err("UV: NMI error: KDB is not enabled in this kernel\n");
 884	return -1;
 885}
 886#endif /* CONFIG_KGDB_KDB */
 887
 888/*
 889 * Call KGDB/KDB from NMI handler
 890 *
 891 * Note that if both KGDB and KDB are configured, then the action of 'kgdb' or
 892 * 'kdb' has no affect on which is used.  See the KGDB documentation for further
 893 * information.
 894 */
 895static void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
 896{
 897	if (master) {
 898		int reason = uv_nmi_kdb_reason();
 899		int ret;
 900
 901		if (reason < 0)
 902			return;
 903
 904		/* Call KGDB NMI handler as MASTER */
 905		ret = kgdb_nmicallin(cpu, X86_TRAP_NMI, regs, reason,
 906				&uv_nmi_slave_continue);
 907		if (ret) {
 908			pr_alert("KGDB returned error, is kgdboc set?\n");
 909			atomic_set(&uv_nmi_slave_continue, SLAVE_EXIT);
 910		}
 911	} else {
 912		/* Wait for KGDB signal that it's ready for slaves to enter */
 913		int sig;
 914
 915		do {
 916			cpu_relax();
 917			sig = atomic_read(&uv_nmi_slave_continue);
 918		} while (!sig);
 919
 920		/* Call KGDB as slave */
 921		if (sig == SLAVE_CONTINUE)
 922			kgdb_nmicallback(cpu, regs);
 923	}
 924	uv_nmi_sync_exit(master);
 925}
 926
 927#else /* !CONFIG_KGDB */
 928static inline void uv_call_kgdb_kdb(int cpu, struct pt_regs *regs, int master)
 929{
 930	pr_err("UV: NMI error: KGDB is not enabled in this kernel\n");
 931}
 932#endif /* !CONFIG_KGDB */
 933
 934/*
 935 * UV NMI handler
 936 */
 937static int uv_handle_nmi(unsigned int reason, struct pt_regs *regs)
 938{
 939	struct uv_hub_nmi_s *hub_nmi = uv_hub_nmi;
 940	int cpu = smp_processor_id();
 941	int master = 0;
 942	unsigned long flags;
 943
 944	local_irq_save(flags);
 945
 946	/* If not a UV System NMI, ignore */
 947	if (!this_cpu_read(uv_cpu_nmi.pinging) && !uv_check_nmi(hub_nmi)) {
 948		local_irq_restore(flags);
 949		return NMI_DONE;
 950	}
 951
 952	/* Indicate we are the first CPU into the NMI handler */
 953	master = (atomic_read(&uv_nmi_cpu) == cpu);
 954
 955	/* If NMI action is "kdump", then attempt to do it */
 956	if (uv_nmi_action == nmi_act_kdump) {
 957		uv_nmi_kdump(cpu, master, regs);
 958
 959		/* Unexpected return, revert action to "dump" */
 960		if (master)
 961			uv_nmi_action = nmi_act_dump;
 962	}
 963
 964	/* Pause as all CPU's enter the NMI handler */
 965	uv_nmi_wait(master);
 966
 967	/* Process actions other than "kdump": */
 968	switch (uv_nmi_action) {
 969	case nmi_act_health:
 970		uv_nmi_action_health(cpu, regs, master);
 971		break;
 972	case nmi_act_ips:
 973	case nmi_act_dump:
 974		uv_nmi_dump_state(cpu, regs, master);
 975		break;
 976	case nmi_act_kdb:
 977	case nmi_act_kgdb:
 978		uv_call_kgdb_kdb(cpu, regs, master);
 979		break;
 980	default:
 981		if (master)
 982			pr_alert("UV: unknown NMI action: %d\n", uv_nmi_action);
 983		uv_nmi_sync_exit(master);
 984		break;
 985	}
 986
 987	/* Clear per_cpu "in_nmi" flag */
 988	this_cpu_write(uv_cpu_nmi.state, UV_NMI_STATE_OUT);
 989
 990	/* Clear MMR NMI flag on each hub */
 991	uv_clear_nmi(cpu);
 992
 993	/* Clear global flags */
 994	if (master) {
 995		if (!cpumask_empty(uv_nmi_cpu_mask))
 996			uv_nmi_cleanup_mask();
 997		atomic_set(&uv_nmi_cpus_in_nmi, -1);
 998		atomic_set(&uv_nmi_cpu, -1);
 999		atomic_set(&uv_in_nmi, 0);
1000		atomic_set(&uv_nmi_kexec_failed, 0);
1001		atomic_set(&uv_nmi_slave_continue, SLAVE_CLEAR);
1002	}
1003
1004	uv_nmi_touch_watchdogs();
1005	local_irq_restore(flags);
1006
1007	return NMI_HANDLED;
1008}
1009
1010/*
1011 * NMI handler for pulling in CPU's when perf events are grabbing our NMI
1012 */
1013static int uv_handle_nmi_ping(unsigned int reason, struct pt_regs *regs)
1014{
1015	int ret;
1016
1017	this_cpu_inc(uv_cpu_nmi.queries);
1018	if (!this_cpu_read(uv_cpu_nmi.pinging)) {
1019		local64_inc(&uv_nmi_ping_misses);
1020		return NMI_DONE;
1021	}
1022
1023	this_cpu_inc(uv_cpu_nmi.pings);
1024	local64_inc(&uv_nmi_ping_count);
1025	ret = uv_handle_nmi(reason, regs);
1026	this_cpu_write(uv_cpu_nmi.pinging, 0);
1027	return ret;
1028}
1029
1030static void uv_register_nmi_notifier(void)
1031{
1032	if (register_nmi_handler(NMI_UNKNOWN, uv_handle_nmi, 0, "uv"))
1033		pr_warn("UV: NMI handler failed to register\n");
1034
1035	if (register_nmi_handler(NMI_LOCAL, uv_handle_nmi_ping, 0, "uvping"))
1036		pr_warn("UV: PING NMI handler failed to register\n");
1037}
1038
1039void uv_nmi_init(void)
1040{
1041	unsigned int value;
1042
1043	/*
1044	 * Unmask NMI on all CPU's
1045	 */
1046	value = apic_read(APIC_LVT1) | APIC_DM_NMI;
1047	value &= ~APIC_LVT_MASKED;
1048	apic_write(APIC_LVT1, value);
1049}
1050
1051/* Setup HUB NMI info */
1052static void __init uv_nmi_setup_common(bool hubbed)
1053{
1054	int size = sizeof(void *) * (1 << NODES_SHIFT);
1055	int cpu;
1056
1057	uv_hub_nmi_list = kzalloc(size, GFP_KERNEL);
1058	nmi_debug("UV: NMI hub list @ 0x%p (%d)\n", uv_hub_nmi_list, size);
1059	BUG_ON(!uv_hub_nmi_list);
1060	size = sizeof(struct uv_hub_nmi_s);
1061	for_each_present_cpu(cpu) {
1062		int nid = cpu_to_node(cpu);
1063		if (uv_hub_nmi_list[nid] == NULL) {
1064			uv_hub_nmi_list[nid] = kzalloc_node(size,
1065							    GFP_KERNEL, nid);
1066			BUG_ON(!uv_hub_nmi_list[nid]);
1067			raw_spin_lock_init(&(uv_hub_nmi_list[nid]->nmi_lock));
1068			atomic_set(&uv_hub_nmi_list[nid]->cpu_owner, -1);
1069			uv_hub_nmi_list[nid]->hub_present = hubbed;
1070			uv_hub_nmi_list[nid]->pch_owner = (nid == 0);
1071		}
1072		uv_hub_nmi_per(cpu) = uv_hub_nmi_list[nid];
1073	}
1074	BUG_ON(!alloc_cpumask_var(&uv_nmi_cpu_mask, GFP_KERNEL));
1075}
1076
1077/* Setup for UV Hub systems */
1078void __init uv_nmi_setup(void)
1079{
1080	uv_nmi_setup_mmrs();
1081	uv_nmi_setup_common(true);
1082	uv_register_nmi_notifier();
1083	pr_info("UV: Hub NMI enabled\n");
1084}
1085
1086/* Setup for UV Hubless systems */
1087void __init uv_nmi_setup_hubless(void)
1088{
1089	uv_nmi_setup_common(false);
1090	pch_base = xlate_dev_mem_ptr(PCH_PCR_GPIO_1_BASE);
1091	nmi_debug("UV: PCH base:%p from 0x%lx, GPP_D_0\n",
1092		pch_base, PCH_PCR_GPIO_1_BASE);
1093	if (uv_pch_init_enable)
1094		uv_init_hubless_pch_d0();
1095	uv_init_hubless_pch_io(GPI_NMI_ENA_GPP_D_0,
1096				STS_GPP_D_0_MASK, STS_GPP_D_0_MASK);
1097	uv_nmi_setup_hubless_intr();
1098	/* Ensure NMI enabled in Processor Interface Reg: */
1099	uv_reassert_nmi();
1100	uv_register_nmi_notifier();
1101	pr_info("UV: PCH NMI enabled\n");
1102}